Science.gov

Sample records for aba inhibits germination

  1. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8'-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition.

    PubMed

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Kobayashi, Daisuke; Kawakami, Naoto

    2013-03-01

    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8'-hydroxyase gene which was highly expressed during seed development (TaABA8'OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8'OH1 on the D genome (TaABA8'OH1-D) was identified in Japanese cultivars including 'Tamaizumi'. However, a single mutation in TaABA8'OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8'OH1 on the A genome (TaABA8'OH1-A), TM1833, was identified from gamma-ray irradiation lines of 'Tamaizumi'. TM1833 (a double mutant in TaABA8'OH1-A and TaABA8'OH1-D) showed lower TaABA8'OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in 'Tamaizumi' (a single mutant in TaABA8'OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8'OH1 may be effective in germination inhibition in field-grown wheat.

  2. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8′-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition

    PubMed Central

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Kobayashi, Daisuke; Kawakami, Naoto

    2013-01-01

    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8′-hydroxyase gene which was highly expressed during seed development (TaABA8′OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8′OH1 on the D genome (TaABA8′OH1-D) was identified in Japanese cultivars including ‘Tamaizumi’. However, a single mutation in TaABA8′OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8′OH1 on the A genome (TaABA8′OH1-A), TM1833, was identified from gamma-ray irradiation lines of ‘Tamaizumi’. TM1833 (a double mutant in TaABA8′OH1-A and TaABA8′OH1-D) showed lower TaABA8′OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in ‘Tamaizumi’ (a single mutant in TaABA8′OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8′OH1 may be effective in germination inhibition in field-grown wheat. PMID:23641187

  3. ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis.

    PubMed

    Kim, Hani; Kim, Soon-Hee; Seo, Dong Hye; Chung, Sunglan; Kim, Sang-Woo; Lee, Jeong-Soo; Kim, Woo Taek; Lee, Jae-Hoon

    2016-02-01

    To elucidate the contribution of CRL3-ABA-mediated responses, we attempted to find CRL3 substrate receptors involved in ABA signaling. One gene named ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 (AHT1) was upregulated more than 2.5 times by ABA, and its coding region possessed a BTB/POZ domain, which is the common feature of CRL3 substrate receptors. Loss of AHT1 led to retardation of the germination process, not inhibition of root growth. AHT1 transcripts also increased in response to mannitol, NaCl and drought treatments at the seedling stage and in dry seeds. High expression of AHT1 in dry seeds was inhibited by the defect of ABA signaling components such as ABI1, ABI3 and SRKs indicating that the expression of AHT1 is dependent on ABA signaling. Among bZIP transcription factors participating in ABA signaling, the losses of ABI5/DPBF1, AREB1/ABF2, EEL/DPBF4 and DPBF2/bZIP67 resulted in reduced AHT1 expression, showing that these transcription factors play a positive role in ABA-induced AHT1 expression. While loss of AHT1 did not affect the expression pattern of NCED3, ABI2, SRKs and AREB/ABF genes, it led to hyperinduction of ABI5/DPBF genes such as ABI5/DPBF1, EEL/DPBF4 and AREB3/DPBF3, which are mainly involved in seed development and germination, as well as ABA-inducible genes transactivated by ABI5. Overall, these findings indicate that AHT1 negatively regulates ABA-mediated inhibition of germination, possibly by repressing the expression of a subset of ABI5/DPBF subfamily genes, and that AHT1 may be regulated by a negative feedback process through its linkage with a part of ABI5/DPBF proteins. PMID:26667153

  4. ABA Inhibits Embryo Cell Expansion and Early Cell Division Events During Coffee (Coffea arabica ‘Rubi’) Seed Germination

    PubMed Central

    Da Silva, E. A. Amaral; Toorop, Peter E.; Van Lammeren, André A. M.; Hilhorst, Henk W. M.

    2008-01-01

    Background and Aims Coffee seed germination represents an interplay between the embryo and the surrounding endosperm. A sequence of events in both parts of the seed determines whether germination will be successful or not. Following previous studies, the aim here was to further characterize the morphology of endosperm degradation and embryo growth with respect to morphology and cell cycle, and the influence of abscisic acid on these processes. Methods Growth of cells in a fixed region of the axis was quantified from light micrographs. Cell cycle events were measured by flow cytometry and by immunocytochemistry, using antibodies against β-tubulin. Aspects of the endosperm were visualized by light and scanning electron microscopy. Key Results The embryonic axis cells grew initially by isodiametric expansion. This event coincided with reorientation and increase in abundance of microtubules and with accumulation of β-tubulin. Radicle protrusion was characterized by a shift from isodiametric expansion to elongation of radicle cells and further accumulation of β-tubulin. Early cell division events started prior to radicle protrusion. Abscisic acid decreased the abundance of microtubules and inhibited the growth of the embryo cells, the reorganization of the microtubules, DNA replication in the embryonic axis, the formation of a protuberance and the completion of germination. The endosperm cap cells had smaller and thinner cell walls than the rest of the endosperm. Cells in the endosperm cap displayed compression followed by loss of cell integrity and the appearance of a protuberance prior to radicle protrusion. Conclusions Coffee seed germination is the result of isodiametric growth of the embryo followed by elongation, at the expense of integrity of endosperm cap cells. The cell cycle, including cell division, is initiated prior to radicle protrusion. ABA inhibits expansion of the embryo, and hence subsequent events, including germination. PMID:18617534

  5. ABA-Mediated Inhibition of Germination Is Related to the Inhibition of Genes Encoding Cell-Wall Biosynthetic and Architecture: Modifying Enzymes and Structural Proteins in Medicago truncatula Embryo Axis

    PubMed Central

    Gimeno-Gilles, Christine; Lelièvre, Eric; Viau, Laure; Malik-Ghulam, Mustafa; Ricoult, Claudie; Niebel, Andreas; Leduc, Nathalie; Limami, Anis M.

    2009-01-01

    Radicle emergence and reserves mobilization are two distinct programmes that are thought to control germination. Both programs are influenced by abscissic acid (ABA) but how this hormone controls seed germination is still poorly known. Phenotypic and microscopic observations of the embryo axis of Medicago truncatula during germination in mitotic inhibition condition triggered by 10 μM oryzalin showed that cell division was not required to allow radicle emergence. A suppressive subtractive hybridization showed that more than 10% of up-regulated genes in the embryo axis encoded proteins related to cell-wall biosynthesis. The expression of α-expansins, pectin-esterase, xylogucan-endotransglycosidase, cellulose synthase, and extensins was monitored in the embryo axis of seeds germinated on water, constant and transitory ABA. These genes were overexpressed before completion of germination in the control and strongly inhibited by ABA. The expression was re-established in the ABA transitory-treatment after the seeds were transferred back on water and proceeded to germination. This proves these genes as contributors to the completion of germination and strengthen the idea that cell-wall loosening and remodeling in relation to cell expansion in the embryo axis is a determinant feature in germination. Our results also showed that ABA controls germination through the control of radicle emergence, namely by inhibiting cell-wall loosening and expansion. PMID:19529818

  6. Arabidopsis DREB2C modulates ABA biosynthesis during germination.

    PubMed

    Je, Jihyun; Chen, Huan; Song, Chieun; Lim, Chae Oh

    2014-09-12

    Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression.

  7. ABA-stimulated SoDOG1 expression is after-ripening inhibited during early imbibition of germinating Sisymbrium officinale seeds.

    PubMed

    Carrillo-Barral, Néstor; Matilla, Angel J; García-Ramas, Cristina; Rodríguez-Gacio, María Del Carmen

    2015-12-01

    DELAY OF GERMINATION 1 (AtDOG1) was the first gene identified as dormancy-associated, but its physiological role in germination is far from being understood. Here, an orthologue of AtDOG1 in Sisymbrium officinale (SoDOG1; KM009050) is being reported. Phylogenetically, the SoDOG1 gene is included into the dicotyledonous group together with DOG1 from Arabidopsis thaliana (EF028470), Brassica rapa (AC189537), Lepidium papillosum (JX512183, JX512185) and Lepidium sativum (GQ411192). The SoDOG1 expression peaked at the onset of the silique maturation stage and there was presence of SoDOG1-mRNA in the freshly collected viable dry seed (i.e. AR0). The SoDOG1 transcripts were also found in other organs, such as open and closed flowers and to a lesser degree in roots and stems. We have previously reported in S. officinale seeds in which sensu stricto germination is positively affected by nitrate and both testa and micropylar endosperm ruptures are temporally separated. In dry viable seeds, the SoDOG1-mRNA level in three different after-ripening (AR) status was AR0 ≈ AR7 (optimal AR) < AR27 (optimal AR was almost lost). The presence of nitrate in the AR0 seed imbibition medium markedly decreased the SoDOG1 expression during sensu stricto germination. However, the nitrate stimulated the SoDOG1 expression during imbibition of AR7 compared to AR0. At the early AR0 seed imbibition (3-6 h), exogenous ABA provoked a very strong stimulation of the SoDOG1 expression. AR inhibits ABA-induced SoDOG1 expression during early germination and gibberellins (GA) can partially mimic this AR effect. A view on the integration of all found results in the sensu stricto germination of S. officinale was conducted.

  8. MBF1s regulate ABA-dependent germination of Arabidopsis seeds.

    PubMed

    Di Mauro, María Florencia; Iglesias, María José; Arce, Débora Pamela; Valle, Estela Marta; Arnold, Roberto Benech; Tsuda, Kenichi; Yamazaki, Ken-ichi; Casalongué, Claudia Anahí; Godoy, Andrea Verónica

    2012-02-01

    Transcriptional co-activators of the multiprotein bridging factor 1 (MBF1) controls gene expression by connecting transcription factors and the basal transcription machinery. In Arabidopsis thaliana functions of MBF1 genes have been related to stress tolerance and developmental alterations. Endogenous ABA plays a major role in the regulation of Arabidopsis seed dormancy and germination. Seed dormancy and ABA sensitivity are enhanced in ethylene insensitive mutants suggesting that ethylene signal transduction pathway is necessary to fully develop ABA-dependent germination. In this report we showed that a triple knock-down mutant for Arabidopsis MBF1 genes (abc-) has enhanced seed dormancy and displays hypersensitivity to exogenous ABA. In addition, higher ABA contents were detected in abc- seeds after imbibition. These evidences suggest a negative role of MBF1s genes in ABA-dependent inhibition of germination. The participation of MBF1s in ethylene signal transduction pathway is also discussed.

  9. PLASTID MOVEMENT IMPAIRED1 mediates ABA sensitivity during germination and implicates ABA in light-mediated Chloroplast movements.

    PubMed

    Rojas-Pierce, Marcela; Whippo, Craig W; Davis, Phillip A; Hangarter, Roger P; Springer, Patricia S

    2014-10-01

    The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development, including seed development, germination and responses to water-deficit stress. A complex ABA signaling network integrates environmental signals including water availability and light intensity and quality to fine-tune the response to a changing environment. To further define the regulatory pathways that control water-deficit and ABA responses, we carried out a gene-trap tagging screen for water-deficit-regulated genes in Arabidopsis thaliana. This screen identified PLASTID MOVEMENT IMPAIRED1 (PMI1), a gene involved in blue-light-induced chloroplast movement, as functioning in ABA-response pathways. We provide evidence that PMI1 is involved in the regulation of seed germination by ABA, acting upstream of the intersection between ABA and low-glucose signaling pathways. Furthermore, PMI1 participates in the regulation of ABA accumulation during periods of water deficit at the seedling stage. The combined phenotypes of pmi1 mutants in chloroplast movement and ABA responses indicate that ABA signaling may modulate chloroplast motility. This result was further supported by the detection of altered chloroplast movements in the ABA mutants aba1-6, aba2-1 and abi1-1.

  10. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Møller, Ian Max; Song, Song-Quan

    2015-05-01

    Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.

  11. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    PubMed Central

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8′-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8′-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination. PMID:23531630

  12. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination.

    PubMed

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8'-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8'-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

  13. New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds.

    PubMed

    Chen, Changming; Twito, Shir; Miller, Gad

    2014-01-01

    Successful execution of germination program greatly depends on the seeds' oxidative homeostasis. We recently identified new roles for the H2O2-reducing enzyme ascorbate peroxidase 6 (APX6) in germination control and seeds' stress tolerance. APX6 replaces APX1 as the dominant APX in dry seeds, and its loss-of-function results in reduced germination due to over accumulation of ROS and oxidative damage. Metabolic analyses in dry apx6 seeds, revealed altered homeostasis of primary metabolites including accumulation of TCA cycle metabolites, ABA and auxin, supporting a novel role for APX6 in regulating cellular metabolism. Increased sensitivity of apx6 mutants to ABA or IAA in germination assays indicated impaired perception of these signals. Relative suppression of ABI3 and ABI5 expression, and induction of ABI4, suggested the activation of a signaling route inhibiting germination in apx6 seeds that is independent of ABI3. Here we provide additional evidence linking ABI4 with ABA- and auxin-controlled inhibition of germination and suggest a hypothetical model for the role of APX6 in the regulation of the crosstalk between these hormones and ROS.

  14. New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds.

    PubMed

    Chen, Changming; Twito, Shir; Miller, Gad

    2014-01-01

    Successful execution of germination program greatly depends on the seeds' oxidative homeostasis. We recently identified new roles for the H2O2-reducing enzyme ascorbate peroxidase 6 (APX6) in germination control and seeds' stress tolerance. APX6 replaces APX1 as the dominant APX in dry seeds, and its loss-of-function results in reduced germination due to over accumulation of ROS and oxidative damage. Metabolic analyses in dry apx6 seeds, revealed altered homeostasis of primary metabolites including accumulation of TCA cycle metabolites, ABA and auxin, supporting a novel role for APX6 in regulating cellular metabolism. Increased sensitivity of apx6 mutants to ABA or IAA in germination assays indicated impaired perception of these signals. Relative suppression of ABI3 and ABI5 expression, and induction of ABI4, suggested the activation of a signaling route inhibiting germination in apx6 seeds that is independent of ABI3. Here we provide additional evidence linking ABI4 with ABA- and auxin-controlled inhibition of germination and suggest a hypothetical model for the role of APX6 in the regulation of the crosstalk between these hormones and ROS. PMID:25482750

  15. New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds

    PubMed Central

    Chen, Changming; Twito, Shir; Miller, Gad

    2014-01-01

    Successful execution of germination program greatly depends on the seeds’ oxidative homeostasis. We recently identified new roles for the H2O2-reducing enzyme ascorbate peroxidase 6 (APX6) in germination control and seeds’ stress tolerance. APX6 replaces APX1 as the dominant APX in dry seeds, and its loss-of-function results in reduced germination due to over accumulation of ROS and oxidative damage. Metabolic analyses in dry apx6 seeds, revealed altered homeostasis of primary metabolites including accumulation of TCA cycle metabolites, ABA and auxin, supporting a novel role for APX6 in regulating cellular metabolism. Increased sensitivity of apx6 mutants to ABA or IAA in germination assays indicated impaired perception of these signals. Relative suppression of ABI3 and ABI5 expression, and induction of ABI4, suggested the activation of a signaling route inhibiting germination in apx6 seeds that is independent of ABI3. Here we provide additional evidence linking ABI4 with ABA- and auxin-controlled inhibition of germination and suggest a hypothetical model for the role of APX6 in the regulation of the crosstalk between these hormones and ROS. PMID:25482750

  16. Effects of ABA and CaCl₂ on GABA accumulation in fava bean germinating under hypoxia-NaCl stress.

    PubMed

    Yang, Runqiang; Hui, Qianru; Gu, Zhenxin

    2016-01-01

    Effects of exogenous abscisic acid (ABA) and CaCl2 on γ-aminobutyric acid (GABA) accumulation of germinated fava bean under hypoxia-NaCl stress were investigated. Exogenous ABA resulted in the enhancement of glutamate decarboxylase (GAD) and diamine oxidase (DAO) activity as well as GABA content in cotyledon and shoot. CaCl2 increased both enzyme activities in shoot and GABA content in cotyledon and shoot. ABA downregulated GAD expression in cotyledon and radicle, while upregulated that in shoot; it also upregulated DAO expression in each organ. CaCl2 upregulated GAD expression in cotyledon, while downregulated that in radicle. However, it upregulated DAO expression in shoot, downregulated that in radicle. ABA inhibitor fluridon and ethylenediaminetetraacetic acid inhibited GAD and DAO activities significantly so that inhibited GABA accumulation through reducing ABA biosynthesis and chelating Ca(2+), respectively. However, they upregulated GAD and DAO expression in varying degrees. These results indicate that ABA and Ca(2+) participate in GABA biosynthesis in fava bean during germination under hypoxia-NaCl stress.

  17. Effects of ABA and CaCl₂ on GABA accumulation in fava bean germinating under hypoxia-NaCl stress.

    PubMed

    Yang, Runqiang; Hui, Qianru; Gu, Zhenxin

    2016-01-01

    Effects of exogenous abscisic acid (ABA) and CaCl2 on γ-aminobutyric acid (GABA) accumulation of germinated fava bean under hypoxia-NaCl stress were investigated. Exogenous ABA resulted in the enhancement of glutamate decarboxylase (GAD) and diamine oxidase (DAO) activity as well as GABA content in cotyledon and shoot. CaCl2 increased both enzyme activities in shoot and GABA content in cotyledon and shoot. ABA downregulated GAD expression in cotyledon and radicle, while upregulated that in shoot; it also upregulated DAO expression in each organ. CaCl2 upregulated GAD expression in cotyledon, while downregulated that in radicle. However, it upregulated DAO expression in shoot, downregulated that in radicle. ABA inhibitor fluridon and ethylenediaminetetraacetic acid inhibited GAD and DAO activities significantly so that inhibited GABA accumulation through reducing ABA biosynthesis and chelating Ca(2+), respectively. However, they upregulated GAD and DAO expression in varying degrees. These results indicate that ABA and Ca(2+) participate in GABA biosynthesis in fava bean during germination under hypoxia-NaCl stress. PMID:26644273

  18. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds.

    PubMed

    Maia, Julio; Dekkers, Bas J W; Dolle, Miranda J; Ligterink, Wilco; Hilhorst, Henk W M

    2014-07-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this stress response and in DT re-establishment. However, the path from the sensing of an osmotic cue and its signaling to DT re-establishment is still largely unknown. Analyses of DT, ABA sensitivity, ABA content and gene expression were performed in desiccation-sensitive (DS) and desiccation-tolerant Arabidopsis thaliana seeds. Furthermore, loss and re-establishment of DT in germinated Arabidopsis seeds was studied in ABA-deficient and ABA-insensitive mutants. We demonstrate that the developmental window in which DT can be re-established correlates strongly with the window in which ABA sensitivity is still present. Using ABA biosynthesis and signaling mutants, we show that this hormone plays a key role in DT re-establishment. Surprisingly, re-establishment of DT depends on the modulation of ABA sensitivity rather than enhanced ABA content. In addition, the evaluation of several ABA-insensitive mutants, which can still produce normal desiccation-tolerant seeds, but are impaired in the re-establishment of DT, shows that the acquisition of DT during seed development is genetically different from its re-establishment during germination.

  19. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA₄ interaction in cucumber (Cucumis sativus L.).

    PubMed

    Zhang, Hai-Jun; Zhang, Na; Yang, Rong-Chao; Wang, Li; Sun, Qian-Qian; Li, Dian-Bo; Cao, Yun-Yun; Weeda, Sarah; Zhao, Bing; Ren, Shuxin; Guo, Yang-Dong

    2014-10-01

    Although previous studies have found that melatonin can promote seed germination, the mechanisms involved in perceiving and signaling melatonin remain poorly understood. In this study, it was found that melatonin was synthesized during cucumber seed germination with a peak in melatonin levels occurring 14 hr into germination. This is indicative of a correlation between melatonin synthesis and seed germination. Meanwhile, seeds pretreated with exogenous melatonin (1 μM) showed enhanced germination rates under 150 mM NaCl stress compared to water-pretreated seeds under salinity stress. There are two apparent mechanisms by which melatonin alleviated salinity-induced inhibition of seed germination. Exogenous melatonin decreased oxidative damage induced by NaCl stress by enhancing gene expression of antioxidants. Under NaCl stress, compared to untreated control, the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly increased by approximately 1.3-5.0-fold, with a concomitant 1.4-2.0-fold increase of CsCu-ZnSOD, CsFe-ZnSOD, CsCAT, and CsPOD in melatonin-pretreated seeds. Melatonin also alleviated salinity stress by affecting abscisic acid (ABA) and gibberellin acid (GA) biosynthesis and catabolism during seed germination. Compared to NaCl treatment, melatonin significantly up-regulated ABA catabolism genes (e.g., CsCYP707A1 and CsCYP707A2, 3.5 and 105-fold higher than NaCl treatment at 16 hr, respectively) and down-regulated ABA biosynthesis genes (e.g., CsNECD2, 0.29-fold of CK2 at 16 hr), resulting in a rapid decrease of ABA content during the early stage of germination. At the same time, melatonin positively up-regulated GA biosynthesis genes (e.g., GA20ox and GA3ox, 2.3 and 3.9-fold higher than NaCl treatment at 0 and 12 hr, respectively), contributing to a significant increase of GA (especially GA4) content. In this study, we provide new evidence suggesting that melatonin alleviates the

  20. Arabidopsis CPR5 Independently Regulates Seed Germination and Postgermination Arrest of Development through LOX Pathway and ABA Signaling

    PubMed Central

    Yang, Xiang; Wang, Yaqin; Su, Xiaojun; Du, Jinju; Yang, Chengwei

    2011-01-01

    The phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently. PMID:21556325

  1. The effects of GA and ABA treatments on metabolite profile of germinating barley.

    PubMed

    Huang, Yuqing; Cai, Shengguan; Ye, Lingzhen; Hu, Hongliang; Li, Chengdao; Zhang, Guoping

    2016-02-01

    Sugar degradation during grain germination is important for malt quality. In malting industry, gibberellin (GA) is frequently used for improvement of malting quality. In this study, the changes of metabolite profiles and starch-degrading enzymes during grain germination, and as affected by GA and abscisic acid (ABA) were investigated using two wild barley accessions XZ72 and XZ95. Totally fifty-two metabolites with known structures were detected and the change of metabolite during germination was time- and genotype dependent. Sugars and amino acids were the most dramatically changed compounds. Addition of GA enhanced the activities of starch-degrading enzymes, and increased most metabolites, especially sugars and amino acids, whereas ABA had the opposite effect. The effect varied with the barley accessions. The current study is the first attempt in investigating the effect of hormones on metabolite profiles in germinating barley grain, being helpful for identifying the factors affecting barley germination or malt quality. PMID:26304431

  2. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    PubMed

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice.

  3. The NF-YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis

    PubMed Central

    Liu, Xu; Hu, Pengwei; Huang, Mingkun; Tang, Yang; Li, Yuge; Li, Ling; Hou, Xingliang

    2016-01-01

    The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC–RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC–RGL2–ABI5 module integrates GA and ABA signalling pathways during seed germination. PMID:27624486

  4. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis.

    PubMed

    Liu, Xu; Hu, Pengwei; Huang, Mingkun; Tang, Yang; Li, Yuge; Li, Ling; Hou, Xingliang

    2016-01-01

    The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC-RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC-RGL2-ABI5 module integrates GA and ABA signalling pathways during seed germination.

  5. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis.

    PubMed

    Liu, Xu; Hu, Pengwei; Huang, Mingkun; Tang, Yang; Li, Yuge; Li, Ling; Hou, Xingliang

    2016-01-01

    The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC-RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC-RGL2-ABI5 module integrates GA and ABA signalling pathways during seed germination. PMID:27624486

  6. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes.

    PubMed

    Graeber, Kai; Linkies, Ada; Müller, Kerstin; Wunchova, Andrea; Rott, Anita; Leubner-Metzger, Gerhard

    2010-05-01

    Seed dormancy is genetically determined with substantial environmental influence mediated, at least in part, by the plant hormone abscisic acid (ABA). The ABA-related transcription factor ABI3/VP1 (ABA INSENSITIVE3/VIVIPAROUS1) is widespread among green plants. Alternative splicing of its transcripts appears to be involved in regulating seed dormancy, but the role of ABI3/VP1 goes beyond seeds and dormancy. In contrast, DOG1 (DELAY OF GERMINATION 1), a major quantitative trait gene more specifically involved in seed dormancy, was so far only known from Arabidopsis thaliana (AtDOG1) and whether it also has roles during the germination of non-dormant seeds was not known. Seed germination of Lepidium sativum ('garden cress') is controlled by ABA and its antagonists gibberellins and ethylene and involves the production of apoplastic hydroxyl radicals. We found orthologs of AtDOG1 in the Brassicaceae relatives L. sativum (LesaDOG1) and Brassica rapa (BrDOG1) and compared their gene structure and the sequences of their transcripts expressed in seeds. Tissue-specific analysis of LesaDOG1 transcript levels in L. sativum seeds showed that they are degraded upon imbibition in the radicle and the micropylar endosperm. ABA inhibits germination in that it delays radicle protrusion and endosperm weakening and it increased LesaDOG1 transcript levels during early germination due to enhanced transcription and/or inhibited degradation. A reduced decrease in LesaDOG1 transcript levels upon ABA treatment is evident in the late germination phase in both tissues. This temporal and ABA-related transcript expression pattern suggests a role for LesaDOG1 in the control of germination timing of non-dormant L. sativum seeds. The possible involvement of the ABA-related transcription factors ABI3 and ABI5 in the regulation of DOG1 transcript expression is discussed. Other species of the monophyletic genus Lepidium showed coat or embryo dormancy and are therefore highly suited for comparative

  7. Chemical inhibition of potato ABA-8'-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration.

    PubMed

    Suttle, Jeffrey C; Abrams, Suzanne R; De Stefano-Beltrán, Luis; Huckle, Linda L

    2012-09-01

    The effects of azole-type P450 inhibitors and two metabolism-resistant abscisic acid (ABA) analogues on in vitro ABA-8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expressed in yeast, three potato CYP707A genes were demonstrated to encode enzymatically active ABA-8'-hydroxylases with micromolar affinities for (+)-ABA. The in vitro activity of the three enzymes was inhibited by the P450 azole-type inhibitors ancymidol, paclobutrazol, diniconazole, and tetcyclasis, and by the 8'-acetylene- and 8'-methylene-ABA analogues, with diniconazole and tetcyclasis being the most potent inhibitors. The in planta metabolism of [(3)H](±)-ABA to phaseic acid and dihydrophaseic acid in tuber meristems was inhibited by diniconazole, tetcyclasis, and to a lesser extent by 8'-acetylene- and 8'-methylene-ABA. Continuous exposure of in vitro generated microtubers to diniconazole resulted in a 2-fold increase in endogenous ABA content and a decline in dihydrophaseic acid content after 9 weeks of development. Similar treatment with 8'-acetylene-ABA had no effects on the endogenous contents of ABA or phaseic acid but reduced the content of dihydrophaseic acid. Tuber meristem dormancy progression was determined ex vitro in control, diniconazole-, and 8'-acetylene-ABA-treated microtubers following harvest. Continuous exposure to diniconazole during microtuber development had no effects on subsequent sprouting at any time point. Continuous exposure to 8'-acetylene-ABA significantly increased the rate of microtuber sprouting. The results indicate that, although a decrease in ABA content is a hallmark of tuber dormancy progression, the decline in ABA levels is not a prerequisite for dormancy exit and the onset of tuber sprouting.

  8. Involvement of RD20, a member of caleosin family, in ABA-mediated regulation of germination in Arabidopsis thaliana.

    PubMed

    Aubert, Yann; Leba, Louis-Jérome; Cheval, Cécilia; Ranty, Benoit; Vavasseur, Alain; Aldon, Didier; Galaud, Jean-Philippe

    2011-04-01

    The RD20 gene encodes a member of the caleosin family, which is primarily known to function in the mobilization of seed storage lipids during germination. In contrast to other caleosins, RD20 expression is early-induced by water deficit conditions and we recently provided genetic evidence for its positive role in drought tolerance in Arabidopsis. RD20 is also responsive to pathogen infection and is constitutively expressed in diverse tissues and organs during development suggesting additional roles for this caleosin. This addendum describes further exploration of phenotypic alterations in T-DNA insertional rd20 mutant and knock-out complemented transgenic plants in the context of early development and susceptibility to a phytopathogenic bacteria. We show that the RD20 gene is involved in ABA-mediated inhibition of germination and does not play a significant role in plant defense against Pseudomonas syringae. PMID:21673513

  9. Involvement of RD20, a member of caleosin family, in ABA-mediated regulation of germination in Arabidopsis thaliana

    PubMed Central

    Cheval, Cécilia; Ranty, Benoit; Vavasseur, Alain; Aldon, Didier

    2011-01-01

    The RD20 gene encodes a member of the caleosin family, which is primarily known to function in the mobilization of seed storage lipids during germination. In contrast to other caleosins, RD20 expression is early-induced by water deficit conditions and we recently provided genetic evidence for its positive role in drought tolerance in Arabidopsis. RD20 is also responsive to pathogen infection and is constitutively expressed in diverse tissues and organs during development suggesting additional roles for this caleosin. This addendum describes further exploration of phenotypic alterations in T-DNA insertional rd20 mutant and knock-out complemented transgenic plants in the context of early development and susceptibility to a phytopathogenic bacteria. We show that the RD20 gene is involved in ABA-mediated inhibition of germination and does not play a significant role in plant defense against Pseudomonas syringae. PMID:21673513

  10. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    PubMed Central

    Daszkowska-Golec, Agata; Chorazy, Edyta; Maluszynski, Miroslaw; Szarejko, Iwona

    2013-01-01

    Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1) insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2) and soa3 (suppressor of abh1 hypersensitivity to ABA 3). Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1) in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress. PMID:23807502

  11. Changes in the Levels of Calmodulin and of a Calmodulin Inhibitor in the Early Phases of Radish (Raphanus sativus L.) Seed Germination: Effects of Aba and Fusicoccin.

    PubMed

    Cocucci, M; Negrini, N

    1988-11-01

    An inhibitor of Ca(2+)-calmodulin (Cam)-dependent brain phosphodiesterase was present in the soluble fraction of embryo axes from ungerminated radish (Raphanus sativus L.) seeds. This inhibitor is a Ca(2+)-dependent, Cam-binding protein; in fact: (a) its effect was strongly reduced by treatment with proteases; (b) the inhibition was counteracted by Cam but not by Ca(2+); (c) on gel filtration in the presence of Ca(2+), Cam co-chromatographed with the inhibitor. The inhibitor is heat stable and positively charged at pH 7.5. During early phases of germination, the fresh weight and the levels of DNA and RNA of embryo axes increased, the level of the inhibitor decreased, and the level of Cam increased. Abscisic acid (ABA) inhibited germination, the decrease of inhibitor, and the increase of Cam. Fusicoccin (FC) stimulated the increase in fresh weight but not the increase in the RNA and DNA levels; in this condition, the inhibitor level decreased and the increase in Cam level was higher than in the control. In the presence of both ABA and FC, there was an increase in fresh weight not accompanied by an increase in DNA and RNA levels; Cam increased and, on a fresh weight basis, reached the value of the control. These results indicate that the Ca(2+)-Cam system was activated in early germination of radish seeds by an increase in Cam and a decrease in the inhibitor levels, that FC, probably through the activation of membrane functions, increased Cam level, and that the ABA inhibition on germination was not mediated by the Ca(2+)-Cam system.

  12. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion

    PubMed Central

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-01-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis. Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. PMID:27034328

  13. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    PubMed

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes.

  14. Involvement of rice histone deacetylase HDA705 in seed germination and in response to ABA and abiotic stresses.

    PubMed

    Zhao, Jinhui; Li, Mingzhi; Gu, Dachuan; Liu, Xuncheng; Zhang, Jianxia; Wu, Kunlin; Zhang, Xinhua; Teixeira da Silva, Jaime A; Duan, Jun

    2016-02-01

    Histone acetylation and deacetylation play crucial roles in the modification of chromatin structure and regulation of gene expression in eukaryotes. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) assist to maintain the balance of chromatin acetylation status. Previous studies showed that plant HDACs are key regulators involved in response to development and stresses. In this study, we examined the expression pattern and function of HDA705, a member of the RPD3/HDA1-type HDAC in rice. Overexpression of HDA705 in rice decreased ABA and salt stress resistance during seed germination. Delayed seed germination of HDA705 overexpression lines was associated with down-regulated expression of GA biosynthetic genes and up-regulation of ABA biosynthetic genes. Moreover, overexpression of HDA705 in rice enhanced osmotic stress resistance during the seedling stage. Our findings demonstrate that HDA705 may play a role in regulating seed germination and the response to abiotic stresses in rice.

  15. The Mg-Chelatase H Subunit of Arabidopsis Antagonizes a Group of WRKY Transcription Repressors to Relieve ABA-Responsive Genes of Inhibition[W][OA

    PubMed Central

    Shang, Yi; Yan, Lu; Liu, Zhi-Qiang; Cao, Zheng; Mei, Chao; Xin, Qi; Wu, Fu-Qing; Wang, Xiao-Fang; Du, Shu-Yuan; Jiang, Tao; Zhang, Xiao-Feng; Zhao, Rui; Sun, Hai-Li; Liu, Rui; Yu, Yong-Tao; Zhang, Da-Peng

    2010-01-01

    The phytohormone abscisic acid (ABA) plays a vital role in plant development and response to environmental challenges, but the complex networks of ABA signaling pathways are poorly understood. We previously reported that a chloroplast protein, the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR), functions as a receptor for ABA in Arabidopsis thaliana. Here, we report that ABAR spans the chloroplast envelope and that the cytosolic C terminus of ABAR interacts with a group of WRKY transcription factors (WRKY40, WRKY18, and WRKY60) that function as negative regulators of ABA signaling in seed germination and postgermination growth. WRKY40, a central negative regulator, inhibits expression of ABA-responsive genes, such as ABI5. In response to a high level of ABA signal that recruits WRKY40 from the nucleus to the cytosol and promotes ABAR–WRKY40 interaction, ABAR relieves the ABI5 gene of inhibition by repressing WRKY40 expression. These findings describe a unique ABA signaling pathway from the early signaling events to downstream gene expression. PMID:20543028

  16. The plastid outer envelope protein OEP16 affects metabolic fluxes during ABA-controlled seed development and germination

    PubMed Central

    Pudelski, Birgit; Schock, Annette; Hoth, Stefan; Radchuk, Ruslana; Weber, Hans; Hofmann, Jörg; Sonnewald, Uwe; Soll, Jürgen; Philippar, Katrin

    2012-01-01

    Previously, the OEP16.1 channel pore in the outer envelope membrane of mature pea (Pisum sativum) chloroplasts in vitro has been characterized to be selective for amino acids. Isolation of OEP16.2, a second OEP16 isoform from pea, in the current study allowed membrane localization and gene expression of OEP16 to be followed throughout seed development and germination of Arabidopsis thaliana and P. sativum. Thereby it can be shown on the transcript and protein level that the isoforms OEP16.1 and OEP16.2 in both plant species are alternating: whereas OEP16.1 is prominent in early embryo development and first leaves of the growing plantlet, OEP16.2 dominates in late seed development stages, which are associated with dormancy and desiccation, as well as early germination events. Further, OEP16.2 expression in seeds is under control of the phytohormone abscisic acid (ABA), leading to an ABA-hypersensitive phenotype of germinating oep16 knockout mutants. In consequence, the loss of OEP16 causes metabolic imbalance, in particular that of amino acids during seed development and early germination. It is thus concluded that in vivo OEP16 most probably functions in shuttling amino acids across the outer envelope of seed plastids. PMID:22155670

  17. Seed dormancy and ABA signaling

    PubMed Central

    del Carmen Rodríguez-Gacio, María; Matilla-Vázquez, Miguel A

    2009-01-01

    The seed is an important organ in higher plants, it is an important organ for plant survival and species dispersion. The transition between seed dormancy and germination represents a critical stage in the plant life cycle and it is an important ecological and commercial trait. A dynamic balance of synthesis and catabolism of two antagonistic hormones, abscisic acid (ABA) and giberellins (GAs), controls the equilibrium between seed dormancy and germination. Embryonic ABA plays a central role in induction and maintenance of seed dormancy and also inhibits the transition from embryonic to germination growth. Therefore, the ABA metabolism must be highly regulated at both temporal and spatial levels during phase of dessication tolerance. On the other hand, the ABA levels do not depend exclusively on the seeds because sometimes it becomes a strong sink and imports it from the roots and rhizosphere through the xylem and/or phloem. These events are discussed in depth here. Likewise, the role of some recently characterized genes belonging to seeds of woody species and related to ABA signaling are also included. Finally, although four possible ABA receptors have been reported, not much is known about how they mediate ABA signaling transduction. However, new publications seem to show that almost all these receptors lack several properties to consider them as such. PMID:19875942

  18. A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane H+-ATPase and decreased cytosolic pH, K+, and anions

    PubMed Central

    Planes, María D.; Niñoles, Regina; Rubio, Lourdes; Bissoli, Gaetano; Bueso, Eduardo; García-Sánchez, María J.; Alejandro, Santiago; Gonzalez-Guzmán, Miguel; Hedrich, Rainer; Rodriguez, Pedro L.; Fernández, José A.; Serrano, Ramón

    2015-01-01

    The stress hormone abscisic acid (ABA) induces expression of defence genes in many organs, modulates ion homeostasis and metabolism in guard cells, and inhibits germination and seedling growth. Concerning the latter effect, several mutants of Arabidopsis thaliana with improved capability for H+ efflux (wat1-1D, overexpression of AKT1 and ost2-1D) are less sensitive to inhibition by ABA than the wild type. This suggested that ABA could inhibit H+ efflux (H+-ATPase) and induce cytosolic acidification as a mechanism of growth inhibition. Measurements to test this hypothesis could not be done in germinating seeds and we used roots as the most convenient system. ABA inhibited the root plasma-membrane H+-ATPase measured in vitro (ATP hydrolysis by isolated vesicles) and in vivo (H+ efflux from seedling roots). This inhibition involved the core ABA signalling elements: PYR/PYL/RCAR ABA receptors, ABA-inhibited protein phosphatases (HAB1), and ABA-activated protein kinases (SnRK2.2 and SnRK2.3). Electrophysiological measurements in root epidermal cells indicated that ABA, acting through the PYR/PYL/RCAR receptors, induced membrane hyperpolarization (due to K+ efflux through the GORK channel) and cytosolic acidification. This acidification was not observed in the wat1-1D mutant. The mechanism of inhibition of the H+-ATPase by ABA and its effects on cytosolic pH and membrane potential in roots were different from those in guard cells. ABA did not affect the in vivo phosphorylation level of the known activating site (penultimate threonine) of H+-ATPase in roots, and SnRK2.2 phosphorylated in vitro the C-terminal regulatory domain of H+-ATPase while the guard-cell kinase SnRK2.6/OST1 did not. PMID:25371509

  19. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid.

    PubMed

    Wang, M; Oppedijk, B J; Lu, X; Van Duijn, B; Schilperoort, R A

    1996-12-01

    During germination of barley grains, DNA fragmentation was observed in the aleurone. The appearance of DNA fragmentation in the aleurone layer, observed by TUNEL staining in aleurone sections, started near the embryo and extended to the aleurone cells far from the embryo in a time dependent manner. The same spatial temporal activities of hydrolytic enzymes such as alpha-amylase were observed in aleurone. DNA fragmentation could also be seen in vitro under osmotic stress, in isolated aleurone. During aleurone protoplast isolation, a very enhanced and strong DNA fragmentation occurred which was not seen in protoplast preparations of tobacco leaves. ABA was found to inhibit DNA fragmentation occurring in barley aleurone under osmotic stress condition and during protoplast isolation, while the plant growth regulator gibberellic acid counteracted the effect of ABA. Addition of auxin or cytokinin had no significant effect on DNA fragmentation in these cells. To study the role of phosphorylation in ABA signal transduction leading to control of DNA fragmentation (apoptosis), the effects of the phosphatase inhibitor okadaic acid and of phenylarisine oxide on apoptosis were studied. We hypothesize that the regulation of DNA fragmentation in aleurone plays a very important role in spatial and temporal control of aleurone activities during germination. The possible signal transduction pathway of ABA leading to the regulation of DNA fragmentation is discussed.

  20. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence

    PubMed Central

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-01-01

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties. DOI: http://dx.doi.org/10.7554/eLife.13768.001 PMID:27697148

  1. Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation.

    PubMed

    Hoang, Hai Ha; Sechet, Julien; Bailly, Christophe; Leymarie, Juliette; Corbineau, Françoise

    2014-06-01

    Germination of primary dormant barley grains is promoted by darkness and temperatures below 20 °C, but is strongly inhibited by blue light. Exposure under blue light at 10 °C for periods longer than five days, results in a progressive inability to germinate in the dark, considered as secondary dormancy. We demonstrate that the inhibitory effect of blue light is reinforced in hypoxia. The inhibitory effect of blue light is associated with an increase in embryo abscisic acid (ABA) content (by 3.5- to 3.8-fold) and embryo sensitivity to both ABA and hypoxia. Analysis of expression of ABA metabolism genes shows that increase in ABA mainly results in a strong increase in HvNCED1 and HvNCED2 expression, and a slight decrease in HvABA8'OH-1. Among the gibberellins (GA) metabolism genes examined, blue light decreases the expression of HvGA3ox2, involved in GA synthesis, increases that of GA2ox3 and GA2ox5, involved in GA catabolism, and reduces the GA signalling evaluated by the HvExpA11 expression. Expression of secondary dormancy is associated with maintenance of high embryo ABA content and a low HvExpA11 expression. The partial reversion of the inhibitory effect of blue light by green light also suggests that cryptochrome might be involved in this hormonal regulation. PMID:24256416

  2. Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation.

    PubMed

    Hoang, Hai Ha; Sechet, Julien; Bailly, Christophe; Leymarie, Juliette; Corbineau, Françoise

    2014-06-01

    Germination of primary dormant barley grains is promoted by darkness and temperatures below 20 °C, but is strongly inhibited by blue light. Exposure under blue light at 10 °C for periods longer than five days, results in a progressive inability to germinate in the dark, considered as secondary dormancy. We demonstrate that the inhibitory effect of blue light is reinforced in hypoxia. The inhibitory effect of blue light is associated with an increase in embryo abscisic acid (ABA) content (by 3.5- to 3.8-fold) and embryo sensitivity to both ABA and hypoxia. Analysis of expression of ABA metabolism genes shows that increase in ABA mainly results in a strong increase in HvNCED1 and HvNCED2 expression, and a slight decrease in HvABA8'OH-1. Among the gibberellins (GA) metabolism genes examined, blue light decreases the expression of HvGA3ox2, involved in GA synthesis, increases that of GA2ox3 and GA2ox5, involved in GA catabolism, and reduces the GA signalling evaluated by the HvExpA11 expression. Expression of secondary dormancy is associated with maintenance of high embryo ABA content and a low HvExpA11 expression. The partial reversion of the inhibitory effect of blue light by green light also suggests that cryptochrome might be involved in this hormonal regulation.

  3. The Arabidopsis a zinc finger domain protein ARS1 is essential for seed germination and ROS homeostasis in response to ABA and oxidative stress

    PubMed Central

    Baek, Dongwon; Cha, Joon-Yung; Kang, Songhwa; Park, Bokyung; Lee, Hyo-Jung; Hong, Hyewon; Chun, Hyun Jin; Kim, Doh Hoon; Kim, Min Chul; Lee, Sang Yeol; Yun, Dae-Jin

    2015-01-01

    The phytohormone abscisic acid (ABA) induces accumulation of reactive oxygen species (ROS), which can disrupt seed dormancy and plant development. Here, we report the isolation and characterization of an Arabidopsis thaliana mutant called ars1 (aba and ros sensitive 1) that showed hypersensitivity to ABA during seed germination and to methyl viologen (MV) at the seedling stage. ARS1 encodes a nuclear protein with one zinc finger domain, two nuclear localization signal (NLS) domains, and one nuclear export signal (NES). The ars1 mutants showed reduced expression of a gene for superoxide dismutase (CSD3) and enhanced accumulation of ROS after ABA treatment. Transient expression of ARS1 in Arabidopsis protoplasts strongly suppressed ABA-mediated ROS production. Interestingly, nuclear-localized ARS1 translocated to the cytoplasm in response to treatment with ABA, H2O2, or MV. Taken together, these results suggest that ARS1 modulates seed germination and ROS homeostasis in response to ABA and oxidative stress in plants. PMID:26583028

  4. Isolation and characterization of novel mutant loci suppressing the ABA hypersensitivity of the Arabidopsis coronatine insensitive 1-16 (coi1-16) mutant during germination and seedling growth.

    PubMed

    Fernández-Arbaizar, Alejandro; Regalado, José J; Lorenzo, Oscar

    2012-01-01

    The phytohormone ABA regulates seed germination and stress responses. The identification of clade A protein phosphatase type 2C (PP2C)-interacting proteins PYRABACTIN RESISTANCE 1 (PYR1)/RCAR (REGULATORY COMPONENT OF ABA RECEPTOR) and PYR1-LIKEs (PYLs) as ABA receptors has been a major advance in understanding this process. Here, our aim was to identify additional ABA response loci by suppressor screening of the jasmonate (JA)-insensitive coronatine insensitive 1-16 (coi1-16) mutant using its ABA-hypersensitive phenotype. The identification and genetic characterization of Coi1-16 Resistant to ABA (CRA) loci revealed several unknown and three previously known abi mutants (abi1, abi3 and abi4), thus providing proof-of-concept evidence for this study. The synergistic effect of ABA and JA on seed germination and cotyledon expansion was analyzed in depth and the roles of cra5 coi1-16, cra6 coi1-16, cra7 coi1-16 and cra8 coi1-16 in ABA signaling during seed germination and stress responses were functionally characterized. The cra5 coi1-16 mutant showed resistance to ABA, paclobutrazol, and abiotic stresses during germination and early developmental stages. Furthermore, the cra5 coi1-16 mutation was mapped to the short arm of chromosome V and mutants exhibited differential expression of ABA-responsive genes, suggesting that CRA5 may function as a positive regulator of ABA signaling. Interestingly, cra6 coi1-16, cra7 coi1-16 and cra8 coi1-16 mutants display similar ABA- and abiotic stress-insensitive phenotypes during seed germination and seedling establishment. Taken together, our results demonstrate a key role for CRA genes in regulating the onset of seed germination by ABA, and highlight how cra mutants can be used as powerful tools to analyze novel molecular components of ABA signaling in seeds. PMID:22156383

  5. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  6. A Role for Brassinosteroids in Germination in Arabidopsis1

    PubMed Central

    Steber, Camille M.; McCourt, Peter

    2001-01-01

    This paper presents evidence that plant brassinosteroid (BR) hormones play a role in promoting germination. It has long been recognized that seed dormancy and germination are regulated by the plant hormones abscisic acid (ABA) and gibberellin (GA). These two hormones act antagonistically with each other. ABA induces seed dormancy in maturing embryos and inhibits germination of seeds. GA breaks seed dormancy and promotes germination. Severe mutations in GA biosynthetic genes in Arabidopsis, such as ga1-3, result in a requirement for GA application to germinate. Whereas previous work has shown that BRs play a critical role in controlling cell elongation, cell division, and skotomorphogenesis, no germination phenotypes have been reported in BR mutants. We show that BR rescues the germination phenotype of severe GA biosynthetic mutants and of the GA-insensitive mutant sleepy1. This result shows that BR stimulates germination and raises the possibility that BR is needed for normal germination. If true, we would expect to detect a germination phenotype in BR mutants. We found that BR mutants exhibit a germination phenotype in the presence of ABA. Germination of both the BR biosynthetic mutant det2-1 and the BR-insensitive mutant bri1-1 is more strongly inhibited by ABA than is germination of wild type. Thus, the BR signal is needed to overcome inhibition of germination by ABA. Taken together, these results point to a role for BRs in stimulating germination. PMID:11161033

  7. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar 'Zak'.

    PubMed

    Schramm, Elizabeth C; Nelson, Sven K; Kidwell, Kimberlee K; Steber, Camille M

    2013-03-01

    As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat "Zak". Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouting in wheat, especially those cultivars with white kernels. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature grain. Three mutant lines called Zak ERA8, Zak ERA19A, and Zak ERA19B (Zak ENHANCED RESPONSE to ABA) were recovered based on failure to germinate on 5 μM ABA. All three mutants resulted in increased ABA sensitivity over a wide range of concentrations such that a phenotype can be detected at very low ABA concentrations. Wheat loses sensitivity to ABA inhibition of germination with extended periods of dry after-ripening. All three mutants recovered required more time to after-ripen sufficiently to germinate in the absence of ABA and to lose sensitivity to 5 μM ABA. However, an increase in ABA sensitivity could be detected after as long as 3 years of after-ripening using high ABA concentrations. The Zak ERA8 line showed the strongest phenotype and segregated as a single semi-dominant mutation. This mutation resulted in no obvious decrease in yield and is a good candidate gene for breeding preharvest sprouting tolerance. PMID:23212773

  8. A Study of Germination Inhibition in Fruits.

    ERIC Educational Resources Information Center

    Gill, John

    1982-01-01

    Describes a method for the extraction and bioassay of natural germination inhibitors, requiring only inexpensive equipment and minimal experimental skill. The method has been used to demonstrate qualitative/quantitative differences in germination inhibitor levels in a variety of different fruits or in different tissues within a single fruit.…

  9. Nitric oxide modulates sensitivity to ABA.

    PubMed

    Lozano-Juste, Jorge; León, José

    2010-03-01

    Nitric oxide (NO) is a gas with crucial signaling functions in plant defense and development. As demonstrated by generating a triple nia1nia2noa1-2 mutant with extremely low levels of NO (February 2010 issue of Plant Physiology), NO is synthesized in plants through mainly two different pathways involving nitrate reductase (NR/NIA) and NO Associated 1 (AtNOA1) proteins. Depletion of basal NO levels leads to a priming of ABA-triggered responses that causes hypersensitivity to this hormone and results in enhanced seed dormancy and decreased seed germination and seedling establishment in the triple mutant. NO produced under non-stressed conditions represses inhibition of seed developmental transitions by ABA. Moreover, NO plays a positive role in post-germinative vegetative development and also exerts a critical control of ABA-related functions on stomata closure. The triple nia1nia2noa1-2 mutant is hypersensitive to ABA in stomatal closure thus resulting in a extreme phenotype of resistance to drought. In the light of the recent discovery of PYR/PYL/RCAR as a family of potential ABA receptors, regulation of ABA sensitivity by NO may be exerted either directly on ABA receptors or on downstream signaling components; both two aspects that deserve our present and future attention.

  10. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’

    PubMed Central

    Schramm, Elizabeth C.; Nelson, Sven K.; Kidwell, Kimberlee K.

    2014-01-01

    As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat “Zak”. Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouting in wheat, especially those cultivars with white kernels. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature grain. Three mutant lines called Zak ERA8, Zak ERA19A, and Zak ERA19B (Zak ENHANCED RESPONSE to ABA) were recovered based on failure to germinate on 5 µM ABA. All three mutants resulted in increased ABA sensitivity over a wide range of concentrations such that a phenotype can be detected at very low ABA concentrations. Wheat loses sensitivity to ABA inhibition of germination with extended periods of dry after-ripening. All three mutants recovered required more time to after-ripen sufficiently to germinate in the absence of ABA and to lose sensitivity to 5 µM ABA. However, an increase in ABA sensitivity could be detected after as long as 3 years of after-ripening using high ABA concentrations. The Zak ERA8 line showed the strongest phenotype and segregated as a single semi-dominant mutation. This mutation resulted in no obvious decrease in yield and is a good candidate gene for breeding preharvest sprouting tolerance. PMID:23212773

  11. Does aluminum inhibit pollen germination via extracellular calmodulin?

    PubMed

    Ma, L G; Fan, Q S; Yu, Z Q; Zhou, H L; Zhang, F S; Sun, D Y

    2000-03-01

    The effect of aluminum (Al) on pollen germination and its mechanism of action were investigated. Pollen germination and pollen tube elongation were inhibited by Al at pH 4.5. This inhibitory effect was reversed by the addition of purified calmodulin (CaM), whereas neither the calcium binding-protein S-100 nor Al chelator citric acid at the same concentrations had any obvious effect on Al-inhibited pollen germination. The presence of either the membrane-impermeable CaM inhibitor anti-CaM antiserum or Ca2+ chelator EGTA completely suppressed the effect of exogenous CaM. These results indicate the involvement of extracellular calmodulin in the short-term effects of Al on pollen germination and pollen tube elongation.

  12. Mechanisms of glucose signaling during germination of Arabidopsis.

    PubMed

    Price, John; Li, Tsai-Chi; Kang, Shin Gene; Na, Jong Kuk; Jang, Jyan-Chyun

    2003-07-01

    Glucose (Glc) signaling, along with abscisic acid (ABA) signaling, has been implicated in regulating early plant development in Arabidopsis. It is generally believed that high levels of exogenous Glc cause ABA accumulation, which results in a delay of germination and an inhibition of seedling development-a typical stress response. To test this hypothesis and decipher the complex interactions that occur in the signaling pathways, we determined the effects of sugar and ABA on one developmental event, germination. We show that levels of exogenous Glc lower than previously cited could delay the rate of seed germination in wild-ecotype seeds. Remarkably, this effect could not be mimicked by an osmotic effect, and ABA was still involved. With higher concentrations of Glc, previously known Glc-insensitive mutants gin2 and abi4 exhibited germination kinetics similar to wild type, indicating that Glc-insensitive phenotypes are not the same for all developmental stages of growth and that the signaling properties of Glc vary with concentration. Higher concentrations of Glc were more potent in delaying seed germination. However, Glc-delayed seed germination was not caused by increased cellular ABA concentration, rather Glc appeared to slow down the decline of endogenous ABA. Except for the ABA-insensitive mutants, all tested genotypes appeared to have similar ABA perception during germination, where germination was correlated with the timing of ABA drop to a threshold level. In addition, Glc was found to modulate the transcription of genes involved in ABA biosynthesis and perception only after germination, suggesting a critical role of the developmental program in sugar sensing. On the basis of an extensive phenotypic, biochemical, and molecular analysis, we suggest that exogenous Glc application creates specific signals that vary with concentration and the developmental stage of the plant and that Glc-induced fluctuations in endogenous ABA level generate a different set of

  13. IMB1, a bromodomain protein induced during seed imbibition, regulates ABA- and phyA-mediated responses of germination in Arabidopsis.

    PubMed

    Duque, Paula; Chua, Nam-Hai

    2003-09-01

    We report the characterization of a plant gene encoding a member of the BET subgroup of bromodomain proteins, a novel class of putative transcription factors. Imbibition-inducible 1 (IMB1) appears to be a nuclear protein as suggested by subcellular localization in onion epidermal cells using an IMB1-yellow fluorescent protein (YFP) fusion protein. In Arabidopsis thaliana, IMB1 is expressed at very low levels in dry seeds, but is markedly induced during seed imbibition. In addition, IMB1 transcript levels are down regulated during germination. Seeds of a loss-of-function mutant allele, imb1, show impaired cotyledon greening during germination in abscisic acid (ABA) and express higher levels of ABI5 protein than the wild type. Moreover, imb1 seeds are deficient in the phytochrome A (phyA)-mediated very-low-fluence response of germination. Microarray analysis revealed that genes included in different functional categories, such as cell-wall metabolism or plastid function, are repressed in imbibed imb1 seeds. Mutant imb1 plants appear normal, indicating that IMB1 is involved in regulating a specific developmental stage. Taken together, these results show that IMB1 plays a role in the promotion of seed germination by both negatively and positively regulating the ABA and phyA transduction pathways, respectively. In imbibed seeds, IMB1 modulates the transcription of a battery of genes, providing clues on its mode of action. PMID:12969431

  14. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants

    PubMed Central

    Cao, Minjie; Liu, Xue; Zhang, Yan; Xue, Xiaoqian; Zhou, X Edward; Melcher, Karsten; Gao, Pan; Wang, Fuxing; Zeng, Liang; Zhao, Yang; Zhao, Yang; Deng, Pan; Zhong, Dafang; Zhu, Jian-Kang; Xu, H Eric; Xu, Yong

    2013-01-01

    Abscisic acid (ABA) is the most important hormone for plants to resist drought and other abiotic stresses. ABA binds directly to the PYR/PYL family of ABA receptors, resulting in inhibition of type 2C phosphatases (PP2C) and activation of downstream ABA signaling. It is envisioned that intervention of ABA signaling by small molecules could help plants to overcome abiotic stresses such as drought, cold and soil salinity. However, chemical instability and rapid catabolism by plant enzymes limit the practical application of ABA itself. Here we report the identification of a small molecule ABA mimic (AM1) that acts as a potent activator of multiple members of the family of ABA receptors. In Arabidopsis, AM1 activates a gene network that is highly similar to that induced by ABA. Treatments with AM1 inhibit seed germination, prevent leaf water loss, and promote drought resistance. We solved the crystal structure of AM1 in complex with the PYL2 ABA receptor and the HAB1 PP2C, which revealed that AM1 mediates a gate-latch-lock interacting network, a structural feature that is conserved in the ABA-bound receptor/PP2C complex. Together, these results demonstrate that a single small molecule ABA mimic can activate multiple ABA receptors and protect plants from water loss and drought stress. Moreover, the AM1 complex crystal structure provides a structural basis for designing the next generation of ABA-mimicking small molecules. PMID:23835477

  15. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes

    PubMed Central

    Zhao, Minglei; Yang, Songguang; Liu, Xuncheng; Wu, Keqiang

    2015-01-01

    Seed dormancy controls germination and plays a critical role in regulating the beginning of the life cycle of plants. Seed dormancy is established and maintained during seed maturation and is gradually broken during dry storage (after-ripening). The plant hormone abscisic acid (ABA) and DELAY OF GERMINATION1 (DOG1) protein are essential regulators of seed dormancy. Recent studies revealed that chromatin modifications are also involved in the transcription regulation of seed dormancy. Here, we showed that two Arabidopsis histone demethylases, LYSINESPECIFIC DEMETHYLASE LIKE 1 and 2 (LDL1 and LDL2) act redundantly in repressing of seed dormancy. LDL1 and LDL2 are highly expressed in the early silique developing stage. The ldl1 ldl2 double mutant displays increased seed dormancy, whereas overexpression of LDL1 or LDL2 in Arabidopsis causes reduced dormancy. Furthermore, we showed that LDL1 and LDL2 repress the expression of seed dormancy-related genes, including DOG1, ABA2 and ABI3 during seed dormancy establishment. Furthermore, genetic analysis revealed that the repression of seed dormancy by LDL1 and LDL2 requires DOG1, ABA2, and ABI3. Taken together, our findings revealed that LDL1 and LDL2 play an essential role in seed dormancy. PMID:25852712

  16. Dissection of Arabidopsis NCED9 promoter regulatory regions reveals a role for ABA synthesized in embryos in the regulation of GA-dependent seed germination.

