Science.gov

Sample records for abandoned stream channels

  1. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana

    USGS Publications Warehouse

    Kroes, Daniel E.; Kraemer, Thomas F.

    2013-01-01

    The Atchafalaya River Basin is a distributary system of the Mississippi River containing the largest riparian area in the lower Mississippi River Valley and the largest remaining forested bottomland in North America. Reductions in the area of open water in the Atchafalaya have been occurring over the last 100 years, and many historical waterways are increasingly filled by sediment. This study examines two cases of swamp channels (3/s) that are filling and becoming unnavigable as a result of high sediment loads and slow water velocities. The water velocities in natural bayous are further reduced because of flow capture by channels constructed for access. Bathymetry, flow, suspended sediment, deposited bottom-material, isotopes, and photointerpretation were used to characterize the channel fill. On average, water flowing through these two channels lost 23% of the suspended sediment load in the studied reaches. Along one of the studied reaches, two constructed access channels diverted significant flow out of the primary channel and into the adjacent swamp. Immediately downstream of each of the two access channels, the cross-sectional area of the studied channel was reduced. Isotopic analyses of bottom-material cores indicate that bed filling has been rapid and occurred after detectable levels of Cesium-137 were no longer being deposited. Interpretation of aerial photography indicates that water is bypassing the primary channels in favor of the more hydraulically efficient access channels, resulting in low or no-velocity flow conditions in the primary channel. These swamp channel conditions are typical in the Atchafalaya River Basin where relict large channel dimensions result in flow velocities that are normally too low to carry fine-grained sediment. Constructed channels increase the rate of natural channel avulsion and abandonment as a result of flow capture.

  2. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana

    NASA Astrophysics Data System (ADS)

    Kroes, Daniel E.; Kraemer, Thomas F.

    2013-11-01

    The Atchafalaya River Basin is a distributary system of the Mississippi River containing the largest riparian area in the lower Mississippi River Valley and the largest remaining forested bottomland in North America. Reductions in the area of open water in the Atchafalaya have been occurring over the last 100 years, and many historical waterways are increasingly filled by sediment. This study examines two cases of swamp channels (< 85 m3/s) that are filling and becoming unnavigable as a result of high sediment loads and slow water velocities. The water velocities in natural bayous are further reduced because of flow capture by channels constructed for access. Bathymetry, flow, suspended sediment, deposited bottom-material, isotopes, and photointerpretation were used to characterize the channel fill. On average, water flowing through these two channels lost 23% of the suspended sediment load in the studied reaches. Along one of the studied reaches, two constructed access channels diverted significant flow out of the primary channel and into the adjacent swamp. Immediately downstream of each of the two access channels, the cross-sectional area of the studied channel was reduced. Isotopic analyses of bottom-material cores indicate that bed filling has been rapid and occurred after detectable levels of Cesium-137 were no longer being deposited. Interpretation of aerial photography indicates that water is bypassing the primary channels in favor of the more hydraulically efficient access channels, resulting in low or no-velocity flow conditions in the primary channel. These swamp channel conditions are typical in the Atchafalaya River Basin where relict large channel dimensions result in flow velocities that are normally too low to carry fine-grained sediment. Constructed channels increase the rate of natural channel avulsion and abandonment as a result of flow capture.

  3. Abandoned Channel Fill Sequences in Tidal Estuaries

    NASA Astrophysics Data System (ADS)

    Gray, A. B.; Pasternack, G. B.; Goni, M. A.; Watson, E. B.

    2014-12-01

    This study proposes a modification of the current model for abandoned channel fill stratigraphy produced in unidirectional flow river reaches to incorporate seasonal tidal deposition. Evidence supporting this concept came from a study of two consecutive channel abandonment sequences in Ropers Slough of the lower Eel River Estuary in northern California. Aerial photographs showed that Ropers Slough was abandoned around 1943, reoccupied after the 1964 flood, and abandoned again in 1974 with fill continuing to the present. Planform geomorphic characteristics derived from these images were used in conjunction with sub-cm resolution stratigraphic analyses to describe the depositional environment processes and their resultant sedimentary deposits. Results showed that both abandonment sequences recorded quasi-annual scale fluvial/tidal deposition couplets. In both cases tidal deposits contained very little sand, and were higher in organic and inorganic carbon content than the sandier fluvial through-flow deposits. However, the two abandonment fills differed significantly in terms of the temporal progression of channel narrowing and fluvial sediment deposition characteristics. The first abandonment sequence led to a more rapid narrowing of Ropers Slough and produced deposits with a positive relationship between grain size/deposit thickness and discharge. The second abandonment resulted in a much slower narrowing of Ropers Slough and generally thinner fluvial deposits with no clear relationship between grain size/deposit thickness and discharge. The δ13C values and organic nitrogen to organic carbon ratios of deposits from the first phase overlapped with Eel River suspended sediment characteristics found for low flows (1-5 times mean discharge), while those of the second phase were consistent suspended sediment from higher flows (7-10 times mean discharge). The abandoned channel fill sequences appeared to differ due to the topographic steering of bed sediment transport and

  4. Stream Channel Stability.

    DTIC Science & Technology

    1981-04-01

    geometry of the stilling basin and appurtenances for optimum energy dissipation. The hydraulic design, based on a 100-year return period design storm...cases the only viable alternative based on present technology is to let the channel seek its oa equilibrium, but attempt to minimize total losses by...are degrading, resulting in bank caving, land loss , and damage to highway bridges. Many streams have enlarged to the extent that 50 to 100-year runoff

  5. Channel morphology and flow structure of an abandoned channel under varying stages

    NASA Astrophysics Data System (ADS)

    Costigan, Katie H.; Gerken, Joseph E.

    2016-07-01

    Abandoned channels are those channels left behind as meandering rivers migrate over their floodplains and remain among the most enigmatic features of the riverscape, especially related to their hydraulics and geomorphology. Abandoned channels are being considered and implemented as restoration and rehabilitation strategies for large rivers but we do not yet have a sound understanding of their hydromorphodynamics. The overall objectives of this work were to assess the bed morphology and flow structure of a large, dynamically connected abandoned channel (e.g., the channel is inundated during annual or decadal floods through bank overflow) under varying stages. Here we document the hydromorphodynamics of an abandoned channel during 3.4, 9.2, and 37.9 return interval discharges using an acoustic Doppler current profiler. Flow separation was observed along the channel entrance during the lowest flow surveying campaign but was not seen during the higher flow campaign. Width to depth ratio and channel width at the exit both progressively decreased from the first surveying campaign, despite the final campaign having the highest measured discharge. Large zones of flow stagnation and recirculation were observed, with depth-averaged velocity vectors not aligning in one direction, in the abandoned channel where water from the entrance was meeting water coming up from the exit during moderate discharges. The abandoned channel has been maintained for at least 25 years due to its low diversion angle and it being perched above the Kansas River. Results of this study provide insights of how flow hydraulics and physical characteristics of abandoned channel change under varying stages.

  6. Abandoned Rice Fields Make Streams Go Dry in Upland Landscapes

    NASA Astrophysics Data System (ADS)

    Jayawickreme, D.

    2015-12-01

    In South Asia, new economic realities are driving many rural rice farmers out of agriculture. With increasing neglect, abandonment, and rising conversions of centuries old rice fields into other uses, ecological and environmental consequences of these transitions are becoming progressively clear. Field observations in Sri Lanka's central highlands suggest that small shifts in rice to non-rice land uses in headwater watersheds can have a domino effect on the productivity and viability of rice fields and other ecological systems downstream by inflicting groundwater recharge reductions, lowering groundwater yields, and causing other hydrological changes. Preliminary analysis shows that although rice itself is a very water intensive crop, the presence of rain-fed upland rice-fields is hugely beneficial to the watersheds they reside. In particular, water benefits of rice appear to be derived from ponded conditions (3-5 inches of standing water) in which rice is grown, and the contribution rice fields makes to enhance water retention and storage capacity of their watersheds during the monsoon season that coincide with the cropping season. In the absence of well managed rice-fields, hilly upland landscapes produce more runoff and retain little rainwater during the wet season. Furthermore, after centuries of intensive use, much of South Asia's rice fields are nutrient poor and minimally productive without fertilizer applications and other interventions. Consequently, when abandoned, soil erosion and other impacts that affect aquatic ecosystems and watershed health also emerge. Despite these multiple concerns however, little research is currently done to better understand the environmental significance of rice cultivations that are a dominant land-use in many South Asian landscapes. The aim of this presentation is to stir interest among the scientific community to engage more broadly in rice, water, and environmental change research in the face of new economic realities in

  7. Roughness coefficients for stream channels in Arizona

    USGS Publications Warehouse

    Aldridge, B.N.; Garrett, J.M.

    1973-01-01

           n in which V = mean cross-sectional velocity of flow, in feet per second; R = hydraulic radius at a cross section, which is the cross-sectional area divided by the wetter perimeter, in feet; Se = energy slope; and n = coefficient of roughness. Many research studies have been made to determine "n" values for open-channel flow (Carter and others, 1963). Guidelines for selecting coefficient of roughness for stream channels are given in most of the literature of stream-channel hydraulics, but few of the data relate directly to streams of Arizona, The U.S> Geological Survey, at the request of the Arizona Highway Department, assembled the color photographs and tables of the Manning "n" values in this report to aid highway engineers in the selection of roughness coefficients for Arizona streams. Most of the photographs show channel reaches for which values of "n" have been assigned by experienced Survey personnel; a few photographs are included for reaches where "n" values have been verified. Verified "n" values are computed from a known discharge and measured channel geometry. Selected photographs of stream channels for which "n" values have been verified are included in U.S. Geological Survey Water-Supply Paper 1849 (Barnes, 1967); stereoscopic slides of Barnes' (1967) photographs and additional photographs can be inspected at U.S> Geological Survey offices in: 2555 E. First Street, Tucson; and 5017 Federal Building, 230 N. First Avenue, Phoenix.

  8. Stream Succession: Channel Changes After Wildfire Disturbance

    NASA Astrophysics Data System (ADS)

    Scheidt, N. E.; Luce, C. H.; Buffington, J. M.; Rieman, B.; Black, T.

    2004-12-01

    One paradigm in geomorphology is that vegetation is a fundamental control on sediment and water supplies to streams, and therefore on downstream geomorphology. Within this paradigm, wildfire has been implicated as a major driving force behind landscape erosion and changes to stream channels, periodically yielding pulses of sediment from upland basins, which, in turn, hypothetically, drive cyclical changes to stream channels. Within the context of management for ecologically valuable aquatic species across a landscape, biologists have envisioned available stream habitats cycling on long time scales, with some habitats increasing or decreasing in productivity, while others are temporarily taken out of production by severe disturbances related to fire. Some hypothesize that stream habitats may benefit from disturbance after the initial reorganization, increasing in quality over time, until the disturbance-supplied materials, gravel and wood, eventually become scarce, reducing habitat quality until the next disturbance. Systematic observations of actual channel "succession", however, are rare. We examined the long-term effects of wildfire disturbance on channel characteristics in moderate-gradient (2.3-3.9%), unconfined, mountain streams. Selection of this stream type excludes direct impacts from post-fire debris flows and allows us to focus on post-fire changes in basin hydrology, sediment supply and proximal riparian characteristics (supply of wood debris, bank strength from roots, etc.). The study was designed using a space-for-time substitution within the Idaho batholith. We considered three different forest age classes, corresponding with three different times since fire: recent (15-20 yrs), mid (90-130 yrs), and old (>150 yrs). Variables independent of fire and with potentially confounding effects (elevation, drainage area, land use, lithology, valley slope) were controlled to isolate the effect of fire on channel characteristics. Characteristics of interest

  9. Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function.

    PubMed

    Bott, Thomas L; Jackson, John K; McTammany, Matthew E; Newbold, J Denis; Rier, Steven T; Sweeney, Bernard W; Battle, Juliann M

    2012-12-01

    The effects of abandoned mine drainage (AMD) on streams and responses to remediation efforts were studied using three streams (AMD-impacted, remediated, reference) in both the anthracite and the bituminous coal mining regions of Pennsylvania (USA). Response variables included ecosystem function as well as water chemistry and macroinvertebrate community composition. The bituminous AMD stream was extremely acidic with high dissolved metals concentrations, a prolific mid-summer growth of the filamentous alga, Mougeotia, and > 10-fold more chlorophyll than the reference stream. The anthracite AMD stream had a higher pH, substrata coated with iron hydroxide(s), and negligible chlorophyll. Macroinvertebrate communities in the AMD streams were different from the reference streams, the remediated streams, and each other. Relative to the reference stream, the AMD stream(s) had (1) greater gross primary productivity (GPP) in the bituminous region and undetectable GPP in the anthracite region, (2) greater ecosystem respiration in both regions, (3) greatly reduced ammonium uptake and nitrification in both regions, (4) lower nitrate uptake in the bituminous (but not the anthracite) region, (5) more rapid phosphorus removal from the water column in both regions, (6) activities of phosphorus-acquiring, nitrogen-acquiring, and hydrolytic-carbon-acquiring enzymes that indicated extreme phosphorus limitation in both regions, and (7) slower oak and maple leaf decomposition in the bituminous region and slower oak decomposition in the anthracite region. Remediation brought chlorophyll concentrations and GPP nearer to values for respective reference streams, depressed ecosystem respiration, restored ammonium uptake, and partially restored nitrification in the bituminous (but not the anthracite) region, reduced nitrate uptake to an undetectable level, restored phosphorus uptake to near normal rates, and brought enzyme activities more in line with the reference stream in the bituminous

  10. A Lower Rhine flood chronology based on the sedimentary record of an abandoned channel fill

    NASA Astrophysics Data System (ADS)

    Toonen, W. H. J.; Winkels, T. G.; Prins, M. A.; de Groot, L. V.; Bunnik, F. P. M.; Cohen, K. M.

    2012-04-01

    The Bienener Altrhein is an abandoned channel of the Lower Rhine (Germany). Following a late 16th century abandonment event, the channel was disconnected from the main stream and the oxbow lake gradually filled with 8 meters of flood deposits. This process still continues today. During annual floods, a limited proportion of overbank discharge is routed across the oxbow lake. Large floods produce individual flood layers, which are visually recognized in the sedimentary sequence. Based on the sedimentary characteristics of these event layers, we created a ~450-year flood chronology for the Lower Rhine. Laser-diffraction grain size measurements were used to assess relative flood magnitudes for individual flood event layers. Continuous sampling at a ~2 cm interval provided a high-resolution record, resolving the record at an annual scale. Standard descriptive techniques (e.g., mean grain size, 95th percentile, % sand) and the more advanced 'end member modelling' were applied to zoom in on the coarse particle bins in the grain size distributions, which are indicative of higher flow velocities. The most recent part of the record was equated to modern discharge measurements. This allows to establish relations between deposited grain size characteristics in the abandoned channel and flood magnitudes in the main river. This relation can also be applied on flood event layers from previous centuries, for which only water level measurements and historical descriptions exist. This makes this method relevant to expand data series used in flood frequency analysis from 100 years to more than 400 years. To date event-layers in the rapidly accumulated sequence, we created an age-depth model that uses organic content variations to tune sedimentation rates between the known basal and top ages. No suitable identifiable organic material for radiocarbon dating was found in the cores. Instead, palynological results (introduction of agricultural species) and palaeomagnetic secular

  11. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    USGS Publications Warehouse

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  12. THERMAL HETEROGENEITY, STREAM CHANNEL MORPHOLOGY, AND SALMONID ABUNDANCE IN NORTHEASTERN OREGON STREAMS

    EPA Science Inventory

    Heterogeneity in stream water temperatures created by local influx of cooler subsurface waters into geomorphically complex stream channels was associated with increased abundance of rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha) in northeastern Oregon. Th...

  13. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, M.; Seitz, H.; Scott, J.

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies. ?? 1998 John Wiley & Sons, Ltd.

  14. Effects of Stream Channel Characteristics on Nitrate Delivery to Streams and In-Stream Denitrification Rates, Raccoon River, Iowa

    NASA Astrophysics Data System (ADS)

    Prestegaard, K. L.; O'Connell, M.

    2004-05-01

    Streams in agricultural areas often exhibit significant channel and sediment modifications; they are often incised and transport more fine sediment than non-agricultural streams. These channel characteristics can influence stream water quality by modifying surface-groundwater interactions. In the Raccoon River basin, channel incision increases the delivery of nitrate from the groundwater to the streams. The sandy in-stream sediments, however, serve as very effective sites for in-stream denitrification. Nitrate delivery and in-stream denitrification was examined in 3 subwatersheds of the Raccoon River. Stream morphology, water quality, and sediment characteristics were measured at 35 sites with varying land uses. Headwater stream nitrate concentration increased with percent row crops and the amount of channel incision. Downstream sites showed a wide variation in nitrate concentration with land use. Stream nitrate concentrations were measured at 6 sites in each of 3 streams with high percentages of row crop land uses during high summer baseflow following the 1993 floods and during average summer baseflow in 1995. Nitrate concentrations were systematically higher for the high baseflow conditions of 1993 than the average year (1995). This change in nitrate concentration is interpreted as the increased effectiveness of nitrate delivery to the stream during periods of high water tables. The effect was most pronounced in incised reaches. All 3 streams show downstream decreases in nitrate concentration. Water samples for all the sites in the watersheds were analyzed for nitrogen isotopic composition. The nitrogen isotopic composition shifts with towards higher d 15N values with decreasing nitrate concentration. This is consistent with denitrification reactions that selectively remove the 14N leaving a higher proportion of 15N in the nitrate. This suggests that most of the downstream decrease in nitrate concentrations is a result of in-stream denitrification. The high rates

  15. Natural Stream Channel Design Techniques and Review

    EPA Pesticide Factsheets

    Need for a Review Checklist: Stream restoration problems include; design complexity, many different design methodologies, inconsistency in design deliverables, communication difficulties, many failed projects

  16. CHANNEL EVOLUTION IN MODIFIED ALLUVIAL STREAMS.

    USGS Publications Warehouse

    Simon, Andrew; Hupp, Cliff R.

    1987-01-01

    This study (a) assesses the channel changes and network trends of bed level response after modifications between 1959 and 1972 of alluvial channels in western Tennessee and (b) develops a conceptual model of bank slope development to qualitatively assess bank stability and potential channel widening. A six-step, semiquantitative model of channel evolution in disturbed channels was developed by quantifying bed level trends and recognizing qualitative stages of bank slope development. Development of the bank profile is defined in terms of three dynamic and observable surfaces: (a) vertical face (70 to 90 degrees), (b) upper bank (25 to 50 degrees), and (c) slough line (20 to 25 degrees).

  17. Optimized transmission of JPEG2000 streams over wireless channels.

    PubMed

    Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G

    2006-01-01

    The transmission of JPEG2000 images over wireless channels is examined using reorganization of the compressed images into error-resilient, product-coded streams. The product-code consists of Turbo-codes and Reed-Solomon codes which are optimized using an iterative process. The generation of the stream to be transmitted is performed directly using compressed JPEG2000 streams. The resulting scheme is tested for the transmission of compressed JPEG2000 images over wireless channels and is shown to outperform other algorithms which were recently proposed for the wireless transmission of images.

  18. Channel Forming Discharges and Scaling Relationships in Small Streams

    NASA Astrophysics Data System (ADS)

    Brayshaw, D. D.

    2008-12-01

    One of the major challenges in predicting or mitigating the impacts of disturbance on hydrologic systems is to link changes in hydrology to changes in sediment delivery and transport. Because of the complexity of modelling, usually only one system is considered in isolation, with any potential changes in the corresponding system inferred. For instance, a study of a small watershed might consider changes to peak flows or to sediment delivery to the channel, but not alteration in channel pattern caused by those changes. Linking our understanding of expected changes in hydrology and sediment transport is therefore important for improving land use management. In order to improve this understanding, the development of models and concepts linking hydrologic change to geomorphic change, and vice versa, is necessary. Channel and reach parameters (such as width, depth, slope, and channel pattern) reflect the adjustment of the stream channel to inputs of water, wood and sediment from upstream and upslope. Therefore, channel parameters can be used as indicators which synthesize the hydrologic and geomorphic processes occurring in a watershed (Goodwin et al, 1998). Two parameters which are particularly relevant are the bankfull discharge and the effective discharge. Bankfull discharge (Wolman and Leopold, 1957) is defined as the discharge at which the stream channel is full to the top of its banks, but not flooding over the bank. Effective discharge (Wolman and Miller, 1960) is defined as the discharge that, averaged over time, transports the most sediment. Estimating the frequency, magnitude, and duration of bankfull and effective discharge in a single stream reach provides an indication of the stream channel's stability and the frequency with which geomorphically effective events occur in the watershed upstream. Determining the bankfull and effective discharge for multiple streams across a region enables regionalization, consideration of scaling relationships, and evaluation

  19. Groundwater Discharge along a Channelized Coastal Plain Stream

    SciTech Connect

    LaSage, Danita M; Sexton, Joshua L; Mukherjee, Abhijit; Fryar, Alan E; Greb, Stephen F

    2015-10-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  20. Groundwater discharge along a channelized Coastal Plain stream

    USGS Publications Warehouse

    LaSage, D.M.; Sexton, J.L.; Mukherjee, A.; Fryar, A.E.; Greb, S.F.

    2008-01-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel. ?? 2008 Elsevier B.V. All rights reserved.

  1. Riparian vegetation recovery patterns following stream channelization: a geomorphic perspective

    USGS Publications Warehouse

    Hupp, C.R.

    1992-01-01

    Hundreds of kilometres of West Tennessee streams have been channelized since the turn of the century. After a stream is straightened, dredged, or cleared, basin-wide ecologic, hydrologic, and geomorphic processes bring about an integrated, characteristic recovery sequence. The rapid pace of channel responses to channelization provides an opportunity to document and interpret vegetation recovery patterns relative to otherwise long-term, concomitant evolution of river geomorphology. The linkage of channel bed aggradation, woody vegetation establishment, and bank accretion all lead to recovery of the channel. Pioneer species are hardy and fast growing, and can tolerate moderate amounts of slope instability and sediment deposition; these species include river birch (Betula nigra), black willow (Salix nigra), boxelder (Acer negundo), and silver maple (Acer saccharinum). High stem densities and root-mass development appear to enhance bank stability. Tree-ring analyses suggest that on average 65 yr may be required for recovery after channelization. -from Author

  2. Public Health Perspectives of Channelized and Unchannelized Headwater Streams in Central Ohio: A Case Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Headwater streams constitute the majority of watersheds in the United States and many headwater streams in the midwest have been channelized for agricultural drainage. Public health implications of water chemistry and aquatic macroinvertebrates within channelized and unchannelized headwater streams ...

  3. Stream Channel Stability. Appendix E. Geomorphic Controls of Channel Stability,

    DTIC Science & Technology

    1981-04-01

    Erosion and Channels Research Unit, USDA Sedimentation Laboratory, Oxford, MS. 1,"<Xi i .. i,,< .;,i,<..7 PREFACE This process -oriented study was...organized to investigate three complementary aspects of channel stability including (a) the nature of channel failure processes ; (b) the influences of...valley-fill depositional units on these processes and (c) the properties and distributions of the valley-fill units. The study was process oriented to

  4. Influence of instream habitat and water chemistry on amphibians within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for draining agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States, Canada, and Europe. Channelized agricultural he...

  5. Conservation implications of amphibian habitat relationships within channelized agricultural headwater streams in the midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for removing water from agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States. Channelized agricultural headwater s...

  6. Discharge of sediment in channelized alluvial streams

    USGS Publications Warehouse

    Simon, Andrew

    1989-01-01

    Approximately 400 million cubic feet of channel sediments have been delivered to the Mississippi River from the Obion-Forked Deer River system in the last 20 years. The discharge of sediment from these channelized networks in West Tennessee varies systematically with the stage of channel evolution. Maximum bed-material discharges occur during the initial phases of degradation (Stage III). In contrast, yields of suspended-sediment peak during the threshold stage (Stage IV: large-scale mass wasting) as sediments are delivered from main-channel banks and tributary beds. Suspended-sediment yields then decrease as aggradation (Stage V) becomes the dominant trend in the main channels, but remains relatively high through restabilization (Stage VI) because of continued degradation and widening in the tributaries. Bed-material discharges decrease from the degradation stage (III) to Stage V, and increase again during restabilization (Stage VI) because secondary aggradation increases gradients and incipient meandering serves to rework bed sediments. Additional aspects of the subject are discussed.

  7. Antarctic ice streams and outflow channels on Mars

    USGS Publications Warehouse

    Lucchitta, B.K.

    2001-01-01

    New sonar images of the Antarctic sea floor reveal mega-scale glacial lineations that are strikingly similar to longitudinal flutes in martian outflow channels. The analogs suggest that ice moved through the martian channels in places and carved the flutes. The ice in martian channels may have moved like Antarctic ice streams on deformable debris saturated with water under high pore pressure. On Mars, water at the base of ice-filled channels may have come from residual water or melt water liberated during past warmer climates or higher heat flows.

  8. Multiple-channel Streaming Delivery for Omnidirectional Vision System

    NASA Astrophysics Data System (ADS)

    Iwai, Yoshio; Nagahara, Hajime; Yachida, Masahiko

    An omnidirectional vision is an imaging system that can capture a surrounding image in whole direction by using a hyperbolic mirror and a conventional CCD camera. This paper proposes a streaming server that can efficiently transfer movies captured by an omnidirectional vision system through the Internet. The proposed system uses multiple channels to deliver multiple movies synchronously. Through this method, the system enables clients to view the different direction of omnidirectional movies and also support the function to change the view are during playback period. Our evaluation experiments show that our proposed streaming server can effectively deliver multiple movies via multiple channels.

  9. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.

    PubMed

    Lee, Jin-Yong; Choi, Jung-Chan; Lee, Kang-Kun

    2005-09-01

    This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead-zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002-2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 microg L(-1), copper (Cu) 616 microg L(-1), cadmium (Cd) 223 microg L(-1) and lead (Pb) 10,590 microg L(-1), which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6-174 microg L(-1)), Cd (1-46 microg L(-1)) and Pb (2-26 microg L(-1)). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO(4)), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO(4) increased while those of bicarbonate (HCO(3)) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758

  10. Channel movement of meandering Indiana streams

    USGS Publications Warehouse

    Daniel, James F.

    1971-01-01

    Because of the consistency of yearly above-average discharge volumes, it was possible to develop a general relation between path-length increase per thousand cubic-feet-per-second-days per square mile of drainage area above average discharge and the width-depth ratio of the channel. Little progress was made toward defining relationships for rotation and translation.

  11. Restoring the sinuosity of artificially straightened stream channels

    SciTech Connect

    Brookes, A. )

    1987-01-01

    Restoration of Danish stream channels is encouraged by the Watercourse Act of 1982 and has been undertaken partly because of the adverse physical and biological effects caused by artificial straightening. A new technique for restoring morphologic and hydrologic diversity to stream channels has been developed, exemplifying the concept of working with nature rather than against it. This relies on re-creating the former sinuosity, cross-sectional dimensions, slope and substrate of a stream channel. Natural fluvial features are restored to a channel, and because slope is decreased stability is probable. In turn, this could be beneficial to the flora and fauna of a watercourse and to aesthetic qualities. The technique was applied successfully to a small stream in southern Jutland, Denmark, in 1984/5. Additional methods of bank and bed protection were required to limit subsequent minor adjustments along the new course. Further applications of the technique need to be treated individually because of varying local hydrologic and sedimentologic conditions. On-site supervision during construction and planned maintenance are vital components of restoration.

  12. Man-induced channel adjustment in Tennessee streams

    USGS Publications Warehouse

    Robbins, C.H.; Simon, Andrew

    1983-01-01

    Channel modifications in Tennessee, particularly in the western part, have led to large-scale instabilities in the channelized rivers and may have contributed to several bridge failures. These modifications, together with land-use practices, led to downcutting, headward erosion, downstream aggradation, accelerated scour, and bank instabilities. Changes in gradient by channel straightening caused more severe channel response than did dredging or clearing. Large-scale changes continue to occur in all the channelized rivers: the Obion River, its forks, and the South Fork Forked Deer River. However, the non-channelized Hatchie River in west Tennessee not only withstood the natural stresses imposed by the wet years of 1973 to 1975 but continues to exhibit characteristics of stability. Water-surface slope, the primary dependent variable, proved to be a sensitive and descriptive parameter useful in determining channel adjustment. Adjustments to man-induced increases in channel-slope are described by inverse exponential functions of the basic form S=ae(-b(t)); where ' S ' is some function describing channel-slope, ' t ' is the number of years since completion of channel work, and ' a ' and ' b ' are coefficients. Response times for the attainment of ' equilibrium ' channel slopes are a function of the magnitude and extent of the imposed modifications. The adjusted profile gradients attained by the streams following channelization are similar to the predisturbed profile gradients, where no alteration to channel length was made. Where the channels were straightened by constructing cut-offs, thus shortening channel length, then slope adjustments (reduction) proceed past the predisturbed profile gradients, to new profiles with lower gradients. (USGS)

  13. Natural decrease of dissolved arsenic in a small stream receiving drainages of abandoned silver mines in Guanajuato, Mexico.

    PubMed

    Arroyo, Yann Rene Ramos; Muñoz, Alma Hortensia Serafín; Barrientos, Eunice Yanez; Huerta, Irais Rodriguez; Wrobel, Kazimierz; Wrobel, Katarzyna

    2013-11-01

    Arsenic release from the abandoned mines and its fate in a local stream were studied. Physicochemical parameters, metals/metalloids and arsenic species were determined. One of the mine drainages was found as a point source of contamination with 309 μg L(-1) of dissolved arsenic; this concentration declined rapidly to 10.5 μg L(-1) about 2 km downstream. Data analysis confirmed that oxidation of As(III) released from the primary sulfide minerals was favored by the increase of pH and oxidation reduction potential; the results obtained in multivariate approach indicated that self-purification of water was due to association of As(V) with secondary solid phase containing Fe, Mn, Ca.