    PubMed

    Seo, Mitsunori; Kanno, Yuri; Frey, Anne; North, Helen M; Marion-Poll, Annie

    2016-05-01

    Nine-cis-epoxycarotenoid dioxygenase (NCED) catalyzes the key step of abscisic acid (ABA) biosynthesis. There are five genes encoding NCED in Arabidopsis, which differentially regulate ABA biosynthesis in a spatiotemporal manner in response to endogenous and environmental stimuli. Previous studies have shown that NCED9 is expressed in testa and embryos during seed development. In the present study, we have identified promoter regions required for the expression of NCED9 in testa and embryos, respectively. Electrophoretic mobility shift assays (EMSA) and yeast one-hybrid (Y1H) assays showed that several homeodomain-leucine zipper (HD-Zip) proteins, namely ATHBs, bound to the sequence required for expression of NCED9 in testa, suggesting that they redundantly regulate NCED9 expression. By expressing the NCED9 gene under the control of a deleted NCED9 promoter in an nced9 mutant expression was limited to embryos. Transformants were complemented for the paclobutrazol resistant germination phenotype of the mutant, suggesting that the ABA synthesis mediated by NCED9 in embryos plays an important role in the regulation of gibberellin (GA)-dependent seed germination.

  17. PrCYP707A1, an ABA catabolic gene, is a key component of Phelipanche ramosa seed germination in response to the strigolactone analogue GR24

    PubMed Central

    Delavault, Philippe

    2012-01-01

    After a conditioning period, seed dormancy in obligate root parasitic plants is released by a chemical stimulus secreted by the roots of host plants. Using Phelipanche ramosa as the model, experiments conducted in this study showed that seeds require a conditioning period of at least 4 d to be receptive to the synthetic germination stimulant GR24. A cDNA-AFLP procedure on seeds revealed 58 transcript-derived fragments (TDFs) whose expression pattern changed upon GR24 treatment. Among the isolated TDFs, two up-regulated sequences corresponded to an abscisic acid (ABA) catabolic gene, PrCYP707A1, encoding an ABA 8'-hydroxylase. Using the rapid amplification of cDNA ends method, two full-length cDNAs, PrCYP707A1 and PrCYP707A2, were isolated from seeds. Both genes were always expressed at low levels during conditioning during which an initial decline in ABA levels was recorded. GR24 application after conditioning triggered a strong up-regulation of PrCYP707A1 during the first 18h, followed by an 8-fold decrease in ABA levels detectable 3 d after treatment. In situ hybridization experiments on GR24-treated seeds revealed a specific PrCYP707A1 mRNA accumulation in the cells located between the embryo and the micropyle. Abz-E2B, a specific inhibitor of CYP707A enzymes, significantly impeded seed germination, proving to be a non-competitive antagonist of GR24 with reversible inhibitory activity. These results demonstrate that P. ramosa seed dormancy release relies on ABA catabolism mediated by the GR24-dependent activation of PrCYP707A1. In addition, in situ hybridization corroborates the putative location of cells receptive to the germination stimulants in seeds. Abbreviations:ABAabscisic acidAbzabscinazoleAECadenylate energy chargeAFLPamplified fragment length polymorphismRACErapid amplification of cDNA endsSLstrigolactoneTDFtranscript-derived fragment PMID:22859674

  18. H2O2 inhibits ABA-signaling protein phosphatase HAB1.

    PubMed

    Sridharamurthy, Madhuri; Kovach, Amanda; Zhao, Yang; Zhu, Jian-Kang; Xu, H Eric; Swaminathan, Kunchithapadam; Melcher, Karsten

    2014-01-01

    Due to its ability to be rapidly generated and propagated over long distances, H2O2 is an important second messenger for biotic and abiotic stress signaling in plants. In response to low water potential and high salt concentrations sensed in the roots of plants, the stress hormone abscisic acid (ABA) activates NADPH oxidase to generate H2O2, which is propagated in guard cells in leaves to induce stomatal closure and prevent water loss from transpiration. Using a reconstituted system, we demonstrate that H2O2 reversibly prevents the protein phosphatase HAB1, a key component of the core ABA-signaling pathway, from inhibiting its main target in guard cells, SnRK2.6/OST1 kinase. We have identified HAB1 C186 and C274 as H2O2-sensitive thiols and demonstrate that their oxidation inhibits both HAB1 catalytic activity and its ability to physically associate with SnRK2.6 by formation of intermolecular dimers.

  19. H2O2 Inhibits ABA-Signaling Protein Phosphatase HAB1

    PubMed Central

    Sridharamurthy, Madhuri; Kovach, Amanda; Zhao, Yang; Zhu, Jian-Kang; Xu, H. Eric; Swaminathan, Kunchithapadam; Melcher, Karsten

    2014-01-01

    Due to its ability to be rapidly generated and propagated over long distances, H2O2 is an important second messenger for biotic and abiotic stress signaling in plants. In response to low water potential and high salt concentrations sensed in the roots of plants, the stress hormone abscisic acid (ABA) activates NADPH oxidase to generate H2O2, which is propagated in guard cells in leaves to induce stomatal closure and prevent water loss from transpiration. Using a reconstituted system, we demonstrate that H2O2 reversibly prevents the protein phosphatase HAB1, a key component of the core ABA-signaling pathway, from inhibiting its main target in guard cells, SnRK2.6/OST1 kinase. We have identified HAB1 C186 and C274 as H2O2-sensitive thiols and demonstrate that their oxidation inhibits both HAB1 catalytic activity and its ability to physically associate with SnRK2.6 by formation of intermolecular dimers. PMID:25460914

  20. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca(2+) Levels in Guard Cells.

    PubMed

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca(2+) accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca(2+)-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca(2+) levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society.

  1. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca(2+) Levels in Guard Cells.

    PubMed

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca(2+) accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca(2+)-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca(2+) levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  2. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells

    PubMed Central

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca2+ accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca2+-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca2+ levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  3. Coordination of seed dormancy and germination processes by MYB96.

    PubMed

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    The transition between seed dormancy and germination is an important stage that initiates plant life cycle. Hormonal balances of abscisic acid (ABA) and gibberellin (GA) contribute to determining the proper timing to germinate. Here, we demonstrate that the R2R3-type MYB96 transcription factor, a key ABA signaling mediator, coordinates seed dormancy and germination processes through distinct downstream events. This transcription factor controls ABA-INSENSITIVE 4 (ABI4) expression to inhibit seed germination by suppressing breakdown of lipid reserves in embryo. In addition, it also induces seed dormancy by stimulating ABA biosynthesis in an ABI4-independent manner. We propose that MYB96 integrates a multitude of environmental stress signals and acts as a master regulator in the determination of timing for seed germination.

  4. Coordination of seed dormancy and germination processes by MYB96

    PubMed Central

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    The transition between seed dormancy and germination is an important stage that initiates plant life cycle. Hormonal balances of abscisic acid (ABA) and gibberellin (GA) contribute to determining the proper timing to germinate. Here, we demonstrate that the R2R3-type MYB96 transcription factor, a key ABA signaling mediator, coordinates seed dormancy and germination processes through distinct downstream events. This transcription factor controls ABA-INSENSITIVE 4 (ABI4) expression to inhibit seed germination by suppressing breakdown of lipid reserves in embryo. In addition, it also induces seed dormancy by stimulating ABA biosynthesis in an ABI4-independent manner. We propose that MYB96 integrates a multitude of environmental stress signals and acts as a master regulator in the determination of timing for seed germination. PMID:26313409

  5. Arabidopsis suppressor mutant of abh1 shows a new face of the already known players: ABH1 (CBP80) and ABI4-in response to ABA and abiotic stresses during seed germination.

    PubMed

    Daszkowska-Golec, Agata; Wojnar, Weronika; Rosikiewicz, Marta; Szarejko, Iwona; Maluszynski, Miroslaw; Szweykowska-Kulinska, Zofia; Jarmolowski, Artur

    2013-01-01

    Although the importance of abscisic acid (ABA) in plant development and response to abiotic and biotic stresses is well recognized, the molecular basis of the signaling pathway has not been fully elucidated. Mutants in genes related to ABA are widely used as a tool for gaining insight into the mechanisms of ABA signal transduction and ABA-dependent stress response. We used a genetic approach of a suppressor screening in order to decipher the interaction between ABH1 (CBP80) and other components of ABA signaling. ABH1 (CBP80) encodes a large subunit of CBC (CAP BINDING COMPLEX) and the abh1 mutant is drought-tolerant and hypersensitive to ABA during seed germination. The suppressor mutants of abh1 were generated after chemical mutagenesis. The mutant named soa1 (suppressor of abh1 hypersensitivity to ABA 1) displayed an ABA-insensitive phenotype during seed germination. The genetic analysis showed that the soa1 phenotype is dominant in relation to abh1 and segregates as a single locus. Based on soa1's response to a wide spectrum of physiological assays during different stages of development, we used the candidate-genes approach in order to identify a suppressor gene. The molecular analysis revealed that mutation causing the phenotype of soa1 occurred in the ABI4 (ABA insensitive 4) gene. Analysis of pre-miR159 expression, whose processing depends on CBC, as well as targets of miR159: MYB33 and MYB101, which are positive regulators of ABA signaling, revealed a possible link between CBP80 (ABH1) and ABI4 presented here.

  6. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis.

    PubMed

    Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie

    2015-11-27

    The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis.

  7. The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling

    PubMed Central

    Zhao, Yang; Chan, Zhulong; Xing, Lu; Liu, Xiaodong; Hou, Yueh-Ju; Chinnusamy, Viswanathan; Wang, Pengcheng; Duan, Chengguo; Zhu, Jian-Kang

    2013-01-01

    Proteins in the PYR/PYL/RCAR family (PYLs) are known as receptors for the phytohormone ABA. Upon ABA binding, PYL adopts a conformation that allows it to interact with and inhibit clade A protein phosphatase 2Cs (PP2Cs), which are known as the co-receptors for ABA. Inhibition of the PP2Cs then leads to the activation of the SnRK2 family protein kinases that phosphorylate and activate downstream effectors in ABA response pathways. The PYL family has 14 members in Arabidopsis, 13 of which have been demonstrated to function as ABA receptors. The function of PYL13, a divergent member of the family, has been enigmatic. We report here that PYL13 differs from the other PYLs in three key residues that affect ABA perception, and mutations in these three residues can convert PYL13 into a partially functional ABA receptor. Transgenic plants overexpressing PYL13 show increased ABA sensitivity in seed germination and postgermination seedling establishment as well as decreased stomatal conductance, increased water-use efficiency, accelerated stress-responsive gene expression, and enhanced drought resistance. pyl13 mutant plants are less sensitive to ABA inhibition of postgermination seedling establishment. PYL13 interacts with and inhibits some members of clade A PP2Cs (PP2CA in particular) in an ABA-independent manner. PYL13 also interacts with the other PYLs and antagonizes their function as ABA receptors. Our results show that PYL13 is not an ABA receptor but can modulate the ABA pathway by interacting with and inhibiting both the PYL receptors and the PP2C co-receptors. PMID:24189045

  8. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.

    PubMed

    Lin, Daohui; Xing, Baoshan

    2007-11-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50mg/L for radish, and about 20mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles.

  9. Partial inhibition of in vitro pollen germination by simulated solar ultraviolet-B radiation

    SciTech Connect

    Flint, S.D.; Caldwell, M.M.

    1984-01-01

    Pollen from four temperate-latitude taxa were treated with UV radiation in a portion of the UV-B (280-320 nm) waveband during in vitro germination. Inhibition of germination was noted in this pollen compared to samples treated identically except for the exclusion of the UV-B portion of the spectrum. Levels similar to maximum solar UV-B found in temperate-latitude areas failed to inhibit pollen germination significantly, while levels similar to maximum solar UV-B found in equatorial alpine locations caused partial inhibition of germination in three of the four taxa examined.

  10. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis.

    PubMed

    Kwak, June M; Mori, Izumi C; Pei, Zhen-Ming; Leonhardt, Nathalie; Torres, Miguel Angel; Dangl, Jeffery L; Bloom, Rachel E; Bodde, Sara; Jones, Jonathan D G; Schroeder, Julian I

    2003-06-01

    Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca(2+) increases and ABA- activation of plasma membrane Ca(2+)-permeable channels in guard cells. Exogenous H(2)O(2) rescues both Ca(2+) channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.

  11. Dynamic subnuclear relocalization of WRKY40, a potential new mechanism of ABA-dependent transcription factor regulation.

    PubMed

    Geilen, Katja; Böhmer, Maik

    2015-01-01

    The phytohormone ABA plays a major role during plant development, e.g. seed maturation and seed germination, and during adaptation to abiotic stresses like stomatal aperture regulation. The three closely related WRKY transcription factors WRKY18, WRKY40 and WRKY60 function in ABA signal transduction. We recently demonstrated that WRKY18 and WRKY40 but not WRKY60 localize to nuclear bodies in A. thaliana mesophyll protoplasts. WRKY40, a negative regulator of ABA-dependent inhibition of seed germination, relocalizes from PNBs to the nucleoplasm in the presence of ABA in a dynamic and phosphorylation-dependent manner. We propose that subnuclear relocalization of WRKY40 might constitute a new regulatory mechanism of ABA-dependent modulation of transcription factor activity. PMID:26479147

  12. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis.

    PubMed

    Hu, Yanru; Yu, Diqiu

    2014-11-01

    Seed germination and postgerminative growth are regulated by a delicate hormonal balance. Abscisic acid (ABA) represses Arabidopsis thaliana seed germination and postgerminative growth, while brassinosteroids (BRs) antagonize ABA-mediated inhibition and promote these processes. However, the molecular mechanism underlying BR-repressed ABA signaling remains largely unknown. Here, we show that the Glycogen Synthase Kinase 3-like kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a critical repressor of BR signaling, positively regulates ABA responses during seed germination and postgerminative growth. Mechanistic investigation revealed that BIN2 physically interacts with ABSCISIC ACID INSENSITIVE5 (ABI5), a bZIP transcription factor. Further genetic analysis demonstrated that the ABA-hypersensitive phenotype of BIN2-overexpressing plants requires ABI5. BIN2 was found to phosphorylate and stabilize ABI5 in the presence of ABA, while application of epibrassinolide (the active form of BRs) inhibited the regulation of ABI5 by BIN2. Consistently, the ABA-induced accumulation of ABI5 was affected in BIN2-related mutants. Moreover, mutations of the BIN2 phosphorylation sites on ABI5 made the mutant protein respond to ABA improperly. Additionally, the expression of several ABI5 regulons was positively modulated by BIN2. These results provide evidence that BIN2 phosphorylates and stabilizes ABI5 to mediate ABA response during seed germination, while BRs repress the BIN2-ABI5 cascade to antagonize ABA-mediated inhibition.

  13. BRASSINOSTEROID INSENSITIVE2 Interacts with ABSCISIC ACID INSENSITIVE5 to Mediate the Antagonism of Brassinosteroids to Abscisic Acid during Seed Germination in Arabidopsis[W

    PubMed Central

    Hu, Yanru; Yu, Diqiu

    2014-01-01

    Seed germination and postgerminative growth are regulated by a delicate hormonal balance. Abscisic acid (ABA) represses Arabidopsis thaliana seed germination and postgerminative growth, while brassinosteroids (BRs) antagonize ABA-mediated inhibition and promote these processes. However, the molecular mechanism underlying BR-repressed ABA signaling remains largely unknown. Here, we show that the Glycogen Synthase Kinase 3-like kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a critical repressor of BR signaling, positively regulates ABA responses during seed germination and postgerminative growth. Mechanistic investigation revealed that BIN2 physically interacts with ABSCISIC ACID INSENSITIVE5 (ABI5), a bZIP transcription factor. Further genetic analysis demonstrated that the ABA-hypersensitive phenotype of BIN2-overexpressing plants requires ABI5. BIN2 was found to phosphorylate and stabilize ABI5 in the presence of ABA, while application of epibrassinolide (the active form of BRs) inhibited the regulation of ABI5 by BIN2. Consistently, the ABA-induced accumulation of ABI5 was affected in BIN2-related mutants. Moreover, mutations of the BIN2 phosphorylation sites on ABI5 made the mutant protein respond to ABA improperly. Additionally, the expression of several ABI5 regulons was positively modulated by BIN2. These results provide evidence that BIN2 phosphorylates and stabilizes ABI5 to mediate ABA response during seed germination, while BRs repress the BIN2-ABI5 cascade to antagonize ABA-mediated inhibition. PMID:25415975

  14. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  15. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    PubMed

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  16. Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds.

    PubMed

    Blöchl, Andreas; Peterbauer, Thomas; Richter, Andreas

    2007-08-01

    Raffinose family oligosaccharides (RFOs) are almost ubiquitous in seeds and have been hypothesized to constitute an important energy source during germination. To test this hypothesis we applied a specific alpha-galactosidase inhibitor (1-deoxygalactonojirimycin, DGJ) to germinating pea seeds, resulting in a complete blocking of RFO breakdown. The germination rates of DGJ-treated seeds dropped drastically to about 25% of controls two days after imbibition. Similarly, the activities of the key enzymes in the galactose salvage pathway galactokinase, UDP-galactose pyrophosphorylase and UDP-galactose 4'-epimerase, were also significantly lower in seeds treated with the inhibitor. The inhibitory effect on germination could be relieved by galactose but only partially by sucrose, indicating that galactose, in addition to providing easily available energy for growth, may also be an important component of the sugar signaling pathway during germination. Taken together our study, for the first time, provides clear evidence that RFOs play an important role for early germination.

  17. Inhibition of Prechill-induced Dark Germination in Sorghum halepense (L.) Pers. Seeds by Phytochrome Transformations.

    PubMed

    Taylorson, R B

    1975-06-01

    A 10 C dark prechilling of johnsongrass [Sorghum halepense (L.) Pers.] seeds, when terminated by a 2-hr, 40 C temperature shift, potentiates about 40% germination at 20 C in darkness. Irradiation of the seeds before, during, and at the end of prechilling with far red light reduces the subsequent germination, although red irradiation after the far red can overcome some of the inhibition. However, either brief red or far red irradiation given immediately after the temperature shift inhibits subsequent germination by one-third to one-half. The results suggest that the far red-absorbing form of phytochrome is a factor in the prechill-induced dark germination and that phytochrome participates in the inhibition of germination by irradiations immediately after the temperature shift.

  18. Glucose-induced inhibition of seed germination in Lotus japonicus is alleviated by nitric oxide and spermine.

    PubMed

    Zhao, Min-Gui; Liu, Ruo-Jing; Chen, Lei; Tian, Qiu-Ying; Zhang, Wen-Hao

    2009-01-30

    Seed germination is sensitive to glucose (Glc), nitric oxide (NO) and polyamine (PA). To elucidate whether cross-talk among Glc, NO and PAs occurs in mediation of seed germination, effects of Glc, NO and spermine on seed germination of Lotus japonicus were studied. Glc retarded seed germination in a concentration-dependent manner. NO donor sodium nitroprusside (SNP) alleviated Glc-induced inhibition of seed germination, whereas the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO) diminished the SNP-dependent alleviation of seed germination. These observations indicate that Glc may inhibit seed germination by interacting with NO signaling pathways. Exogenous spermine enhanced and the inhibitor of the spermine synthase, methylglyoxal-bis-guanyl hydrazone (MGBG), inhibited seed germination, respectively. Like SNP, spermine alleviated the Glc-induced inhibition of seed germination, whereas MGBG exaggerated the Glc-induced inhibition of seed germination. These results suggest that Glc may inhibit the spermine synthesis, leading to reductions in seed germination. NO scavenger and spermine synthase inhibitor diminished the SNP-induced alleviation of Glc-induced inhibition of seed germination. These findings reveal that both NO and spermine participate in the Glc-induced inhibition of seed germination in L. japonicus.

  19. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress.

    PubMed

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P

    2015-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt

  20. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress

    PubMed Central

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M. Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P.

    2016-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt

  1. Salt stress inhibits germination and early seedling growth in cabbage (Brassica oleracea capitata L.).

    PubMed

    Jamil, M; Lee, Kyeong Bo; Jung, Kwang Yong; Lee, Deog Bae; Han, Mi Suk; Rha, Eui Shik

    2007-03-15

    Salinity induced inhibition in germination and early stages of cabbage (Brassica oleracea capitata L.) [two varieties (autumn cabbage and spring cabbage)] were measured in response to increasing NaCl concentration. The salinity (NaCl) concentrations in solution were 0 (control), 4.7, 9.4 and 14.1 dS m(-1). Different concentrations of salt stress had considerable effect on germination, germination rate (1/t50, where t50 is the time to 50% of germination), root and shoot lengths, root, shoot and plant fresh weight of cabbage. Final germination in cabbage (autumn cabbage and spring cabbage) showed significant inhibition with increasing salt stress up to 14.1 dS m(-1) NaCl. The required time for germination increased with increasing concentration of salt. The seedling growth was strongly inhibited by all salt levels, particularly at 14.1 dS m(-1). Furthermore Root growth was more affected then shoots growth by salt stress. Fresh weights of root, shoot and plant were also severely affected by different salinity treatments. Linear regression revealed a significant negative relationship between salinity and final germination, germination rate, root and shoot lengths and fresh weights of roots, shoots and plants.

  2. The Arabidopsis MYB96 Transcription Factor Is a Positive Regulator of ABSCISIC ACID-INSENSITIVE4 in the Control of Seed Germination.

    PubMed

    Lee, Kyounghee; Lee, Hong Gil; Yoon, Seongmun; Kim, Hyun Uk; Seo, Pil Joon

    2015-06-01

    Seed germination is a key developmental transition that initiates the plant life cycle. The timing of germination is determined by the coordinated action of two phytohormones, gibberellin and abscisic acid (ABA). In particular, ABA plays a key role in integrating environmental information and inhibiting the germination process. The utilization of embryonic lipid reserves contributes to seed germination by acting as an energy source, and ABA suppresses lipid degradation to modulate the germination process. Here, we report that the ABA-responsive R2R3-type MYB transcription factor MYB96, which is highly expressed in embryo, regulates seed germination by controlling the expression of abscisic acid-insensitive4 (ABI4) in Arabidopsis (Arabidopsis thaliana). In the presence of ABA, germination was accelerated in MYB96-deficient myb96-1 seeds, whereas the process was significantly delayed in MYB96-overexpressing activation-tagging myb96-ox seeds. Consistently, myb96-1 seeds degraded a larger extent of lipid reserves even in the presence of ABA, while reduced lipid mobilization was observed in myb96-ox seeds. MYB96 directly regulates ABI4, which acts as a repressor of lipid breakdown, to define its spatial and temporal expression. Genetic analysis further demonstrated that ABI4 is epistatic to MYB96 in the control of seed germination. Taken together, the MYB96-ABI4 module regulates lipid mobilization specifically in the embryo to ensure proper seed germination under suboptimal conditions.

  3. The Arabidopsis MYB96 Transcription Factor Is a Positive Regulator of ABSCISIC ACID-INSENSITIVE4 in the Control of Seed Germination1

    PubMed Central

    Lee, Kyounghee; Lee, Hong Gil; Kim, Hyun Uk; Seo, Pil Joon

    2015-01-01

    Seed germination is a key developmental transition that initiates the plant life cycle. The timing of germination is determined by the coordinated action of two phytohormones, gibberellin and abscisic acid (ABA). In particular, ABA plays a key role in integrating environmental information and inhibiting the germination process. The utilization of embryonic lipid reserves contributes to seed germination by acting as an energy source, and ABA suppresses lipid degradation to modulate the germination process. Here, we report that the ABA-responsive R2R3-type MYB transcription factor MYB96, which is highly expressed in embryo, regulates seed germination by controlling the expression of ABSCISIC ACID-INSENSITIVE4 (ABI4) in Arabidopsis (Arabidopsis thaliana). In the presence of ABA, germination was accelerated in MYB96-deficient myb96-1 seeds, whereas the process was significantly delayed in MYB96-overexpressing activation-tagging myb96-ox seeds. Consistently, myb96-1 seeds degraded a larger extent of lipid reserves even in the presence of ABA, while reduced lipid mobilization was observed in myb96-ox seeds. MYB96 directly regulates ABI4, which acts as a repressor of lipid breakdown, to define its spatial and temporal expression. Genetic analysis further demonstrated that ABI4 is epistatic to MYB96 in the control of seed germination. Taken together, the MYB96-ABI4 module regulates lipid mobilization specifically in the embryo to ensure proper seed germination under suboptimal conditions. PMID:25869652

  4. Effects of ethylene and carbon dioxide on the germination of osmotically inhibited lettuce seed.

    PubMed

    Negm, F B; Smith, O E

    1978-10-01

    Lettuce seeds (Lactuca sativa L.) used in this study germinated 98% at 25 C in light or dark. Their germination was completely inhibited by 0.20 m NaCl, 0.35 m mannitol, or polyethylene glycol 6000 (-7 bars) under continuous light when germination tests were made in Petri dishes. Approximately 50% germination occurred in sealed flasks due to endogenously produced C(2)H(4) and CO(2). Removal of either or both gases prevented germination. In the presence of endogenous CO(2), addition of C(2)H(4) (0.5 to 16 microliters/liter) stimulated 95 to 100% germination (after 5 days) only in the light, but the rate of germination was dependent on C(2)H(4) concentration. At 16 microliters/liter C(2)H(4), full germination occurred within 72 hours. Addition of up to 3.2% CO(2) had no adverse effect on the C(2)H(4) action. Higher concentrations or the complete absence of CO(2) reduced both rate and total germination. CO(2) alone was ineffective.Under these osmotic conditions the promotive effect of C(2)H(4) was under the control of phytochrome.

  5. Effects of ethylene and carbon dioxide on the germination of osmotically inhibited lettuce seed.

    PubMed

    Negm, F B; Smith, O E

    1978-10-01

    Lettuce seeds (Lactuca sativa L.) used in this study germinated 98% at 25 C in light or dark. Their germination was completely inhibited by 0.20 m NaCl, 0.35 m mannitol, or polyethylene glycol 6000 (-7 bars) under continuous light when germination tests were made in Petri dishes. Approximately 50% germination occurred in sealed flasks due to endogenously produced C(2)H(4) and CO(2). Removal of either or both gases prevented germination. In the presence of endogenous CO(2), addition of C(2)H(4) (0.5 to 16 microliters/liter) stimulated 95 to 100% germination (after 5 days) only in the light, but the rate of germination was dependent on C(2)H(4) concentration. At 16 microliters/liter C(2)H(4), full germination occurred within 72 hours. Addition of up to 3.2% CO(2) had no adverse effect on the C(2)H(4) action. Higher concentrations or the complete absence of CO(2) reduced both rate and total germination. CO(2) alone was ineffective.Under these osmotic conditions the promotive effect of C(2)H(4) was under the control of phytochrome. PMID:16660541

  6. Novel Fungitoxicity Assays for Inhibition of Germination-Associated Adhesion of Botrytis cinerea and Puccinia recondita Spores

    PubMed Central

    Slawecki, Richard A.; Ryan, Eileen P.; Young, David H.

    2002-01-01

    Botrytis cinerea and Puccinia recondita spores adhere strongly to polystyrene microtiter plates coincident with germination. We developed assays for inhibition of spore adhesion in 96-well microtiter plates by using sulforhodamine B staining to quantify the adherent spores. In both organisms, fungicides that inhibited germination strongly inhibited spore adhesion, with 50% effective concentrations (EC50s) comparable to those for inhibition of germination. In contrast, fungicides that acted after germination in B. cinerea inhibited spore adhesion to microtiter plates only at concentrations much higher than their EC50s for inhibition of mycelial growth. Similarly, in P. recondita the ergosterol biosynthesis inhibitors myclobutanil and fenbuconazole acted after germination and did not inhibit spore adhesion. The assays provide a rapid, high-throughput alternative to traditional spore germination assays and may be applicable to other fungi. PMID:11823196

  7. Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture.

    PubMed

    Oracz, Krystyna; Voegele, Antje; Tarkowská, Danuse; Jacquemoud, Dominique; Turecková, Veronika; Urbanová, Terezie; Strnad, Miroslav; Sliwinska, Elwira; Leubner-Metzger, Gerhard

    2012-01-01

    Myrica gale L. (sweet gale) fruit leachate contains myrigalone A (MyA), a rare C-methylated dihydrochalcone and putative allelochemical, which is known to be a phytotoxin impeding seedling growth. We found that MyA inhibited Lepidium sativum L. seed germination in a dose-dependent manner. MyA did not affect testa rupture, but inhibited endosperm rupture and the transition to subsequent seedling growth. MyA inhibited micropylar endosperm cap (CAP) weakening and the increase in the growth potential of the radical/hypocotyl region (RAD) of the embryo, both being key processes required for endosperm rupture. We compared the contents of abscisic acid (ABA) and gibberellins in the tissues and found that the major bioactive forms of gibberellin in L. sativum seed tissues were GA(4) and GA(6), while GA(8) and GA(13) were abundant inactive metabolites. MyA did not appreciably affect the ABA contents, but severely interfered with gibberellin metabolism and signaling by inhibiting important steps catalyzed by GA3 oxidase, as well as by interfering with the GID1-type gibberellin signaling pathway. The hormonally and developmentally regulated formation of apoplastic superoxide radicals is important for embryo growth. Specific zones within the RAD were associated with accumulation of apoplastic superoxide radicals and endoreduplication indicative of embryo cell extension. MyA negatively affected both of these processes and acted as a scavenger of apoplastic reactive oxygen species. We propose that MyA is an allelochemical with a novel mode of action on seed germination.

  8. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana.

    PubMed

    Schwartz, S H; Léon-Kloosterziel, K M; Koornneef, M; Zeevaart, J A

    1997-05-01

    Abscisic acid (ABA)-deficient mutants in a variety of species have been identified by screening for precocious germination and a wilty phenotype. Mutants at two new loci, aba2 and aba3, have recently been isolated in Arabidopsis thaliana (L.) Hynh. (K.M. Léon-Kloosterziel, M. Alvarez-Gil, G.J. Ruijs, S.E. Jacobsen, N.E. Olszewski, S.H. Schwartz, J.A.D. Zeevaart, M. Koornneef [1996] Plant J 10: 655-661), and the biochemical characterization of these mutants is presented here. Protein extracts from aba2 and aba3 plants displayed a greatly reduced ability to convert xanthoxin to ABA relative to the wild type. The next putative intermediate in ABA synthesis, ABA-aldehyde, was efficiently converted to ABA by extracts from aba2 but not by extracts from aba3 plants. This indicates that the aba2 mutant is blocked in the conversion of xanthoxin to ABA-aldehyde and that aba3 is impaired in the conversion of ABA-aldehyde to ABA. Extracts from the aba3 mutant also lacked additional activities that require a molybdenum cofactor (Moco). Nitrate reductase utilizes a Moco but its activity was unaffected in extracts from aba3 plants. Moco hydroxylases in animals require a desulfo moiety of the cofactor. A sulfido ligand can be added to the Moco by treatment with Na2S and dithionite. Treatment of aba3 extracts with Na2S restored ABA-aldehyde oxidase activity. Therefore, the genetic lesion in aba3 appears to be in the introduction of S into the Moco. PMID:9159947

  9. Inhibition of DNA polymerase λ and associated inflammatory activities of extracts from steamed germinated soybeans.

    PubMed

    Mizushina, Yoshiyuki; Kuriyama, Isoko; Yoshida, Hiromi

    2014-04-01

    During the screening of selective DNA polymerase (pol) inhibitors from more than 50 plant food materials, we found that the extract from steamed germinated soybeans (Glycine max L.) inhibited human pol λ activity. Among the three processed soybean samples tested (boiled soybeans, steamed soybeans, and steamed germinated soybeans), both the hot water extract and organic solvent extract from the steamed germinated soybeans had the strongest pol λ inhibition. We previously isolated two glucosyl compounds, a cerebroside (glucosyl ceramide, AS-1-4, compound ) and a steroidal glycoside (eleutheroside A, compound ), from dried soybean, and these compounds were prevalent in the extracts of the steamed germinated soybeans as pol inhibitors. The hot water and organic solvent extracts of the steamed germinated soybeans and compounds and selectively inhibited the activity of eukaryotic pol λ in vitro but did not influence the activities of other eukaryotic pols, including those from the A-family (pol γ), B-family (pols α, δ, and ε), and Y-family (pols η, ι, and κ), and also showed no effect on the activity of pol β, which is of the same family (X) as pol λ. The tendency for in vitro pol λ inhibition by these extracts and compounds showed a positive correlation with the in vivo suppression of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation in mouse ear. These results suggest that steamed germinated soybeans, especially the glucosyl compound components, may be useful for their anti-inflammatory properties.

  10. Ethylene Inhibition of Phytochrome-Induced Germination in Potentilla norvegica L. Seeds.

    PubMed

    Suzuki, S; Taylorson, R B

    1981-12-01

    Germination of Potentilla norvegica L. (rough cinquefoil) seeds stimulated by fluorescent irradiations of nearly 24 hours was inhibited by ethylene at <1 microliter per liter. Sensitivity to ethylene inhibition was highest during and immediately after the irradiation. By delaying ethylene treatment until about a day after the light potentiation, seeds escaped the inhibition. Ethylene inhibition may be readily reversed upon release of the gas and reirradiation of the seeds. Imbibition of seeds at 10 or 15 degrees C, or at high temperatures of 35 and 40 degrees C, partially prevented subsequent inhibition by ethylene. Alternating temperatures during germination nearly overcame the inhibition from 1 microliter per liter ethylene, but not higher doses. With brief red-irradiation and alternating temperatures, 0.1 microliter per liter ethylene promoted germination about 2-fold. These data suggest that ethylene may loosely associate on a site required for phytochrome action. The effect of temperature that opposed the inhibition may be to deny the association of ethylene with the site. Loose association is supported by the reversal of inhibition by gas release and increased temperature during germination. A blocking effect was shown by the failure of phytochrome to act when ethylene was present.

  11. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.

    PubMed

    Zhao, Wenming; Guan, Chunmei; Feng, Jian; Liang, Yan; Zhan, Ni; Zuo, Jianru; Ren, Bo

    2016-07-01

    In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination.

  12. The pleiotropic effects of the seed germination inhibitor germostatin.

    PubMed

    Ye, Yajin; Zhao, Yang

    2016-01-01

    Seed dormancy and germination are the most important adaptive traits of seed plants, which control the germination in a proper space and time. Internal genetic factors together with environmental cues govern seed dormancy and germination. Abscisic acid (ABA), a key phytohormone induces seed dormancy and inhibits seed germination through its molecular genetic signaling network responding the seed inherent physiological and environmental factors. Recently, auxin has been shown to be another phytohormone that induces seed dormancy. We have recently shown that germonstatin (GS), a small synthetic molecule identified by high through-put chemical genetic screenings, inhibits seed germination through up-regulating auxin signaling and inducing auxin biosynthesis. GERMOSTATIN RESISTANCE LOCUS 1 (GSR1) encodes a plant homeodomain (PHD) finger protein and is responsible for GS seed germination inhibition. Its knockdown mutant gsr1 displays decreased dormancy. In this report, we show that GS is not an ABA analog and provided 2 other GS-resistant mutants related to the chemical's function in seed germination inhibition other than gsr1, suggesting that GS may have pleiotropic effects through targeting different pathway governing seed germination.

  13. The pleiotropic effects of the seed germination inhibitor germostatin.

    PubMed

    Ye, Yajin; Zhao, Yang

    2016-01-01

    Seed dormancy and germination are the most important adaptive traits of seed plants, which control the germination in a proper space and time. Internal genetic factors together with environmental cues govern seed dormancy and germination. Abscisic acid (ABA), a key phytohormone induces seed dormancy and inhibits seed germination through its molecular genetic signaling network responding the seed inherent physiological and environmental factors. Recently, auxin has been shown to be another phytohormone that induces seed dormancy. We have recently shown that germonstatin (GS), a small synthetic molecule identified by high through-put chemical genetic screenings, inhibits seed germination through up-regulating auxin signaling and inducing auxin biosynthesis. GERMOSTATIN RESISTANCE LOCUS 1 (GSR1) encodes a plant homeodomain (PHD) finger protein and is responsible for GS seed germination inhibition. Its knockdown mutant gsr1 displays decreased dormancy. In this report, we show that GS is not an ABA analog and provided 2 other GS-resistant mutants related to the chemical's function in seed germination inhibition other than gsr1, suggesting that GS may have pleiotropic effects through targeting different pathway governing seed germination. PMID:26918467

  14. The pleiotropic effects of the seed germination inhibitor germostatin

    PubMed Central

    Ye, Yajin; Zhao, Yang

    2016-01-01

    ABSTRACT Seed dormancy and germination are the most important adaptive traits of seed plants, which control the germination in a proper space and time. Internal genetic factors together with environmental cues govern seed dormancy and germination. Abscisic acid (ABA), a key phytohormone induces seed dormancy and inhibits seed germination through its molecular genetic signaling network responding the seed inherent physiological and environmental factors. Recently, auxin has been shown to be another phytohormone that induces seed dormancy. We have recently shown that germonstatin (GS), a small synthetic molecule identified by high through-put chemical genetic screenings, inhibits seed germination through up-regulating auxin signaling and inducing auxin biosynthesis. GERMOSTATIN RESISTANCE LOCUS 1 (GSR1) encodes a plant homeodomain (PHD) finger protein and is responsible for GS seed germination inhibition. Its knockdown mutant gsr1 displays decreased dormancy. In this report, we show that GS is not an ABA analog and provided 2 other GS-resistant mutants related to the chemical's function in seed germination inhibition other than gsr1, suggesting that GS may have pleiotropic effects through targeting different pathway governing seed germination. PMID:26918467

  15. The Arabidopsis ZINC FINGER PROTEIN3 Interferes with Abscisic Acid and Light Signaling in Seed Germination and Plant Development1[C][W][OPEN

    PubMed Central

    Joseph, Mary Prathiba; Papdi, Csaba; Kozma-Bognár, László; Nagy, István; López-Carbonell, Marta; Rigó, Gábor; Koncz, Csaba; Szabados, László

    2014-01-01

    Seed germination is controlled by environmental signals, including light and endogenous phytohormones. Abscisic acid (ABA) inhibits, whereas gibberellin promotes, germination and early seedling development, respectively. Here, we report that ZFP3, a nuclear C2H2 zinc finger protein, acts as a negative regulator of ABA suppression of seed germination in Arabidopsis (Arabidopsis thaliana). Accordingly, regulated overexpression of ZFP3 and the closely related ZFP1, ZFP4, ZFP6, and ZFP7 zinc finger factors confers ABA insensitivity to seed germination, while the zfp3 zfp4 double mutant displays enhanced ABA susceptibility. Reduced expression of several ABA-induced genes, such as RESPONSIVE TO ABSCISIC ACID18 and transcription factor ABSCISIC ACID-INSENSITIVE4 (ABI4), in ZFP3 overexpression seedlings suggests that ZFP3 negatively regulates ABA signaling. Analysis of ZFP3 overexpression plants revealed multiple phenotypic alterations, such as semidwarf growth habit, defects in fertility, and enhanced sensitivity of hypocotyl elongation to red but not to far-red or blue light. Analysis of genetic interactions with phytochrome and abi mutants indicates that ZFP3 enhances red light signaling by photoreceptors other than phytochrome A and additively increases ABA insensitivity conferred by the abi2, abi4, and abi5 mutations. These data support the conclusion that ZFP3 and the related ZFP subfamily of zinc finger factors regulate light and ABA responses during germination and early seedling development. PMID:24808098

  16. Synergistic effects of ajoene and the microwave power density memories of water on germination inhibition of fungal spores.

    PubMed

    Rai, S; Singh, U P; Mishra, G D; Singh, S P; Samarketu; Wagner, K G

    1995-05-01

    The synergistic effects of ajoene and the microwave power density memories of water on germination inhibition of some fungal spores are examined. The study reveals power memory varying different synergistic effects of different concentrations of ajoene on the inhibition of spore germination.

  17. The Transcriptional Coregulator LEUNIG_HOMOLOG Inhibits Light-Dependent Seed Germination in Arabidopsis.

    PubMed

    Lee, Nayoung; Park, Jeongmoo; Kim, Keunhwa; Choi, Giltsu

    2015-08-01

    PHYTOCHROME-INTERACTING FACTOR1 (PIF1) is a basic helix-loop-helix transcription factor that inhibits light-dependent seed germination in Arabidopsis thaliana. However, it remains unclear whether PIF1 requires other factors to regulate its direct targets. Here, we demonstrate that LEUNIG_HOMOLOG (LUH), a Groucho family transcriptional corepressor, binds to PIF1 and coregulates its targets. Not only are the transcriptional profiles of the luh and pif1 mutants remarkably similar, more than 80% of the seeds of both genotypes germinate in the dark. We show by chromatin immunoprecipitation that LUH binds a subset of PIF1 targets in a partially PIF1-dependent manner. Unexpectedly, we found LUH binds and coregulates not only PIF1-activated targets but also PIF1-repressed targets. Together, our results indicate LUH functions with PIF1 as a transcriptional coregulator to inhibit seed germination.

  18. The Transcriptional Coregulator LEUNIG_HOMOLOG Inhibits Light-Dependent Seed Germination in Arabidopsis.

    PubMed

    Lee, Nayoung; Park, Jeongmoo; Kim, Keunhwa; Choi, Giltsu

    2015-08-01

    PHYTOCHROME-INTERACTING FACTOR1 (PIF1) is a basic helix-loop-helix transcription factor that inhibits light-dependent seed germination in Arabidopsis thaliana. However, it remains unclear whether PIF1 requires other factors to regulate its direct targets. Here, we demonstrate that LEUNIG_HOMOLOG (LUH), a Groucho family transcriptional corepressor, binds to PIF1 and coregulates its targets. Not only are the transcriptional profiles of the luh and pif1 mutants remarkably similar, more than 80% of the seeds of both genotypes germinate in the dark. We show by chromatin immunoprecipitation that LUH binds a subset of PIF1 targets in a partially PIF1-dependent manner. Unexpectedly, we found LUH binds and coregulates not only PIF1-activated targets but also PIF1-repressed targets. Together, our results indicate LUH functions with PIF1 as a transcriptional coregulator to inhibit seed germination. PMID:26276832

  19. The Transcriptional Coregulator LEUNIG_HOMOLOG Inhibits Light-Dependent Seed Germination in Arabidopsis

    PubMed Central

    Lee, Nayoung; Park, Jeongmoo; Kim, Keunhwa; Choi, Giltsu

    2015-01-01

    PHYTOCHROME-INTERACTING FACTOR1 (PIF1) is a basic helix-loop-helix transcription factor that inhibits light-dependent seed germination in Arabidopsis thaliana. However, it remains unclear whether PIF1 requires other factors to regulate its direct targets. Here, we demonstrate that LEUNIG_HOMOLOG (LUH), a Groucho family transcriptional corepressor, binds to PIF1 and coregulates its targets. Not only are the transcriptional profiles of the luh and pif1 mutants remarkably similar, more than 80% of the seeds of both genotypes germinate in the dark. We show by chromatin immunoprecipitation that LUH binds a subset of PIF1 targets in a partially PIF1-dependent manner. Unexpectedly, we found LUH binds and coregulates not only PIF1-activated targets but also PIF1-repressed targets. Together, our results indicate LUH functions with PIF1 as a transcriptional coregulator to inhibit seed germination. PMID:26276832

  20. The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation.

    PubMed

    Li, Ying; Zhang, Liang; Li, Dekuan; Liu, Zhibin; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a vital role in plant growth and development. The function of ABA is mediated by a group of newly discovered ABA receptors, named PYRABACTIN RESISTANCE 1/PYR-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORs (PYR1/PYLs/RCARs). Here, we report that an Arabidopsis thaliana F-box protein RCAR3 INTERACTING F-BOX PROTEIN 1 (RIFP1) interacts with ABA receptor (RCAR3) and SCF E3 ligase complex subunits Arabidopsis SKP1-LIKE PROTEINs (ASKs) in vitro and in vivo. The rifp1 mutant plants displayed increased ABA-mediated inhibition of seed germination and water loss of detached leaves, while the overexpression of RIFP1 in Arabidopsis led to plants being insensitive to ABA. Meanwhile, the rifp1 mutant plants showed greater tolerance to water deficit. In addition, the RCAR3 protein level was more stable in the rifp1 mutant plants than in the wild-type plants, indicating that RIFP1 facilitates the proteasome degradation of RCAR3. Accordingly, the loss of RIFP1 increased the transcript levels of several ABA-responsive genes. Taken together, these data indicate that RIFP1 plays a negative role in the RCAR3-mediated ABA signalling pathway and likely functions as an adaptor subunit of the SCF ubiquitin ligase complex to regulate ABA receptor RCAR3 stability. PMID:26386272

  1. Inhibition of Orobanche crenata seed germination and radicle growth by allelochemicals identified in cereals.

    PubMed

    Fernández-Aparicio, Mónica; Cimmino, Alessio; Evidente, Antonio; Rubiales, Diego

    2013-10-16

    Orobanche crenata is a parasitic weed that causes severe yield losses in important grain and forage legume crops. Cereals have been reported to inhibit O. crenata parasitism when grown intercropped with susceptible legumes, but the responsible metabolites have not been identified. A number of metabolites have been reported in cereals that have allelopathic properties against weeds, pests, and pathogens. We tested the effect of several allelochemicals identified in cereals on O. crenata seed germination and radicle development. We found that 2-benzoxazolinone, its derivative 6-chloroacetyl-2-benzoxazolinone, and scopoletin significantly inhibited O. crenata seed germination. Benzoxazolinones, l-tryptophan, and coumalic acid caused the stronger inhibition of radicle growth. Also, other metabolites reduced radicle length, this inhibition being dose-dependent. Only scopoletin caused cell necrotic-like darkening in the young radicles. Prospects for their application to parasitic weed management are discussed.

  2. Inhibition of Orobanche crenata seed germination and radicle growth by allelochemicals identified in cereals.

    PubMed

    Fernández-Aparicio, Mónica; Cimmino, Alessio; Evidente, Antonio; Rubiales, Diego

    2013-10-16

    Orobanche crenata is a parasitic weed that causes severe yield losses in important grain and forage legume crops. Cereals have been reported to inhibit O. crenata parasitism when grown intercropped with susceptible legumes, but the responsible metabolites have not been identified. A number of metabolites have been reported in cereals that have allelopathic properties against weeds, pests, and pathogens. We tested the effect of several allelochemicals identified in cereals on O. crenata seed germination and radicle development. We found that 2-benzoxazolinone, its derivative 6-chloroacetyl-2-benzoxazolinone, and scopoletin significantly inhibited O. crenata seed germination. Benzoxazolinones, l-tryptophan, and coumalic acid caused the stronger inhibition of radicle growth. Also, other metabolites reduced radicle length, this inhibition being dose-dependent. Only scopoletin caused cell necrotic-like darkening in the young radicles. Prospects for their application to parasitic weed management are discussed. PMID:24044614

  3. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana.

    PubMed

    Linkies, Ada; Müller, Kerstin; Morris, Karl; Turecková, Veronika; Wenk, Meike; Cadman, Cassandra S C; Corbineau, Françoise; Strnad, Miroslav; Lynn, James R; Finch-Savage, William E; Leubner-Metzger, Gerhard

    2009-12-01

    The micropylar endosperm cap covering the radicle in the mature seeds of most angiosperms acts as a constraint that regulates seed germination. Here, we report on a comparative seed biology study with the close Brassicaceae relatives Lepidium sativum and Arabidopsis thaliana showing that ethylene biosynthesis and signaling regulate seed germination by a mechanism that requires the coordinated action of the radicle and the endosperm cap. The larger seed size of Lepidium allows direct tissue-specific biomechanical, biochemical, and transcriptome analyses. We show that ethylene promotes endosperm cap weakening of Lepidium and endosperm rupture of both species and that it counteracts the inhibitory action of abscisic acid (ABA) on these two processes. Cross-species microarrays of the Lepidium micropylar endosperm cap and the radicle show that the ethylene-ABA antagonism involves both tissues and has the micropylar endosperm cap as a major target. Ethylene counteracts the ABA-induced inhibition without affecting seed ABA levels. The Arabidopsis loss-of-function mutants ACC oxidase2 (aco2; ethylene biosynthesis) and constitutive triple response1 (ethylene signaling) are impaired in the 1-aminocyclopropane-1-carboxylic acid (ACC)-mediated reversion of the ABA-induced inhibition of seed germination. Ethylene production by the ACC oxidase orthologs Lepidium ACO2 and Arabidopsis ACO2 appears to be a key regulatory step. Endosperm cap weakening and rupture are promoted by ethylene and inhibited by ABA to regulate germination in a process conserved across the Brassicaceae.

  4. Conformationally restricted 3'-modified ABA analogs for controlling ABA receptors.

    PubMed

    Takeuchi, Jun; Ohnishi, Toshiyuki; Okamoto, Masanori; Todoroki, Yasushi

    2015-04-14

    The physiological functions of abscisic acid (ABA) are regulated by a signal transduction pathway involving cytosolic ABA receptors, which include 14 PYR/PYL/RCAR (PYL) proteins in Arabidopsis. The development of a PYL antagonist could be a valuable tool to improve our understanding of the roles of ABA. We previously developed 3'-hexylsulfanyl-ABA (AS6), whose S-hexyl chain blocks protein phosphatase 2C (PP2C) binding by steric hindrance. This finding not only validated our structure-based approach to the design of a PYL antagonist, but also provided a basis for the development of a more potent or subclass/subtype selective PYL antagonist. In the present study, we synthesized a conformationally restricted analog of AS6, namely propenyl-ABA with an O-butyl chain (PAO4), to improve the affinity for PYL proteins by reducing the entropic penalty for binding to the receptors. In seed germination assays, (+)-PAO4 was a slightly stronger antagonist than AS6 in Arabidopsis and a significantly stronger antagonist in lettuce. Analysis of the thermodynamic parameters associated with the formation of the Arabidopsis PYL-(+)-PAO4 complex revealed that (+)-PAO4 binds more strongly to PYL5 than AS6 owing to an entropic advantage. In PP2C assays, this enhancement effect was observed only for the monomeric PYL subclass containing PYL5, suggesting that (+)-PAO4 is more effective than AS6 in physiological events involving monomeric PYL proteins as ABA receptors. PMID:25758810

  5. Selective inhibition of Erwinia amylovora by the herbicidally-active Germination-Arrest Factor (GAF) produced by Pseudomonas bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The Germination-Arrest Factor (GAF) produced by Pseudomonas fluorescens WH6, and identified as 4-formylaminooxyvinylglycine, specifically inhibits the germination of a wide range of grassy weeds. The present study was undertaken to determine if GAF has antimicrobial activity in addition to it...

  6. POLYAMINE OXIDASE2 of Arabidopsis contributes to ABA mediated plant developmental processes.

    PubMed

    Wimalasekera, Rinukshi; Schaarschmidt, Frank; Angelini, Riccardo; Cona, Alessandra; Tavladoraki, Parasklevi; Scherer, Günther F E

    2015-11-01

    Polyamines (PA) are catabolised by two groups of amine oxidases, the copper-binding amine oxidases (CuAOs) and the FAD-binding polyamine oxidases (PAOs). Previously, we have shown that CuAO1 is involved in ABA associated growth responses and ABA- and PA-mediated rapid nitric oxide (NO) production. Here we report the differential regulation of expression of POLYAMINE OXIDASE2 of Arabidopsis (AtPAO2) in interaction with ABA, nitrate and ammonium. Without ABA treatment germination, cotyledon growth and fresh weight of pao2 knockdown mutants as well as PAO2OX over-expressor plants were comparable to those of the wild type (WT) plants irrespective of the N source. In the presence of ABA, in pao2 mutants cotyledon growth and fresh weights were more sensitive to inhibition by ABA while PAO2OX over-expressor plants showed a rather similar response to WT. When NO3(-) was the only N source primary root lengths and lateral root numbers were lower in pao2 mutants both without and with exogenous ABA. PAO2OX showed enhanced primary and lateral root growth in media with NO3(-) or NH4(+). Vigorous root growth of PAO2OX and the hypersensitivity of pao2 mutants to ABA suggest a positive function of AtPAO2 in root growth. ABA-induced NO production in pao2 mutants was lower indicating a potential contributory function of AtPAO2 in NO-mediated effects on root growth. PMID:26310141

  7. WRI1 is required for seed germination and seedling establishment.

    PubMed

    Cernac, Alex; Andre, Carl; Hoffmann-Benning, Susanne; Benning, Christoph

    2006-06-01

    Storage compound accumulation during seed development prepares the next generation of plants for survival. Therefore, processes involved in the regulation and synthesis of storage compound accumulation during seed development bear relevance to germination and seedling establishment. The wrinkled1 (wri1) mutant of Arabidopsis (Arabidopsis thaliana) is impaired in seed oil accumulation. The WRI1 gene encodes an APETALA2/ethylene-responsive element-binding protein transcription factor involved in the control of metabolism, particularly glycolysis, in the developing seeds. Here we investigate the role of this regulatory factor in seed germination and seedling establishment by comparing the wri1-1 mutant, transgenic lines expressing the WRI1 wild-type cDNA in the wri1-1 mutant background, and the wild type. Plants altered in the expression of the WRI1 gene showed different germination responses to the growth factor abscisic acid (ABA), sugars, and fatty acids provided in the medium. Germination of the mutant was more sensitive to ABA, sugars, and osmolites, an effect that was alleviated by increased WRI1 expression in transgenic lines. The expression of ABA-responsive genes AtEM6 and ABA-insensitive 3 (ABI3) was increased in the wri1-1 mutant. Double-mutant analysis between abi3-3 and wri1-1 suggested that WRI1 and ABI3, a transcription factor mediating ABA responses in seeds, act in parallel pathways. Addition of 2-deoxyglucose inhibited seed germination, but did so less in lines overexpressing WRI1. Seedling establishment was decreased in the wri1-1 mutant but could be alleviated by sucrose. Apart from a possible signaling role in germination, sugars in the medium were required as building blocks and energy supply during wri1-1 seedling establishment.

  8. Methyl anthranilate and γ-decalactone inhibit strawberry pathogen growth and achene Germination.

    PubMed

    Chambers, Alan H; Evans, Shane Alan; Folta, Kevin M

    2013-12-26

    Plant volatile compounds have been shown to affect microbial growth and seed germination. Here two fruity volatiles found in strawberry ( Fragaria × ananassa ), γ-decalactone ("peachlike" aroma) and methyl anthranilate ("grapelike" aroma), were tested for effects on relevant pathogens and seedling emergence. Significant growth reduction was observed for Botrytis cinerea , Colletotrichum gloeosporioides , Colletotrichum acutatum , Phomopsis obscurans , and Gnomonia fragariae at 1 mM γ-decalactone or methyl anthranilate, and 5 mM γ-decalactone or methyl anthranilate supplemented medium resulted in complete cessation of fungal growth. Phytophthora cactorum was especially sensitive to 1 mM γ-decalactone, showing complete growth inhibition. Bacteriostatic effects were observed in Xanthamonas cultures. Postharvest infestations on store-bought strawberries were inhibited with volatile treatment. The γ-decalactone volatile inhibited strawberry and Arabidopsis thaliana germination. These findings show that two compounds contributing to strawberry flavor may also contribute to shelf life and suggest that γ-decalactone may play an ecological role by preventing premature germination. PMID:24328200

  9. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination.

    PubMed

    Barrero, Jose M; Downie, A Bruce; Xu, Qian; Gubler, Frank

    2014-03-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8'-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains.

  10. Ethylene Interacts with Abscisic Acid to Regulate Endosperm Rupture during Germination: A Comparative Approach Using Lepidium sativum and Arabidopsis thaliana[W][OA

    PubMed Central

    Linkies, Ada; Müller, Kerstin; Morris, Karl; Turečková, Veronika; Wenk, Meike; Cadman, Cassandra S.C.; Corbineau, Françoise; Strnad, Miroslav; Lynn, James R.; Finch-Savage, William E.; Leubner-Metzger, Gerhard

    2009-01-01

    The micropylar endosperm cap covering the radicle in the mature seeds of most angiosperms acts as a constraint that regulates seed germination. Here, we report on a comparative seed biology study with the close Brassicaceae relatives Lepidium sativum and Arabidopsis thaliana showing that ethylene biosynthesis and signaling regulate seed germination by a mechanism that requires the coordinated action of the radicle and the endosperm cap. The larger seed size of Lepidium allows direct tissue-specific biomechanical, biochemical, and transcriptome analyses. We show that ethylene promotes endosperm cap weakening of Lepidium and endosperm rupture of both species and that it counteracts the inhibitory action of abscisic acid (ABA) on these two processes. Cross-species microarrays of the Lepidium micropylar endosperm cap and the radicle show that the ethylene-ABA antagonism involves both tissues and has the micropylar endosperm cap as a major target. Ethylene counteracts the ABA-induced inhibition without affecting seed ABA levels. The Arabidopsis loss-of-function mutants ACC oxidase2 (aco2; ethylene biosynthesis) and constitutive triple response1 (ethylene signaling) are impaired in the 1-aminocyclopropane-1-carboxylic acid (ACC)-mediated reversion of the ABA-induced inhibition of seed germination. Ethylene production by the ACC oxidase orthologs Lepidium ACO2 and Arabidopsis ACO2 appears to be a key regulatory step. Endosperm cap weakening and rupture are promoted by ethylene and inhibited by ABA to regulate germination in a process conserved across the Brassicaceae. PMID:20023197

  11. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth.