  14. Water quality, organic chemistry of sediment, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee. Water resources investigations report

    SciTech Connect

    Bradfield, A.D.; Flexner, N.M.; Webster, D.A.

    1993-12-31

    An investigation of the water quality, organic chemistry of sediment, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee, was conducted by the U.S. Geological Survey during December 1990. The objectives of the study were to assess the extent of possible contamination of water and adverse affects on biota in the streams resulting from creosote-related discharge originating of this Superfund site.

  15. Nutrient processes at the stream-lake interface for a channelized versus unmodified stream mouth

    USGS Publications Warehouse

    Niswonger, Richard; Naranjo, Ramon C.; Smith, David; Constantz, James E.; Allander, Kip K.; Rosenberry, Donald O.; Neilson, Bethany; Rosen, Michael R.; Stonestrom, David A.

    2017-01-01

    Inorganic forms of nitrogen and phosphorous impact freshwater lakes by stimulating primary production and affecting water quality and ecosystem health. Communities around the world are motivated to sustain and restore freshwater resources and are interested in processes controlling nutrient inputs. We studied the environment where streams flow into lakes, referred to as the stream-lake interface (SLI), for a channelized and unmodified stream outlet. Channelization is done to protect infrastructure or recreational beach areas. We collected hydraulic and nutrient data for surface water and shallow groundwater in two SLIs to develop conceptual models that describe characteristics that are representative of these hydrologic features. Water, heat, and solute transport models were used to evaluate hydrologic conceptualizations and estimate mean residence times of water in the sediment. A nutrient mass balance model is developed to estimate net rates of adsorption and desorption, mineralization, and nitrification along subsurface flow paths. Results indicate that SLIs are dynamic sources of nutrients to lakes and that the common practice of channelizing the stream at the SLI decreases nutrient concentrations in pore water discharging along the lakeshore. This is in contrast to the unmodified SLI that forms a barrier beach that disconnects the stream from the lake and results in higher nutrient concentrations in pore water discharging to the lake. These results are significant because nutrient delivery through pore water seepage at the lakebed from the natural SLI contributes to nearshore algal communities and produces elevated concentrations of inorganic nutrients in the benthic zone where attached algae grow.

  16. Small mammal habitat use within restored riparian habitats adjacent to channelized streams in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of channelized agricultural streams in northwestern Mississippi typically consist of narrow vegetative corridors low in habitat diversity and lacking riparian wetlands. Land clearing practices and stream channelization has led to the development of gully erosion and further fragmenta...

  17. Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA

    USGS Publications Warehouse

    Gray, J.E.; Theodorakos, P.M.; Bailey, E.A.; Turner, R.R.

    2000-01-01

    Concentrations of total Hg, Hg (II), and methylmercury were measured in stream-sediment, stream-water, and fish collected downstream from abandoned mercury mines in south-western Alaska to evaluate environmental effects to surrounding ecosystems. These mines are found in a broad belt covering several tens of thousands of square kilometers, primarily in the Kuskokwim River basin. Mercury ore is dominantly cinnabar (HgS), but elemental mercury (Hg(o)) is present in ore at one mine and near retorts and in streams at several mine sites. Approximately 1400 t of mercury have been produced from the region, which is approximately 99% of all mercury produced from Alaska. These mines are not presently operating because of low prices and low demand for mercury. Stream-sediment samples collected downstream from the mines contain as much as 5500 ??g/g Hg. Such high Hg concentrations are related to the abundance of cinnabar, which is highly resistant to physical and chemical weathering, and is visible in streams below mine sites. Although total Hg concentrations in the stream-sediment samples collected near mines are high, Hg speciation data indicate that concentrations of Hg (II) are generally less than 5%, and methylmercury concentrations are less than 1% of the total Hg. Stream waters below the mines are neutral to slightly alkaline (pH 6.8-8.4), which is a result of the insolubility of cinnabar and the lack of acid- generating minerals such as pyrite in the deposits. Unfiltered stream-water samples collected below the mines generally contain 500-2500 ng/l Hg; whereas, corresponding stream-water samples filtered through a 0.45-??m membrane contain less than 50 ng/l Hg. These stream-water results indicate that most of the Hg transported downstream from the mines is as finely- suspended material rather than dissolved Hg. Mercury speciation data show that concentrations of Hg (II) and methylmercury in stream-water samples are typically less than 22 ng/l, and generally less than

  18. Grazed riparian management and stream channel response in southeastern Minnesota (USA) streams

    USGS Publications Warehouse

    Magner, J.A.; Vondracek, B.; Brooks, K.N.

    2008-01-01

    The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response. ?? 2008 Springer Science+Business Media, LLC.

  19. Instream wood recruitment, channel complexity, and their relationship to stream ecology in forested headwater streams under alternative stable states

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E.

    2015-12-01

    Human alteration to forests has had lasting effects on stream channels worldwide. Such land use changes affect how wood enters and is stored in streams as individual pieces and as logjams. Changes in wood recruitment affect the complexity and benefits wood can provide to the stream environment, such as zones of flow separation that store fine sediment and organic matter, increased nutrient processing, and greater habitat potential, which can enhance biota and cascade through stream-riparian ecosystems. Previous research in our study area shows that modern headwater streams flowing through old-growth, unmanaged forests have more wood than streams in young, managed forests, but does not explicitly evaluate how wood affects channel complexity or local ecology. 'Managed' refers to forests previously or currently exposed to human alteration. Alteration has long since ceased in some areas, but reduced wood loads in managed streams persist. Our primary objective was to quantify stream complexity metrics, with instream wood as a mediator, on streams across a gradient of management and disturbance histories in order to examine legacy effects of human alteration to forests. Data collected in the Southern Rocky Mountains include 24 2nd to 3rd order subalpine streams categorized into: old-growth unmanaged; younger, naturally disturbed unmanaged; and younger managed. We assessed instream wood loads and logjams and evaluated how they relate to channel complexity using a number of metrics, such as standard deviation of bed and banks, volume of pools, ratios of stream to valley lengths and stream to valley area, and diversity of substrate, gradient, and morphology. Preliminary results show that channel complexity is directly related to instream wood loads and is greatest in streams in old-growth. Related research in the field area indicates that streams with greater wood loads also have increased nutrient processing and greater abundance and diversity of aquatic insect predators.

  20. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    EPA Science Inventory

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  1. Differences in instream wood characteristics between channelized and unchannelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Instream wood is an important resource for stream biota because it provides cover for fishes, substrate for macroinvertebrates, and increases habitat diversity. However, current management of instream wood within channelized agricultural headwater streams (drainage ditches) involves removing instrea...

  2. Stream Channel Stability. Appendix D. Bank Stability and Bank Material Properties in the Bluffline Streams of Northwest Mississippi,

    DTIC Science & Technology

    1981-04-01

    2.5 Pulling Assembly, Base Plate and Gas Control Console ....... . 197 2.6 Pulling force is applied by cranking the handle at a rate of two turns per...last fifty years. This degradation is the result of changes in land use, channel straightening and lowering of effective base level by trunk stream... overfall . This headcut forms where the channel bed breaks through resistant substrata of ironstone or clay. The streams lack any bedrock control and are

  3. Influence of Gully Erosion Control on Amphibian and Reptile Communities within Riparian Zones of Channelized Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of streams in northwestern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Riparian gully formation has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used conservation practice for...

  4. A standardized sampling protocol for channel catfish in prairie streams

    USGS Publications Warehouse

    Vokoun, Jason C.; Rabeni, Charles F.

    2001-01-01

    Three alternative gears—an AC electrofishing raft, bankpoles, and a 15-hoop-net set—were used in a standardized manner to sample channel catfish Ictalurus punctatus in three prairie streams of varying size in three seasons. We compared these gears as to time required per sample, size selectivity, mean catch per unit effort (CPUE) among months, mean CPUE within months, effect of fluctuating stream stage, and sensitivity to population size. According to these comparisons, the 15-hoop-net set used during stable water levels in October had the most desirable characteristics. Using our catch data, we estimated the precision of CPUE and size structure by varying sample sizes for the 15-hoop-net set. We recommend that 11–15 repetitions of the 15-hoop-net set be used for most management activities. This standardized basic unit of effort will increase the precision of estimates and allow better comparisons among samples as well as increased confidence in management decisions.

  5. Long-term impacts of land cover changes on stream channel loss

    EPA Science Inventory

    Land cover change and stream channel loss are two related global environmental changes that are expanding and intensifying. Here, we examine how different types and transitions of land cover change impact stream channel loss across a large urbanizing watershed with large areas of...

  6. Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels

    NASA Astrophysics Data System (ADS)

    Kampf, Stephanie K.; Faulconer, Joshua; Shaw, Jeremy R.; Sutfin, Nicholas A.; Cooper, David J.

    2016-05-01

    In hyper-arid regions, ephemeral stream channels are important sources of subsurface recharge and water supply for riparian vegetation, but few studies have documented the subsurface water content dynamics of these systems. This study examines ephemeral channels in the hyper-arid western Sonoran Desert, USA to determine how frequently water recharges the alluvial fill and identify variables that affect the depth and persistence of recharge. Precipitation, stream stage, and subsurface water content measurements were collected over a three-year study at six channels with varying contributing areas and thicknesses of alluvial fill. All channels contain coarse alluvium composed primarily of sands and gravels, and some locations also have localized layers of fine sediment at 2-3 m depth. Rain alone contributed 300-400 mm of water input to these channels over three years, but water content responses were only detected for 36% of the rain events at 10 cm depth, indicating that much of the rain water was either quickly evaporated or taken up by plants. Pulses of water from rain events were detected only in the top meter of alluvium. The sites each experienced ⩽5 brief flow events, which caused transient saturation that usually lasted only a few hours longer than flow. These events were the only apparent source of water to depths >1 m, and water from flow events quickly percolated past the deepest measurement depths (0.5-3 m). Sustained saturation in the shallow subsurface only developed where there was a near-surface layer of finer consolidated sediments that impeded deep percolation.

  7. Groundwater exchanges near a channelized versus unmodified stream mouth discharging to a subalpine lake

    USGS Publications Warehouse

    Constantz, James; Naranjo, Ramon C.; Niswonger, Richard; Allander, Kip K.; Neilson, B.; Rosenberry, Donald O.; Smith, David W.; Rosecrans, C.; Stonestrom, David A.

    2016-01-01

    The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both “unmodified” (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.

  8. Groundwater exchanges near a channelized versus unmodified stream mouth discharging to a subalpine lake

    NASA Astrophysics Data System (ADS)

    Constantz, J.; Naranjo, R.; Niswonger, R.; Allander, K.; Neilson, B.; Rosenberry, D.; Smith, D.; Rosecrans, C.; Stonestrom, D.

    2016-03-01

    The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both "unmodified" (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.

  9. Hydroclimatic signal and LBK cultural activity in the Upper and Lower Rhine, inferred from abandoned channel fill deposits

    NASA Astrophysics Data System (ADS)

    Berger, J. F.; Salvador, P. G.; Erkens, G.; Toonen, W. H. J.; Purdue, L.; Barra, A.; Houben, P.

    2012-04-01

    The Linear Band Ceramic (LBK) culture represents a major event in the spread of agriculture in Europe. Occupation particularly occurred in river valleys, with largest densities found along the rivers Danube, Elbe and Rhine. The interaction between the emergence of this culture and the dominant climatic and hydrological conditions is not yet fully established. As part of the ANR OBRESOC project, in which LBK activity is investigated in a transect from France (Marne river) to the catchment of the Danube river (Tisza), we studied palaeo-environmental changes in the Rhine valley between 7600-6600 cal. yrs. BP. Focus is on the Upper Rhine Graben and the Lower Rhine valley near the Rhine Delta apex, which is thought to be a peripheral region of LBK-activity. In these regions, a total of five cores from abandoned channels were analysed to reconstruct palaeo-environmental dynamics in vegetation and fluvial activity during the period of LBK development. Abandoned channel fills are excellent sites to perform detailed studies of palaeo-environmental dynamics, as they (i) form proximal locations to occupation sites of the LBK culture, (ii) act as efficient traps of sediments in which different environmental proxies are well preserved, (iii) contain well-datable material for the construction of detailed age-depth models, and (iv) provide a long proxy record, potentially over more than a millennium at a single site. On all cores, high resolution analysis of channel fill deposits (grain size and geophysical properties) and biotic proxies (micro-charcoal fluxes and pollen assemblages) were preformed to reconstruct palaeo-environmental signals, such as changes in fluvial activity, forest fires, and vegetation evolution, which may be related to agricultural activity, and climatic and hydrogeomorphic changes in the region. In this contribution we compare the results of the high-resolution core analyses (1,5 to 5m sequences for the studied timeframe) derived from the more densely

  10. Channel erosion in steep gradient, gravel-paved streams

    SciTech Connect

    Lepp, L.R.; Koger, C.J.; Wheeler, J.A.

    1993-12-01

    Discharges were measured in steep gradient (> 5 percent) gravel-paved streams from 1988 to 1991 in order to empirically determine erosional thresholds based on sediment size, related to critical velocity, tractive force, and unit stream power. Results suggest that the empirical relationship between sediment size and unit stream power provides an accurate and simple methodology for determining the minimum erosion threshold discharge for steep gradient streams common in western Washington and other similar mountain terrains.

  11. West-Antarctic Ice Streams: Analog to Ice Flow in Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Sounding of the sea floor in front of the Ross Ice Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of ice streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic ice streams and outflow channels. Ice streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. Ice stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by ice that left a conspicuous morphologic imprint. Unlike the West-Antarctic-ice streams, which discharge ice from an ice sheet, ice in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed icings on springs, ice dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these ice masses would have moved; and given the right conditions, they could have moved like Antarctic ice streams.

  12. Instream Wood Loads and Channel Complexity in Headwater Streams Under Alternative Stable States

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E.

    2014-12-01

    Channel morphology and irregularities in stream boundaries can create zones of flow separation, where lower velocities trap fine sediment and organic matter and increase opportunities for nutrient processing and biological uptake. This effect is most pronounced with channel-spanning structures such as logjams. Humans have changed the spatial and temporal characteristics of wood distribution in streams, with lasting effects on instream wood recruitment, wood loads, logjam distribution, and hydraulic roughness. Previous studies in the Colorado Front Range show that contemporary headwater streams flowing through old-growth, unmanaged forests have more wood than streams flowing through younger-growth, managed forests, but do not evaluate the effects of wood on channel complexity. 'Managed' versus 'unmanaged' refers to whether forests were or are currently exposed to human alteration. Although some alteration has long since ceased, reduced wood loads in managed streams persist. Our primary objective was to quantify differences in logjams, wood volumes, stream complexity, and organic carbon storage on streams with different management and disturbance histories in order to examine legacy effects across a gradient of stream management. Data were collected during the summers of 2013 and 2014 in the Southern Rocky Mountains. The 25 stream reaches studied are 2nd to 3rd order, subalpine streams that are categorized into: old-growth unmanaged forests; younger, naturally disturbed unmanaged forests; and younger managed forests. We assessed instream and floodplain wood loads and logjams and evaluated the role that large wood plays in local channel complexity, pool volume, and storage of organic carbon. Preliminary results show that greatest wood and carbon storage in sediments, as well as channel complexity, occurs in streams in old-growth, unmanaged forests and the least wood and carbon storage and channel complexity occurs in younger-growth, managed forests.

  13. Reach-Scale Channel Adjustments to Channel Network Geometry in Mountain Bedrock Streams

    NASA Astrophysics Data System (ADS)

    Plitzuweit, S. J.; Springer, G. S.

    2008-12-01

    surveys in order to analyze whether stream power and shear stress are adjusted to reflect CNG at the reach- scale. These models are compared to those with discharges calculated using drainage area and precipitation totals alone. We conclude that gradients in bedrock mountain streams may reflect basin-scale hydrology (CNG) and not simply local geological or geomorphic factors. This challenges the conclusions of others who ascribe local channel adjustments to: i) lithology and structure alone, or ii) local colluvium grain sizes.

  14. Effects of natural-channel-design restoration on habitat quality in Catskill Mountain streams, New York

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark

    2010-01-01

    Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.

  15. Computer-aided mapping of stream channels beneath the Lawrence Livermore National Laboratory Super Fund Site

    SciTech Connect

    Sick, M.

    1994-12-01

    The Lawrence Livermore National Laboratory (LLNL) site rests upon 300-400 feet of highly heterogeneous braided stream sediments which have been contaminated by a plume of Volatile Organic Compounds (VOCs). The stream channels are filled with highly permeable coarse grained materials that provide quick avenues for contaminant transport. The plume of VOCs has migrated off site in the TFA area, making it the area of greatest concern. I mapped the paleo-stream channels in the TFA area using SLICE an LLNL Auto-CADD routine. SLICE constructed 2D cross sections and sub-horizontal views of chemical, geophysical, and lithologic data sets. I interpreted these 2D views as a braided stream environment, delineating the edges of stream channels. The interpretations were extracted from Auto-CADD and placed into Earth Vision`s 3D modeling and viewing routines. Several 3D correlations have been generated, but no model has yet been chosen as a best fit.

  16. The importance of instream habitat modifications for restoring channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Science based information on the influence of restoration practices on fishes within channelized agricultural headwater streams in the Midwestern United States is currently lacking. Understanding fish-habitat relationships and fish responses to specific restoration practices will provide informatio...

  17. HOW WELL CAN YOU ESTIMATE LOW FLOW AND BANKFULL DISCHARGE FROM STREAM CHANNEL HABITAT DATA?

    EPA Science Inventory

    Modeled estimates of stream discharge are becoming more important because of reductions in the number of gauging stations and increases in flow alteration from land development and climate change. Field measurements of channel morphology are available at thousands of streams and...

  18. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems.

    PubMed

    Rowe, Owen F; Sánchez-España, Javier; Hallberg, Kevin B; Johnson, D Barrie

    2007-07-01

    An extremely acidic (pH 2.5-2.75) metal-rich stream draining an abandoned mine in the Iberian Pyrite Belt, Spain, was ramified with stratified macroscopic gelatinous microbial growths ('acid streamers' or 'mats'). Microbial communities of streamer/mat growths sampled at different depths, as well as those present in the stream water itself, were analysed using a combined biomolecular and cultivation-based approach. The oxygen-depleted mine water was dominated by the chemolithotrophic facultative anaerobe Acidithiobacillus ferrooxidans, while the streamer communities were found to be highly heterogeneous and very different to superficially similar growths reported in other extremely acidic environments. Microalgae accounted for a significant proportion of surface streamer biomass, while subsurface layers were dominated by heterotrophic acidophilic bacteria (Acidobacteriacae and Acidiphilium spp.). Sulfidogenic bacteria were isolated from the lowest depth streamer growths, where there was also evidence for selective biomineralization of copper sulfide. Archaeal clones (exclusively Euryarchaeota) were recovered from streamer samples, as well as the mine stream water. Both sunlight and reduced inorganic chemicals (predominantly ferrous iron) served as energy sources for primary producers in this ecosystem, promoting complex microbial interactions involving transfer of electron donors and acceptors and of organic carbon, between microorganisms in the stream water and the gelatinous streamer growths. Microbial transformations were shown to impact the biogeochemical cycling of iron and sulfur in the acidic stream, severely restricting the net oxidation of ferrous iron even when the initially anoxic waters were oxygenated by indigenous acidophilic algae. A model accounting for the biogeochemistry of iron and sulfur in the mine waters is described, and the significance of the acidophilic communities in regulating the geochemistry of acidic, metal-rich waters is described.

  19. The Blurred Line between Form and Process: A Comparison of Stream Channel Classification Frameworks

    PubMed Central

    Kasprak, Alan; Hough-Snee, Nate

    2016-01-01

    Stream classification provides a means to understand the diversity and distribution of channels and floodplains that occur across a landscape while identifying links between geomorphic form and process. Accordingly, stream classification is frequently employed as a watershed planning, management, and restoration tool. At the same time, there has been intense debate and criticism of particular frameworks, on the grounds that these frameworks classify stream reaches based largely on their physical form, rather than direct measurements of their component hydrogeomorphic processes. Despite this debate surrounding stream classifications, and their ongoing use in watershed management, direct comparisons of channel classification frameworks are rare. Here we implement four stream classification frameworks and explore the degree to which each make inferences about hydrogeomorphic process from channel form within the Middle Fork John Day Basin, a watershed of high conservation interest within the Columbia River Basin, U.S.A. We compare the results of the River Styles Framework, Natural Channel Classification, Rosgen Classification System, and a channel form-based statistical classification at 33 field-monitored sites. We found that the four frameworks consistently classified reach types into similar groups based on each reach or segment’s dominant hydrogeomorphic elements. Where classified channel types diverged, differences could be attributed to the (a) spatial scale of input data used, (b) the requisite metrics and their order in completing a framework’s decision tree and/or, (c) whether the framework attempts to classify current or historic channel form. Divergence in framework agreement was also observed at reaches where channel planform was decoupled from valley setting. Overall, the relative agreement between frameworks indicates that criticism of individual classifications for their use of form in grouping stream channels may be overstated. These form

  20. Influence of Beaver Dams on Channel Complexity, Hydrology, and Temperature Regime in a Mountainous Stream

    NASA Astrophysics Data System (ADS)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2013-12-01

    Beaver dams and beaver activity affect hydrologic processes, sediment transport, channel complexity and water quality of streams. Beaver ponds, which form behind beaver dams, increase in-channel water storage affecting the timing and volume of flow and resulting in the attenuation and flattening of the hydrograph. Channel complexity also increases the potential for transient storage (both surface and subsurface) and influences stream temperature. Impacts of beaver dams and beaver activity on stream responses are difficult to quantify because responses are dynamic and spatially variable. Few studies have focused on the reach scale temporal influences on stream responses and further research is needed particularly in quantifying the influence of beaver dams and their role in shaping the stream habitat. This study explores the changing hydrology and temperature regime of Curtis Creek, a mountainous stream located in Northern Utah, in a 560 m long reach where groundwater exchanges and temperature differences were observed over a three-year period. We have collected continuous stream discharge, stream temperature data and performed tracer experiments. During the first year, we were able to capture the pre-beaver activity. In the second year, we captured the impacts of some beaver activity with only a few dams built in the reach, while the third year included the effects of an entire active beaver colony. By the end of the study period, a single thread channel had been transformed into a channel with side channels and backwaters at multiple locations therefore increasing channel complexity. The cumulative influence of beaver dams on reach scale discharge resulted in a slightly losing reach that developed into a gaining reach. At the smaller sub-reach scale, both losing to gaining and gaining to losing transformations were observed. Temperature differences showed a warming effect of beaver dams at the reach scale. The reach stream temperature difference increased on

  1. Influence of gully erosion control on amphibian and reptile communities within riparian zones of channelized streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of streams in northern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Gully erosion is the most severe form of erosion and has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used c...

  2. Influence of Gully Erosion Control on Amphibian and Reptile Communities Within Riparian Zones of Channelized Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of streams in northern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Gully erosion is the most severe form of erosion and has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used c...

  3. Quantifying stream channel sediment contributions for the Paradise Creek Watershed in northern Idaho

    NASA Astrophysics Data System (ADS)

    Rittenburg, R.; Squires, A.; Boll, J.; Brooks, E. S.

    2012-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies around the world, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. Little is known about in-stream contributions, a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to identify where and when sediment is delivered to the stream and the spatial and temporal stream channel contributions to the overall watershed scale sediment load. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was made up predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 50% of the total annual sediment load for the basin, with a 19 year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term data in the watershed will be presented to indicate if the main source of the sediment is from either rural and urban non-point sources or the channel system.

  4. Influence of diurnal cycles on metal concentrations and loads in streams draining abandoned mine lands: an example from High Ore Creek, Montana

    USGS Publications Warehouse

    Gammons, Christopher H.; Milodragovich, Lica; Belanger-Woods, Jodi

    2007-01-01

    Diurnal water samples were collected simultaneously at four locations along High Ore Creek (Montana, USA), a small stream with near-neutral pH that contains elevated concentrations of Zn, Mn, Cd, and As from abandoned mines near its headwaters. During the same time period, two sets of synoptic samples were collected by workers moving in opposite directions along the stream. Large diurnal fluctuations in Zn concentration were found at three of the 24-h monitoring stations, but not at the outlet to a settling pond. Because the concentrations of Zn were dropping at most locations in the creek during the day (in response to the daily cycle of day-time attenuation and night-time release), the synoptic sampler who moved upstream obtained a data set that led to the conclusion that Zn load increased with distance downstream. The sampler who moved in a downstream direction obtained the opposite results. Thus, failure to take short-term diurnal cycling into account can lead to incorrect conclusions regarding spatial or temporal trends in water quality within a watershed.

  5. Regional impacts of urbanization on stream channel geometry: A case study in semiarid southern California

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kristine T.; Biggs, Trent W.

    2015-11-01

    Urbanization often increases storm runoff, peak discharges and rates of stream channel erosion. Coastal California has experienced rapid urbanization over the past several decades and has the potential for stream channel degradation. Several counties in California have implemented Hydromodification Management Plans (HMPs) to protect channels from erosion, but few studies have quantified the impact of urbanization on channel geometry in diverse geological settings at the county scale. A synoptic survey of field sites (N = 56) by the California Environmental Data Exchange Network (CEDEN) and additional field surveys (N = 24) were used to develop regional hydraulic geometry curves relating bankfull cross-sectional area (Axs), width (w), mean depth (d), and discharge (Qbf) to watershed area (Aw) in San Diego County. Regional curves were compared for urban and reference sites and to other regional curves developed for southern California. Multiple regression models were used to identify dominant watershed and channel controls on geometry, including Aw, percent impervious cover (I%), mean annual precipitation, underlying geology, longitudinal slope, hydrologic soil group, and channel particle size. For the reference streams, regional curves were statistically significant for w and Axs (p < 0.05). The regional curves for urban channels (I% > 20%) had significantly larger w, d, Axs, and Qbf for a given watershed size. A majority (68%) of the urban channels and 78% of the small urban channels (Aw < 10 km2) were enlarged. Enlargement of channels in small watersheds disrupted the correlation between Aw and bankfull dimensions, and I% was the only significant predictor of channel geometry in urban watersheds. Channel response differed by channel substrate: sand-bedded channels incised and experienced extreme enlargement of up to 115 × the Axs of reference sites, while gravel-bedded channels widened and showed less enlargement (< 7 × reference Axs). Diverse channel responses

  6. Do the coarsest bed fractions and stream power record contemporary trends in steep headwater channels?

    NASA Astrophysics Data System (ADS)

    Galia, Tomáš; Škarpich, Václav

    2016-11-01

    Three stream channels that were devoid of evidence of past debris flows and one headwater channel that contained debris flow deposits in the flysch western Carpathians, Czech Republic were selected to test relationships between in-channel processes, bed sediments, and unit stream power calculated for bankfull and Q20 flows. Contemporary depositional or erosional trends in the examined headwaters were linked with bed sediments that were represented by the coarsest cobble and boulder fraction with a mean calculated from the five largest particles. The downstream trends of the unit stream power were derived for a bankfull discharge and a well-documented 20-year flood event. In addition, the flow competences during the discharges were calculated using indirect bedload transport measurements. Downstream fining of the cobble and boulder fraction was observed in all of the studied headwaters, and unique downstream variations of the unit stream power were calculated for the longitudinal profiles. The single-thread streams that were devoid of evidence of debris flow events exhibited direct relations between the coarsest sediment size and the unit stream power, especially as calculated for the 20-year flood event and for erosional/depositional trends of the channel. The downstream coarsening of the bed material that was accompanied by an increase in the unit stream power was usually observed in the case of deeply incised (> 0.5 m above the assumed bankfull depth) channel reaches. The calculated competence of the 20-year flow was up to twofold higher than that required to entrain the largest bed particle diameters in those channel reaches, and even the bankfull flow was potentially capable of transporting the coarsest bed particles in certain of the reaches. On the other hand, some depositional channel reaches evidently led to the disconnectivity of transport of the coarsest bed material even in the case of the 20-year flood event. The longitudinal profile of the channel that

  7. Potential risk assessment in stream sediments, soils and waters after remediation in an abandoned W>Sn mine (NE Portugal).

    PubMed

    Antunes, I M H R; Gomes, M E P; Neiva, A M R; Carvalho, P C S; Santos, A C T

    2016-11-01

    The mining complex of Murçós belongs to the Terras de Cavaleiros Geopark, located in Trás-os-Montes region, northeast Portugal. A stockwork of NW-SE-trending W>Sn quartz veins intruded Silurian metamorphic rocks and a Variscan biotite granite. The mineralized veins contain mainly quartz, cassiterite, wolframite, scheelite, arsenopyrite, pyrite, sphalerite, chalcopyrite, galena, rare pyrrhotite, stannite, native bismuth and also later bismuthinite, matildite, joseite, roosveltite, anglesite, scorodite, zavaritskite and covellite. The exploitation produced 335t of a concentrate with 70% of W and 150t of another concentrate with 70% of Sn between 1948 and 1976. The exploitation took place mainly in four open pit mines as well as underground. Three lakes were left in the area. Remediation processes of confination and control of tailings and rejected materials and phytoremediation with macrophytes from three lakes were carried out between 2005 and 2007. Stream sediments, soils and water samples were collected in 2008 and 2009, after the remediation process. Most stream sediments showed deficiency or minimum enrichment for metals. The sequential enrichment factor in stream sediments W>Bi>As>U>Cd>Sn=Ag>Cu>Sb>Pb>Be>Zn is mainly associated with the W>Sn mineralizations. Stream sediments receiving drainage of a mine dump were found to be significantly to extremely enriched with W, while stream sediments and soils were found to be contaminated with As. Two soil samples collected around mine dumps and an open pit lake were also found to be contaminated with U. The waters from the Murçós W>Sn mine area were acidic to neutral. After the remediation, the surface waters were contaminated with F(-), Al, As, Mn and Ni and must not be used for human consumption, while open pit lake waters must also not be used for agriculture because of contamination with F(-), Al, Mn and Ni. In most waters, the As occurred as As (III), which is toxic and is easily mobilized in the drainage

  8. Sources and interpretation of channel complexity in forested subalpine streams of the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Livers, Bridget; Wohl, Ellen

    2016-05-01

    We evaluate correlations between stream geomorphic complexity and characteristics of the adjacent riparian forest, valley geometry, and land use history in forested subalpine streams of the Colorado Front Range. Measures of geomorphic complexity focus on cross-sectional, planform, and instream wood piece and logjam variables. We categorize adjacent riparian forests as old-growth unmanaged forest (OU), younger unmanaged forest (YU), and younger managed forest (YM), and valley geometry as laterally confined, partly confined, or unconfined. Significant differences in geomorphic stream complexity between OU, YU, and YM result primarily from differences in wood pieces and logjams, and these differences correlate strongly with pool volume and organic matter storage. Significant differences in planform and cross-sectional complexity correlate more strongly with valley geometry, but do not explain as much of the observed variability in complexity between streams as do the wood variables. Unconfined OU streams have the largest wood loads and the greatest complexity, whereas legacy effects of logging, tie-drives, and channel simplification create lower complexity in YM streams, even relative to YU streams flowing through similarly aged forest. We find that management history of riparian forests exerts the strongest control on reduced functional stream channel complexity, regardless of riparian forest stand age.