    PubMed

    Albertos, Pablo; Romero-Puertas, María C; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar

    2015-01-01

    Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development.

  12. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth

    PubMed Central

    Albertos, Pablo; Romero-Puertas, María C.; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar

    2015-01-01

    Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030

  13. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability.

    PubMed

    Osuna, Daniel; Prieto, Pilar; Aguilar, Miguel

    2015-01-01

    Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N) ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose) and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA)-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA) biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO) and phytohormones (ABA, auxins and GAs) in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones.

  14. Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pisum sativum.

    PubMed

    Puli, Mallikarjuna Rao; Raghavendra, Agepati S

    2012-02-01

    Pyrabactin, a synthetic agonist of abscisic acid (ABA), inhibits seed germination and hypocotyl growth and stimulates gene expression in a very similar way to ABA, implying the possible modulation of stomatal function by pyrabactin as well. The effect of pyrabactin on stomatal closure and secondary messengers was therefore studied in guard cells of Pisum sativum abaxial epidermis. Pyrabactin caused marked stomatal closure in a pattern similar to ABA. In addition, pyrabactin elevated the levels of reactive oxygen species (ROS), nitric oxide (NO), and cytoplasmic pH levels in guard cells, as indicated by the respective fluorophores. However, apyrabactin, an inactive analogue of ABA, did not affect either stomatal closure or the signalling components of guard cells. The effects of pyrabactin-induced changes were reversed by pharmalogical compounds that modulate ROS, NO or cytoplasmic pH levels, quite similar to ABA effects. Fusicoccin, a fungal toxin, could reverse the stomatal closure caused by pyrabactin, as well as that caused by ABA. Experiments on stomatal closure by varying concentrations of ABA, in the presence of fixed concentration of pyrabactin, and vice versa, revealed that the actions of ABA and pyrabactin were additive. Further kinetic analysis of data revealed that the apparent K(D) of ABA was increased almost 4-fold in the presence of ABA, suggesting that pyrabactin and ABA were competing with each other either at the same site or close to the active site. It is proposed that pyrabactin could be used to examine the ABA-related signal-transduction components in stomatal guard cells as well as in other plant tissues. It is also suggested that pyrabactin can be used as an antitranspirant or as a priming agent for improving the drought tolerance of crop plants.

  15. A rice F-box gene, OsFbx352, is involved in glucose-delayed seed germination in rice

    PubMed Central

    Zhang, Wen-Hao

    2012-01-01

    F-box proteins play diverse roles in regulating numerous physiological processes in plants. This study isolated a gene (OsFbx352) from rice encoding an F-box domain protein and characterized its role in seed germination. Expression of OsFbx352 was upregulated by abscisic acid (ABA). The transcripts of OsFbx352 were increased upon imbibition of rice seeds and the increase was markedly suppressed by glucose. Germination of seeds with overexpression of OsFbx352 was less suppressed by glucose than that of wild-type seeds, while glucose had greater inhibition for germination of seeds with knockdown of OsFbx352 by RNA interference (RNAi) than that of wild-type seeds. The differential response of germination of the transgenic and wild-type seeds to glucose may be accounted for by differences in ABA content among overexpressing, RNAi, and wild-type seeds such that overexpression of OsFbx352 and knockdown of OsFbx352 led to lower and higher ABA contents, respectively, than that of wild-type seeds in the presence of glucose. Overexpression of OsFbx352 led to a reduction in expression of genes responsible for ABA synthesis (OsNced2, OsNced3) and an increase in expression of genes encoding ABA catabolism (OsAba-ox2, OsAba-ox3) in the presence of glucose. These findings indicate that OsFbx352 plays a regulatory role in the regulation of glucose-induced suppression of seed germination by targeting ABA metabolism. PMID:22859682

  16. Differential chlorate inhibition of Chaetomium globosum germination, hyphal growth, and perithecia synthesis.

    PubMed

    Biles, Charles L; Wright, Desiree; Fuego, Marianni; Guinn, Angela; Cluck, Terry; Young, Jennifer; Martin, Markie; Biles, Josiah; Poudyal, Shubhra

    2012-12-01

    Chaetomium globosum Kunze:Fr is a dermatophytic, dematiaceous fungus that is ubiquitous in soils, grows readily on cellulolytic materials, and is commonly found on water-damaged building materials. Chlorate affects nitrogen metabolism in fungi and is used to study compatibility among anamorphic fungi by inducing nit mutants. The effect of chlorate toxicity on C. globosum was investigated by amending a modified malt extract agar (MEA), oat agar, and carboxymethyl cellulose agar (CMC) with various levels of potassium chlorate (KClO(3)). C. globosum perithecia production was almost completely inhibited (90-100 %) at low levels of KClO(3) (0.1 mM) in amended MEA. Inhibition of perithecia production was also observed on oat agar and CMC at 1 and 10 mM, respectively. However, hyphal growth in MEA was only inhibited 20 % by 0.1-100 mM KClO(3) concentrations. Hyphal growth was never completely inhibited at the highest levels tested (200 mM). Higher levels of KClO(3) were needed on gypsum board to inhibit perithecia synthesis. In additional experiments, KClO(3) did not inhibit C. globosum, Fusarium oxysporum, Aspergillus niger, Penicillum expansum, and airborne fungal spore germination. The various fungal spores were not inhibited by KClO(3) at 1-100 mM levels. These results suggest that C. globosum perithecia synthesis is more sensitive to chlorate toxicity than are hyphal growth and spore germination. This research provides basic information that furthers our understanding about perithecia formation and may help in developing control methods for fungal growth on building materials.

  17. Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate.

    PubMed

    Chang, Chenshuo; Wang, Baolan; Shi, Lei; Li, Yinxin; Duo, Lian; Zhang, Wenhao

    2010-09-15

    Ethylene is an important plant gas hormone, and the amino acid Glu is emerging as a messenger molecule in plants. To evaluate the role of ethylene and Glu in seed germination and radicle growth under salt stress, effects of 1-aminocyclopropane-1-carboxylic acid (ACC), Ethephon and Glu on germination and radicle growth of cucumber (Cucumis sativus L.) seeds in the absence and presence of 200 mM NaCl were investigated. Seed germination was markedly inhibited by salt stress, and this effect was alleviated by ACC and Ethephon. In contrast to seed germination, ACC and Ethephon had little effect on radicle growth under salt stress. In addition to ethylene, we found exogenous supply of Glu was effective in alleviating the salt stress-induced inhibition of seed germination and radicle growth. The effect of Glu on the seed germination and radicle growth was specific to L-Glu, whereas D-Glu and Gln had no effect. There was an increase in ethylene production during seed imbibition, and salt stress suppressed ethylene production. Exogenous L-Glu evoked ethylene evolution from the imbibed seeds and attenuated the reduction in ethylene evolution induced by salt stress. The alleviative effect of L-Glu on seed germination was diminished by antagonists of ethylene synthesis, aminoethoxyvinylglycine (AVG) and CoCl(2), suggesting that L-Glu is likely to exert its effect on seed germination by modulation of ethylene evolution. These findings demonstrate that ethylene is associated with suppression of seed germination under salt stress and that L-Glu interacts with ethylene in regulation of seed germination under salt stress.

  18. Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins.

    PubMed

    Wang, Pengcheng; Zhu, Jian-Kang; Lang, Zhaobo

    2015-01-01

    Nitric oxide (NO) plays important roles in plant development, and biotic and abiotic stress responses. In a recent study, we showed that endogenous NO negatively regulates abscisic acid (ABA) signaling in guard cells by inhibiting sucrose nonfermenting 1 (SNF1)-related protein kinase 2.6 (SnRK2.6)/open stomata 1(OST1) through S-nitrosylation. Application of NO breaks seed dormancy and alleviates the inhibitory effect of ABA on seed germination and early seedling growth, but it is unclear how NO functions at the stages of seed germination and early seedling development. Here, we show that like SnRK2.6, SnRK2.2 can be inactivated by S-nitrosoglutathione (GSNO) treatment through S-nitrosylation. SnRK2.2 and the closely related SnRK2.3 are known to play redundant roles in ABA inhibition of seed germination in Arabidopsis. We found that treatment with the NO donor SNP phenocopies the snrk2.2snrk2.3 double mutant in conferring ABA insensitivity at the stages of seed germination and early seedling growth. Our results suggest that NO negatively regulates ABA signaling in germination and early seedling growth through S-nitrosylation of SnRK2.2 and SnRK2.3.

  19. Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins

    PubMed Central

    Wang, Pengcheng; Zhu, Jian-Kang; Lang, Zhaobo

    2015-01-01

    Nitric oxide (NO) plays important roles in plant development, and biotic and abiotic stress responses. In a recent study, we showed that endogenous NO negatively regulates abscisic acid (ABA) signaling in guard cells by inhibiting sucrose nonfermenting 1 (SNF1)-related protein kinase 2.6 (SnRK2.6)/open stomata 1(OST1) through S-nitrosylation. Application of NO breaks seed dormancy and alleviates the inhibitory effect of ABA on seed germination and early seedling growth, but it is unclear how NO functions at the stages of seed germination and early seedling development. Here, we show that like SnRK2.6, SnRK2.2 can be inactivated by S-nitrosoglutathione (GSNO) treatment through S-nitrosylation. SnRK2.2 and the closely related SnRK2.3 are known to play redundant roles in ABA inhibition of seed germination in Arabidopsis. We found that treatment with the NO donor SNP phenocopies the snrk2.2snrk2.3 double mutant in conferring ABA insensitivity at the stages of seed germination and early seedling growth. Our results suggest that NO negatively regulates ABA signaling in germination and early seedling growth through S-nitrosylation of SnRK2.2 and SnRK2.3. PMID:26024299

  20. OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa, L.).

    PubMed

    Zhang, Dongping; Chen, Li; Li, Dahong; Lv, Bing; Chen, Yun; Chen, Jingui; XuejiaoYan; Liang, Jiansheng

    2014-01-01

    The receptor for activated C kinase 1 (RACK1) is one member of the most important WD repeat-containing family of proteins found in all eukaryotes and is involved in multiple signaling pathways. However, compared with the progress in the area of mammalian RACK1, our understanding of the functions and molecular mechanisms of RACK1 in the regulation of plant growth and development is still in its infancy. In the present study, we investigated the roles of rice RACK1A gene (OsRACK1A) in controlling seed germination and its molecular mechanisms by generating a series of transgenic rice lines, of which OsRACK1A was either over-expressed or under-expressed. Our results showed that OsRACK1A positively regulated seed germination and negatively regulated the responses of seed germination to both exogenous ABA and H2O2. Inhibition of ABA biosynthesis had no enhancing effect on germination, whereas inhibition of ABA catabolism significantly suppressed germination. ABA inhibition on seed germination was almost fully recovered by exogenous H2O2 treatment. Quantitative analyses showed that endogenous ABA levels were significantly higher and H2O2 levels significantly lower in OsRACK1A-down regulated transgenic lines as compared with those in wildtype or OsRACK1A-up regulated lines. Quantitative real-time PCR analyses showed that the transcript levels of OsRbohs and amylase genes, RAmy1A and RAmy3D, were significantly lower in OsRACK1A-down regulated transgenic lines. It is concluded that OsRACK1A positively regulates seed germination by controlling endogenous levels of ABA and H2O2 and their interaction.

  1. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds.

    PubMed

    Hermann, Katrin; Meinhard, Juliane; Dobrev, Peter; Linkies, Ada; Pesek, Bedrich; Hess, Barbara; Machácková, Ivana; Fischer, Uwe; Leubner-Metzger, Gerhard

    2007-01-01

    The control of sugar beet (Beta vulgaris L.) germination by plant hormones was studied by comparing fruits and seeds. Treatment of sugar beet fruits and seeds with gibberellins, brassinosteroids, auxins, cytokinins, and jasmonates or corresponding hormone biosynthesis inhibitors did not appreciably affect radicle emergence of fruits or seeds. By contrast, treatment with ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) promoted radicle emergence of fruits and seeds. Abscisic acid (ABA) acted as an antagonist of ethylene and inhibited radicle emergence of seeds, but not appreciably of fruits. High endogenous contents of ACC and of ABA were evident in seeds and pericarps of dry mature fruits, but declined early during imbibition. ABA-treatment of seeds and fruits induced seed ACC accumulation while ACC-treatment did not affect the seed ABA content. Transcripts of ACC oxidase (ACO, ethylene-forming enzyme) and ABA 8'-hydroxylase (CYP707A, ABA-degrading enzyme) accumulate in fruits and seeds upon imbibition. ABA and ACC and the pericarp did not affect the seed CYP707A transcript levels. By contrast, seed ACO transcript accumulation was promoted by ABA and by pericarp removal, but not by ACC. Quantification of the endogenous ABA and ACC contents, ABA and ACC leaching, and ethylene evolution, demonstrate that an embryo-mediated active ABA extrusion system is involved in keeping the endogenous seed ABA content low by 'active ABA leaching', while the pericarp restricts ACC leaching during imbibition. Sugar beet radicle emergence appears to be controlled by the pericarp, by ABA and ACC leaching, and by an ABA-ethylene antagonism that affects ACC biosynthesis and ACO gene expression.

  2. A Role for the Surrounding Fruit Tissues in Preventing the Germination of Tomato (Lycopersicon esculentum) Seeds 1

    PubMed Central

    Berry, Tannis; Bewley, J. Derek

    1992-01-01

    During tomato seed development the endogenous abscisic acid (ABA) concentration peaks at about 50 d after pollination (DAP) and then declines at later stages (60-70 DAP) of maturation. The ABA concentration in the sheath tissue immediately surrounding the seed increases with time of development, whereas that of the locule declines. The water contents of the seed and fruit tissues are similar during early development (20-30 DAP), but decline in the seed tissues between 30 and 40 DAP. The water potential and the osmotic potential of the embryo are lower than that of the locular tissue after 35 DAP also. Seeds removed from the fruit at 30, 35, and 60 DAP and placed ex situ on 35 and 60 DAP sheath and locular tissue are prevented from germinating. Development of 30 DAP seeds is maintained or promoted by the ex situ fruit tissue with which they are in contact. Their germination is inhibited until subsequent transfer to water, and germination is normal, i.e. by radicle protrusion, and viable seedlings are produced, compared with 30 DAP seeds transferred directly to water; more of these seeds germinate, but by hypocotyl extension, and seedling viability is very poor. Isolated seeds at 35 and 60 DAP re-placed in contact with fruit tissues only germinate when transferred to water after 7 d. At 30 DAP, isolated seeds are insensitive to ABA at physiological concentrations in that they germinate as if on water, albeit by hypocotyl extension. At higher concentrations germination occurs by radicle protrusion. Osmoticum prevents germination, but there is some recovery upon subsequent transfer to water. Seeds at 35 DAP are very sensitive to ABA and exhibit little or no germination, even upon transfer to water. The response of the isolated seeds to osmoticum more closely approximates that to incubation on the ex situ fruit tissues than does their response to ABA. This is also the case for isolated 60 DAP seeds, whose germination is not prevented by ABA, but only by the osmoticum

  3. A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination[W][OPEN

    PubMed Central

    Barrero, Jose M.; Downie, A. Bruce; Xu, Qian; Gubler, Frank

    2014-01-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8’-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  4. Seed development and viviparous germination in one accession of a tomato rin mutant.

    PubMed

    Wang, Xu; Zhang, Lili; Xu, Xiaochun; Qu, Wei; Li, Jingfu; Xu, Xiangyang; Wang, Aoxue

    2016-06-01

    In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45-50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25-60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination. PMID:27436947

  5. Seed development and viviparous germination in one accession of a tomato rin mutant

    PubMed Central

    Wang, Xu; Zhang, Lili; Xu, Xiaochun; Qu, Wei; Li, Jingfu; Xu, Xiangyang; Wang, Aoxue

    2016-01-01

    In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45–50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25–60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination. PMID:27436947

  6. Seed development and viviparous germination in one accession of a tomato rin mutant.

    PubMed

    Wang, Xu; Zhang, Lili; Xu, Xiaochun; Qu, Wei; Li, Jingfu; Xu, Xiangyang; Wang, Aoxue

    2016-06-01

    In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45-50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25-60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination.

  7. Aqueous extracts of Tulbaghia violacea inhibit germination of Aspergillus flavus and Aspergillus parasiticus conidia.

    PubMed

    Somai, Benesh Munilal; Belewa, Vuyokazi

    2011-06-01

    Aspergillus flavus and Aspergillus parasiticus are important plant pathogens and causal agents of pre- and postharvest rots of corn, peanuts, and tree nuts. These fungal pathogens cause significant crop losses and produce aflatoxins, which contaminate many food products and contribute to liver cancer worldwide. Aqueous preparations of Tulbaghia violacea (wild garlic) were antifungal and at 10 mg/ml resulted in sustained growth inhibition of greater than 50% for both A. flavus and A. parasiticus. Light microscopy revealed that the plant extract inhibited conidial germination in a dose-dependent manner. When exposed to T. violacea extract concentrations of 10 mg/ml and above, A. parasiticus conidia began germinating earlier and germination was completed before that of A. flavus, indicating that A. parasiticus conidia were more resistant to the antifungal effects of T. violacea than were A. flavus conidia. At a subinhibitory extract dose of 15 mg/ml, hyphae of both fungal species exhibited increased granulation and vesicle formation, possibly due to increased reactivity between hyphal cellular components and T. violacea extract. These hyphal changes were not seen when hyphae were formed in the absence of the extract. Transmission electron microscopy revealed thickening of conidial cell walls in both fungal species when grown in the presence of the plant extract. Cell walls of A. flavus also became considerably thicker than those of A. parasiticus, indicating differential response to the extract. Aqueous preparations of T. violacea can be used as antifungal treatments for the control of A. flavus and A. parasiticus. Because the extract exhibited a more pronounced effect on A. flavus than on A. parasiticus, higher doses may be needed for control of A. parasiticus infections. PMID:21669082

  8. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    PubMed

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. PMID:27239687

  9. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    PubMed

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not.

  10. 4',4‴,7,7″-tetra-O-methylcupressuflavone inhibits seed germination of Lactuca sativa.

    PubMed

    DeForest, Jacob C; Du, Lin; Joyner, P Matthew

    2014-04-25

    Biflavonoids have been isolated from a wide variety of plant species, but little is known about their native biological functions. Here we report a possible ecological role for biflavonoids by describing the isolation of the biflavonoid 4',4‴,7,7″-tetra-O-methylcupressuflavone (1) from Araucaria columnaris and its inhibitory effect on seed germination. Compound 1 was isolated from needles of a single A. columnaris specimen and inhibited germination of Lactuca sativa seeds in a culture-dish assay; it was also detected in soil samples under the canopy where reduced germination was observed, but not in a location away from the canopy where germination was uninhibited. PMID:24628372

  11. Counteractive Effects of ABA and GA3 on Extracellular and Intracellular pH and Malate in Barley Aleurone.

    PubMed

    Heimovaara-Dijkstra, S.; Heistek, J. C.; Wang, M.

    1994-09-01

    Barley (Hordeum vulgare L.) aleurone layers are known to constitutively acidify their surroundings, primarily by L-malic acid release (J. Mikola, M. Virtanen [1980] Plant Physiol 66: S-142). Here we demonstrate the antagonistic effects of the plant hormones gibberellic acid (GA3) and abscisic acid (ABA) on the regulation of extracellular pH (pHe) of barley aleurone layers. We observed a strong correlation between ABA-induced enhancement of extracellular acidification and an ABA-induced increase in L-malic acid release. In addition, ABA caused an increase in intracellular L-malate level. GA3 caused a slight decrease in intracellular L-malate level and was able to inhibit the ABA-induced increase in L-malate intracellular concentration and release. In addition, this ABA-induced L-malate release could be completely inhibited by GA3. The ABA-induced release of L-malic acid could not account for the total ABA-induced pHe decrease, suggesting the existence of an additional mechanism involved in the regulation of pHe. It has been reported that ABA induces an intracellular pH (pHi) increase, possibly due to the activation of plasma membrane proton pumps (R. Van der Veen, S. Heimovaara-Dijkstra, M. Wang [1992] Plant Physiol 100: 699-705). A pHi increase, such as that caused by ABA, might be correlated with the intracellular L-malate increase as suggested by the pH stat model of D.D. Davies ([1986] Physiol Plant 67: 702-706). We studied if the effects of GA3 on L-malate concentration were correlated with changes in pHi and found that GA3 caused a pHi decrease and that GA3 and ABA could interfere in the regulation of pHi. In addition, we were able to mimic the effect of both hormones on L-malate release by bringing about artifical pHi changes with the weak acid 5,5-dimethyl-2,4-oxazolidinedione and the weak base methylamine. The physiological meaning of the effects of GA3 and ABA on the regulation of both pHe and pHi during grain germination are discussed.

  12. Counteractive Effects of ABA and GA3 on Extracellular and Intracellular pH and Malate in Barley Aleurone.

    PubMed Central

    Heimovaara-Dijkstra, S.; Heistek, J. C.; Wang, M.

    1994-01-01

    Barley (Hordeum vulgare L.) aleurone layers are known to constitutively acidify their surroundings, primarily by L-malic acid release (J. Mikola, M. Virtanen [1980] Plant Physiol 66: S-142). Here we demonstrate the antagonistic effects of the plant hormones gibberellic acid (GA3) and abscisic acid (ABA) on the regulation of extracellular pH (pHe) of barley aleurone layers. We observed a strong correlation between ABA-induced enhancement of extracellular acidification and an ABA-induced increase in L-malic acid release. In addition, ABA caused an increase in intracellular L-malate level. GA3 caused a slight decrease in intracellular L-malate level and was able to inhibit the ABA-induced increase in L-malate intracellular concentration and release. In addition, this ABA-induced L-malate release could be completely inhibited by GA3. The ABA-induced release of L-malic acid could not account for the total ABA-induced pHe decrease, suggesting the existence of an additional mechanism involved in the regulation of pHe. It has been reported that ABA induces an intracellular pH (pHi) increase, possibly due to the activation of plasma membrane proton pumps (R. Van der Veen, S. Heimovaara-Dijkstra, M. Wang [1992] Plant Physiol 100: 699-705). A pHi increase, such as that caused by ABA, might be correlated with the intracellular L-malate increase as suggested by the pH stat model of D.D. Davies ([1986] Physiol Plant 67: 702-706). We studied if the effects of GA3 on L-malate concentration were correlated with changes in pHi and found that GA3 caused a pHi decrease and that GA3 and ABA could interfere in the regulation of pHi. In addition, we were able to mimic the effect of both hormones on L-malate release by bringing about artifical pHi changes with the weak acid 5,5-dimethyl-2,4-oxazolidinedione and the weak base methylamine. The physiological meaning of the effects of GA3 and ABA on the regulation of both pHe and pHi during grain germination are discussed. PMID:12232334

  13. Phytotoxic effects of Sicyos deppei (Cucurbitaceae) in germinating tomato seeds.

    PubMed

    Lara-Núñez, Aurora; Sánchez-Nieto, Sobeida; Luisa Anaya, Ana; Cruz-Ortega, Rocio

    2009-06-01

    The phytotoxic effect of allelochemicals is referred to as allelochemical stress and it is considered a biotic stress. Sicyos deppei G. Don (Cucurbitaceae) is an allelopathic weed that causes phytotoxicity in Lycopersicon esculentum, delaying seed germination and severely inhibiting radicle growth. This paper reports in in vitro conditions, the effects of the aqueous leachate of S. deppei-throughout tomato germination times-on (1) the dynamics of starch and sugars metabolism, (2) activity and expression of the cell wall enzymes involved in endosperm weakening that allows the protrusion of the radicle, and (3) whether abscisic acid (ABA) is involved in this altered metabolic processes. Results showed that S. deppei leachate on tomato seed germination mainly caused: (1) delay in starch degradation as well as in sucrose hydrolysis; (2) lower activity of sucrose phosphate synthase, cell wall invertase, and alpha-amylase; being sucrose phosphate synthase (SPS) gene expression down-regulated, and the last two up regulated; (3) also, lower activity of endo beta-mannanase, beta-1,3 glucanase, alpha-galactosidase, and exo-polygalacturonase with altered gene expression; and (4) higher content of ABA during all times of germination. The phytotoxic effect of S. deppei aqueous leachate is because of the sum of many metabolic processes affected during tomato seed germination that finally is evidenced by a strong inhibition of radicle growth.

  14. Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis.

    PubMed

    Zhou, Shun-Fan; Sun, Le; Valdés, Ana Elisa; Engström, Peter; Song, Ze-Ting; Lu, Sun-Jie; Liu, Jian-Xiang

    2015-10-01

    Abscisic acid plays important roles in maintaining seed dormancy while gibberellins (GA) and other phytohormones antagonize ABA to promote germination. However, how ABA signaling is desensitized during the transition from dormancy to germination is still poorly understood. We functionally characterized the role of membrane-associated transcription factor peptidase, site-2 protease (S2P), in ABA signaling during seed germination in Arabidopsis. Genetic analysis showed that loss-of-function of S2P conferred high ABA sensitivity during seed germination, and expression of the activated form of membrane-associated transcription factor bZIP17, in which the transmembrane domain and endoplasmic reticulum (ER) lumen-facing C-terminus were deleted, in the S2P mutant rescued its ABA-sensitive phenotype. MYC and green fluorescent protein (GFP)-tagged bZIP17 were processed and translocated from the ER to the nucleus in response to ABA treatment. Furthermore, genes encoding negative regulators of ABA signaling, such as the transcription factor ATHB7 and its target genes HAB1, HAB2, HAI1 and AHG3, were up-regulated in seeds of the wild-type upon ABA treatment; this up-regulation was impaired in seeds of S2P mutants. Our results suggest that S2P desensitizes ABA signaling during seed germination through regulating the activation of the membrane-associated transcription factor bZIP17 and therefore controlling the expression level of genes encoding negative regulators of ABA signaling. PMID:25919792

  15. Serine carboxypeptidase 46 Regulates Grain Filling and Seed Germination in Rice (Oryza sativa L.)

    PubMed Central

    Li, Zhiyong; Tang, Liqun; Qiu, Jiehua; Zhang, Wen; Wang, Yifeng; Tong, Xiaohong; Wei, Xiangjin; Hou, Yuxuan

    2016-01-01

    Serine carboxypeptidase (SCP) is one of the largest groups of enzymes catalyzing proteolysis for functional protein maturation. To date, little is known about the function of SCPs in rice. In this study, we present a comprehensive analysis of the gene structure and expression profile of 59 rice SCPs. SCP46 is dominantly expressed in developing seeds, particularly in embryo, endosperm and aleurone layers, and could be induced by ABA. Functional characterization revealed that knock-down of SCP46 resulted in smaller grain size and enhanced seed germination. Furthermore, scp46 seed germination became less sensitive to the ABA inhibition than the Wild-type did; suggesting SCP46 is involved in ABA signaling. As indicated by RNA-seq and qRT-PCR analysis, numerous grain filling and seed dormancy related genes, such as SP, VP1 and AGPs were down-regulated in scp46. Yeast-two-hybrid assay also showed that SCP46 interacts with another ABA-inducible protein DI19-1. Taken together, we suggested that SCP46 is a master regulator of grain filling and seed germination, possibly via participating in the ABA signaling. The results of this study shed novel light into the roles of SCPs in rice. PMID:27448032

  16. Serine carboxypeptidase 46 Regulates Grain Filling and Seed Germination in Rice (Oryza sativa L.).

    PubMed

    Li, Zhiyong; Tang, Liqun; Qiu, Jiehua; Zhang, Wen; Wang, Yifeng; Tong, Xiaohong; Wei, Xiangjin; Hou, Yuxuan; Zhang, Jian

    2016-01-01

    Serine carboxypeptidase (SCP) is one of the largest groups of enzymes catalyzing proteolysis for functional protein maturation. To date, little is known about the function of SCPs in rice. In this study, we present a comprehensive analysis of the gene structure and expression profile of 59 rice SCPs. SCP46 is dominantly expressed in developing seeds, particularly in embryo, endosperm and aleurone layers, and could be induced by ABA. Functional characterization revealed that knock-down of SCP46 resulted in smaller grain size and enhanced seed germination. Furthermore, scp46 seed germination became less sensitive to the ABA inhibition than the Wild-type did; suggesting SCP46 is involved in ABA signaling. As indicated by RNA-seq and qRT-PCR analysis, numerous grain filling and seed dormancy related genes, such as SP, VP1 and AGPs were down-regulated in scp46. Yeast-two-hybrid assay also showed that SCP46 interacts with another ABA-inducible protein DI19-1. Taken together, we suggested that SCP46 is a master regulator of grain filling and seed germination, possibly via participating in the ABA signaling. The results of this study shed novel light into the roles of SCPs in rice.

  17. INHIBITION OF GERMINATION AND OUTGROWTH OF CLOSTRIDIUM PERFRINGENS SPORES BY LACTIC ACID SALTS DURING COOLING OF COOKED GROUND TURKEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhibition of Clostridium perfringens spore germination and outgrowth by lactic acid salts during exponential cooling of cooked ground turkey products was evaluated. Injected turkey containing either calcium lactate, potassium lactate, or sodium lactate (1.0, 2.0, 3.0 or 4.8% w/w) along with a cont...

  18. Spore germination of Trichoderma atroviride is inhibited by its LysM protein TAL6.

    PubMed

    Seidl-Seiboth, Verena; Zach, Simone; Frischmann, Alexa; Spadiut, Oliver; Dietzsch, Christian; Herwig, Christoph; Ruth, Claudia; Rodler, Agnes; Jungbauer, Alois; Kubicek, Christian P

    2013-03-01

    LysM motifs are carbohydrate-binding modules found in prokaryotes and eukaryotes. They have general N-acetylglucosamine binding properties and therefore bind to chitin and related carbohydrates. In plants, plasma-membrane-bound proteins containing LysM motifs are involved in plant defence responses, but also in symbiotic interactions between plants and microorganisms. Filamentous fungi secrete LysM proteins that contain several LysM motifs but no enzymatic modules. In plant pathogenic fungi, for LysM proteins roles in dampening of plant defence responses and protection from plant chitinases were shown. In this study, the carbohydrate-binding specificities and biological function of the LysM protein TAL6 from the plant-beneficial fungus Trichoderma atroviride were investigated. TAL6 contains seven LysM motifs and the sequences of its LysM motifs are very different from other fungal LysM proteins investigated so far. The results showed that TAL6 bound to some forms of polymeric chitin, but not to chito-oligosaccharides. Further, no binding to fungal cell wall preparations was detected. Despite these rather weak carbohydrate-binding properties, a strong inhibitory effect of TAL6 on spore germination was found. TAL6 was shown to specifically inhibit germination of Trichoderma spp., but interestingly not of other fungi. Thus, this protein is involved in self-signalling processes during fungal growth rather than fungal-plant interactions. These data expand the functional repertoire of fungal LysM proteins beyond effectors in plant defence responses and show that fungal LysM proteins are also involved in the self-regulation of fungal growth and development.

  19. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants*

    PubMed Central

    Minkoff, Benjamin B.; Stecker, Kelly E.; Sussman, Michael R.

    2015-01-01

    Abscisic acid (ABA)1 is a plant hormone that controls many aspects of plant growth, including seed germination, stomatal aperture size, and cellular drought response. ABA interacts with a unique family of 14 receptor proteins. This interaction leads to the activation of a family of protein kinases, SnRK2s, which in turn phosphorylate substrates involved in many cellular processes. The family of receptors appears functionally redundant. To observe a measurable phenotype, four of the fourteen receptors have to be mutated to create a multilocus loss-of-function quadruple receptor (QR) mutant, which is much less sensitive to ABA than wild-type (WT) plants. Given these phenotypes, we asked whether or not a difference in ABA response between the WT and QR backgrounds would manifest on a phosphorylation level as well. We tested WT and QR mutant ABA response using isotope-assisted quantitative phosphoproteomics to determine what ABA-induced phosphorylation changes occur in WT plants within 5 min of ABA treatment and how that phosphorylation pattern is altered in the QR mutant. We found multiple ABA-induced phosphorylation changes that occur within 5 min of treatment, including three SnRK2 autophosphorylation events and phosphorylation on SnRK2 substrates. The majority of robust ABA-dependent phosphorylation changes observed were partially diminished in the QR mutant, whereas many smaller ABA-dependent phosphorylation changes observed in the WT were not responsive to ABA in the mutant. A single phosphorylation event was increased in response to ABA treatment in both the WT and QR mutant. A portion of the discovery data was validated using selected reaction monitoring-based targeted measurements on a triple quadrupole mass spectrometer. These data suggest that different subsets of phosphorylation events depend upon different subsets of the ABA receptor family to occur. Altogether, these data expand our understanding of the model by which the family of ABA receptors directs

  20. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants.

    PubMed

    Minkoff, Benjamin B; Stecker, Kelly E; Sussman, Michael R

    2015-05-01

    Abscisic acid (ABA)¹ is a plant hormone that controls many aspects of plant growth, including seed germination, stomatal aperture size, and cellular drought response. ABA interacts with a unique family of 14 receptor proteins. This interaction leads to the activation of a family of protein kinases, SnRK2s, which in turn phosphorylate substrates involved in many cellular processes. The family of receptors appears functionally redundant. To observe a measurable phenotype, four of the fourteen receptors have to be mutated to create a multilocus loss-of-function quadruple receptor (QR) mutant, which is much less sensitive to ABA than wild-type (WT) plants. Given these phenotypes, we asked whether or not a difference in ABA response between the WT and QR backgrounds would manifest on a phosphorylation level as well. We tested WT and QR mutant ABA response using isotope-assisted quantitative phosphoproteomics to determine what ABA-induced phosphorylation changes occur in WT plants within 5 min of ABA treatment and how that phosphorylation pattern is altered in the QR mutant. We found multiple ABA-induced phosphorylation changes that occur within 5 min of treatment, including three SnRK2 autophosphorylation events and phosphorylation on SnRK2 substrates. The majority of robust ABA-dependent phosphorylation changes observed were partially diminished in the QR mutant, whereas many smaller ABA-dependent phosphorylation changes observed in the WT were not responsive to ABA in the mutant. A single phosphorylation event was increased in response to ABA treatment in both the WT and QR mutant. A portion of the discovery data was validated using selected reaction monitoring-based targeted measurements on a triple quadrupole mass spectrometer. These data suggest that different subsets of phosphorylation events depend upon different subsets of the ABA receptor family to occur. Altogether, these data expand our understanding of the model by which the family of ABA receptors directs

  1. β-Pinene inhibited germination and early growth involves membrane peroxidation.

    PubMed

    Chowhan, Nadia; Singh, Harminder Pal; Batish, Daizy R; Kaur, Shalinder; Ahuja, Nitina; Kohli, Ravinder K

    2013-06-01

    β-Pinene, an oxygenated monoterpene, is abundantly found in the environment and widely occurring in plants as a constituent of essential oils. We investigated the phytotoxicity of β-pinene against two grassy (Phalaris minor, Echinochloa crus-galli) and one broad-leaved (Cassia occidentalis) weeds in terms of germination and root and shoot growth. β-Pinene (0.02-0.80 mg/ml) inhibited the germination, root length, and shoot length of test weeds in a dose-response manner. The inhibitory effect of β-pinene was greater in grassy weeds and on root growth than on shoot growth. β-Pinene (0.04-0.80 mg/ml) reduced the root length in P. minor, E. crus-galli, and C. occidentalis over that in the control by 58-60, 44-92, and 26-85 %, respectively. In contrast, shoot length was reduced over the control by 45-97 % in P. minor, 48-78 % in E. crus-galli, and 11-75 % in C. occidentalis at similar concentrations. Further, we examined the impact of β-pinene on membrane integrity in P. minor as one of the possible mechanisms of action. Membrane integrity was evaluated in terms of lipid peroxidation, conjugated diene content, electrolyte leakage, and the activity of lipoxygenases (LOX). β-Pinene (≥0.04 mg/ml) enhanced electrolyte leakage by 23-80 %, malondialdehyde content by 15-67 %, hydrogen peroxide content by 9-39 %, and lipoxygenases activity by 38-383 % over that in the control. It indicated membrane peroxidation and loss of membrane integrity that could be the primary target of β-pinene. Even the enhanced (9-62 %) activity of protecting enzymes, peroxidases (POX), was not able to protect the membranes from β-pinene (0.04-0.20 mg/ml)-induced toxicity. In conclusion, our results show that β-pinene inhibits root growth of the tested weed species through disruption of membrane integrity as indicated by enhanced peroxidation, electrolyte leakage, and LOX activity despite the upregulation of POX activity.

  2. Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana.

    PubMed

    Tsuzuki, Tomo; Takahashi, Koji; Inoue, Shin-ichiro; Okigaki, Yukiko; Tomiyama, Masakazu; Hossain, Mohammad Anowar; Shimazaki, Ken-ichiro; Murata, Yoshiyuki; Kinoshita, Toshinori

    2011-07-01

    Mg-chelatase H subunit (CHLH) is a multifunctional protein involved in chlorophyll synthesis, plastid-to-nucleus retrograde signaling, and ABA perception. However, whether CHLH acts as an actual ABA receptor remains controversial. Here we present evidence that CHLH affects ABA signaling in stomatal guard cells but is not itself an ABA receptor. We screened ethyl methanesulfonate-treated Arabidopsis thaliana plants with a focus on stomatal aperture-dependent water loss in detached leaves and isolated a rapid transpiration in detached leaves 1 (rtl1) mutant that we identified as a novel missense mutant of CHLH. The rtl1 and CHLH RNAi plants showed phenotypes in which stomatal movements were insensitive to ABA, while the rtl1 phenotype showed normal sensitivity to ABA with respect to seed germination and root growth. ABA-binding analyses using (3)H-labeled ABA revealed that recombinant CHLH did not bind ABA, but recombinant pyrabactin resistance 1, a reliable ABA receptor used as a control, showed specific binding. Moreover, we found that the rtl1 mutant showed ABA-induced stomatal closure when a high concentration of extracellular Ca(2+) was present and that a knockout mutant of Mg-chelatase I subunit (chli1) showed the same ABA-insensitive phenotype as rtl1. These results suggest that the Mg-chelatase complex as a whole affects the ABA-signaling pathway for stomatal movements.

  3. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling

    PubMed Central

    Aleman, Fernando; Yazaki, Junshi; Lee, Melissa; Takahashi, Yohei; Kim, Alice Y.; Li, Zixing; Kinoshita, Toshinori; Ecker, Joseph R.; Schroeder, Julian I.

    2016-01-01

    Abscisic acid (ABA) is a plant hormone that mediates abiotic stress tolerance and regulates growth and development. ABA binds to members of the PYL/RCAR ABA receptor family that initiate signal transduction inhibiting type 2C protein phosphatases. Although crosstalk between ABA and the hormone Jasmonic Acid (JA) has been shown, the molecular entities that mediate this interaction have yet to be fully elucidated. We report a link between ABA and JA signaling through a direct interaction of the ABA receptor PYL6 (RCAR9) with the basic helix-loop-helix transcription factor MYC2. PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the presence of ABA. PYL6 and MYC2 interact in planta based on bimolecular fluorescence complementation and co-immunoprecipitation of the proteins. Furthermore, PYL6 was able to modify transcription driven by MYC2 using JAZ6 and JAZ8 DNA promoter elements in yeast one hybrid assays. Finally, pyl6 T-DNA mutant plants show an increased sensitivity to the addition of JA along with ABA in cotyledon expansion experiments. Overall, the present study identifies a direct mechanism for transcriptional modulation mediated by an ABA receptor different from the core ABA signaling pathway, and a putative mechanistic link connecting ABA and JA signaling pathways. PMID:27357749

  4. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses1[OPEN

    PubMed Central

    Yang, Chen-Ru

    2016-01-01

    Heat stress response (HSR) is a conserved mechanism developed to increase the expression of heat shock proteins (HSPs) via a heat shock factor (HSF)-dependent mechanism. Signaling by the stress phytohormone abscisic acid (ABA) is involved in acquired thermotolerance as well. Analysis of Arabidopsis (Arabidopsis thaliana) microarray databases revealed that the expression of HSFA6b, a class A HSF, extensively increased with salinity, osmotic, and cold stresses, but not heat. Here, we show that HSFA6b plays a pivotal role in the response to ABA and in thermotolerance. Salt-inducible HSFA6b expression was down-regulated in ABA-insensitive and -deficient mutants; however, exogenous ABA application restored expression in ABA-deficient, but not -insensitive plants. Thus, ABA signaling is required for proper HSFA6b expression. A transcriptional activation assay of protoplasts revealed that ABA treatment and coexpression of an ABA signaling master effector, ABA-RESPONSIVE ELEMENT-BINDING PROTEIN1, could activate the HSFA6b promoter. In addition, HSFA6b directly bound to the promoter of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2A and enhanced its expression. Analysis of ABA responses in seed germination, cotyledon greening, and root growth as well as salt and drought tolerance in HSFA6b-null, overexpression, and dominant negative mutants revealed that HSFA6b is a positive regulator participating in ABA-mediated salt and drought resistance. Thermoprotection tests showed that HSFA6b was required for thermotolerance acquisition. Our study reveals a network in which HSFA6b operates as a downstream regulator of the ABA-mediated stress response and is required for heat stress resistance. This new ABA-signaling pathway is integrated into the complex HSR network in planta. PMID:27493213

  5. Boric acid inhibits germination and colonization of Saprolegnia spores in vitro and in vivo.

    PubMed

    Ali, Shimaa E; Thoen, Even; Evensen, Øystein; Skaar, Ida

    2014-01-01

    Saprolegnia infections cause severe economic losses among freshwater fish and their eggs. The banning of malachite green increased the demand for finding effective alternative treatments to control the disease. In the present study, we investigated the ability of boric acid to control saprolegniosis in salmon eggs and yolk sac fry. Under in vitro conditions, boric acid was able to decrease Saprolegnia spore activity and mycelial growth in all tested concentrations above 0.2 g/L, while complete inhibition of germination and growth was observed at a concentration of 0.8 g/L. In in vivo experiments using Atlantic salmon eyed eggs, saprolegniosis was controlled by boric acid at concentrations ranging from 0.2-1.4 g/L during continuous exposure, and at 1.0-4.0 g/L during intermittent exposure. The same effect was observed on salmon yolk sac fry exposed continuously to 0.5 g/L boric acid during the natural outbreak of saprolegniosis. During the experiments no negative impact with regard to hatchability and viability was observed in either eggs or fry, which indicate safety of use at all tested concentrations. The high hatchability and survival rates recorded following the in vivo testing suggest that boric acid is a candidate for prophylaxis and control of saprolegniosis.

  6. Abscisic acid transporters cooperate to control seed germination

    PubMed Central

    Kang, Joohyun; Yim, Sojeong; Choi, Hyunju; Kim, Areum; Lee, Keun Pyo; Lopez-Molina, Luis; Martinoia, Enrico; Lee, Youngsook

    2015-01-01

    Seed germination is a key developmental process that has to be tightly controlled to avoid germination under unfavourable conditions. Abscisic acid (ABA) is an essential repressor of seed germination. In Arabidopsis, it has been shown that the endosperm, a single cell layer surrounding the embryo, synthesizes and continuously releases ABA towards the embryo. The mechanism of ABA transport from the endosperm to the embryo was hitherto unknown. Here we show that four AtABCG transporters act in concert to deliver ABA from the endosperm to the embryo: AtABCG25 and AtABCG31 export ABA from the endosperm, whereas AtABCG30 and AtABCG40 import ABA into the embryo. Thus, this work establishes that radicle extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple ABA transporters expressed in different tissues. PMID:26334616

  7. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis

    PubMed Central

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  8. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  9. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.

  10. Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain.

    PubMed

    Obermeyer, Gerhard; Fragner, Lena; Lang, Veronika; Weckwerth, Wolfram

    2013-08-01

    Investigation of the metabolome and the transcriptome of pollen of lily (Lilium longiflorum) gave a comprehensive overview of metabolic pathways active during pollen germination and tube growth. More than 100 different metabolites were determined simultaneously by gas chromatography coupled to mass spectrometry, and expressed genes of selected metabolic pathways were identified by next-generation sequencing of lily pollen transcripts. The time-dependent changes in metabolite abundances, as well as the changes after inhibition of the mitochondrial electron transport chain, revealed a fast and dynamic adaption of the metabolic pathways in the range of minutes. The metabolic state prior to pollen germination differed clearly from the metabolic state during pollen tube growth, as indicated by principal component analysis of all detected metabolites and by detailed observation of individual metabolites. For instance, the amount of sucrose increased during the first 60 minutes of pollen culture but decreased during tube growth, while glucose and fructose showed the opposite behavior. Glycolysis, tricarbonic acid cycle, glyoxylate cycle, starch, and fatty acid degradation were activated, providing energy during pollen germination and tube growth. Inhibition of the mitochondrial electron transport chain by antimycin A resulted in an immediate production of ethanol and a fast rearrangement of metabolic pathways, which correlated with changes in the amounts of the majority of identified metabolites, e.g. a rapid increase in γ-aminobutyric acid indicated the activation of a γ-aminobutyric acid shunt in the tricarbonic acid cycle, while ethanol fermentation compensated the reduced ATP production after inhibition of the oxidative phosphorylation.

  11. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    PubMed Central

    Osuna, Daniel; Prieto, Pilar; Aguilar, Miguel

    2015-01-01

    Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N) ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose) and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA)-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA) biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO) and phytohormones (ABA, auxins and GAs) in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones. PMID:26635847

  12. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability.

    PubMed

    Osuna, Daniel; Prieto, Pilar; Aguilar, Miguel

    2015-01-01

    Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N) ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose) and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA)-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA) biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO) and phytohormones (ABA, auxins and GAs) in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones. PMID:26635847

  13. AtDsPTP1 acts as a negative regulator in osmotic stress signalling during Arabidopsis seed germination and seedling establishment.

    PubMed

    Liu, Rui; Liu, Yinggao; Ye, Nenghui; Zhu, Guohui; Chen, Moxian; Jia, Liguo; Xia, Yiji; Shi, Lu; Jia, Wensuo; Zhang, Jianhua

    2015-03-01

    Dual-specificity protein phosphatases (DsPTPs) target both tyrosine and serine/threonine residues and play roles in plant growth and development. We have characterized an Arabidopsis mutant, dsptp1, which shows a higher seed germination rate and better root elongation under osmotic stress than the wild type. By contrast, its overexpression line, DsPTP1-OE, shows inhibited seed germination and root elongation; and its complemented line, DsPTP1-Com, resembles the wild type and rescues DsPTP1-OE under osmotic stress. Expression of AtDsPTP1 is enhanced by osmotic stress in seed coats, bases of rosette leaves, and roots. Compared with the wild type, the dsptp1 mutant shows increased proline accumulation, reduced malondialdehyde (MDA) content and ion leakage, and enhanced antioxidant enzyme activity in response to osmotic stress. AtDsPTP1 regulates the transcript levels of various dehydration-responsive genes under osmotic stress. Abscisic acid (ABA) accumulation in dsptp1 under osmotic stress is reduced with reduced expression of the ABA-biosynthesis gene NCED3 and increased expression of the ABA-catabolism gene CYP707A4. AtDsPTP1 also regulates the expression of key components in the ABA-signalling pathway. In conclusion, AtDsPTP1 regulates ABA accumulation, and acts as a negative regulator in osmotic stress signalling during Arabidospsis seed germination and seedling establishment.

  14. AtDsPTP1 acts as a negative regulator in osmotic stress signalling during Arabidopsis seed germination and seedling establishment

    PubMed Central

    Liu, Rui; Liu, Yinggao; Ye, Nenghui; Zhu, Guohui; Chen, Moxian; Jia, Liguo; Xia, Yiji; Shi, Lu; Jia, Wensuo; Zhang, Jianhua

    2015-01-01

    Dual-specificity protein phosphatases (DsPTPs) target both tyrosine and serine/threonine residues and play roles in plant growth and development. We have characterized an Arabidopsis mutant, dsptp1, which shows a higher seed germination rate and better root elongation under osmotic stress than the wild type. By contrast, its overexpression line, DsPTP1-OE, shows inhibited seed germination and root elongation; and its complemented line, DsPTP1-Com, resembles the wild type and rescues DsPTP1-OE under osmotic stress. Expression of AtDsPTP1 is enhanced by osmotic stress in seed coats, bases of rosette leaves, and roots. Compared with the wild type, the dsptp1 mutant shows increased proline accumulation, reduced malondialdehyde (MDA) content and ion leakage, and enhanced antioxidant enzyme activity in response to osmotic stress. AtDsPTP1 regulates the transcript levels of various dehydration-responsive genes under osmotic stress. Abscisic acid (ABA) accumulation in dsptp1 under osmotic stress is reduced with reduced expression of the ABA-biosynthesis gene NCED3 and increased expression of the ABA-catabolism gene CYP707A4. AtDsPTP1 also regulates the expression of key components in the ABA-signalling pathway. In conclusion, AtDsPTP1 regulates ABA accumulation, and acts as a negative regulator in osmotic stress signalling during Arabidospsis seed germination and seedling establishment. PMID:25540435

  15. In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A.

    PubMed

    Liu, Xiaoping; Wang, Jiye; Gou, Ping; Mao, Cungui; Zhu, Zeng-Rong; Li, Hongye

    2007-11-01

    Aureobasidin A (AbA), an antifungal cyclic depsipeptide antibiotic produced by Aureobasidium pullulans R106, has previously been shown to be effective against a wide range of fungi and protozoa. Here we report the inhibitory effects of AbA on spore germination, germ tuber elongation and hyphal growth of five pathogenic fungi including Penicillium digitatum, P. italicum, P. expansum, Botrytis cinerea and Monilinia fructicola, which are major pathogens causing postharvest diseases of a variety of fruits. AbA inhibited five pathogenic fungi by reducing conidial germination rates, delaying conidial germination initiation, restricting elongation of germ tuber and mycelium, as well as inducing abnormal alternations of morphology of germ tubes and hyphae of these fungi. The sensitivity of these fungi to AbA was pathogen species-dependent. P. digitatum was the most sensitive and M. fructicola the least. Importantly, AbA at 50 microg/ml was effective in controlling the citrus green mold and in reducing the strawberry gray mold incidence and severity, caused by P. digitatum and B. cinerea, respectively, after artificial inoculation. AbA and/or its analogs, therefore, hold promise as relatively safe and promising fungicide candidates to control postharvest decays of fruits, because AbA targets the inositol phosphorylceramide (IPC) synthase, an enzyme essential for fungi but absent from mammals.

  16. The mechanism underlying fast germination of tomato cultivar LA2711.

    PubMed

    Yang, Rongchao; Chu, Zhuannan; Zhang, Haijun; Li, Ying; Wang, Jinfang; Li, Dianbo; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong

    2015-09-01

    Seed germination is important for early plant morphogenesis as well as abiotic stress tolerance, and is mainly controlled by the phytohormones abscisic acid (ABA) and gibberellic acid (GA). Our previous studies identified a salt-tolerant tomato cultivar, LA2711, which is also a fast-germinating genotype, compared to its salt-sensitive counterpart, ZS-5. In an effort to further clarify the mechanism underlying this phenomenon, we compared the dynamic levels of ABA and GA4, the transcript abundance of genes involved in their biosynthesis and catabolism as well as signal transduction between the two cultivars. In addition, we tested seed germination sensitivity to ABA and GAs. Our results revealed that insensitivity of seed germination to exogenous ABA and low ABA content in seeds are the physiological mechanisms conferring faster germination rates of LA2711 seeds. SlCYP707A2, which encodes an ABA catabolic enzyme, may play a decisive role in the fast germination rate of LA2711, as it showed a significantly higher level of expression in LA2711 than ZS-5 at most time points tested during germination. The current results will enable us to gain insight into the mechanism(s) regarding seed germination of tomato and the role of fast germination in stress tolerance.

  17. A histone methyltransferase inhibits seed germination by increasing PIF1 mRNA expression in imbibed seeds.

    PubMed

    Lee, Nayoung; Kang, Hyojin; Lee, Daeyoup; Choi, Giltsu

    2014-04-01

    Phytochrome-interacting factor 1 (PIF1) inhibits light-dependent seed germination. The specific function of PIF1 in seed germination is partly due to its high level of expression in imbibed seeds, but the associated regulatory factors have not been identified. Here we show that mutation of the early flowering in short days (EFS) gene, encoding an H3K4 and H3K36 methyltransferase, decreases the level of H3K36me2 and H3K36me3 but not H3K4me3 at the PIF1 locus, reduces the targeting of RNA polymerase II to the PIF1 locus, and reduces mRNA expression of PIF1 in imbibed seeds. Consistently, the efs mutant geminated even under the phyBoff condition, and had an expression profile of PIF1 target genes similar to that of the pif1 mutant. Introduction of an EFS transgene into the efs mutant restored the level of H3K36me2 and H3K36me3 at the PIF1 locus, the high-level expression of PIF1 mRNA, the expression pattern of PIF1 target genes, and the light-dependent germination of these seeds. Introduction of a PIF1 transgene into the efs mutant also restored the expression pattern of PIF1 target genes and light-dependent germination in imbibed seeds, but did not restore the flowering phenotype. Taken together, our results indicate that EFS is necessary for high-level expression of PIF1 mRNA in imbibed seeds.

  18. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism

    PubMed Central

    Zheng, Chuanlin; Halaly, Tamar; Acheampong, Atiako Kwame; Takebayashi, Yumiko; Jikumaru, Yusuke; Kamiya, Yuji; Or, Etti

    2015-01-01

    In warm-winter regions, induction of dormancy release by hydrogen cyanamide (HC) is mandatory for commercial table grape production. Induction of respiratory stress by HC leads to dormancy release via an uncharacterized biochemical cascade that could reveal the mechanism underlying this phenomenon. Previous studies proposed a central role for abscisic acid (ABA) in the repression of bud meristem activity, and suggested its removal as a critical step in the HC-induced cascade. In the current study, support for these assumptions was sought. The data show that ABA indeed inhibits dormancy release in grape (Vitis vinifera) buds and attenuates the advancing effect of HC. However, HC-dependent recovery was detected, and was affected by dormancy status. HC reduced VvXERICO and VvNCED transcript levels and induced levels of VvABA8’OH homologues. Regulation of these central players in ABA metabolism correlated with decreased ABA and increased ABA catabolite levels in HC-treated buds. Interestingly, an inhibitor of ethylene signalling attenuated these effects of HC on ABA metabolism. HC also modulated the expression of ABA signalling regulators, in a manner that supports a decreased ABA level and response. Taken together, the data support HC-induced removal of ABA-mediated repression via regulation of ABA metabolism and signalling. Expression profiling during the natural dormancy cycle revealed that at maximal dormancy, the HC-regulated VvNCED1 transcript level starts to drop. In parallel, levels of VvA8H-CYP707A4 transcript and ABA catabolites increase sharply. This may provide initial support for the involvement of ABA metabolism also in the execution of natural dormancy. PMID:25560179

  19. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism.

    PubMed

    Zheng, Chuanlin; Halaly, Tamar; Acheampong, Atiako Kwame; Takebayashi, Yumiko; Jikumaru, Yusuke; Kamiya, Yuji; Or, Etti

    2015-03-01

    In warm-winter regions, induction of dormancy release by hydrogen cyanamide (HC) is mandatory for commercial table grape production. Induction of respiratory stress by HC leads to dormancy release via an uncharacterized biochemical cascade that could reveal the mechanism underlying this phenomenon. Previous studies proposed a central role for abscisic acid (ABA) in the repression of bud meristem activity, and suggested its removal as a critical step in the HC-induced cascade. In the current study, support for these assumptions was sought. The data show that ABA indeed inhibits dormancy release in grape (Vitis vinifera) buds and attenuates the advancing effect of HC. However, HC-dependent recovery was detected, and was affected by dormancy status. HC reduced VvXERICO and VvNCED transcript levels and induced levels of VvABA8'OH homologues. Regulation of these central players in ABA metabolism correlated with decreased ABA and increased ABA catabolite levels in HC-treated buds. Interestingly, an inhibitor of ethylene signalling attenuated these effects of HC on ABA metabolism. HC also modulated the expression of ABA signalling regulators, in a manner that supports a decreased ABA level and response. Taken together, the data support HC-induced removal of ABA-mediated repression via regulation of ABA metabolism and signalling. Expression profiling during the natural dormancy cycle revealed that at maximal dormancy, the HC-regulated VvNCED1 transcript level starts to drop. In parallel, levels of VvA8H-CYP707A4 transcript and ABA catabolites increase sharply. This may provide initial support for the involvement of ABA metabolism also in the execution of natural dormancy.

  20. Two Groups of Thellungiella salsuginea RAVs Exhibit Distinct Responses and Sensitivity to Salt and ABA in Transgenic Arabidopsis

    PubMed Central

    Yang, Shaohui; Luo, Cui; Song, Yingjin; Wang, Jiehua

    2016-01-01

    Containing both AP2 domain and B3 domain, RAV (Related to ABI3/VP1) transcription factors are involved in diverse functions in higher plants. A total of eight TsRAV genes were isolated from the genome of Thellungiella salsuginea and could be divided into two groups (A- and B-group) based on their sequence similarity. The mRNA abundance of all Thellungiella salsuginea TsRAVs followed a gradual decline during seed germination. In Thellungiella salsuginea seedling, transcripts of TsRAVs in the group A (A-TsRAVs) were gradually and moderately reduced by salt treatment but rapidly and severely repressed by ABA treatment. In comparison, with a barely detectable constitutive expression, the transcriptional level of TsRAVs in the group B (B-TsRAVs) exhibited a moderate induction in cotyledons when confronted with ABA. We then produced the “gain-of-function” transgenic Arabidopsis plants for each TsRAV gene and found that only 35S:A-TsRAVs showed weak growth retardation including reduced root elongation, suggesting their roles in negatively controlling plant growth. Under normal conditions, the germination process of all TsRAVs overexpressing transgenic seeds was inhibited with a stronger effect observed in 35S:A-TsRAVs seeds than in 35S:B-TsRAVs seeds. With the presence of NaCl, seed germination and seedling root elongation of all plants including wild type and 35S:TsRAVs plants were retarded and a more severe inhibition occurred to the 35S:A-TsRAV transgenic plants. ABA treatment only negatively affected the germination rates of 35S:A-TsRAV transgenic seeds but not those of 35S:B-TsRAV transgenic seeds. All 35S:TsRAVs transgenic plants showed a similar degree of reduction in root growth compared with untreated seedlings in the presence of ABA. Furthermore, the cotyledon greening/expansion was more severely inhibited 35S:A-TsRAVs than in 35S:B-TsRAVs seedlings. Upon water deficiency, with a wider opening of stomata, 35S:A-TsRAVs plants experienced a faster

  1. Two Groups of Thellungiella salsuginea RAVs Exhibit Distinct Responses and Sensitivity to Salt and ABA in Transgenic Arabidopsis.