  9. Supply of large woody debris in a stream channel

    USGS Publications Warehouse

    Diehl, Timothy H.; Bryan, Bradley A.

    1993-01-01

    The amount of large woody debris that potentially could be transported to bridge sites was assessed in the basin of the West Harpeth River in Tennessee in the fall of 1992. The assessment was based on inspections of study sites at 12 bridges and examination of channel reaches between bridges. It involved estimating the amount of woody material at least 1.5 meters long, stored in the channel, and not rooted in soil. Study of multiple sites allowed estimation of the amount, characteristics, and sources of debris stored in the channel, and identification of geomorphic features of the channel associated with debris production. Woody debris is plentiful in the channel network, and much of the debris could be transported by a large flood. Tree trunks with attached root masses are the dominant large debris type. Death of these trees is primarily the result of bank erosion. Bank instability seems to be the basin characteristic most useful in identifying basins with a high potential for abundant production of debris.

  10. Geomorphic and vegetative recovery processes along modified stream channels of West Tennessee

    USGS Publications Warehouse

    Simon, Andrew; Hupp, C.R. Tennessee

    1992-01-01

    Hundreds of miles of streams in West Tennessee have been channelized or otherwise modt@ed since the turn of century. After all or parts of a stream are straightened, dredged, or cleared, systematic hydrologic, geomorphic, and ecologic processes collectively begin to reduce energy conditions towards the premodified state. One hundred and five sites along 15 streams were studied in the Obion, Forked Deer, Hatchie, and Wolf River basins. All studied streams, except the Hatchie River, have had major channel modi@cation along all or parts of their courses. Bank material shear-strength properties were determined through drained borehole-shear testing (168 tests) and used to interpret present critical bank conditions and factors of safety, and to estimate future channel-bank stability. Mean values of cohesive strength and angle of internal friction were 1.26 pounds per square inch and 30.1 degrees, respectively. Dendrogeomorphic analyses were made using botanical evidence of channel-bank failures to determine rates of channel widening; buried riparian stems were analyzed to determine rates of bank accretion. Channel bed-level changes through time and space were represented by a power equation. Plant ecological analyses were ma& to infer relative bank stability, to identify indicator species of the stage of bank recovery, and to determine patterns of vegetation development through the course of channel evolution. Quantitative data on morphologic changes were used with previously developed six-stage models of channel evolution and bank-slope development to estimate trends of geomorphic and ecologic processes and forms through time. Immediately after channel modr@cations, a 10- to 1%yearperiod of channel-bed degradation ensues at and upstream from the most recent modifications (area of maximum disturbance). Channel-bed lowering by &gradation was as much as 20 feet along some stream reaches. Downstream from the area of maximum disturbance, the bed was aggraded by the

  11. Stream sediment sources in midwest agricultural basins with land retirement along channel

    USGS Publications Warehouse

    Williamson, Tanja N.; Christensen, Victoria G.; Richardson, William B.; Frey, Jeffrey W.; Gellis, Allen C.; Kieta, K. A.; Fitzpatrick, Faith A.

    2014-01-01

    Documenting the effects of agricultural land retirement on stream-sediment sources is critical to identifying management practices that improve water quality and aquatic habitat. Particularly difficult to quantify are the effects from conservation easements that commonly are discontinuous along channelized streams and ditches throughout the agricultural midwestern United States. Our hypotheses were that sediment from cropland, retired land, stream banks, and roads would be discernible using isotopic and elemental concentrations and that source contributions would vary with land retirement distribution along tributaries of West Fork Beaver Creek in Minnesota. Channel-bed and suspended sediment were sampled at nine locations and compared with local source samples by using linear discriminant analysis and a four-source mixing model that evaluated seven tracers: In, P, total C, Be, Tl, Th, and Ti. The proportion of sediment sources differed significantly between suspended and channel-bed sediment. Retired land contributed to channel-bed sediment but was not discernible as a source of suspended sediment, suggesting that retired-land material was not mobilized during high-flow conditions. Stream banks were a large contributor to suspended sediment; however, the percentage of stream-bank sediment in the channel bed was lower in basins with more continuous retired land along the riparian corridor. Cropland sediments had the highest P concentrations; basins with the highest cropland-sediment contributions also had the highest P concentrations. Along stream reaches with retired land, there was a lower proportion of cropland material in suspended sediment relative to sites that had almost no land retirement, indicating less movement of nutrients and sediment from cropland to the channel as a result of land retirement.

  12. Relationships among rotational and conventional grazing systems, stream channels, and macroinvertebrates

    USGS Publications Warehouse

    Raymond, K.L.; Vondracek, B.

    2011-01-01

    Cattle grazing in riparian areas can reduce water quality, alter stream channel characteristics, and alter fish and macroinvertebrate assemblage structure. The U.S. Department of Agriculture, Natural Resources Conservation Services has recommended Rotational Grazing (RG) as an alternative management method on livestock and dairy operations to protect riparian areas and water quality. We evaluated 13 stream channel characteristics, benthic macroinvertebrate larvae (BML), and chironomid pupal exuviae (CPE) from 18 sites in the Upper Midwest of the United States in relation to RG and conventional grazing (CG). A Biotic Composite Score comprised of several macroinvertebrate metrics was developed for both the BML assemblage and the CPE assemblage. Multi-Response Permutation Procedures (MRPP) indicated a significant difference in stream channel characteristics between RG and CG. Nonmetric Multidimensional Scaling indicated that RG sites were associated with more stable stream banks, higher quality aquatic habitat, lower soil compaction, and larger particles in the streambed. However, neither MRPP nor Mann-Whitney U tests demonstrated a difference in Biotic Composite Scores for BML or CPE along RG and CG sites. The BML and CPE metrics were significantly correlated, indicating that they were likely responding to similar variables among the study sites. Although stream channel characteristics appeared to respond to grazing management, BML and CPE may have responded to land use throughout the watershed, as well as local land use. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  13. Recent (circa 1998 to 2011) channel-migration rates of selected streams in Indiana

    USGS Publications Warehouse

    Robinson, Bret A.

    2013-01-01

    An investigation was completed to document recent (circa 1998 to 2011) channel-migration rates at 970 meander bends along 38 of the largest streams in Indiana. Data collection was completed by using the Google Earth™ platform and, for each selected site, identifying two images with capture dates separated by multiple years. Within each image, the position of the meander-bend cutbank was measured relative to a fixed local landscape feature visible in both images, and an average channel-migration rate was calculated at the point of maximum cutbank displacement. From these data it was determined that 65 percent of the measured sites have recently been migrating at a rate less than 1 ft/yr, 75 percent of the sites have been migrating at a rate less than 10 ft/yr, and while some sites are migrating in excess of 20 ft/yr, these occurrences are rare. In addition, it is shown that recent channel-migration activity is not evenly distributed across Indiana. For the stream reaches studied, far northern and much of far southern Indiana are drained by streams that recently have been relatively stationary. At the same time, this study shows that most of the largest streams in west-central Indiana and many of the largest streams in east-central Indiana have shown significant channel-migration activity during the recent past. It is anticipated that these results will support several fluvial-erosion-hazard mitigation activities currently being undertaken in Indiana.

  14. Analysis of temperature profiles for investigating stream losses beneath ephemeral channels

    USGS Publications Warehouse

    Constantz, J.; Stewart, A.E.; Niswonger, R.; Sarma, L.

    2002-01-01

    Continuous estimates of streamflow are challenging in ephemeral channels. The extremely transient nature of ephemeral streamflows results in shifting channel geometry and degradation in the calibration of streamflow stations. Earlier work suggests that analysis of streambed temperature profiles is a promising technique for estimating streamflow patterns in ephemeral channels. The present work provides a detailed examination of the basis for using heat as a tracer of stream/groundwater exchanges, followed by a description of an appropriate heat and water transport simulation code for ephemeral channels, as well as discussion of several types of temperature analysis techniques to determine streambed percolation rates. Temperature-based percolation rates for three ephemeral stream sites are compared with available surface water estimates of channel loss for these sites. These results are combined with published results to develop conclusions regarding the accuracy of using vertical temperature profiles in estimating channel losses. Comparisons of temperature-based streambed percolation rates with surface water-based channel losses indicate that percolation rates represented 30% to 50% of the total channel loss. The difference is reasonable since channel losses include both vertical and nonvertical component of channel loss as well as potential evapotranspiration losses. The most significant advantage of the use of sediment-temperature profiles is their robust and continuous nature, leading to a long-term record of the timing and duration of channel losses and continuous estimates of streambed percolation. The primary disadvantage is that temperature profiles represent the continuous percolation rate at a single point in an ephemeral channel rather than an average seepage loss from the entire channel.

  15. Seafloor features delineate Late Wisconsinan ice stream configurations in eastern Parry Channel, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    MacLean, B.; Blasco, S.; Bennett, R.; Lakeman, T.; Pieńkowski, A. J.; Furze, M. F. A.; Hughes Clarke, J.; Patton, E.

    2017-03-01

    Multibeam imagery and 3.5 kHz sub-bottom profiles acquired from CCGS Amundsen between 2003 and 2013 by ArcticNet and the Ocean Mapping Group at the University of New Brunswick provide information on seafloor features, geology, bathymetry and morphology in eastern Parry Channel and the adjoining large channels in the Canadian Arctic Archipelago. Together these include Peel Sound, Barrow Strait, Lancaster Sound, Wellington Channel, Prince Regent Inlet, Admiralty Inlet and Navy Board Inlet. Those data are in part complemented by high resolution single channel seismic reflection profiles acquired by the Geological Survey of Canada in the 1970s and 1980s and by sediment cores that provide chronological and depositional information. The occurrence and pattern of streamlined mega-scale ridge and groove lineations (MSGLs) indicate that these waterways were occupied by glacial ice streams in the past. Chronological information from marine and adjoining terrestrial areas suggests a long history of glacial events ranging in time from Early Pleistocene to Late Wisconsinan. Seafloor morphology and MSGL trends together with terrestrial ice flow patterns indicate that ice streams flowed into Barrow Strait from Peel Sound and Wellington Channel, and ice streams in Prince Regent, Admiralty and Navy Board inlets flowed northward into and eastward along Lancaster Sound. Recession of the ice stream westward along Parry Channel occurred ∼16 cal ka BP to 10.8 cal ka BP. Thick ice-contact sediments deposited by a late ice advance from Prince Regent Inlet constitute the seabed across a large area of western Lancaster Sound. Timing for that late ice advance appears to be bracketed between the 11.5 cal ka BP lift-off of the eastern Parry ice stream north of Prince Leopold Island and the ∼10.0 cal ka BP deglaciation of Prince Regent Inlet. Seafloor morphology and lineation trends suggest that ice delivered by the ice stream in Peel Sound was the westernmost tributary to the ice stream

  16. Water quality, organic chemistry of sediment, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Bradfield, A.D.; Flexner, N.M.; Webster, D.A.

    1993-01-01

    An investigation of water quality, organic sediment chemistry, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee, was conducted during December 1990. The study was designed to assess the extent of possible contamination of water and biota in the streams from creosote-related discharge originating at this Superfund site. Central Creek, adjacent to the plant, had degraded water quality and biological conditions. Water samples from the most downstream station on Central Creek contained 30 micrograms per liter of pentachlorophenol, which exceeds the State's criterion maximum concentrations of 9 micrograms per liter for fish and aquatic life. Bottom-sediment samples from stations on Central Creek contained concentrations of acenaphthene, napthalene, and phenanthrene ranging from 1,400 to 2,500 micrograms per kilogram. Chronic or acute toxicity resulted during laboratory experiments using test organisms exposed to creosote-related contaminants. Sediment elutriate samples from Central Creek caused slightly to highly toxic effects on Ceriodaphnia dubia. Pimephales promelas, and Photobacterium phosphoreum. Fish-tissue samples from this station contained concentrations of naphthalene. dibenzofuran, fluorene, and phenanthrene ranging from 1.5 to 3.9 micrograms per kilogram Blue-green algae at this station represented about 79 percent of the organisms counted, whereas diatoms accounted for only 11 percent. Benthic invertebrate and fish samples from Central Creek had low diversity and density. Sediment samples from a station on the South Fork Forked Deer River downstream from its confluence with Central Creek contained concentrations of acenaphthene, anthracene, chrysene, fluoranthene, fluorene, pyrere, and phenanthrene ranging from 2,800 to 69,000 micrograms per kilogram. Sediment elutriate samples using water as elutriate from this station contained concentrations of extractable organic compounds ranging from an estimated

  17. A cost-effective laser scanning method for mapping stream channel geometry and roughness

    NASA Astrophysics Data System (ADS)

    Lam, Norris; Nathanson, Marcus; Lundgren, Niclas; Rehnström, Robin; Lyon, Steve

    2015-04-01

    In this pilot project, we combine an Arduino Uno and SICK LMS111 outdoor laser ranging camera to acquire high resolution topographic area scans for a stream channel. The microprocessor and imaging system was installed in a custom gondola and suspended from a wire cable system. To demonstrate the systems capabilities for capturing stream channel topography, a small stream (< 2m wide) in the Krycklan Catchment Study was temporarily diverted and scanned. Area scans along the stream channel resulted in a point spacing of 4mm and a point cloud density of 5600 points/m2 for the 5m by 2m area. A grain size distribution of the streambed material was extracted from the point cloud using a moving window, local maxima search algorithm. The median, 84th and 90th percentiles (common metrics to describe channel roughness) of this distribution were found to be within the range of measured values while the largest modelled element was approximately 35% smaller than its measured counterpart. The laser scanning system captured grain sizes between 30mm and 255mm (coarse gravel/pebbles and boulders based on the Wentworth (1922) scale). This demonstrates that our system was capable of resolving both large-scale geometry (e.g. bed slope and stream channel width) and small-scale channel roughness elements (e.g. coarse gravel/pebbles and boulders) for the study area. We further show that the point cloud resolution is suitable for estimating ecohydraulic parameters such as Manning's n and hydraulic radius. Although more work is needed to fine-tune our system's design, these preliminary results are encouraging, specifically for those with a limited operational budget.

  18. Impacts of Woody Debris on Fluvial Processes and Channel Morphology in Stable and Unstable Streams

    DTIC Science & Technology

    1996-05-01

    resistance imparted by alternate bars actually resuled in a reduction in stream power which was compensated for by sediment deposition and net channel...editor or word processor to view the output file. 8) T .ý output for runs I to 4 should be as follows: Program nm number I 0 W(X))Y Il1,BRIS MANAGI ’,NMIN

  19. SIMULATING SUB-DECADAL CHANNEL MORPHOLOGIC CHANGE IN EPHEMERAL STREAM NETWORKS

    EPA Science Inventory

    A distributed watershed model was modified to simulate cumulative channel morphologic
    change from multiple runoff events in ephemeral stream networks. The model incorporates the general design of the event-based Kinematic Runoff and" Erosion Model (KINEROS), which describes t...

  20. Do post-mining constructed channels replace functional characteristics of headwater streams?

    EPA Science Inventory

    Mountaintop mining and valley fill (MTMVF) is a method of coal mining common in eastern Kentucky and southern West Virginia. Over 1200 miles of stream channel have been buried by MTMVF. Permits for surface coal mining have recognized constructed drainage ditches associated with ...

  1. Variability of rock erodibility in bedrock-floored stream channels based on abrasion mill experiments

    NASA Astrophysics Data System (ADS)

    Small, Eric E.; Blom, Tevis; Hancock, Gregory S.; Hynek, Brian M.; Wobus, Cameron W.

    2015-08-01

    We quantify variations in rock erodibility, Kr, within channel cross sections using laboratory abrasion mill experiments on bedrock surfaces extracted from streams with sandstone bedrock in Utah and basaltic bedrock in the Hawaiian Islands. Samples were taken from the thalweg and channel margins, the latter at a height that is inundated annually. For each sample, a sequence of abrasion mill experiments was completed to quantify variations in erosion rate with erosion depth. Erosion rate data from these experiments shows two things. First, the erosion rate from channel margin samples is greater than for thalweg samples, with the greatest difference observed for the rock surface that was exposed in the stream channel. Second, erosion rate decreases with depth beneath the original rock surface, by an order of magnitude in most cases. The erosion rate becomes steady at depths of 1-3 mm for channel margin samples and 0.1-0.4 mm for thalweg samples. Because only rock properties and microtopography vary throughout the sequence of mill experiments, these results suggest that Kr of the bedrock surface exposed in stream channels is higher at the margins than near the channel center and that Kr decreases over depths of ~1 mm. The simplest explanation for these patterns is that Kr is enhanced, at the bedrock surface and along the channel margins, due to the effects of weathering on rock strength and surface roughness. We hypothesize that a balance exists between weathering-enhanced erodibility and episodic incision to allow channel margins to lower at rates similar to the thalweg.

  2. Problems with indirect determinations of peak streamflows in steep, desert stream channels

    USGS Publications Warehouse

    Glancy, Patrick A.; Williams, Rhea P.

    1994-01-01

    Many peak streamflow values used in flood analyses for desert areas are derived using the Manning equation. Data used in the equation are collected after the flow has subsided, and peak flow is thereby determined indirectly. Most measurement problems and associated errors in peak-flow determinations result from (1) channel erosion or deposition that cannot be discerned or properly evaluated after the fact, (2) unsteady and non-uniform flow that rapidly changes in magnitude, and (3) appreciable sediment transport that has unknown effects on energy dissipation. High calculated velocities and Froude numbers are unacceptable to some investigators. Measurement results could be improved by recording flows with a video camera, installing a recording stream gage and recording rain gages, measuring channel scour with buried chains, analyzing measured data by multiple techniques, and supplementing indirect measurements with direct measurements of stream velocities in similar ephemeral streams.

  3. Biotic drivers of anastomosing channel pattern in headwater streams of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wohl, E. E.

    2010-12-01

    Most of the headwater rivers in the Colorado Rocky Mountains, USA occur as single channels in steep, narrow valleys. Where variations in bedrock erodibility create segments of wider, lower gradient valleys, however, anastomosing channels can occur if one of two biotic drivers is present. Where a disturbance such as a forest fire or windstorm allows pioneer woody species to colonize valley bottoms, beavers can establish colonies. Beavers build dams that enhance overbank flooding and raise the local water table, limiting the return of conifers and promoting aspen-willow (Populus-Salix) forests that provide food for the beavers. Beavers facilitate the formation of multiple channels by digging small canal-like features across the floodplain and by damming the main channel and promoting channel avulsion. In old-growth conifer forests, channel-spanning logjams can enhance overbank flows that facilitate the development of multiple (sub)parallel channels that extend for 50-300 m downstream. Enhanced overbank flows and multiple channels increase the retention of instream wood, creating a self-enhancing feedback of more jams. At least two thresholds must be crossed for anastomosing driven by logjams to develop; a valley morphology threshold and a wood load threshold. Anastomosing channels are present where stream gradient < 4% and the ratio of (channel width/valley-bottom width) < 0.2; only single channels flow through old-growth forests in valley segments that are steeper and narrower. The average wood piece diameter in old-growth anastomosing channel segments > 20 cm, whereas average piece diameter in forests that have not been disturbed in a century is 10-20 cm; channels in these younger forests do not exhibit anastomosing planforms. Wood load in old-growth anastomosing channels averages 200 m3/ha; old-growth and younger forest single channels average < 100 m3/ha.

  4. Guidelines for Surveying Bankfull Channel Geometry and Developing Regional Hydraulic-Geometry Relations for Streams of New York State

    USGS Publications Warehouse

    Powell, Rocky O.; Miller, Sarah J.; Westergard, Britt E.; Mulvihill, Christiane I.; Baldigo, Barry P.; Gallagher, Anne S.; Starr, Richard R.

    2004-01-01

    Many disturbed streams within New York State are being restored in an effort to provide bank and bed stability and thereby decrease sedimentation and erosion. Efforts to identify and provide accurate indicators for stable-channel characteristics for ungaged streams have been hampered by the lack of regional equations or relations that relate drainage area to bankfull discharge and to channel depth, width, and cross-sectional area (bankfull hydraulic-geometry relations). Regional equations are needed to confirm bankfull hydraulic-geometry, assess stream stability, evaluate restoration needs, and verify restoration design for ungaged streams that lack stage-to-discharge ratings or historic peak-flow records. This report presents guidelines for surveying bankfull channel geometry at USGS stream gages and developing regional hydraulic-geometry relations (equations) for wadeable streams in New York. It summarizes methods to (1) compile and assess existing hydrologic, geometric, photographic, and topographic data, (2) conduct stream-reconnaissance inspections, (3) identify channel-bankfull characteristics, (4) conduct longitudinal and cross-section surveys, (5) measure stream discharge, (6) develop and refine bankfull hydraulic-geometry equations, and (7) analyze and assure data completeness and quality. The techniques primarily address wadeable streams with either active or discontinued surface-water and crest-stage gages. The relations can be applied to ungaged or actively gaged streams that are wadeable, and may be extended to non-wadeable streams (with some limitations) if they have drainage areas comparable to those used to develop the relations.

  5. Measuring flood discharge in unstable stream channels using ground-penetrating radar

    USGS Publications Warehouse

    Spicer, K.R.; Costa, J.E.; Placzek, G.

    1997-01-01

    Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.

  6. Channel response in a semiarid stream to removal of tamarisk and Russian olive

    NASA Astrophysics Data System (ADS)

    Jaeger, Kristin L.; Wohl, Ellen

    2011-02-01

    We report observed short-term (3 years) channel adjustment in an incised, semiarid stream to the removal of invasive plants, tamarisk (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) by (1) removing the above-ground portion of the plant (cut-stump method) and (2) removing the entire plant (whole-plant method). The stream flows through Canyon de Chelly National Monument in Arizona, USA., draining an ˜1500 km2 catchment. Average channel width is 13 m; average thalweg depth is 2-3 m, although channel banks exceed 8 m locally. Channels adjusted primarily through widening, with significantly larger changes occurring in whole-plant removal reaches; however, neither plant removal method elicited large-scale bank destabilization, and the channels remained entrenched. Particular site conditions limiting large-scale destabilization include the absence of sufficient streamflow magnitudes, the presence of clay layers at the bank toe, the remaining presence of native vegetation, and the entrenched morphology. Our findings serve as a cautionary note regarding the temporal and spatial variability in channel response to invasive plant removal and underscore the importance of considering site-specific conditions in future restoration projects that include invasive plant removal.

  7. Vegetation and Channel Morphology Responses to Ordinary High Water Discharge Events in Arid West Stream Channels

    DTIC Science & Technology

    2009-05-01

    from aggrading main channel Single-thread channels with adjacent floodplains – Meandering that develops to minimize amount of change at...widening with bank destabilization – Aggradation due to decrease in capacity to transport sediment ERDC/CRREL TR-09-5 6 3 Methods In an

  8. Verification of roughness coefficients for selected natural and constructed stream channels in Arizona

    USGS Publications Warehouse

    Phillips, Jeff V.; Ingersoll, Todd L.

    1998-01-01

    Physical and hydraulic characteristics are presented for 14 river and canal reaches in Arizona for which 37 roughness coefficients have been determined. The verified roughness coefficients which ranged from 0.017 to 0.067, were computed from discharges, channel geometry, and water-surface profiles measured at each of the sites. The information given for each stream segment includes bed and bank descriptions, data tables showing hydraulic components, a plan view, cross-section plots, and color photographs that can be used as a comparison aid in determining roughness coefficients for similarly channeled streams. Relations derived from the data presented relate Manning's roughness coefficient (n) to various hydraulic components. For gravel-bed streams, verified roughness coefficients are related to median grain size of the bed material and hydraulic radius resulting in an equation that can be used to transfer results to similar dry-land channels. The equation developed for base values of n for gravel-bed channels in Arizona is significantly different from similarly derived equations for other regions of the United States and the world.

  9. Detection of regolith buried water stream channels on Mars with the help of synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Rzhiga, O. N.

    The major problem of Mars research is search of water on its surface Biological life is connected to water In this connection the intense interest represents detection of water stream channels which in the past flew on Mars In these areas the petrified rests of the former life on Mars may be found out Now these channels may be under regolith layer However radio waves penetrating ability allows seeing these channels under a regolith The radio wave falls on a regolith surface under some angle The part of the falling wave power is reflected by regolith Other part of it refracts under a regolith surface and reaches bottom of a channel Here there is reflection because of a difference in refraction index of regolith and bedrock of a channel bottom The part of reflected power gets back to the spacecraft Passage through regolith is accompanied by electric losses In result we receive the image of a channel which contrast depends on regolith depth difference in refraction index of regolith and bedrock of a channel bottom as well as wavelength In this work in some assumptions concerning regolith and bedrock electric properties the model of the channel image is received The optimum wavelength for detection of the water stream channels now buried by regolith is determined The analysis of the reflected signal level dependence from an angle under which SAR onboard aerial is directed to a planet surface is carried out It is shown that power of the SAR transmitter and the size of the onboard aerial will be moderate if radar survey to carry out

  10. Hydrologic Links Among Urbanization, Channel Morphology, Aquatic Habitat, and Macroinvertebrates in North Carolina Piedmont Streams

    NASA Astrophysics Data System (ADS)

    Giddings, E. M.

    2005-12-01

    Landscape changes associated with urbanization have been shown to alter flow regimes of streams that, in turn, alter channel morphology, aquatic habitat, and biological communities. In order to mitigate the effects of urbanization on biological communities, it is important to understand the hydrologic links between these interactions. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, 30 stream sites in the Piedmont of North Carolina (including the cities Raleigh, Greensboro, and Winston-Salem) having a range of watershed urbanization were sampled. To measure urbanization intensity, a multimetric index of watershed and riparian land use, infrastructure, and socioeconomic conditions was used. Population density ranged from 24 to 3,276 people per square kilometer; 75 percent of the sites had less than 2,000 people per square kilometer. At each site, continuous discharge record was estimated for 1 year using continuous stream-stage data, instantaneous discharge measurements, and one-dimensional hydraulic modeling. Hydrologic variability metrics were calculated to compare the magnitude, frequency, and duration of high and low flows among sites. These metrics then were correlated with measures of channel morphology, habitat, a richness-based macroinvertebrate index, and the urban-intensity index. As urban intensity in the watershed increased, the frequency of quickly rising flows increased (R2=0.55, p<0.0001), and the duration of high flows decreased (R2=0.47, p=0.0001). Along with these changes, channels became more incised; bankfull channel depths (normalized by drainage area) increased as the frequency of quickly rising flows increased (R2=0.28, p=0.006) and the duration of high flows decreased (R2=0.17, p =0.04). Additionally, streams with higher frequencies of quickly rising flows had greater percentages of sand as a dominant substrate (R2=0.19, p=0.03) and greater differences between bankfull depth and low-flow depth at summer flows

  11. Riparian Vegetation Influence on Stream Channel Dimensions: Key Driving Mechanisms and Their Timescales

    NASA Astrophysics Data System (ADS)

    McBride, M.; Hession, W.; Rizzo, D. M.; Thompson, D. M.

    2006-05-01

    Combined results from field-based investigations and flume experiments demonstrated key mechanisms driving channel widening following the reforestation of riparian zones in small streams. Riparian reforestation is a common occurrence either due to restoration efforts, intended to improve water quality, temperature regimes, and in-stream physical habitat or due to passive reforestation that is common when agricultural land uses decline. Previous studies have documented the influence of riparian vegetation on channel size, but driving mechanisms and the timescales at which they operate have not been evaluated. Field-based investigations were conducted in the Sleepers River basin in northeastern Vermont to revisit streams that were previously surveyed in the 1960s. We measured channel dimensions, large woody debris (LWD), and steam velocities in reaches with non-forested and forested riparian vegetation, in reaches currently in transition between vegetation types, and reaches with no change in riparian vegetation over the last 40 years. Flume experiments were performed with a 1:5 scale, fixed-bed model of a tributary to Sleepers River. Two types of riparian vegetation scenarios were simulated: 1) forested, with rigid, wooden dowels; and 2) non-forested, with synthetic grass carpeting. Three-dimensional velocities were measured during flume runs to determine turbulent kinetic energy (TKE) during overbank flows. Results showed that stream reaches with recently reforested vegetation have widened since the mid 1960s, but are not as wide as reaches with older riparian forests. LWD was more abundant in reaches with older riparian forests than in reaches with younger forests; however, scour around LWD did not appear to be a significant driving mechanism for channel widening. Velocity and TKE measurements from the prototype stream and the flume model indicate that TKE was significantly elevated in reforested reaches. Given that bed and bank erosion can be amplified in flows

  12. Regional bankfull-channel dimensions of non-urban wadeable streams in Indiana

    USGS Publications Warehouse

    Robinson, Bret A.

    2013-01-01

    During floods, damage to properties and community infrastructure may result from inundation and the processes of erosion. The damages imparted by erosion are collectively termed the fluvial erosion hazard (FEH), and the Indiana Silver Jackets Multi-agency Hazard Mitigation Taskforce is supporting a program to build tools that will assist Indiana property owners and communities with FEH-mitigation efforts. As part of that program, regional channel-dimension relations are identified for non-urban wadeable streams in Indiana. With a site-selection process that targeted the three largest physiographic regions of the state, field work was completed to measure channel-dimension and channel-geometry characteristics across Indiana. In total, 82 sites were identified for data collection; 25 in the Northern Moraine and Lake region, 31 in the Central Till Plain region, and 26 in the Southern Hills and Lowlands region. Following well established methods, for each data-collection site, effort was applied to identify bankfull stage, determine bankfull-channel dimensions, and document channel-geometry characteristics that allowed for determinations of channel classification. In this report, regional bankfull-channel dimension results are presented as a combination of plots and regression equations that identify the relations between drainage area and the bankfull-channel dimensions of width, mean depth, and cross-sectional area. This investigation found that the channel-dimension data support independent relations for each of the three physiographic regions noted above. Furthermore, these relations show that, for any given drainage area, northern Indiana channels have the smallest predicted dimensions, southern Indiana channels have the largest predicted dimensions, and central Indiana channels are intermediate in their predicted dimensions. When considering the suite of variables that influence bankfull-channel dimensions, it appears that contrasting runoff characteristics

  13. Effects of Snow-making, Grading, and Timber Harvest on Stream Channel Morphology in the White River National Forest, Colorado

    NASA Astrophysics Data System (ADS)

    David, G. C.; Bledsoe, B. P.; Merritt, D. M.; Wohl, E.

    2005-12-01

    The White River National Forest Service is responsible for managing and protecting the ecological integrity of many streams in some of the major ski resorts in Colorado. The combined effects of timber harvesting, snow-making, grading and road construction can increase streamflows but the effects of these four activities on stream channel stability are not well documented. Increased flow can result in bank failure, increased amounts of large woody debris, pool scour and bed coarsening. Specific stream channel response to increased flows associated with ski resort activities partly depends on the type of vegetation growing along stream banks and the amount of human development in the basin. We hypothesize that a threshold of development must be attained for each vegetation type before the stream channel is significantly impacted. To test this hypothesis, we surveyed channel condition, channel dimensions, and vegetation along 49 stream reaches (200 - 300 m in length). Twenty-four of these streams are within ski areas (project streams), either adjacent to or downstream from ski slopes. Twenty-five ""reference"" streams have very little to no development in their basins. These streams are used to define reference conditions bank stability, bank undercutting, bank height, bank angle, percent of large woody debris, pool depth, sediment size, and vegetation structure. A Principle Component Analysis will be utilized to ordinate and allow comparison of project and reference streams. The effects of overstory and understory vegetation on bank height, angle and stability will also be determined. A larger percentage of willows adjacent to stream channels may decrease bank height and angle thereby increasing stability. These data will help in the revision of a forest management plan to provide guidelines for planning and development of ski areas on public lands.

  14. Influence of hillslope-channel coupling on two mountain headwater streams, Swiss National Park, Switzerland

    NASA Astrophysics Data System (ADS)

    Schoch, Anna; Hoffmann, Thomas; Dikau, Richard

    2014-05-01

    Sediment fluxes in mountain headwater streams are strongly conditioned by sediment supply from hillslopes and thus hillslope-channel coupling, defined as linkages connecting slopes and channels through sediment transport processes. Sediment supply from hillslopes can have major influences on channel characteristics. The main goal of my research is to achieve a better understanding of these influences on mountain headwater streams in two study areas. This is conducted through the investigation of "channel-reach morphology" according to MONTGOMERY AND BUFFINGTON (1997), morphometric and sedimentological characteristics of the channels and analysis of the slope-channel coupling system. The study was conducted in two valleys in the Swiss National Park, i.e. Val dal Botsch (VdB) and Val Mueschauns (VMu). In both headwaters slopes and channel are coupled effectively due to the small spatial vicinity and frequent debris flow processes connecting the two system components. Both catchments were glaciated in the Pleistocene but show contrasting glacial imprints today. While VdB has a V-shaped morphometry that is dominated by unconsolidated sediments (mainly talus and moraine material), VMu is U-shaped in the upper valley segments and the surface is mainly covered with bedrock. Several methods for data collection and analyses were used: (1) Channel-reach morphology classification, (2) DEM-based analysis of long profiles, ksn-values, slope-area plots and measurement of cross sections in the field, (3) investigation of sedimentological characteristics with pebble counts as well as (4) mapping of recent linkages between slopes and channel and determination of connectivity (effectivity of coupling) using a heuristic approach. The results show that sediment input into both headwater streams is dominated by debris flows. The debris flow catchments, as parts of the slope system, have the highest connectivity to the channels. Channel changes are greatest where debris flows cause

  15. Metal-coated microfluidic channels: An approach to eliminate streaming potential effects in nano biosensors.

    PubMed

    Lee, Jieun; Wipf, Mathias; Mu, Luye; Adams, Chris; Hannant, Jennifer; Reed, Mark A

    2017-01-15

    We report a method to suppress streaming potential using an Ag-coated microfluidic channel on a p-type silicon nanowire (SiNW) array measured by a multiplexed electrical readout. The metal layer sets a constant electrical potential along the microfluidic channel for a given reference electrode voltage regardless of the flow velocity. Without the Ag layer, the magnitude and sign of the surface potential change on the SiNW depends on the flow velocity, width of the microfluidic channel and the device's location inside the microfluidic channel with respect to the reference electrode. Noise analysis of the SiNW array with and without the Ag coating in the fluidic channel shows that noise frequency peaks, resulting from the operation of a piezoelectric micropump, are eliminated using the Ag layer with two reference electrodes located at inlet and outlet. This strategy presents a simple platform to eliminate the streaming potential and can become a powerful tool for nanoscale potentiometric biosensors.

  16. Tracing sources of organic matter in adjacent urban streams having different degrees of channel modification.

    PubMed

    Duan, Shuiwang; Amon, Rainer M W; Brinkmeyer, Robin L

    2014-07-01

    Urbanization and stream-channel modifications affect organic matter concentrations and quality in streams, by altering allochthonous organic matter input and in-stream transformation. This study uses multiple tracers (δ(13)C, δ(15)N, C/N ratio, and chlorophyll-a) to track sources of organic matter in two highly urbanized bayous in Houston (Texas, USA). Wastewater treatment plants (WWTPs) are located in headwaters of both bayous and contribute more than 75% to water flow. Low isotopic relatedness to natural end-members and enriched δ(15)N values suggest the influence of WWTPs on the composition of all organic matter fractions. The two bayous differ in degree of channel improvement resulting in different responses to hydrological conditions. During high flow conditions, the influence of terrestrial organic matter and sediment resuspension was much more pronounced in the Buffalo Bayou than in the concrete-lined White Oak Bayou. Particulate organic matter (POM) in White Oak Bayou had similar values of enriched δ(15)N in all subsegments, whereas in Buffalo Bayou, the degree of δ(15)N enrichment was less in the subsegments of the lower watershed. The difference in riparian zone contributions and interactions with sediments/soils was likely responsible for the compositional differences between the two bayous. Phytoplankton inputs were significantly higher in the bayous, especially in slow-flowing sections, relative to the reference sites, and elevated phytoplankton inputs accounted for the observed stable C isotope differences between FPOM and high molecular weight dissolved organic matter (HMW DOM). Relative to POM, HMW DOM in the bayous was similar to WWTP effluents and showed minor longitudinal variability in both streams suggesting that WWTPs contribute much of the DOM in the systems. Urbanization has a major influence on organic matter sources and quality in these urban water bodies and these changes seem further enhanced by stream channel modifications.

  17. Monitoring stream stage, channel profile, and aqueous conductivity with time domain reflectometry (TDR).

    SciTech Connect

    Brainard, James Robert; Tidwell, Vincent Carroll; Coplen, Amy K.; Ruby, Douglas Scott; Coombs, Jason R.; Wright, Jerome L.; Roberts, Jesse Daniel

    2004-11-01

    Time domain reflectometry (TDR) operates by propagating a radar frequency electromagnetic pulse down a transmission line while monitoring the reflected signal. As the electromagnetic pulse propagates along the transmission line, it is subject to impedance by the dielectric properties of the media along the transmission line (e.g., air, water, sediment), reflection at dielectric discontinuities (e.g., air-water or water-sediment interface), and attenuation by electrically conductive materials (e.g., salts, clays). Taken together, these characteristics provide a basis for integrated stream monitoring; specifically, concurrent measurement of stream stage, channel profile and aqueous conductivity. Here, we make novel application of TDR within the context of stream monitoring. Efforts toward this goal followed three critical phases. First, a means of extracting the desired stream parameters from measured TDR traces was required. Analysis was complicated by the fact that interface location and aqueous conductivity vary concurrently and multiple interfaces may be present at any time. For this reason a physically based multisection model employing the S11 scatter function and Cole-Cole parameters for dielectric dispersion and loss was developed to analyze acquired TDR traces. Second, we explored the capability of this multisection modeling approach for interpreting TDR data acquired from complex environments, such as encountered in stream monitoring. A series of laboratory tank experiments were performed in which the depth of water, depth of sediment, and conductivity were varied systematically. Comparisons between modeled and independently measured data indicate that TDR measurements can be made with an accuracy of {+-}3.4x10{sup -3} m for sensing the location of an air/water or water/sediment interface and {+-}7.4% of actual for the aqueous conductivity. Third, monitoring stations were sited on the Rio Grande and Paria rivers to evaluate performance of the TDR system

  18. Meandering stream reservoirs

    SciTech Connect

    Richardson, J.G.; Sangree, J.B.; Sneider, R.M.

    1987-12-01

    Braided stream deposits, described in a previous article in this series, and meandering stream deposits commonly are excellent reservoirs. Meandering high-sinuousity channels are found on flat alluvial plains with slopes less than 1 1/2/sup 0/ (0.026 rad). These rivers have wide ranges of discharges from low-water flow to flood stage. Two main processes are responsible for development of sand bodies. These are point-bar deposits left by channel migration, and oxbow-lake deposits left in loops of the river course abandoned when the stream cuts a new course during flooding. Extremely high floods spill over the banks and deposit sheets of very fine sand, silt, and clay onto the flood plain.

  19. Rapid Estimation of Recharge Potential in Ephemeral-Stream Channels Using Electromagnetic Methods, and Measurements of Channel and Vegetation Characteristics

    NASA Astrophysics Data System (ADS)

    Callegary, J. B.; Leenhouts, J. M.; Paretti, N. V.; Jones, C. A.

    2006-12-01

    In order to classify recharge potential (RCP) in ephemeral-stream channels, a method was developed that incorporates information about channel geometry, vegetation characteristics, and bed-sediment apparent electrical conductivity ('a). About 400 transects along two ephemeral-stream channels near Sierra Vista, Arizona were studied. Seven data types were collected at each transect: 'a at two depth intervals, channel incision height and width, diameter-at-breast-height (DBH) of the largest tree, density of woody plants, and density of grasses. Apparent electrical conductivity was measured in the channel thalweg during the month of June, the hottest, driest month of the year. As was the case in 2005, June typically follows several months of relatively dry weather. Bed-sediment water content was expected to be at an annual minimum, maximizing the contrast between high and low clay content. Because 'a is proportional to clay content and clay is the primary factor affecting permeability during saturated flow in unconsolidated media, 'a values are inversely proportional to permeability. Apparent electrical conductivity was measured by using a low-induction-number frequency-domain electromagnetic-induction (LIN FEM) instrument at two intervals bracketing 0-3 m and 0-6 m depths. Vegetation characteristics were measured in 10 by 10 meter plots on each bank. As DBH, woody plant density and grass density increase, evapotranspiration also increases. Increases in any of these three factors, therefore, should decrease RCP. Incision height and width were measured in reference to the break in slope between the channel and floodplain or first major terrace. An increase in channel width provides greater area for infiltration, and greater incision height allows for increased flow depth. Increases in these two factors increase RCP. A two-tiered system was used to classify transect RCP. In the first tier, transects were categorized by the permeability of near-surface sediments based on

  20. Estimation of roughness coefficients for natural stream channels with vegetated banks

    USGS Publications Warehouse

    Coon, William F.

    1998-01-01

    Roughness coefficients for 21 stream sites in New York state are presented. The site-specific relation between roughness coefficent and flow depth varies in a predictable manner, depending on energy gradient, relative smoothness (Rd50), and channel-vegetation density. The percentage of wetted perimeter that is vegetated is a useful indicator of when streambank vegetation can affect the roughness coefficient. To estimate the magnitude of this effect requires evaluation of the density and percent of submergence of vegetation.

  1. Analyzing Hydro-Geomorphic Responses in Post-Fire Stream Channels with Terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Nourbakhshbeidokhti, S.; Kinoshita, A. M.; Chin, A.

    2015-12-01

    Wildfires have potential to significantly alter soil properties and vegetation within watersheds. These alterations often contribute to accelerated erosion, runoff, and sediment transport in stream channels and hillslopes. This research applies repeated Terrestrial Laser Scanning (TLS) Light Detection and Ranging (LiDAR) to stream reaches within the Pike National Forest in Colorado following the 2012 Waldo Canyon Fire. These scans allow investigation of the relationship between sediment delivery and environmental characteristics such as precipitation, soil burn severity, and vegetation. Post-fire LiDAR images provide high resolution information of stream channel changes in eight reaches for three years (2012-2014). All images are processed with RiSCAN PRO to remove vegetation and triangulated and smoothed to create a Digital Elevation Model (DEM) with 0.1 m resolution. Study reaches with two or more successive DEM images are compared using a differencing method to estimate the volume of sediment erosion and deposition. Preliminary analysis of four channel reaches within Williams Canyon and Camp Creek yielded erosion estimates between 0.035 and 0.618 m3 per unit area. Deposition was estimated as 0.365 to 1.67 m3 per unit area. Reaches that experienced higher soil burn severity or larger rainfall events produced the greatest geomorphic changes. Results from LiDAR analyses can be incorporated into post-fire hydrologic models to improve estimates of runoff and sediment yield. These models will, in turn, provide guidance for water resources management and downstream hazards mitigation.

  2. Rapid estimation of recharge potential in ephemeral-stream channels using electromagnetic methods, and measurements of channel and vegetation characteristics

    USGS Publications Warehouse

    Callegary, J.B.; Leenhouts, J.M.; Paretti, N.V.; Jones, C.A.

    2007-01-01

    To classify recharge potential (RCP) in ephemeral-stream channels, a method was developed that incorporates information about channel geometry, vegetation characteristics, and bed-sediment apparent electrical conductivity (??a). Recharge potential is not independently measurable, but is instead formulated as a site-specific, qualitative parameter. We used data from 259 transects across two ephemeral-stream channels near Sierra Vista, Arizona, a location with a semiarid climate. Seven data types were collected: ??a averaged over two depth intervals (0-3 m, and 0-6 m), channel incision depth and width, diameter-at-breast-height of the largest tree, woody-plant and grass density. A two-tiered system was used to classify a transect's RCP. In the first tier, transects were categorized by estimates of near-surface-sediment hydraulic permeability as low, moderate, or high using measurements of 0-3 m-depth ??a. Each of these categories was subdivided into low, medium, or high RCP classes using the remaining six data types, thus yielding a total of nine RCP designations. Six sites in the study area were used to compare RCP and ??a with previously measured surrogates for hydraulic permeability. Borehole-averaged percent fines showed a moderate correlation with both shallow and deep ??a measurements, however, correlation of point measurements of saturated hydraulic conductivity, percent fines, and cylinder infiltrometer measurements with ??a and RCP was generally poor. The poor correlation was probably caused by the relatively large measurement volume and spatial averaging of ??a compared with the spatially-limited point measurements. Because of the comparatively large spatial extent of measurement transects and variety of data types collected, RCP estimates can give a more complete picture of the major factors affecting recharge at a site than is possible through point or borehole-averaged estimates of hydraulic permeability alone. ?? 2007 Elsevier B.V. All rights reserved.

  3. Rapid estimation of recharge potential in ephemeral-stream channels using electromagnetic methods, and measurements of channel and vegetation characteristics

    NASA Astrophysics Data System (ADS)

    Callegary, James B.; Leenhouts, James M.; Paretti, Nicholas V.; Jones, Christopher A.

    2007-09-01

    SummaryTo classify recharge potential (RCP) in ephemeral-stream channels, a method was developed that incorporates information about channel geometry, vegetation characteristics, and bed-sediment apparent electrical conductivity ( σa). Recharge potential is not independently measurable, but is instead formulated as a site-specific, qualitative parameter. We used data from 259 transects across two ephemeral-stream channels near Sierra Vista, Arizona, a location with a semiarid climate. Seven data types were collected: σa averaged over two depth intervals (0-3 m, and 0-6 m), channel incision depth and width, diameter-at-breast-height of the largest tree, woody-plant and grass density. A two-tiered system was used to classify a transect's RCP. In the first tier, transects were categorized by estimates of near-surface-sediment hydraulic permeability as low, moderate, or high using measurements of 0-3 m-depth σa. Each of these categories was subdivided into low, medium, or high RCP classes using the remaining six data types, thus yielding a total of nine RCP designations. Six sites in the study area were used to compare RCP and σa with previously measured surrogates for hydraulic permeability. Borehole-averaged percent fines showed a moderate correlation with both shallow and deep σa measurements, however, correlation of point measurements of saturated hydraulic conductivity, percent fines, and cylinder infiltrometer measurements with σa and RCP was generally poor. The poor correlation was probably caused by the relatively large measurement volume and spatial averaging of σa compared with the spatially-limited point measurements. Because of the comparatively large spatial extent of measurement transects and variety of data types collected, RCP estimates can give a more complete picture of the major factors affecting recharge at a site than is possible through point or borehole-averaged estimates of hydraulic permeability alone.

  4. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.

    PubMed

    Doinikov, Alexander A; Combriat, Thomas; Thibault, Pierre; Marmottant, Philippe

    2016-09-01

    A theoretical model is developed for acoustic streaming generated by a cylindrical bubble confined in a fluid channel between two planar elastic walls. The bubble is assumed to undergo volume and translational oscillations. The volume oscillation is caused by an imposed acoustic pressure field and generates the bulk scattered wave in the fluid gap and Lamb-type surface waves propagating along the fluid-wall interfaces. The translational oscillation is induced by the velocity field of an external sound source such as another bubble or an oscillatory fluid flow. The acoustic streaming is assumed to result from the interaction of the volume and the translational modes of the bubble oscillations. The general solutions for the linear equations of fluid motion and the equations of acoustic streaming are calculated with no restrictions on the ratio between the viscous penetration depth and the bubble size. Approximate solutions for the limit of low viscosity are provided as well. Simulations of streamline patterns show that the geometry of the streaming resembles flows generated by a source dipole, while the vortex orientation is governed by the driving frequency, bubble size, and the distance of the bubble from the source of translational excitation. Experimental verification of the developed theory is performed using data for streaming generated by bubble pairs.

  5. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.; Combriat, Thomas; Thibault, Pierre; Marmottant, Philippe

    2016-09-01

    A theoretical model is developed for acoustic streaming generated by a cylindrical bubble confined in a fluid channel between two planar elastic walls. The bubble is assumed to undergo volume and translational oscillations. The volume oscillation is caused by an imposed acoustic pressure field and generates the bulk scattered wave in the fluid gap and Lamb-type surface waves propagating along the fluid-wall interfaces. The translational oscillation is induced by the velocity field of an external sound source such as another bubble or an oscillatory fluid flow. The acoustic streaming is assumed to result from the interaction of the volume and the translational modes of the bubble oscillations. The general solutions for the linear equations of fluid motion and the equations of acoustic streaming are calculated with no restrictions on the ratio between the viscous penetration depth and the bubble size. Approximate solutions for the limit of low viscosity are provided as well. Simulations of streamline patterns show that the geometry of the streaming resembles flows generated by a source dipole, while the vortex orientation is governed by the driving frequency, bubble size, and the distance of the bubble from the source of translational excitation. Experimental verification of the developed theory is performed using data for streaming generated by bubble pairs.

  6. Effects of an restorated stream channel on groundwater dynamics and quality

    NASA Astrophysics Data System (ADS)

    Lehr, Christian; Lewandowski, Jörg; Lischeid, Gunnar

    2013-04-01

    The effects of the restoration of an former oxbow on the interactions of groundwater and stream water is analyzed by principal component analysis of the water table series. With this approach it is possible to quantify in a spatial discrete way the impact of processes on the ground water table (Lischeid et al. 2010). At the Freienbrink site, situated in the east of Berlin (Germany), water tables were measured during a four year period at up to 18 groundwater and 2 stream water sites along two transects across an artificial peninsula surrounded by an oxbow and the regulated stream channel. In the first two years of the monitoring period the straight, artificial stream channel was the main stream channel and the oxbow was hydrologically decoupled at the upstream end. In the second two years it was the opposite. After restoration the former shortcut is now hydrologically decoupled and the former oxbow reactivated. In a study about the first year of the monitoring period colmation of the oxbow has been identified as main hindrance for the exchange of groundwater and stream water (Lewandowski et al., 2009). Subsequently the effects of the removal of the colmation in the former oxbow during the restoration process is analyzed. The analysis of the propagation of hydrological signals in the coupled groundwater stream water system is combined with the analysis of the spatial and temporal dynamics of the dominant hydrogeochemical processes. Those are identified with a non-linear variant of the principal component analysis based on water quality data. References Lewandowski, J.; Lischeid, G. & Nützmann, G. 2009. Drivers of water level fluctuations and hydrological exchange between groundwater and surface water at the lowland River Spree (Germany): field study and statistical analyses. Hydrological Processes, 23(15), 2117-2128. doi: 10.1002/hyp.7277. Lischeid, G.; Natkhin, M.; Steidl, J.; Dietrich, O.; Dannowski, R. & Merz, C. 2010. Assessing coupling between lakes and

  7. Integration of manual channel initiation and flow path tracing in extracting stream features from lidar-derived DTM

    NASA Astrophysics Data System (ADS)

    Gaspa, M. C.; De La Cruz, R. M.; Olfindo, N. T.; Borlongan, N. J. B.; Perez, A. M. C.

    2016-10-01

    Stream network delineation based on LiDAR-derived digital terrain model (DTM) may produce stream segments that are inexistent or incomplete because of limitations imposed by extraction procedure, terrain and data. The applicability of a common threshold value in defining streams such as those implemented through the D8 algorithm also remains in question because the threshold varies depending on the geomorphology of the area. Flat areas and improper hydrologic conditioning produce erratic stream network. To counteract these limitations, this study proposes a workflow that improves the stream network produced by the D8 algorithm. It incorporates user-defined channel initiation points as inputs to a tool developed to automatically trace the flow of water into the next actual stream segment. Spurious streams along digital dams and flat areas are also manually reshaped. The proposed workflow is implemented in Iligan River Basin, Philippines using LiDARderived DTM of 1-meter resolution. The Flow Path Tracing (FPT) method counteracts the limits imposed by extraction procedure, terrain and data. It is applicable to different typologies of watersheds by eliminating the need to use site-specific threshold in determining streams. FPT is implemented as a Phyton script to automate the tracing of the streams using the flow direction raster. The FPT method is compared to the blue line digitization and the D8 method using morphometric parameters, such as stream number, stream order and stream length, to assess its performance. Results show that streams derived from the FPT method has higher stream order, number and length. An accuracy of 93.5% produced from field validation of the FPT method's streams strengthens the findings that integrating manual channel head initiation and flow path tracing can be used for nationwide extraction of streams using LiDAR-derived-DTM in the Philippines.

  8. Estimating design-flood discharges for streams in Iowa using drainage-basin and channel-geometry characteristics

    USGS Publications Warehouse

    Eash, D.A.

    1993-01-01

    Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.

  9. Relative influence of different habitat factors on creek chub population structure within channelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Creek chubs (Semotilus atromaculatus) are commonly found within channelized agricultural headwater streams within the Midwestern United States. Understanding the relationships of this headwater fish species with different habitat factors will provide information that can assist with developing resto...

  10. Channel Morphology and Hydraulics as Controls on Spatial Patterns of Invertebrate Drift in a Mountain Stream.

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Hassan, M. A.

    2015-12-01

    In this research we linked spatial variability of invertebrate drift characteristics (e.g. flux, concentration, mean body size) in a mountain stream to channel morphology and hydraulic properties such as at-a-point and depth-averaged velocity and shear velocity. The study was conducted in East Creek, a small stream in British Columbia in which reach-scale morphology transitions from cobble-dominated plane-bed to gravel-bed pool-riffle. To achieve our goal, we collected vertical profiles of invertebrate drift and time-averaged velocity in various morphological units within the study reaches. The data were analyzed using linear mixed model. Our reach-scale results suggested that, generally, the study reaches had statistically similar drift characteristics despite their contrasting morphologies. At the within-reach scale, different drift characteristics displayed different trends in relation to morphological and hydraulic properties of the channel. Longitudinally, highest drift flux occurred in riffle-pool transitions. We attributed this finding primarily to higher flow velocity because there were no statistically significant differences in drift concentration between morphological units. In the vertical dimension, highest drift flux occurred near the surface owing to a combination of higher drift concentration and higher flow velocity. A different pattern was observed for mean body size of drifting invertebrates. On average, body size was smallest in riffle-pool transitions and largest near the bed. The combination of velocity, drift concentration, and drift body size structure resulted in similar biomass flux estimates in all morphological units. In the vertical dimension, biomass flux appeared to be highest near the water surface. Generally, hydraulic variables seemed to be relatively poor predictors of drift concentration and mean body size of drifting invertebrates. Our findings reveal a complex relationship between channel morphology and hydraulics and various

  11. Types and Variability of In-Channel and Bank Storage in Beaded Arctic Streams

    NASA Astrophysics Data System (ADS)

    Merck, M. F.; Neilson, B. T.

    2010-12-01

    The extent and variability of residence times throughout the open water season in beaded arctic streams, consisting of small pools connected by shallow chutes, are not well understood. Various data types were collected in Imnavait Creek, a beaded stream located north of the Brooks Range in Alaska, to better understand the effects of both in-channel and bank storage on mass and heat movement through these streams. Based on initial data collection efforts, it was hypothesized that during dry conditions and low flows, the residence times of the top layers of these strongly stratified pools are relatively small. Exchange with the larger bottom layers of the pools and transport of mass and heat out of the system is minimized. Conversely, during wet conditions and high flows, these pools completely mix, the residence times are short, and there is significantly less in-pool storage. Using temperatures measured at high spatial resolution within these pools and other supporting data (e.g., tracer studies, instream flows, and weather data), we found various types of storage within the pools, banks, and other marshy areas within the valley bottom, including subsurface flow paths that connect the pools. Additionally, we found that these pools will stratify during higher flow periods under certain weather conditions. Given the amount and different types of storage within these systems and the stratification patterns of the pools, this and other beaded stream watersheds will result in less or delayed export of nutrients that are limiting in most arctic systems.

  12. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks.

    PubMed

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2016-09-12

    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end

  13. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks

    PubMed Central

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2016-01-01

    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end

  14. Influence of grazing and land use on stream-channel characteristics among small dairy farms in the Eastern United States

    USGS Publications Warehouse

    Brand, Genevieve; Vondracek, Bruce C.; Jordan, Nicholas R.

    2015-01-01

    Rotational grazing (RG) is a livestock management practice that rotates grazing cattle on a scale of hours to days among small pastures termed paddocks. It may beneficially affect stream channels, relative to other livestock management practices. Such effects and other beneficial effects on hydrology are important to RG's potential to provide a highly multifunctional mode of livestock farming. Previous comparisons of effects of RG and confinement dairy (CD) on adjoining streams have been restricted in scale and scope. We examined 11 stream-channel characteristics on a representative sample of 37 small dairy farms that used either RG or CD production methods. Our objectives were: (1) to compare channel characteristics on RG and CD farms, as these production methods are implemented in practice, in New York, Pennsylvania and Wisconsin, USA; and (2) to examine land use on these farms that may affect stream-channel characteristics. To help interpret channel characteristic findings, we examined on-farm land use in riparian areas 50 m in width along both sides of stream reaches and whole-farm land use. In all states, stream-channel characteristics on RG and CD farms did not differ. Whole-farm land use differed significantly between farm types; CD farms allocated more land to annual row crops, whereas RG farms allocated more land to pasture and grassland. However, land cover in 50 m riparian areas was not different between farm types within states; in particular, many RG and CD farms had continuously grazed pastures in riparian areas, typically occupied by juvenile and non-lactating cows, which may have contributed sediment and nutrients to streams. This similarity in riparian management practices may explain the observed similarity of farm types with respect to stream-channel characteristics. To realize the potential benefits of RG on streams, best management practices that affect stream-channel characteristics, such as protection of riparian areas, may improve aggregate

  15. Automated identification of stream-channel geomorphic features from high‑resolution digital elevation models in West Tennessee watersheds

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Diehl, Timothy H.

    2017-01-17

    High-resolution digital elevation models (DEMs) derived from light detection and ranging (lidar) enable investigations of stream-channel geomorphology with much greater precision than previously possible. The U.S. Geological Survey has developed the DEM Geomorphology Toolbox, containing seven tools to automate the identification of sites of geomorphic instability that may represent sediment sources and sinks in stream-channel networks. These tools can be used to modify input DEMs on the basis of known locations of stormwater infrastructure, derive flow networks at user-specified resolutions, and identify possible sites of geomorphic instability including steep banks, abrupt changes in channel slope, or areas of rough terrain. Field verification of tool outputs identified several tool limitations but also demonstrated their overall usefulness in highlighting likely sediment sources and sinks within channel networks. In particular, spatial clusters of outputs from multiple tools can be used to prioritize field efforts to assess and restore eroding stream reaches.

  16. Coupling channel hydro-morphodynamics and fish spawning habitat in a forested montane stream

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Hassan, M. A.