    PubMed

    Yang, Shaohui; Luo, Cui; Song, Yingjin; Wang, Jiehua

    2016-01-01

    Containing both AP2 domain and B3 domain, RAV (Related to ABI3/VP1) transcription factors are involved in diverse functions in higher plants. A total of eight TsRAV genes were isolated from the genome of Thellungiella salsuginea and could be divided into two groups (A- and B-group) based on their sequence similarity. The mRNA abundance of all Thellungiella salsuginea TsRAVs followed a gradual decline during seed germination. In Thellungiella salsuginea seedling, transcripts of TsRAVs in the group A (A-TsRAVs) were gradually and moderately reduced by salt treatment but rapidly and severely repressed by ABA treatment. In comparison, with a barely detectable constitutive expression, the transcriptional level of TsRAVs in the group B (B-TsRAVs) exhibited a moderate induction in cotyledons when confronted with ABA. We then produced the "gain-of-function" transgenic Arabidopsis plants for each TsRAV gene and found that only 35S:A-TsRAVs showed weak growth retardation including reduced root elongation, suggesting their roles in negatively controlling plant growth. Under normal conditions, the germination process of all TsRAVs overexpressing transgenic seeds was inhibited with a stronger effect observed in 35S:A-TsRAVs seeds than in 35S:B-TsRAVs seeds. With the presence of NaCl, seed germination and seedling root elongation of all plants including wild type and 35S:TsRAVs plants were retarded and a more severe inhibition occurred to the 35S:A-TsRAV transgenic plants. ABA treatment only negatively affected the germination rates of 35S:A-TsRAV transgenic seeds but not those of 35S:B-TsRAV transgenic seeds. All 35S:TsRAVs transgenic plants showed a similar degree of reduction in root growth compared with untreated seedlings in the presence of ABA. Furthermore, the cotyledon greening/expansion was more severely inhibited 35S:A-TsRAVs than in 35S:B-TsRAVs seedlings. Upon water deficiency, with a wider opening of stomata, 35S:A-TsRAVs plants experienced a faster transpirational

  2. Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana.

    PubMed

    Wilson, Rebecca L; Bakshi, Arkadipta; Binder, Brad M

    2014-01-01

    When exposed to far-red light followed by darkness, wild-type Arabidopsis thaliana seeds fail to germinate or germinate very poorly. We have previously shown that the ethylene receptor ETR1 (ETHYLENE RESPONSE1) inhibits and ETR2 stimulates seed germination of Arabidopsis during salt stress. This function of ETR1 requires the full-length receptor. These roles are independent of ethylene levels and sensitivity and are mainly mediated by a change in abscisic acid (ABA) sensitivity. In the current study we find that etr1-6 and etr1-7 loss-of-function mutant seeds germinate better than wild-type seeds after illumination with far-red light or when germinated in the dark indicating an inhibitory role for ETR1. Surprisingly, this function of ETR1 does not require the receiver domain. No differences between these mutants and wild-type are seen when germination proceeds after treatment with white, blue, green, or red light. Loss of any of the other four ethylene receptor isoforms has no measurable effect on germination after far-red light treatment. An analysis of the transcript abundance for genes encoding ABA and gibberellic acid (GA) metabolic enzymes indicates that etr1-6 mutants may produce more GA and less ABA than wild-type seeds after illumination with far-red light which correlates with the better germination of the mutants. Epistasis analysis suggests that ETR1 may genetically interact with the phytochromes (phy), PHYA and PHYB to control germination and growth. This study shows that of the five ethylene receptor isoforms in Arabidopsis, ETR1 has a unique role in modulating the effects of red and far-red light on plant growth and development. PMID:25221561

  3. Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana.

    PubMed

    Wilson, Rebecca L; Bakshi, Arkadipta; Binder, Brad M

    2014-01-01

    When exposed to far-red light followed by darkness, wild-type Arabidopsis thaliana seeds fail to germinate or germinate very poorly. We have previously shown that the ethylene receptor ETR1 (ETHYLENE RESPONSE1) inhibits and ETR2 stimulates seed germination of Arabidopsis during salt stress. This function of ETR1 requires the full-length receptor. These roles are independent of ethylene levels and sensitivity and are mainly mediated by a change in abscisic acid (ABA) sensitivity. In the current study we find that etr1-6 and etr1-7 loss-of-function mutant seeds germinate better than wild-type seeds after illumination with far-red light or when germinated in the dark indicating an inhibitory role for ETR1. Surprisingly, this function of ETR1 does not require the receiver domain. No differences between these mutants and wild-type are seen when germination proceeds after treatment with white, blue, green, or red light. Loss of any of the other four ethylene receptor isoforms has no measurable effect on germination after far-red light treatment. An analysis of the transcript abundance for genes encoding ABA and gibberellic acid (GA) metabolic enzymes indicates that etr1-6 mutants may produce more GA and less ABA than wild-type seeds after illumination with far-red light which correlates with the better germination of the mutants. Epistasis analysis suggests that ETR1 may genetically interact with the phytochromes (phy), PHYA and PHYB to control germination and growth. This study shows that of the five ethylene receptor isoforms in Arabidopsis, ETR1 has a unique role in modulating the effects of red and far-red light on plant growth and development.

  4. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, gacS.

    PubMed

    Kang, Beom Ryong; Han, Song Hee; Zdor, Rob E; Anderson, Anne J; Spencer, Matt; Yang, Kwang Yeol; Kim, Yong Hwan; Lee, Myung Chul; Cho, Baik Ho; Kim, Young Cheol

    2007-04-01

    Seed coating by a phenazine-producing bacterium, Pseudomonas chlororaphis O6, induced dose-dependent inhibition of germination in wheat and barley seeds, but did not inhibit germination of rice or cucumber seeds. In wheat seedlings grown from inoculated seeds, phenazine production levels near the seed were higher than in the roots. Deletion of the gacS gene reduced transcription from the genes required for phenazine synthesis, the regulatory phzI gene and the biosynthetic phzA gene. The inhibition of seed germination and the induction of systemic disease resistance against a bacterial soft-rot pathogen, Erwinia carotovora subsp. carotovora, were impaired in the gacS and phzA mutants of P chlororaphis O6. Culture filtrates of the gacS and phzA mutants of P chlororaphis 06 did not inhibit seed germination of wheat, whereas that of the wild-type was inhibitory. Our results showed that the production of phenazines by P chlororaphis O6 was correlated with reduced germination of barley and wheat seeds, and the level of systemic resistance in tobacco against E. carotovora.

  5. Arabidopsis PYL8 Plays an Important Role for ABA Signaling and Drought Stress Responses.

    PubMed

    Lim, Chae Woo; Baek, Woonhee; Han, Sang-Wook; Lee, Sung Chul

    2013-12-01

    Plants are frequently exposed to numerous environmental stresses such as dehydration and high salinity, and have developed elaborate mechanisms to counteract the deleterious effects of stress. The phytohormone abscisic acid (ABA) plays a critical role as an integrator of plant responses to water-limited condition to activate ABA signal transduction pathway. Although perception of ABA has been suggested to be important, the function of each ABA receptor remains elusive in dehydration condition. Here, we show that ABA receptor, pyrabactin resistance-like protein 8 (PYL8), functions in dehydration conditions. Transgenic plants overexpressing PYL8 exhibited hypersensitive phenotype to ABA in seed germination, seedling growth and establishment. We found that hypersensitivity to ABA of transgenic plants results in high degrees of stomatal closure in response to ABA leading to low transpiration rates and ultimately more vulnerable to drought than the wild-type plants. In addition, high expression of ABA maker genes also contributes to altered drought tolerance phenotype. Overall, this work emphasizes the importance of ABA signaling by ABA receptor in stomata during defense response to drought stress. PMID:25288979

  6. Cyperus rotundus extract inhibits acetylcholinesterase activity from animal and plants as well as inhibits germination and seedling growth in wheat and tomato.

    PubMed

    Sharma, Rashmi; Gupta, Rajendra

    2007-05-30

    Cyperus rotundus (nutgrass) is the world's worst invasive weed through tubers. Its success in dominating natural habitats depends on its ability to prevent herbivory, and to kill or suppress other plants growing in its vicinity. The present study was done to investigate whether chemicals in nutgrass target neuronal and non-neuronal acetylcholinesterases to affect surrounding animals and plants respectively. Methanolic extract of tubers of nutgrass strongly inhibited activity of AChE from electric eel, wheat and tomato. It also inhibited seed germination and seedling growth in wheat and tomato. Our results suggest that inhibitor of AChE in nutgrass possibly acts as agent of plant's war against (a) herbivore animals, and (b) other plants trying to grow in the same habitat. An antiAChE from nutgrass has been purified by employing chromatography and crystallization. The structural determination of the purified inhibitor is in progress.

  7. Enantioselectivity of the bioconversion of chiral citronellal during the inhibition of wheat seeds germination.

    PubMed

    Cavalieri, Andrea; Fischer, Ravit; Larkov, Olga; Dudai, Nativ

    2014-03-01

    Citronellal is one of the most prominent monoterpenes present in many essential oils. Low persistence of essential oils as bioherbicides has often been addressed because of the high volatility of these compounds. Bioconversion of citronellal by wheat seeds releases less aggressive and injurious compounds as demonstrated by their diminished germination. We demonstrated that optically pure citronellal enantiomers were reduced to optically pure citronellol enantiomers with retention of the configuration both in isolated wheat embryos and endosperms. Our findings reveal the potential of essential oils as allelopathic agents providing an insight into their mechanism of action and persistence.

  8. Enantioselectivity of the bioconversion of chiral citronellal during the inhibition of wheat seeds germination.

    PubMed

    Cavalieri, Andrea; Fischer, Ravit; Larkov, Olga; Dudai, Nativ

    2014-03-01

    Citronellal is one of the most prominent monoterpenes present in many essential oils. Low persistence of essential oils as bioherbicides has often been addressed because of the high volatility of these compounds. Bioconversion of citronellal by wheat seeds releases less aggressive and injurious compounds as demonstrated by their diminished germination. We demonstrated that optically pure citronellal enantiomers were reduced to optically pure citronellol enantiomers with retention of the configuration both in isolated wheat embryos and endosperms. Our findings reveal the potential of essential oils as allelopathic agents providing an insight into their mechanism of action and persistence. PMID:24634071

  9. Phytotoxical effect of Lepidium draba L. extracts on the germination and growth of monocot (Zea mays L.) and dicot (Amaranthus retroflexus L.) seeds.

    PubMed

    Kaya, Yusuf; Aksakal, Ozkan; Sunar, Serap; Erturk, Filiz Aygun; Bozari, Sedat; Agar, Guleray; Erez, Mehmet Emre; Battal, Peyami

    2015-03-01

    Laboratory experiments were performed to determine phytotoxic potentials of white top (Lepidium draba) methanol extracts (root, stem and leaf) on germination and early growth of corn (Zea mays) and redroot pigweed (Amaranthus retroflexus). Furthermore, the effects of different methanol extracts of L. draba on the phytohormone (indole-3-acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA) and zeatin) levels of corn and redroot pigweed were investigated. It was observed that all concentrations of methanol extracts of root, stem and leaf of L. draba inhibited germination, radicle and plumule elongation when compared with the respective controls. Besides this, the degree of inhibition was increased in concert with increasing concentrations of extracts used. On the other hand, phytohormone levels changed with the application of different extract concentrations. Comparing with the control, the GA levels significantly decreased while the ABA levels increased in all the application groups. Zeatin and IAA levels showed changes depending upon the applied extracts and concentrations.

  10. Phytotoxical effect of Lepidium draba L. extracts on the germination and growth of monocot (Zea mays L.) and dicot (Amaranthus retroflexus L.) seeds.

    PubMed

    Kaya, Yusuf; Aksakal, Ozkan; Sunar, Serap; Erturk, Filiz Aygun; Bozari, Sedat; Agar, Guleray; Erez, Mehmet Emre; Battal, Peyami

    2015-03-01

    Laboratory experiments were performed to determine phytotoxic potentials of white top (Lepidium draba) methanol extracts (root, stem and leaf) on germination and early growth of corn (Zea mays) and redroot pigweed (Amaranthus retroflexus). Furthermore, the effects of different methanol extracts of L. draba on the phytohormone (indole-3-acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA) and zeatin) levels of corn and redroot pigweed were investigated. It was observed that all concentrations of methanol extracts of root, stem and leaf of L. draba inhibited germination, radicle and plumule elongation when compared with the respective controls. Besides this, the degree of inhibition was increased in concert with increasing concentrations of extracts used. On the other hand, phytohormone levels changed with the application of different extract concentrations. Comparing with the control, the GA levels significantly decreased while the ABA levels increased in all the application groups. Zeatin and IAA levels showed changes depending upon the applied extracts and concentrations. PMID:23293131

  11. Interference of the Histone Deacetylase Inhibits Pollen Germination and Pollen Tube Growth in Picea wilsonii Mast.

    PubMed

    Cui, Yaning; Ling, Yu; Zhou, Junhui; Li, Xiaojuan

    2015-01-01

    Histone deacetylase (HDAC) is a crucial component in the regulation of gene expression in various cellular processes in animal and plant cells. HDAC has been reported to play a role in embryogenesis. However, the effect of HDAC on androgamete development remains unclear, especially in gymnosperms. In this study, we used the HDAC inhibitors trichostatin A (TSA) and sodium butyrate (NaB) to examine the role of HDAC in Picea wilsonii pollen germination and pollen tube elongation. Measurements of the tip-focused Ca2+ gradient revealed that TSA and NaB influenced this gradient. Immunofluorescence showed that actin filaments were disrupted into disorganized fragments. As a result, the vesicle trafficking was disturbed, as determined by FM4-64 labeling. Moreover, the distribution of pectins and callose in cell walls was significantly altered in response to TSA and NaB. Our results suggest that HDAC affects pollen germination and polarized pollen tube growth in Picea wilsonii by affecting the intracellular Ca2+ concentration gradient, actin organization patterns, vesicle trafficking, as well as the deposition and configuration of cell wall components.

  12. Interference of the Histone Deacetylase Inhibits Pollen Germination and Pollen Tube Growth in Picea wilsonii Mast

    PubMed Central

    Zhou, Junhui; Li, Xiaojuan

    2015-01-01

    Histone deacetylase (HDAC) is a crucial component in the regulation of gene expression in various cellular processes in animal and plant cells. HDAC has been reported to play a role in embryogenesis. However, the effect of HDAC on androgamete development remains unclear, especially in gymnosperms. In this study, we used the HDAC inhibitors trichostatin A (TSA) and sodium butyrate (NaB) to examine the role of HDAC in Picea wilsonii pollen germination and pollen tube elongation. Measurements of the tip-focused Ca2+ gradient revealed that TSA and NaB influenced this gradient. Immunofluorescence showed that actin filaments were disrupted into disorganized fragments. As a result, the vesicle trafficking was disturbed, as determined by FM4-64 labeling. Moreover, the distribution of pectins and callose in cell walls was significantly altered in response to TSA and NaB. Our results suggest that HDAC affects pollen germination and polarized pollen tube growth in Picea wilsonii by affecting the intracellular Ca2+ concentration gradient, actin organization patterns, vesicle trafficking, as well as the deposition and configuration of cell wall components. PMID:26710276

  13. Inhibition of clostridium perfringens spore germination and outgrowth by buffered vinegar and lemon juice concentrate during chilling.....of ground turkey road containing minimal ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhibition of Clostridium perfringens spore germination and outgrowth in ground turkey roast containing minimal ingredients (salt and sugar), by buffered vinegar (MoStatin V) and a blend (buffered) of lemon juice concentrate and vinegar (MoStatin LV) was evaluated. Ground turkey roast was formulat...

  14. Inhibition of Clostridium perfringens spore germination and outgrowth by lemon juice and vinegar product in reduced NaCl roast beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhibition of Clostridium perfringens spore germination and outgrowth in reduced sodium roast beef by a blend of buffered lemon juice concentrate and vinegar (MoStatin LV) during abusive exponential cooling was evaluated. Roast beef containing salt (NaCl; 1, 1.5, or 2%, wt/wt), blend of sodium pyro-...

  15. Rapid Germination of a Barley Mutant Is Correlated with a Rapid Turnover of Abscisic Acid Outside the Embryo.

    PubMed

    Visser, K.; Vissers, APA.; Cagirgan, M. I.; Kijne, J. W.; Wang, M.

    1996-08-01

    In our study of the role of abscisic acid (ABA) in controlling the germination of barley grains, we tested a barley mutant line with a gigantum appearance (Hordeum distichum cv Quantum) for an ABA-insensitive phenotype by assaying germination in the presence of 10-4 M ABA. Dissected embryos of the mutant germinated at least 10 h earlier than did those of the wild type. The half-maximal concentrations of ABA inhibitory for germination were determined to be 5 x 10-4 M for the mutant and 10-6 M for the wild type. Expression of an ABA-induced Rab gene was studied to determine ABA responsiveness. The ABA concentration required for a half-maximal induction of Rab gene expression was 4 x 10-6 M in isolated embryos of both the mutant and wild type. This result suggests that ABA signal transduction pathways were not affected in the mutant. When isolated embryos were allowed to imbibe in water, ABA was released from the mutant and wild-type embryos at the same rate. However, the free ABA level in the incubation medium of the mutant showed a much faster decrease than that of the wild type, as demonstrated by two independent ABA assay methods (high-performance liquid chromatography and enzyme-linked immunosorbent assay). Our results suggest that turnover of ABA outside the embryo is a determining factor in the germination of barley seeds.

  16. The wheat ABA hypersensitive ERA8 mutant is associated with increased preharvest sprouting tolerance and altered hormone accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat preharvest sprouting (PHS) is the germination of mature grain on the mother plant when rain occurs before harvest. Higher abscisic acid (ABA) hormone levels and sensitivity are associated with higher seed dormancy and PHS tolerance. Consistent with this, the ABA hypersensitive ERA8 (Enhanced...

  17. Self-inhibition of spore germination via reactive oxygen in the fungus Cladosporium cucumerinum, causal agent of cucurbit scab

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cladosporium cucumerinum spore germination in vitro depended on spore suspension density. Different fungal isolates displayed maximum germination at different spore concentrations. For one isolate, maximum spore density was observed at both 18 and 25 °C, although germination percentage increased sli...

  18. Effect of abscisic and gibberellic acids on malate synthase transcripts in germinating castor bean seeds.

    PubMed

    Rodriguez, D; Dommes, J; Northcote, D H

    1987-05-01

    Several clones complementary to malate synthase mRNA have been identified in a complementary-DNA library to mRNA from castor bean endosperm. One of these clones has been used as a probe to measure levels of transcripts during seed germination and the effects of gibberellic acid and abscisic acid on these levels have been examined.Malate synthase transcripts increased during germination and GA3 advanced their appearance in the endosperm. Exogenously applied ABA inhibited the accumulation of transcripts over a time course of germination but the addition of GA3 counteracted its inhibitory effects. The data confirmed previous reports which indicated that the action of both growth regulators was on transcript accumulation and that there is a coordinated induction of the enzymes involved in the lipid metabolism in oil seeds.

  19. Effect of Nanoencapsulated Vitamin B1 Derivative on Inhibition of Both Mycelial Growth and Spore Germination of Fusarium oxysporum f. sp. raphani

    PubMed Central

    Cho, Jeong Sub; Seo, Yong Chang; Yim, Tae Bin; Lee, Hyeon Yong

    2013-01-01

    Nanoencapsulation of thiamine dilauryl sulfate (TDS), a vitamin B1 derivative, was proved to effectively inhibit the spore germination of Fusarium oxysporum f. sp. raphani (F. oxysporum), as well as mycelial growth. The average diameter of nanoparticles was measured as 136 nm by being encapsulated with an edible encapsulant, lecithin, whose encapsulation efficiency was about 55% in containing 200 ppm of TDS concentration: the 100 ppm TDS nanoparticle solution showed a mycelial growth inhibition rate of 59%. These results were about similar or even better than the cases of treating 100 ppm of dazomet, a positive antifungal control (64%). Moreover, kinetic analysis of inhibiting spore germination were estimated as 6.6% reduction of spore germination rates after 24 h treatment, which were 3.3% similar to the case of treating 100 ppm of a positive control (dazomet) for the same treatment time. It was also found that TDS itself could work as an antifungal agent by inhibiting both mycelial growth and spore germination, even though its efficacy was lower than those of nanoparticles. Nanoparticles especially played a more efficient role in limiting the spore germination, due to their easy penetration into hard cell membranes and long resident time on the surface of the spore shell walls. In this work, it was first demonstrated that the nanoparticle of TDS not a harmful chemical can control the growth of F. oxysporum by using a lower dosage than commercial herbicides, as well as the inhibiting mechanism of the TDS. However, field trials of the TDS nanoparticles encapsulated with lecithin should be further studied to be effectively used for field applications. PMID:23429270

  20. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro.

    PubMed

    Wang, Yu-Hua; Li, Xiao-Cheng; Zhu-Ge, Qiang; Jiang, Xin; Wang, Wei-Dong; Fang, Wan-Ping; Chen, Xuan; Li, Xing-Hui

    2012-01-01

    Nitric oxide (NO) plays essential roles in many biotic and abiotic stresses in plant development procedures, including pollen tube growth. Here, effects of NO on cold stress inhibited pollen germination and tube growth in Camellia sinensis were investigated in vitro. The NO production, NO synthase (NOS)-like activity, cGMP content and proline (Pro) accumulation upon treatment with NO scavenger cPTIO, NOS inhibitor L-NNA, NO donor DEA NONOate, guanylate cyclase (GC) inhibitor ODQ or phosphodiesterase (PDE) inhibitor Viagra at 25°C (control) or 4°C were analyzed. Exposure to 4°C for 2 h reduced pollen germination and tube growth along with increase of NOS-like activity, NO production and cGMP content in pollen tubes. DEA NONOate treatment inhibited pollen germination and tube growth in a dose-dependent manner under control and reinforced the inhibition under cold stress, during which NO production and cGMP content promoted in pollen tubes. L-NNA and cPTIO markedly reduced the generation of NO induced by cold or NO donor along with partly reverse of cold- or NO donor-inhibited pollen germination and tube growth. Furthermore, ODQ reduced the cGMP content under cold stress and NO donor treatment in pollen tubes. Meanwhile, ODQ disrupted the reinforcement of NO donor on the inhibition of pollen germination and tube growth under cold condition. Additionally, Pro accumulation of pollen tubes was reduced by ODQ compared with that receiving NO donor under cold or control condition. Effects of cPTIO and L-NNA in improving cold-treated pollen germination and pollen tube growth could be lowered by Viagra. Moreover, the inhibitory effects of cPTIO and L-NNA on Pro accumulation were partly reversed by Viagra. These data suggest that NO production from NOS-like enzyme reaction decreased the cold-responsive pollen germination, inhibited tube growth and reduced Pro accumulation, partly via cGMP signaling pathway in C. sinensis.

  1. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings.

    PubMed

    Liao, Shaohua; Pan, Bo; Li, Hao; Zhang, Di; Xing, Baoshan

    2014-01-01

    Biochar can benefit human society as a carbon-negative material and soil amendment. However, negative biochar impacts on plant germination and growth have been observed, and they have not been fully explained. Therefore, protocols to avoid these risks cannot be proposed. We hypothesized that the free radicals generated during charring may inhibit plant germination and growth. Significant electron paramagnetic resonance (EPR) signals were observed in the biochars derived from several types of common biomass (corn stalk, rice, and wheat straws) and the major biopolymer components of biomass (cellulose and lignin), but not in the original materials, suggesting the ubiquitous presence of free radicals in biochars. EPR signal intensity increased with increasing pyrolysis temperature, and it was dominantly contributed by oxygen centered in the mixture of oxygen- and carbon-centered free radicals as the temperature increased. The free radicals in biochars induced strong ·OH radicals in the aqueous phase. Significant germination inhibition, root and shoot growth retardation and plasma membrane damage were observed for biochars with abundant free radicals. Germination inhibition and plasma membrane damage were not obvious for biochars containing low free radicals, but they were apparent at comparable concentrations of conventional contaminants, such as heavy metals and polyaromatic hydrocarbons. The potential risk and harm of relatively persistent free radicals in biochars must be addressed to apply them safely.

  2. Control of macaw palm seed germination by the gibberellin/abscisic acid balance.

    PubMed

    Bicalho, E M; Pintó-Marijuan, M; Morales, M; Müller, M; Munné-Bosch, S; Garcia, Q S

    2015-09-01

    The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non-germinated (NG) seeds treated (+GA3 ) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1-aminocyclopropane-1-carboylic acid (ACC) decreased after imbibition. In addition, α-tocopherol and α-tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA).

  3. ASCORBATE PEROXIDASE6 Protects Arabidopsis Desiccating and Germinating Seeds from Stress and Mediates Cross Talk between Reactive Oxygen Species, Abscisic Acid, and Auxin1[C][W][OPEN

    PubMed Central

    Chen, Changming; Letnik, Ilya; Hacham, Yael; Dobrev, Petre; Ben-Daniel, Bat-Hen; Vanková, Radomíra; Amir, Rachel; Miller, Gad

    2014-01-01

    A seed’s ability to properly germinate largely depends on its oxidative poise. The level of reactive oxygen species (ROS) in Arabidopsis (Arabidopsis thaliana) is controlled by a large gene network, which includes the gene coding for the hydrogen peroxide-scavenging enzyme, cytosolic ASCORBATE PEROXIDASE6 (APX6), yet its specific function has remained unknown. In this study, we show that seeds lacking APX6 accumulate higher levels of ROS, exhibit increased oxidative damage, and display reduced germination on soil under control conditions and that these effects are further exacerbated under osmotic, salt, or heat stress. In addition, ripening APX6-deficient seeds exposed to heat stress displayed reduced germination vigor. This, together with the increased abundance of APX6 during late stages of maturation, indicates that APX6 activity is critical for the maturation-drying phase. Metabolic profiling revealed an altered activity of the tricarboxylic acid cycle, changes in amino acid levels, and elevated metabolism of abscisic acid (ABA) and auxin in drying apx6 mutant seeds. Further germination assays showed an impaired response of the apx6 mutants to ABA and to indole-3-acetic acid. Relative suppression of abscisic acid insensitive3 (ABI3) and ABI5 expression, two of the major ABA signaling downstream components controlling dormancy, suggested that an alternative signaling route inhibiting germination was activated. Thus, our study uncovered a new role for APX6, in protecting mature desiccating and germinating seeds from excessive oxidative damage, and suggested that APX6 modulate the ROS signal cross talk with hormone signals to properly execute the germination program in Arabidopsis. PMID:25049361

  4. ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin.

    PubMed

    Chen, Changming; Letnik, Ilya; Hacham, Yael; Dobrev, Petre; Ben-Daniel, Bat-Hen; Vanková, Radomíra; Amir, Rachel; Miller, Gad

    2014-09-01

    A seed's ability to properly germinate largely depends on its oxidative poise. The level of reactive oxygen species (ROS) in Arabidopsis (Arabidopsis thaliana) is controlled by a large gene network, which includes the gene coding for the hydrogen peroxide-scavenging enzyme, cytosolic ASCORBATE PEROXIDASE6 (APX6), yet its specific function has remained unknown. In this study, we show that seeds lacking APX6 accumulate higher levels of ROS, exhibit increased oxidative damage, and display reduced germination on soil under control conditions and that these effects are further exacerbated under osmotic, salt, or heat stress. In addition, ripening APX6-deficient seeds exposed to heat stress displayed reduced germination vigor. This, together with the increased abundance of APX6 during late stages of maturation, indicates that APX6 activity is critical for the maturation-drying phase. Metabolic profiling revealed an altered activity of the tricarboxylic acid cycle, changes in amino acid levels, and elevated metabolism of abscisic acid (ABA) and auxin in drying apx6 mutant seeds. Further germination assays showed an impaired response of the apx6 mutants to ABA and to indole-3-acetic acid. Relative suppression of abscisic acid insensitive3 (ABI3) and ABI5 expression, two of the major ABA signaling downstream components controlling dormancy, suggested that an alternative signaling route inhibiting germination was activated. Thus, our study uncovered a new role for APX6, in protecting mature desiccating and germinating seeds from excessive oxidative damage, and suggested that APX6 modulate the ROS signal cross talk with hormone signals to properly execute the germination program in Arabidopsis. PMID:25049361

  5. Registration of Zak ERA8 Soft White Spring Wheat Germplasm with Enhanced Response to ABA and Increased Seed Dormancy

    PubMed Central

    Martinez, Shantel A.; Schramm, Elizabeth C.; Harris, Tracy J.; Kidwell, Kimberlee K.; Garland-Campbell, Kimberly; Steber, Camille M.

    2014-01-01

    Zak ERA8 (ENHANCED RESPONSE to ABA8) (Reg. No. GP-966, PI 669443) is a unique line derived from soft white spring wheat (Triticum aestivum L.) cultivar Zak that has increased seed dormancy but after-ripens within 10 to 16 wk. The goal in developing this germplasm was to use increased seed dormancy to improve tolerance to preharvest sprouting, a problem that can cause severe economic losses. This germplasm was developed by USDA–ARS, Pullman, WA, in collaboration with Washington State University. Zak ERA8was tested under experimental number 60.1.27.10. The ERA8mutation was generated by chemical mutagenesis followed by selection for the inability to germinate on abscisic acid (ABA) concentrations too low to inhibit wild-type Zak seed germination. The semidominant Zak ERA8 line has been backcrossed twice to wild-type Zak. Following the first backcross, Zak ERA8 showed similar morphological and grain quality traits to the original Zak cultivar. PMID:25580180

  6. Regulation of the rab17 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA-insensitive mutants.

    PubMed

    Vilardell, J; Martínez-Zapater, J M; Goday, A; Arenas, C; Pagès, M

    1994-02-01

    The abscisic acid-responsive gene rab17 is induced during maize embryo maturation and in vegetative tissues under water stress conditions. To investigate how ABA is involved in the induction of the rab17 gene, we present here a genetic approach to analyse the transcriptional regulation of the 1.3 kb rab17 promoter fragment in transgenic wild-type Arabidopsis and mutants which are deficient (aba) and insensitive (abi1, abi2 and abi3) to ABA. During seed development the rab17 promoter fragment confers similar temporal and spatial regulation on the reporter gene GUS, both in transgenic wild-type and ABA-deficient and ABA-insensitive mutants. The rab17 promoter was only active in embryo and endosperm during late seed development, although the ABA-deficient embryo mutant showed a reduction in the level of GUS activity. During germination rab17 promoter activity decreases, and GUS activity is not enhanced by water stress in transgenic wild-type and mutant plants. In contrast, transcription of the Arabidopsis endogenous rab gene is stimulated by water stress, both in wild-type and ABA-insensitive mutants. Our data suggest that different molecular mechanisms mediate seed-specific expression and ABA water stress induction of the rab17 gene and indicate strong conservation of the seed-specific regulatory mechanism for rab genes in monocot and dicot plants.

  7. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis.

    PubMed

    Dong, Hui; Zhen, Zhiqin; Peng, Jinying; Chang, Li; Gong, Qingqiu; Wang, Ning Ning

    2011-10-01

    The phytohormones ethylene and abscisic acid (ABA) play essential roles in the abiotic stress adaptation of plants, with both cross-talk of ethylene signalling and ABA biosynthesis and signalling reported. Any reciprocal effects on each other's biosynthesis, however, remain elusive. ACC synthase (ACS) acts as the key enzyme in ethylene biosynthesis. A pilot study on changes in ACS promoter activities in response to abiotic stresses revealed the unique involvement in abiotic stress responses of the only type 3 ACC synthase, ACS7, among all nine ACSs of Arabidopsis. Hence an acs7 mutant was characterized and its abiotic stress responses were analysed. The acs7 mutant germinated slightly faster than the wild type and subsequently maintained a higher growth rate at the vegetative growth stage. Ethylene emission of acs7 was merely one-third of that of the wild type. acs7 exhibited enhanced tolerance to salt, osmotic, and heat stresses. Furthermore, acs7 seeds were hypersensitive to both ABA and glucose during germination. Transcript analyses revealed that acs7 had elevated transcript levels of the stress-responsive genes involved in the ABA-dependent pathway under salt stress. The ABA level was also higher in acs7 following salt treatment. Our data suggest that ACS7 acts as a negative regulator of ABA sensitivity and accumulation under stress and appears as a node in the cross-talk between ethylene and ABA.

  8. Cell-free conversion of 1 prime -deoxy- sup 2 H-ABA to sup 2 H-ABA in extracts from Cercospora rosicola

    SciTech Connect

    Al-Nimri, L.; Coolbaugh, R.C. )

    1990-05-01

    The characteristics of the enzyme converting 1{prime}-deoxy-ABA into ABA have been studied in the fungus C. rosicola. Enzyme extracts were prepared from cold-pressed mycelia of C. rosicola. The suspension was a high speed supernatant and a microsomal fraction. A cell-free system was developed to convert 1{prime}-deoxy-{sup 2}H-ABA into {sup 2}H-ABA using a reaction mixture containing 300 {mu}l enzyme extract, 10 {mu}m 1{prime}-deoxy-{sup 2}H-ABA. The reaction products were chromatographed by reverse phase HPLC. The presumptive ABA fractions were collected and {sup 2}H-ABA was quantified by GC-MS using a {sup 2}H-(2Z, 4E)-ABA standard curve. 1{prime}-deoxy-{sup 2}H-ABA was converted to an average of 1.47 pmole {sup 2}H-ABA/mg protein per min. Most of the enzymic activity was found in the microsomal fraction. The reaction required NADPH and was enhanced by FAD. The reaction was not inhibited by triarimol.

  9. Basal transcription factor 3 plays an important role in seed germination and seedling growth of rice.

    PubMed

    Wang, Wenyi; Xu, Mengyun; Wang, Ya; Jamil, Muhammad

    2014-01-01

    BTF3 has been recognized to be involved in plant growth and development. But its function remains mostly unknown during seed germination and seedling stage. Here, we have analyzed OsBTF3-related sequences in Oryza sativa L. subspecies, japonica, which resembles with the conserved domain of a nascent polypeptide associated complex (NAC) with different homologs of OsBTF3 and human BTF3. Inhibition of Osj10gBTF3 has led to considerable morphological changes during seed germination and seedling growth. Germination percentage was not influenced by the application of GA3, ABA, and NaCl but all concentrations caused wild-type (WT) seeds to germinate more rapidly than the RNAi (Osj10gBTF3 (Ri)) transgenic lines. Seedling inhibition was more severe in the Osj10gBTF3 (Ri) seedlings compared with their WT especially when treated with 100 or 200 μM GA3; 50% reduction in shoots was observed in Osj10gBTF3 (Ri) seedlings. The expression of Osj3g1BTF3, Osj3g2BTF3 and Osj10gBTF3 was primarily constitutive and generally modulated by NaCl, ABA, and GA3 stresses in both Osj10gBTF3 (Ri) lines and WT at the early seedling stage, suggesting that Osj3g1BTF3 and Osj10gBTF3 are much similar but different from Osj3g2BTF3 in biological function. These results show that OsBTF3 plays an important role in seed germination and seedling growth gives a new perception demonstrating that more multifaceted regulatory functions are linked with BTF3 in plants.

  10. Sucrose Transporter AtSUC9 Mediated by a Low Sucrose Level is Involved in Arabidopsis Abiotic Stress Resistance by Regulating Sucrose Distribution and ABA Accumulation.

    PubMed

    Jia, Wanqiu; Zhang, Lijun; Wu, Di; Liu, Shan; Gong, Xue; Cui, Zhenhai; Cui, Na; Cao, Huiying; Rao, Longbing; Wang, Che

    2015-08-01

    Sucrose (Suc) transporters (SUCs or SUTs) are important regulators in plant growth and stress tolerance. However, the mechanism of SUCs in plant abiotic stress resistance remains to be dietermined. Here, we found that AtSUC9 expression was induced by abiotic stress, including salt, osmotic and cold stress conditions. Disruption of AtSUC9 led to sensitive responses to abiotic stress during seed germination and seedling growth. Further analyses indicated that the sensitivity phenotype of Atsuc9 mutants resulted from higher Suc content in shoots and lower Suc content in roots, as compared with that in wild-type (WT) plants. In addition, we found that the expression of AtSUC9 is induced in particular by low levels of exogenous and endogenous Suc, and deletion of AtSUC9 affected the expression of the low Suc level-responsive genes. AtSUC9 also showed an obvious response to treatments with low concentrations of exogenous Suc during seed germination, seedling growth and Suc distribution, and Atsuc9 mutants hardly grew in abiotic stress treatments without exogenous Suc. Moreover, our results illustrated not only that deletion of AtSUC9 blocks abiotic stress-inducible ABA accumulation but also that Atsuc9 mutants had a lower content of endogenous ABA in stress conditions than in normal conditions. Deletion of AtSUC9 also inhibited the expression of many ABA-inducible genes (SnRk2.2/3/6, ABF2/3/4, ABI1/3/4, RD29A, KIN1 and KIN2). These results indicate that AtSUC9 is induced in particular by low Suc levels then mediates the balance of Suc distribution and promotes ABA accumulation to enhance Arabidopsis abiotic stress resistance.

  11. Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi.

    PubMed

    Martín-Rodríguez, José Ángel; León-Morcillo, Rafael; Vierheilig, Horst; Ocampo, Juan Antonio; Ludwig-Müller, Jutta; García-Garrido, José Manuel

    2011-04-01

    We investigated the relationship between ABA and ethylene regulating the formation of the arbuscular mycorrhiza (AM) symbiosis in tomato (Solanum lycopersicum) plants and tried to define the specific roles played by each of these phytohormones in the mycorrhization process. We analysed the impact of ABA biosynthesis inhibition on mycorrhization by Glomus intraradices in transgenic tomato plants with an altered ethylene pathway. We also studied the effects on mycorrhization in sitiens plants treated with the aminoethoxyvinyl glycine hydrochloride (AVG) ethylene biosynthesis inhibitor and supplemented with ABA. In addition, the expression of plant and fungal genes involved in the mycorrhization process was studied. ABA biosynthesis inhibition qualitatively altered the parameters of mycorrhization in accordance with the plant's ethylene perception and ethylene biosynthesis abilities. Inhibition of ABA biosynthesis in wild-type plants negatively affected all the mycorrhization parameters studied, while tomato mutants impaired in ethylene synthesis only showed a reduced arbuscular abundance in mycorrhizal roots. Inhibition of ethylene synthesis in ABA-deficient sitiens plants increased the intensity of mycorrhiza development, while ABA application rescued arbuscule abundance in the root's mycorrhizal zones. The results of our study show an antagonistic interaction between ABA and ethylene, and different roles of each of the two hormones during AM formation. This suggests that a dual ethylene-dependent/ethylene-independent mechanism is involved in ABA regulation of AM formation.

  12. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    PubMed Central

    Zhao, Yang; Xie, Shaojun; Batelli, Giorgia; Wang, Bangshing; Duan, Cheng-Guo; Wang, Xingang; Xing, Lu; Lei, Mingguang; Yan, Jun; Zhu, Xiaohong; Zhu, Jian-Kang

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. PMID:26943172

  13. [Eco-toxicological effects of heavy metals on the inhibition of seed germination and root elongation of Chinese cabbages in soils].

    PubMed

    Song, Yufang; Xu, Huaxia; Ren, Liping; Gong, Ping; Zhou, Qixing

    2002-01-30

    The Eco-toxicity effects of individual Cu, Zn, Pb and Cd on the inhibition of seed germination and root elongation of Chinese cabbages (Brassica pekimensis) were tested in four types of soils (red loam soils, meadow brown soils, chestnut soils and dark brown soils) and water solution. The combined effects of heavy metals pollution were determined with meadow brown soils. Results indicated that with same concentration, the inhibition rates of heavy metals on root elongation of Chinese cabbages are stronger than that on the seed germination. The inhibition effects of heavy metals on the root elongation of Chinese cabbages in soils are much lower than that in water, indicating that soils play an important role of buffering on heavy metals pollution. Inhibition rates of heavy metals on the root elongation (IRHMRE) of Chinese cabbages are significantly negative related with the contents of organic matter (OR) and Kjedahl-nitrogen (K-N) in soils, however, there is no significant related between IRHMRE and soil pH, so does the content of T-K. In the concentrations that result in the irritated effect in the single form of Cu, Zn, Pb and Cd pollution, synergic effects are produced significantly when four heavy metals are combined. As the results, the threshold values that result in the inhibition effects on root elongation in Chinese cabbages decrease markedly.

  14. Priming of seeds with nitric oxide donor sodium nitroprusside (SNP) alleviates the inhibition on wheat seed germination by salt stress.

    PubMed

    Duan, Pei; Ding, Feng; Wang, Fang; Wang, Bao-Shan

    2007-06-01

    The effect of SNP, an NO donor, on seed germination of wheat (Triticum aestivum L. cv. 'DK961') under salt stress was studied. The results showed that priming of seeds with 0.06 mmol/L SNP for 24 h markedly alleviated the decrease of the germination percentage, germination index, vigor index and imbibition rate of wheat seeds under salt stress. SNP significantly alleviated the decrease of the beta-amylase activity but almost did not affect the alpha-amylase activity of wheat seeds under salt stress. SNP slightly increased the alpha-amylase isoenzymes (especially isoenzyme 3) and significantly increased the beta-amylase isoenzymes (especially isoenzyme d, e, f and g). SNP pretreatment decreased Na(+) content, but increased the K(+) content, resulting in a mark increase of K(+)/Na(+) ratio of wheat seedlings under salt stress. These results suggested that NO is involved in promoting wheat seed germination under salt stress by increasing the beta-amylase activity.

  15. The Weak Acid Preservative Sorbic Acid Inhibits Conidial Germination and Mycelial Growth of Aspergillus niger through Intracellular Acidification

    PubMed Central

    Plumridge, Andrew; Hesse, Stephan J. A.; Watson, Adrian J.; Lowe, Kenneth C.; Stratford, Malcolm; Archer, David B.

    2004-01-01

    The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 105/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of mycelia at 24 h developed from the same spore inoculum was threefold lower. The MIC for conidia and, to a lesser extent, mycelia was shown to be dependent on the inoculum size. A. niger is capable of degrading sorbic acid, and this ability has consequences for food preservation strategies. The mechanism of action of sorbic acid was investigated using 31P nuclear magnetic resonance (NMR) spectroscopy. We show that a rapid decline in cytosolic pH (pHcyt) by more than 1 pH unit and a depression of vacuolar pH (pHvac) in A. niger occurs in the presence of sorbic acid. The pH gradient over the vacuole completely collapsed as a result of the decline in pHcyt. NMR spectra also revealed that sorbic acid (3.0 mM at pH 4.0) caused intracellular ATP pools and levels of sugar-phosphomonoesters and -phosphodiesters of A. niger mycelia to decrease dramatically, and they did not recover. The disruption of pH homeostasis by sorbic acid at concentrations below the MIC could account for the delay in spore germination and retardation of the onset of subsequent mycelial growth. PMID:15184150

  16. Overexpression of the Artemisia Orthologue of ABA Receptor, AaPYL9, Enhances ABA Sensitivity and Improves Artemisinin Content in Artemisia annua L

    PubMed Central

    Zhang, Fangyuan; Lu, Xu; Lv, Zongyou; Zhang, Ling; Zhu, Mengmeng; Jiang, Weiming; Wang, Guofeng; Sun, Xiaofen; Tang, Kexuan

    2013-01-01

    The phytohormone abscisic acid (ABA) plays an important role in plant development and environmental stress response. In this study, we cloned an ABA receptor orthologue, AaPYL9, from Artemisia annua L. AaPYL9 is expressed highly in leaf and flower. AaPYL9 protein can be localized in both nucleus and cytoplasm. Yeast two-hybrid assay shows AaPYL9 can specifically interact with AtABI1 but not with AtABI2, AtHAB1 or AtHAB2. ABA can enhance the interaction between AaPYL9 and AtABI1 while AaPYL9-89 Pro→Ser and AaPYL9-116 His→Ala point mutations abolishes the interaction. BiFC assay shows that AaPYL9 interacts with AtABI1 in nucleus in planta. Transgenic Arabidopsis plants over-expressing AaPYL9 are more sensitive to ABA in the seed germination and primary root growth than wild type. Consistent with this, ABA report genes have higher expression in AaPYL9 overexpressing plants compared to wild type after ABA treatment. Moreover, overexpression of AaPYL9 in A. annua increases not only drought tolerance, but also artemisinin content after ABA treatment, with significant enhancement of the expression of key genes in artemisinin biosynthesis. This study provides a way to develop A. annua with high-yielding artemisinin and high drought resistance. PMID:23437216

  17. Phytochrome-mediated germination and early development in spores of Dryopteris filix-mas L.: phase-specific and non phase-specific inhibition by staurosporine

    NASA Technical Reports Server (NTRS)

    Haas, C. J.; Scheuerlein, R.; Roux, S. J.

    1991-01-01

    The alkaloid staurosporine, currently known as the most potent inhibitor of protein kinase C, PKC, was tested for its ability to inhibit phytochrome-mediated spore germination in Dryopteris filix-mas L., evaluated by the induction of chlorophyll synthesis. Approximately half-maximal inhibition was obtained at a concentration of 10(-5) M. This effect of staurosporine was phase-specific and was found during the same period in which the presence of extracellular calcium is necessary for realization of the light signal. Furthermore, the ability of staurosporine to prevent progression of a germinated spore into early gametophyte development, evaluated by the accumulation of chlorophyll, was examined. Again, staurosporine (10(-5) M) significantly diminished chlorophyll accumulation, determined quantitatively in vivo by single-cell measurements, in a non-phase specific way. The fact that the phase-specific inhibitory effect of staurosporine in preventing germination was coincident with the phase-specific requirement of Ca2+ suggests that both Ca2+ and staurosporine affect the same step in the signal-transduction chain. A phosphorylation event catalysed by PKC or any Ca2+ -dependent protein kinase is proposed as the target of staurosporine and Ca2+.

  18. Effect of Allelochemicals from Leaf Leachates of Gmelina arborea on Inhibition of Some Essential Seed Germination Enzymes in Green Gram, Red Gram, Black Gram, and Chickpea

    PubMed Central

    Madhan Shankar, Ramakrishnan; Veeralakshmi, Shanmugham; Rajendran, Ramasamy

    2014-01-01

    The present work focused on identification of allelochemicals from the leaf leachates of Gmelina arborea and analyzing its influence on the germination of red gram, green gram, black gram, and chickpea in terms of the levels of some important germination enzymes like acid phosphatase, catalase, peroxidase, and amylase. The study showed that allelopathic effects were more predominant in chickpea with 80% followed by red gram, green gram, and black gram where the inhibition ranged between 26% and 75%. The vigor index in the seed lots is also considerably reduced. Total chlorophyll content was also reduced by allelopathic effect in all treated seeds ranging between 0.7 and 7.5 μg/g dry weight. The effect of allelochemicals drastically reduced the relative water content in red gram followed by the other seed lots. The total protein content varied considerably in the control and the treated seed lots. Allelochemicals inhibited the expression and activity of the enzymes required for efficient germination. The present study also threw limelight on the effective use of this tree, wherein planting this tree amidst pulse related herb plantations could affect the growth of the economically viable plants, but this tree can very well adapt to diversified soil conditions and rainfall zones. PMID:27350959

  19. Effect of Allelochemicals from Leaf Leachates of Gmelina arborea on Inhibition of Some Essential Seed Germination Enzymes in Green Gram, Red Gram, Black Gram, and Chickpea.

    PubMed

    Madhan Shankar, Ramakrishnan; Veeralakshmi, Shanmugham; Sirajunnisa, Abdul Razack; Rajendran, Ramasamy

    2014-01-01

    The present work focused on identification of allelochemicals from the leaf leachates of Gmelina arborea and analyzing its influence on the germination of red gram, green gram, black gram, and chickpea in terms of the levels of some important germination enzymes like acid phosphatase, catalase, peroxidase, and amylase. The study showed that allelopathic effects were more predominant in chickpea with 80% followed by red gram, green gram, and black gram where the inhibition ranged between 26% and 75%. The vigor index in the seed lots is also considerably reduced. Total chlorophyll content was also reduced by allelopathic effect in all treated seeds ranging between 0.7 and 7.5 μg/g dry weight. The effect of allelochemicals drastically reduced the relative water content in red gram followed by the other seed lots. The total protein content varied considerably in the control and the treated seed lots. Allelochemicals inhibited the expression and activity of the enzymes required for efficient germination. The present study also threw limelight on the effective use of this tree, wherein planting this tree amidst pulse related herb plantations could affect the growth of the economically viable plants, but this tree can very well adapt to diversified soil conditions and rainfall zones. PMID:27350959

  20. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96.

    PubMed

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regulator of ABA signalling, and stimulate its ubiquitination and degradation. Genetic analysis shows that MYB96 is epistatic to MIEL1 in the control of ABA sensitivity in seeds. While MIEL1 acts primarily via MYB96 in seed germination, MIEL1 regulates protein turnover of both MYB96 and MYB30 in vegetative tissues. We find that ABA regulates the expression of MYB30-responsive genes during pathogen infection and this regulation is partly dependent on MIEL1. These results suggest that MIEL1 may facilitate crosstalk between ABA and biotic stress signalling. PMID:27615387

  1. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96

    PubMed Central

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regulator of ABA signalling, and stimulate its ubiquitination and degradation. Genetic analysis shows that MYB96 is epistatic to MIEL1 in the control of ABA sensitivity in seeds. While MIEL1 acts primarily via MYB96 in seed germination, MIEL1 regulates protein turnover of both MYB96 and MYB30 in vegetative tissues. We find that ABA regulates the expression of MYB30-responsive genes during pathogen infection and this regulation is partly dependent on MIEL1. These results suggest that MIEL1 may facilitate crosstalk between ABA and biotic stress signalling. PMID:27615387

  2. Molecular characterization of an ABA insensitive 5 orthologue in Brassica oleracea.

    PubMed

    Zhou, Xiaona; Yuan, Feifei; Wang, Mengyao; Guo, Aiguang; Zhang, Yanfeng; Xie, Chang Gen

    2013-01-18

    ABI5 (ABA insensitive 5), a bZIP (Basic leucine zipper) transcription factor, has been shown to be a major mediator of plant ABA responses during seed germination. Although the molecular basis of ABI5-modulated processes has been well demonstrated in Arabidopsis thaliana, its identity and function in cabbage (Brassica oleracea var. capitata L.) remain elusive. Here, we describe our identification of BolABI5 (an ABI5 orthologue in B.oleracea) as a functional bZIP transcription factor in the modulation of plant ABA responses. Expression of BolABI5 was dramatically induced by drought stress and exogenous ABA. Heterogeneous expression of BolABI5 rescued the insensitive phenotype of Arabidopsis abi5-1 to ABA during seed germination. Subcellular localization and trans-activation assays revealed that BolABI5 was localized in the nucleus and possessed DNA binding and trans-activation activities. Deletion of the bZIP domain generated BolABI5ΔbZIP, which no longer localized exclusively in the nucleus and had almost no detectable DNA-binding or trans-activation activities. Overall, these results suggest that BolABI5 may function as ABI5 in the positive regulation of plant ABA responses. PMID:23246838

  3. Antioxidant activity and inhibition of lipid peroxidation in germinating seeds of transgenic soybean expressing OsHGGT.

    PubMed

    Kim, Yul Ho; Lee, Yu Young; Kim, Yong Ho; Choi, Man Soo; Jeong, Kwang Ho; Lee, Seuk Ki; Seo, Min Jung; Yun, Hong Tai; Lee, Choon Ki; Kim, Wook Han; Lee, Sang Chul; Park, Soon Ki; Park, Hyang Mi

    2011-01-26

    Tocochromanols are potent lipid-soluble antioxidants and essential nutrients for human health. Genetic engineering techniques were used to develop soybeans with enhanced vitamin E levels, including tocotrienols, which are not found in soybean. The gene encoding rice homogentisate geranylgeranyl transferase (HGGT) was overexpressed in soybeans using seed-specific and constitutive promoters. The association between abundance of vitamin E isomers and antioxidant activity was investigated during seed germination. With the exception of β-tocotrienol, all vitamin E isomers were detected in germinating seeds expressing OsHGGT. The antioxidant properties of germinating seed extracts were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals and lipid peroxidation (TBARS). Compared with intact wild-type seeds, transgenic seeds showed increases in radical scavenging of 5.4-17 and 23.2-35.3% in the DPPH and ABTS assays, respectively. Furthermore, the lipid peroxidation levels were 2.0-4.5-fold lower in germinating seeds from transgenic lines than in wild-type seeds. Therefore, it appears that the antioxidant potential of transgenic oil-producing plants such as soybean, sunflower, and corn may be enhanced by overexpressing OsHGGT during seed germination.

  4. AbaA Regulates Conidiogenesis in the Ascomycete Fungus Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Kim, Myung-Gu; Min, Kyunghun; Seo, Young-Su; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Chae, Suhn-Kee; Lee, Yin-Won

    2013-01-01

    Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops such as wheat, barley, and maize. Both sexual (ascospores) and asexual (conidia) spores are produced in F. graminearum. Since conidia are responsible for secondary infection in disease development, our objective of the present study was to reveal the molecular mechanisms underlying conidiogenesis in F. graminearum based on the framework previously described in Aspergillus nidulans. In this study, we firstly identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. Results from RNA-sequencing analysis suggest that AbaA plays a pivotal role in conidiation by regulating cell cycle pathways and other conidiation-related genes. Thus, the conserved roles of the AbaA ortholog in both A. nidulans and F. graminearum give new insight into the genetics of conidiation in filamentous fungi. PMID:24039821

  5. Down-Regulating CsHT1, a Cucumber Pollen-Specific Hexose Transporter, Inhibits Pollen Germination, Tube Growth, and Seed Development.

    PubMed

    Cheng, Jintao; Wang, Zhenyu; Yao, Fengzhen; Gao, Lihong; Ma, Si; Sui, Xiaolei; Zhang, Zhenxian

    2015-06-01

    Efficient sugar transport is needed to support the high metabolic activity of pollen tubes as they grow through the pistil. Failure of transport results in male sterility. Although sucrose transporters have been shown to play a role in pollen tube development, the role of hexoses and hexose transporters is not as well established. The pollen of some species can grow in vitro on hexose as well as on sucrose, but knockouts of individual hexose transporters have not been shown to impair fertilization, possibly due to transporter redundancy. Here, the functions of CsHT1, a hexose transporter from cucumber (Cucumis sativus), are studied using a combination of heterologous expression in yeast (Saccharomyces cerevisiae), histochemical and immunohistochemical localization, and reverse genetics. The results indicate that CsHT1 is a plasma membrane-localized hexose transporter with high affinity for glucose, exclusively transcribed in pollen development and expressed both at the levels of transcription and translation during pollen grain germination and pollen tube growth. Overexpression of CsHT1 in cucumber pollen results in a higher pollen germination ratio and longer pollen tube growth than wild-type pollen in glucose- or galactose-containing medium. By contrast, antisense suppression of CsHT1 leads to inhibition of pollen germination and pollen tube elongation in the same medium and results in a decrease of seed number per fruit and seed size when antisense transgenic pollen is used to fertilize wild-type or transgenic cucumber plants. The important role of CsHT1 in pollen germination, pollen tube growth, and seed development is discussed.

  6. Down-Regulating CsHT1, a Cucumber Pollen-Specific Hexose Transporter, Inhibits Pollen Germination, Tube Growth, and Seed Development1[OPEN

    PubMed Central

    Cheng, Jintao; Wang, Zhenyu; Yao, Fengzhen; Gao, Lihong; Ma, Si; Zhang, Zhenxian

    2015-01-01

    Efficient sugar transport is needed to support the high metabolic activity of pollen tubes as they grow through the pistil. Failure of transport results in male sterility. Although sucrose transporters have been shown to play a role in pollen tube development, the role of hexoses and hexose transporters is not as well established. The pollen of some species can grow in vitro on hexose as well as on sucrose, but knockouts of individual hexose transporters have not been shown to impair fertilization, possibly due to transporter redundancy. Here, the functions of CsHT1, a hexose transporter from cucumber (Cucumis sativus), are studied using a combination of heterologous expression in yeast (Saccharomyces cerevisiae), histochemical and immunohistochemical localization, and reverse genetics. The results indicate that CsHT1 is a plasma membrane-localized hexose transporter with high affinity for glucose, exclusively transcribed in pollen development and expressed both at the levels of transcription and translation during pollen grain germination and pollen tube growth. Overexpression of CsHT1 in cucumber pollen results in a higher pollen germination ratio and longer pollen tube growth than wild-type pollen in glucose- or galactose-containing medium. By contrast, antisense suppression of CsHT1 leads to inhibition of pollen germination and pollen tube elongation in the same medium and results in a decrease of seed number per fruit and seed size when antisense transgenic pollen is used to fertilize wild-type or transgenic cucumber plants. The important role of CsHT1 in pollen germination, pollen tube growth, and seed development is discussed. PMID:25888616

  7. Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination.

    PubMed

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M

    2015-04-01

    Seed germination is a critical step in a plant's life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis.

  8. Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination1[OPEN

    PubMed Central

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M.