    2011-12-01

    In this paper we couple a hydrodynamic model with field data to investigate channel dynamics and spawning habitat potential for small-bodied salmonids in coarse-bed streams in British Columbia. We studied four reaches of East Creek, a small montane stream near Vancouver, BC, which display rapid (plane bed) and riffle-pool morphologies and provide habitat for a population of resident coastal cutthroat trout. Repeated channel surveys were conducted to obtain detailed information on channel topography and dynamics; net change in bed elevation between successive surveys was utilized as an index of scour and fill. Extensive bed surface sampling and low altitude vertical imagery were used in order to investigate bed surface texture and structures and to identify suitable spawning substrate patches. A 2-D hydrodynamic model, FaSTMECH (within MultiDimensional Surface Water Modeling System interface), was calibrated using field data and applied to simulate the spatial pattern of bed shear stress during a bankfull flow event. During small-to-intermediate floods significant bed scour, deeper than the estimated egg burial depth, occurred on a small proportion of bed area, in well-defined zones associated with obstacles such as large woody debris. Usually, distinct depositional zones developed just downstream of the scour locations. The spatial distribution of forcing elements and modeled bed shear stress explained well the observed pattern of scour and fill. Suitable spawning gravel was very limited in the study sites, particularly in two upstream reaches, primarily due to the coarse nature of the bed. In summary, scour disturbance risk appears to be relatively low in coarse-bed channels, except during extreme flow events, and shortage of suitable spawning substrate may be more important for small-bodied salmonids. This study demonstrates that coupling of hydro-morphodynamic and ecological data can provide a useful tool in fish habitat assessment and restoration.

  17. Arroyo channel head evolution in a flash-flood-dominated discontinuous ephemeral stream system

    USGS Publications Warehouse

    DeLong, Stephen B.; Johnson, Joel P.L.; Whipple, Kelin X.

    2014-01-01

    We study whether arroyo channel head retreat in dryland discontinuous ephemeral streams is driven by surface runoff, seepage erosion, mass wasting, or some combination of these hydrogeomorphic processes. We monitored precipitation, overland flow, soil moisture, and headcut migration over several seasonal cycles at two adjacent rangeland channel heads in southern Arizona. Erosion occurred by headward retreat of vertical to overhanging faces, driven dominantly by surface runoff. No evidence exists for erosion caused by shallow-groundwater–related processes, even though similar theater-headed morphologies are sometimes attributed to seepage erosion by emerging groundwater. At our field site, vertical variation in soil shear strength influenced the persistence of the characteristic theater-head form. The dominant processes of erosion included removal of grains and soil aggregates during even very shallow (1–3 cm) overland flow events by runoff on vertical to overhanging channel headwalls, plunge-pool erosion during higher-discharge runoff events, immediate postrunoff wet mass wasting, and minor intra-event dry mass wasting on soil tension fractures developing subparallel to the headwall. Multiple stepwise linear regression indicates that the migration rate is most strongly correlated with flow duration and total precipitation and is poorly correlated with peak flow depth or time-integrated flow depth. The studied channel heads migrated upslope with a self-similar morphologic form under a wide range of hydrological conditions, and the most powerful flash floods were not always responsible for the largest changes in landscape form in this environment. 

  18. Active subglacial lakes and channelized water flow beneath the Kamb Ice Stream

    NASA Astrophysics Data System (ADS)

    Kim, Byeong-Hoon; Lee, Choon-Ki; Seo, Ki-Weon; Lee, Won Sang; Scambos, Ted

    2016-12-01

    We identify two previously unknown subglacial lakes beneath the stagnated trunk of the Kamb Ice Stream (KIS). Rapid fill-drain hydrologic events over several months are inferred from surface height changes measured by CryoSat-2 altimetry and indicate that the lakes are probably connected by a subglacial drainage network, whose structure is inferred from the regional hydraulic potential and probably links the lakes. The sequential fill-drain behavior of the subglacial lakes and concurrent rapid thinning in a channel-like topographic feature near the grounding line implies that the subglacial water repeatedly flows from the region above the trunk to the KIS grounding line and out beneath the Ross Ice Shelf. Ice shelf elevation near the hypothesized outlet is observed to decrease slowly during the study period. Our finding supports a previously published conceptual model of the KIS shutdown stemming from a transition from distributed flow to well-drained channelized flow of subglacial water. However, a water-piracy hypothesis in which the KIS subglacial water system is being starved by drainage in adjacent ice streams is also supported by the fact that the degree of KIS trunk subglacial lake activity is relatively weaker than those of the upstream lakes.

  19. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.

    2000-01-01

    An increase in the flux of nitrogen from the Mississippi river during the latter half of the twentieth century has caused eutrophication and chronic seasonal hypoxia in the shallow waters of the Louisiana shelf in the northern Gulf of Mexico. This has led to reductions in species diversity, mortality of benthic communities and stress in fishery resources. There is evidence for a predominantly anthropogenic origin of the increased nitrogen flux, but the location of the most significant sources in the Mississippi basin responsible for the delivery of nitrogen to the Gulf of Mexico have not been clearly identified, because the parameters influencing nitrogen-loss rates in rivers are not well known. Here we present an analysis of data from 374 US monitoring stations, including 123 along the six largest tributaries to the Mississippi, that shows a rapid decline in the average first-order rate of nitrogen loss with channel size-from 0.45 day-1 in small streams to 0.005 day-1 in the Mississippi river. Using stream depth as an explanatory variable, our estimates of nitrogen-loss rates agreed with values from earlier studies. We conclude that the proximity of sources to large streams and rivers is an important determinant of nitrogen delivery to the estuary in the Mississippi basin, and possibly also in other large river basins.

  20. Pools, channel form, and sediment storage in wood-restored streams: Potential effects on downstream reservoirs

    NASA Astrophysics Data System (ADS)

    Elosegi, Arturo; Díez, José Ramón; Flores, Lorea; Molinero, Jon

    2017-02-01

    Large wood (LW, or pieces of dead wood longer than 1 m and thicker than 10 cm in diameter) is a key element in forested streams, but its abundance has decreased worldwide as a result of snagging and clearing of riparian forests. Therefore, many restoration projects introduce LW into stream channels to enhance geomorphology, biotic communities, and ecosystem functioning. Because LW enhances the retention of organic matter and sediments, its restoration can reduce siltation in receiving reservoirs, although so far little information on this subject is available. We studied the effects of restoring the natural loading of LW in four streams in the Aiako Harria Natural Park (the Basque Country, Spain) in pool abundance, channel form, and storage of organic matter and sediments. In all reaches log jams induced the formation of new geomorphic features and changes in physical habitat, especially an increase in the number and size of pools and in the formation of gravel bars and organic deposits. The storage of organic matter increased 5- to 88-fold and streambed level rose 7 ± 4 to 21 ± 4 cm on average, resulting in the storage of 35.2 ± 19.7 to 711 ± 375 m3 (733-1400 m3 ha- 1 y- 1) of sediment per reach. Extrapolation of these results to the entire drainage basin suggests that basinwide restoration of LW loading would enhance the retention potential of stream channels by 66,817 ± 27,804 m3 (1075 m3 ha- 1 y- 1) of sediment and by 361 t (5.32 T ha- 1 y- 1) of organic matter, which represents 60% of the estimated annual inputs of sediments to the downstream Añarbe Reservoir and almost twice as much as the annual input of organic matter to the entire river network. Therefore, basinwide restoration of LW loading is a potentially important tool to manage catchments that feed reservoirs, where retention of sediments and organic matter can be considered important ecosystem services as they reduce reservoir siltation.

  1. Disentangling the responses of boreal stream assemblages to low stressor levels of diffuse pollution and altered channel morphology.

    PubMed

    Turunen, Jarno; Muotka, Timo; Vuori, Kari-Matti; Karjalainen, Satu Maaria; Rääpysjärvi, Jaana; Sutela, Tapio; Aroviita, Jukka

    2016-02-15

    Non-point diffuse pollution from land use and alteration of hydromorphology are among the most detrimental stressors to stream ecosystems. We explored the independent and interactive effects of morphological channel alteration (channelization for water transport of timber) and diffuse pollution on species richness and community structure of four organism groups in boreal streams: diatoms, macrophytes, macroinvertebrates, and fish. Furthermore, the effect of these stressors on stream condition was evaluated by Ecological Quality Ratios (EQR) from the national Water Framework Directive (WFD) assessment system. We grouped 91 study sites into four groups that were impacted by either diffuse pollution or hydromorphological alteration, by both stressors, or by neither one. Macroinvertebrate richness was reduced by diffuse pollution, whereas other biological groups were unaltered. Hydromorphological modification had no effect on taxon richness of any of the assemblages. Community structure of all groups was significantly affected by diffuse pollution but not by hydromorphology. Similarly, EQRs indicated negative response by diatoms, macroinvertebrates and fish to diffuse pollution, but not to hydromorphological alteration. Agricultural diffuse pollution thus affected species identities and abundances rather than taxonomic richness. Our results suggest that channelization of boreal streams for timber transport has not altered hydromorphological conditions sufficiently to have a strong impact on stream biota, whereas even moderate nutrient enrichment may be ecologically harmful. Controlling diffuse pollution and associated land use stressors should be prioritized over restoration of in-stream habitat structure to improve the ecological condition of boreal streams.

  2. Hydrology and Channel Head Erosion in a Semiarid Discontinuous Ephemeral Stream Network near Oracle, Arizona

    NASA Astrophysics Data System (ADS)

    Delong, S. B.; Johnson, J. P.; Whipple, K. X.; Post, D. F.; Malmon, D.; Chu, D.; Hellerstein, J.; Klues, K.; Levis, P.; Rossi, M. W.; Martin, R.

    2008-12-01

    We present results from monitoring of hydrology and erosion at channel heads in a discontinuous ephemeral stream system in southeastern Arizona rangelands. At this field site, alluvial headwalls ~1 m high mark the transition from unchannelized valleys to actively incising arroyos. The headwalls are vertical to overhanging in cross-section and amphitheater-shaped in planform. The local landscape is made up of well- consolidated clay-rich soil and sediment. Possible processes involved in headwall retreat include groundwater sapping, plunge-pool erosion, and soil tension-fracturing. To evaluate the relative efficacy of such processes and to test and refine models of incision and headcut migration rate, we deployed 40+ sensors at and immediately upstream and downstream of channel headwalls. Wired sensors and a datalogger recorded precipitation, overland flow, channel discharge, and soil moisture at a one minute interval. Additionally, a custom wireless sensor network with cellular telemetry was developed and deployed to measure shallow overland flow. At our field site, overland flow can occur from less than one centimeter of precipitation. We tracked landscape erosion through a combination of time-lapse photography, repeat RTK GPS and terrestrial LiDAR surveys. Over the monitoring period, headwalls retreated 10s of cm during several flow events. When the sediment becomes saturated (e.g., from flow down headwall faces and standing water in plunge pools), it has an order-of-magnitude lower shear strength than when dry. Erosion and retreat of channel heads appear to occur by a combination of erosive flow down saturated channel headwalls, plunge-pool erosion at high flows, and mass wasting along vertical tension cracks between runoff events. The amphitheater form is largely due to plunge-pool undercutting and vertical differences in soil material properties, particularly clay content. Though shallow groundwater sapping is widely thought to lead to amphitheater

  3. Geomorphic Assessment Approach to Evaluate Stream Channel Stability for Regions of Illinois, Case Study: Southern Illinois Region

    NASA Astrophysics Data System (ADS)

    Keefer, L. L.

    2004-12-01

    An array of different geomorphic assessment approaches for evaluating stream-channel stability is being utilized throughout the country to meet the demands of resource managers interested in stream channel restoration and management to reduce erosion and improve stream habitat. Over the last century, most of the Illinois landscape has experienced intensive land use changes which have contributed to stream channel instability. Stream channels in Illinois have adjusted to these changes either by increasing lateral rates of migration, downstream translation of meanders, widening, or development of headward retreat of knickpoints, depending on the region of the state. Illinois can be divided into at least four regions based on prevailing physiographic features and style of channel adjustment. Also, channel response in most of these regions tend to be more subtle than the dramatic response characteristics of streams in the Coastal Plains, mountain environments, and the desert southwest for which other geomorphic approaches have been developed. The observed magnitude and type of channel response are related to topography of the bedrock surface and extent and morphology of several glacial periods, which carry local significance for stream management. Given that geomorphic assessments for stream restoration require non-trivial professional, time, and financial resources, the development of approaches for Illinois regional conditions are more beneficial. A geomorphic assessment approach is being developed by adapting methods from existing process-based approaches utilized around the United States. A case-study was performed in the Big Creek watershed of the Cache River Basin for the southern Illinois region. This region was selected first because it exhibited dramatic channel responses to disturbances and had an extensive hydrologic, sediment, and land management record. This adapted approach includes systematic data collection protocols for characterization leading to an

  4. Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Waite, Andrew M.

    2013-01-01

    Regression equations were developed for estimating bankfull geometry—width, mean depth, cross-sectional area—and discharge for streams in Massachusetts. The equations provide water-resource and conservation managers with methods for estimating bankfull characteristics at specific stream sites in Massachusetts. This information can be used for the adminstration of the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a protected riverfront area extending from the mean annual high-water line corresponding to the elevation of bankfull discharge along each side of a perennial stream. Additionally, information on bankfull channel geometry and discharge are important to Federal, State, and local government agencies and private organizations involved in stream assessment and restoration projects. Regression equations are based on data from stream surveys at 33 sites (32 streamgages and 1 crest-stage gage operated by the U.S. Geological Survey) in and near Massachusetts. Drainage areas of the 33 sites ranged from 0.60 to 329 square miles (mi2). At 27 of the 33 sites, field data were collected and analyses were done to determine bankfull channel geometry and discharge as part of the present study. For 6 of the 33 sites, data on bankfull channel geometry and discharge were compiled from other studies done by the U.S. Geological Survey, Natural Resources Conservation Service of the U.S. Department of Agriculture, and the Vermont Department of Environmental Conservation. Similar techniques were used for field data collection and analysis for bankfull channel geometry and discharge at all 33 sites. Recurrence intervals of the bankfull discharge, which represent the frequency with which a stream fills its channel, averaged 1.53 years (median value 1.34 years) at the 33 sites. Simple regression equations were developed for bankfull width, mean depth, cross-sectional area, and discharge using drainage area, which is the most significant explanatory

  5. Interactions among forest age, valley and channel morphology, and log jams regulate animal production in mountain streams

    NASA Astrophysics Data System (ADS)

    Walters, D. M.; Venarsky, M. P.; Hall, R. O., Jr.; Herdrich, A.; Livers, B.; Winkelman, D.; Wohl, E.

    2014-12-01

    Forest age and local valley morphometry strongly influence the form and function of mountain streams in Colorado. Streams in valleys with old growth forest (>350 years) have extensive log jam complexes that create multi-thread channel reaches with extensive pool habitat and large depositional areas. Streams in younger unmanaged forests (e.g., 120 years old) and intensively managed forests have much fewer log jams and lower wood loads. These are single-thread streams dominated by riffles and with little depositional habitat. We hypothesized that log jam streams would retain more organic matter and have higher metabolism, leading to greater production of stream macroinvertebrates and trout. Log jam reaches should also have greater emergence of adult aquatic insects, and consequently have higher densities of riparian spiders taking advantage of these prey. Surficial organic matter was 3-fold higher in old-growth streams, and these streams had much higher ecosystem respiration. Insect production (g m2 y-1) was similar among forest types, but fish density was four times higher in old-growth streams with copious log jams. However, at the valley scale, insect production (g m-1 valley-1) and trout density (number m-1 valley-1) was 2-fold and 10-fold higher, respectively, in old growth streams. This finding is because multi-thread reaches created by log jams have much greater stream area and stream length per meter of valley than single-thread channels. The more limited response of macroinvertebrates may be related to fish predation. Trout in old growth streams had similar growth rates and higher fat content than fish in other streams in spite of occurring at higher densities and higher elevation/colder temperatures. This suggests that the positive fish effect observed in old growth streams is related to greater availability of invertebrate prey, which is consistent with our original hypothesis. Preliminary analyses suggest that spider densities do not respond strongly to

  6. Nitrogen cycling in stream-groundwater exchange zones of a channeled peatland

    NASA Astrophysics Data System (ADS)

    Westbrook, C. J.; Bedard-Haughn, A.

    2011-12-01

    The flow of stream water through riparian soils is known to influence the nitrogen (N) patterns in streams. Needed is an improved understanding of how filtration capacity, the extent to which water residence time and riparian sediment hydraulic conductivity regulates water characteristics, acts to influence the concentration of N that emerges back to the stream. Tested was the hypothesis that where filtration capacity is high, N availability is low yet production rates are high. Compared were water chemistry and gross N mineralization rates along two previously characterized riparian areas of a channeled Canadian Rocky Mountain peatland; one of which contains a beaver dam. Although average peat hydraulic conductivity was similar between sites, throughflow was 10 times higher at the site with the beaver dam. Water samples from 32 shallow riparian wells show that the biogeochemical conditions of the two sites differ, with the beaver dam site having lower conductivity, DOC, TDN, and NH4+, warmer temperatures, and higher pH. Coincident measures of gross mineralization and nitrification rates were obtained using the stable 15N isotope dilution technique. NH4+ and NO3- turnover rates were all <1 day and rates of gross N production and consumption were high (up to 75 mg/kg/d). There was net NH4+ consumption at both sites. In contrast, the beaver dam site had significantly lower rates of NO3- production and consumption, and showed net NO3- production whereas the no dam site showed net NO3- consumption. The results imply that enhanced filtration capacity near beaver dams leads to flushing of N from riparian soils. Thus, beaver dams should be considered in assessments and models of stream ecosystem function.

  7. Landform assemblages and sedimentary processes along the Norwegian Channel Ice Stream

    NASA Astrophysics Data System (ADS)

    Ottesen, Dag; Stokes, Chris R.; Bøe, Reidulv; Rise, Leif; Longva, Oddvar; Thorsnes, Terje; Olesen, Odleiv; Bugge, Tom; Lepland, Aave; Hestvik, Ole B.

    2016-06-01

    Several regional and detailed bathymetric datasets together with 2D and 3D seismic data are compiled to investigate the landform assemblages and sedimentary processes along the former path of the Norwegian Channel Ice Stream (NCIS). At the broad scale, the glacial geomorphology and sedimentary architecture reveals three different zones along the ice-stream path, characterized by: (1) glacial erosion in the onset zone and inner shelf area, (2) sediment transport through the main trunk of the ice stream across the mid-shelf, and (3) a zone of deposition towards the outer continental shelf edge. Along the first 400 km of the ice stream bed (outer Oslofjord-Skagerrak-Stavanger) a major overdeepening is associated with suites of crag-and-tail features at the transition from the crystalline bedrock to the sedimentary bedrock, together with evidence of glaciotectonic thrusting in the form of hill-hole pairs. Here we interpret extensive erosion of both sedimentary rocks and Quaternary sediments. This zone is succeeded by an approximately 400 km long zone, through which most of the sediments eroded from the inner shelf were transported, rather than being deposited. We infer that sediment was transported subglacially and is likely to have been advected downstream by soft sediment deformation. The thickness of till of inferred Weichselian age generally varies from 0 and 50 m and this zone is characterized by mega-scale glacial lineations (MSGLs) which we interpret to be formed in a dynamic sedimentary system dominated by high sediment fluxes, but with some localized sediment accretion associated with lineations. Towards the shelf break, the North Sea Fan extends to the deep Norwegian Sea, and reflects massive sedimentation of glacigenic debris onto the continental slope. Numerous glacigenic debris flows accumulated and constructed a unit up to 400 m thick during the Last Glacial Maximum. The presence of these three zones (erosion, transport, deposition) is consistent with

  8. The effect of inundation frequency on ground beetle communities in a channelized mountain stream

    NASA Astrophysics Data System (ADS)

    Skalski, T.; Kedzior, R.; Radecki-Pawlik, A.

    2012-04-01

    Under natural conditions, river channels and floodplains are shaped by flow and sediment regime and are one of the most dynamic ecosystems. At present, European river floodplains are among the most endangered landscapes due to human modifications to river systems, including channel regulation and floodplain urbanization, and land use changes in the catchments. Situated in a transition zone between terrestrial and aquatic environments, exposed riverine sediments (ERS) play a key role in the functioning of riverine ecosystems. This study aimed to verify whether the bare granular substrate is the only factor responsible for sustaining the biota associated with ERS or the inundation frequency also plays a role, modifying the potential of particular species to colonize these habitats. Ground beetles (Col. Carabidae) were selected as the investigated group of organisms and the study was carried out in Porębianka, a Polish Carpathian stream flowing through both unconstrained channel sections and sections with varied channelization schemes (rapid hydraulic structures, concrete revetments or rip-rap of various age). In each of the distinguished channel types, four replicates of 10 pitfall traps were established in three rows varying in distance to the mean water level (at three different benches). Almost 7000 individuals belonging to 102 species were collected on 60 plots. Forward selection of redundancy analysis revealed four factors significantly describing the variation in ground beetle species data: bank modification, potential bankfull discharge, frequency of inundation and plant height. Most of the biggest species were ordered at the positive site of first axis having the highest values of periods between floods. Total biomass of ground beetles and mean biomass of individuals differed significantly between sites of various frequency of inundation, whereas the variation in abundance and species richness of ground beetles was independent of the river dynamics. The body

  9. Baseline Channel Geometry and Aquatic Habitat Data for Selected Streams in the Matanuska-Susitna Valley, Alaska

    USGS Publications Warehouse

    Curran, Janet H.; Rice, William J.

    2009-01-01

    Small streams in the rapidly developing Matanuska-Susitna Valley in south-central Alaska are known to support anadromous and resident fish but little is known about their hydrologic and riparian conditions, or their sensitivity to the rapid development of the area or climate variability. To help address this need, channel geometry and aquatic habitat data were collected in 2005 as a baseline of stream conditions for selected streams. Three streams were selected as representative of various stream types, and one drainage network, the Big Lake drainage basin, was selected for a systematic assessment. Streams in the Big Lake basin were drawn in a Geographic Information System (GIS), and 55 reaches along 16 miles of Meadow Creek and its primary tributary Little Meadow Creek were identified from orthoimagery and field observations on the basis of distinctive physical and habitat parameters, most commonly gradient, substrate, and vegetation. Data-collection methods for sites at the three representative reaches and the 55 systematically studied reaches consisted of a field survey of channel and flood-plain geometry and collection of 14 habitat attributes using published protocols or slight modifications. Width/depth and entrenchment ratios along the Meadow-Little Meadow Creek corridor were large and highly variable upstream of Parks Highway and lower and more consistent downstream of Parks Highway. Channel width was strongly correlated with distance, increasing downstream in a log-linear relation. Runs formed the most common habitat type, and instream vegetation dominated the habitat cover types, which collectively covered 53 percent of the channel. Gravel suitable for spawning covered isolated areas along Meadow Creek and about 29 percent of Little Meadow Creek. Broad wetlands were common along both streams. For a comprehensive assessment of small streams in the Mat-Su Valley, critical additional data needs include hydrologic, geologic and geomorphic, and biologic data

  10. Evaluating the use of drone photogrammetry for measurement of stream channel morphology and response to high flow events

    NASA Astrophysics Data System (ADS)

    Price, Katie; Ballow, William

    2015-04-01

    Traditional high-precision survey methods for stream channel measurement are labor-intensive and require wadeability or boat access to streams. These conditions limit the number of sites researchers are able to study and generally prohibit the possibility of repeat channel surveys to evaluate short-term fluctuations in channel morphology. In recent years, unmanned aerial vehicles (drones) equipped with photo and video capabilities have become widely available and affordable. Concurrently, developments in photogrammetric software offer unprecedented mapping and 3D rendering capabilities of drone-captured photography. In this study, we evaluate the potential use of drone-mounted cameras for detailed stream channel morphometric analysis. We used a relatively low-cost drone (DJI Phantom 2+ Vision) and commercially available, user friendly software (Agisoft Photscan) for photogrammetric analysis of drone-captured stream channel photography. Our test study was conducted on Proctor Creek, a highly responsive urban stream in Atlanta, Georgia, within the crystalline Piedmont region of the southeastern United States. As a baseline, we performed traditional high-precision survey methods to collect morphological measurements (e.g., bankfull and wetted width, bankfull and wetted thalweg depth) at 11 evenly-spaced transects, following USGS protocols along reaches of 20 times average channel width. We additionally used the drone to capture 200+ photos along the same reaches, concurrent with the channel survey. Using the photogrammetry software, we generated georeferenced 3D models of the stream channel, from which morphological measurements were derived from the 11 transects and compared with measurements from the traditional survey method. We additionally explored possibilities for novel morphometric characterization available from the continuous 3D surface, as an improvement on the limited number of detailed cross-sections available from standard methods. These results showed

  11. Regional Curves of Bankfull Channel Geometry for Non-Urban Streams in the Piedmont Physiographic Province, Virginia

    USGS Publications Warehouse

    Lotspeich, R. Russell

    2009-01-01

    Natural-channel design involves constructing a stream channel with the dimensions, slope, and plan-view pattern that would be expected to transport water and sediment and yet maintain habitat and aesthetics consistent with unimpaired stream segments, or reaches. Regression relations for bankfull stream characteristics based on drainage area, referred to as 'regional curves,' are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. One-variable, ordinary least-squares regressions relating bankfull discharge, bankfull cross-sectional area, bankfull width, bankfull mean depth, and bankfull slope to drainage area were developed on the basis of data collected at 17 streamflow-gaging stations in rural areas with less than 20 percent urban land cover within the basin area (non-urban areas) of the Piedmont Physiographic Province in Virginia. These regional curves can be used to estimate the bankfull discharge and bankfull channel geometry when the drainage area of a watershed is known. Data collected included bankfull cross-sectional geometry, flood-plain geometry, and longitudinal profile data. In addition, particle-size distributions of streambed material were determined, and data on basin characteristics were compiled for each reach. Field data were analyzed to determine bankfull cross-sectional area, bankfull width, bankfull mean depth, bankfull discharge, bankfull channel slope, and D50 and D84 particle sizes at each site. The bankfull geometry from the 17 sites surveyed during this study represents the average of two riffle cross sections for each site. Regional curves developed for the 17 sites had coefficient of determination (R2) values of 0.950 for bankfull cross-sectional area, 0.913 for bankfull width, 0.915 for bankfull mean depth, 0.949 for bankfull discharge, and 0.497 for bankfull channel slope. The regional curves represent conditions for streams with defined channels and bankfull

  12. Stage-discharge characteristics of a Weir in a sand-channel stream

    USGS Publications Warehouse

    Gonzalez, Don D.; Scott, C.H.; Culbertson, James K.

    1969-01-01

    A unique relation between water-surface elevation and water discharge usually does not exist for sand-channel streams. The relation is affected by changes in bed roughness and changes in bed elevation because of scour and fill. An artificial control on a sand-channel stream must control both the resistance to flow and the bed elevation in order to stabilize the relation between water-surface elevation and water discharge. The weir (control structure) in the Rio Grande conveyance channel near Bernardo, N. Mex., was designed on the basis of a model study and field data (Harris and Richardson, 1964). About 72 percent of the measurements used to define the base relation between water-surface elevation and water discharge falls within plus or minus 5 percent of the mean relation for the prototype. The stage-discharge relation is not affected by backwater for values of submergence less than 90 percent. There is no consistent relation between the ratio of measured discharge to rated discharge and submergence for values of submergence greater than 90 percent. The control does not restrict the channel capacity to less than the stated design capacity of 2,000 cubic feet per second. When the control is drowned out, or ineffective, the relation of water-surface elevation to water discharge is virtually the same as that prior to construction of the control for discharges greater than 1,500 cubic feet per second. When the control is not drowned out--that is, free-fall conditions exist--the water-surface elevation for a discharge of 2,000 cubic feet per second is greater than the minimum elevation, but is less than the maximum elevation that occurred at that discharge prior to construction. The model study was only partially successful in predicting the operating characteristics of the prototype. Some of the differences between prototype operation and model predictions may exist because the prototype was not built exactly as recommended on the basis of the model study. In general

  13. Water quality of streams draining abandoned and reclaimed mined lands in the Kantishna Hills area, Denali National Park and Preserve, Alaska, 2008–11

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2013-01-01

    The Kantishna Hills are an area of low elevation mountains in the northwest part of Denali National Park and Preserve, Alaska. Streams draining the Kantishna Hills are clearwater streams that support several species of fish and are derived from rain, snowmelt, and subsurface aquifers. However, the water quality of many of these streams has been degraded by mining. Past mining practices generated acid mine drainage and excessive sediment loads that affected water quality and aquatic habitat. Because recovery through natural processes is limited owing to a short growing season, several reclamation projects have been implemented on several streams in the Kantishna Hills region. To assess the current water quality of streams in the Kantishna Hills area and to determine if reclamation efforts have improved water quality, a cooperative study between the U.S. Geological Survey and the National Park Service was undertaken during 2008-11. High levels of turbidity, an indicator of high concentrations of suspended sediment, were documented in water-quality data collected in the mid-1980s when mining was active. Mining ceased in 1985 and water-quality data collected during this study indicate that levels of turbidity have declined significantly. Turbidity levels generally were less than 2 Formazin Nephelometric Units and suspended sediment concentrations generally were less than 1 milligram per liter during the current study. Daily turbidity data at Rock Creek, an unmined stream, and at Caribou Creek, a mined stream, documented nearly identical patterns of turbidity in 2009, indicating that reclamation as well as natural revegetation in mined streams has improved water quality. Specific conductance and concentrations of dissolved solids and major ions were highest from streams that had been mined. Most of these streams flow into Moose Creek, which functions as an integrator stream, and dilutes the specific conductance and ion concentrations. Calcium and magnesium are the

  14. Mapping Spatial Distributions of Stream Power and Channel Change along a Gravel-Bed River in Northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, D. M.; Legleiter, C. J.

    2014-12-01

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing. This study used remotely sensed data and field measurements to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to assess lateral channel mobility and develop a morphologic sediment budget for quantifying net sediment flux for a series of budget cells. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from LiDAR data were used to obtain the discharge and slope values, respectively, needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of channel mobility and sediment transfer. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volume of sediment eroded or deposited during each time increment. Our results indicated a lack of strong correlation between stream power gradients and sediment flux, which we attributed to the geomorphic complexity of the Soda Butte Creek watershed and the inability of our relatively simple statistical approach to link sediment dynamics expressed at a sub-budget cell scale to larger-scale driving forces such as stream power gradients. Future studies should compare the moderate spatial resolution techniques used in this study to very-high resolution data acquired from new fluvial remote sensing technologies to better understand the amount of error associated with stream power

  15. The influence of log jam development on channel morphology in an intermediate sized coastal stream, Carnation Creek, B.C.

    NASA Astrophysics Data System (ADS)

    Luzi, D. S.; Sidle, R. C.; Hogan, D. L.

    2006-12-01

    Large wood (LW) is an important functional and structural component of forest stream ecosystems, regulating sediment storage and transport, consequently determining channel morphology, and as an important foundation for aquatic habitat. LW occurs as either individual pieces or in accumulations (log jams). Where individual pieces of LW affect the stream at a small scale, several bankfull widths, jams influence the stream on a much larger scale. The spatial extent of jam related effects on channel morphology vary, dependent upon the life stage of the jam. Temporal changes in jams have received relatively little attention in the literature. The development stage of a jam is associated with upstream channel aggradation and downstream degradation; this process reverses during a jam's deterioration phase. Carnation Creek, an 11 km2 watershed located on the west coast of Vancouver Island, provided a rare opportunity to examine both the spatial and temporal impacts of log jams on channel morphology. An understanding of these relationships will be developed through the analysis of changes in channel variables, such as channel dimensions, pattern, hydraulic characteristics, and morphology. These characteristics will be extracted from annual cross sectional surveys taken during 1971 - 1998.

  16. Process-Based Restoration and the Rise of the Stage Zero Channel As a Stream Restoration Goal

    NASA Astrophysics Data System (ADS)

    Pollock, M. M.

    2015-12-01

    The stage zero channel (sensu Cluer and Thorne 2013) is increasingly recognized as having intrinsic high value because of the multiple and synergistic ecosystem goods and services that such channels provide. Stage zero channels have well connected floodplains with elevated water tables, spatially variable hydrologic regimes and structurally complex aquatic and riparian habitat. As such, they provide incredibly valuable habitat for a suite of terrestrial and aquatic taxa, including several Pacific salmon species that are in decline. In this presentation, we provide an overview of the features and types of stage zero channels, where in the landscape they are likely to be found, how they evolve under natural conditions, and restoration techniques for converting less ecologically valuable channel types into stage zero channels. We compare the structure and function of stage zero channels to more traditional channel restoration targets. We conclude that new approaches to stream restoration are needed that take into account society's economic and ecological imperatives to create resilient, structurally complex and dynamic systems, and that the spatial scale of restorative actions should be expanded where possible to better recognize and integrate the interdependent nature of longitudinal, lateral and vertical linkages in stream systems.

  17. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, Devin M.; Legleiter, Carl J.

    2016-01-01

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study sought to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8-km reach. Aerial photographs from 1994 to 2012 and ground-based surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and DEM developed from LiDAR data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Collectively, we refer to these methods as the stream power gradient (SPG) framework. The results of this study were compromised by methodological limitations of the SPG framework and revealed some complications likely to arise when applying this framework to small, wandering, gravel-bed rivers. Correlations between stream power gradients and sediment flux were generally weak, highlighting the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote

  18. Spreading of a ferrofluid core in three-stream micromixer channels

    SciTech Connect

    Wang, Zhaomeng; Varma, V. B.; Ramanujan, R. V.; Xia, Huan Ming; Wang, Z. P.

    2015-05-15

    Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flow rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.

  19. Spreading of a ferrofluid core in three-stream micromixer channels

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomeng; Varma, V. B.; Xia, Huan Ming; Wang, Z. P.; Ramanujan, R. V.

    2015-05-01

    Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flow rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.

  20. The fan of influence of streams and channel feedbacks to simulated land surface water and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Chaopeng; Riley, William J.; Smithgall, Kurt R.; Melack, John M.; Fang, Kuai

    2016-02-01

    Large-scale land models assume unidirectional land-to-river hydrological interactions, without considering feedbacks between channels and land. Using a tested, physically based model with explicit multiway interactions between overland, channel, wetland, and groundwater flows, we assessed how the representation and properties of channels influence simulated land surface hydrologic, biogeochemical, and ecosystem dynamics. A zone near the channels where various fluxes and states are significantly influenced by the channels, referred to as the fan of influence (FoI) of channels, has been identified. We elucidated two mechanisms inducing the model-derived FoI: the base flow mechanism, in which incised, gaining streams lower the water table and induce more base flow, and the relatively more efficient conveyance of the channel network compared to overland flow. We systematically varied drainage density and grid resolution to quantify the size of the FoI, which is found to span a large fraction of the watershed (25-50%) for hydrologic variables including depth to water table and recharge, etc. The FoI is more pronounced with low-resolution simulations but remains noticeable in hyperresolution (25 m) subbasin simulations. The FoI and the channel influence on basin-average fluxes are also similar in simulations with alternative parameter sets. We found that high-order, entrenched streams cause larger FoI. In addition, removing the simulated channels has disproportionally large influence on modeled wetland areas and inundation duration, which has implications for coupled biogeochemical or ecological modeling. Our results suggest that explicit channel representation provides important feedbacks to land surface dynamics which should be considered in meso or large-scale simulations. Since grid refinement incurs prohibitive computational cost, subgrid channel parameterization has advantages in efficiency over grid-based representations that do not distinguish between overland

  1. Streambed and water profile response to in-channel restoration structures in a laboratory meandering stream

    NASA Astrophysics Data System (ADS)

    Han, Bangshuai; Chu, Hong-Hanh; Endreny, Theodore A.

    2015-11-01

    In-channel structures are often installed in alluvial rivers during restoration to steer currents, but they also modify the streambed morphology and water surface profile, and alter hydraulic gradients driving ecologically important hyporheic exchange. Although river features before and after restoration need to be compared, few studies have collected detailed observations to facilitate this comparison. We created a laboratory mobile-bed alluvial meandering river and collected detailed measurements in the highly sinuous meander before and after installation of in-channel structures, which included one cross vane and six J-hooks situated along 1 bar unit. Measurements of streambed and water surface elevation with submillimeter vertical accuracy and horizontal resolution were obtained using close-range photogrammetry. Compared to the smooth gradually varied water surface profile for control runs without structures, the structures created rapidly varied flow with subcritical to supercritical flow transitions, as well as backwater and forced-morphology pools, which increased volumetric storage by 74% in the entire stream reach. The J-hooks, located along the outer bank of the meander bend and downstream of the cross vane, created stepwise patterns in the streambed and water surface longitudinal profiles. The pooling of water behind the cross vane increased the hydraulic gradient across the meander neck by 1% and increased local groundwater gradients by 4%, with smaller increases across other transects through the intrameander zone. Scour pools developed downstream of the cross vane and around the J-hooks situated near the meander apex. In-channel structures significantly changed meander bend hydraulic gradients, and the detailed streambed and water surface 3-D maps provide valuable data for computational modeling of changes to hyporheic exchange.

  2. Channel change and sediment transport in two desert streams in central Arizona, 1991-92

    USGS Publications Warehouse

    Parker, J.T.

    1995-01-01

    recurrence interval of less than 5 years. A summer flow that lasted 3 hours had a peak discharge of 173 cubic meters per second and caused some bank erosion and possibly some dissection of terraces. The magnitude of change, however, was far less than that of the winter flow. Suspended-sediment concentration on the Salt River during the winter flows was typical of those for other regulated streams in Arizona and ranged from 2 to 617 milligrams per liter at discharges from 6.7 to 343 cubic meters per second. Fine-grained sediments in the channel bottom probably were the main source of sediment transported in suspension. During periods of prolonged, steady flows, suspended-sediment concentration tended to decline, which indicated a probable depletion of sediment supply. On the Hassayampa River, suspended-sediment concentrations ranged from 12,800 to 132,000 milligrams per liter at discharges of 13 to 128 cubic meters per second. The relation of sediment concentration to discharge was poor for the entire set of samples, but a clear pattern was evident for each period of storm runoff. In two of three periods of runoff sampled, maximum suspended-sediment concentration occurred just before peak discharge and declined rapidly.

  3. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, Devin M.

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study used remote sensing and GIS tools along with field data to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from light detection and ranging (LiDAR) data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Results indicated a lack of strong correlation between stream power gradients and sediment response, highlighting the geomorphic complexity of Soda Butte Creek and the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote sensing could help improve understanding of the spatial organization of stream power, sediment transport, and channel change in

  4. Detecting the impact of bank and channel modification on invertebrate communities in Mediterranean temporary streams (Sardinia, SW Italy).

    PubMed

    Buffagni, Andrea; Tenchini, Roberta; Cazzola, Marcello; Erba, Stefania; Balestrini, Raffaella; Belfiore, Carlo; Pagnotta, Romano

    2016-09-15

    We hypothesized that reach-scale, bank and channel modification would impact benthic communities in temporary rivers of Sardinia, when pollution and water abstraction are not relevant. A range of variables were considered, which include both artificial structures/alterations and natural features observed in a stream reach. Multivariate regression trees (MRT) were used to assess the effects of the explanatory variables on invertebrate assemblages and five groups, characterized by different habitat modification and/or features, were recognized. Four node variables determined the splits in the MRT analysis: channel reinforcement, tree-related bank and channel habitats, channel modification and bank modification. Continuity of trees in the river corridor diverged among MRT groups and significant differences among groups include presence of alders, extent of channel shading and substrate diversity. Also, the percentage of in-stream organic substrates, in particular CPOM/Xylal, showed highly significant differences among groups. For practical applications, thresholds for the extent of channel reinforcement (40%) and modification (10%) and for bank alteration (≈30%) were provided, that can be used to guide the implementation of restoration measures. In moderately altered river reaches, a significant extent of tree-related habitats (≈5%) can noticeably mitigate the effects of morphological alteration on aquatic invertebrates. The outcomes highlight the importance of riparian zone management as an opportune, achievable prospect in the restoration of Mediterranean temporary streams. The impact of bank and channel modification on ecological status (sensu WFD) was investigated and the tested benthic metrics, especially those based on abundance data, showed legible differences among MRT groups. Finally, bank and channel modification appears to be a potential threat for the conservation of a few Sardo-Corsican endemic species. The introduction of management criteria that

  5. Analysis of Stream Channel Geometry Temporal and Spatial Evolution after Historic Dam Removal - two French case studies

    NASA Astrophysics Data System (ADS)

    Slawson, Deborah; Manière, Louis; Marchandeau, Florent

    2014-05-01

    IRSTEA, in partnership with the French Office national de l'eau et des milieux aquatiques (ONEMA), has begun a study of channel geomorphology in small streams where dams have been removed or breached between two and 200 years ago, without any subsequent restoration of the channel in the legacy sediments. A preliminary analysis of two sites in the Morvan, Burgundy, will be presented; a dam breached at the beginning of the 20th century and another in the last decade. Using ergodic reasoning, historical and recent upstream and downstream channel geometry is being used to predict the future temporal and spatial scales of channel physical habitat restoration. With the implementation of the European Water Framework Directive (WFD), dam removal has become a more frequently used method for restoring stream ecological continuity. In France, these obstacles are ubiquitous in medium and small streams and considerably reduce lateral and longitudinal connectivity. Improvement in the hydromorphologically controlled, physical habitat, particularly flow and sediment transport regimes, is often essential to improvement in stream biology. However, dam removal may cause long-term disturbances in flow and sediment transport regimes. In the absence of channel restoration measures in addition to dam removal, these disturbances may result in long-term negative impacts on fish, macroinvertebrate, and riparian plant physical habitat. These negative impacts may include channel incision and lowering of the water table, disconnection from floodplains, increased stream power and bed scouring, and increased sediment load from headcutting and bank erosion. Over time, these negative impacts may resolve themselves. However, the time frame necessary for reestablishing adequate physical habitat is not well-known. Some studies have indicated that many decades or longer may be required, depending on a variety of factors. Under the WFD, the REstoring rivers FOR effective catchment Management (REFORM

  6. Imaging and spectroscopic observations of a filament channel and the implications for the nature of counter-streamings

    SciTech Connect

    Chen, P. F.; Fang, C.; Harra, L. K.

    2014-03-20

    The dynamics of a filament channel are observed with imaging and spectroscopic telescopes before and during the filament eruption on 2011 January 29. The extreme ultraviolet (EUV) spectral observations reveal that there are no EUV counterparts of the Hα counter-streamings in the filament channel, implying that the ubiquitous Hα counter-streamings found by previous research are mainly due to longitudinal oscillations of filament threads, which are not in phase between each other. However, there exist larger-scale patchy counter-streamings in EUV along the filament channel from one polarity to the other, implying that there is another component of unidirectional flow (in the range of ±10 km s{sup –1}) inside each filament thread in addition to the implied longitudinal oscillation. Our results suggest that the flow direction of the larger-scale patchy counter-streaming plasma in the EUV is related to the intensity of the plage or active network, with the upflows being located at brighter areas of the plage and downflows at the weaker areas. We propose a new method to determine the chirality of an erupting filament on the basis of the skewness of the conjugate filament drainage sites. This method suggests that the right-skewed drainage corresponds to sinistral chirality, whereas the left-skewed drainage corresponds to dextral chirality.

  7. Effects of variation in streamflow and channel structure on smallmouth bass habitat in an alluvial stream

    USGS Publications Warehouse

    Jason, Remshardt W.; Fisher, W.L.

    2009-01-01

    We evaluated the effects of streamflow-related changes in channel shape and morphology on the quality, quantity, availability and spatial distribution of young-of-year and adult smallmouth bass Micropterus dolomieu habitat in an alluvial stream, the Baron Fork of the Illinois River, Oklahoma. We developed Habitat Suitability Criteria (HSC) for young-of-year and adult smallmouth bass to assess changes in available smallmouth bass habitat between years, and compare predicted smallmouth bass Weighted Usable Area (WUA) with observed WUA measured the following year. Following flood events between 1999 and 2000, including a record flood, changes in transect cross-sectional area ranged from 62.5% to 93.5% and channel mesohabitat overlap ranged from 29.5% to 67.0% in study three study reaches. Using Physical HABitat SIMulation (PHABSIM) system analysis, we found that both young-of-year and adult smallmouth bass habitat were differentially affected by intra- and inter-annual streamflow fluctuations. Maximum WUA for young-of-year and adults occurred at streamflows of 1.8 and 2.3m3 s-1, respectively, and WUA declined sharply for both groups at lower streamflows. For most microhabitat variables, habitat availability was similar between years. Habitat suitability criteria developed in 1999 corresponded well with observed fish locations in 2000 for adult smallmouth bass but not for young-of-year fish. Our findings suggest that annual variation in habitat availability affects the predictive ability of habitat models for young-of-year smallmouth bass more than for adult smallmouth bass. Furthermore, our results showed that despite the dynamic nature of the gravel-dominated, alluvial Baron Fork, HSC for smallmouth bass were consistent and transferable between years.

  8. The influence of hydrous Mn–Zn oxides on diel cycling of Zn in an alkaline stream draining abandoned mine lands

    USGS Publications Warehouse

    Shope, Christopher L.; Xie, Ying; Gammons, Christopher H.

    2006-01-01

    Many mining-impacted streams in western Montana with pH near or above neutrality display large (up to 500%) diel cycles in dissolved Zn concentrations. The streams in question typically contain boulders coated with a thin biofilm, as well as black mineral crusts composed of hydrous Mn–Zn oxides. Laboratory mesocosm experiments simulating diel behavior in High Ore Creek (one of the Montana streams with particularly high Zn concentrations) show that the Zn cycles are not caused by 24-h changes in streamflow or hyporheic exchange, but rather to reversible in-stream processes that are driven by the solar cycle and its attendant influence on pH and water temperature (T). Laboratory experiments using natural Mn–Zn precipitates from the creek show that the mobilities of Zn and Mn increase nearly an order of magnitude for each unit decrease in pH, and decrease 2.4-fold for an increase in T from 5 to 20 °C. The response of dissolved metal concentration to small changes in either pH or T was rapid and reversible, and dissolved Zn concentrations were roughly an order of magnitude higher than Mn. These observations are best explained by sorption of Zn2+ and Mn2+ onto the secondary Mn–Zn oxide surfaces. From the T-dependence of residual metal concentrations in solution, approximate adsorption enthalpies of +50 kJ/mol (Zn) and +46 kJ/mol (Mn) were obtained, which are within the range of enthalpy values reported in the literature for sorption of divalent metal cations onto hydrous metal oxides. Using the derived pH- and T-dependencies from the experiments, good agreement is shown between predicted and observed diel Zn cycles for several historical data sets collected from High Ore Creek.

  9. Channel Incision and Water-Table Decline Along a Recently Formed Proglacial Stream, Mendenhall Valley, Southeastern Alaska

    USGS Publications Warehouse

    Neal, Edward G.

    2009-01-01

    Retreat of the Mendenhall Glacier, in southeastern Alaska, resulted in the formation of Mendenhall Lake, which has reduced the supply of coarse sediment to the proglacial Mendenhall River. Channel geometry surveys conducted in 1969 and 1998 over a 5.3 km reach of the Mendenhall River revealed reductions in mean bed elevations ranging from 0.4 to 1.5 meters based on cross sections replicated at 7 locations. Channel incision in the Mendenhall River is believed to be the result of a combination of factors resulting from localized and region-wide glacial retreat. In addition to a reduction of river stage due to channel incision, a decline in water-table elevations of about 0.6 m during a 17-year period from 1984 to 2001 was identified in an observation well located 250 m from the incising stream channel. Water-table elevations 600 m from the incising channel in the adjacent alluvial outwash aquifer respond in phase to changes in river stage, indicating water-levels in the adjacent aquifer are declining in response to river-channel incision. This study suggests channel incision can rapidly lower water-table elevations for large distances in the adjacent aquifer, potentially modifying the hydrology to a degree capable of influencing adjacent surface-water features, such as off-channel wetlands and flood-plain side channels.

  10. Channel and perennial flow initiation in headwater streams: management implications of variability in source-area size.

    PubMed

    Jaeger, Kristin L; Montgomery, David R; Bolton, Susan M

    2007-11-01

    Despite increasing attention to management of headwater streams as sources of water, sediment, and wood to downstream rivers, the extent of headwater channels and perennial flow remain poorly known and inaccurately depicted on topographic maps and in digital hydrographic data. This study reports field mapping of channel head and perennial flow initiation locations in forested landscapes underlain by sandstone and basalt lithologies in Washington State, USA. Contributing source areas were delineated for each feature using a digital elevation model (DEM) as well as a Global Positioning System device in the field. Systematic source area-slope relationships described in other landscapes were not evident for channel heads in either lithology. In addition, substantial variability in DEM-derived source area sizes relative to field-delineated source areas indicates that in this area, identification of an area-slope relationship, should one even exist, would be difficult. However, channel heads and stream heads, here defined as the start of perennial flow, appear to be co-located within both of the lithologies, which together with lateral expansion and contraction of surface water around channel heads on a seasonal cycle in the basalt lithology, suggest a controlling influence of bedrock springs for that location. While management strategies for determining locations of channel heads and perennial flow initiation in comparable areas could assign standard source area sizes based on limited field data collection within that landscape, field-mapped source areas that support perennial flow are much smaller than recognized by current Washington State regulations.

  11. Distribution of chemical elements in soils and stream sediments in the area of abandoned Sb-As-Tl Allchar mine, Republic of Macedonia.

    PubMed

    Bačeva, Katerina; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Makreski, Petre

    2014-08-01

    The aim of this study was to investigate the distribution of some toxic elements in topsoil and subsoil, focusing on the identification of natural and anthropogenic element sources in the small region of rare As-Sb-Tl mineralization outcrop and abandoned mine Allchar known for the highest natural concentration of Tl in soil worldwide. The samples of soil and sediments after total digestion were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Factor analysis (FA) was used to identify and characterize element associations. Six associations of elements were determined by the method of multivariate statistics: Rb-Ta-K-Nb-Ga-Sn-Ba-Bi-Li-Be-(La-Eu)-Hf-Zr-Zn-In-Pd-Ag-Pt-Mg; Tl-As-Sb-Hg; Te-S-Ag-Pt-Al-Sc-(Gd-Lu)-Y; Fe-Cu-V-Ge-Co-In; Pd-Zr-Hf-W-Be and Ni-Mn-Co-Cr-Mg. The purpose of the assessment was to determine the nature and extent of potential contamination as well as to broadly assess possible impacts to human health and the environment. The results from the analysis of the collected samples in the vicinity of the mine revealed that As and Tl elements have the highest median values. Higher median values for Sb are obviously as a result of the past mining activities and as a result of area surface phenomena in the past.

  12. Stream channel cross sections for a reach of the Boise River in Ada County, Idaho

    USGS Publications Warehouse

    Hortness, Jon E.; Werner, Douglas C.

    1999-01-01

    The Federal Emergency Management Agency produces maps of areas that are likely to be inundated during major floods, usually the 100-year, or 1-percent probability, flood. The maps, called Flood Insurance Rate Maps, are used to determine flood insurance rates for homes, businesses, or other structures located in flood-prone areas. State and local governments also use these maps for help with, among other things, development planning and disaster mitigation. During the period October 1997 through December 1998, the initial phase of a hydraulic analysis project of the Boise River from Barber Dam to the Ada/Canyon County boundary, the U.S. Geological Survey collected stream channel cross-section data at 238 locations along the river and documented 108 elevation reference marks established for horizontal and vertical control. In the final phase of the project, the Survey will use these data to determine water-surface elevations for the 10-, 50-, 100-, and 500-year floods and to define floodway limits. The Federal Emergency Management Agency will use the results of this hydraulic analysis to update the 100- and 500-year flood boundaries and the floodway limits on their Flood Insurance Rate Maps.

  13. Larval salamanders and channel geomorphology are indicators of hydrologic permanence in forested headwater streams

    EPA Science Inventory

    Regulatory agencies need rapid indicators of hydrologic permanence for jurisdictional determinations of headwater streams. Our study objective was to assess the utility of larval salamander presence and assemblage structure and habitat variables for determining stream permanence ...

  14. Assessing element distribution and speciation in a stream at abandoned Pb-Zn mining site by combining classical, in-situ DGT and modelling approaches.

    PubMed

    Omanović, Dario; Pižeta, Ivanka; Vukosav, Petra; Kovács, Elza; Frančišković-Bilinski, Stanislav; Tamás, János

    2015-04-01

    The distribution and speciation of elements along a stream subjected to neutralised acid mine drainage (NAMD) effluent waters (Mátra Mountain, Hungary; Toka stream) were studied by a multi-methodological approach: dissolved and particulate fractions of elements were determined by HR-ICPMS, whereas speciation was carried out by DGT, supported by speciation modelling performed by Visual MINTEQ. Before the NAMD discharge, the Toka is considered as a pristine stream, with averages of dissolved concentrations of elements lower than world averages. A considerable increase of element concentrations caused by effluent water inflow is followed by a sharp or gradual concentration decrease. A large difference between total and dissolved concentrations was found for Fe, Al, Pb, Cu, Zn and As in effluent water and at the first downstream site, with high correlation factors between elements in particulate fraction, indicating their common behaviour, governed by the formation of ferri(hydr)oxides (co)precipitates. In-situ speciation by the DGT technique revealed that Zn, Cd, Ni, Co, Mn and U were predominantly present as a labile, potentially bioavailable fraction (>90%). The formation of strong complexes with dissolved organic matter (DOM) resulted in a relatively low DGT-labile concentration of Cu (42%), while low DGT-labile concentrations of Fe (5%) and Pb (12%) were presumably caused by their existence in colloidal (particulate) fraction which is not accessible to DGT. Except for Fe and Pb, a very good agreement between DGT-labile concentrations and those predicted by the applied speciation model was obtained, with an average correlation factor of 0.96. This study showed that the in-situ DGT technique in combination with model-predicted speciation and classical analysis of samples could provide a reasonable set of data for the assessment of the water quality status (WQS), as well as for the more general study of overall behaviour of the elements in natural waters subjected

  15. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 1. stream quality trends coinciding with the return of fish

    USGS Publications Warehouse

    Cravotta, Charles A.; Brightbill, Robin A.; Langland, Michael J.

    2010-01-01

    Acidic mine drainage (AMD) from legacy anthracite mines has contaminated Swatara Creek in eastern Pennsylvania. Intermittently collected base-flow data for 1959–1986 indicate that fish were absent immediately downstream from the mined area where pH ranged from 3.5 to 7.2 and concentrations of sulfate, dissolved iron, and dissolved aluminum were as high as 250, 2.0, and 4.7 mg/L, respectively. However, in the 1990s, fish returned to upper Swatara Creek, coinciding with the implementation of AMD treatment (limestone drains, limestone diversion wells, limestone sand, constructed wetlands) in the watershed. During 1996–2006, as many as 25 species of fish were identified in the reach downstream from the mined area, with base-flow pH from 5.8 to 7.6 and concentrations of sulfate, dissolved iron, and dissolved aluminum as high as 120, 1.2, and 0.43 mg/L, respectively. Several of the fish taxa are intolerant of pollution and low pH, such as river chub (Nocomis icropogon) and longnose dace (Rhinichthys cataractae). Cold-water species such as brook trout (Salvelinus fontinalis) and warm-water species such as rock bass (Ambloplites rupestris) varied in predominance depending on stream flow and stream temperature. Storm flow data for 1996–2007 indicated pH, alkalinity, and sulfate concentrations decreased as the stream flow and associated storm-runoff component increased, whereas iron and other metal concentrations were poorly correlated with stream flow because of hysteresis effects (greater metal concentrations during rising stage than falling stage). Prior to 1999, pH\\5.0 was recorded during several storm events; however, since the implementation of AMD treatments, pH has been maintained near neutral. Flow-adjusted trends for1997–2006 indicated significant increases in calcium; decreases in hydrogen ion, dissolved aluminum, dissolved and total manganese, and total iron; and no change in sulfate or dissolved iron in Swatara Creek immediately downstream from the

  16. Distribution of chemical elements in soils and stream sediments in the area of abandoned Sb–As–Tl Allchar mine, Republic of Macedonia

    SciTech Connect

    Bačeva, Katerina; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Makreski, Petre

    2014-08-15

    The aim of this study was to investigate the distribution of some toxic elements in topsoil and subsoil, focusing on the identification of natural and anthropogenic element sources in the small region of rare As–Sb–Tl mineralization outcrop and abandoned mine Allchar known for the highest natural concentration of Tl in soil worldwide. The samples of soil and sediments after total digestion were analyzed by inductively coupled plasma–mass spectrometry (ICP–MS) and inductively coupled plasma–atomic emission spectrometry (ICP–AES). Factor analysis (FA) was used to identify and characterize element associations. Six associations of elements were determined by the method of multivariate statistics: Rb–Ta–K–Nb–Ga–Sn–Ba–Bi–Li–Be–(La–Eu)–Hf–Zr–Zn–In–Pd–Ag–Pt–Mg; Tl–As–Sb–Hg; Te–S–Ag–Pt–Al–Sc–(Gd–Lu)–Y; Fe–Cu–V–Ge–Co–In; Pd–Zr–Hf–W–Be and Ni–Mn–Co–Cr–Mg. The purpose of the assessment was to determine the nature and extent of potential contamination as well as to broadly assess possible impacts to human health and the environment. The results from the analysis of the collected samples in the vicinity of the mine revealed that As and Tl elements have the highest median values. Higher median values for Sb are obviously as a result of the past mining activities and as a result of area surface phenomena in the past. - Highlights: • Soil and river sediments were analyzed from Sb–As–Tl Allchar locality. • An increased content of certain toxic elements for environment was determined. • Highest As and Tl contents are obtained in the close vicinity of Allchar mine. • River sediments portray 160 times higher content of Sb than EU values. • The results classify Allchar as probably the highest natural Tl-deposit worldwide.

  17. Channel-reach morphology controls of headwater streams based in flysch geologic structures: An example from the Outer Western Carpathians, Czech Republic

    NASA Astrophysics Data System (ADS)

    Galia, Tomáš; Hradecký, Jan

    2014-07-01

    A detailed measurement of 93 channel reaches that were classified with an adjusted Montgomery-Buffington (1997) reach-scale system provided comprehensive information of approximately 9 at-a-reach parameters: the channel gradient, the bankfull width, the bankfull depth, d90, the percentage of resistant rocks in the bed sediment, the number of pieces of large woody debris, valley confinement, direct sediment inputs and the presence of fluvial accumulations in the stream channel. In addition, the quantified intensity of sediment transport (i.e. ratio between sediment supply and transport capacity in longitudinal stream profiles) during flood events has been estimated by the one-dimensional bedload transport model (TOMSED), which was validated in two local streams. The principal component analysis of the at-a-reach parameters did not reveal significant groups of channel-reach morphologies; thus, the selected parameters that exclude sediment transport dynamics within stream longitudinal profile cannot reliably distinguish or predict individual channel reach morphologies. Nevertheless, the channel gradient represented the most significant single explanatory variable for stepped-bed morphologies. The addition of bedload transport parameters demonstrated that limited sediment supply streams and streams with limited transport capacities featured different successions of the channel reach morphologies in terms of the channel gradient and, subsequently, the fluvial continuity. The bedrock-cascades and step-pools were significant for the first case, whereas cascade and step-rapid morphology often occurred in higher sediment supply conditions.

  18. Influences of high-flow events on a stream channel altered by construction of a highway bridge: a case study

    USGS Publications Warehouse

    Hedrick, Lara B.; Welsh, Stuart A.; Anderson, James T.