    2015-01-01

    Seed germination is a critical step in a plant’s life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis. PMID:25681329

  9. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    NASA Astrophysics Data System (ADS)

    Joshi, Anjali; Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-08-01

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  10. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    SciTech Connect

    Joshi, Anjali Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-08-28

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  11. Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination.

    PubMed

    Jiang, Jinglong; Su, Miao; Wang, Liyan; Jiao, Chengjin; Sun, Zhengxi; Cheng, Wei; Li, Fengmin; Wang, Chongying

    2012-04-01

    During germination in distilled water (dH(2)O) on a horizontally positioned Petri dish, emerging primary roots of grass pea (Lathyrus sativus L.) grew perpendicular to the bottom of the Petri dish, due to gravitropism. However, when germinated in exogenous hydrogen peroxide (H(2)O(2)), the primary roots grew parallel to the bottom of the Petri dish and asymmetrically, forming a horizontal curvature. Time-course experiments showed that the effect was strongest when H(2)O(2) was applied prior to the emergence of the primary root. H(2)O(2) failed to induce root curvature when applied post-germination. Dosage studies revealed that the frequency of primary root curvature was significantly enhanced with increased H(2)O(2) concentrations. This curvature could be directly counteracted by dimethylthiourea (DMTU), a scavenger of H(2)O(2), but not by diphenylene iodonium (DPI) and pyridine, inhibitors of H(2)O(2) production. Exogenous H(2)O(2) treatment caused both an increase in the activities of H(2)O(2)-scavenging enzymes [including ascorbate peroxidase (APX: EC 1.11.1.11), catalase (CAT: EC 1.11.1.6) and peroxidase (POD: EC 1.11.1.7)] and a reduction in endogenous H(2)O(2) levels and root vitality. Although grass pea seeds absorbed exogenous H(2)O(2) during seed germination, DAB staining of paraffin sections revealed that exogenous H(2)O(2) only entered the root epidermis and not inner tissues. These data indicated that exogenously applied H(2)O(2) could lead to a reversible loss of the root gravitropic response and a horizontal curvature in primary roots during radicle emergence of the seedling.

  12. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    PubMed Central

    2011-01-01

    Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up-regulated by both GA and seed

  13. The last step of the ethylene biosynthesis pathway in turnip tops (Brassica rapa) seeds: Alterations related to development and germination and its inhibition during desiccation.

    PubMed

    Rodriguez-Gacio Md, María del Carmen; Matilla, Angel Jesús

    2001-06-01

    The involvement of ethylene in zygotic embryogenesis is a little known aspect of the growth and development in higher plants. In the present work, we study the alterations of the last step of the ethylene biosynthesis pathway during the formation period of turnip tops (Brassica rapa cv. Rapa) seeds and its repercussions in the germination process and post-germinative growth. For this, we chose 11 different phases of silique development, the first being the recently fertilized pistil and the last being the silique just prior to its dehiscence (ca. 2 months post-anthesis). In the 11 phases, ethylene production was detected in both whole silique (with or without seeds) and in the seeds enclosed by the silique wall. The levels of ACC, ACO and ethylene production proved high in seeds belonging to: (1) the pod in the very early phases, when the seeds were growing but without photosynthetic competence; (2) the silique at maximum growth, in which the seeds will initiate desiccation and loss of photosynthetic activity. During the phases prior to dehiscence, there was a marked inhibition in the last step of the ethylene biosynthesis pathway. In viable dry seeds, no ACO activity was detected and the ACC levels were 4-fold lower than at the onset of the silique senescence. Germination brings about a net synthesis of ACC with respect of the stores dry seed. This fact, together with other results presented in this work, point towards, as in other seeds, a dependence of ethylene synthesis for radicle emergence. The possible role played by the silique wall in the control of ethylene biosynthesis during zygotic embryogenesis, as well as the participation of ethylene as a hormonal signal in the triggering of seed desiccation in Brassica rapa cv. Rapa, are discussed in depth.

  14. Natural variation in germination responses of Arabidopsis to seasonal cues and their associated physiological mechanisms

    PubMed Central

    Barua, Deepak; Butler, Colleen; Tisdale, Tracy E.; Donohue, Kathleen

    2012-01-01

    Background and Aims Despite the intense interest in phenological adaptation to environmental change, the fundamental character of natural variation in germination is almost entirely unknown. Specifically, it is not known whether different genotypes within a species are germination specialists to particular conditions, nor is it known what physiological mechanisms of germination regulation vary in natural populations and how they are associated with responses to particular environmental factors. Methods We used a set of recombinant inbred genotypes of Arabidopsis thaliana, in which linkage disequilibrium has been disrupted over seven generations, to test for genetic variation and covariation in germination responses to distinct environmental factors. We then examined physiological mechanisms associated with those responses, including seed-coat permeability and sensitivity to the phytohormones gibberellic acid (GA) and abscisic acid (ABA). Key Results Genetic variation for germination was environment-dependent, but no evidence for specialization of germination to different conditions was found. Hormonal sensitivities also exhibited significant genetic variation, but seed-coat properties did not. GA sensitivity was associated with germination responses to multiple environmental factors, but seed-coat permeability and ABA sensitivity were associated with specific germination responses, suggesting that an evolutionary change in GA sensitivity could affect germination in multiple environments, but that of ABA sensitivity may affect germination under more restricted conditions. Conclusions The physiological mechanisms of germination responses to specific environmental factors therefore can influence the ability to adapt to diverse seasonal environments encountered during colonization of new habitats or with future predicted climate change. PMID:22012958

  15. Purification and Partial Characterization of a Factor in Cotton Wax Stimulating the Germination of Self-Inhibited Wheat Stem Rust Uredospores 1

    PubMed Central

    Atkinson, T. G.; Allen, Paul J.

    1966-01-01

    Filter paper, nonabsorbent cotton, and cotton wax were found to be progressively richer sources of germination-stimulatory activity effective in counteracting the self-inhibition of Puccinia graminis var. tritici Erikss. and E. Henn uredospores. The major stimulatory component of cotton wax was purified and partially characterized. It was catalytically effective in stimulating germination and oxygen consumption of uredospores and appeared to be as active as pelargonaldehyde. Unlike most of the previously reported chemical stimulants, however, it was not active across an air gap. Although the active compound was not identified, both the ultraviolet spectrum and the nonionic and solubility properties of the active fractions were consistent with the infrared spectrum which indicated a relatively long-chained. α. β unsaturated carbonyl compound such as a ketone or possibly an ester. The purification procedure involved deionization of ethanolic extracts from cotton or cotton wax on Dowex 50 (H+) and Dowex 1 (OH−) columns followed by chromatography on neutral alumina using ethylene dichloride as the developing and eluting solvent. Images PMID:16656227

  16. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.).

    PubMed

    Guo, Fu; Han, Ning; Xie, Yakun; Fang, Ke; Yang, Yinong; Zhu, Muyuan; Wang, Junhui; Bian, Hongwu

    2016-10-01

    The conserved miRNA393 family is thought to be involved in root elongation, leaf development and stress responses, but its role during seed germination and seedling establishment remains unclear. In this study, expression of the MIR393a/target module and its role in germinating rice (Oryza sativa L.) seeds were investigated. β-Glucuronidase (GUS) analysis showed that MIR393a and OsTIR1 had spatial-temporal transcriptional activities in radicle roots, coleoptile tips and stomata cells, corresponding to a dynamic auxin response. miR393a promoted primary root elongation when rice seeds were germinated in air and inhibited coleoptile elongation and stomatal development when seeds were submerged. Under submergence, the expression of miR393a was inhibited, and then the auxin response was induced. In the process, OsTIR1 and OsAFB2, auxin receptor genes, were negatively regulated by miR393. We found that miR393a inhibited stomatal development and coleoptile elongation but promoted free indole acetic acid (IAA) accumulation in the rice coleoptile tips. In addition, exogenous abscisic acid (ABA) enhanced the expression of miR393 and inhibited coleoptile growth. Together, miR393a/target plays a role in coleoptile elongation and stomatal development via modulation of auxin signalling during seed germination and seedling establishment under submergence. This study provides new perspectives on the direct sowing of rice seeds in flooded paddy fields.

  17. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.).

    PubMed

    Guo, Fu; Han, Ning; Xie, Yakun; Fang, Ke; Yang, Yinong; Zhu, Muyuan; Wang, Junhui; Bian, Hongwu

    2016-10-01

    The conserved miRNA393 family is thought to be involved in root elongation, leaf development and stress responses, but its role during seed germination and seedling establishment remains unclear. In this study, expression of the MIR393a/target module and its role in germinating rice (Oryza sativa L.) seeds were investigated. β-Glucuronidase (GUS) analysis showed that MIR393a and OsTIR1 had spatial-temporal transcriptional activities in radicle roots, coleoptile tips and stomata cells, corresponding to a dynamic auxin response. miR393a promoted primary root elongation when rice seeds were germinated in air and inhibited coleoptile elongation and stomatal development when seeds were submerged. Under submergence, the expression of miR393a was inhibited, and then the auxin response was induced. In the process, OsTIR1 and OsAFB2, auxin receptor genes, were negatively regulated by miR393. We found that miR393a inhibited stomatal development and coleoptile elongation but promoted free indole acetic acid (IAA) accumulation in the rice coleoptile tips. In addition, exogenous abscisic acid (ABA) enhanced the expression of miR393 and inhibited coleoptile growth. Together, miR393a/target plays a role in coleoptile elongation and stomatal development via modulation of auxin signalling during seed germination and seedling establishment under submergence. This study provides new perspectives on the direct sowing of rice seeds in flooded paddy fields. PMID:27342100

  18. Treatments affecting maturation and germination of American chestnut somatic embryos.

    PubMed

    Robichaud, Rodney L; Lessard, Veronica C; Merkle, Scott A

    2004-08-01

    The effects of amino acids, abscisic acid (ABA), polyethylene glycol (PEG), and elevated sucrose were tested on the maturation and germination of American chestnut (Castanea dentata) somatic embryos. Somatic embryos from three lines were matured over an eight week period through a two-stage process. After maturation, somatic embryos were randomly divided into three groups to measure dry weight/ fresh weight ratios, starch levels, and germination rates. Prior to transfer to germination medium, somatic embryos received a four week cold treatment. While some treatments with amino acids, elevated sucrose, PEG or ABA increased either dry weight/fresh weight ratios, starch content or both, only addition of 25mM L-asparagine significantly increased germination rate and taproot length, and this response was only obtained with one of the three lines tested. Six plants survived the transfer to potting mix, acclimatization to greenhouse conditions and field planting. PMID:15384407

  19. Treatments affecting maturation and germination of American chestnut somatic embryos.

    PubMed

    Robichaud, Rodney L; Lessard, Veronica C; Merkle, Scott A

    2004-08-01

    The effects of amino acids, abscisic acid (ABA), polyethylene glycol (PEG), and elevated sucrose were tested on the maturation and germination of American chestnut (Castanea dentata) somatic embryos. Somatic embryos from three lines were matured over an eight week period through a two-stage process. After maturation, somatic embryos were randomly divided into three groups to measure dry weight/ fresh weight ratios, starch levels, and germination rates. Prior to transfer to germination medium, somatic embryos received a four week cold treatment. While some treatments with amino acids, elevated sucrose, PEG or ABA increased either dry weight/fresh weight ratios, starch content or both, only addition of 25mM L-asparagine significantly increased germination rate and taproot length, and this response was only obtained with one of the three lines tested. Six plants survived the transfer to potting mix, acclimatization to greenhouse conditions and field planting.

  20. In vitro induction/inhibition of germinal vesicle breakdown (GVBD) in frog (Euphlyctis cyanophlyctis) oocytes by endocrine active compounds.

    PubMed

    Ghodageri, Manjunath G; Katti, Pancharatna

    2013-04-01

    Oocyte maturation is transformation of oocytes into a fertilizable egg. This study examined the effects of four classes of chemicals: 1) acephate (organophosphate); 2) atrazine (herbicide); 3) cypermethrin and fenvalerate (synthetic pyrethroids); and 4) carbaryl (carbamate) on in vitro germinal vesicle breakdown (GVBD) of Euphlyctis cyanophlyctis oocytes. Follicles were isolated and defolliculated from surgically removed ovaries of E. cyanophlyctis and exposed to either progesterone (1 μM/mL) or graded concentrations (1, 5, 10, 15, and 20 μg/mL) of test chemicals. GVBD was evident by the presence of a white spot in the animal pole as well as the absence of germinal vesicles in sectioned heat-fixed oocytes. Percent GVBD was scored every 4 hours until 24 hours. Progesterone induced 77-84% GVBD, compared to 29-33% in controls, at 24 hours. Acephate induced 46-67% GVBD, whereas atrazine elicited 58-77% of GVBD. In cypermethrin or carbaryl- or fenvalerate-exposed oocytes, GVBD was limited to 22-28, 17-29 and 18-24%, respectively. The study infers that some chemical contaminants in the aquatic system may interfere with GVBD in amphibians. Because oocyte maturation is a prerequisite for the production of fertilizable eggs, any alteration in this process potentially impairs the fecundity of females.

  1. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants

    PubMed Central

    2014-01-01

    Background Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca and sitiens and their near-isogenic wild-type parental lines were used. Growth, stomatal conductance, shoot hormone concentration, competition assay for colonization of tomato root tips, and root expression of plant genes expected to be modulated by ABA and PGPR were examined. Results Contrary to the wild-type plants in which PGPR stimulated growth rates, PGPR caused growth inhibition in ABA-deficient mutant plants. PGPR also triggered an over accumulation of ethylene in ABA-deficient plants which correlated with a higher expression of the pathogenesis-related gene Sl-PR1b. Conclusions Positive correlation between over-accumulation of ethylene and a higher expression of Sl-PR1b in ABA-deficient mutant plants could indicate that maintenance of normal plant endogenous ABA content may be essential for the growth promoting action of B. megaterium by keeping low levels of ethylene production. PMID:24460926

  2. ABA Receptors: Past, Present and Future

    SciTech Connect

    Guo, Jianjun; Yang, Xiaohan; Weston, David; Chen, Jay

    2011-01-01

    Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RACR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.

  3. ABA-alcohol is an intermediate in abscisic acid biosynthesis

    SciTech Connect

    Rock, C.D.; Zeevaart, J.A.D. )

    1990-05-01

    It has been established that ABA-aldehyde is a precursor to ABA. The ABA-deficient flacca and sitiens mutants of tomato are blocked in the conversion of ABA-aldehyde to ABA, and accumulate trans-ABA-alcohol. {sup 18}O-Labeling studies of ABA in flacca and sitiens show that these mutants synthesize a large percentage of ({sup 18}O)ABA which contains two {sup 18}O atoms in the carboxyl group. Furthermore, the mutants synthesize much greater amounts of trans-ABA-glucose ester (t-ABA-GE) compared with the wild type, and this ({sup 18}O)t-ABA-GE is also double labeled in the carboxyl group. Our interpretation of these data is that the {sup 18}O in ABA-aldehyde is trapped in the side chain by reduction to ({sup 18}O)ABA-alcohol, followed by isomerization to ({sup 18}O)t-ABA-alcohol and oxidation with {sup 18}O{sub 2} to ({sup 18}O)t-ABA. The ({sup 18}O)t-ABA is then rapidly converted to ({sup 18}O)t-ABA-GE. Because ({sup 18}O)ABA doubly labeled in the carboxyl group has been observed in small amounts in labeling experiments with several species, and various species have been shown to convert ABA-aldehyde to ABA-alcohol and t-ABA-alcohol, we propose that ABA-alcohol is an ABA intermediate in a shunt pathway.

  4. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis.

    PubMed

    Zhang, Huawei; Cui, Feng; Wu, Yaorong; Lou, Lijuan; Liu, Lijing; Tian, Miaomiao; Ning, Yuese; Shu, Kai; Tang, Sanyuan; Xie, Qi

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway. PMID:25616872

  5. The RING Finger Ubiquitin E3 Ligase SDIR1 Targets SDIR1-INTERACTING PROTEIN1 for Degradation to Modulate the Salt Stress Response and ABA Signaling in Arabidopsis

    PubMed Central

    Zhang, Huawei; Cui, Feng; Wu, Yaorong; Lou, Lijuan; Liu, Lijing; Tian, Miaomiao; Ning, Yuese; Shu, Kai; Tang, Sanyuan; Xie, Qi

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway. PMID:25616872

  6. Registration of Zak ERA8 soft white spring wheat germplasm with enhanced response to ABA and increased seed dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ZakERA8 is a unique mutant line selected from mutagenized soft white spring 'Zak' that has increased seed dormancy as a result of enhanced responsiveness to the plant hormone abscisic acid (ABA) during germination. This germplasm was developed by USDA-ARS, Pullman, WA in collaboration with Washingt...

  7. The Arabidopsis adaptor protein AP-3μ interacts with the G-protein β subunit AGB1 and is involved in abscisic acid regulation of germination and post-germination development.

    PubMed

    Kansup, Jeeraporn; Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2013-12-01

    Heterotrimeric G-proteins (G-proteins) have been implicated in ubiquitous signalling mechanisms in eukaryotes. In plants, G-proteins modulate hormonal and stress responses and regulate diverse developmental processes. However, the molecular mechanisms of their functions are largely unknown. A yeast two-hybrid screen was performed to identify interacting partners of the Arabidopsis G-protein β subunit AGB1. One of the identified AGB1-interacting proteins is the Arabidopsis adaptor protein AP-3µ. The interaction between AGB1 and AP-3µ was confirmed by an in vitro pull-down assay and bimolecular fluorescence complementation assay. Two ap-3µ T-DNA insertional mutants were found to be hyposensitive to abscisic acid (ABA) during germination and post-germination growth, whereas agb1 mutants were hypersensitive to ABA. During seed germination, agb1/ap-3µ double mutants were more sensitive to ABA than the wild type but less sensitive than agb1 mutants. However, in post-germination growth, the double mutants were as sensitive to ABA as agb1 mutants. These data suggest that AP-3µ positively regulates the ABA responses independently of AGB1 in seed germination, while AP-3µ does require AGB1 to regulate ABA responses during post-germination growth.

  8. Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases

    PubMed Central

    Kong, Lingyao; Cheng, Jinkui; Zhu, Yujuan; Ding, Yanglin; Meng, Jingjing; Chen, Zhizhong; Xie, Qi; Guo, Yan; Li, Jigang; Yang, Shuhua; Gong, Zhizhong

    2015-01-01

    Clade A protein phosphatase 2Cs (PP2Cs) are abscisic acid (ABA) co-receptors that block ABA signalling by inhibiting the downstream protein kinases. ABA signalling is activated after PP2Cs are inhibited by ABA-bound PYR/PYL/RCAR ABA receptors (PYLs) in Arabidopsis. However, whether these PP2Cs are regulated by other factors remains unknown. Here, we report that ABI1 (ABA-INSENSITIVE 1) can interact with the U-box E3 ligases PUB12 and PUB13, but is ubiquitinated only when it interacts with ABA receptors in an in vitro assay. A mutant form of ABI1-1 that is unable to interact with PYLs is more stable than the wild-type protein. Both ABI1 degradation and all tested ABA responses are reduced in pub12 pub13 mutants compared with the wild type. Introducing the abi1-3 loss-of-function mutation into pub12 pub13 mutant recovers the ABA-insensitive phenotypes of the pub12 pub13 mutant. We thus uncover an important regulatory mechanism for regulating ABI1 levels by PUB12 and PUB13. PMID:26482222

  9. The roles of auxin in seed dormancy and germination.

    PubMed

    Haiwei, Shuai; Yongjie, Meng; Xiaofeng, Luo; Feng, Chen; Ying, Qi; Wenyu, Yang; Kai, Shu

    2016-04-01

    Seed dormancy and germination are attractive topics in the fields of plant molecular biology as they are key stages during plant growth and development. Seed dormancy is intricately regulated by complex networks of phytohormones and numerous key genes, combined with diverse environmental cues. The transition from dormancy to germination is a very important biological process, and extensive studies have demonstrated that phytohormones abscisic acid (ABA) and gibberellin acid (GA) are major determinants. Consequently, the precise balance between ABA and GA can ensure that the seeds remain dormant under stress conditions and germinate at optimal times. Here we review the role of auxin in seed dormancy and germination. Auxin is one of the classic phytohormones effective during tropism growth and tissue differentiation. Recent studies, however, show that auxin possesses positive effects on seed dormancy, which suggests that auxin is the second phytohormone that induces seed dormancy, besides ABA. We will focus on the synthetic effects in detail between auxin and ABA pathways on seed dormancy and propose future research directions. PMID:27103455

  10. The roles of auxin in seed dormancy and germination.

    PubMed

    Haiwei, Shuai; Yongjie, Meng; Xiaofeng, Luo; Feng, Chen; Ying, Qi; Wenyu, Yang; Kai, Shu

    2016-04-01

    Seed dormancy and germination are attractive topics in the fields of plant molecular biology as they are key stages during plant growth and development. Seed dormancy is intricately regulated by complex networks of phytohormones and numerous key genes, combined with diverse environmental cues. The transition from dormancy to germination is a very important biological process, and extensive studies have demonstrated that phytohormones abscisic acid (ABA) and gibberellin acid (GA) are major determinants. Consequently, the precise balance between ABA and GA can ensure that the seeds remain dormant under stress conditions and germinate at optimal times. Here we review the role of auxin in seed dormancy and germination. Auxin is one of the classic phytohormones effective during tropism growth and tissue differentiation. Recent studies, however, show that auxin possesses positive effects on seed dormancy, which suggests that auxin is the second phytohormone that induces seed dormancy, besides ABA. We will focus on the synthetic effects in detail between auxin and ABA pathways on seed dormancy and propose future research directions.

  11. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit

    PubMed Central

    Zhang, Mei; Yuan, Bing; Leng, Ping

    2009-01-01

    In order to understand more details about the role of abscisic acid (ABA) in fruit ripening and senescence of tomato, two cDNAs (LeNCED1 and LeNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) as a key enzyme in ABA biosynthesis, two cDNAs (LeACS2 and LeACS4) which encode 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, and one cDNA (LeACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from tomato fruit using a reverse transcription-PCR (RT-PCR) approach. The relationship between ABA and ethylene during ripening was also investigated. Among six sampling times in tomato fruits, the LeNCED1 gene was highly expressed only at the breaker stage when the ABA content becomes high. After this, the LeACS2, LeACS4, and LeACO1 genes were expressed with some delay. The change in pattern of ACO activity was in accordance with ethylene production reaching its peak at the pink stage. The maximum ABA content preceded ethylene production in both the seeds and the flesh. The peak value of ABA, ACC, and ACC oxidase activity, and ethylene production all started to increase earlier in seeds than in flesh tissues, although they occurred at different ripening stages. Exogenous ABA treatment increased the ABA content in both flesh and seed, inducing the expression of both ACS and ACO genes, and promoting ethylene synthesis and fruit ripening, while treatment with fluridone or nordihydroguaiaretic acid (NDGA) inhibited them, delaying fruit ripening and softening. Based on the results obtained in this study, it was concluded that LeNCED1 initiates ABA biosynthesis at the onset of fruit ripening, and might act as an original inducer, and ABA accumulation might play a key role in the regulation of ripeness and senescence of tomato fruit. PMID:19246595

  12. Immunosuppressive property within the Streptococcus pneumoniae cell wall that inhibits generation of T follicular helper, germinal center, and plasma cell response to a coimmunized heterologous protein.

    PubMed

    Saumyaa; Arjunaraja, Swadhinya; Pujanauski, Lindsey; Colino, Jesus; Torres, Raul M; Snapper, Clifford M

    2013-09-01

    We previously demonstrated that intact, inactivated Streptococcus pneumoniae (unencapsulated strain R36A) inhibits IgG responses to a number of coimmunized soluble antigens (Ags). In this study, we investigated the mechanism of this inhibition and whether other extracellular bacteria exhibited similar effects. No inhibition was observed if R36A was given 24 h before or after immunization with soluble chicken ovalbumin (cOVA), indicating that R36A acts transiently during the initiation of the immune response. Using transgenic cOVA-specific CD4(+) T cells, we observed that R36A had no significant effect on T-cell activation (24 h) or generation of regulatory T cells (day 7) and only a modest effect on T-cell proliferation (48 to 96 h) in response to cOVA. However, R36A mediated a significant reduction in the formation of Ag-specific splenic germinal center T follicular helper (GC Tfh) and GC B cells and antibody-secreting cells in the spleen and bone marrow in response to cOVA or cOVA conjugated to 4-hydroxy-3-nitrophenylacetyl hapten (NP-cOVA). Of note, the inhibitory effect of intact R36A on the IgG anti-cOVA response could be reproduced using R36A-derived cell walls. In contrast to R36A, neither inactivated, unencapsulated, intact Neisseria meningitidis nor Streptococcus agalactiae inhibited the OVA-specific IgG response. These results suggest a novel immunosuppressive property within the cell wall of Streptococcus pneumoniae.

  13. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis.

    PubMed

    Dutilleul, Christelle; Ribeiro, Iliana; Blanc, Nathalie; Nezames, Cynthia D; Deng, Xing Wang; Zglobicki, Piotr; Palacio Barrera, Ana María; Atehortùa, Lucia; Courtois, Martine; Labas, Valérie; Giglioli-Guivarc'h, Nathalie; Ducos, Eric

    2016-01-01

    The tagging-via-substrate approach designed for the capture of mammal prenylated proteins was adapted to Arabidopsis cell culture. In this way, proteins are in vivo tagged with an azide-modified farnesyl moiety and captured thanks to biotin alkyne Click-iT® chemistry with further streptavidin-affinity chromatography. Mass spectrometry analyses identified four small GTPases and ASG2 (ALTERED SEED GERMINATION 2), a protein previously associated to the seed germination gene network. ASG2 is a conserved protein in plants and displays a unique feature that associates WD40 domains and tetratricopeptide repeats. Additionally, we show that ASG2 has a C-terminal CaaX-box that is farnesylated in vitro. Protoplast transfections using CaaX prenyltransferase mutants show that farnesylation provokes ASG2 nucleus exclusion. Moreover, ASG2 interacts with DDB1 (DAMAGE DNA BINDING protein 1), and the subcellular localization of this complex depends on ASG2 farnesylation status. Finally, germination and root elongation experiments reveal that asg2 and the farnesyltransferase mutant era1 (ENHANCED RESPONSE TO ABSCISIC ACID (ABA) 1) behave in similar manners when exposed to ABA or salt stress. To our knowledge, ASG2 is the first farnesylated DWD (DDB1 binding WD40) protein related to ABA response in Arabidopsis that may be linked to era1 phenotypes. PMID:26147561

  14. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    PubMed

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jérémie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination.

  15. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings.

    PubMed

    Duan, Lina; Dietrich, Daniela; Ng, Chong Han; Chan, Penny Mei Yeen; Bhalerao, Rishikesh; Bennett, Malcolm J; Dinneny, José R

    2013-01-01

    The endodermal tissue layer is found in the roots of vascular plants and functions as a semipermeable barrier, regulating the transport of solutes from the soil into the vascular stream. As a gateway for solutes, the endodermis may also serve as an important site for sensing and responding to useful or toxic substances in the environment. Here, we show that high salinity, an environmental stress widely impacting agricultural land, regulates growth of the seedling root system through a signaling network operating primarily in the endodermis. We report that salt stress induces an extended quiescent phase in postemergence lateral roots (LRs) whereby the rate of growth is suppressed for several days before recovery begins. Quiescence is correlated with sustained abscisic acid (ABA) response in LRs and is dependent upon genes necessary for ABA biosynthesis, signaling, and transcriptional regulation. We use a tissue-specific strategy to identify the key cell layers where ABA signaling acts to regulate growth. In the endodermis, misexpression of the ABA insensitive1-1 mutant protein, which dominantly inhibits ABA signaling, leads to a substantial recovery in LR growth under salt stress conditions. Gibberellic acid signaling, which antagonizes the ABA pathway, also acts primarily in the endodermis, and we define the crosstalk between these two hormones. Our results identify the endodermis as a gateway with an ABA-dependent guard, which prevents root growth into saline environments.

  16. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production. PMID:27382772

  17. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy

    PubMed Central

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ). PMID:26579187

  18. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth.

    PubMed

    Xing, Lu; Zhao, Yang; Gao, Jinghui; Xiang, Chengbin; Zhu, Jian-Kang

    2016-01-01

    Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors. PMID:27256015

  19. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth

    PubMed Central

    Xing, Lu; Zhao, Yang; Gao, Jinghui; Xiang, Chengbin; Zhu, Jian-Kang

    2016-01-01

    Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors. PMID:27256015

  20. LKB1 inhibition of NF-κB in B cells prevents T follicular helper cell differentiation and germinal center formation

    PubMed Central

    Walsh, Nicole C; Waters, Lynnea R; Fowler, Jessica A; Lin, Mark; Cunningham, Cameron R; Brooks, David G; Rehg, Jerold E; Morse, Herbert C; Teitell, Michael A

    2015-01-01

    T-cell-dependent antigenic stimulation drives the differentiation of B cells into antibody-secreting plasma cells and memory B cells, but how B cells regulate this process is unclear. We show that LKB1 expression in B cells maintains B-cell quiescence and prevents the premature formation of germinal centers (GCs). Lkb1-deficient B cells (BKO) undergo spontaneous B-cell activation and secretion of multiple inflammatory cytokines, which leads to splenomegaly caused by an unexpected expansion of T cells. Within this cytokine response, increased IL-6 production results from heightened activation of NF-κB, which is suppressed by active LKB1. Secreted IL-6 drives T-cell activation and IL-21 production, promoting T follicular helper (TFH) cell differentiation and expansion to support a ∽100-fold increase in steady-state GC B cells. Blockade of IL-6 secretion by BKO B cells inhibits IL-21 expression, a known inducer of TFH-cell differentiation and expansion. Together, these data reveal cell intrinsic and surprising cell extrinsic roles for LKB1 in B cells that control TFH-cell differentiation and GC formation, and place LKB1 as a central regulator of T-cell-dependent humoral immunity. PMID:25916856

  1. Infection of Tribolium castaneum with Bacillus thuringiensis: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination.

    PubMed

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P; Kurtz, Joachim

    2015-12-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen. PMID:26386058

  2. Infection of Tribolium castaneum with Bacillus thuringiensis: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination.

    PubMed

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P; Kurtz, Joachim

    2015-12-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen.

  3. Infection of Tribolium castaneum with Bacillus thuringiensis: Quantification of Bacterial Replication within Cadavers, Transmission via Cannibalism, and Inhibition of Spore Germination

    PubMed Central

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P.

    2015-01-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen. PMID:26386058

  4. LKB1 inhibition of NF-κB in B cells prevents T follicular helper cell differentiation and germinal center formation.

    PubMed

    Walsh, Nicole C; Waters, Lynnea R; Fowler, Jessica A; Lin, Mark; Cunningham, Cameron R; Brooks, David G; Rehg, Jerold E; Morse, Herbert C; Teitell, Michael A

    2015-06-01

    T-cell-dependent antigenic stimulation drives the differentiation of B cells into antibody-secreting plasma cells and memory B cells, but how B cells regulate this process is unclear. We show that LKB1 expression in B cells maintains B-cell quiescence and prevents the premature formation of germinal centers (GCs). Lkb1-deficient B cells (BKO) undergo spontaneous B-cell activation and secretion of multiple inflammatory cytokines, which leads to splenomegaly caused by an unexpected expansion of T cells. Within this cytokine response, increased IL-6 production results from heightened activation of NF-κB, which is suppressed by active LKB1. Secreted IL-6 drives T-cell activation and IL-21 production, promoting T follicular helper (TFH ) cell differentiation and expansion to support a ~100-fold increase in steady-state GC B cells. Blockade of IL-6 secretion by BKO B cells inhibits IL-21 expression, a known inducer of TFH -cell differentiation and expansion. Together, these data reveal cell intrinsic and surprising cell extrinsic roles for LKB1 in B cells that control TFH -cell differentiation and GC formation, and place LKB1 as a central regulator of T-cell-dependent humoral immunity. PMID:25916856

  5. Isolation and structure elucidation of avocado seed (Persea americana) lipid derivatives that inhibit Clostridium sporogenes endospore germination.

    PubMed

    Rodríguez-Sánchez, Dariana Graciela; Pacheco, Adriana; García-Cruz, María Isabel; Gutiérrez-Uribe, Janet Alejandra; Benavides-Lozano, Jorge Alejandro; Hernández-Brenes, Carmen

    2013-07-31

    Avocado fruit extracts are known to exhibit antimicrobial properties. However, the effects on bacterial endospores and the identity of antimicrobial compounds have not been fully elucidated. In this study, avocado seed extracts were tested against Clostridium sporogenes vegetative cells and active endospores. Bioassay-guided purification of a crude extract based on inhibitory properties linked antimicrobial action to six lipid derivatives from the family of acetogenin compounds. Two new structures and four compounds known to exist in nature were identified as responsible for the activity. Structurally, most potent molecules shared features of an acetyl moiety and a trans-enone group. All extracts produced inhibition zones on vegetative cells and active endospores. Minimum inhibitory concentrations (MIC) of isolated molecules ranged from 7.8 to 15.6 μg/mL, and bactericidal effects were observed for an enriched fraction at 19.5 μg/mL. Identified molecules showed potential as natural alternatives to additives and antibiotics used by the food and pharmaceutical industries to inhibit Gram-positive spore-forming bacteria. PMID:23829335

  6. Isolation and structure elucidation of avocado seed (Persea americana) lipid derivatives that inhibit Clostridium sporogenes endospore germination.

    PubMed

    Rodríguez-Sánchez, Dariana Graciela; Pacheco, Adriana; García-Cruz, María Isabel; Gutiérrez-Uribe, Janet Alejandra; Benavides-Lozano, Jorge Alejandro; Hernández-Brenes, Carmen

    2013-07-31

    Avocado fruit extracts are known to exhibit antimicrobial properties. However, the effects on bacterial endospores and the identity of antimicrobial compounds have not been fully elucidated. In this study, avocado seed extracts were tested against Clostridium sporogenes vegetative cells and active endospores. Bioassay-guided purification of a crude extract based on inhibitory properties linked antimicrobial action to six lipid derivatives from the family of acetogenin compounds. Two new structures and four compounds known to exist in nature were identified as responsible for the activity. Structurally, most potent molecules shared features of an acetyl moiety and a trans-enone group. All extracts produced inhibition zones on vegetative cells and active endospores. Minimum inhibitory concentrations (MIC) of isolated molecules ranged from 7.8 to 15.6 μg/mL, and bactericidal effects were observed for an enriched fraction at 19.5 μg/mL. Identified molecules showed potential as natural alternatives to additives and antibiotics used by the food and pharmaceutical industries to inhibit Gram-positive spore-forming bacteria.

  7. The HyPRP gene EARLI1 has an auxiliary role for germinability and early seedling development under low temperature and salt stress conditions in Arabidopsis thaliana.

    PubMed

    Xu, Dan; Huang, Xuan; Xu, Zi-Qin; Schläppi, Michael

    2011-09-01

    The effect of the hybrid proline-rich protein (HyPRP) gene EARLI1 on the rate of germination (germinability) of Arabidopsis seeds and seedling growth under low temperature and salt stress conditions was investigated. EARLI1 was induced during germination in embryonic tissues, and was strongly expressed in certain parts of young seedlings. Comparisons of control, overexpressing (OX), and knockout (KO) lines indicated that higher than wild type levels of EARLI1 improved germinability, root elongation, and reduction of sodium accumulation in leaves under salt stress, as well as germinability under low-temperature stress. Abscisic acid (ABA) contents were relatively low after prolonged salt stress, suggesting that EARLI1 has an ABA-independent effect on germinability under these conditions. Overexpression of EARLI1 during germination enhanced the sensitivity of seeds to exogenously applied ABA, suggesting that EARLI1 has an ABA-dependent negative effect on seed germinability under high ABA stress conditions. Well-known stress response marker genes such as COR15a, KIN1, P5SC1, and RD29 were unaffected whereas P5SC2, RD22, or RAB18 were only slightly affected in OX and KO plants. The pleiotropic effects of EARLI1 during stress and an absence of strong regulatory effects on stress marker genes suggest that this HyPRP gene has an auxiliary role for various stress protection responses in Arabidopsis.

  8. Overexpression of the NDR1/HIN1-Like Gene NHL6 Modifies Seed Germination in Response to Abscisic Acid and Abiotic Stresses in Arabidopsis.

    PubMed

    Bao, Yan; Song, Wei-Meng; Pan, Jing; Jiang, Chun-Mei; Srivastava, Renu; Li, Bei; Zhu, Lu-Ying; Su, Hong-Yan; Gao, Xiao-Shu; Liu, Hua; Yu, Xiang; Yang, Lei; Cheng, Xian-Hao; Zhang, Hong-Xia

    2016-01-01

    NHL (NDR1/HIN1-like) genes play crucial roles in pathogen induced plant responses to biotic stress. Here, we report the possible function of NHL6 in plant response to abscisic acid (ABA) and abiotic stress. NHL6 was highly expressed in non-germinated seeds, and its expression was strongly induced by ABA and multiple abiotic stress signals. Loss-of-function of NHL6 decreased sensitivity to ABA in the early developmental stages including seed germination and post-germination seedling growth of the nhl6 mutants. However, overexpression of NHL6 increased sensitivity to ABA, salt and osmotic stress of the transgenic plants. Further studies indicated that the increased sensitivity in the 35S::NHL6 overexpressing plants could be a result of both ABA hypersensitivity and increased endogenous ABA accumulation under the stress conditions. It was also seen that the ABA-responsive element binding factors AREB1, AREB2 and ABF3 could regulate NHL6 expression at transcriptional level. Our results indicate that NHL6 plays an important role in the abiotic stresses-induced ABA signaling and biosynthesis, particularly during seed germination and early seedling development in Arabidopsis.

  9. Overexpression of the NDR1/HIN1-Like Gene NHL6 Modifies Seed Germination in Response to Abscisic Acid and Abiotic Stresses in Arabidopsis.

    PubMed

    Bao, Yan; Song, Wei-Meng; Pan, Jing; Jiang, Chun-Mei; Srivastava, Renu; Li, Bei; Zhu, Lu-Ying; Su, Hong-Yan; Gao, Xiao-Shu; Liu, Hua; Yu, Xiang; Yang, Lei; Cheng, Xian-Hao; Zhang, Hong-Xia

    2016-01-01

    NHL (NDR1/HIN1-like) genes play crucial roles in pathogen induced plant responses to biotic stress. Here, we report the possible function of NHL6 in plant response to abscisic acid (ABA) and abiotic stress. NHL6 was highly expressed in non-germinated seeds, and its expression was strongly induced by ABA and multiple abiotic stress signals. Loss-of-function of NHL6 decreased sensitivity to ABA in the early developmental stages including seed germination and post-germination seedling growth of the nhl6 mutants. However, overexpression of NHL6 increased sensitivity to ABA, salt and osmotic stress of the transgenic plants. Further studies indicated that the increased sensitivity in the 35S::NHL6 overexpressing plants could be a result of both ABA hypersensitivity and increased endogenous ABA accumulation under the stress conditions. It was also seen that the ABA-responsive element binding factors AREB1, AREB2 and ABF3 could regulate NHL6 expression at transcriptional level. Our results indicate that NHL6 plays an important role in the abiotic stresses-induced ABA signaling and biosynthesis, particularly during seed germination and early seedling development in Arabidopsis. PMID:26849212

  10. Overexpression of the NDR1/HIN1-Like Gene NHL6 Modifies Seed Germination in Response to Abscisic Acid and Abiotic Stresses in Arabidopsis

    PubMed Central

    Pan, Jing; Jiang, Chun-Mei; Srivastava, Renu; Li, Bei; Zhu, Lu-Ying; Su, Hong-Yan; Gao, Xiao-Shu; Liu, Hua; Yu, Xiang; Yang, Lei; Cheng, Xian-Hao; Zhang, Hong-Xia

    2016-01-01

    NHL (NDR1/HIN1-like) genes play crucial roles in pathogen induced plant responses to biotic stress. Here, we report the possible function of NHL6 in plant response to abscisic acid (ABA) and abiotic stress. NHL6 was highly expressed in non-germinated seeds, and its expression was strongly induced by ABA and multiple abiotic stress signals. Loss-of-function of NHL6 decreased sensitivity to ABA in the early developmental stages including seed germination and post-germination seedling growth of the nhl6 mutants. However, overexpression of NHL6 increased sensitivity to ABA, salt and osmotic stress of the transgenic plants. Further studies indicated that the increased sensitivity in the 35S::NHL6 overexpressing plants could be a result of both ABA hypersensitivity and increased endogenous ABA accumulation under the stress conditions. It was also seen that the ABA-responsive element binding factors AREB1, AREB2 and ABF3 could regulate NHL6 expression at transcriptional level. Our results indicate that NHL6 plays an important role in the abiotic stresses-induced ABA signaling and biosynthesis, particularly during seed germination and early seedling development in Arabidopsis. PMID:26849212

  11. Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation.

    PubMed

    Verslues, Paul E; Bray, Elizabeth A

    2006-01-01

    The mechanisms by which plants respond to reduced water availability (low water potential) include both ABA-dependent and ABA-independent processes. Pro accumulation and osmotic adjustment are two important traits for which the mechanisms of regulation by low water potential, and the involvement of ABA, is not well understood. The ABA-deficient mutant, aba2-1, was used to investigate the regulatory role of ABA in low water potential-induced Pro accumulation and osmotic adjustment in seedlings of Arabidopsis thaliana. Low water potential-induced Pro accumulation required wild-type levels of ABA, as well as a change in ABA sensitivity or ABA-independent events. Osmotic adjustment, in contrast, occurred independently of ABA accumulation in aba2-1. Quantification of low water potential-induced ABA and Pro accumulation in five ABA-insensitive mutants, abi1-1, abi2-1, abi3, abi4, and abi5, revealed that abi4 had increased Pro accumulation at low water potential, but a reduced response to exogenous ABA. Both of these responses were modified by sucrose treatment, indicating that ABI4 has a role in connecting ABA and sugar in regulating Pro accumulation. Of the other abi mutants, only abi1 had reduced Pro accumulation in response to low water potential and ABA application. It was also observed that abi1-1 and abi2-1 had increased ABA accumulation. The involvement of these loci in feedback regulation of ABA accumulation may occur through an effect on ABA catabolism or conjugation. These data provide new information on the function of ABA in seedlings exposed to low water potential and define new roles for three of the well-studied abi loci.

  12. A G-Protein β Subunit, AGB1, Negatively Regulates the ABA Response and Drought Tolerance by Down-Regulating AtMPK6-Related Pathway in Arabidopsis

    PubMed Central

    Xu, Dong-bei; Chen, Ming; Ma, Ya-nan; Xu, Zhao-shi; Li, Lian-cheng; Chen, Yao-feng; Ma, You-zhi

    2015-01-01

    Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade. PMID:25635681

  13. ABA Affects Brassinosteroid-Induced Antioxidant Defense via ZmMAP65-1a in Maize Plants.

    PubMed

    Zhu, Yuan; Liu, Weijuan; Sheng, Yu; Zhang, Juan; Chiu, Tsanyu; Yan, Jingwei; Jiang, Mingyi; Tan, Mingpu; Zhang, Aying

    2015-07-01

    Brassinosteroids (BRs) and ABA co-ordinately regulate water deficit tolerance in maize leaves. ZmMAP65-1a, a maize microtubule-associated protein (MAP) which plays an essential role in BR-induced antioxidant defense, has been characterized previously. However, the interactions among BR, ABA and ZmMAP65-1a in water deficit tolerance remain unexplored. In this study, we demonstrated that ABA was required for BR-induced antioxidant defense via ZmMAP65-1a by using biochemical blocking and ABA biosynthetic mutants. The expression of ZmMAP65-1a in maize leaves and mesophyll protoplasts could be increased under polyethylene glycol- (PEG) stimulated water deficit and ABA treatments. Furthermore, the importance of ABA in the early pathway of BR-induced water deficit tolerance was demonstrated by limiting ABA availability. Blocking ABA biosynthesis biochemically or by a null mutation inhibited the downstream gene expression of ZmMAP65-1a and the activity of ZmMAPK5 in the pathway. It also affected the activities of BR-induced antioxidant defense-related enzymes, namely ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD) and NADPH oxidase. In addition, combining results from transiently overexpressed or silenced ZmMAP65-1a in mesophyll protoplasts, we discovered that ZmMAP65-1a mediated the ABA-induced gene expression and activities of APX and SOD. Surprisingly, silencing of ZmMAP65-1a in mesophyll protoplasts did not alter the gene expression of ZmCCaMK and vice versa in response to ABA. Taken together, our data indicate that water deficit-induced ABA is a key mediator in BR-induced antioxidant defense via ZmMAP65-1a in maize.

  14. BRI1-Associated Receptor Kinase 1 Regulates Guard Cell ABA Signaling Mediated by Open Stomata 1 in Arabidopsis.

    PubMed

    Shang, Yun; Dai, Changbo; Lee, Myeong Min; Kwak, June M; Nam, Kyoung Hee

    2016-03-01

    Stomatal movements are critical in regulating gas exchange for photosynthesis and water balance between plant tissues and the atmosphere. The plant hormone abscisic acid (ABA) plays key roles in regulating stomatal closure under various abiotic stresses. In this study, we revealed a novel role of BAK1 in guard cell ABA signaling. We found that the brassinosteroid (BR) signaling mutant bak1 lost more water than wild-type plants and showed ABA insensitivity in stomatal closure. ABA-induced OST1 expression and reactive oxygen species (ROS) production were also impaired in bak1. Unlike direct treatment with H2O2, overexpression of OST1 did not completely rescue the insensitivity of bak1 to ABA. We demonstrated that BAK1 forms a complex with OST1 near the plasma membrane and that the BAK1/OST1 complex is increased in response to ABA in planta. Brassinolide, the most active BR, exerted a negative effect on ABA-induced formation of the BAK1/OST1 complex and OST1 expression. Moreover, we found that BAK1 and ABI1 oppositely regulate OST1 phosphorylation in vitro, and that ABI1 interacts with BAK1 and inhibits the interaction of BAK1 and OST1. Taken together, our results suggest that BAK1 regulates ABA-induced stomatal closure in guard cells.

  15. High Salinity Alters the Germination Behavior of Bacillus subtilis Spores with Nutrient and Nonnutrient Germinants

    PubMed Central

    Nagler, Katja; Setlow, Peter; Li, Yong-Qing

    2014-01-01

    The effect of high NaCl concentrations on nutrient and nonnutrient germination of Bacillus subtilis spores was systematically investigated. Under all conditions, increasing NaCl concentrations caused increasing, albeit reversible, inhibition of germination. High salinity delayed and increased the heterogeneity of germination initiation, slowed the germination kinetics of individual spores and the whole spore population, and decreased the overall germination efficiency, as observed by a variety of different analytical techniques. Germination triggered by nutrients which interact with different germinant receptors (GRs) was affected differently by NaCl, suggesting that GRs are targets of NaCl inhibition. However, NaCl also inhibited GR-independent germination, suggesting that there is at least one additional target for NaCl inhibition. Strikingly, a portion of the spore population could initiate germination with l-alanine even at NaCl concentrations near saturation (∼5.4 M), suggesting that spores lack a salt-sensing system preventing them from germinating in a hostile high-salinity environment. Spores that initiated germination at very high NaCl concentrations excreted their large depot of Ca2+-pyridine-2,6-dicarboxylic acid and lost their heat resistance, but they remained in a phase-gray state in the phase-contrast microscope, suggesting that there was incomplete germination. However, some metabolic activity could be detected at up to 4.8 M NaCl. Overall, high salinity seems to exert complex effects on spore germination and outgrowth whose detailed elucidation in future investigations could give valuable insights on these processes in general. PMID:24317076

  16. Osteopontin in Spontaneous Germinal Centers Inhibits Apoptotic Cell Engulfment and Promotes Anti-Nuclear Antibody Production in Lupus-Prone Mice.

    PubMed

    Sakamoto, Keiko; Fukushima, Yuji; Ito, Koyu; Matsuda, Michiyuki; Nagata, Shigekazu; Minato, Nagahiro; Hattori, Masakazu

    2016-09-15

    Disposal of apoptotic cells is important for tissue homeostasis. Defects in this process in immune tissues may lead to breakdown of self-tolerance against intracellular molecules, including nuclear components. Development of diverse anti-nuclear Abs (ANAs) is a hallmark of lupus, which may arise, in part, due to impaired apoptotic cell clearance. In this work, we demonstrate that spontaneous germinal centers (GCs) in lupus-prone mice contain significantly elevated levels of unengulfed apoptotic cells, which are otherwise swiftly engulfed by tingible body macrophages. We indicate that osteopontin (OPN) secreted by CD153(+) senescence-associated T cells, which selectively accumulate in the GCs of lupus-prone mice, interferes with phagocytosis of apoptotic cells specifically captured via MFG-E8. OPN induced diffuse and prolonged Rac1 activation in phagocytes via integrin αvβ3 and inhibited the dissolution of phagocytic actin cup, causing defective apoptotic cell engulfment. In wild-type B6 mice, administration of TLR7 ligand also caused spontaneous GC reactions with increasing unengulfed apoptotic cells and ANA production, whereas B6 mice deficient for Spp1 encoding OPN showed less apoptotic cells and developed significantly reduced ANAs in response to TLR7 ligand. Our results suggest that OPN secreted by follicular CD153(+) senescence-associated T cells in GCs promotes a continuous supply of intracellular autoantigens via apoptotic cells, thus playing a key role in the progression of the autoreactive GC reaction and leading to pathogenic autoantibody production in lupus-prone mice. PMID:27534552

  17. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Lu, Zhuang; Møller, Ian Max; Song, Song-Quan

    2016-06-01

    Seed germination is a critical phase in the plant life cycle, but the mechanism of seed germination is still poorly understood. In the present study, rice (Oryza sativa L. cv. Peiai 64S) seeds were sampled individually when they reached different germination stages, quiescent, germinated sensu stricto, germinated completely and seedling, and were used to study the changes in the embryo proteome. A total of 88 protein spots showed a significant change in abundance during germination in water, and the results showed an activation of metabolic processes. Cell division, cell wall synthesis, and secondary metabolism were activated at late seed germination and during preparation for subsequent seedling establishment. Cycloheximide (CHX) at 70μM inhibited seedling establishment without an apparent negative effect on seed germination, while CHX at 500μM completely blocked seed germination. We used this observation to identify the potentially important proteins involved in seed germination (coleoptile protrusion) and seedling establishment (coleoptile and radicle protrusion). Twenty-six protein spots, mainly associated with sugar/polysaccharide metabolism and energy production, showed a significant difference in abundance during seed germination. Forty-nine protein spots, mainly involved in cell wall biosynthesis, proteolysis as well as cell defense and rescue, were required for seedling establishment. The results help improve our understanding of the key events (proteins) involved in germination and seedling development.

  18. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Lu, Zhuang; Møller, Ian Max; Song, Song-Quan

    2016-06-01

    Seed germination is a critical phase in the plant life cycle, but the mechanism of seed germination is still poorly understood. In the present study, rice (Oryza sativa L. cv. Peiai 64S) seeds were sampled individually when they reached different germination stages, quiescent, germinated sensu stricto, germinated completely and seedling, and were used to study the changes in the embryo proteome. A total of 88 protein spots showed a significant change in abundance during germination in water, and the results showed an activation of metabolic processes. Cell division, cell wall synthesis, and secondary metabolism were activated at late seed germination and during preparation for subsequent seedling establishment. Cycloheximide (CHX) at 70μM inhibited seedling establishment without an apparent negative effect on seed germination, while CHX at 500μM completely blocked seed germination. We used this observation to identify the potentially important proteins involved in seed germination (coleoptile protrusion) and seedling establishment (coleoptile and radicle protrusion). Twenty-six protein spots, mainly associated with sugar/polysaccharide metabolism and energy production, showed a significant difference in abundance during seed germination. Forty-nine protein spots, mainly involved in cell wall biosynthesis, proteolysis as well as cell defense and rescue, were required for seedling establishment. The results help improve our understanding of the key events (proteins) involved in germination and seedling development. PMID:27085178

  19. The ABA-deficiency suppressor locus HAS2 encodes the PPR protein LOI1/MEF11 involved in mitochondrial RNA editing.

    PubMed

    Sechet, Julien; Roux, Camille; Plessis, Anne; Effroy, Delphine; Frey, Anne; Perreau, François; Biniek, Catherine; Krieger-Liszkay, Anja; Macherel, David; North, Helen M; Mireau, Hakim; Marion-Poll, Annie

    2015-04-01

    The hot ABA-deficiency suppressor2 (has2) mutation increases drought tolerance and the ABA sensitivity of stomata closure and seed germination. Here we report that the HAS2 locus encodes the mitochondrial editing factor11 (MEF11), also known as lovastatin insensitive1. has2/mef11 mutants exhibited phenotypes very similar to the ABA-hypersensitive mutant, hai1-1 pp2ca-1 hab1-1 abi1-2, which is impaired in four genes encoding type 2C protein phosphatases (PP2C) that act as upstream negative regulators of the ABA signaling cascade. Like pp2c, mef11 plants were more resistant to progressive water stress and seed germination was more sensitive to paclobutrazol (a gibberellin biosynthesis inhibitor) as well as mannitol and NaCl, compared with the wild-type plants. Phenotypic alterations in mef11 were associated with the lack of editing of transcripts for the mitochondrial cytochrome c maturation FN2 (ccmFN2) gene, which encodes a cytochrome c-heme lyase subunit involved in cytochrome c biogenesis. Although the abundance of electron transfer chain complexes was not affected, their dysfunction could be deduced from increased respiration and altered production of hydrogen peroxide and nitric oxide in mef11 seeds. As minor defects in mitochondrial respiration affect ABA signaling, this suggests an essential role for ABA in mitochondrial retrograde regulation.

  20. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.

    PubMed

    Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong

    2016-06-01

    Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways. PMID:26610288

  1. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica)

    PubMed Central

    Wang, Dongling; Gao, Zhenzhen; Du, Peiyong; Xiao, Wei; Tan, Qiuping; Chen, Xiude; Li, Ling; Gao, Dongsheng

    2016-01-01

    Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach. PMID:26793222

  2. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica).

    PubMed

    Wang, Dongling; Gao, Zhenzhen; Du, Peiyong; Xiao, Wei; Tan, Qiuping; Chen, Xiude; Li, Ling; Gao, Dongsheng

    2015-01-01

    Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach.

  3. The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions.

    PubMed

    Li, Weiqiang; Liu, Xiaojing; Ajmal Khan, M; Yamaguchi, Shinjiro

    2005-06-01

    Suaeda salsa, a leaf succulent shrub in the family Chenopodiaceae, is one of the most important halophytes in China. Suaeda salsa produces dimorphic seeds (soft brown seeds and hard black seeds). Seeds of S. salsa were collected from the coastal salt flats near Huanghua City, China. Experiments were conducted to determine the salinity-alleviating effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of S. salsa. Brown seeds had a higher germination rate than black seeds in all experiments. Black seeds were more sensitive to salt in the absence of light in comparison to brown seeds. Brown seeds absorbed water more quickly in comparison to black seeds and were found to be more tolerant of salt stress. Our results showed that 1-aminocyclopropane-1-carboxylate (ACC, the immediate precursor of ethylene), nitrite, GA(4) and BA improved seed germination in the presence of salt. However, nitrate, GA(1), GA(3) failed to alleviate salt stress. ABA inhibited seed germination and seedling growth. Possible mechanisms involved in the alleviation of salt stress in S. salsa seeds and the ecological adaptation of the seeds to the environment are discussed.

  4. Transcriptomic Analysis Reveals Possible Influences of ABA on Secondary Metabolism of Pigments, Flavonoids and Antioxidants in Tomato Fruit during Ripening

    PubMed Central

    Mou, Wangshu; Li, Dongdong; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2015-01-01

    Abscisic acid (ABA) has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes. Exogenous ABA was found to enhance the transcription of genes involved in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these processes. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in photosynthesis. Our results highlighted the significance of ABA in regulating tomato ripening, which provided insight into the regulatory mechanism of fruit maturation and senescence process. PMID:26053166

  5. Transcriptomic Analysis Reveals Possible Influences of ABA on Secondary Metabolism of Pigments, Flavonoids and Antioxidants in Tomato Fruit during Ripening.

    PubMed

    Mou, Wangshu; Li, Dongdong; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2015-01-01

    Abscisic acid (ABA) has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes. Exogenous ABA was found to enhance the transcription of genes involved in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these processes. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in photosynthesis. Our results highlighted the significance of ABA in regulating tomato ripening, which provided insight into the regulatory mechanism of fruit maturation and senescence process.

  6. Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination.

    PubMed

    Yu, Yanwen; Wang, Juan; Shi, Hui; Gu, Juntao; Dong, Jingao; Deng, Xing Wang; Huang, Rongfeng

    2016-04-01

    Seed germination, a critical stage initiating the life cycle of a plant, is severely affected by salt stress. However, the underlying mechanism of salt inhibition of seed germination (SSG) is unclear. Here, we report that the Arabidopsis (Arabidopsis thaliana) CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) counteracts SSG Genetic assays provide evidence that SSG in loss of function of the COP1 mutant was stronger than this in the wild type. A GUS-COP1 fusion was constitutively localized to the nucleus in radicle cells. Salt treatment caused COP1 to be retained in the cytosol, but the addition of ethylene precursor 1-aminocyclopropane-1-carboxylate had the reverse effect on the translocation of COP1 to the nucleus, revealing that ethylene and salt exert opposite regulatory effects on the localization of COP1 in germinating seeds. However, loss of function of the ETHYLENE INSENSITIVE3 (EIN3) mutant impaired the ethylene-mediated rescue of the salt restriction of COP1 to the nucleus. Further research showed that the interaction between COP1 and LONG HYPOCOTYL5 (HY5) had a role in SSG Correspondingly, SSG in loss of function of HY5 was suppressed. Biochemical detection showed that salt promoted the stabilization of HY5, whereas ethylene restricted its accumulation. Furthermore, salt treatment stimulated and ethylene suppressed transcription of ABA INSENSITIVE5 (ABI5), which was directly transcriptionally regulated by HY5. Together, our results reveal that salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1, thereby controlling Arabidopsis seed germination via the COP1-mediated down-regulation of HY5 and ABI5. These findings enhance our understanding of the stress response and have great potential for application in agricultural production.