    2009-01-01

    Impacts of highway construction on streams in the central Appalachians are a growing concern as new roads are created to promote tourism and economic development in the area. Alterations to the streambed of a first-order stream, Sauerkraut Run, Hardy County, WV, during construction of a highway overpass included placement and removal of a temporary culvert, straightening and regrading of a section of stream channel, and armourment of a bank with a reinforced gravel berm. We surveyed longitudinal profiles and cross sections in a reference reach and the altered reach of Sauerkraut Run from 2003 through 2007 to measure physical changes in the streambed. During the four-year period, three high-flow events changed the streambed downstream of construction including channel widening and aggradation and then degradation of the streambed. Upstream of construction, at a reinforced gravel berm, bank erosion was documented. The reference section remained relatively unchanged. Knowledge gained by documenting channel changes in response to natural and anthropogenic variables can be useful for managers and engineers involved in highway construction projects.

  19. Channel morphology and patterns of bedload transport in fluvial, formerly-glaciated, forested headwater streams of the Columbia Mountains, Canada

    NASA Astrophysics Data System (ADS)

    Green, Kim; Brardinoni, Francesco; Alila, Younes

    2013-04-01

    This study examines channel-reach morphology and bedload transport dynamics in relation to landscape structure and snowmelt hydrology in Cotton and Elk Creek, two headwater streams of the southern Columbia Mountains, Canada. Data collection is based on field surveys and GIS analysis in conjunction with a nested monitoring network of water discharge and bed load transfer. The nested monitoring network is designed to examine the effects of channel bed texture, and the influence of free-formed (i.e., boulder cascades, step pools, and riffle pools) and forced-alluvial morphologies (i.e., forced step pools) on bedload entrainment and transport. The landscape is characterized by subdued glaciated topography in which sediment is primarily supplied by bank failures and fluvial transfer dominates the channelized sediment cascade. The spatial distribution of channel types is mainly controlled by glacially imposed local slope together with availability of wood and glacigenic materials. Interestingly, downstream hydraulic geometry as well as downstream patterns of the coarse channel bed fraction and stream power are all insensitive to systematic changes of local slope along the typically stepped longitudinal profiles. An indication that the study alluvial systems are adjusted to the contemporary hydrologic and sedimentary regimes, and as such through post-LGM times have been able to compensate for the glacially-imposed boundary conditions. Stepwise multiple regression indicates that annual bedload yield is chiefly controlled by the number of peak events over threshold discharge. During such high flows, repeated destabilization of channel bed armouring and re-mobilization of sediment stored behind logjams can ensure sediment supply for bedload transport across the entire snowmelt season. In particular, channel morphology affects distinctively the variability of bed load response to hydrologic forcing. The observed spatial variability in annual bedload yield appears to correlate

  20. Annual and seasonal differences in pesticide mixtures within channelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only a limited amount of information on pesticide mixtures within agricultural headwater streams is available. A greater understanding of the characteristics of pesticide mixtures and their spatial and temporal trends within agricultural headwater streams is needed to evaluate the risks of pesticid...

  1. Complex channel responses to changes in stream flow and sediment supply on the lower Duchesne River, Utah

    USGS Publications Warehouse

    Gaeuman, D.; Schmidt, J.C.; Wilcock, P.R.

    2005-01-01

    Channel responses to flow depletions in the lower Duchesne River over the past 100 years have been highly complex and variable in space and time. In general, sand-bed reaches adjusted to all perturbations with bed-level changes, whereas the gravel-bed reaches adjusted primarily through width changes. Gravel-bed reaches aggraded only when gravel was supplied to the channel through local bank erosion and degraded only during extreme flood events. A 50% reduction in stream flow and an increase in fine sediment supply to the study area occurred in the first third of the 20th century. The gravel-bed reach responded primarily with channel narrowing, whereas bed aggradation and four large-scale avulsions occurred in the sand-bed reaches. These avulsions almost completely replaced a section of sinuous channel about 14 km long with a straighter section about 7 km long. The most upstream avulsion, located near a break in valley slope and the transition from a gravel bed upstream and a sand bed downstream, transformed a sinuous sand-bed reach into a braided gravel-bed reach and eventually into a meandering gravel-bed reach over a 30-year period. Later, an increase in flood magnitudes and durations caused widening and secondary bed aggradation in the gravel-bed reaches, whereas the sand-bed reaches incised and narrowed. Water diversions since the 1950s have progressively eliminated moderate flood events, whereas larger floods have been less affected. The loss of frequent flooding has increased the duration and severity of drought periods during which riparian vegetation can establish along the channel margins. As a result, the channel has gradually narrowed throughout the study area since the late 1960s, despite the occasional occurrence of large floods. No tributaries enter the Duchesne River within the study area, so all reaches have experienced identical changes in stream flow and upstream sediment supply. ?? 2004 Elsevier B.V. All rights reserved.

  2. Development of Relations of Stream Stage to Channel Geometry and Discharge for Stream Segments Simulated with Hydrologic Simulation Program-Fortran (HSPF), Chesapeake Bay Watershed and Adjacent Parts of Virginia, Maryland, and Delaware

    USGS Publications Warehouse

    Moyer, Douglas; Bennett, Mark

    2007-01-01

    The U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), Chesapeake Bay Program (CBP), Interstate Commission for the Potomac River Basin (ICPRB), Maryland Department of the Environment (MDE), Virginia Department of Conservation and Recreation (VADCR), and University of Maryland (UMD) are collaborating to improve the resolution of the Chesapeake Bay Regional Watershed Model (CBRWM). This watershed model uses the Hydrologic Simulation Program-Fortran (HSPF) to simulate the fate and transport of nutrients and sediment throughout the Chesapeake Bay watershed and extended areas of Virginia, Maryland, and Delaware. Information from the CBRWM is used by the CBP and other watershed managers to assess the effectiveness of water-quality improvement efforts as well as guide future management activities. A critical step in the improvement of the CBRWM framework was the development of an HSPF function table (FTABLE) for each represented stream channel. The FTABLE is used to relate stage (water depth) in a particular stream channel to associated channel surface area, channel volume, and discharge (streamflow). The primary tool used to generate an FTABLE for each stream channel is the XSECT program, a computer program that requires nine input variables used to represent channel morphology. These input variables are reach length, upstream and downstream elevation, channel bottom width, channel bankfull width, channel bankfull stage, slope of the floodplain, and Manning's roughness coefficient for the channel and floodplain. For the purpose of this study, the nine input variables were grouped into three categories: channel geometry, Manning's roughness coefficient, and channel and floodplain slope. Values of channel geometry for every stream segment represented in CBRWM were obtained by first developing regional regression models that relate basin drainage area to observed values of bankfull width, bankfull depth, and bottom width at each of the 290 USGS

  3. Groundwater-derived contaminant fluxes along a channelized Coastal Plain stream

    SciTech Connect

    LaSage, Danita m; Fryar, Alan E; Mukherjee, Abhijit; Sturchio, Neil C; Heraty, Linnea J

    2008-10-01

    Recent studies in various settings across eastern North America have examined the movement of volatile organic compound (VOC) plumes from groundwater to streams, but few studies have addressed focused discharge of such plumes in unlithified sediments. From 1999 through 2002, we monitored concentrations of trichloroethene (TCE) and the non-volatile co-contaminant technetium-99 along Little Bayou Creek, a first -order perennial stream in the Coastal Plain of western Kentucky. Spring flow contributed TCE and technetium-99 to the creek, and TCE concentrations tended to vary with technetium-99 in springs. Contaminant concentrations in stream water fluctuated seasonally, but not always synchronously with stream flow. However, contaminant influxes varied seasonally with stream flow and were dominated by a few springs. Concentrations of O2, NO3⁻, and SO2-4, values of δ37CL in groundwater, and the lack of less-chlorinated ethenes in groundwater and stream water indicated that aerobic biodegradation of TCE was unlikely. Losses of TCE along Little Bayou Creek resulted mainly from volatilization, in contrast to streams receiving diffuse contaminated discharge, where intrinsic bioremediation of VOCs appears to be prevalent.

  4. Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: A long-term geomorphological experiment

    USGS Publications Warehouse

    McKnight, Diane M.; Tate, C.M.; Andrews, E.D.; Niyogi, D.K.; Cozzetto, K.; Welch, K.; Lyons, W.B.; Capone, D.G.

    2007-01-01

    The McMurdo Dry Valleys of Antarctica contain many glacial meltwater streams that flow for 6 to 12??weeks during the austral summer and link the glaciers to the lakes on the valley floors. Dry valley streams gain solutes longitudinally through weathering reactions and microbial processes occurring in the hyporheic zone. Some streams have thriving cyanobacterial mats. In streams with regular summer flow, the mats are freeze-dried through the winter and begin photosynthesizing with the onset of flow. To evaluate the longer term persistence of cyanobacterial mats, we diverted flow to an abandoned channel, which had not received substantial flow for approximately two decades. Monitoring of specific conductance showed that for the first 3??years after the diversion, the solute concentrations were greater in the reactivated channel than in most other dry valley streams. We observed that cyanobacterial mats became abundant in the reactivated channel within a week, indicating that the mats had been preserved in a cryptobiotic state in the channel. Over the next several years, these mats had high rates of productivity and nitrogen fixation compared to mats from other streams. Experiments in which mats from the reactivated channel and another stream were incubated in water from both of the streams indicated that the greater solute concentrations in the reactivated channel stimulated net primary productivity of mats from both streams. These stream-scale experimental results indicate that the cryptobiotic preservation of cyanobacterial mats in abandoned channels in the dry valleys allows for rapid response of these stream ecosystems to climatic and geomorphological change, similar to other arid zone stream ecosystems. ?? 2006 Elsevier B.V. All rights reserved.

  5. Morphodynamics of supraglacial streams (Invited)

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Manga, M.; Gajjar, P.

    2010-12-01

    Supraglacial hydrologic networks exhibit structure and morphodynamics reminiscent of alluvial channels, in an environment where the primary mechanism of erosion is thermal and timescales of topographic adjustment are days to weeks. Supraglacial stream incision is strongly modulated by solar forcing, at times faster or slower than the large-scale lowering of the glacial surface. This variability, in combination with control by structures within the ice or other surface topography, produces a time-evolving drainage network over the course of the melt season. Near the snow line, porous ice facilitates channel development and abandonment via seepage, whereas near the terminus channels are more stable and larger in scale. Discharge generally increases with drainage area, except in cases where water is lost through moulins or crevasses. We report here on fieldwork at the Mendenhall and Llewellyn glaciers on the Juneau Icefield, aimed at better characterizing flow and incision dynamics of supraglacial streams. Time series of temperature, velocity and isotopic composition reveal diurnal variability in flow processes, with clear discharge dependence. GPS profiles show slope dependence of stream sinuousity, and we observe differential incision of ice surface and streams along with downstream migration of meanders and of ice bedforms. We document drainage density, and identify subsurface water movement near the snow line that facilitates channelization. These field measurements are used to develop and validate a theoretical model of meander formation in supraglacial streams, based on the framework of bend theory in alluvial meanders (Karlstrom et al., in review). We find empirically that meandering in supraglacial streams globally follows the linear wavelength-width power law relation found in alluvial and bedrock rivers, but with a smaller intercept. Our linear theory can reproduce this relation, as well as the observed downstream migration of meanders.

  6. Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool-riffle channels

    NASA Astrophysics Data System (ADS)

    Tonina, Daniele; Buffington, John M.

    2011-08-01

    Hyporheic flow results from the interaction between streamflow and channel morphology and is an important component of stream ecosystems because it enhances water and solute exchange between the river and its bed. Hyporheic flow in pool-riffle channels is particularly complex because of three-dimensional topography that spans a range of partially to fully submerged conditions, inducing both static and dynamic head variations. Hence, these channels exhibit transitional conditions of streambed pressure and hyporheic flow compared to previous studies of fully submerged, two-dimensional bed forms. Here, we conduct a series of three-dimensional simulations to investigate the effects of bed topography, depth of alluvium, and stream discharge on hyporheic flow in pool-riffle reaches with variable bed form submergence, and we propose three empirical formulae to predict the mean depth of hyporheic exchange and characteristic values of the residence time distribution (mean and standard deviation). Hyporheic exchange is predicted with a three-dimensional pumping model, and hyporheic flow is modeled as a Darcy flow. We find that the hyporheic residence time is well approximated by a lognormal distribution for both partially and entirely submerged pool-riffle topography, with the parameters of the distribution defined by the mean and variance of the log-transformed residence time. Depth of alluvium has a substantial effect on hyporheic flow when alluvial depth is less than a third of the bed form wavelength for the conditions examined.

  7. Watershed scale influence of pesticide reduction practices on pesticides and fishes within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Implementation of pesticide reduction practices to reduce pesticide usage within agricultural watersheds has the potential to reduce pesticide concentrations within agricultural streams. The watershed scale influence of pesticide reduction practices on pesticides and the biota within agricultural he...

  8. Investigation of Biogeochemical Functional Proxies in Headwater Streams Across a Range of Channel and Catchment Alterations

    NASA Astrophysics Data System (ADS)

    Berkowitz, Jacob F.; Summers, Elizabeth A.; Noble, Chris V.; White, John R.; DeLaune, Ronald D.

    2014-03-01

    Historically, headwater streams received limited protection and were subjected to extensive alteration from logging, farming, mining, and development activities. Despite these alterations, headwater streams provide essential ecological functions. This study examines proxy measures of biogeochemical function across a range of catchment alterations by tracking nutrient cycling (i.e., inputs, processing, and stream loading) with leaf litter fall, leaf litter decomposition, and water quality parameters. Nutrient input and processing remained highest in second growth forests (the least altered areas within the region), while recently altered locations transported higher loads of nutrients, sediments, and conductivity. Biogeochemical functional proxies of C and N input and processing significantly, positively correlated with rapid assessment results (Pearson coefficient = 0.67-0.81; P = 0.002-0.016). Additionally, stream loading equations demonstrate that N and P transport, sediment, and specific conductivity negatively correlated with rapid assessment scores (Pearson coefficient = 0.56-0.81; P = 0.002-0.048). The observed increase in stream loading with lower rapid assessment scores indicates that catchment alterations impact stream chemistry and that rapid assessments provide useful proxy measures of function in headwater ecosystems. Significant differences in nutrient processing, stream loading, water quality, and rapid assessment results were also observed between recently altered (e.g., mined) headwater streams and older forested catchments (Mann-Whitney U = 24; P = 0.01-0.024). Findings demonstrate that biogeochemical function is reduced in altered catchments, and rapid assessment scores respond to a combination of alteration type and recovery time. An analysis examining time and economic requirements of proxy measurements highlights the benefits of rapid assessment methods in evaluating biogeochemical functions.

  9. Measurement of Channel Morphology in a Headwater Stream using Low-Altitude Photography and a 3D Model Software

    NASA Astrophysics Data System (ADS)

    Nidaira, K.; Hiraoka, M.; Gomi, T.; Uchiyama, Y.

    2015-12-01

    We developed a method for measuring detail channel morphology using a low elevation photographic scanning. This study was conducted in a 36-m step-pool channel segment in a headwater stream of Ooborazawa watershed located in 20 km south of Tokyo. The channels were covered by Boenninghausenia japonica and Oplismenus undulatifolius var. undulatifolius. Therefore, topographic measurement in high altitude (up to 5 m) using a drone is not applicable. D50 and D90 of channel substrates were 4 cm and 21 cm, respectively. A plastic case that equipped with two digital cameras (RICOH CX5) is mounted at the top of 2.2 m of a glass fiber pole. Photos were taken every 5 seconds from 1.8 m above ground surface. Eleven ground control points (GCP) were installed and measured coordinates. We developed digital 3D topographic model using PhotoScan Pro edition version 1.0.0 and the developed 1 cm contour map using ArcGIS version 10.2. Furthermore, we measured the number, height, and length of steps for examining the accuracy of data. Resolution of obtained topographic model was from 9 to 11 mm per pixel. 1 cm of particle was identified using photo was 1 cm. Estimated step height was agreed to the measured step height in the field. We detected maximum channel scour from October to December, 2014 with (146.5 mm/day for maximum daily rain) occurred at pools with 13cm changes , while 5 to 10 cm of changes in sediment deposition occurred from Mya to June, 2015 with 78.5 mm/day of maximum daily rain. Disposition of sediment was concentration within the sequences of step structures. Our method allows us for understanding detail sediment movement and resultant localized channel changes in steep channels.

  10. Using Multiple Watershed-scale Dye Tracing Tests to Study Water and Solute Transport in Naturally Obstructed Stream Channels

    NASA Astrophysics Data System (ADS)

    Jin, L.; Meeks, J. L.; Hubbard, K. A.; Kurian, L. M.; Siegel, D. I.; Lautz, L. K.; Otz, M. H.

    2007-12-01

    Temporary storage of surface water at channel sides and pools significantly affects water and solute transport downstream in watersheds. Beavers, natural "stream channel engineers", build dams which obstruct stream flow and temporarily store water in small to large ponds within stream channels. These ponds substantially delay water movement and increase the water residence time in the system. To study how water and solutes move through these obstructed stream channels, we did multiple dye tracing tests at Cherry Creek, a main tributary to Red Canyon Creek (Wind River Range, Wyoming). First we surveyed beaver dam distributions in detail within the study reaches. We then introduced dyes four times from July 2nd to 6th, 2007 using a scale-up approach. The observation site was fixed at the mouth of Cherry Creek, and 1.5 grams of Rhodamine WT (RWT) dye was injected sequentially at upstream sites with increasing test reach length. The reach lengths scaled up from 500m to 2.5 km. A field fluorometer recorded RWT concentrations every 15 seconds. The results show non-linear decreases of the peak concentration of the dye tracing cloud as the reach scaled up. Also, the times to 1.) the arrivals of the leading edges (Tl), 2.) the peak concentrations (Tp) and 3.) the tailing edges (Tt) and 4) the durations of the tracer cloud (Td) behaved non-linearly as function of length scale. For example, plots of arrivals of leading edges and tailing edges with scale distance appear to define curves of the form; Tl=27.665e1.07× Distance (r2=0.99) and Tt=162.62e0.8551× Distance (r2=0.99), respectively. The greatest non-linearity occurred for the time of tailing and the least for the time of leading edge. These observations are consistent with what would be expected with greater density of dams and/or storage volumes as the reach length increased upgradient. To come to a first approximation, we are currently modeling the breakthrough curves with the solute transport code OTIS to address

  11. Factors controlling the size and shape of stream channels in coarse noncohesive sands

    USGS Publications Warehouse

    Wolman, M. Gordon; Brush, Lucien M.

    1961-01-01

    The size and shape of equilibrium channels in uniform, noncohesive sands, 0.67 mm and 2.0 mm in diameter, were studied experimentally in a laboratory flume 52 feet long in which discharge, slope, sediment load, and bed and bank material could be varied independently. For each run a straight trapezoidal channel was molded in the sand and the flume set at a predetermined slope. Introduction of the discharge was accompanied by widening and aggradation until a stable channel was established. By definition a stable equilibrium existed when channel width, water surface slope, and rate of transport became constant. The duration of individual runs ranged from 2 to 52 hours depending upon the time required for establishing equilibrium. Stability of the banks determined channel shape. In the 2.0 mm sand at a given slope and discharge, only one depth was stable. At this depth the flow was just competent to move particles along the bed of the channel. An increase in discharge produced a wider channel of the same depth and thus transport per unit width remained at a minimum. Channels in the 0.67 mm sand were somewhat more stable and permitted a 1.5 fold increase in depth above that required to start movement of the bed material. An increased transport was associated with the increase in depth. The rate of transport is adequately described in terms of the total shear or in terms of the difference between the total shear and the critical shear required to begin movement. In these experiments the finer, or 0.67 mm, sand, began to move along the bed of the channel at a constant shear stress. Incipient movement of the coarser, or 2.0 mm, sand, varied with the shear stress as well as the mean velocity. At the initiation of movement a lower shear was associated with a higher velocity and vice versa. Anabranches of braided rivers and some natural river channels formed in relatively noncohesive materials resemble the essential characteristics of the flume channels. For a given slope and

  12. The influence of stream channels on distributions of Larrea tridentata and Ambrosia dumosa in the Mojave Desert, CA, USA: Patterns, mechanisms and effects of stream redistribution

    USGS Publications Warehouse

    Schwinning, S.; Sandquist, D.R.; Miller, D.M.; Bedford, D.R.; Phillips, S.L.; Belnap, J.

    2011-01-01

    Drainage channels are among the most conspicuous surficial features of deserts, but little quantitative analysis of their influence on plant distributions is available. We analysed the effects of desert stream channels ('washes') on Larrea tridentata and Ambrosia dumosa density and cover on an alluvial piedmont in the Mojave Desert, based on a spatial analysis of transect data encompassing a total length of 2775 m surveyed in 5 cm increments. Significant deviations from average transect properties were identified by bootstrapping. Predictably, shrub cover and density were much reduced inside washes, and elevated above average levels adjacent to washes. Average Larrea and Ambrosia cover and density peaked 1??2-1??6 m and 0??5-1??0 m from wash edges, respectively. We compared wash effects in runon-depleted (-R) sections, where washes had been cut off from runon and were presumably inactive, with those in runon-supplemented (+R) sections downslope from railroad culverts to help identify mechanisms responsible for the facilitative effect of washes on adjacent shrubs. Shrub cover and density near washes peaked in both + R and - R sections, suggesting that improved water infiltration and storage alone can cause a facilitative effect on adjacent shrubs. However, washes of < 2 m width in + R sections had larger than average effects on peak cover, suggesting that plants also benefit from occasional resource supplementation. The data suggest that channel networks significantly contribute to structuring plant communities in the Mojave Desert and their disruption has notable effects on geomorphic and ecological processes far beyond the original disturbance sites. ?? 2010 John Wiley & Sons, Ltd.

  13. The effects of stream bank vegetation on the flow characteristics and turbulent flow field of the main channel.

    NASA Astrophysics Data System (ADS)

    Valyrakis, M.; Yagci, O.; McGann, N. J.; Turker, U.

    2014-12-01

    Over the last two decades, the role of vegetation in the environmental and ecological restoration of surface water bodies has received much attention. Numerous studies have investigated the effects of vegetation on flow velocity at various locations ranging from the floodplain, river-bank and main channel. There is a general agreement amongst such studies, that the presence of vegetation may cause a decrease in flow velocity locally, followed by increased flows laterally, in non-vegetated regions. This experimental study attempts to present the findings of an elaborate set of flow measurements that aim at quantifying changes to the flow field at the main channel, at the bank inside the vegetated region and at their interface, for increasing vegetation density. To this goal an inclined section is constructed with acrylic panels sloping at, in a 1.8m wide re-circulating flume, to simulate the stream-bank. The main-channel bed comprises of coarse sand of 1.5mm nominal diameter, while 6mm diameter acrylic rods are used to simulate the vegetated river-bank. Ten velocity and turbulent intensity profiles are developed across the test cross-section, for each vegetation density, via acoustic Doppler velocimetry along a fine measurement grid. The experiments are run under uniform flow and stable bed conditions, for a range of six different vegetation densities changed by adding more vegetation elements in a staggered arrangement along the stream-bank. These detailed observations are further analyzed, with emphasis on the effects on the main channel. Measurements near the bed with implications for sediment transport are further discussed.

  14. Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications

    NASA Astrophysics Data System (ADS)

    Mirkovic, Bojana; Debener, Stefan; Jaeger, Manuela; De Vos, Maarten

    2015-08-01

    Objective. Recent studies have provided evidence that temporal envelope driven speech decoding from high-density electroencephalography (EEG) and magnetoencephalography recordings can identify the attended speech stream in a multi-speaker scenario. The present work replicated the previous high density EEG study and investigated the necessary technical requirements for practical attended speech decoding with EEG. Approach. Twelve normal hearing participants attended to one out of two simultaneously presented audiobook stories, while high density EEG was recorded. An offline iterative procedure eliminating those channels contributing the least to decoding provided insight into the necessary channel number and optimal cross-subject channel configuration. Aiming towards the future goal of near real-time classification with an individually trained decoder, the minimum duration of training data necessary for successful classification was determined by using a chronological cross-validation approach. Main results. Close replication of the previously reported results confirmed the method robustness. Decoder performance remained stable from 96 channels down to 25. Furthermore, for less than 15 min of training data, the subject-independent (pre-trained) decoder performed better than an individually trained decoder did. Significance. Our study complements previous research and provides information suggesting that efficient low-density EEG online decoding is within reach.

  15. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians

    USGS Publications Warehouse

    Dunham, J.B.; Rosenberger, A.E.; Luce, C.H.; Rieman, B.E.

    2007-01-01

    Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre-post fire comparison of temperatures between two sites (one from a burned stream and one unburned) over 13 years, a short-term (3 year) pre-post fire comparison of a burned and unburned stream with spatially extensive data, and a short-term (1 year) comparative study of spatial variability in temperatures using a "space for time" substitutive design across 90 sites in nine streams (retrospective comparative study). The latter design included streams with a history of stand-replacing wildfire and streams with severe post-fire reorganization of channels due to debris flows and flooding. Results from these three studies indicated that summer maximum water temperatures can remain significantly elevated for at least a decade following wildfire, particularly in streams with severe channel reorganization. In the retrospective comparative study we investigated occurrence of native rainbow trout (Oncorhynchus mykiss) and tailed frog larvae (Ascaphus montanus) in relation to maximum stream temperatures during summer. Both occurred in nearly every site sampled, but tailed frog larvae were found in much warmer water than previously reported in the field (26.6??C maximum summer temperature). Our results show that physical stream habitats can remain altered (for example, increased temperature) for many years following wildfire, but that native aquatic vertebrates can be resilient. In a management context, this suggests wildfire may be less of a threat to native species than human influences that alter the capacity of stream-living vertebrates to persist in the face of natural disturbance. ?? 2007 Springer Science+Business Media, LLC.

  16. Regionalized equations for bankfull-discharge and channel characteristics of streams in New York State: Hydrologic Region 7 in western New York

    USGS Publications Warehouse

    Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.

    2006-01-01

    Computation of bankfull discharge and channel dimensions (width, depth, and cross-sectional area) at ungaged sites requires equations that relate bankfull discharge and channel dimensions to drainage-area at gaged sites. Bankfull-channel information commonly is needed for watershed assessments, stream channel classification, and the design of stream-restoration projects. Such equations are most accurate if they are derived on the basis of data from streams within a region of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. New York State contains eight hydrologic regions that were previously delineated on the basis of high-flow (flood) characteristics. This report presents drainage areas and associated bankfull characteristics (discharge and channel dimensions) for surveyed streams in western New York (Region 7). Stream-survey data and discharge records from seven active and three inactive USGS streamflow-gaging stations were used in regression analyses to relate drainage area to bankfull discharge and to bankfull channel width, depth, and cross-sectional area. The resulting equations are: bankfull discharge (ft 3/s) = 37.1*(drainage area, in mi2)^0.765; bankfull channel width (ft) = 10.8*(drainage area)^0.458; bankfull channel depth (ft) = 1.47*(drainage area)^0.199; and bankfull channel cross-sectional area (ft2) = 15.9*(drainage area)^0.656. The coefficients of determination (R2) for these four equations were 0.94, 0.89, 0.52, and 0.96, respectively. The high coefficients of determination for three of these equations (discharge, width, and cross-sectional area) indicate that much of the range in the variables was explained by the drainage area. The low coefficient of determination for the equation relating bankfull depth to drainage area, however, suggests that other factors also affected water depth. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.05 to 3.60 years; the mean

  17. Influence of instream habitat and water quality on aggressive behavior in crayfish of channelized headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many agricultural drainage ditches that border farm fields of the Midwestern United States are degraded headwater streams that possess communities of crayfish. We hypothesized that crayfish communities at sites with low instream habitat diversity and poor water quality would show greater evidence of...

  18. REGIONAL ASSESSMENT OF LAND USE IMPACTS ON STREAM CHANNEL HABITAT IN THE MIDDLE COLUMBIA RIVER BASIN

    EPA Science Inventory

    Many human land uses and land cover modifications (e.g., logging, grazing, roads) tend to increase erosion, leading to an increase in fine sediment supplied to streams and potentially degrading aquatic habitat for benthic organisms. This study evaluated potential human impacts o...

  19. Variable responses of fish assemblages, habitat, and stability to natural-channel-design restoration in Catskill Mountain streams

    USGS Publications Warehouse

    Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.

    2010-01-01

    Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.

  20. Sediment Mobilization and Storage Dynamics of a Debris Flow Impacted Stream Channel using Multi-Temporal Structure from Motion Photogrammetry

    NASA Astrophysics Data System (ADS)

    Bailey, T. L.; Sutherland-Montoya, D.

    2015-12-01

    High resolution topographic analysis methods have become important tools in geomorphology. Structure from Motion photogrammetry offers a compelling vehicle for geomorphic change detection in fluvial environments. This process can produce arbitrarily high resolution, geographically registered spectral and topographic coverages from a collection of overlapping digital imagery from consumer cameras. Cuneo Creek has had three historically observed episodes of rapid aggradation (1955, 1964, and 1997). The debris flow deposits continue to be major sources of sediment sixty years after the initial slope failure. Previous studies have monitored the sediment storage volume and particle size since 1976 (in 1976, 1982, 1983, 1985, 1986, 1987, 1998, 2003). We reoccupied 3 previously surveyed stream cross sections on Sept 30, 2014 and March 30, 2015, and produced photogrammetric point clouds using a pole mounted camera with a remote view finder to take nadir view images from 4.3 meters above the channel bed. Ground control points were registered using survey grade GPS and typical cross sections used over 100 images to build the structure model. This process simultaneously collects channel geometry and we used it to also generate surface texture metrics, and produced DEMs with point cloud densities above 5000 points / m2. In the period between the surveys, a five year recurrence interval discharge of 20 m3/s scoured the channel. Surface particle size distribution has been determined for each observation period using image segmentation algorithms based on spectral distance and compactness. Topographic differencing between the point clouds shows substantial channel bed mobilization and reorganization. The net decline in sediment storage is in excess of 4 x 10^5 cubic meters since the 1964 aggradation peak, with associated coarsening of surface particle sizes. These new methods provide a promising rapid assessment tool for measurement of channel responses to sediment inputs.