  7. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis.

    PubMed

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-06-01

    Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.

  8. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis

    PubMed Central

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-01-01

    ABSTRACT Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K+in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant. PMID:27171851

  9. Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor

    PubMed Central

    Bhattacharjee, Disha; Francis, Michael B.; Ding, Xicheng; McAllister, Kathleen N.; Shrestha, Ritu

    2015-01-01

    ABSTRACT Clostridium difficile spore germination is essential for colonization and disease. The signals that initiate C. difficile spore germination are a combination of taurocholic acid (a bile acid) and glycine. Interestingly, the chenodeoxycholic acid class (CDCA) bile acids competitively inhibit taurocholic acid-mediated germination, suggesting that compounds that inhibit spore germination could be developed into drugs that prophylactically prevent C. difficile infection or reduce recurring disease. However, a recent report called into question the utility of such a strategy to prevent infection by describing C. difficile strains that germinated in the apparent absence of bile acids or germinated in the presence of the CDCA inhibitor. Because the mechanisms of C. difficile spore germination are beginning to be elucidated, the mechanism of germination in these particular strains could yield important information on how C. difficile spores initiate germination. Therefore, we quantified the interaction of these strains with taurocholic acid and CDCA, the rates of spore germination, the release of DPA from the spore core, and the abundance of the germinant receptor complex (CspC, CspB, and SleC). We found that strains previously observed to germinate in the absence of taurocholic acid correspond to more potent 50% effective concentrations (EC50 values; the concentrations that achieve a half-maximum germination rate) of the germinant and are still inhibited by CDCA, possibly explaining the previous observations. By comparing the germination kinetics and the abundance of proteins in the germinant receptor complex, we revised our original model for CspC-mediated activation of spore germination and propose that CspC may activate spore germination and then inhibit downstream processes. IMPORTANCE Clostridium difficile forms metabolically dormant spores that persist in the health care environment. In susceptible hosts, C. difficile spores germinate in response to certain

  10. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs

    PubMed Central

    Waadt, Rainer; Schroeder, Julian I.

    2016-01-01

    The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by “monomeric” PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA. PMID:27192441

  11. Pepper protein phosphatase type 2C, CaADIP1 and its interacting partner CaRLP1 antagonistically regulate ABA signalling and drought response.

    PubMed

    Lim, Chae Woo; Lee, Sung Chul

    2016-07-01

    Abscisic acid (ABA) is a key phytohormone that regulates plant growth and developmental processes, including seed germination and stomatal closing. Here, we report the identification and functional characterization of a novel type 2C protein phosphatase, CaADIP1 (Capsicum annuum ABA and Drought-Induced Protein phosphatase 1). The expression of CaADIP1 was induced in pepper leaves by ABA, drought and NaCl treatments. Arabidopsis plants overexpressing CaADIP1 (CaADIP1-OX) exhibited an ABA-hyposensitive and drought-susceptible phenotype. We used a yeast two-hybrid screening assay to identify CaRLP1 (Capsicum annuum RCAR-Like Protein 1), which interacts with CaADIP1 in the cytoplasm and nucleus. In contrast to CaADIP1-OX plants, CaRLP1-OX plants displayed an ABA-hypersensitive and drought-tolerant phenotype, which was characterized by low levels of transpirational water loss and increased expression of stress-responsive genes relative to those of wild-type plants. In CaADIP1-OX/CaRLP1-OX double transgenic plants, ectopic expression of the CaRLP1 gene led to strong suppression of CaADIP1-induced ABA hyposensitivity during the germinative and post-germinative stages, indicating that CaADIP1 and CaRLP1 act in the same signalling pathway and CaADIP1 functions downstream of CaRLP1. Our results indicate that CaADIP1 and its interacting partner CaRLP1 antagonistically regulate the ABA-dependent defense signalling response to drought stress. PMID:26825039

  12. Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat.

    PubMed

    Himi, Eiko; Mares, Daryl J; Yanagisawa, Akira; Noda, Kazuhiko

    2002-07-01

    The level of grain dormancy and sensitivity to ABA of the embryo, a key factor in grain dormancy, were examined in developing grains of a white-grained wheat line, Novosibirskaya 67 (NS-67), and its red-grained near-isogenic lines (ANK-1A to -1D); a red-grained line, AUS 1490, and its white-grained mutant line (EMS-AUS). ANK lines showed higher levels of grain dormancy than NS-67 at harvest maturity. AUS 1490 grain also showed higher dormancy than EMS-AUS grain. These results suggest that the R gene for grain colour can enhance grain dormancy. However, the dormancy effect conferred by the R gene was not large, suggesting that it plays a minor role in the development of grain dormancy. Water extracts of AUS 1490 and EMS-AUS bran contained germination inhibitors equivalent to 1-10 microM ABA, although there was no difference in the amount of inhibitors between AUS 1490 and EMS-AUS. Thus, the grain colour gene of AUS 1490 did not appear to enhance the level of grain dormancy by accumulating germination inhibitors in its bran. Sensitivity to ABA of embryos was higher in grains collected around harvest-maturity for ANK lines and AUS 1490, compared with NS-67 and EMS-AUS. The R gene might enhance grain dormancy by increasing the sensitivity of embryos to ABA.

  13. Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development.

    PubMed

    Huang, Yun; Feng, Cui-Zhu; Ye, Qing; Wu, Wei-Hua; Chen, Yi-Fang

    2016-02-01

    The phytohormone abscisic acid (ABA) plays important roles during seed germination and early seedling development. Here, we characterized the function of the Arabidopsis WRKY6 transcription factor in ABA signaling. The transcript of WRKY6 was repressed during seed germination and early seedling development, and induced by exogenous ABA. The wrky6-1 and wrky6-2 mutants were ABA insensitive, whereas WRKY6-overexpressing lines showed ABA-hypersensitive phenotypes during seed germination and early seedling development. The expression of RAV1 was suppressed in the WRKY6-overexpressing lines and elevated in the wrky6 mutants, and the expression of ABI3, ABI4, and ABI5, which was directly down-regulated by RAV1, was enhanced in the WRKY6-overexpressing lines and repressed in the wrky6 mutants. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that WRKY6 could bind to the RAV1 promoter in vitro and in vivo. Overexpression of RAV1 in WRKY6-overexpressing lines abolished their ABA-hypersensitive phenotypes, and the rav1 wrky6-2 double mutant showed an ABA-hypersensitive phenotype, similar to rav1 mutant. Together, the results demonstrated that the Arabidopsis WRKY6 transcription factor played important roles in ABA signaling by directly down-regulating RAV1 expression.

  14. Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development

    PubMed Central

    Wu, Wei-Hua; Chen, Yi-Fang

    2016-01-01

    The phytohormone abscisic acid (ABA) plays important roles during seed germination and early seedling development. Here, we characterized the function of the Arabidopsis WRKY6 transcription factor in ABA signaling. The transcript of WRKY6 was repressed during seed germination and early seedling development, and induced by exogenous ABA. The wrky6-1 and wrky6-2 mutants were ABA insensitive, whereas WRKY6-overexpressing lines showed ABA-hypersensitive phenotypes during seed germination and early seedling development. The expression of RAV1 was suppressed in the WRKY6-overexpressing lines and elevated in the wrky6 mutants, and the expression of ABI3, ABI4, and ABI5, which was directly down-regulated by RAV1, was enhanced in the WRKY6-overexpressing lines and repressed in the wrky6 mutants. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that WRKY6 could bind to the RAV1 promoter in vitro and in vivo. Overexpression of RAV1 in WRKY6-overexpressing lines abolished their ABA-hypersensitive phenotypes, and the rav1 wrky6-2 double mutant showed an ABA-hypersensitive phenotype, similar to rav1 mutant. Together, the results demonstrated that the Arabidopsis WRKY6 transcription factor played important roles in ABA signaling by directly down-regulating RAV1 expression. PMID:26829043

  15. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination

    PubMed Central

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions. PMID:27446159

  16. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination.

    PubMed

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions.

  17. AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose

    PubMed Central

    Hsu, Yi-Feng; Chen, Yun-Chu; Hsiao, Yu-Chun; Wang, Bing-Jyun; Lin, Shih-Yun; Cheng, Wan-Hsing; Jauh, Guang-Yuh; Harada, John J; Wang, Co-Shine

    2014-01-01

    The Arabidopsis thalianaT-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth. PMID:24176057

  18. AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose.

    PubMed

    Hsu, Yi-Feng; Chen, Yun-Chu; Hsiao, Yu-Chun; Wang, Bing-Jyun; Lin, Shih-Yun; Cheng, Wan-Hsing; Jauh, Guang-Yuh; Harada, John J; Wang, Co-Shine

    2014-01-01

    The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth.

  19. AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose.

    PubMed

    Hsu, Yi-Feng; Chen, Yun-Chu; Hsiao, Yu-Chun; Wang, Bing-Jyun; Lin, Shih-Yun; Cheng, Wan-Hsing; Jauh, Guang-Yuh; Harada, John J; Wang, Co-Shine

    2014-01-01

    The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth. PMID:24176057

  20. Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta-1,3-glucanase during tobacco seed germination.

    PubMed

    Leubner-Metzger, G; Petruzzelli, L; Waldvogel, R; Vögeli-Lange, R; Meins, F

    1998-11-01

    Class I beta-1,3-glucanase (betaGLU I) is transcriptionally induced in the micropylar endosperm just before its rupture prior to the germination (i.e. radicle emergence) of Nicotiana tabacum L. cv. 'Havana 425' seeds. Ethylene is involved in endosperm rupture and high-level betaGLU I expression; but, it does not affect the spatial and temporal pattern of betaGLU I expression. A promoter deletion analysis of the tobacco betaGLU I B gene suggests that (1) the distal - 1452 to - 1193 region, which contains the positively acting ethylene-responsive element (ERE), is required for high-level, ethylene-sensitive expression, (2) the regions - 1452 to - 1193 and -402 to 0 contribute to downregulation by abscisic acid (ABA), and (3) the region -402 to -211 is necessary and sufficient for low-level micropylar-endosperm-specific expression. Transcripts of the ERE-binding proteins (EREBPs) showed a novel pattern of expression during seed germination: light or gibberellin was required for EREBP-3 and EREBP-4 expression; EREBP-4 expression was constitutive and unaffected by ABA or ethylene; EREBP-3 showed transient induction just before endosperm rupture, which was earlier in ethylene-treated seeds and inhibited by ABA. No expression of EREBP- and EREBP-2 was detected. In contrast to betaGLU I, EREBP-3 and EREBP-4 were not expressed specifically in the micropylar endosperm. The results suggest that transcriptional regulation of betaGLU I could depend on: activation of ethylene signalling pathways acting via EREBP-3 with the ERE as the target, and ethylene-independent signalling pathways with targets in the proximal promoter region that are likely to determine spatial and temporal patterns of expression.

  1. Ethylene, seed germination, and epinasty.

    PubMed

    Stewart, E R; Freebairn, H T

    1969-07-01

    Ethylene activity in lettuce seed (Lactuca satina) germination and tomato (Lycopersicon esculentum) petiole epinasty has been characterized by using heat to inhibit ethylene synthesis. This procedure enabled a separation of the production of ethylene from the effect of ethylene. Ethylene was required in tomato petioles to produce the epinastic response and auxin was found to be active in producing epinasty through a stimulation of ethylene synthesis with the resulting ethylene being responsible for the epinasty. In the same manner, it was shown that gibberellic acid stimulated ethylene synthesis in lettuce seeds. The ethylene produced then in turn stimulated the seeds to germinate. It was hypothesized that ethylene was the intermediate which caused epinasty or seed germination. Auxin and gibberellin primarily induced their response by stimulating ethylene production.

  2. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity.

    PubMed

    Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070

  3. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity

    PubMed Central

    Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070

  4. Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling.

    PubMed

    Chater, Caspar; Peng, Kai; Movahedi, Mahsa; Dunn, Jessica A; Walker, Heather J; Liang, Yun-Kuan; McLachlan, Deirdre H; Casson, Stuart; Isner, Jean Charles; Wilson, Ian; Neill, Steven J; Hedrich, Rainer; Gray, Julie E; Hetherington, Alistair M

    2015-10-19

    An integral part of global environment change is an increase in the atmospheric concentration of CO2 ([CO2]) [1]. Increased [CO2] reduces leaf stomatal apertures and density of stomata that plays out as reductions in evapotranspiration [2-4]. Surprisingly, given the importance of transpiration to the control of terrestrial water fluxes [5] and plant nutrient acquisition [6], we know comparatively little about the molecular components involved in the intracellular signaling pathways by which [CO2] controls stomatal development and function [7]. Here, we report that elevated [CO2]-induced closure and reductions in stomatal density require the generation of reactive oxygen species (ROS), thereby adding a new common element to these signaling pathways. We also show that the PYR/RCAR family of ABA receptors [8, 9] and ABA itself are required in both responses. Using genetic approaches, we show that ABA in guard cells or their precursors is sufficient to mediate the [CO2]-induced stomatal density response. Taken together, our results suggest that stomatal responses to increased [CO2] operate through the intermediacy of ABA. In the case of [CO2]-induced reductions in stomatal aperture, this occurs by accessing the guard cell ABA signaling pathway. In both [CO2]-mediated responses, our data are consistent with a mechanism in which ABA increases the sensitivity of the system to [CO2] but could also be explained by requirement for a CO2-induced increase in ABA biosynthesis specifically in the guard cell lineage. Furthermore, the dependency of stomatal [CO2] signaling on ABA suggests that the ABA pathway is, in evolutionary terms, likely to be ancestral.

  5. Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling.

    PubMed

    Chater, Caspar; Peng, Kai; Movahedi, Mahsa; Dunn, Jessica A; Walker, Heather J; Liang, Yun-Kuan; McLachlan, Deirdre H; Casson, Stuart; Isner, Jean Charles; Wilson, Ian; Neill, Steven J; Hedrich, Rainer; Gray, Julie E; Hetherington, Alistair M

    2015-10-19

    An integral part of global environment change is an increase in the atmospheric concentration of CO2 ([CO2]) [1]. Increased [CO2] reduces leaf stomatal apertures and density of stomata that plays out as reductions in evapotranspiration [2-4]. Surprisingly, given the importance of transpiration to the control of terrestrial water fluxes [5] and plant nutrient acquisition [6], we know comparatively little about the molecular components involved in the intracellular signaling pathways by which [CO2] controls stomatal development and function [7]. Here, we report that elevated [CO2]-induced closure and reductions in stomatal density require the generation of reactive oxygen species (ROS), thereby adding a new common element to these signaling pathways. We also show that the PYR/RCAR family of ABA receptors [8, 9] and ABA itself are required in both responses. Using genetic approaches, we show that ABA in guard cells or their precursors is sufficient to mediate the [CO2]-induced stomatal density response. Taken together, our results suggest that stomatal responses to increased [CO2] operate through the intermediacy of ABA. In the case of [CO2]-induced reductions in stomatal aperture, this occurs by accessing the guard cell ABA signaling pathway. In both [CO2]-mediated responses, our data are consistent with a mechanism in which ABA increases the sensitivity of the system to [CO2] but could also be explained by requirement for a CO2-induced increase in ABA biosynthesis specifically in the guard cell lineage. Furthermore, the dependency of stomatal [CO2] signaling on ABA suggests that the ABA pathway is, in evolutionary terms, likely to be ancestral. PMID:26455301

  6. Microbe-Mediated Germination of Ascospores of Monosporascus cannonballus.

    PubMed

    Stanghellini, M E; Kim, D H; Waugh, M

    2000-03-01

    ABSTRACT Ascospores of Monosporascus cannonballus germinated readily in the rhizosphere of cantaloupe plants growing in field soil. However, little or no germination occurred in the rhizosphere of melon plants growing in field soil that was autoclaved prior to infestation with ascospores. The latter data suggested that root exudates alone do not stimulate ascospore germination and that the soil microflora may be involved in the induction of ascospore germination. Amending field soil with streptomycin (which inhibits gram-negative microorganisms) did not suppress ascospore germination in the rhizosphere of cantaloupe plants. However, amending the soil with penicillin (which inhibits gram-positive microorganisms) did suppress ascospore germination. Pentachloronitrobenzene (PCNB), which inhibits the gram-positive actinomycetes but does not inhibit gram-positive or gram-negative bacteria, also suppressed ascospore germination. These results suggest that actinomycetes, either directly or indirectly, are involved in the induction of ascospore germination in field soil in the presence of exudates from cantaloupe roots. Optimum germination occurred at temperatures ranging from 25 to 35 degrees C, and data indicate that a high percentage (>/=72%) of the ascospore population within 500 mum of a root are capable of germination and subsequent penetration of cantaloupe roots. PMID:18944615

  7. Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu²⁺, Zn²⁺, NaCl and simulated acid rain stresses.

    PubMed

    Wang, Yanping; Wang, Ya; Kai, Wenbin; Zhao, Bo; Chen, Pei; Sun, Liang; Ji, Kai; Li, Qian; Dai, Shengjie; Sun, Yufei; Wang, Yidong; Pei, Yuelin; Leng, Ping

    2014-03-01

    Abscisic acid (ABA) is an important phytohormone that regulates lots of physiological and biochemical processes in plant life cycle, especially in seed germination and stress responses. For exploring the transcriptional regulation of ABA signal transduction during cucumber (Cucumis sativus L.) seed germination and under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, nine CsPYLs, three group A CsPP2Cs and two subclass III CsSnRK2s were identified from cucumber genome, which respectively showed high sequence similarities and highly conserved domains with homologous genes in Arabidopsis. Based on Real-time PCR analysis, most of the tested genes' expression decreased during cucumber seed germination, which was in accordance with the ABA level variation. In addition, according to the absolute expression, CsPYL1, CsPYL3, CsPP2C5, CsABI1, CsSnRK2.3 and CsSnRK2.4 were highly expressed, indicating that they may play more important roles in ABA signaling during cucumber seed germination. Moreover, most of these highly expressed genes, except CsPYL3, were up-regulated by ABA treatment. Meanwhile, most of the tested genes' expression dramatically changed at the initial water uptake phase, indicating that this period may be critical in the regulation of ABA on seed germination. Under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, cucumber seed germination percentage decreased and ABA content increased. Meanwhile, the expression of ABA signal transduction core components genes showed specific response to a particular stress and was not always consist with ABA variation. Generally, the expression of CsPYL1, CsPYL3, CsABI1, CsSnRK2.3 and CsSnRK2.4 was sensitive to 120 mM NaCl and 0.5 mM Cu(2+) treatments.

  8. Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu²⁺, Zn²⁺, NaCl and simulated acid rain stresses.

    PubMed

    Wang, Yanping; Wang, Ya; Kai, Wenbin; Zhao, Bo; Chen, Pei; Sun, Liang; Ji, Kai; Li, Qian; Dai, Shengjie; Sun, Yufei; Wang, Yidong; Pei, Yuelin; Leng, Ping

    2014-03-01

    Abscisic acid (ABA) is an important phytohormone that regulates lots of physiological and biochemical processes in plant life cycle, especially in seed germination and stress responses. For exploring the transcriptional regulation of ABA signal transduction during cucumber (Cucumis sativus L.) seed germination and under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, nine CsPYLs, three group A CsPP2Cs and two subclass III CsSnRK2s were identified from cucumber genome, which respectively showed high sequence similarities and highly conserved domains with homologous genes in Arabidopsis. Based on Real-time PCR analysis, most of the tested genes' expression decreased during cucumber seed germination, which was in accordance with the ABA level variation. In addition, according to the absolute expression, CsPYL1, CsPYL3, CsPP2C5, CsABI1, CsSnRK2.3 and CsSnRK2.4 were highly expressed, indicating that they may play more important roles in ABA signaling during cucumber seed germination. Moreover, most of these highly expressed genes, except CsPYL3, were up-regulated by ABA treatment. Meanwhile, most of the tested genes' expression dramatically changed at the initial water uptake phase, indicating that this period may be critical in the regulation of ABA on seed germination. Under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, cucumber seed germination percentage decreased and ABA content increased. Meanwhile, the expression of ABA signal transduction core components genes showed specific response to a particular stress and was not always consist with ABA variation. Generally, the expression of CsPYL1, CsPYL3, CsABI1, CsSnRK2.3 and CsSnRK2.4 was sensitive to 120 mM NaCl and 0.5 mM Cu(2+) treatments. PMID:24486581

  9. Pre-germinated conidia of Coniothyrium minitans enhances the foliar biological control of Sclerotinia sclerotiorum.

    PubMed

    Shi, Junling; Li, Yin; Qian, Huali; Du, Guocheng; Chen, Jian

    2004-11-01

    The relatively slow germination rate of Coniothyrium minitans limits its control efficiency against Sclerotinia sclerotiorum. Pre-germinated conidia of C. minitans enhanced its efficiency significantly: in foliar experiments with oilseed rape, hyphal extension of S. sclerotiorum was inhibited by 68%, while formation of sclerotia was completely inhibited when pre-germinated conidia were applied.

  10. Pre-germinated conidia of Coniothyrium minitans enhances the foliar biological control of Sclerotinia sclerotiorum.

    PubMed

    Shi, Junling; Li, Yin; Qian, Huali; Du, Guocheng; Chen, Jian

    2004-11-01

    The relatively slow germination rate of Coniothyrium minitans limits its control efficiency against Sclerotinia sclerotiorum. Pre-germinated conidia of C. minitans enhanced its efficiency significantly: in foliar experiments with oilseed rape, hyphal extension of S. sclerotiorum was inhibited by 68%, while formation of sclerotia was completely inhibited when pre-germinated conidia were applied. PMID:15604814

  11. Effects of chilling and ABA on (/sup 3/H)gibberellin A/sub 4/ metabolism in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele)

    SciTech Connect

    Pearce, D.; Pharis, R.P.; Rajasekaran, K.; Mullins, M.G.

    1987-06-01

    Previous work has indicated that changes in gibberellin (GA) metabolism may be involved in chilling-induced release from dormancy in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele). The authors have chilled somatic embryos of grape for 2, 4, or 8 weeks, then incubated them with (/sup 3/H)GA/sub 4/ (of high specific activity, 4.81 x 10/sup 19/ becquerel per millimole) for 48 hours at 26/sup 0/C. Chilling had little effect on the total amount of free (/sup 3/H)GA-like metabolites formed during incubation at 26/sup 0/C, but did change the relative proportions of individual metabolites. The amount of highly water-soluble (/sup 3/H) metabolites formed at 26/sup 0/C decreased in embryos chilled for 4 or 8 weeks. The concentration of endogeneous GA precursors (e.g., GA/sub 12/ aldehyde-, kaurene, and kaurenoic acid-like substances) increased in embryos chilled for 4 or 8 weeks. Treatment with abscisic acid (ABA) (known to inhibit germination in grape embryos) concurrent with (/sup 3/H)GA/sub 4/ treatment at 26/sup 0/C, reduced the uptake of (/sup 3/H) GA/sub 4/ but had little effect on the qualitative spectrum of metabolites. However, in the embryos chilled for 8 weeks and then treated with ABA for 48 hours at 26/sup 0/C, there was a higher concentration of GA precursors than in untreated control embryos. Chilled embryos thus have an enhanced potential for an increase in free GAs through synthesis from increased amounts of GA precursors, or through a reduced ability to form highly water-soluble GA metabolites (i.e., GA conjugates or polyhydroxylated free GAs).

  12. Arabidopsis SAG protein containing the MDN1 domain participates in seed germination and seedling development by negatively regulating ABI3 and ABI5.

    PubMed

    Chen, Changtian; Wu, Changai; Miao, Jiaming; Lei, Yunxue; Zhao, Dongxiao; Sun, Dan; Yang, Guodong; Huang, Jinguang; Zheng, Chengchao

    2014-01-01

    Three proteins containing a midasin homologue 1 (MDN1) domain from the yeast Solanum chacoense and Arabidopsis thaliana have important functions in yeast survival, seed development, and female gametogenesis. In this study, a novel protein containing the MDN1 domain from Arabidopsis negatively regulated abscisic acid (ABA) signalling during seed germination. Seeds of a T-DNA insertion line of this gene exhibited increased sensitivity to ABA during seed germination and seedling development (named sag). By contrast, seeds with overexpressed AtSAG (OX2) were less sensitive to ABA. The seeds of the sag mutant showed similar sensitivity to high concentrations of mannitol and NaCl during these stages. AtSAG was also highly expressed in germinating seeds. However, ABA-induced AtSAG expression remained almost unchanged. ABA-responsive marker genes, including ABI3, ABI5, Em1, Em6, RD29A, and RAB18, were upregulated in sag mutants but were downregulated in OX2. Genetic analyses indicated that the function of AtSAG in ABA signalling depended on ABI3 and ABI5. The expression of some target genes of ABI3 and ABI5, such as seed storage protein and oleosin genes, was induced higher by ABA in sag mutants than in wild-type germinated seeds, even higher than in abi5 mutants. This finding indicated that other regulators similar to ABI3 or ABI5 played a role during these stages. Taken together, these results indicate that AtSAG is an important negative regulator of ABA signalling during seed germination and seedling development.

  13. Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination1[OPEN

    PubMed Central

    Shi, Hui; Gu, Juntao; Dong, Jingao; Deng, Xing Wang

    2016-01-01

    Seed germination, a critical stage initiating the life cycle of a plant, is severely affected by salt stress. However, the underlying mechanism of salt inhibition of seed germination (SSG) is unclear. Here, we report that the Arabidopsis (Arabidopsis thaliana) CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) counteracts SSG. Genetic assays provide evidence that SSG in loss of function of the COP1 mutant was stronger than this in the wild type. A GUS-COP1 fusion was constitutively localized to the nucleus in radicle cells. Salt treatment caused COP1 to be retained in the cytosol, but the addition of ethylene precursor 1-aminocyclopropane-1-carboxylate had the reverse effect on the translocation of COP1 to the nucleus, revealing that ethylene and salt exert opposite regulatory effects on the localization of COP1 in germinating seeds. However, loss of function of the ETHYLENE INSENSITIVE3 (EIN3) mutant impaired the ethylene-mediated rescue of the salt restriction of COP1 to the nucleus. Further research showed that the interaction between COP1 and LONG HYPOCOTYL5 (HY5) had a role in SSG. Correspondingly, SSG in loss of function of HY5 was suppressed. Biochemical detection showed that salt promoted the stabilization of HY5, whereas ethylene restricted its accumulation. Furthermore, salt treatment stimulated and ethylene suppressed transcription of ABA INSENSITIVE5 (ABI5), which was directly transcriptionally regulated by HY5. Together, our results reveal that salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1, thereby controlling Arabidopsis seed germination via the COP1-mediated down-regulation of HY5 and ABI5. These findings enhance our understanding of the stress response and have great potential for application in agricultural production. PMID:26850275

  14. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination

    PubMed Central

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells. PMID:26579718

  15. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination.

    PubMed

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells.

  16. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination.

    PubMed

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells. PMID:26579718

  17. Requirements for In Vitro Germination of Paenibacillus larvae Spores

    PubMed Central

    Alvarado, Israel; Phui, Andy; Elekonich, Michelle M.

    2013-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), a disease affecting honey bee larvae. First- and second-instar larvae become infected when they ingest food contaminated with P. larvae spores. The spores then germinate into vegetative cells that proliferate in the midgut of the honey bee. Although AFB affects honey bees only in the larval stage, P. larvae spores can be distributed throughout the hive. Because spore germination is critical for AFB establishment, we analyzed the requirements for P. larvae spore germination in vitro. We found that P. larvae spores germinated only in response to l-tyrosine plus uric acid under physiologic pH and temperature conditions. This suggests that the simultaneous presence of these signals is necessary for spore germination in vivo. Furthermore, the germination profiles of environmentally derived spores were identical to those of spores from a biochemically typed strain. Because l-tyrosine and uric acid are the only required germinants in vitro, we screened amino acid and purine analogs for their ability to act as antagonists of P. larvae spore germination. Indole and phenol, the side chains of tyrosine and tryptophan, strongly inhibited P. larvae spore germination. Methylation of the N-1 (but not the C-3) position of indole eliminated its ability to inhibit germination. Identification of the activators and inhibitors of P. larvae spore germination provides a basis for developing new tools to control AFB. PMID:23264573

  18. The Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress.

    PubMed

    Wilson, Rebecca L; Kim, Heejung; Bakshi, Arkadipta; Binder, Brad M

    2014-05-12

    In Arabidopsis (Arabidopsis thaliana), ethylene responses are mediated by a family of five receptors that have both overlapping and nonoverlapping roles. In this study, we used loss-of-function mutants for each receptor isoform to determine the role of individual isoforms in seed germination under salt stress. From this analysis, we found subfunctionalization of the receptors in the control of seed germination during salt stress. Specifically, loss of ETHYLENE RESPONSE1 (ETR1) or ETHYLENE INSENSITIVE4 (EIN4) leads to accelerated germination, loss of ETR2 delays germination, and loss of either ETHYLENE RESPONSE SENSOR1 (ERS1) or ERS2 has no measurable effect on germination. Epistasis analysis indicates that ETR1 and EIN4 function additively with ETR2 to control this trait. Interestingly, regulation of germination by ETR1 requires the full-length receptor. The differences in germination between etr1 and etr2 loss-of-function mutants under salt stress could not be explained by differences in the production of or sensitivity to ethylene, gibberellin, or cytokinin. Instead, etr1 loss-of-function mutants have reduced sensitivity to abscisic acid (ABA) and germinate earlier than the wild type, whereas etr2 loss-of-function mutants have increased sensitivity to ABA and germinate slower than the wild type. Additionally, the differences in seed germination on salt between the two mutants and the wild type are eliminated by the ABA biosynthetic inhibitor norflurazon. These data suggest that ETR1 and ETR2 have roles independent of ethylene signaling that affect ABA signaling and result in altered germination during salt stress.

  19. Identification and Characterization of ABA-Responsive MicroRNAs in Rice.

    PubMed

    Tian, Caijuan; Zuo, Zhangli; Qiu, Jin-Long

    2015-07-20

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs that silence genes through mRNA degradation or translational inhibition. The phytohormone abscisic acid (ABA) is essential for plant development and adaptation to abiotic and biotic stresses. In Arabidopsis, miRNAs are implicated in ABA functions. However, ABA-responsive miRNAs have not been systematically studied in rice. Here high throughput sequencing of small RNAs revealed that 107 miRNAs were differentially expressed in the rice ABA deficient mutant, Osaba1. Of these, 13 were confirmed by stem-loop RT-PCR. Among them, miR1425-5P, miR169a, miR169n, miR390-5P, miR397a and miR397b were up-regulated, but miR162b reduced in expression in Osaba1. The targets of these 13 miRNAs were predicted and validated by gene expression profiling. Interestingly, the expression levels of these miRNAs and their targets were regulated by ABA. Cleavage sites were detected on 7 of the miRNA targets by 5'-Rapid Amplification of cDNA Ends (5'-RACE). Finally, miR162b and its target OsTRE1 were shown to affect rice resistance to drought stress, suggesting that miR162b increases resistance to drought by targeting OsTRE1. Our work provides important information for further characterization and functional analysis of ABA-responsive miRNAs in rice. PMID:26233894

  20. A Germination Simulation.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1995-01-01

    Presents an activity that involves using sponge seedlings to demonstrate the germination process without the usual waiting period. Discusses epigeous versus hypogeous germination, and cotyledon number and biodiversity. (JRH)

  1. Purification and partial characterization of a novel calcium-binding protein from Bacillus cereus T spores and inhibition of germination by calmodulin antagonists

    SciTech Connect

    Shyu, Y.

    1989-01-01

    A novel calcium-binding protein has been purified from the dormant spores of Bacillus cereus T. B. cereus T spores were extensively washed, broken, and heated at 90{degree}C for 2 min. Using calcium-dependent hydrophobic interaction chromatography plus DEAE-cellulose and hydroxylapatite columns, a single protein was obtained which possessed calcium-binding capacity and some characteristics of calmodulin. This heat-stable protein was retained by hydrophobic matrices or a calmodulin antagonist in a calcium-dependent manner. The crude spore extract displaced bovine brain calmodulin from its antibody in a radioimmunoassay and the immunoreactive specific activity of the partially purified fraction which eluted from phenyl-Sepharose was ca. 200-fold greater than the crude spore extract. Purity of this protein was verified by sodium dodecyl sulfate-polyarcylamide gel electrophoresis and reversed-phase HPLC. Calcium-binding ability was verified with a competitive calcium binding assay using Chelex-100 resin and {sup 45}Ca autoradiography. SDS-PAGE and amino acid composition indicated the molecular weight of the protein was 24-kDa. The effects of two calmodulin antagonists, trifluoperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7) on L-alanine-induced germination of Bacillus cereus T spores were examined by measuring commitment to germination, loss of heat resistance, release of calcium, decrease in optical density at 660 nm and phase-contrast microscopy.

  2. Basic Techniques to Assess Seed Germination Responses to Abiotic Stress in Arabidopsis thaliana.

    PubMed

    Piskurewicz, Urszula; Lopez-Molina, Luis

    2016-01-01

    The model organism Arabidopsis thaliana has been extensively used to unmask the molecular genetic signaling pathways controlling seed germination in plants. In Arabidopsis, the normal seed to seedling developmental transition involves testa rupture soon followed by endosperm rupture, radicle elongation, root hair formation, cotyledon expansion, and greening. Here we detail a number of basic procedures to assess Arabidopsis seed germination in response to different light (red and far-red pulses), temperature (seed thermoinhibition), and water potential (osmotic stress) environmental conditions. We also discuss the role of the endosperm and how its germination-repressive activity can be monitored genetically by means of a seed coat bedding assay. Finally we detail how to evaluate germination responses to changes in gibberellin (GA) and abscisic acid (ABA) levels by manipulating pharmacologically the germination medium. PMID:26867624

  3. Basic Techniques to Assess Seed Germination Responses to Abiotic Stress in Arabidopsis thaliana.

    PubMed

    Piskurewicz, Urszula; Lopez-Molina, Luis

    2016-01-01

    The model organism Arabidopsis thaliana has been extensively used to unmask the molecular genetic signaling pathways controlling seed germination in plants. In Arabidopsis, the normal seed to seedling developmental transition involves testa rupture soon followed by endosperm rupture, radicle elongation, root hair formation, cotyledon expansion, and greening. Here we detail a number of basic procedures to assess Arabidopsis seed germination in response to different light (red and far-red pulses), temperature (seed thermoinhibition), and water potential (osmotic stress) environmental conditions. We also discuss the role of the endosperm and how its germination-repressive activity can be monitored genetically by means of a seed coat bedding assay. Finally we detail how to evaluate germination responses to changes in gibberellin (GA) and abscisic acid (ABA) levels by manipulating pharmacologically the germination medium.

  4. NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis.

    PubMed

    Li, Chun-Long; Wang, Mei; Ma, Xiao-Yan; Zhang, Wei

    2014-10-01

    Abscisic acid (ABA) regulates ion channel activity and stomatal movements in response to drought and other stresses. Here, we show that the Arabidopsis thaliana gene NRGA1 is a putative mitochondrial pyruvate carrier which negatively regulates ABA-induced guard cell signaling. NRGA1 transcript was abundant in the A. thaliana leaf and particularly in the guard cells, and its product was directed to the mitochondria. The heterologous co-expression of NRGA1 and AtMPC1 in yeast complemented a loss-of-function mitochondrial pyruvate carrier (MPC) mutant. The nrga1 loss-of-function mutant was very sensitive to the presence of ABA in the context of stomatal movements, and exhibited a heightened tolerance to drought stress. Disruption of NRGA1 gene resulted in increased ABA inhibition of inward K(+) currents and ABA activation of slow anion currents in guard cells. The nrga1/NRGA1 functional complementation lines restored the mutant's phenotypes. Furthermore, transgenic lines of constitutively overexpressing NRGA1 showed opposite stomatal responses, reduced drought tolerance, and ABA sensitivity of guard cell inward K(+) channel inhibition and anion channel activation. Our findings highlight a putative role for the mitochondrial pyruvate carrier in guard cell ABA signaling in response to drought.

  5. Effect of day length on germination of seeds collected in Alaska

    USGS Publications Warehouse

    Densmore, R.V.

    1997-01-01

    Day length control can effectively limit seed germination to favorable seasons, but this phenomenon has been studied in relatively few wild plants. I tested species from interior Alaska for day length control of germination under controlled conditions, and I also monitored germination phenology in natural habitats. Unstratified and cold-stratified seeds were germinated on short (13 h) and long (22 h) day length and in the dark at constant and alternating temperatures. On long day length, unstratified Ledum decumbens and Saxifraga tricuspidata seeds germinated from 5??C to 20??C, but on short day length few or no seeds germinated at 5??C and 10??C and germination was reduced at higher temperatures. Unstratified seeds of Diapensia lapponica and Chamaedaphne calyculata germinated only at 15??C and 20??C on long day length, and short day length completely inhibited germination. Cold stratification widened the temperature range for germination on both long and short day lengths, but germination was still lower on short than long day length. Germination phenology in natural habitats was consistent with germination in controlled conditions. In these species, short day length and low temperatures interact to inhibit germination in the fall. After overwintering, seeds germinate in the spring at low temperatures and on long day lengths. The inhibitory effect of short day length is not important in the spring because day length is already long at snowmelt.

  6. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid.

    PubMed

    Debeaujon, I; Koornneef, M

    2000-02-01

    The mechanisms imposing a gibberellin (GA) requirement to promote the germination of dormant and non-dormant Arabidopsis seeds were analyzed using the GA-deficient mutant ga1, several seed coat pigmentation and structure mutants, and the abscisic acid (ABA)-deficient mutant aba1. Testa mutants, which exhibit reduced seed dormancy, were not resistant to GA biosynthesis inhibitors such as tetcyclacis and paclobutrazol, contrarily to what was found before for other non-dormant mutants in Arabidopsis. However, testa mutants were more sensitive to exogenous GAs than the wild-types in the presence of the inhibitors or when transferred to a GA-deficient background. The germination capacity of the ga1-1 mutant could be integrally restored, without the help of exogenous GAs, by removing the envelopes or by transferring the mutation to a tt background (tt4 and ttg1). The double mutants still required light and chilling for dormancy breaking, which may indicate that both agents can have an effect independently of GA biosynthesis. The ABA biosynthesis inhibitor norflurazon was partially efficient in releasing the dormancy of wild-type and mutant seeds. These results suggest that GAs are required to overcome the germination constraints imposed both by the seed coat and ABA-related embryo dormancy.

  7. Acid rain and pollen germination in corn.

    PubMed

    Wertheim, F S; Craker, L E

    1987-01-01

    The properties of an acid rain episode that could influence the germination of pollen in corn, Zea mays L., were evaluated by treating silks with a simulated acid rain and measuring the subsequent germination of pollen on the silks. The data indicated that acid rain creates an inhospitable environment for pollen germination on the silk surface. Reduced germination appeared directly related to the acidity of the rain, but not the sulphate concentration. Rinsing silks with a pH 5.6 rain after treatment with a pH 2.6 rain did not increase pollen germination above that on silks treated only with a pH 2.6 rain, suggesting the reduced germination was due to physical and/or chemical modifications of the silk surface and not to residual acid on the tissue. Pollen germination on silks was inhibited even when silk tissue was exposed to a simulated rain of pH 2.6 for <1.5min.

  8. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana.

    PubMed

    Li, Wenbin; Wang, Tao; Zhang, Yuhang; Li, Yongguang

    2016-01-01

    MiRNAs play crucial roles in many aspects of plant development and the response to the environment. The miR172 family has been shown to participate in the control of flowering time and the response to abiotic stress. This family regulates the expression of APETALA2 (AP2)-like transcription factors in Arabidopsis. In the present study, soybean (Glycine max L. Merr.) miR172c, a member of the miR172 family, and its target gene were investigated for abiotic stress responses in transgenic Arabidopsis. gma-miR172c was induced by abscisic acid (ABA) treatments and abiotic stresses, including salt and water deficit. 5'-RACE (5'-rapid amplification of cDNA ends) assays indicated that miR172c directed Glyma01g39520 mRNA cleavage in soybeans. Overexpression of gma-miR172c in Arabidopsis resulted in reduced leaf water loss and increased survival rate under stress conditions. Meanwhile, the root length, germination rate, and cotyledon greening of transgenic plants were improved during both high salt and water deficit conditions. In addition, transgenic plants exhibited hypersensitivity to ABA during both the seed germination and post-germination seedling growth stages. Stress-related physiological indicators and the expression of stress/ABA-responsive genes were affected by abiotic treatments. The overexpression of gma-miR172c in Arabidopsis promoted earlier flowering compared with the wild type through modulation of the expression of flowering genes, such as FT and LFY during long days, especially under drought conditions. Glyma01g39520 weakened ABA sensitivity and reduced the tolerance to drought stress in the snz mutant of Arabidopsis by reducing the expression of ABI3 and ABI5. Overall, the present results demonstrate that gma-miR172c confers water deficit and salt tolerance but increased ABA sensitivity by regulating Glyma01g39520, which also accelerates flowering under abiotic stresses.

  9. Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression.

    PubMed

    Cruz, Tiago M D; Carvalho, Raquel F; Richardson, Dale N; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  10. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    PubMed Central

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  11. Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting.

    PubMed

    Chono, Makiko; Honda, Ichiro; Shinoda, Shoko; Kushiro, Tetsuo; Kamiya, Yuji; Nambara, Eiji; Kawakami, Naoto; Kaneko, Shigenobu; Watanabe, Yoshiaki

    2006-01-01

    To investigate whether the regulation of abscisic acid (ABA) content was related to germinability during grain development, two cDNAs for 9-cis-epoxycarotenoid dioxygenase (HvNCED1 and HvNCED2) and one cDNA for ABA 8'-hydroxylase (HvCYP707A1), which are enzymes thought to catalyse key regulatory steps in ABA biosynthesis and catabolism, respectively, were cloned from barley (Hordeum vulgare L.). Expression and ABA-quantification analysis in embryo revealed that HvNCED2 is responsible for a significant increase in ABA levels during the early to middle stages of grain development, and HvCYP707A1 is responsible for a rapid decrease in ABA level thereafter. The change in the embryonic ABA content of imbibing grains following dormancy release is likely to reflect changes in the expression patterns of HvNCEDs and HvCYP707A1. A major change between dormant and after-ripened grains occurred in HvCYP707A1; the increased expression of HvCYP707A1 in response to imbibition, followed by a rapid ABA decrease and a high germination percentage, was observed in the after-ripened grains, but not in the dormant grains. Under field conditions, HvNCED2 showed the same expression level and pattern during grain development in 2002, 2003, and 2004, indicating that HvNCED2 expression is regulated in a growth-dependent manner in the grains. By contrast, HvNCED1 and HvCYP707A1 showed a different expression pattern in each year, indicating that the expression of these genes is affected by environmental conditions during grain development. The varied expression levels of these genes during grain development and imbibition, which would have effects on the activity of ABA biosynthesis and catabolism, might be reflected, in part, in the germinability in field-grown barley.

  12. A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice.

    PubMed

    Cai, Shanlan; Jiang, Guobin; Ye, Nenghui; Chu, Zhizhan; Xu, Xuezhong; Zhang, Jianhua; Zhu, Guohui

    2015-01-01

    Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was promptly induced by rehydration after PEG-mimic dehydration, a tendency opposite to the changes of ABA level. We therefore constructed rice OsABA8ox3 silencing (RNA interference, RNAi) and overexpression plants. There were no obvious phenotype differences between the transgenic seedlings and wild type under normal condition. However, OsABA8ox3 RNAi lines showed significant improvement in drought stress tolerance while the overexpression seedlings were hypersensitive to drought stress when compared with wild type in terms of plant survival rates after 10 days of unwatering. Enzyme activity analysis indicated that OsABA8ox3 RNAi plants had higher superoxide dismutase (SOD) and catalase (CAT) activities and less malondialdehyde (MDA) content than those of wild type when the plants were exposed to dehydration treatment, indicating a better anti-oxidative stress capability and less membrane damage. DNA microarray and real-time PCR analysis under dehydration treatment revealed that expressions of a group of stress/drought-related genes, i.e. LEA genes, were enhanced with higher transcript levels in OsABA8ox3 RNAi transgenic seedlings. We therefore conclude that that OsABA8ox3 gene plays an important role in controlling ABA level and drought stress resistance in rice. PMID:25647508

  13. Re-induction of desiccation tolerance after germination of Cedrela fissilis Vell. seeds.

    PubMed

    Masetto, Tathiana E; Faria, Jose M; Fraiz, Ana C R

    2014-09-01

    This work aimed to characterize the re-induction of desiccation tolerance (DT) in germinated seeds, using polyethylene glycol (PEG 8000). Cell changes were investigated through cytological assays (cell viability and transmission electronic microscopy) as well as DNA integrity during loss and re-establishment of DT. The loss of DT was characterized by drying germinated seeds with different radicle lengths (1, 2, 3, 4 and 5 mm) in silica gel, decreasing the moisture content to ten percentage points intervals, followed by pre-humidification (100% RH / 24 h) and rehydration. To re-induce DT, germinated seeds were treated for 72 h with PEG (-2.04 MPa) and PEG (-2.04 MPa) + ABA (100 µM) before dehydration. Germinated seeds did not tolerate desiccation to 10% moisture content, irrespectively of the radicle length. However, when incubated in PEG, those with 1 and 2 mm long radicle attained 71% and 29% survival, respectively. The PEG+ABA treatment was efficient to re-establish DT in seeds with 1 mm long radicles (100% survival). The ultrastructural assays of the cells of germinated seeds with 2 and 5 mm length confirmed the obtained physiological results. Germinated seeds of C. fissilis constitute a useful tool for desiccation tolerance investigations.

  14. Elucidating the germination transcriptional program using small molecules.

    PubMed

    Bassel, George W; Fung, Pauline; Chow, Tsz-fung Freeman; Foong, Justin A; Provart, Nicholas J; Cutler, Sean R

    2008-05-01

    The transition from seed to seedling is mediated by germination, a complex process that starts with imbibition and completes with radicle emergence. To gain insight into the transcriptional program mediating germination, previous studies have compared the transcript profiles of dry, dormant, and germinating after-ripened Arabidopsis (Arabidopsis thaliana) seeds. While informative, these approaches did not distinguish the transcriptional responses due to imbibition, shifts in metabolism, or breaking of dormancy from those triggered by the initiation of germination. In this study, three mechanistically distinct small molecules that inhibit Arabidopsis seed germination (methotrexate, 2, 4-dinitrophenol, and cycloheximide) were identified using a small-molecule screen and used to probe the germination transcriptome. Germination-responsive transcripts were defined as those with significantly altered transcript abundance across all inhibitory treatments with respect to control germinating seeds, using data from ATH1 microarrays. This analysis identified numerous germination regulators as germination responsive, including the DELLA proteins GAI, RGA, and RGL3, the abscisic acid-insensitive proteins ABI4, ABI5, ABI8, and FRY1, and the gibberellin receptor GID1A. To help visualize these and other publicly available seed microarray data, we designed a seed mRNA expression browser using the electronic Fluorescent Pictograph platform. An overall decrease in gene expression and a 5-fold greater number of transcripts identified as statistically down-regulated in drug-inhibited seeds point to a role for mRNA degradation or turnover during seed germination. The genes identified in our study as responsive to germination define potential uncharacterized regulators of this process and provide a refined transcriptional signature for germinating Arabidopsis seeds.

  15. Radish (Raphanus sativus) seed size affects germination response to coumarin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of seed germination by an allelochemical is generally greater in small seeds than in large seeds. Studies reporting these results used a large number of plant species that varied in seed size, which might have introduced differences in germination characteristics or various parameter...

  16. Seed germination characteristics of Chrysothamnus nauseosus ssp. viridulus (Astereae, Asteraceae)

    SciTech Connect

    Khan, M.A.; Sankhla, N.; Weber, D.J.; McArthur, E.D.

    1987-04-30

    Rubber rabbitbrush (Chrysothamnus nauseosus (Pallas) Britt. ssp. viridulus) may prove to be a source of high-quality cis-isoprene rubber, but its establishment is limited by a lack of information on seed germination. Consequently, seeds were germinated at alternating temperatures (5-15, 5-25, 15-25, and 20-30 C) in light and dark as well as constant temperatures (15-40 C with 5-C increments) to determine temperature response. Seeds were also germinated in solutions of polyethylene glycol 6000, salinity regimes at all the above-mentioned temperatures to determine salinity and temperature interaction. The hormones GA/sub 3/ and kinetin were used to study their effect on overcoming salt- and temperature-induced germination inhibition. Seeds of C. nauseosus ssp. viridulus were very sensitive to low temperature. Best germination was achieved at 25 and 30 C, but these seeds also germinated at a higher temperature (35 C). The seeds of rabbit brush germinated at both constant and alternating temperatures. Light appears to play little or no role in controlling germination of the seeds of rubber rabbitbrush. However, seeds of rabbitbrush were sensitive to salinity, and seed germination was progressively inhibited by increase in salt concentration, although a few seeds still germinated at the highest saline level. Progressively higher concentrations of polyethylene glycol also progressively inhibited germination. Suppression of seed germination induced by high salt concentrations and high temperatures can be partially alleviated by the application of either GA/sub 3/ or kinetin. 34 references, 5 figures, 3 tables.

  17. ABA and cytokinins: challenge and opportunity for plant stress research.

    PubMed

    Verslues, Paul E

    2016-08-01

    Accumulation of the stress hormone abscisic acid (ABA) induces many cellular mechanisms associated with drought resistance. Recent years have seen a rapid advance in our knowledge of how increased ABA levels are perceived by ABA receptors, particularly the PYL/RCAR receptors, but there has been relatively less new information about how ABA accumulation is controlled and matched to stress severity. ABA synthesis and catabolism, conjugation and deconjugation to glucose, and ABA transport all are involved in controlling ABA levels. This highly buffered system of ABA metabolism represents both a challenge and opportunity in developing a mechanistic understanding of how plants detect and respond to drought. Recent data have also shown that direct manipulation of cytokinin levels in transgenic plants has dramatic effect on drought phenotypes and prompted new interest in the role of cytokinins and cytokinin signaling in drought. Both ABA and cytokinins will continue to be major foci of drought research but likely with different trajectories both in terms of basic research and in translational research aimed at increasing plant performance during drought. PMID:26910054

  18. Aqueous extracts of a Mars analogue regolith that mimics the Phoenix landing site do not inhibit spore germination or growth of model spacecraft contaminants Bacillus subtilis 168 and Bacillus pumilus SAFR-032

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne L.; McCoy, Lashelle E.; Kerney, Krystal R.; Ming, Douglas W.; Golden, D. C.; Schuerger, Andrew C.

    2012-08-01

    Because Mars is a primary target for life detection and habitability assessment missions, its exploration is also by necessity a Planetary Protection issue. The recent finding of significant levels of perchlorate (ClO4-) in regolith sampled from the Phoenix landing site raises the question of its potential biotoxicity to putative indigenous martian life, microbial forward contaminants from Earth, or future human visitors. To address this issue, an analogue regolith was constructed based on regolith chemistry data from the Phoenix landing site. A Mars Aqueous Regolith Extract (MARE) was prepared from the Phoenix analogue regolith and analyzed by ion chromatography. The MARE contained (mg/L) the cations Na+ (1411 ± 181), Mg2+ (1051 ± 160), Ca2+ (832 ± 125), and K+ (261 ± 29), and the anions SO42-(5911±993), ClO4-(5316±1767), Cl(171±25) and F- (2.0 ± 0.4). Nitrogen-containing species NO3-(773±113) and NO2-(6.9±2.3) were also present as a result of regolith preparation procedures, but their relevance to Mars is at present unknown. The MARE was tested for potential toxic effects on two model spacecraft contaminants, the spore-forming bacteria Bacillus subtilis strain 168 and Bacillus pumilus strain SAFR-032. In B. subtilis, spore germination and initial vegetative growth (up to ˜5 h) was not inhibited in a rich complex medium prepared with the MARE, but growth after 5 h was significantly suppressed in medium prepared using the MARE. Both B. subtilis and B. pumilus exhibited significantly higher rates of spore germination and growth in the MARE vs. DW with no additions (likely due to endogenous spore nutrients), but germination and growth was further stimulated by addition of glucose and a combination of buffered inorganic salts (K2HPO4, KH2PO4, (NH4)2SO4, and MgSO4). The data indicate that the aqueous environment in the regolith from the Phoenix landing site containing high levels of perchlorate does not pose a significant barrier to growth of putative

  19. Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response.

    PubMed

    Baek, Woonhee; Lim, Sohee; Lee, Sung Chul

    2016-05-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone abscisic acid (ABA) regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we identified the Capsicum annuum DRought Tolerance 1 (CaDRT1) gene from pepper leaves treated with ABA. CaDRT1 was strongly expressed in pepper leaves in response to environmental stresses and after ABA treatment, suggesting that the CaDRT1 protein functions in the abiotic stress response. Knockdown expression of CaDRT1 via virus-induced gene silencing resulted in a high level of drought susceptibility, and this was characterized by increased transpirational water loss via decreased stomatal closure. CaDRT1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative, seedling, and adult stages. Additionally, these CaDRT1-OX plants exhibited a drought-tolerant phenotype characterized by low levels of transpirational water loss, high leaf temperatures, increased stomatal closure, and enhanced expression levels of drought-responsive genes. Taken together, our results suggest that CaDRT1 is a positive regulator of the ABA-mediated drought stress response.

  20. Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response.

    PubMed

    Baek, Woonhee; Lim, Sohee; Lee, Sung Chul

    2016-05-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone abscisic acid (ABA) regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we identified the Capsicum annuum DRought Tolerance 1 (CaDRT1) gene from pepper leaves treated with ABA. CaDRT1 was strongly expressed in pepper leaves in response to environmental stresses and after ABA treatment, suggesting that the CaDRT1 protein functions in the abiotic stress response. Knockdown expression of CaDRT1 via virus-induced gene silencing resulted in a high level of drought susceptibility, and this was characterized by increased transpirational water loss via decreased stomatal closure. CaDRT1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative, seedling, and adult stages. Additionally, these CaDRT1-OX plants exhibited a drought-tolerant phenotype characterized by low levels of transpirational water loss, high leaf temperatures, increased stomatal closure, and enhanced expression levels of drought-responsive genes. Taken together, our results suggest that CaDRT1 is a positive regulator of the ABA-mediated drought stress response. PMID:26869261

  1. GsSKP21, a Glycine soja S-phase kinase-associated protein, mediates the regulation of plant alkaline tolerance and ABA sensitivity.

    PubMed

    Liu, Ailin; Yu, Yang; Duan, Xiangbo; Sun, Xiaoli; Duanmu, Huizi; Zhu, Yanming

    2015-01-01

    Plant SKP1-like family proteins, components of the SCF complex E3 ligases, are involved in the regulation of plant development and stress responses. Little is known about the precise function of SKP genes in plant responses to environmental stresses. GsSKP21 was initially identified as a potential stress-responsive gene based on the transcriptome sequencing of Glycine soja. In this study, we found that GsSKP21 protein contains highly conserved SKP domains in its N terminus and an extra unidentified domain in its C terminus. The transcript abundance of GsSKP21, detected by quantitative real-time PCR, was induced under the treatment of alkali and salt stresses. Overexpression of GsSKP21 in Arabidopsis dramatically increased plant tolerance to alkali stress. Furthermore, we found that overexpression of GsSKP21 resulted in decreased ABA sensitivity during both the seed germination and early seedling growth stages. GsSKP21 mediated ABA signaling by altering the expression levels of the ABA signaling-related and ABA-induced genes. We also investigated the tissue expression specificity and subcellular localization of GsSKP21. These results suggest that GsSKP21 is important for plant tolerance to alkali stress and plays a critical regulatory role in the ABA-mediated stress response.

  2. Dormancy and germination: How does the crop seed decide?

    PubMed

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed.

  3. Dormancy and germination: How does the crop seed decide?

    PubMed

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed. PMID:26095078

  4. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance.

    PubMed

    Negin, Boaz; Moshelion, Menachem

    2016-10-01

    Abscisic acid is found in a wide variety of organisms. In the plant kingdom, ABA's role in mediating responses to abiotic stress has been conserved and enhanced throughout evolution. The emergence of plants to terrestrial environments required the development of mechanisms to cope with ongoing and severe abiotic stress such as drought and rapid changes in humidity and temperature. The common understanding is that terrestrial plants evolved strategies ranging from desiccation-tolerance mechanisms (mosses) to drought tolerance (CAM plants), to better exploit different ecological niches. In between these divergent water regulation strategies, ABA plays a significant role in managing plants' adaptation to new environments by optimizing water-use efficiency (WUE) under particular environmental conditions. ABA plays some very different roles in the regulation of WUE. ABA's role in the regulation of guard cells and transpiration has yielded a wide variety of WUE-regulation mechanisms, ranging from no sensitivity (ferns) to low sensitivity (anisohydric behavior) to hypersensitivity to ABA (isohydric behavior and putatively CAM plants). ABA also plays a role in the regulation of non-stomatal, biochemical mechanisms of WUE regulation. In angiosperms, this includes the control of osmotic adjustment and morphological changes, including changes in leaf size, stomatal density, stomatal size and root development. Under severe stress, ABA also appears to initiate leaf senescence via transcriptional regulation, to directly inhibit photosynthesis. PMID:27593466

  5. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance.

    PubMed

    Negin, Boaz; Moshelion, Menachem

    2016-10-01

    Abscisic acid is found in a wide variety of organisms. In the plant kingdom, ABA's role in mediating responses to abiotic stress has been conserved and enhanced throughout evolution. The emergence of plants to terrestrial environments required the development of mechanisms to cope with ongoing and severe abiotic stress such as drought and rapid changes in humidity and temperature. The common understanding is that terrestrial plants evolved strategies ranging from desiccation-tolerance mechanisms (mosses) to drought tolerance (CAM plants), to better exploit different ecological niches. In between these divergent water regulation strategies, ABA plays a significant role in managing plants' adaptation to new environments by optimizing water-use efficiency (WUE) under particular environmental conditions. ABA plays some very different roles in the regulation of WUE. ABA's role in the regulation of guard cells and transpiration has yielded a wide variety of WUE-regulation mechanisms, ranging from no sensitivity (ferns) to low sensitivity (anisohydric behavior) to hypersensitivity to ABA (isohydric behavior and putatively CAM plants). ABA also plays a role in the regulation of non-stomatal, biochemical mechanisms of WUE regulation. In angiosperms, this includes the control of osmotic adjustment and morphological changes, including changes in leaf size, stomatal density, stomatal size and root development. Under severe stress, ABA also appears to initiate leaf senescence via transcriptional regulation, to directly inhibit photosynthesis.

  6. GEm-Related 5 (GER5), an ABA and stress-responsive GRAM domain protein regulating seed development and inflorescence architecture.

    PubMed

    Baron, Kevin N; Schroeder, Dana F; Stasolla, Claudio

    2014-06-01

    We have identified an abscisic acid (ABA) and stress-responsive GRAM (Glucosyltransferases, Rab-like GTPase activators and Myotubularins) domain protein GER5 (GEm-Related 5) closely related to GEM (GLABRA2 Expression Modulator), a novel regulator of cell division and cell fate determination in epidermal cells. A loss-of-function T-DNA line (ger5-2) and transgenic lines silencing (GER5(RNAi)) or overexpressing (GER5(OE)) GER5 displayed several defects in reproductive development affecting seed and embryo development. RNA in situ studies revealed GER5 and related GRAM genes (GEM and GEm-Related 1 (GER1)) have both overlapping and unique expression domains in male and female reproductive organs. Hormone immunolocalization experiments further indicate GER5 transcripts preferentially localize to reproductive tissues which accumulate ABA. Expression analysis revealed members of the GRAM family (GER5, GER1, GEM) display tissue-specific expression patterns and are responsive to phytohormones and abiotic stress, in addition to genetic lesions (aba1, aba2, ctr1) affecting ABA biosynthesis or ethylene signalling. Mature seeds of ger5-2 mutants also exhibit reduced sensitivity to ABA during seed germination assays. Microarray analysis of aborting and developing seeds isolated from ger5-2 mutants revealed underlying transcriptional changes in carbohydrate metabolism, hormone signalling and catabolic processes (e.g. protein degradation, autophagy). Taken together, our results indicate ABA-responsive GRAM genes play a novel role in regulating the reproductive development of plants, and raise intriguing questions regarding the functional relationship between members of the GRAM gene family.

  7. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments

    PubMed Central

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam

    2015-01-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca2+-dipicolinic acid, and water fluxes. PMID:26187959

  8. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments.

    PubMed

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf

    2015-10-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca(2+)-dipicolinic acid, and water fluxes. PMID:26187959

  9. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    PubMed

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  10. The Rose (Rosa hybrida) NAC Transcription Factor 3 Gene, RhNAC3, Involved in ABA Signaling Pathway Both in Rose and Arabidopsis

    PubMed Central

    Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  11. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.

    PubMed

    Clemente, A C S; Guimarães, R M; Martins, D C; Gomes, L A A; Caixeta, F; Reis, R G E; Rosa, S D V F

    2015-05-11

    Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B.

  12. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.

    PubMed

    Clemente, A C S; Guimarães, R M; Martins, D C; Gomes, L A A; Caixeta, F; Reis, R G E; Rosa, S D V F

    2015-01-01

    Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B. PMID:25966245

  13. Difference in Abscisic Acid Perception Mechanisms between Closure Induction and Opening Inhibition of Stomata1[W][OPEN

    PubMed Central

    Yin, Ye; Adachi, Yuji; Ye, Wenxiu; Hayashi, Maki; Nakamura, Yoshimasa; Kinoshita, Toshinori; Mori, Izumi C.; Murata, Yoshiyuki

    2013-01-01

    Abscisic acid (ABA) induces stomatal closure and inhibits light-induced stomatal opening. The mechanisms in these two processes are not necessarily the same. It has been postulated that the ABA receptors involved in opening inhibition are different from those involved in closure induction. Here, we provide evidence that four recently identified ABA receptors (PYRABACTIN RESISTANCE1 [PYR1], PYRABACTIN RESISTANCE-LIKE1 [PYL1], PYL2, and PYL4) are not sufficient for opening inhibition in Arabidopsis (Arabidopsis thaliana). ABA-induced stomatal closure was impaired in the pyr1/pyl1/pyl2/pyl4 quadruple ABA receptor mutant. ABA inhibition of the opening of the mutant’s stomata remained intact. ABA did not induce either the production of reactive oxygen species and nitric oxide or the alkalization of the cytosol in the quadruple mutant, in accordance with the closure phenotype. Whole cell patch-clamp analysis of inward-rectifying K+ current in guard cells showed a partial inhibition by ABA, indicating that the ABA sensitivity of the mutant was not fully impaired. ABA substantially inhibited blue light-induced phosphorylation of H+-ATPase in guard cells in both the mutant and the wild type. On the other hand, in a knockout mutant of the SNF1-related protein kinase, srk2e, stomatal opening and closure, reactive oxygen species and nitric oxide production, cytosolic alkalization, inward-rectifying K+ current inactivation, and H+-ATPase phosphorylation were not sensitive to ABA. PMID:23946352

  14. ABA says NO to UV-B: a universal response?

    PubMed

    Tossi, Vanesa; Cassia, Raul; Bruzzone, Santina; Zocchi, Elena; Lamattina, Lorenzo

    2012-09-01

    Abscisic acid (ABA) signaling pathways have been widely characterized in plants, whereas the function of ABA in animals is less well understood. However, recent advances show ABA production by a wide range of lower animals and higher mammals. This enables a new evaluation of ABA signaling pathways in different organisms in response to common environmental stress, such as ultraviolet (UV)-B. In this opinion article, we propose that the induction of common signaling components, such as ABA, nitric oxide (NO) and Ca(2+), in plant and animal cells in response to high doses of UV-B, suggests that the evolution of a general mechanism activated by UV-B is conserved in divergent multicellular organisms challenged by a changing common environment.

  15. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination.

    PubMed

    Shu, Kai; Liu, Xiao-dong; Xie, Qi; He, Zu-hua

    2016-01-01

    Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dormancy to germination is not only a critical developmental step in the life cycle of plants but is also important for agricultural production. These processes are precisely regulated by diverse endogenous hormones and environmental cues. Although ABA (abscisic acid) and GAs (gibberellins) are known to be the primary phytohormones that antagonistically regulate seed dormancy, recent findings demonstrate that another phytohormone, auxin, is also critical for inducing and maintaining seed dormancy, and therefore might act as a key protector of seed dormancy. In this review, we summarize our current understanding of the sophisticated molecular networks involving the critical roles of phytohormones in regulating seed dormancy and germination, in which AP2-domain-containing transcription factors play key roles. We also discuss the interactions (crosstalk) of diverse hormonal signals in seed dormancy and germination, focusing on the ABA/GA balance that constitutes the central node.

  16. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling

    PubMed Central

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  17. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling.

    PubMed

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  18. Raffinose and stachyose metabolism are not required for efficient soybean seed germination.

    PubMed

    Dierking, Emily C; Bilyeu, Kristin D

    2009-08-15

    Raffinose family oligosaccharides (RFOs), which include raffinose and stachyose, are thought to be an important source of energy during seed germination. In contrast to their potential for promoting germination, RFOs represent anti-nutritional units for monogastric animals when consumed as a component of feed. The exact role for RFOs during soybean seed development and germination has not been experimentally determined; but it has been hypothesized that RFOs are required for successful germination. Previously, inhibition of RFO breakdown during imbibition and germination was shown to significantly delay germination in pea seeds. The objective of this study was to compare the germination potential for soybean seeds with either wild-type (WT) or low RFO levels and to examine the role of RFO breakdown in germination of soybean seeds. There was no significant difference in germination between normal and low RFO soybean seeds when imbibed/germinated in water. Similar to the situation in pea, soybean seeds of wild-type carbohydrate composition experienced a delay in germination when treated with a chemical inhibitor of alpha-galactosidase activity (1-deoxygalactonojirimycin or DGJ) during imbibition. However, low RFO soybean seed germination was not significantly delayed or reduced when treated with DGJ. In contrast to the situation in pea, the inhibitor-induced germination delay in wild-type soybean seeds was not partially overcome by the addition of galactose or sucrose. We conclude that RFOs are not an essential source of energy during soybean seed germination.

  19. Pyrimidine degradation influences germination seedling growth and production of Arabidopsis seeds

    PubMed Central

    Cornelius, Stefanie; Witz, Sandra; Rolletschek, Hardy; Möhlmann, Torsten

    2011-01-01

    PYD1 (dihydropyrimidine dehydogenase) initiates the degradation of pyrimidine nucleobases and is located in plastids. In this study, a physiological analysis of PYD1 employing T-DNA knockout mutants and overexpressors was carried out. PYD1 knockout mutants were restricted in degradation of exogenously provided uracil and accumulated high uracil levels in plant organs throughout development, especially in dry seeds. Moreover, PYD1 knockout mutants showed delayed germination which was accompanied by low invertase activity and decreased monosaccharide levels. Abscisic acid (ABA) is an important regulator of seed germination, and ABA-responsive genes were deregulated in PYD1 knockout mutants. Together with an observed increased PYD1 expression in wild-type seedlings upon ABA treatment, an interference of PYD1 with ABA signalling can be assumed. Constitutive PYD1 overexpression mutants showed increased growth and higher seed number compared with wild-type and knockout mutant plants. During senescence PYD1 expression increased to allow uracil catabolism. From this it is concluded that early in development and during seed production PYD1 is needed to balance pyrimidine catabolism versus salvage. PMID:21865177

  20. Mapping Interactions between Germinants and Clostridium difficile Spores ▿

    PubMed Central

    Howerton, Amber; Ramirez, Norma; Abel-Santos, Ernesto

    2011-01-01

    Germination of Clostridium difficile spores is the first required step in establishing C. difficile-associated disease (CDAD). Taurocholate (a bile salt) and glycine (an amino acid) have been shown to be important germinants of C. difficile spores. In the present study, we tested a series of glycine and taurocholate analogs for the ability to induce or inhibit C. difficile spore germination. Testing of glycine analogs revealed that both the carboxy and amino groups are important epitopes for recognition and that the glycine binding site can accommodate compounds with more widely separated termini. The C. difficile germination machinery also recognizes other hydrophobic amino acids. In general, linear alkyl side chains are better activators of spore germination than their branched analogs. However, l-phenylalanine and l-arginine are also good germinants and are probably recognized by distinct binding sites. Testing of taurocholate analogs revealed that the 12-hydroxyl group of taurocholate is necessary, but not sufficient, to activate spore germination. In contrast, the 6- and 7-hydroxyl groups are required for inhibition of C. difficile spore germination. Similarly, C. difficile spores are able to detect taurocholate analogs with shorter, but not longer, alkyl amino sulfonic acid side chains. Furthermore, the sulfonic acid group can be partially substituted with other acidic groups. Finally, a taurocholate analog with an m-aminobenzenesulfonic acid side chain is a strong inhibitor of C. difficile spore germination. In conclusion, C. difficile spores recognize both amino acids and taurocholate through multiple interactions that are required to bind the germinants and/or activate the germination machinery. PMID:20971909

  1. The mitochondrial protein import component, TRANSLOCASE OF THE INNER MEMBRANE17-1, plays a role in defining the timing of germination in Arabidopsis.

    PubMed

    Wang, Yan; Law, Simon R; Ivanova, Aneta; van Aken, Olivier; Kubiszewski-Jakubiak, Szymon; Uggalla, Vindya; van der Merwe, Margaretha; Duncan, Owen; Narsai, Reena; Whelan, James; Murcha, Monika W

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), small gene families encode multiple isoforms for many of the components of the mitochondrial protein import apparatus. There are three isoforms of the TRANSLOCASE OF THE INNER MEMBRANE17 (Tim17). Transcriptome analysis indicates that AtTim17-1 is only detectable in dry seed. In this study, two independent transfer DNA insertional mutant lines of tim17-1 exhibited a germination-specific phenotype, showing a significant increase in the rate of germination. Microarray analyses revealed that Attim17-1 displayed alterations in the temporal sequence of transcriptomic events during germination, peaking earlier compared with the wild type. Promoter analysis of AtTim17-1 further identified an abscisic acid (ABA)-responsive element, which binds ABA-responsive transcription factors, acting to repress the expression of AtTim17-1. Attim17-1 dry seeds contained significantly increased levels of ABA and gibberellin, 2- and 5-fold, respectively. These results support the model that mitochondrial biogenesis is regulated in a tight temporal sequence of events during germination and that altering mitochondrial biogenesis feeds back to alter the germination rate, as evidenced by the altered levels of the master regulatory hormones that define germination.

  2. Functional analysis in Arabidopsis of FsPTP1, a tyrosine phosphatase from beechnuts, reveals its role as a negative regulator of ABA signaling and seed dormancy and suggests its involvement in ethylene signaling modulation.

    PubMed

    Alonso-Ramírez, Ana; Rodríguez, Dolores; Reyes, David; Jiménez, Jesús A; Nicolás, Gregorio; Nicolás, Carlos

    2011-09-01

    By means of an RT-PCR approach we isolated a specific tyrosine phosphatase (FsPTP1) induced by abscisic acid (ABA) and correlated with seed dormancy in Fagus sylvatica seeds. To provide genetic evidence of FsPTP1 function in seed dormancy and ABA signal transduction pathway, we overexpressed this gene in Cape Verde Island ecotype of Arabidopsis thaliana, which shows the deepest degree of seed dormancy among Arabidopsis accessions. As a result, 35S:FsPTP1 transgenic seeds showed a reduced dormancy and insensitivity to ABA and osmotic stress conditions accompanied by a reduction in the level of expression of RAB18 and RD29, well-known ABA-responsive genes. Taken together, all these data are consistent with a role of this tyrosine phosphatase as a negative regulator of ABA signaling. In addition, phenotypes of FsPTP1 transgenic plants resemble those observed in ethylene constitutive mutants, accompanied by an increase in the level of expression of a key gene involved in ethylene signaling such as EIN2. All the data presented along the paper suggest that the effect of tyrosine phosphatases in ABA action during the transition from seed dormancy to germination may be through modulation of ethylene signaling.

  3. A high-throughput seed germination assay for root parasitic plants

    PubMed Central

    2013-01-01

    Background Some root-parasitic plants belonging to the Orobanche, Phelipanche or Striga genus represent one of the most destructive and intractable weed problems to agricultural production in both developed and developing countries. Compared with most of the other weeds, parasitic weeds are difficult to control by conventional methods because of their life style. The main difficulties that currently limit the development of successful control methods are the ability of the parasite to produce a tremendous number of tiny seeds that may remain viable in the soil for more than 15 years. Seed germination requires induction by stimulants present in root exudates of host plants. Researches performed on these minute seeds are until now tedious and time-consuming because germination rate is usually evaluated in Petri-dish by counting germinated seeds under a binocular microscope. Results We developed an easy and fast method for germination rate determination based on a standardized 96-well plate test coupled with spectrophotometric reading of tetrazolium salt (MTT) reduction. We adapted the Mosmann’s protocol for cell cultures to germinating seeds and determined the conditions of seed stimulation and germination, MTT staining and formazan salt solubilization required to obtain a linear relationship between absorbance and germination rate. Dose–response analyses were presented as applications of interest for assessing half maximal effective or inhibitory concentrations of germination stimulants (strigolactones) or inhibitors (ABA), respectively, using four parameter logistic curves. Conclusion The developed MTT system is simple and accurate. It yields reproducible results for germination bioassays of parasitic plant seeds. This method is adapted to high-throughput screenings of allelochemicals (stimulants, inhibitors) or biological extracts on parasitic plant seed germination, and strengthens the investigations of distinctive features of parasitic plant germination

  4. Germination of Candida albicans induced by proline.

    PubMed Central

    Dabrowa, N; Taxer, S S; Howard, D H

    1976-01-01

    Blastospores of Candida albicans germinated in proline-biotin-buffer medium incubated at 37 C. Certain other amino acids in the glatamate, asparate, and pyruvate families also fostered germinaton but generally to a lesser extent than did proline. L-Cysteine, D-proline, and certain structural analogues of L-proline inhibited proline-stimualted germination. The concentration of phosphate and glucose was crucial to amino acid-stimulated germination of C. albicans. Clinical isolates and stock cultures varied in their response to the germ tube-inducing activity of proline or other amino acids. The proline-buffer medium cannot be used in a diagnostic test for production of germ tubes by isolates of yeasts. PMID:5375

  5. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    SciTech Connect

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  6. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    PubMed Central

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2011-01-01

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-Å resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases. PMID:22160701

  7. ABA receptor PYL9 promotes drought resistance and leaf senescence.

    PubMed

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A; Zhu, Jian-Kang

    2016-02-16

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress. PMID:26831097

  8. ABA receptor PYL9 promotes drought resistance and leaf senescence

    PubMed Central

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A.; Zhu, Jian-Kang

    2016-01-01

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress. PMID:26831097

  9. ABA receptor PYL9 promotes drought resistance and leaf senescence.

    PubMed

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A; Zhu, Jian-Kang

    2016-02-16

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress.

  10. Inhibition of Abscisic Acid Biosynthesis in Cercospora rosicola by Inhibitors of Gibberellin Biosynthesis and Plant Growth Retardants

    PubMed Central

    Norman, Shirley M.; Poling, Stephen M.; Maier, Vincent P.; Orme, Edward D.

    1983-01-01

    The fungus Cercospora rosicola produces abscisic acid (ABA) as a secondary metabolite. We developed a convenient system using this fungus to determine the effects of compounds on the biosynthesis of ABA. Inasmuch as ABA and the gibberellins (GAs) both arise via the isoprenoid pathway, it was of interest to determine if inhibitors of GA biosynthesis affect ABA biosynthesis. All five putative inhibitors of GA biosynthesis tested inhibited ABA biosynthesis. Several plant growth retardants with poorly understood actions in plants were also tested; of these, six inhibited ABA biosynthesis to varying degrees and two had no effect. Effects of plant growth retardants on various branches of the isoprenoid biosynthetic pathway may help to explain some of the diverse and unexpected results reported for these compounds. Knowledge that certain inhibitors of GA biosynthesis also have the ability to inhibit ABA biosynthesis in C. rosicola indicates the need for further studies in plants on the mode of action of these compounds. PMID:16662775

  11. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration.

    PubMed

    Cheng, Fan; Liu, Yu-Feng; Lu, Guang-Yuan; Zhang, Xue-Kun; Xie, Ling-Li; Yuan, Cheng-Fei; Xu, Ben-Bo

    2016-04-01

    Researchers have proven that nanomaterials have a significant effect on plant growth and development. To better understand the effects of nanomaterials on plants, Zhongshuang 11 was treated with different concentrations of graphene oxide. The results indicated that 25-100mg/l graphene oxide treatment resulted in shorter seminal root length compared with the control samples. The fresh root weight decreased when treated with 50-100mg/l graphene oxide. The graphene oxide treatment had no significant effect on the Malondialdehyde (MDA) content. Treatment with 50mg/l graphene oxide increased the transcript abundance of genes involved in ABA biosynthesis (NCED, AAO, and ZEP) and some genes involved in IAA biosynthesis (ARF2, ARF8, IAA2, and IAA3), but inhibited the transcript levels of IAA4 and IAA7. The graphene oxide treatment also resulted in a higher ABA content, but a lower IAA content compared with the control samples. The results indicated that graphene oxide modulated the root growth of Brassica napus L. and affected ABA and IAA biosynthesis and concentration. PMID:26945480

  12. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum

    PubMed Central

    Dodd, Ian C.

    2012-01-01

    Resolving the physiological mechanisms by which rhizobacteria enhance plant growth is difficult, since many such bacteria contain multiple plant growth-promoting properties. To understand further how the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd)-containing rhizobacterium Variovorax paradoxus 5C-2 affects plant growth, the flows and partitioning of mineral nutrients and abscisic acid (ABA) and ABA metabolism were studied in pea (Pisum sativum) plants following rhizosphere bacterial inoculation. Although root architecture was not affected, inoculation increased root and shoot biomass, and stomatal conductance, by 20, 15, and 24%, respectively, and increased N, P, K, Ca, and Mg uptake by 16, 81, 50, 46, and 58%, respectively. P deposition in inoculated plant roots was 4.9 times higher than that in uninoculated controls. Rhizobacterial inoculation increased root to shoot xylem flows and shoot to root phloem flows of K by 1.8- and 2.1-fold, respectively. In control plants, major sinks for K deposition were the roots and upper shoot (43% and 49% of total uptake, respectively), while rhizobacterial inoculation increased K distribution to the lower shoot at the expense of other compartments (xylem, phloem, and upper shoot). Despite being unable to metabolize ABA in vitro, V. paradoxus 5C-2 decreased root ABA concentrations and accumulation by 40–60%. Although inoculation decreased xylem ABA flows, phloem ABA flows increased. Whether bacterial ACCd attenuates root to shoot ABA signalling requires further investigation, since ABA is critical to maintain growth of droughted plants, and ACCd-containing organisms have been advocated as a means of minimizing growth inhibition of plants in drying soil. PMID:23136167

  13. The induction of free proline accumulation by endogenous ABA in Arabidopsis thaliana during drought

    SciTech Connect

    Gottlieb, M.L.; Bray, E.A. )

    1991-05-01

    Endogenous levels of abscisic acid (ABA) and free proline increase in response to drought stress. Exogenous ABA has been shown to induce proline accumulation, suggesting that ABA triggers the amino acid response. To determine if endogenous ABA induces free proline accumulation, increases in ABA and proline during drought stress were compared between wild type (WT), ABA-insensitive (abi) and ABA-deficient (aba) mutants of Arabidopsis thaliana. If elevated levels of endogenous ABA signal the proline response, then the mutants would not be expected to accumulate proline during stress. abi should be unable to respond to increased levels of endogenous ABA, while aba should be unable to accumulate sufficient ABA to elicit a proline response. Drought-stressed three week old shoots of WT, abi, and aba exhibited different patterns of endogenous ABA accumulation, but similar patterns of proline accumulation over 24 hours. Although the patterns of endogenous ABA accumulation differed, maximum levels were similar in WT and abi, but aba produced approximately 25% less. However, free proline accumulated in all three plant lines. abi exhibited a greater, more rapid increase in free proline over that in either WT or aba. aba, however, showed the same pattern and levels of accumulation as that in WT. Since free proline accumulated to at least similar levels in both WT and mutants, regardless of the levels of ABA accumulation, it may be that only a small endogenous ABA accumulation is required for proline accumulation. Alternatively, endogenous ABA may not be the direct signal for the proline response during drought stress.

  14. The ABI4-induced Arabidopsis ANAC060 transcription factor attenuates ABA signaling and renders seedlings sugar insensitive when present in the nucleus.

    PubMed

    Li, Ping; Zhou, Hua; Shi, Xiaoliang; Yu, Bo; Zhou, Yan; Chen, Suli; Wang, Yufeng; Peng, Yu; Meyer, Rhonda C; Smeekens, Sjef C; Teng, Sheng

    2014-03-01

    Seedling establishment is inhibited on media containing high levels (∼ 6%) of glucose or fructose. Genetic loci that overcome the inhibition of seedling growth on high sugar have been identified using natural variation analysis and mutant selection, providing insight into sugar signaling pathways. In this study, a quantitative trait locus (QTL) analysis was performed for seedling sensitivity to high sugar in a Col/C24 F2 population of Arabidopsis thaliana. A glucose and fructose-sensing QTL, GSQ11, was mapped through selective genotyping and confirmed in near-isogenic lines in both Col and C24 backgrounds. Allelism tests and transgenic complementation showed that GSQ11 lies within the ANAC060 gene. The Col ANAC060 allele confers sugar insensitivity and was dominant over the sugar-sensitive C24 allele. Genomic and mRNA analyses showed that a single-nucleotide polymorphism (SNP) in Col ANAC060 affects the splicing patterns of ANAC060 such that 20 additional nucleotides are present in the mRNA. The insertion created a stop codon, resulting in a truncated ANAC60 protein lacking the transmembrane domain (TMD) that is present in the C24 ANAC060 protein. The absence of the TMD results in the nuclear localization of ANAC060. The short version of the ANAC060 protein is found in ∼ 12% of natural Arabidopsis accessions. Glucose induces GSQ11/ANAC060 expression in a process that requires abscisic acid (ABA) signaling. Chromatin immunoprecipitation-qPCR and transient expression analysis showed that ABI4 directly binds to the GSQ11/ANAC060 promoter to activate transcription. Interestingly, Col ANAC060 reduced ABA sensitivity and Glc-induced ABA accumulation, and ABI4 expression was also reduced in Col ANAC060 lines. Thus, the sugar-ABA signaling cascade induces ANAC060 expression, but the truncated Col ANAC060 protein attenuates ABA induction and ABA signaling. This negative feedback from nuclear ANAC060 on ABA signaling results in sugar insensitivity.

  15. Global Transcriptomic Analysis Reveals the Mechanism of Phelipanche aegyptiaca Seed Germination

    PubMed Central

    Yao, Zhaoqun; Tian, Fang; Cao, Xiaolei; Xu, Ying; Chen, Meixiu; Xiang, Benchun; Zhao, Sifeng

    2016-01-01

    Phelipanche aegyptiaca is one of the most destructive root parasitic plants of Orobanchaceae. This plant has significant impacts on crop yields worldwide. Conditioned and host root stimulants, in particular, strigolactones, are needed for unique seed germination. However, no extensive study on this phenomenon has been conducted because of insufficient genomic information. Deep RNA sequencing, including de novo assembly and functional annotation was performed on P. aegyptiaca germinating seeds. The assembled transcriptome was used to analyze transcriptional dynamics during seed germination. Key gene categories involved were identified. A total of 274,964 transcripts were determined, and 53,921 unigenes were annotated according to the NR, GO, COG, KOG, and KEGG databases. Overall, 5324 differentially expressed genes among dormant, conditioned, and GR24-treated seeds were identified. GO and KEGG enrichment analyses demonstrated numerous DEGs related to DNA, RNA, and protein repair and biosynthesis, as well as carbohydrate and energy metabolism. Moreover, ABA and ethylene were found to play important roles in this process. GR24 application resulted in dramatic changes in ABA and ethylene-associated genes. Fluridone, a carotenoid biosynthesis inhibitor, alone could induce P. aegyptiaca seed germination. In addition, conditioning was probably not the indispensable stage for P. aegyptiaca, because the transcript level variation of MAX2 and KAI2 genes (relate to strigolactone signaling) was not up-regulated by conditioning treatment. PMID:27428962

  16. Global Transcriptomic Analysis Reveals the Mechanism of Phelipanche aegyptiaca Seed Germination.

    PubMed

    Yao, Zhaoqun; Tian, Fang; Cao, Xiaolei; Xu, Ying; Chen, Meixiu; Xiang, Benchun; Zhao, Sifeng

    2016-01-01

    Phelipanche aegyptiaca is one of the most destructive root parasitic plants of Orobanchaceae. This plant has significant impacts on crop yields worldwide. Conditioned and host root stimulants, in particular, strigolactones, are needed for unique seed germination. However, no extensive study on this phenomenon has been conducted because of insufficient genomic information. Deep RNA sequencing, including de novo assembly and functional annotation was performed on P. aegyptiaca germinating seeds. The assembled transcriptome was used to analyze transcriptional dynamics during seed germination. Key gene categories involved were identified. A total of 274,964 transcripts were determined, and 53,921 unigenes were annotated according to the NR, GO, COG, KOG, and KEGG databases. Overall, 5324 differentially expressed genes among dormant, conditioned, and GR24-treated seeds were identified. GO and KEGG enrichment analyses demonstrated numerous DEGs related to DNA, RNA, and protein repair and biosynthesis, as well as carbohydrate and energy metabolism. Moreover, ABA and ethylene were found to play important roles in this process. GR24 application resulted in dramatic changes in ABA and ethylene-associated genes. Fluridone, a carotenoid biosynthesis inhibitor, alone could induce P. aegyptiaca seed germination. In addition, conditioning was probably not the indispensable stage for P. aegyptiaca, because the transcript level variation of MAX2 and KAI2 genes (relate to strigolactone signaling) was not up-regulated by conditioning treatment.

  17. Effect of synthetic detergents on germination of fern spores

    SciTech Connect

    Devi, Y.; Devi, S.

    1986-12-01

    Synthetic detergents constitute one of the most important water pollutants by contaminating the lakes and rivers through domestic and industrial use. Considerable information is now available for the adverse effects of detergents an aquatic fauna including fish, algae, and higher aquatic plants. Marked inhibition of germination in orchids and brinjals and of seedlings growth in raddish suggest that rapidly growing systems could be sensitive to detergent polluted water. The present study of the effect of linear alkyl benzene sulphonate on germination of the spores of a fern, Diplazium esculentum aims at the understanding of the effects of water pollution on pteridophytes and the development of spore germination assay for phytoxicity evaluation.

  18. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.

    PubMed

    Yan, Huiru; Jia, Haihong; Chen, Xiaobo; Hao, Lili; An, Hailong; Guo, Xingqi

    2014-12-01

    Drought and high salinity are two major environmental factors that significantly limit the productivity of agricultural crops worldwide. WRKY transcription factors play essential roles in the adaptation of plants to abiotic stresses. However, WRKY genes involved in drought and salt tolerance in cotton (Gossypium hirsutum) are largely unknown. Here, a group IId WRKY gene, GhWRKY17, was isolated and characterized. GhWRKY17 was found to be induced after exposure to drought, salt, H2O2 and ABA. The constitutive expression of GhWRKY17 in Nicotiana benthamiana remarkably reduced plant tolerance to drought and salt stress, as determined through physiological analyses of the germination rate, root growth, survival rate, leaf water loss and Chl content. GhWRKY17 transgenic plants were observed to be more sensitive to ABA-mediated seed germination and root growth. However, overexpressing GhWRKY17 in N. benthamiana impaired ABA-induced stomatal closure. Furthermore, we found that GhWRKY17 modulated the increased sensitivity of plants to drought by reducing the level of ABA, and transcript levels of ABA-inducible genes, including AREB, DREB, NCED, ERD and LEA, were clearly repressed under drought and salt stress conditions. Consistent with the accumulation of reactive oxygen species (ROS), reduced proline contents and enzyme activities, elevated electrolyte leakage and malondialdehyde, and lower expression of ROS-scavenging genes, including APX, CAT and SOD, the GhWRKY17 transgenic plants exhibited reduced tolerance to oxidative stress compared with wild-type plants. These results therefore indicate that GhWRKY17 responds to drought and salt stress through ABA signaling and the regulation of cellular ROS production in plants.

  19. cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1.

    PubMed

    Dubovskaya, Lyudmila V; Bakakina, Yulia S; Kolesneva, Ekaterina V; Sodel, Dmitry L; McAinsh, Martin R; Hetherington, Alistair M; Volotovski, Igor D

    2011-07-01

    • The drought hormone abscisic acid (ABA) is widely known to produce reductions in stomatal aperture in guard cells. The second messenger cyclic guanosine 3', 5'-monophosphate (cGMP) is thought to form part of the signalling pathway by which ABA induces stomatal closure. • We have examined the signalling events during cGMP-dependent ABA-induced stomatal closure in wild-type Arabidopsis plants and plants of the ABA-insensitive Arabidopsis mutant abi1-1. • We show that cGMP acts downstream of hydrogen peroxide (H(2) O(2) ) and nitric oxide (NO) in the signalling pathway by which ABA induces stomatal closure. H(2) O(2) - and NO-induced increases in the cytosolic free calcium concentration ([Ca(2+) ](cyt) ) were cGMP-dependent, positioning cGMP upstream of [Ca(2+) ](cyt) , and involved the action of the type 2C protein phosphatase ABI1. Increases in cGMP were mediated through the stimulation of guanylyl cyclase by H(2) O(2) and NO. We identify nucleoside diphosphate kinase as a new cGMP target protein in Arabidopsis. • This study positions cGMP downstream of ABA-induced changes in H(2) O(2) and NO, and upstream of increases in [Ca(2+) ](cyt) in the signalling pathway leading to stomatal closure.

  20. Factors influencing seed germination of medicinal plant Salvia aegyptiaca L. (Lamiaceae)

    PubMed Central

    Gorai, Mustapha; Gasmi, Hayet; Neffati, Mohamed

    2011-01-01

    Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C. PMID:23961132

  1. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion.

    PubMed

    López-Barrios, Lidia; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A

    2016-07-15

    Germination is an inexpensive process to improve the nutritional properties of legumes. The effect of germinating black bean seeds on the production of cotyledon protein hydrolysates (CPH) with antioxidant and antiinflammatory activities was analyzed in this research. After simulated enzymatic digestion, the oxygen radical absorbance capacity (ORAC) of CPH obtained from germinated black beans was lower than that observed for raw cotyledons. There were no significant differences among CPH cellular antioxidant activities (CAA), except for the high CAA of the 120 min hydrolysate obtained from one day germinated black bean cotyledons. The most significant changes due to germination and enzymatic hydrolysis were observed for the inhibition of nitric oxide (NO) production in macrophages. The NO synthesis inhibition observed for raw CPH was reduced after simulated gastrointestinal digestion but for germinated samples the inhibition was doubled. Peptides derived from cell wall proteins produced during germination could be responsible of antiinflammatory activity. PMID:26948633

  2. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion.

    PubMed

    López-Barrios, Lidia; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A

    2016-07-15

    Germination is an inexpensive process to improve the nutritional properties of legumes. The effect of germinating black bean seeds on the production of cotyledon protein hydrolysates (CPH) with antioxidant and antiinflammatory activities was analyzed in this research. After simulated enzymatic digestion, the oxygen radical absorbance capacity (ORAC) of CPH obtained from germinated black beans was lower than that observed for raw cotyledons. There were no significant differences among CPH cellular antioxidant activities (CAA), except for the high CAA of the 120 min hydrolysate obtained from one day germinated black bean cotyledons. The most significant changes due to germination and enzymatic hydrolysis were observed for the inhibition of nitric oxide (NO) production in macrophages. The NO synthesis inhibition observed for raw CPH was reduced after simulated gastrointestinal digestion but for germinated samples the inhibition was doubled. Peptides derived from cell wall proteins produced during germination could be responsible of antiinflammatory activity.

  3. Seed Dormancy and Germination

    PubMed Central

    Bentsink, Leónie; Koornneef, Maarten

    2008-01-01

    Seed dormancy allows seeds to overcome periods that are unfavourable for seedling established and is therefore important for plant ecology and agriculture. Several processes are known to be involved in the induction of dormancy and in the switch from the dormant to the germinating state. The role of plant hormones, the different tissues and genes involved, including newly identified genes in dormancy and germination are described in this chapter, as well as the use transcriptome, proteome and metabolome analyses to study these mechanistically not well understood processes. PMID:22303244

  4. De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing.

    PubMed

    Liu, Shu-Jun; Song, Shun-Hua; Wang, Wei-Qing; Song, Song-Quan

    2015-11-01

    At supraoptimal temperature, germination of lettuce (Lactuca sativa L.) seeds exhibits a typical germination thermoinhibition, which can be alleviated by sodium nitroprusside (SNP) in a nitric oxide-dependent manner. However, the molecular mechanism of seed germination thermoinhibition and its alleviation by SNP are poorly understood. In the present study, the lettuce seeds imbibed at optimal temperature in water or at supraoptimal temperature with or without 100 μM SNP for different periods of time were used as experimental materials, the total RNA was extracted and sequenced, we gained 147,271,347 raw reads using Illumina paired-end sequencing technique and assembled the transcriptome of germinating lettuce seeds. A total of 51,792 unigenes with a mean length of 849 nucleotides were obtained. Of these unigenes, a total of 29,542 unigenes were annotated by sequence similarity searching in four databases, NCBI non-redundant protein database, SwissProt protein database, euKaryotic Ortholog Groups database, and NCBI nucleotide database. Among the annotated unigenes, 22,276 unigenes were assigned to Gene Ontology database. When all the annotated unigenes were searched against the Kyoto Encyclopedia of Genes and Genomes Pathway database, a total of 8,810 unigenes were mapped to 5 main categories including 260 pathways. We first obtained a lot of unigenes encoding proteins involved in abscisic acid (ABA) signaling in lettuce, including 11 ABA receptors, 94 protein phosphatase 2Cs and 16 sucrose non-fermenting 1-related protein kinases. These results will help us to better understand the molecular mechanism of seed germination, thermoinhibition of seed germination and its alleviation by SNP. PMID:26263518

  5. De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing.

    PubMed

    Liu, Shu-Jun; Song, Shun-Hua; Wang, Wei-Qing; Song, Song-Quan

    2015-11-01

    At supraoptimal temperature, germination of lettuce (Lactuca sativa L.) seeds exhibits a typical germination thermoinhibition, which can be alleviated by sodium nitroprusside (SNP) in a nitric oxide-dependent manner. However, the molecular mechanism of seed germination thermoinhibition and its alleviation by SNP are poorly understood. In the present study, the lettuce seeds imbibed at optimal temperature in water or at supraoptimal temperature with or without 100 μM SNP for different periods of time were used as experimental materials, the total RNA was extracted and sequenced, we gained 147,271,347 raw reads using Illumina paired-end sequencing technique and assembled the transcriptome of germinating lettuce seeds. A total of 51,792 unigenes with a mean length of 849 nucleotides were obtained. Of these unigenes, a total of 29,542 unigenes were annotated by sequence similarity searching in four databases, NCBI non-redundant protein database, SwissProt protein database, euKaryotic Ortholog Groups database, and NCBI nucleotide database. Among the annotated unigenes, 22,276 unigenes were assigned to Gene Ontology database. When all the annotated unigenes were searched against the Kyoto Encyclopedia of Genes and Genomes Pathway database, a total of 8,810 unigenes were mapped to 5 main categories including 260 pathways. We first obtained a lot of unigenes encoding proteins involved in abscisic acid (ABA) signaling in lettuce, including 11 ABA receptors, 94 protein phosphatase 2Cs and 16 sucrose non-fermenting 1-related protein kinases. These results will help us to better understand the molecular mechanism of seed germination, thermoinhibition of seed germination and its alleviation by SNP.

  6. Response of transgenic rice at germination and early seedling growth under salt stress.

    PubMed

    Jamil, Muhammad; Rha, Eui Shik

    2007-12-01

    The response of germination and early seedling growth of different transgenic rice lines (T-99, T-112, T-115 and T-121) were examined in different levels of salinity (0, 50, 100 and 150 mM NaCl). Final germination, germination rate (1/t50, where t50 is the time to 50% of germination) and early seedling growth were assessed. Final germination percentage was inhibited with increasing salt concentrations. The required time for germination also increased with increasing salinity levels. The seedling growth was also reduced by salt concentrations, particularly at 150 mM. Root and shoot lengths, root/shoot ratio, fresh weights of root and shoot were also decreased with increasing salt stress. T-99 and T-112 had shown greater performance at germination and early seedling growth as compared to other transgenic lines.

  7. ABA flow modelling in Ricinus communis exposed to salt stress and variable nutrition

    PubMed Central

    Peuke, Andreas D.

    2016-01-01

    In a series of experiments with Ricinus communis, abscisic acid (ABA) concentrations in tissues and transport saps, its de novo biosynthesis, long-distance transport, and metabolism (degradation) were affected by nutritional conditions, nitrogen (N) source, and nutrient limitation, or salt stress. In the present study these data were statistically re-evaluated, and new correlations presented that underpin the importance of this universal phytohormone. The biggest differences in ABA concentration were observed in xylem sap. N source had the strongest effect; however, nutrient limitation (particularly phosphorus limitation) and salt also had significant effects. ABA was found in greater concentration in phloem sap compared with xylem sap; however, the effect of treatment on ABA concentration in phloem was lower. In the leaves, ABA concentration was most variable compared with the other tissues. This variation was only affected by the N source. In roots, ABA was significantly decreased by nutrient limitation. Of the compartments in which ABA was quantified, xylem sap ABA concentration was most significantly correlated with leaf stomatal conductance and leaf growth. Additionally, ABA concentration in xylem was significantly correlated to that in phloem, indicating a 6-fold concentration increase from xylem to phloem. The ABA flow model showed that biosynthesis of ABA in roots affected the xylem flow of ABA. Moreover, ABA concentration in xylem affected the degradation of the phytohormone in shoots and also its export from shoots via phloem. The role of phloem transport is discussed since it stimulates ABA metabolism in roots. PMID:27440939

  8. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis.

    PubMed

    Luo, Xingju; Chen, Zhizhong; Gao, Junping; Gong, Zhizhong

    2014-07-01

    When first discovered in 1963, abscisic acid (ABA) was called abscisin II because it promotes abscission. Later, researchers found that ABA accelerates abscission via ethylene. In Arabidopsis, previous studies have shown that high concentrations of ABA inhibit root growth through ethylene signaling but not ethylene production. In the present study in Arabidopsis, we found that ABA inhibits root growth by promoting ethylene biosynthesis. The ethylene biosynthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine reduces ABA inhibition of root growth, and multiple mutants of ACS (1-aminocyclopropane-1-carboxylate synthase) are more resistant to ABA in terms of root growth than the wild-type is. Two ABA-activated calcium-dependent protein kinases, CPK4 and CPK11, phosphorylate the C-terminus of ACS6 and increase the stability of ACS6 in ethylene biosynthesis. Plants expressing an ACS6 mutant that mimics the phosphorylated form of ACS6 produce more ethylene than the wild-type. Our results reveal an important mechanism by which ABA promotes ethylene production. This mechanism may be highly conserved among higher plants.

  9. Change in protein content during seed germination of a high altitude plant Podophyllum hexandrum Royle.

    PubMed

    Dogra, Vivek; Ahuja, Paramvir Singh; Sreenivasulu, Yelam

    2013-01-14

    Podophyllum hexandrum Royle (=Sinopodophyllum hexandrum) is a high-altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. An effective, conventional propagation method is by seed. However, seed germination is erratic, and seedling survival is low. A marginal increase in Podophyllum seed germination was attained with organic solvents. In the present study an attempt was made to decipher the physiological and biochemical barriers in terms of change in proteins during seed germination of Podophyllum. Comparative 2-DE analysis between un-germinated (dormant) and germinating seeds revealed nearly 113 differentially expressed proteins, whereas Peptide Mass Fingerprint (PMF) analysis of 97 protein spots revealed appearance of 27 proteins, up-accumulation of 11 proteins, down-accumulation of 19 proteins and disappearance of 40 proteins with germination. Identified 59 proteins in the homology search were involved in metabolism (carbohydrate and amino acid metabolism; 20 proteins), ABA/GA signaling (17 proteins) and stress (15 proteins) related proteins. Seven proteins were with unknown function. Two-DE, and MS/MS analysis in conjunction with semi-quantitative RT-PCR data of cell wall hydrolyzing genes, revealed that in Podophyllum the radicle protrusion occurs might be because of the up-accumulation of cell wall hydrolases i.e. β-1, 3-glucanase and XET which weakens the thick walled micropylar endosperm.

  10. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis.

    PubMed

    Kim, Yun Young; Jung, Kwang Wook; Yoo, Kyoung Shin; Jeung, Ji Ung; Shin, Jeong Sheop

    2011-05-01

    Caleosins or related sequences have been found in a wide range of higher plants. In Arabidopsis, seed-specific caleosins are viewed as oil-body (OB)-associated proteins that possess Ca(2+)-dependent peroxygenase activity and are involved in processes of lipid degradation. Recent experimental evidence suggests that one of the Arabidopsis non-seed caleosins, AtCLO3, is involved in controlling stomatal aperture during the drought response; the roles of the other caleosin-like proteins in Arabidopsis remain largely uncharacterized. We have demonstrated that a novel stress-responsive and OB-associated Ca(2+)-binding caleosin-like protein, AtCLO4, is expressed in non-seed tissues of Arabidopsis, including guard cells, and down-regulated following exposure to exogenous ABA and salt stress. At the seed germination stage, a loss-of-function mutant (atclo4) was hypersensitive to ABA, salt and mannitol stresses, whereas AtCLO4-overexpressing (Ox) lines were more hyposensitive to those stresses than the wild type. In adult stage, atclo4 mutant and AtCLO4-Ox plants showed enhanced and decreased drought tolerance, respectively. Following exposure to exogenous ABA, the expression of key ABA-dependent regulatory genes, such as ABF3 and ABF4, was up-regulated in the atclo4 mutant, while it was down-regulated in AtCLO4-Ox lines. Based on these results, we propose that the OB-associated Ca(2+)-binding AtCLO4 protein acts as a negative regulator of ABA responses in Arabidopsis. PMID:21471120

  11. RING Type E3 Ligase CaAIR1 in Pepper Acts in the Regulation of ABA Signaling and Drought Stress Response.

    PubMed

    Park, Chanmi; Lim, Chae Woo; Baek, Woonhee; Lee, Sung Chul

    2015-09-01

    Several E3 ubiquitin ligases have been associated with the response to abiotic and biotic stresses in higher plants. Here, we report that the hot pepper (Capsicum annuum) ABA-Insensitive RING protein 1 gene (CaAIR1) is essential for a hypersensitive response to drought stress. CaAIR1 contains a C3HC4-type RING finger motif, which plays a role for attachment of ubiquitins to the target protein, and a putative transmembrane domain. The expression levels of CaAIR1 are up-regulated in pepper leaves by ABA treatments, drought and NaCl, suggesting its role in the response to abiotic stress. Our analysis showed that CaAIR1 displays self-ubiquitination and is localized in the nucleus. We generated CaAIR1-silenced peppers via virus-induced gene silencing (VIGS) and CaAIR1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to ABA and drought. VIGS of CaAIR1 in pepper plants conferred an enhanced tolerance to drought stress, which was accompanied by low levels of transpirational water loss in the drought-treated leaves. CaAIR1-OX plants displayed an impaired sensitivity to ABA during seed germination, seedling and adult stages. Moreover, these plants showed enhanced sensitivity to drought stress because of reduced stomatal closure and decreased expression of stress-responsive genes. Thus, our data indicate that CaAIR1 is a negative regulator of the ABA-mediated drought stress tolerance mechanism.

  12. Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin–Proteasome Pathway

    PubMed Central

    Mitula, Filip; Tajdel, Malgorzata; Cieśla, Agata; Kasprowicz-Maluśki, Anna; Kulik, Anna; Babula-Skowrońska, Danuta; Michalak, Michal; Dobrowolska, Grazyna; Sadowski, Jan; Ludwików, Agnieszka

    2015-01-01

    Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated by ABA. Analysis of the cellular localization of MKKK18 showed that the active kinase was targeted specifically to the nucleus. Notably, we identified abscisic acid insensitive 1 (ABI1) PP2C as a MKKK18-interacting protein, and demonstrated that ABI1 inhibited its activity. Using a cell-free degradation assay, we also established that MKKK18 was unstable and was degraded by the proteasome pathway. The rate of MKKK18 degradation was delayed in the ABI1 knockout line. Overall, we provide evidence that ABI1 regulates the activity and promotes proteasomal degradation of MKKK18. PMID:26443375

  13. Involvement of ABA- and H2O2-dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress.

    PubMed

    Wang, Huahua; Yang, Lidan; Li, Yan; Hou, Junjie; Huang, Junjun; Liang, Weihong

    2016-10-01

    The roles of abscisic acid (ABA) and hydrogen peroxide (H2O2) in inducing glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) activity and the possible roles of G6PDH in regulating ascorbate-glutathione (AsA-GSH) cycle were investigated in soybean (Glycine max L.) roots under drought stress. Drought caused a marked increase of the total and cytosolic G6PDH activities and triggered a rapid ABA and H2O2 accumulation in soybean roots. Exogenous ABA or H2O2 treatment elevated the total and cytosolic G6PDH activities, whereas suppressing ABA or H2O2 production inhibited the drought-induced increase in total and cytosolic G6PDH activities, suggesting that ABA and H2O2 are required for drought-induced increase of total G6PDH activity, namely cytosolic G6PDH activity. Furthermore, ABA induced H2O2 production by stimulating NADPH oxidase activity under drought stress. Moreover, drought significantly increased the contents of AsA and GSH and the activities of key enzymes in AsA-GSH cycle, while application of G6PDH inhibitor to seedlings significantly reduced the above effect induced by drought. Taken together, these results indicate that H2O2 acting as a downstream signaling molecule of ABA mediates drought-induced increase in cytosolic G6PDH activity, and that enhanced cytosolic G6PDH activity maintains cellular redox homeostasis by regulating AsA-GSH cycle in soybean roots. PMID:27285781

  14. Involvement of ABA- and H2O2-dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress.

    PubMed

    Wang, Huahua; Yang, Lidan; Li, Yan; Hou, Junjie; Huang, Junjun; Liang, Weihong

    2016-10-01

    The roles of abscisic acid (ABA) and hydrogen peroxide (H2O2) in inducing glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) activity and the possible roles of G6PDH in regulating ascorbate-glutathione (AsA-GSH) cycle were investigated in soybean (Glycine max L.) roots under drought stress. Drought caused a marked increase of the total and cytosolic G6PDH activities and triggered a rapid ABA and H2O2 accumulation in soybean roots. Exogenous ABA or H2O2 treatment elevated the total and cytosolic G6PDH activities, whereas suppressing ABA or H2O2 production inhibited the drought-induced increase in total and cytosolic G6PDH activities, suggesting that ABA and H2O2 are required for drought-induced increase of total G6PDH activity, namely cytosolic G6PDH activity. Furthermore, ABA induced H2O2 production by stimulating NADPH oxidase activity under drought stress. Moreover, drought significantly increased the contents of AsA and GSH and the activities of key enzymes in AsA-GSH cycle, while application of G6PDH inhibitor to seedlings significantly reduced the above effect induced by drought. Taken together, these results indicate that H2O2 acting as a downstream signaling molecule of ABA mediates drought-induced increase in cytosolic G6PDH activity, and that enhanced cytosolic G6PDH activity maintains cellular redox homeostasis by regulating AsA-GSH cycle in soybean roots.

  15. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    PubMed

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress.

  16. Structural basis for selective activation of ABA receptors

    SciTech Connect

    Peterson, Francis C.; Burgie, E. Sethe; Park, Sang-Youl; Jensen, Davin R.; Weiner, Joshua J.; Bingman, Craig A.; Chang, Chia-En A.; Cutler, Sean R.; Phillips, Jr., George N.; Volkman, Brian F.

    2010-11-01

    Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.

  17. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  18. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  19. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction.

  20. Arabidopsis Tóxicos en Levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress.

    PubMed

    Suh, Ji Yeon; Kim, Soo Jin; Oh, Tae Rin; Cho, Seok Keun; Yang, Seong Wook; Kim, Woo Taek

    2016-01-01

    Plants have developed a variety of complicated responses to cope with drought, one of the most challenging environmental stresses. As a quick response, plants rapidly inhibit stomatal opening under the control of abscisic acid (ABA) signaling pathway, in order to preserve water. Here, we report that Arabidopsis Tóxicos en Levadura (ATL), a RING-type E3 ubiquitin ligase, mediates the ABA-dependent stomatal closure. In contrast to wild-type plants, the stomatal closure was fully impaired in atatl78 mutant plants even in the presence of exogenous ABA and reactive oxygen species (ROS). Besides, under high concentrations of Ca(2+), a down-stream signaling molecule of ABA signaling pathway, atatl78 mutant plants successfully closed the pores. Furthermore, AtATL78 protein indirectly associated with catalases and the deficiency of AtATL78 led the reduction of catalase activity and H2O2, implying the function of AtATL78 in the modulation of ROS activity. Based on these results, we suggest that AtATL78 possibly plays a role in promoting ROS-mediated ABA signaling pathway during drought stress. PMID:26612255

  1. Effect of Fertilizers and Neem Cake Amendment in Soil on Spore Germination of Arthrobotrys dactyloides

    PubMed Central

    Kumar, D.; Jaiswal, R. K.

    2005-01-01

    Application of fertilizers such as urea, diammonium phosphate (DAP) and muriate of potash in soil adversely affected the spore germination of Arthrobotrys dactyloides. Amendment of soil with urea at the concentrations of 1.0%, 0.5% and 0.1% completely inhibited spore germination and direct trap formation on the conidium, whereas muriate of potash delayed and reduced the spore germination even at the lowest concentration. DAP also inhibited spore germination at 1.0% concentration, while at lower concentration the percentage of spore germination was reduced. Application of neem cake at the concentration of 0.5% also inhibited spore germination after 24 h of amendment. The inhibitory effect of neem cake was reduced after 15 days of amendment, while after 30 days after amendment the inhibitory effect was completely lost and the spore germinated by direct trap as in unamended soil. Nematodes were not attracted to ungerminated spores after 24 h of amendment. After 15 days of amendment nematodes were attracted to agar blocks containing fewer germinated spores after 24 h of incubation but after 48 h of incubation large number of nematodes were attracted and trapped by the germinated spores with direct traps. After 30 days of amendment, larger number of nematodes were attracted and trapped by direct traps. PMID:24049500

  2. The Top 10 Reasons Children With Autism Deserve ABA

    PubMed Central

    Walsh, Mary Beth

    2011-01-01

    We who advocate for applied behavior analysis (ABA) for children with autism spectrum disorders often construct our arguments based on the scientific evidence. However, the audience that most needs to hear this argument, that is, the parents of children, especially very young children, diagnosed with autism, may not be convinced by the science alone. This essay attempts to make the case for the multiple benefits of ABA intervention through the use of humor and anecdotes couched in a “Top Ten List,” and illustrating most points with stories of an engaging child with autism (my son, Ben). PMID:22532906

  3. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.

    PubMed

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-04-01

    Germination and thermoinhibition in lettuce (Lactuca sativa 'Jianyexianfeng No. 1') seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P<0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition.

  4. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.

    PubMed

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-04-01

    Germination and thermoinhibition in lettuce (Lactuca sativa 'Jianyexianfeng No. 1') seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P<0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  5. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    PubMed Central

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P < 0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  6. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake

    PubMed Central

    Fan, Shi Kai; Fang, Xian Zhi; Guan, Mei Yan; Ye, Yi Quan; Lin, Xian Yong; Du, Shao Ting; Jin, Chong Wei

    2014-01-01

    Cadmium (Cd) contamination of agricultural soils is an increasingly serious problem. Measures need to be developed to minimize Cd entering the human food chain from contaminated soils. We report here that, under Cd exposure condition, application with low doses of (0.1–0.5 μM) abscisic acid (ABA) clearly inhibited Cd uptake by roots and decreased Cd level in Arabidopsis wild-type plants (Col-0). Expression of IRT1 in roots was also strongly inhibited by ABA treatment. Decrease in Cd uptake and the inhibition of IRT1 expression were clearly lesser pronounced in an ABA-insensitive double mutant snrk2.2/2.3 than in the Col-0 in response to ABA application. The ABA-decreased Cd uptake was found to correlate with the ABA-inhibited IRT1 expression in the roots of Col-0 plants fed two different levels of iron. Furthermore, the Cd uptake of irt1 mutants was barely affected by ABA application. These results indicated that inhibition of IRT1 expression is involved in the decrease of Cd uptake in response to exogenous ABA application. Interestingly, ABA application increased the iron level in both Col-0 plants and irt1 mutants, suggesting that ABA-increased Fe acquisition does not depend on the IRT1 function, but on the contrary, the ABA-mediated inhibition of IRT1 expression may be due to the elevation of iron level in plants. From our results, we concluded that ABA application might increase iron acquisition, followed by the decrease in Cd uptake by inhibition of IRT1 activity. Thus, for crop production in Cd contaminated soils, developing techniques based on ABA application potentially is a promising approach for reducing Cd accumulation in edible organs in plants. PMID:25566293

  7. Irrigational impact of untreated and treated brewery-distillery effluent on seed germination of marigold (Tagetes erecta L.).

    PubMed

    Sharma, Anuradha; Malaviya, Piyush

    2016-01-01

    Current study presents the effect of irrigation with different concentrations (20, 40, 60, 80 and 100%) of untreated and treated brewery-distillery effluent on germination behaviour of marigold (Tagetes erecta L. var. Pusa Basanti). The 100% untreated effluent showed acidic pH (4.80) and higher values of BOD (1500.00 mg l(-1)), COD (4000.00 mg l(-1)), chloride (1742.20 mg l(-1)), TSS (900.00 mg l(-1)) as compared to that of treated effluent. Tagetes seeds were exposed to different concentrations of effluent and the results revealed maximum values of germination parameters viz., percent germination, peak value, germination value, germination index, speed of germination and vigour index at 20% untreated and 60% treated effluent concentrations, whereas the values for negative germination parameters viz., delay index, germination period and percent inhibition were minimum at 20% untreated and 60% treated effluent concentrations.

  8. Irrigational impact of untreated and treated brewery-distillery effluent on seed germination of marigold (Tagetes erecta L.).

    PubMed

    Sharma, Anuradha; Malaviya, Piyush

    2016-01-01

    Current study presents the effect of irrigation with different concentrations (20, 40, 60, 80 and 100%) of untreated and treated brewery-distillery effluent on germination behaviour of marigold (Tagetes erecta L. var. Pusa Basanti). The 100% untreated effluent showed acidic pH (4.80) and higher values of BOD (1500.00 mg l(-1)), COD (4000.00 mg l(-1)), chloride (1742.20 mg l(-1)), TSS (900.00 mg l(-1)) as compared to that of treated effluent. Tagetes seeds were exposed to different concentrations of effluent and the results revealed maximum values of germination parameters viz., percent germination, peak value, germination value, germination index, speed of germination and vigour index at 20% untreated and 60% treated effluent concentrations, whereas the values for negative germination parameters viz., delay index, germination period and percent inhibition were minimum at 20% untreated and 60% treated effluent concentrations. PMID:26930868

  9. [Effect of insulin on germination and ionic exchange in Raphanus sativus (author's transl)].

    PubMed

    Frasquet, M I; Viña, J; Frasquet, M; Ferriol, A; Alvarez de Laviada, T; Antón, V

    1978-06-01

    Hypoglycemic sulfamide BZ-55 activates or inhibits germination of Raphanus sativus, depending upon the dosis. Since this drug acts upon the glycemia by increasing the secretion and action of insulin, the influence of this hormone on germination and ionic changes (Na+-K+) between seeds and culture medium, were studied. Seeds were incubated during 72 h with different concentrations of insulin in 10 ml deionized water or in 10 ml 18 mM K+ (KCl) solutions at 37 degrees C in vapor saturated atmosphere. A solution of 0.125 IU insulin/ml in water increases the germination to 110% whereas 0.175 IU insulin/ml inhibits it to 40% against controls. Further increases in insulin concentration always inhibit germination. Similar results have been obtained with K+ containing media. Germination rate changes in a small concentration range suggest that insulin might affect an enzymatic activity in the seed.

  10. Type B Heterotrimeric G Protein γ-Subunit Regulates Auxin and ABA Signaling in Tomato[OPEN

    PubMed Central

    Subramaniam, Gayathery; Trusov, Yuri; Hayashi, Satomi; Batley, Jacqueline

    2016-01-01

    Heterotrimeric G proteins composed of α, β, and γ subunits are central signal transducers mediating the cellular response to multiple stimuli in most eukaryotes. Gγ subunits provide proper cellular localization and functional specificity to the heterotrimer complex. Plant Gγ subunits, divided into three structurally distinct types, are more diverse than their animal counterparts. Type B Gγ subunits, lacking a carboxyl-terminal isoprenylation motif, are found only in flowering plants. We present the functional characterization of type B Gγ subunit (SlGGB1) in tomato (Solanum lycopersicum). We show that SlGGB1 is the most abundant Gγ subunit in tomato and strongly interacts with the Gβ subunit. Importantly, the green fluorescent protein-SlGGB1 fusion protein as well as the carboxyl-terminal yellow fluorescent protein-SlGGB1/amino-terminal yellow fluorescent protein-Gβ heterodimer were localized in the plasma membrane, nucleus, and cytoplasm. RNA interference-mediated silencing of SlGGB1 resulted in smaller seeds, higher number of lateral roots, and pointy fruits. The silenced lines were hypersensitive to exogenous auxin, while levels of endogenous auxins were lower or similar to those of the wild type. SlGGB1-silenced plants also showed strong hyposensitivity to abscisic acid (ABA) during seed germination but not in other related assays. Transcriptome analysis of the transgenic seeds revealed abnormal expression of genes involved in ABA sensing, signaling, and response. We conclude that the type B Gγ subunit SlGGB1 mediates auxin and ABA signaling in tomato. PMID:26668332

  11. ABA-deficiency results in reduced plant and fruit size in tomato.

    PubMed

    Nitsch, L; Kohlen, W; Oplaat, C; Charnikhova, T; Cristescu, S; Michieli, P; Wolters-Arts, M; Bouwmeester, H; Mariani, C; Vriezen, W H; Rieu, I

    2012-06-15

    Abscisic acid (ABA) deficient mutants, such as notabilis and flacca, have helped elucidating the role of ABA during plant development and stress responses in tomato (Solanum lycopersicum L.). However, these mutants have only moderately decreased ABA levels. Here we report on plant and fruit development in the more strongly ABA-deficient notabilis/flacca (not/flc) double mutant. We observed that plant growth, leaf-surface area, drought-induced wilting and ABA-related gene expression in the different genotypes were strongly correlated with the ABA levels and thus most strongly affected in the not/flc double mutants. These mutants also had reduced fruit size that was caused by an overall smaller cell size. Lower ABA levels in fruits did not correlate with changes in auxin levels, but were accompanied by higher ethylene evolution rates. This suggests that in a wild-type background ABA stimulates cell enlargement during tomato fruit growth via a negative effect on ethylene synthesis.

  12. ABA Regulates Subcellular Redistribution of OsABI-LIKE2, a Negative Regulator in ABA Signaling, to Control Root Architecture and Drought Resistance in Oryza sativa.

    PubMed

    Li, Chengxiang; Shen, Hongyun; Wang, Tao; Wang, Xuelu

    2015-12-01

    The phytohormone ABA is a key stress signal in plants. Although the identification of ABA receptors led to significant progress in understanding the Arabidopsis ABA signaling pathway, there are still many unsolved mysteries regarding ABA signaling in monocots, such as rice. Here, we report that a rice ortholog of AtABI1 and AtABI2, named OsABI-LIKE2 (OsABIL2), plays a negative role in rice ABA signaling. Overexpression of OsABIL2 not only led to ABA insensitivity, but also significantly altered plant developmental phenotypes, including stomatal density and root architecture, which probably caused the hypersensitivity to drought stress. OsABIL2 interacts with OsPYL1, SAPK8 and SAPK10 both in vitro and in vivo, and the phosphatase activity of OsABIL2 was repressed by ABA-bound OsPYL1. However, unlike many other solely nuclear-localized clade A type 2C protein phosphatases (PP2Cs), OsABIL2 is localized in both the nucleus and cytosol. Furthermore, OsABIL2 interacts with and co-localized with OsPYL1 mainly in the cytosol, and ABA treatment regulates the nucleus-cytosol distribution of OsABIL2, suggesting a different mechanism for the activation of ABA signaling. Taken together, this study provides significant insights into rice ABA signaling and indicates the important role of OsABIL2 in regulating root development. PMID:26491145

  13. Dissociations among ABA, ABC, and AAB Recovery Effects

    ERIC Educational Resources Information Center

    Ungor, Metin; Lachnit, Harald

    2008-01-01

    In a human predictive learning experiment, the strengths of ABA, ABC, and AAB recovery effects after discrimination reversal learning were compared. Initially, a discrimination between two stimuli (X+, Y-) was trained in Context A. During Phase 2, participants received discrimination reversal training (X-, Y+) either in Context A (Group AAB) or in…

  14. Personality Traits Associated with Occupational "Burnout" in ABA Therapists

    ERIC Educational Resources Information Center

    Hurt, Amy A.; Grist, Cathy Lann; Malesky, Lann A., Jr.; McCord, David M.

    2013-01-01

    Background: Applied behaviour analysis (ABA) therapists typically work one-to-one with children with autism for extended periods of time, which often leads to high levels of job-related stress, lower levels of job satisfaction, increased frequency of occupational "burnout" and higher than average job turnover (Journal of Autism…

  15. ABA, AAB and ABC Renewal in Taste Aversion Learning

    ERIC Educational Resources Information Center

    Bernal-Gamboa, Rodolfo; Juarez, Yectivani; Gonzalez-Martin, Gabriela; Carranza, Rodrigo; Sanchez-Carrasco, Livia; Nieto, Javier

    2012-01-01

    Context renewal is identified when the conditioned response (CR) elicited by an extinguished conditioned stimulus (CS) reappears as a result of changing the contextual cues during the test. Two experiments were designed for testing contextual renewal in a conditioned taste aversion preparation. Experiment 1 assessed ABA and AAB context renewal,…

  16. ABA and Diverse Cultural and Linguistic Environments: A Welsh Perspective

    ERIC Educational Resources Information Center

    Jones, E. W.; Hoerger, M.; Hughes, J. C.; Williams, B. M.; Jones, B.; Moseley, Y.; Hughes, D. R.; Prys, D.

    2011-01-01

    Gwynedd Local Education Authority (LEA) in North West Wales, UK, is funding a small-scale autism-specific specialist education service using ABA methodology. The program is available through the medium of Welsh, English or bilingually, depending on the individual needs of the child (Jones and Hoerger in Eur J Behav Anal 10:249-253, "2009").…

  17. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    ERIC Educational Resources Information Center

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  18. Coping as a Predictor of Burnout and General Health in Therapists Working in ABA Schools

    ERIC Educational Resources Information Center

    Griffith, G. M.; Barbakou, A.; Hastings, R. P.

    2014-01-01

    Background: Little is known about the work-related well-being of applied behaviour analysis (ABA) therapists who work in school-based contexts and deliver ABA interventions to children with autism. Methods: A questionnaire on work-related stress (burnout), general distress, perceived supervisor support and coping was completed by 45 ABA therapists…

  19. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields.

  20. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields. PMID:15898503

  1. Plant Tandem CCCH Zinc Finger Proteins Interact with ABA, Drought, and Stress Response Regulators in Processing-Bodies and Stress Granules

    PubMed Central

    Bogamuwa, Srimathi; Jang, Jyan-Chyun

    2016-01-01

    Although multiple lines of evidence have indicated that Arabidopsis thaliana Tandem CCCH Zinc Finger proteins, AtTZF4, 5 and 6 are involved in ABA, GA and phytochrome mediated seed germination responses, the interacting proteins involved in these processes are unknown. Using yeast two-hybrid screens, we have identified 35 putative AtTZF5 interacting protein partners. Among them, Mediator of ABA-Regulated Dormancy 1 (MARD1) is highly expressed in seeds and involved in ABA signal transduction, while Responsive to Dehydration 21A (RD21A) is a well-documented stress responsive protein. Co-immunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays were used to confirm that AtTZF5 can interact with MARD1 and RD21A in plant cells, and the interaction is mediated through TZF motif. In addition, AtTZF4 and 6 could also interact with MARD1 and RD21A in Y-2-H and BiFC assay, respectively. The protein-protein interactions apparently take place in processing bodies (PBs) and stress granules (SGs), because AtTZF5, MARD1 and RD21A could interact and co-localize with each other and they all can co-localize with the same PB and SG markers in plant cells. PMID:26978070

  2. Pathogen and Circadian Controlled 1 (PCC1) regulates polar lipid content, ABA-related responses, and pathogen defence in Arabidopsis thaliana.

    PubMed

    Mir, Ricardo; Hernández, M Luisa; Abou-Mansour, Eliane; Martínez-Rivas, José Manuel; Mauch, Félix; Métraux, Jean-Pierre; León, José

    2013-08-01

    Pathogen and Circadian Controlled 1 (PCC1) was previously characterized as a regulator of defence against pathogens and stress-activated transition to flowering. Plants expressing an RNA interference construct for the PCC1 gene (iPCC1 plants) showed a pleiotropic phenotype. They were hypersensitive to abscisic acid (ABA) as shown by reduced germination potential and seedling establishment, as well as reduced stomatal aperture and main root length in ABA-supplemented media. In addition, iPCC1 plants displayed alterations in polar lipid contents and their corresponding fatty acids. Importantly, a significant reduction in the content of phosphatidylinositol (PI) was observed in iPCC1 leaves when compared with wild-type plants. A trend in reduced levels of 18:0 and increased levels of 18:2 and particularly 18:3 was also detected in several classes of polar lipids. The enhanced ABA-mediated responses and the reduced content of PI might be responsible for iPCC1 plants displaying a complex pattern of defence against pathogens of different lifestyles. iPCC1 plants were more susceptible to the hemi-biotrophic oomycete pathogen Phytophthora brassicae and more resistant to the necrotrophic fungal pathogen Botrytis cinerea compared with wild-type plants.

  3. Disruption of Germination and Seedling Development in Brassica napus by Mutations Causing Severe Seed Hormonal Imbalance.

    PubMed

    Nguyen, Tung C T; Obermeier, Christian; Friedt, Wolfgang; Abrams, Suzanne R; Snowdon, Rod J

    2016-01-01

    The Brassica napus (oilseed rape) accession 1012-98 shows a disturbed germination phenotype that was thought to be associated with its lack of testa pigmentation and thin seed coat. Here, we demonstrate that the disturbed germination and seedling development are actually due to independent mutations that disrupt the balance of hormone metabolites and their regulators in the seeds. High-throughput UPLC-MS/MS hormone profiling of seeds and seedlings before and after germination revealed that 1012-98 has a severely disturbed hormone balance with extremely atypical, excessive quantities of auxin and ABA metabolites. The resulting hypersensitivity to abscisic acid (ABA) and a corresponding increase in dormancy often results in death of the embryo after imbibition or high frequencies of disturbed, often lethal developmental phenotypes, resembling Arabidopsis mutants for the auxin regulatory factor gene ARF10 or the auxin-overproducing transgenic line iaaM-OX. Molecular cloning of Brassica ARF10 orthologs revealed four loci in normal B. napus, two derived from the Brassica A genome and two from the C genome. On the other hand, the phenotypic mutant 1012-98 exhibited amplification of C-genome BnaC.ARF10 copy number along with a chimeric allele originating from recombination between homeologous A and C genome loci which lead to minor increase of Bna.ARF10 transcription on the critical timepoint for seed germination, the indirect regulator of ABI3, the germinative inhibitor. Bna.GH3.5 expression was upregulated to conjugate free auxin to IAA-asp between 2 and 6 DAS. Functional amino acid changes were also found in important DNA binding domains of one BnaC.ARF10 locus, suggesting that regulatory changes in Bna.ARF10 are collectively responsible for the observed phenotpyes in 1012-98. To our knowledge, this study is the first to report disruption of germination and seedling development in Brassica napus caused by the crosstalk of auxin-ABA and the corresponding regulators Bna

  4. Disruption of Germination and Seedling Development in Brassica napus by Mutations Causing Severe Seed Hormonal Imbalance.

    PubMed

    Nguyen, Tung C T; Obermeier, Christian; Friedt, Wolfgang; Abrams, Suzanne R; Snowdon, Rod J

    2016-01-01

    The Brassica napus (oilseed rape) accession 1012-98 shows a disturbed germination phenotype that was thought to be associated with its lack of testa pigmentation and thin seed coat. Here, we demonstrate that the disturbed germination and seedling development are actually due to independent mutations that disrupt the balance of hormone metabolites and their regulators in the seeds. High-throughput UPLC-MS/MS hormone profiling of seeds and seedlings before and after germination revealed that 1012-98 has a severely disturbed hormone balance with extremely atypical, excessive quantities of auxin and ABA metabolites. The resulting hypersensitivity to abscisic acid (ABA) and a corresponding increase in dormancy often results in death of the embryo after imbibition or high frequencies of disturbed, often lethal developmental phenotypes, resembling Arabidopsis mutants for the auxin regulatory factor gene ARF10 or the auxin-overproducing transgenic line iaaM-OX. Molecular cloning of Brassica ARF10 orthologs revealed four loci in normal B. napus, two derived from the Brassica A genome and two from the C genome. On the other hand, the phenotypic mutant 1012-98 exhibited amplification of C-genome BnaC.ARF10 copy number along with a chimeric allele originating from recombination between homeologous A and C genome loci which lead to minor increase of Bna.ARF10 transcription on the critical timepoint for seed germination, the indirect regulator of ABI3, the germinative inhibitor. Bna.GH3.5 expression was upregulated to conjugate free auxin to IAA-asp between 2 and 6 DAS. Functional amino acid changes were also found in important DNA binding domains of one BnaC.ARF10 locus, suggesting that regulatory changes in Bna.ARF10 are collectively responsible for the observed phenotpyes in 1012-98. To our knowledge, this study is the first to report disruption of germination and seedling development in Brassica napus caused by the crosstalk of auxin-ABA and the corresponding regulators Bna

  5. Disruption of Germination and Seedling Development in Brassica napus by Mutations Causing Severe Seed Hormonal Imbalance

    PubMed Central

    Nguyen, Tung C. T.; Obermeier, Christian; Friedt, Wolfgang; Abrams, Suzanne R.; Snowdon, Rod J.

    2016-01-01

    The Brassica napus (oilseed rape) accession 1012-98 shows a disturbed germination phenotype that was thought to be associated with its lack of testa pigmentation and thin seed coat. Here, we demonstrate that the disturbed germination and seedling development are actually due to independent mutations that disrupt the balance of hormone metabolites and their regulators in the seeds. High-throughput UPLC-MS/MS hormone profiling of seeds and seedlings before and after germination revealed that 1012-98 has a severely disturbed hormone balance with extremely atypical, excessive quantities of auxin and ABA metabolites. The resulting hypersensitivity to abscisic acid (ABA) and a corresponding increase in dormancy often results in death of the embryo after imbibition or high frequencies of disturbed, often lethal developmental phenotypes, resembling Arabidopsis mutants for the auxin regulatory factor gene ARF10 or the auxin-overproducing transgenic line iaaM-OX. Molecular cloning of Brassica ARF10 orthologs revealed four loci in normal B. napus, two derived from the Brassica A genome and two from the C genome. On the other hand, the phenotypic mutant 1012-98 exhibited amplification of C-genome BnaC.ARF10 copy number along with a chimeric allele originating from recombination between homeologous A and C genome loci which lead to minor increase of Bna.ARF10 transcription on the critical timepoint for seed germination, the indirect regulator of ABI3, the germinative inhibitor. Bna.GH3.5 expression was upregulated to conjugate free auxin to IAA-asp between 2 and 6 DAS. Functional amino acid changes were also found in important DNA binding domains of one BnaC.ARF10 locus, suggesting that regulatory changes in Bna.ARF10 are collectively responsible for the observed phenotpyes in 1012-98. To our knowledge, this study is the first to report disruption of germination and seedling development in Brassica napus caused by the crosstalk of auxin-ABA and the corresponding regulators Bna

  6. Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA.

    PubMed

    Papaefthimiou, Dimitra; Likotrafiti, Eleni; Kapazoglou, Aliki; Bladenopoulos, Konstantinos; Tsaftaris, Athanasios

    2010-01-01

    Histone acetylation is a vital mechanism for the activation of chromatin and the corresponding expression of genes competing the action of histone deacetylation and leading to chromatin inactivation. Histone acetyltransferases (HATs) comprise a superfamily including the GNAT/MYST, CBP and TF(II)250 families. Histone acetyltransferases have been well studied in Arabidopsis but information from agronomically important crops is limited. In the present work three full-length sequences encoding members of the GNAT/MYST family, namely HvMYST, HvELP3 and HvGCN5, respectively, were isolated and characterized from barley (Hordeum vulgare L.), a crop of high economic value. Expression analysis of the barley GNAT/MYST genes revealed significant quantitative differences in different seed developmental stages and between cultivars with varying seed size and weight, suggesting an association of these genes with barley seed development. Furthermore, all three HvGNAT/MYST genes were inducible by the stress-related phytohormone abscisic acid (ABA) involved in seed maturation, dormancy and germination, implying a possible regulation of these genes by ABA, during barley seed development, germination and stress response. PMID:20117010

  7. [Effects of Pb2+ stress on seed germination & seedling growth of Rabdosia rubescens].

    PubMed

    Kong, Si-Xin; Su, He; Zhan, Yan-Ting; Li, Hai-Kui; Cui, Xu-Sheng; Guo, Yu-Hai

    2014-11-01

    The seeds of Rabdosia rubescens were as the materials to research the impacts of different lead (Pb2+) concentrations(0, 135, 270, 540, 1 080 mg x L(-1)) on seed germination and seedling growth. The results show that: Low concentration of lead had no obvious effect on early germination of the seed, the germination vigor and germination speed were lightly higher but not significantly differed at the level of Pb concentration 135 mg x L(-1) with control group; Mid-high concentration of Pb solution (270-1 080 mg x L(-1)) significantly inhibited the seed germination and seedling growth, which reduced the seed germination rate, germination vigor, germination index, embryo root length and shoot length, growth index with increasing of Pb concentrations. There was a inhibitory effect on embryo shoot length and root length at mid-high lead concentrations stress, and stronger inhibitory effect on root , which was more sensitive than shoot to Pb stress(P < 0.05). Pb bioaccumulation coefficient (BC) was 0.76-2.59, increased with concentration of Pb; Pb enrichment in seedling mainly caused the growth inhibition. The fitting model predictive analyses show, the critical concentration of Pb, which causes the germination rate and biomass fresh weight reducing 10%, is 195.18, 101.65 mg x L(-1).

  8. [Effects of Pb2+ stress on seed germination & seedling growth of Rabdosia rubescens].

    PubMed

    Kong, Si-Xin; Su, He; Zhan, Yan-Ting; Li, Hai-Kui; Cui, Xu-Sheng; Guo, Yu-Hai

    2014-11-01

    The seeds of Rabdosia rubescens were as the materials to research the impacts of different lead (Pb2+) concentrations(0, 135, 270, 540, 1 080 mg x L(-1)) on seed germination and seedling growth. The results show that: Low concentration of lead had no obvious effect on early germination of the seed, the germination vigor and germination speed were lightly higher but not significantly differed at the level of Pb concentration 135 mg x L(-1) with control group; Mid-high concentration of Pb solution (270-1 080 mg x L(-1)) significantly inhibited the seed germination and seedling growth, which reduced the seed germination rate, germination vigor, germination index, embryo root length and shoot length, growth index with increasing of Pb concentrations. There was a inhibitory effect on embryo shoot length and root length at mid-high lead concentrations stress, and stronger inhibitory effect on root , which was more sensitive than shoot to Pb stress(P < 0.05). Pb bioaccumulation coefficient (BC) was 0.76-2.59, increased with concentration of Pb; Pb enrichment in seedling mainly caused the growth inhibition. The fitting model predictive analyses show, the critical concentration of Pb, which causes the germination rate and biomass fresh weight reducing 10%, is 195.18, 101.65 mg x L(-1). PMID:25775796

  9. Phyotoxicity of diesel soil contamination on the germination of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Lewu, Francis Bayo; Zharare, Godfrey Elijah

    2015-11-01

    Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa.

  10. Phyotoxicity of diesel soil contamination on the germination of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Lewu, Francis Bayo; Zharare, Godfrey Elijah

    2015-11-01

    Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa. PMID:26688970

  11. Storage behavior of Chionanthus retusus seed and asynchronous development of the radicle and shoot apex during germination in relation to germination inhibitors, including abscisic acid and four phenolic glucosides.

    PubMed

    Chien, Ching-Te; Kuo-Huang, Ling-Long; Shen, Ya-Ching; Zhang, Ruichuan; Chen, Shun-Ying; Yang, Jeng-Chuann; Pharis, Richard P

    2004-09-01

    Studies on seed storage of Chionanthus retusus Lindl. & Paxt. revealed an orthodox behavior, one which showed both desiccation and freezing tolerance. An epicotyl after-ripening dormancy was expressed in C. retusus seeds by slow growth of the shoot apex relative to more rapid growth of the radicle when seeds were germinated at 30/20 degrees C. Although these seeds exhibit radicle protrusion, they must be after-ripened for another 8-10 weeks at 30/20 degrees C in order to obtain normal shoot growth. Removal of the endosperm, however, quickly stimulated cotyledon and shoot emergence without the additional after-ripening. Water-soluble glucoside phenolics, GL-3, Nuzhenide, ligustroside and oleoside dimethyl ester are present at relatively high levels in endosperm of freshly harvested seeds. These glucoside phenolics are excreted from the endosperm during subsequent after-ripening. Embryo and endosperm tissue from seed germinating at 30/20 degrees C (germination being defined by protrusion of the radicle) had a 10 times lower abscisic acid (ABA) content than similar tissues from freshly harvested mature seed. However, no shoot growth occurred even with the 10-fold reduction in ABA and a concomitant increase in endogenous gibberellins A1, A4 and A20. Thus, epicotyl dormancy during the first 8 weeks of after-ripening at 30/20 degrees C may be controlled by factors other than high ABA, i.e., the slow development of the shoot apex following radicle protrusion may be controlled more by high levels of glucoside phenolics than by diminished ABA and elevated GA levels.

  12. Photoinhibition of germination in grass seed--implications for prairie revegetation.

    PubMed

    Mollard, Federico P O; Naeth, M Anne

    2014-09-01

    Germination photoinhibition is not a recognized cause of revegetation failure; yet prolonged sunlight exposure can inhibit germination of several grass species. This research addressed susceptibility to photoinhibition of selected native grass species used to restore Canadian prairies, and reclamation treatments to alter environmental conditions in order to release seeds from photoinhibition. Under laboratory conditions effects of photoinhibition were tested on the ability of seeds to germinate at low water potential and effects of daily alternating temperatures and nitrates to break photoinhibition. Whether surficial mulch can release seeds from photoinhibition was assessed in a field experiment. Germination photoinhibition was evident in Festuca hallii and Koeleria macrantha seeds even under very low irradiances. The prolonged exposure to light decreased germination rates and ability of seeds to germinate at low water potentials. Daily fluctuating temperatures released a fraction of Bromus carinatus and Elymus trachycaulus seeds from photoinhibition yet did not improve F. hallii or K. macrantha germinability. Nitrates failed to break seed photoinhibition in all species tested. In the field experiment, mulched F. hallii seeds (covered with an erosion control blanket) showed a tenfold increase in germination percentages relative to seeds exposed to direct sunlight, indicating the facilitative effects of mulching on attenuation of the light environment. We conclude that germination photoinhibition as a cause of emergence failures in land reclamation where seed is broadcast or shallow seeded should be recognized and germination photoinhibition included in the decision making process to select revegetation seeding techniques.

  13. ABA signaling in stomatal guard cells: lessons from Commelina and Vicia.

    PubMed

    Mori, Izumi C; Murata, Yoshiyuki

    2011-07-01

    Abscisic acid (ABA) signaling mechanisms have been studied in a broad variety of plant species using complementary analyses, taking advantage of different methodologies suitable for each plant species. Early studies on ABA biosynthesis using Solanum lycopersicum mutants suggested an importance of ABA synthesis in stomatal closure. To understand ABA signaling in guard cells, cellular, biochemical and electrophysiological studies in Vicia faba and Commelina communis have been conducted, providing fundamental knowledge that was further reconfirmed by molecular genetic studies of Arabidopsis. In this article, examples of stomatal studies in several plants and prospects in ABA research are discussed.

  14. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes.

    PubMed

    Zong, Wei; Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang; Xiong, Lizhong

    2016-08-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  15. Inhibitory effect of marine green algal extracts on germination of Lactuca sativa seeds.

    PubMed

    Choi, Jae-Suk; Choi, In Soon

    2016-03-01

    The allelopathic potential of nine green seaweed species was examined based on germination and seedling growth of lettuce (Lactuca sativa L.). Out of nine methanol extracts, Capsosiphon fulvescens and Monostroma nitidum extracts completely inhibited germination of L. sativa at 4 mg/filter paper after 24 hr of treatment. Water extracts of these seaweeds generally showed low anti-germination activities than methanol extracts. Of the nine water extracts, Enteromorpha linza extract completely inhibited L. sativa germination at 16 mg/filter paper after 24 hrs. To identify the primary active compounds, C. fulvescens. powder was successively fractionated according to polarity, and the main active agents against L. sativa were determined to be lipids (0.0% germination at 0.5 mg of lipids/paper disc). According to these results, extracts of C. fulvescens can be used to develop natural herbicidal agents and manage terrestrial weeds.

  16. Inhibitory effect of marine green algal extracts on germination of Lactuca sativa seeds.

    PubMed

    Choi, Jae-Suk; Choi, In Soon

    2016-03-01

    The allelopathic potential of nine green seaweed species was examined based on germination and seedling growth of lettuce (Lactuca sativa L.). Out of nine methanol extracts, Capsosiphon fulvescens and Monostroma nitidum extracts completely inhibited germination of L. sativa at 4 mg/filter paper after 24 hr of treatment. Water extracts of these seaweeds generally showed low anti-germination activities than methanol extracts. Of the nine water extracts, Enteromorpha linza extract completely inhibited L. sativa germination at 16 mg/filter paper after 24 hrs. To identify the primary active compounds, C. fulvescens. powder was successively fractionated according to polarity, and the main active agents against L. sativa were determined to be lipids (0.0% germination at 0.5 mg of lipids/paper disc). According to these results, extracts of C. fulvescens can be used to develop natural herbicidal agents and manage terrestrial weeds. PMID:27097439

  17. Function of ABA in Stomatal Defense against Biotic and Drought Stresses.

    PubMed

    Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses--especially ABA receptors--have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases. PMID:26154766

  18. Function of ABA in Stomatal Defense against Biotic and Drought Stresses

    PubMed Central

    Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses—especially ABA receptors—have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases. PMID:26154766

  19. Impatiens pollen germination and tube growth as a bioassay for toxic substances

    SciTech Connect

    Bliderback, D.E.

    1981-01-01

    Pollen of Impatiens sultanii Hook F. germinates and forms tubes rapidly at 25/sup 0/C in a simple medium containing 111.0 ppm CaCl/sub 2/, 13.6 ppm KH/sub 2/PO/sub 4/, and 1000 ppm boric acid. Calcium, potassium, and boron are essential for germination and tube growth, but sucrose is not required. Pollen tubes grow with equal rapidity in liquid medium or on a medium solidified with 1% agar. Tube growth rates are linear for 1 hr. When different pollen sources or clonal sources are utilized, no variation in pollen tube growth is observed, and pollen from individual flowers remain viable for 26 hr. Formaldehyde inhibits pollen germination, tube production, and tube lengths at 7.5-10 ppm. With 2,4-dichlorophenol, pollen germination and tube production is inhibited at 0.5-20 ppm, while tube growth is inhibited significantly at 25 ppm. A biphasic inhibition of germination and tube formation occurs with p-cresol with a low level of inhibition occurring at 40-60 ppm and a higher one at 100-125 ppm. Tube lengths were inhibited at 150 ppm p-cresol. Acrylamide and dioctyl phthalate have no measurable effect upon pollen germination and tube growth.

  20. ABA-Cloud: support for collaborative breath research.

    PubMed

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research. PMID:23619467

  1. Rheology and Relaxation Timescales of ABA Triblock Polymer Gels

    NASA Astrophysics Data System (ADS)

    Peters, Andrew; Lodge, Timothy

    When dissolved in a midblock selective solvent, ABA polymers form gels composed of aggregated end block micelles bridged by the midblocks. While much effort has been devoted to the study of the structure of these systems, the dynamics of these systems has received less attention. We examine the underlying mechanism of shear relaxation of ABA triblock polymer gels, especially as a function of chain length, composition, and concentration. Recent work using time-resolved small-angle neutron scattering of polystyrene (PS)-block-poly(ethylene-alt-propylene) (PEP) in squalane has elucidated many aspects of the dynamics of diblock chain exchange. By using rheology to study bulk relaxation phenomena of the triblock equivalent, PS-PEP-PS, we apply the knowledge gained from the chain exchange studies to bridge the gap between the molecular and macroscopic relaxation phenomena in PS-PEP-PS triblock gels.

  2. ABA-Cloud: support for collaborative breath research.

    PubMed

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  3. Modulation of germination and growth of plants by meditation.

    PubMed

    Haid, M; Huprikar, S

    2001-01-01

    So called primitive peoples of the world share a philosophy that human interaction via ceremony or ritual can affect the natural world. Is it possible to affect the germination and growth of plants by imbuing them with an intent to stimulate or inhibit them? We conducted a double blind series of experiments to determine whether a process of meditation on the water (referred to as "treated") given to a controlled planting of green peas or wheat would affect their germination. Peas were given water treated with stimulating intent. Statistical analysis was done using contingency table, Fisher's test, and Mantel-Haenszel analysis. The germination rate of 504 seeds receiving treated water with stimulating intent was 60.3% compared to 51.8% for the 504 controls (p = 0.006, 0.047, 0.003 respectively). A similar experiment was conducted with wheat with the intent of inhibiting germination. The germination rate of 2970 wheat seeds receiving treated water with inhibitory intent was 70.7% versus 74.9% for 2970 controls (p < 0.001, 0.0001, 0.001 respectively). During the sixth run of the wheat (inhibition) experiment, the seedlings were harvested and individually weighed on the tenth day after planting to determine whether there was any difference in growth. The mass of the treated seedlings was statistically significantly lower (mean = 97 mg versus 106 mg for the controls) when compared by analysis of variance (p = 0.000056). We conclude that meditation upon the water supplied to green peas and wheat can affect their germination rates and growth.

  4. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice.

    PubMed

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-07-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings.

  5. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice

    PubMed Central

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-01-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  6. An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination.

    PubMed

    Wei, Ting; He, Zilong; Tan, XinYu; Liu, Xue; Yuan, Xiao; Luo, Yingfeng; Hu, Songnian

    2015-08-14

    Seed germination is a crucial stage for plant development and agricultural production. To investigate its complex regulation process, the RNA-Seq study of rice embryo was conducted at three time points of 0, 12 and 48 h post imbibition (HPI). Dynamic transcriptional alterations were observed, especially in the early stage (0-12 HPI). Seed related genes, especially those encoding desiccation inducible proteins and storage reserves in embryo, decreased drastically after imbibition. The expression profiles of phytohormone related genes indicated distinct roles of abscisic acid (ABA), gibberellin (GA) and brassinosteroid (BR) in germination. Moreover, network analysis revealed the importance of protein phosphorylation in phytohormone interactions. Network and gene ontology (GO) analyses suggested that transcription factors (TFs) played a regulatory role in functional transitions during germination, and the enriched TF families at 0 HPI implied a regulation of epigenetic modification in dry seeds. In addition, 35 germination-specific TF genes in embryo were identified and seven genes were verified by qRT-PCR. Besides, enriched TF binding sites (TFBSs) supported physiological changes in germination. Overall, this study expands our comprehensive knowledge of multiple regulation factors underlying rice seed germination.

  7. RRP41L, a putative core subunit of the exosome, plays an important role in seed germination and early seedling growth in Arabidopsis.

    PubMed

    Yang, Min; Zhang, Bangyue; Jia, Jianheng; Yan, Chunxia; Habaike, Ayijiang; Han, Yuzhen

    2013-01-01

    In prokaryotic and eukaryotic cells, the 3'-5'-exonucleolytic decay and processing of RNAs are essential for RNA metabolism. However, the understanding of the mechanism of 3'-5'-exonucleolytic decay in plants is very limited. Here, we report the characterization of an Arabidopsis (Arabidopsis thaliana) transfer DNA insertional mutant that shows severe growth defects in early seedling growth, including delayed germination and cotyledon expansion, thinner yellow/pale-green leaves, and a slower growth rate. High-efficiency thermal asymmetric interlaced polymerase chain reaction analysis showed that the insertional locus was in the sixth exon of AT4G27490, encoding a predicted 3'-5'-exonuclease, that contained a conserved RNase phosphorolytic domain with high similarity to RRP41, designated RRP41L. Interestingly, we detected highly accumulated messenger RNAs (mRNAs) that encode seed storage protein and abscisic acid (ABA) biosynthesis and signaling pathway-related protein during the early growth stage in rrp41l mutants. The mRNA decay kinetics analysis for seed storage proteins, 9-cis-epoxycarotenoid dioxygenases, and ABA INSENSITIVEs revealed that RRP41L catalyzed the decay of these mRNAs in the cytoplasm. Consistent with these results, the rrp41l mutant was more sensitive to ABA in germination and root growth than wild-type plants, whereas overexpression lines of RRP41L were more resistant to ABA in germination and root growth than wild-type plants. RRP41L was localized to both the cytoplasm and nucleus, and RRP41L was preferentially expressed in seedlings. Altogether, our results showed that RRP41L plays an important role in seed germination and early seedling growth by mediating specific cytoplasmic mRNA decay in Arabidopsis.

  8. Phosphatidic acid inhibits blue light-induced stomatal opening via inhibition of protein phosphatase 1 [corrected].

    PubMed

    Takemiya, Atsushi; Shimazaki, Ken-ichiro

    2010-08-01

    Stomata open in response to blue light under a background of red light. The plant hormone abscisic acid (ABA) inhibits blue light-dependent stomatal opening, an effect essential for promoting stomatal closure in the daytime to prevent water loss. However, the mechanisms and molecular targets of this inhibition in the blue light signaling pathway remain unknown. Here, we report that phosphatidic acid (PA), a phospholipid second messenger produced by ABA in guard cells, inhibits protein phosphatase 1 (PP1), a positive regulator of blue light signaling, and PA plays a role in stimulating stomatal closure in Vicia faba. Biochemical analysis revealed that PA directly inhibited the phosphatase activity of the catalytic subunit of V. faba PP1 (PP1c) in vitro. PA inhibited blue light-dependent stomatal opening but did not affect red light- or fusicoccin-induced stomatal opening. PA also inhibited blue light-dependent H(+) pumping and phosphorylation of the plasma membrane H(+)-ATPase. However, PA did not inhibit the autophosphorylation of phototropins, blue light receptors for stomatal opening. Furthermore, 1-butanol, a selective inhibitor of phospholipase D, which produces PA via hydrolysis of phospholipids, diminished the ABA-induced inhibition of blue light-dependent stomatal opening and H(+) pumping. We also show that hydrogen peroxide and nitric oxide, which are intermediates in ABA signaling, inhibited the blue light responses of stomata and that 1-butanol diminished these inhibitions. From these results, we conclude that PA inhibits blue light signaling in guard cells by PP1c inhibition, accelerating stomatal closure, and that PP1 is a cross talk point between blue light and ABA signaling pathways in guard cells.

  9. Arabidopsis AtDjA3 Null Mutant Shows Increased Sensitivity to Abscisic Acid, Salt, and Osmotic Stress in Germination and Post-germination Stages

    PubMed Central

    Salas-Muñoz, Silvia; Rodríguez-Hernández, Aída A.; Ortega-Amaro, Maria A.; Salazar-Badillo, Fatima B.; Jiménez-Bremont, Juan F.

    2016-01-01

    DnaJ proteins are essential co-chaperones involved in abiotic and biotic stress responses. Arabidopsis AtDjA3 gene encodes a molecular co-chaperone of 420 amino acids, which belongs to the J-protein family. In this study, we report the functional characterization of the AtDjA3 gene using the Arabidopsis knockout line designated j3 and the 35S::AtDjA3 overexpression lines. Loss of AtDjA3 function was associated with small seed production. In fact, j3 mutant seeds showed a reduction of 24% in seed weight compared to Col-0 seeds. Expression analysis showed that the AtDjA3 gene was modulated in response to NaCl, glucose, and abscisic acid (ABA). The j3 line had increased sensitivity to NaCl and glucose treatments in the germination and cotyledon development in comparison to parental Col-0. Furthermore, the j3 mutant line exhibited higher ABA sensitivity in comparison to parental Col-0 and 35S::AtDjA3 overexpression lines. In addition, we examined the expression of ABI3 gene, which is a central regulator in ABA signaling, in j3 mutant and 35S::AtDjA3 overexpression lines. Under 5 μM ABA treatment at 24 h, j3 mutant seedlings displayed higher ABI3 expression, whereas in 35S::AtDjA3 overexpression lines, ABI3 gene expression was repressed. Taken together, these results demonstrate that the AtDjA3 gene is involved in seed development and abiotic stress tolerance. PMID:26941772

  10. Arabidopsis AtDjA3 Null Mutant Shows Increased Sensitivity to Abscisic Acid, Salt, and Osmotic Stress in Germination and Post-germination Stages.

    PubMed

    Salas-Muñoz, Silvia; Rodríguez-Hernández, Aída A; Ortega-Amaro, Maria A; Salazar-Badillo, Fatima B; Jiménez-Bremont, Juan F

    2016-01-01

    DnaJ proteins are essential co-chaperones involved in abiotic and biotic stress responses. Arabidopsis AtDjA3 gene encodes a molecular co-chaperone of 420 amino acids, which belongs to the J-protein family. In this study, we report the functional characterization of the AtDjA3 gene using the Arabidopsis knockout line designated j3 and the 35S::AtDjA3 overexpression lines. Loss of AtDjA3 function was associated with small seed production. In fact, j3 mutant seeds showed a reduction of 24% in seed weight compared to Col-0 seeds. Expression analysis showed that the AtDjA3 gene was modulated in response to NaCl, glucose, and abscisic acid (ABA). The j3 line had increased sensitivity to NaCl and glucose treatments in the germination and cotyledon development in comparison to parental Col-0. Furthermore, the j3 mutant line exhibited higher ABA sensitivity in comparison to parental Col-0 and 35S::AtDjA3 overexpression lines. In addition, we examined the expression of ABI3 gene, which is a central regulator in ABA signaling, in j3 mutant and 35S::AtDjA3 overexpression lines. Under 5 μM ABA treatment at 24 h, j3 mutant seedlings displayed higher ABI3 expression, whereas in 35S::AtDjA3 overexpression lines, ABI3 gene expression was repressed. Taken together, these results demonstrate that the AtDjA3 gene is involved in seed development and abiotic stress tolerance. PMID:26941772

  11. Importance of ABA homeostasis under terminal drought stress in regulating grain filling events.

    PubMed

    Govind, Geetha; Seiler, Christiane; Wobus, Ulrich; Sreenivasulu, Nese

    2011-08-01

    Recent studies suggest that abscisic acid (ABA) at its basal level plays an important role during seed set and grain filling events. Under drought stress ABA levels were found to be significantly enhanced in the developing seed. Until now we lack an understanding of (A) ABA homeostasis in developing seeds under terminal drought and (B) the interactive role of ABA in regulating the starch biosynthesis pathway in developing grains under terminal drought. We have recently reported the possible regulation of ABA homeostasis in source (flag leaf) and sink (developing grains) tissues under post-anthesis drought stress in barley and concluded that significantly enhanced ABA levels in developing grains are due to strong activation of the ABA deconjugation pathway and fine regulation of the ABA biosynthesis-degradation pathway.1 Additionally, we provided evidence for the role of ABA in differential regulation of starch biosynthesis genes and a significant upregulation of starch degradation beta amylase genes under drought, i.e. ABA not only influences the rate of starch accumulation but also starch quality.

  12. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening

    PubMed Central

    Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-01-01

    ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening. PMID:27100326

  13. [Effect of acid rain on seed germination of rice, wheat and rape].

    PubMed

    Zeng, Qing-ling; Huang, Xiao-hua; Zhou, Qing

    2005-01-01

    Rice, wheat and rape seeds were treated with simulated acid rain at pH 2.0, 2.5, 3.0, 3.5, 4.0 and 5.0 levels for 7 days in order to understand the effects of acid rain on seed germination of various acid-fast plant. The germination test showed that seed germination was absolutely inhibited at pH 2.0 for three species. Rice and wheat seeds germinated abnormally at pH 2.5. WhenpH values above 3.0, percentage germination, germination energy, germination index, vigor index of rice, wheat and rape seeds increased in relation with decreased acidity levels. In contrast, the percentage of abnormal germination of rice and wheat decreased. The experiment data about physiological aspect demonstrated that water absorption rate, respiratory rate and storage reserve transformation rate of rice, wheat and rape seeds also increased with increased pH values. The storage loss of rice and wheat increased with increased pH values but that of rape decreased. Inhibition index of shoot and root length of three kinds of seeds decreased in relation with increased pH values. The amplitude difference of index of rice was lower than that of wheat, and wheat was lower than that of rape. The experiment data showed that rice had stronger fastness than wheat and rape, wheat had stronger fastness than rape under acid rain stress.

  14. An unusual effect of the far-red absorbing form of phytochrome: Photoinhibition of seed germination inBromus sterilis L.

    PubMed

    Hilton, J R

    1982-11-01

    Seeds ofBromus sterilis L. germinated between 80-100% in darkness at 15° C but were inhibited by exposure to white or red light for 8 h per day. Exposure to far-red light resulted in germination similar to, or less than, that of seeds maintained in darkness. Germination is not permanently inhibited by light as seeds attain maximal germination when transferred back to darkness. Germination can be markedly delayed by exposure to a single pulse of red light following 4 h inhibition in darkness. The effect of the red light can be reversed by a single pulse of far-red light indicating that the photoreversible pigment phytochrome is involved in the response. The response ofB. sterilis seeds to light appears to be unique; the far-red-absorbing form of phytochrome (Pfr) actually inhibiting germination.

  15. Leveraging a high resolution microfluidic assay reveals insights into pathogenic fungal spore germination.

    PubMed

    Barkal, Layla J; Walsh, Naomi M; Botts, Michael R; Beebe, David J; Hull, Christina M

    2016-05-16

    Germination of spores into actively growing cells is a process essential for survival and pathogenesis of many microbes. Molecular mechanisms governing germination, however, are poorly understood in part because few tools exist for evaluating and interrogating the process. Here, we introduce an assay that leverages developments in microfluidic technology and image processing to quantitatively measure germination with unprecedented resolution, assessing both individual cells and the population as a whole. Using spores from Cryptococcus neoformans, a leading cause of fatal fungal disease in humans, we developed a platform to evaluate spores as they undergo morphological changes during differentiation into vegetatively growing yeast. The assay uses pipet-accessible microdevices that can be arrayed for efficient testing of diverse microenvironmental variables, including temperature and nutrients. We discovered that temperature influences germination rate, a carbon source alone is sufficient to induce germination, and the addition of a nitrogen source sustains it. Using this information, we optimized the assay for use with fungal growth inhibitors to pinpoint stages of germination inhibition. Unexpectedly, the clinical antifungal drugs amphotericin B and fluconazole did not significantly alter the process or timing of the transition from spore to yeast, indicating that vegetative growth and germination are distinct processes in C. neoformans. Finally, we used the high temporal resolution of the assay to determine the precise defect in a slow-germination mutant. Combining advances in microfluidics with a robust fungal molecular genetic system allowed us to identify and alter key temporal, morphological, and molecular events that occur during fungal germination. PMID:27026574

  16. The ABI4-Induced Arabidopsis ANAC060 Transcription Factor Attenuates ABA Signaling and Renders Seedlings Sugar Insensitive when Present in the Nucleus

    PubMed Central

    Shi, Xiaoliang; Yu, Bo; Zhou, Yan; Chen, Suli; Wang, Yufeng; Peng, Yu; Meyer, Rhonda C.; Smeekens, Sjef C.; Teng, Sheng

    2014-01-01

    Seedling establishment is inhibited on media containing high levels (∼6%) of glucose or fructose. Genetic loci that overcome the inhibition of seedling growth on high sugar have been identified using natural variation analysis and mutant selection, providing insight into sugar signaling pathways. In this study, a quantitative trait locus (QTL) analysis was performed for seedling sensitivity to high sugar in a Col/C24 F2 population of Arabidopsis thaliana. A glucose and fructose-sensing QTL, GSQ11, was mapped through selective genotyping and confirmed in near-isogenic lines in both Col and C24 backgrounds. Allelism tests and transgenic complementation showed that GSQ11 lies within the ANAC060 gene. The Col ANAC060 allele confers sugar insensitivity and was dominant over the sugar-sensitive C24 allele. Genomic and mRNA analyses showed that a single-nucleotide polymorphism (SNP) in Col ANAC060 affects the splicing patterns of ANAC060 such that 20 additional nucleotides are present in the mRNA. The insertion created a stop codon, resulting in a truncated ANAC60 protein lacking the transmembrane domain (TMD) that is present in the C24 ANAC060 protein. The absence of the TMD results in the nuclear localization of ANAC060. The short version of the ANAC060 protein is found in ∼12% of natural Arabidopsis accessions. Glucose induces GSQ11/ANAC060 expression in a process that requires abscisic acid (ABA) signaling. Chromatin immunoprecipitation-qPCR and transient expression analysis showed that ABI4 directly binds to the GSQ11/ANAC060 promoter to activate transcription. Interestingly, Col ANAC060 reduced ABA sensitivity and Glc-induced ABA accumulation, and ABI4 expression was also reduced in Col ANAC060 lines. Thus, the sugar-ABA signaling cascade induces ANAC060 expression, but the truncated Col ANAC060 protein attenuates ABA induction and ABA signaling. This negative feedback from nuclear ANAC060 on ABA signaling results in sugar insensitivity. PMID:24625790

  17. 7 CFR 201.63 - Germination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination. 201.63 Section 201.63 Agriculture... REGULATIONS Tolerances § 201.63 Germination. The following tolerances are applicable to the percentage of germination and also to the sum of the germination plus the hard seed when 400 or more seeds are tested....

  18. 7 CFR 201.63 - Germination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination. 201.63 Section 201.63 Agriculture... REGULATIONS Tolerances § 201.63 Germination. The following tolerances are applicable to the percentage of germination and also to the sum of the germination plus the hard seed when 400 or more seeds are tested....

  19. 7 CFR 201.63 - Germination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination. 201.63 Section 201.63 Agriculture... REGULATIONS Tolerances § 201.63 Germination. The following tolerances are applicable to the percentage of germination and also to the sum of the germination plus the hard seed when 400 or more seeds are tested....

  20. 7 CFR 201.63 - Germination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination. 201.63 Section 201.63 Agriculture... REGULATIONS Tolerances § 201.63 Germination. The following tolerances are applicable to the percentage of germination and also to the sum of the germination plus the hard seed when 400 or more seeds are tested....

  1. 7 CFR 201.63 - Germination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination. 201.63 Section 201.63 Agriculture... REGULATIONS Tolerances § 201.63 Germination. The following tolerances are applicable to the percentage of germination and also to the sum of the germination plus the hard seed when 400 or more seeds are tested....

  2. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis.

    PubMed

    Ding, Zhong Jie; Yan, Jing Ying; Li, Chun Xiao; Li, Gui Xin; Wu, Yun Rong; Zheng, Shao Jian

    2015-10-01

    The development of lateral roots (LR) is known to be severely inhibited by salt or osmotic stress. However, the molecular mechanisms underlying LR development in osmotic/salt stress conditions are poorly understood. Here we show that the gene encoding the WRKY transcription factor WRKY46 (WRKY46) is expressed throughout lateral root primordia (LRP) during early LR development and that expression is subsequently restricted to the stele of the mature LR. In osmotic/salt stress conditions, lack of WRKY46 (in loss-of-function wrky46 mutants) significantly reduces, while overexpression of WRKY46 enhances, LR development. We also show that exogenous auxin largely restores LR development in wrky46 mutants, and that the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits LR development in both wild-type (WT; Col-0) and in a line overexpressing WRKY46 (OV46). Subsequent analysis of abscisic acid (ABA)-related mutants indicated that WRKY46 expression is down-regulated by ABA signaling, and up-regulated by an ABA-independent signal induced by osmotic/salt stress. Next, we show that expression of the DR5:GUS auxin response reporter is reduced in roots of wrky46 mutants, and that both wrky46 mutants and OV46 display altered root levels of free indole-3-acetic acid (IAA) and IAA conjugates. Subsequent RT-qPCR and ChIP-qPCR experiments indicated that WRKY46 directly regulates the expression of ABI4 and of genes regulating auxin conjugation. Finally, analysis of wrky46 abi4 double mutant plants confirms that ABI4 acts downstream of WRKY46. In summary, our results demonstrate that WRKY46 contributes to the feedforward inhibition of osmotic/salt stress-dependent LR inhibition via regulation of ABA signaling and auxin homeostasis.

  3. The diffusive transport of gibberellins and abscisic acid through the aleurone layer of germinating barley grain: a mathematical model.

    PubMed

    Bruggeman, F J; Libbenga, K R; Van Duijn, B

    2001-11-01

    A mathematical model of the diffusive transport of abscisic acid (ABA) and gibberellins (GAs) through the aleurone layer of barley (Hordeum vulgare L.) grain is presented. The model consists of two partial differential equations describing the accumulation of phytohormone in the apoplastic and symplasmic compartments of the aleurone layer, both spatially and temporally. The mathematical model contains the morphology of the barley grain and the physicochemical properties of the two phytohormones. A mathematical derivation of the accumulation ratios for the two phytohormones between the symplast and apoplast under equilibrium conditions resulted in different distribution mechanisms for GAs and ABA. A sensitivity analysis of the accumulation ratio for GAs indicated high sensitivity to the apoplastic pH and the membrane potential, whereas the accumulation ratio for ABA proved to be most sensitive to the pH difference between the apoplast and symplast. The diffusive transport time for GAs to the basal site of the aleurone layer as calculated with the mathematical model is within a physiologically plausible timescale according to experimental data from the literature. Abscisic acid cannot be transported by diffusion to the end of the aleurone layer as quickly as GAs, according to model simulations. Therefore, the functional role of ABA in germination is likely to be in the vicinity of the embryo.

  4. Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato.

    PubMed

    Nakaune, Makoto; Hanada, Atsushi; Yin, Yong-Gen; Matsukura, Chiaki; Yamaguchi, Shinjiro; Ezura, Hiroshi

    2012-03-01

    Seed germination is the initial step of plant development. Seed priming with salt promotes seed germination in tomato (Solanum lycopersicum L.); however, the molecular and physiological mechanisms underlying the enhancement of seed germination by priming remain to be elucidated. In this study, we examined the following in seeds both during and after priming treatment: the endogenous abscisic acid (ABA) and gibberellin (GA) concentrations; the expression of genes encoding ABA catabolic and GA biosynthesis enzymes, including 8'-hydroxylase (CYP707A), copalyl diphosphate synthase (CPS), GA 20-oxidase (GA20ox) and GA 3-oxidase (GA3ox); and endosperm cap weakening enzymes, including expansin (EXP), class I β-1,3-glucanase (GulB), endo-β-mannanase (MAN) and xyloglucan endotransglucosylase (XTH). Tomato seeds were soaked for 24 h at 25 °C in the dark in 300 mM NaCl (NaCl-priming) or distilled water (hydro-priming). For both priming treatments, the ABA content in the seeds increased during treatment but rapidly decreased after sowing. Both during and after the priming treatments, the ABA levels in the hydro-primed seeds and NaCl-primed seeds were not significantly different. The expression levels of SlGA20ox1, SlGA3ox1 and SlGA3ox2 were significantly enhanced in the NaCl-primed seeds compared to the hydro-primed seeds. The GA(4) content was quantifiable after both types of priming, indicating that GA(4) is the major bioactive GA molecule involved in tomato seed germination. The GA(4) content was significantly higher in the NaCl-primed seeds than in the hydro-primed seeds 12 h after sowing and thereafter. Additionally, the peak expression levels of SlEXP4, SlGulB, SlMAN2 and SlXTH4 occurred earlier and were significantly higher in the NaCl-primed seeds than in the hydro-primed seeds. These results suggest that the observed effect of NaCl-priming on tomato seed germination is caused by an increase of the GA(4) content via GA biosynthetic gene activation and a

  5. ahg12 is a dominant proteasome mutant that affects multiple regulatory systems for germination of Arabidopsis.

    PubMed

    Hayashi, Shimpei; Hirayama, Takashi

    2016-01-01

    The ubiquitin-proteasome system is fundamentally involved in myriad biological phenomena of eukaryotes. In plants, this regulated protein degradation system has a pivotal role in the cellular response mechanisms for both internal and external stimuli, such as plant hormones and environmental stresses. Information about substrate selection by the ubiquitination machinery has accumulated, but there is very little information about selectivity for substrates at the proteasome. Here, we report characterization of a novel abscisic acid (ABA)-hypersensitive mutant named ABA hypersensitive germination12 (ahg12) in Arabidopsis. The ahg12 mutant showed a unique pleiotropic phenotype, including hypersensitivity to ABA and ethylene, and hyposensitivity to light. Map-based cloning identified the ahg12 mutation to cause an amino acid conversion in the L23 loop of RPT5a, which is predicted to form the pore structure of the 19S RP complex of the proteasome. Transient expression assays demonstrated that some plant-specific signaling components accumulated at higher levels in the ahg12 mutant. These results suggest that the ahg12 mutation led to changes in the substrate preference of the 26S proteasome. The discovery of the ahg12 mutation thus will contribute to elucidate the characteristics of the regulated protein degradation system. PMID:27139926

  6. ahg12 is a dominant proteasome mutant that affects multiple regulatory systems for germination of Arabidopsis

    PubMed Central

    Hayashi, Shimpei; Hirayama, Takashi

    2016-01-01

    The ubiquitin-proteasome system is fundamentally involved in myriad biological phenomena of eukaryotes. In plants, this regulated protein degradation system has a pivotal role in the cellular response mechanisms for both internal and external stimuli, such as plant hormones and environmental stresses. Information about substrate selection by the ubiquitination machinery has accumulated, but there is very little information about selectivity for substrates at the proteasome. Here, we report characterization of a novel abscisic acid (ABA)-hypersensitive mutant named ABA hypersensitive germination12 (ahg12) in Arabidopsis. The ahg12 mutant showed a unique pleiotropic phenotype, including hypersensitivity to ABA and ethylene, and hyposensitivity to light. Map-based cloning identified the ahg12 mutation to cause an amino acid conversion in the L23 loop of RPT5a, which is predicted to form the pore structure of the 19S RP complex of the proteasome. Transient expression assays demonstrated that some plant-specific signaling components accumulated at higher levels in the ahg12 mutant. These results suggest that the ahg12 mutation led to changes in the substrate preference of the 26S proteasome. The discovery of the ahg12 mutation thus will contribute to elucidate the characteristics of the regulated protein degradation system. PMID:27139926

  7. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    PubMed Central

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  8. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.

  9. Seeds Use Temperature Cues to Ensure Germination under Nurse-plant Shade in Xeric Kalahari Savannah

    PubMed Central

    Kos, Martijn; Poschlod, Peter

    2007-01-01

    Background and Aims In arid environments many plant species are found associated with the canopies of woody perennials. Favourable conditions for establishment under canopies are likely to be associated with shade, but under canopies shade is distributed patchily and differs in quality. Diurnal temperature fluctuations and maximum temperatures could be reliable indicators of safe sites. Here, an examination is made as to whether canopy-associated species use temperature cues to germinate in shade patches, rather than matrix areas between trees. Methods The study was carried out in arid southern Kalahari savannah (Republic of South Africa). Perennial and annual species associated with Acacia erioloba trees and matrix species were germinated at temperature regimes resembling shaded and unshaded conditions. Soil temperature was measured in the field. Key Results Germination of all fleshy-fruited perennial acacia-associated species and two annual acacia-associated species was inhibited by the temperature regime resembling unshaded conditions compared with at least one of the regimes resembling shaded conditions. Inhibition in perennials decreased with seed mass, probably reflecting that smaller seedlings are more vulnerable to drought. Germination of matrix species was not inhibited by the unshaded temperature regime and in several cases it increased germination compared with shaded temperature regimes or constant temperature. Using phylogenetically independent contrasts a significant positive relationship was found between canopy association and the germination at shade temperatures relative to unshaded temperatures. Conclusions The data support the hypothesis that canopy species have developed mechanisms to prevent germination in open sun conditions. The results and data from the literature show that inhibition of germination at temperature regimes characteristic of open sun conditions can be found in fleshy-fruited species of widely divergent taxonomic groups. It is

  10. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    SciTech Connect

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  11. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    PubMed Central

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2013-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites. PMID:22116026