  1. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface

    USGS Publications Warehouse

    Triska, F.J.; Duff, J.H.; Avanzino, R.J.

    1993-01-01

    The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream. In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus

  2. Stream channel morphology, sediment and large wood transport evolution patterns following the 2008 Chaitén volcano eruption, Chile

    NASA Astrophysics Data System (ADS)

    Iroume, A.; Andreoli, A.; Ulloa, H.; Sandoval, V.; Lara, L. E.

    2012-04-01

    The study about hydrologic and geomorphic impacts of explosive eruptions on river systems and associated patterns of stream channel morphology, sediment and large wood transport evolution is extremely important in a country like Chile which, according to the Global Volcanism Program, is ranked 5th in terms of active volcanoes among nations. To date, such effects have been little studied in the densely vegetated and steep forested watersheds of southern Chile, and the likely hydrologic and geomorphic responses to these disturbance processes are not well understood. In addition to the overall need for greater understanding, the 2008 Chaitén volcano eruption provides a rare opportunity to study post-eruption landscape adjustments Explosive eruptions have the potential to inflict large impacts in terms of scale and severity. They can damage, destroy, or bury extensive areas of forest vegetation and cover the landscape with volcanic ash, filling river valleys, obliterating watershed divides, disturbing drainage patterns and changing channel size, shape, pattern and structure, and dead trees can contribute to large log jams on valley floors. Hydrologic, sedimentologic, and geomorphic responses to major explosive eruptions can be dramatic, widespread and persistent, and present enormous challenges to those entrusted with managing disturbance response. Specific channel segments in river systems affected by the 2008 Chaiten volcano eruption are investigated since January 2010. Data acquisition methods include the use of a sequence of remote images, GIS, continuous hydrologic measurements, periodic field surveying and sampling campaigns, and radio tagging. From the first two field campaigns in January 2010 and 2011, huge amounts of large wood (LW) were observed in the severely impacted river systems. In the Chaiten river (total catchment area of ~120 km2), LW deposited parallel to stream indicates high mobilization rates and some typical wood structures (log steps, valley

  3. Abandoned Texas oil fields

    SciTech Connect

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  4. Exploring geomorphic controls on fish bioenergetics in mountain streams: linkages between channel morphology and rearing habitat for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Hassan, M. A.

    2013-12-01

    Landscape heterogeneity constitutes an important control on spatial distribution of habitat for living organisms, at a range of spatial scales. For example, spatial variation in geomorphic processes can spatially structure populations as well as entire communities, and affect various ecosystem processes. We have coupled a 2D hydrodynamic model with a bioenergetic model to study the effects of various channel morphologies and bed textures on rearing habitat for coastal cutthroat trout (Oncorhynchus clarki clarki) in four reaches of a mountain stream. The bioenergetic model uses energy conservation principle to calculate energy budget for fish at any point of the study domain, given a set of relevant local conditions. Specifically, the energy intake is a function of food availability (invertebrate drift) while the energy expenditure occurs through, for example, basal metabolism and swimming to hold position against the flow. Channel morphology and bed texture, through their influence on channel hydraulics, can exert strong control on the spatial pattern of both food flux and swimming cost for drift-feeding fish. Therefore, the coupled hydrodynamic and bioenergetic models, parameterized using an extensive field data set, enabled us to explore mechanistic linkages between geomorphic properties of the study reaches, food resource availability, and the energetic profitability of rearing habitat for different age-classes at both between- and within-reach spatial scales.

  5. Are host-parasite interactions influenced by adaptation to predators? A test with guppies and Gyrodactylus in experimental stream channels.

    PubMed

    Pérez-Jvostov, Felipe; Hendry, Andrew P; Fussmann, Gregor F; Scott, Marilyn E

    2012-09-01

    Natural populations often face multiple mortality sources. Adaptive responses to one mortality source might also be beneficial with respect to other sources of mortality, resulting in "reinforcing adaptations"; or they might be detrimental with respect to other sources of mortality, resulting in "conflicting adaptations". We explored these possibilities by testing experimentally if the responses of guppies (Poecilia reticulata) to the monogenean ectoparasitic worm Gyrodactylus differed between populations adapted to different predation regimes. In experimental stream channels designed to replicate the natural environment, we exposed eight guppy populations (high-predation and low-predation populations from each of four separate rivers) either to their local Gyrodactylus parasites (infection treatment) or to the absence of those parasites (control). We found that infection dynamics varied dramatically among populations in a repeatable fashion, but that this variation was not related to the predation regime of origin. Consistent with previous work, high-predation guppy females gained more mass, had lower reproductive investment, and had more but smaller embryos than did low-predation females. Relative to control (no parasite) channels, guppies from treatment (infected) channels gained less mass but produced similar numbers and sizes of embryos-and thus had a higher reproductive effort. However, no interaction was evident between infection treatment and predation regime. We conclude that parasitism by Gyrodactylus and predation are both likely selective forces for guppies, but that adaptation to predation does not have an obvious deterministic effect on host-parasite dynamics or on life-history traits of female guppies.

  6. Impacts of Woody Debris on Fluvial Processes and Channel Morphology in Stable and Unstable Streams

    DTIC Science & Technology

    1997-06-01

    the scheme developed by Gregory et at, (1985), according to their potential to block the downstream movement of water and sediment. The...indication of the jam’s potential to induce backwater sedimentation or downstream bars. Debris jam types arc classified using a scheme modified from...channel morphology in a different type of channel environment to that * 0 •; •i•:’..- •,.,mii•iiii i• u-l• •ljJJijilI .[- illi i•lJl ,ii .dill I i llL, il

  7. Ice in Channels and Ice-Rock Mixtures in Valleys on Mars: Did They Slide on Deformable Rubble Like Antarctic Ice Streams?

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Recent studies of ice streams in Antarctica reveal a mechanism of basal motion that may apply to channels and valleys on Mars. The mechanism is sliding of the ice on deformable water-saturated till under high pore pressures. It has been suggested by Lucchitta that ice was present in outflow channels on Mars and gave them their distinctive morphology. This ice may have slid like Antarctic ice streams but on rubbly weathering products rather than till. However, to generate water under high pore pressures, elevated heatflow is needed to melt the base of the ice. Either volcanism or higher heatflow more than 2 b.y. ago could have raised the basal temperature. Regarding valley networks, higher heatflow 3 b.y. ago could have allowed sliding of ice-saturated overburden at a few hundred meters depth. If the original, pristine valleys were somewhat deeper than they are now, they could have formed by the same mechanism. Recent sounding of the seafloor in front of the Ross Ice Shelf in Antarctica reveals large persistent patterns of longitudinal megaflutes and drumlinoid forms, which bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of martian outflow channels. The flutes are interpreted to have formed at the base of ice streams during the last glacial advance. Additional similarities of Antarctic ice streams with martian outflow channels are apparent. Antarctic ice streams are 30 to 80 km wide and hundreds of kilometers long. Martian outflow channels have similar dimensions. Ice stream beds are below sea level. Carr determined that most common floor elevations of martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally. Martian channels also have floor gradients that are shallow or go uphill locally and have low surface gradients. The depth to the

  8. An Alternative to Channel-Centered Views of the Landscape for Understanding Modern Streams in the Mid-Atlantic Piedmont Region, Eastern USA

    NASA Astrophysics Data System (ADS)

    Merritts, D. J.; Walter, R. C.; Rahnis, M. A.; Oberholtzer, W.

    2008-12-01

    Stream channels generally are the focus of conceptual models of valley bottom geomorphology. The channel-centered model prevalent in the tectonically inactive eastern U. S. invokes meandering stream channels migrating laterally across valley floors, eroding one bank while depositing relatively coarse sediment in point bars on the other. According to this model, overbank deposition during flooding deposits a veneer of fine sediment over the gravel substrate. Erosion is considered normal, and the net volume of sediment is relatively constant with time. A dramatic change in conditions-land-clearing during European settlement--led to widespread aggradation on valley bottoms. This historic sedimentation was incorporated in the channel-centered view by assuming that meandering streams were overwhelmed by the increased sediment load and rapidly aggraded vertically. Later, elevated stream channels cut through these deposits because of decreased sediment supply and increased stormwater runoff accompanying urbanization. This view can be traced to early ideas of stream equilibrium in which incoming sediment supply and runoff determine stream-channel form. We propose a different conceptual model. Our trenching and field work along hundreds of km of stream length in the mid-Atlantic Piedmont reveal no point bars prior to European settlement. Instead, a polygenetic valley-bottom landscape underlies the drape of historic sediment. The planar surface of this veneer gives the appearance of a broad floodplain generated by long-term meandering and overbank deposition, but the "floodplain" is a recent aggradational surface from regional base-level rise due to thousands of early American dams that spanned valley bottoms. As modern streams incise into the historic fine-grained slackwater sediment, they expose organic-rich hydric soils along original valley bottom centers; talus, colluvium, bedrock, and saprolite with forest soils along valley margins; and weathered Pleistocene (and

  9. Erosion, sediment discharge, and channel morphology in the upper Chattahoochee River basin, Georgia, with a discussion of the contribution of suspended sediment to stream quality

    USGS Publications Warehouse

    Faye, Robert E.; Carey, W.P.; Stamer, J.K.; Kleckner, R.L.

    1980-01-01

    The 3,550 square miles of the Upper Chattahoochee River basin is an area of diverse physiographic and land-use characteristics. The headwater areas are mountainous with steep, relatively narrow channels. Land in the headwater areas is heavily forested, but small towns and farms are common in the valleys of large streams. Downstream, the basin is characterized by low hills and wider stream channels. Land in this part of the basin is also predominantly forested; however, large agricultural and urban areas are common. Urban land use is particularly intensive within the Atlanta Metropolitan Area.

  10. Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California

    NASA Astrophysics Data System (ADS)

    Snyder, Noah P.; Whipple, Kelin X.; Tucker, Gregory E.; Merritts, Dorothy J.

    2003-07-01

    An empirical calibration of the shear stress model for bedrock incision is presented, using field and hydrologic data from a series of small, coastal drainage basins near the Mendocino triple junction in northern California. Previous work comparing basins from the high uplift zone (HUZ, uplift rates around 4 mm/year) to ones in the low uplift zone (LUZ, ˜0.5 mm/year) indicates that the HUZ channels are about twice as steep for a given drainage area. This observation suggests that incision processes are more effective in the HUZ. It motivates a detailed field study of channel morphology in the differing tectonic settings to test whether various factors that are hypothesized to influence incision rates (discharge, channel width, lithology, sediment load) change in response to uplift or otherwise differ between the HUZ and LUZ. Analysis of regional stream gaging data for mean annual discharge and individual floods yields a linear relationship between discharge and drainage area. Increased orographic precipitation in the HUZ accounts for about a twofold increase in discharge in this area, corresponding to an assumed increase in the erosional efficiency of the streams. Field measurements of channel width indicate a power-law relationship between width and drainage area with an exponent of ˜0.4 and no significant change in width between the uplift rate zones, although interpretation is hampered by a difference in land use between the zones. The HUZ channel width dataset reveals a scaling break interpreted to be the transition between colluvial- and fluvial-dominated incision processes. Assessments of lithologic resistance using a Schmidt hammer and joint surveys show that the rocks of the study area should be fairly similar in their susceptibility to erosion. The HUZ channels generally have more exposed bedrock than those in the LUZ, which is consistent with protection by sediment cover inhibiting incision in the LUZ. However, this difference is likely the result of a

  11. Regionalized Equations for Bankfull-Discharge and Channel Characteristics of Streams in New York State: Hydrologic Region 6 in the Southern Tier of New York

    USGS Publications Warehouse

    Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.

    2005-01-01

    Equations that relate bankfull discharge and channel characteristics (width, depth, and cross-sectional area) to drainage-area size at gaged sites are needed to define bankfull discharge and channel dimensions at ungaged sites and to provide information for watershed assessments, streamchannel classification, and the design of stream-restoration projects. Such equations are most accurate if derived from streams within an area of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. In New York State, eight hydrologic regions were previously defined on the basis of similar high-flow (flood) characteristics. This report presents drainage areas and associated bankfull characteristics (discharge and channel dimensions) for surveyed streams in southwestern New York (Region 6). Stream-survey data and discharge records from 11 active (currently gaged) sites and 3 inactive (discontinued) sites were used in regression analyses to relate bankfull discharge and bankfull channel width, depth, and cross-sectional area to the size of the drainage area (mi2). The resulting equations are: bankfull discharge (ft3/s) = 48.0*(drainage area)0.842; bankfull channel width (ft) = 16.9*(drainage area)0.419; bankfull channel depth (ft) = 1.04*(drainage area)0.244; and bankfull channel cross-sectional area (ft2) = 17.6*(drainage area)0.662. The correlation coefficients (R2) for these four equations were 0.90, 0.79, 0.64, and 0.89, respectively. The high correlation coefficients for bankfull discharge and crosssectional area indicate that much of the variation in these variables is explained by the size of the drainage area. The smaller correlation coefficients for bankfull channel width and depth indicate that other factors also affect these relations. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.01 to 2.35 years; the mean recurrence interval was 1.54 years. The 14 surveyed streams were classified by Rosgen

  12. Abandoned Mine Lands

    EPA Pesticide Factsheets

    Abandoned Mine Lands are those lands, waters, and surrounding watersheds where extraction, beneficiation, or processing of ores and minerals (excluding coal) has occurred. These lands also include areas where mining or processing activity is inactive.

  13. Response of fish populations to natural channel design restoration in streams of the Catskill Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Warren, D.R.; Ernst, A.G.; Mulvihill, C.I.

    2008-01-01

    Many streams and rivers throughout North America have been extensively straightened, widened, and hardened since the middle 1800s, but related effects on aquatic ecosystems have seldom been monitored, described, or published. Beginning in the early 1990s, reach-level restoration efforts began to base projects on natural channel design (NCD) techniques and Rosgen's (1994b, 1996) river classification system in an effort to duplicate or mimic stable reference reach geomorphology. Four reaches in three streams of the Catskill Mountains, New York, were restored from 2000 to 2002 using NCD techniques to decrease bed and bank erosion rates, decrease sediment loads, and improve water quality. The effects of restoration on the health of fish assemblages were assessed through a before-after, control-impact (BACI) study design to quantify the net changes in population and community indices at treatment reaches relative to index changes at unaltered reference reaches from 1999 to 2004. After restoration, community richness and biomass at treatment reaches increased by more than one-third. Changes in fish communities were caused mainly by shifts in dominant species populations; fish community biomass and total fish abundance were generally dominated by daces or daces and sculpins before restoration and by one or more salmonid species after restoration. Density and biomass of eastern blacknose dace Rhinichthys atratulus, longnose dace R. cataractae, and slimy sculpin Cottus cognatus did not change appreciably, whereas net salmonid density and biomass increased substantially after restoration. These changes were driven primarily by large increases in populations of brown trout Salmo trutta. The findings demonstrate that the structure, function, and ultimately the health of resident fish populations and communities can be improved, at least over the short term, through NCD restoration in perturbed streams of the Catskill Mountains. ?? Copyright by the American Fisheries Society

  14. Abandoning wells working group

    SciTech Connect

    1997-03-01

    The primary objective of this working group is to identify major technical, regulatory, and environmental issues that are relevant to the abandonment of offshore wellbores. Once the issues have been identified, the working group also has the objective of making recommendations or providing potential solutions for consideration. Areas for process improvement will be identified and {open_quotes}best practices{close_quotes} will be discussed and compared to {open_quotes}minimum standards.{close_quotes} The working group will primarily focus on wellbore abandonment in the Gulf of Mexico. However, workshop participants are encouraged to discuss international issues which may be relevant to wellbore abandonment practices in the Gulf of Mexico. The Abandoning Wells Group has identified several major areas for discussion that have concerns related to both operators and service companies performing wellbore abandonments in the Gulf of Mexico. The following broad topics were selected for the agenda: (1) MMS minimum requirements and state regulations. (2) Co-existence of best practices, new technology, and P & A economics. (3) Liability and environmental issues relating to wellbore abandonment.

  15. Regionalized equations for bankfull-discharge and channel characteristics of streams in New York state: hydrologic region 5 in central New York

    USGS Publications Warehouse

    Westergard, Britt E.; Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.

    2005-01-01

    Equations that relate drainage area to bankfull discharge and channel dimensions (width, depth, and cross-sectional area) at gaged sites are needed to define bankfull discharge and channel dimensions at ungaged sites and to provide information for the design of stream-restoration projects. Such equations are most accurate if derived from streams within an area of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. A study to develop equations to predict bankfull data for ungaged streams in New York established eight regions that coincided with previously defined hydrologic regions. This report presents drainage areas and bankfull characteristics (discharge and channel dimensions) for streams in central New York (Region 5) selected for this pilot study. Stream-survey data and discharge records from seven active (currently gaged) sites and nine inactive (discontinued gaged) sites were used in regression analyses to relate size of drainage area to bankfull discharge and bankfull channel width, depth, and cross-sectional area. The resulting equations are: bankfull discharge = 45.5*(drainage area)^0.840; bankfull channel width = 13.2*(drainage area)^0.459; bankfull channel depth = 0.802*(drainage area)^0.367; bankfull channel cross-sectional area = 10.6*(drainage area)^0.826. The high correlation coefficients (R2) for these four equations (0.94, 0.90, 0.91, 0.98, respectively) indicate that much of the variation in the variables is explained by the size of the drainage area. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.11 to 6.00 years; the mean recurrence interval was 1.51 years. The 16 surveyed streams were classified by Rosgen stream type; most were mainly C-type reaches, with occasional B- and F-type reaches. The Region 5 equation was compared with equations developed for six other large areas in the Northeast. The major differences among results indicate a need to refine equations

  16. Simulation of the Migration, Fate, and Effects of Diazinon in Two Monticello Stream Channels,

    DTIC Science & Technology

    1981-12-01

    roaming fish, three cages with a total of 200 minnows per channel were placed in the first pool within the study area. About 10% of the free- swimming fish...of eggs has been shown in much lower concentrations for fathad minnows. Spinal scoliosis has been diagnosed by Allison and Hermanutz (1977) at a...at 90 pg/l Pimephales promelas Reduced hatching and increase in Allison and (fathead minnow) incidence of scoliosis at 3.2 wg/l Hermanutz 1977

  17. Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Lavigne, Franck; Suwa, Hiroshi

    2004-07-01

    In order to differentiate between different types of sediment-laden-flows in volcanic channels, we carried out observation of debris flows, hyperconcentrated flows, and stream flows in the Curah Lengkong river on the southeast slope of Mount Semeru in East Java, Indonesia. The aims of this study are: (1) to provide quantitative data for these flows in motion; (2) to compare the data for different types of flow that occur in the same river; (3) to assess the influence of rainfall on debris flows, hyperconcentrated flows, and streamflow generation. The Curah Lengkong river transports large volumes of sediment, in the range of 1×10 5 to 5×10 5 m 3 per debris flow, and 10 3 to 10 5 m 3 per hyperconcentrated flow and stream flow. Large sediment discharges result from the following factors: continuous and voluminous sediment supply of fine juvenile material by daily explosions of the Semeru volcano, pyroclastic source material emplaced on steep slopes, strong erosion of weathered river banks, and strong rainfall intensities. The occurrence of the flows focuses in the period from November through April, and the daily timing of it is the mid to late afternoon. Nearly all debris flows are triggered by stationary rainfall confined to the upper slopes of Mount Semeru, whereas hyperconcentrated flows and stream flows are mainly generated by migratory or regional rains driven upwards on the eastern slope. This slope receives its maximum of annual rainfall (3800 mm) at 800 m asl. The peak surface velocity of debris flows is always greater than the peak frontal velocity. The peak discharge of debris flows occurs several minutes after the passage of the flow front. Volumetric concentrations of sediment are high (48% to 69%) between the debris flow front and the point of peak discharge; after the peak discharge it usually decreases gradually. Contrary to the case of debris flows, high concentration of sediment appears in various portion of hyperconcentrated flows and stream flows

  18. Regional Relations in Bankfull Channel Characteristics determined from flow measurements at selected stream-gaging stations in West Virginia, 1911-2002

    USGS Publications Warehouse

    Messinger, Terence; Wiley, Jeffrey B.

    2004-01-01

    Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be

  19. Recharge of shallow aquifers through two ephemeral-stream channels in northeastern Wyoming, 1982-1983

    USGS Publications Warehouse

    Lenfest, L.W.

    1987-01-01

    Quantifying the recharge from ephemeral streams to alluvial and bedrock aquifers will help evaluate the effects of surface mining on alluvial valley floors in Wyoming. Two stream reaches were chosen for study in the Powder River basin. One reach was located along the North Fork Dry Fork Cheyenne River near Glenrock, Wyoming, and the other reach was located along Black Thunder Creek near Hampshire, Wyoming. The reach along the North Fork Dry Fork Cheyenne River was instrumented with 3 gaging stations to measure streamflow and with 6 observation wells to measure groundwater level fluctuations in alluvial and bedrock aquifers in response to streamflow. The 3 streamflow gaging stations were located within the 2.5-mi study reach to measure the approximate gain or loss of discharge along the reach. Computed streamflow losses ranged from 0.43 acre-ft/mi on July 9 , 1982, to 1.44 acre-ft/mi on August 9, 1982. The observation wells completed only in the alluvial aquifer were dry during flow in the North Fork Dry Fork Cheyenne River, whereas water levels in half of the observation wells completed in the bedrock aquifers or the alluvial and bedrock aquifers rose in response to flow in the North Fork Dry Fork Cheyenne River. Groundwater recharge on August 9, 1982, was calculated using a convolution technique using groundwater levels at the upstream site and was estimated to be 26.5 acre-ft/mi. The reach along Black Thunder Creek was instrumented with one gaging station to measure streamflow and with 4 observation wells to measure water level response in alluvial and bedrock aquifers to streamflow. Recharge to the alluvial aquifer from flow in Black Thunder Creek ranged from 3.56 to 12.4 acre-ft/mi. The recharge was estimated using the convolution technique using water level measurements in the observation wells completed in the alluvial aquifer. Water level measurements in the observation wells indicated water level rises in the alluvial and bedrock aquifers in response to

  20. Channel adjustment of an unstable coarse-grained stream: Opposing trends of boundary and critical shear stress, and the applicability of extremal hypotheses

    USGS Publications Warehouse

    Simon, Andrew; Thorne, Colin R.

    1996-01-01

    Channel adjustments in the North Fork Toutle River and the Toutle River main stem were initiated by deposition of a 2.5km3 debris avalanche and associated lahars that accompanied the catastrophic eruption of Mount St. Helens, Washington on 18 May 1980. Channel widening was the dominant process. In combination, adjustments caused average boundary shear stress to decrease non-linearly with time and critical shear stress to increase non-linearly with time. At the discharge that is equalled or exceeded 1 per cent of the time, these trends converged by 1991-1992 so that excess shear stress approached minimum values. Extremal hypotheses, such as minimization of unit stream power and minimization of the rate of energy dissipation (minimum stream power), are shown to be applicable to dynamic adjustments of the Toutle River system. Maximization of the Darcy-Weisbach friction factor did not occur, but increases in relative bed roughness, caused by the concomitant reduction in hydraulic depths and bed-material coarsening, were documented. Predictions of stable channel geometries using the minimum stream power approach were unsuccessful when compared to the 1991-1992 geometries and bed-material characteristics measured in the field. It is concluded that the predictions are not applicable because the study reaches are not truly stable and cannot become so until a new floodplain has been formed by renewed channel incision, retreat of stream-side hummocks, and establishment of riparian vegetation to limit the destabilizing effects of large floods. Further, prediction of energy slope (and consequently stream power) by the sediment transport equations is inaccurate because of the inability of the equations to account for significant contributions of finer grained (sand and gravel) bank materials (relative to the coarsened channel bed) from bank retreat and from upstream terrace erosion.

  1. Detecting channel riparian vegetation response to best-management-practices implementation in ephemeral streams with the use of spot high-resolution visible imagery

    USGS Publications Warehouse

    Kamp, Kendall Vande; Rigge, Matthew B.; Troelstrup, Nels H.; Smart, Alexander J.; Wylie, Bruce

    2013-01-01

    Heavily grazed riparian areas are commonly subject to channel incision, a lower water table, and reduced vegetation, resulting in sediment delivery above normal regimes. Riparian and in-channel vegetation functions as a roughness element and dissipates flow energy, maintaining stable channel geometry. Ash Creek, a tributary of the Bad River in western South Dakota contains a high proportion of incised channels, remnants of historically high grazing pressure. Best management practices (BMP), including off-stream watering sources and cross fencing, were implemented throughout the Bad River watershed during an Environmental Protection Agency (EPA) 319 effort to address high sediment loads. We monitored prairie cordgrass (Spartina pectinata Link) establishment within stream channels for 16 yr following BMP implementation. Photos were used to group stream reaches (n = 103) subjectively into three classes; absent (estimated  40% cover; n = 16) based on the relative amount of prairie cordgrass during 2010 assessments of ephemeral channels. Reaches containing drainage areas of 0.54 to 692 ha were delineated with the use of 2010 National Agriculture Imagery Program (NAIP) imagery. Normalized difference vegetation index (NDVI) values were extracted from 5 to 39 sample points proportional to reach length using a series of Satellite Pour l'Observation de la Terre (SPOT) satellite imagery. Normalized NDVI (nNDVI) of 2 152 sample points were determined from pre- and post-BMP images. Mean nNDVI values for each reach ranged from 0.33 to 1.77. ANOVA revealed significant increase in nNDVI in locations classified as present prairie cordgrass cover following BMP implementation. Establishment of prairie cordgrass following BMP implementation was successfully detected remotely. Riparian vegetation such as prairie cordgrass adds channel roughness that reduces the flow energy responsible for channel degradation.

  2. Coronal electron stream and Langmuir wave detection inside a propagation channel at 4.3 AU

    NASA Technical Reports Server (NTRS)

    Buttighoffer, A.; Pick, M.; Roelof, E. C.; Hoang, S.; Mangeney, A.; Lanzerotti, L. J.; Forsyth, R. J.; Phillips, J. L.

    1995-01-01

    Observations of an energetic interplanetary electron event associated with the production of Langmuir waves, both of which are identified at 4.3 AU by instruments on the Ulysses spacecraft, are presented in this paper. This electron event propagates inside a well-defined magnetic structure. The existence of this structure is firmly established by joint particle and plasma observations made by Ulysses instruments. Its local estimated radial width is of the order of 2.3 x 10(exp 7) km (0.15 AU). The electron beam is associated with a type III burst observed from Earth at high frequencies and at low frequencies from Ulysses in association with Langmuir waves detected inside the structure. The consistency of local (Ulysses) and remote (Earth) observations in terms of temporal and geometrical considerations establishes that the structure is anchored in the solar corona near the solar active region responisble for the observed type III emission and gives an accurate determination of the injection time for the observed electron beam. Propagation analysis of the electron event is presented. In order to quantify the magnetic field properties, a variance analysis has been performed and is presented in this paper. The analysis establishes that inside the structure the amount of magnetic energy involved in the fluctuations is less than 4% of the total magnetic energy; the minimal variance direction is well defined and in coincidence with the direction of the mean magnetic field. This configuration may produce conditions favorable for scatter free streaming of energetic electrons and/or Langmuir wave production. The results presented show that the magnetic field might play a role in stabilizing the coronal-origin plasma structures and then preserving them to large, approximately 4 AU, distances in the heliosphere.

  3. Post-Eruption Changes in Channel Geometry of Streams in the Toutle River Drainage Basin, 1980-82, Mount St. Helens, Washington

    USGS Publications Warehouse

    Meyer, D.F.; Nolan, K. Michael; Dodge, J.E.

    1985-01-01

    The May 18, 1980, eruption of Mount St. Helens, Washington, generated a debris avalanche, lateral blast, lahars, and tephra deposits that altered mainstem and tributary channels within the Toutle River drainage basin. Channel cross sections were monumented and surveyed on North Fork Toutle River and its tributaries, on South Fork Toutle River, on Green River, and on Toutle River in 1980 and 1981. These streams drain the north and west flanks of the volcano. The network of channel cross sections was surveyed more frequently following periods of higher flow. The repetitive cross-section surveys provide measurements of bank erosion or accretion and of channel erosion or aggradation. These data can be used to determine erosion rates, and to identify sources and storage sites of sediment in sediment budget computations. This report presents channel cross-section profiles constructed from the survey data collected during water years 1980 through 1982.

  4. Is in-stream macrophyte growth predictable and what are its impacts on channel-averaged flow characteristics?

    NASA Astrophysics Data System (ADS)

    Jordan, David N.; Thomas, Robert E.; Keevil, Gareth M.; Parsons, Daniel R.; Hardy, Richard J.

    2016-04-01

    Understanding how the growth of aquatic vegetation impacts stage-discharge coupling is vital for river management planning. This study presents an annual record of monthly spatial distribution surveys of the in-stream macrophyte Ranunculus penicillatus coupled with channel form and flow velocity measurements, within a 50 m-long reach of a gravel-bed river. Whereas stage has varied by up to 0.4 m, there has been little change in channel form over the monitoring period (ongoing since 23/07/2014). Macrophyte growth continued from the start of the monitoring period until October 2014 when mean patch area was 6.74 m2, and then decreased throughout a decay phase until January 2015 when mean patch area was 1.12 m2. There was a 75.2% loss of macrophyte surface area between October 2014 and January 2015. The largest patches that remained in January 2015 continued to decay until February. Conversely, new macrophyte patches also began to recolonize the channel during this time. To our knowledge, this is the first evidence of a transition period during which aquatic vegetation is in both decay and recolonization phases simultaneously. In total 69% of patches present in January exhibited regrowth without further decay to form a base for recolonization. Therefore, the spatial distribution of macrophyte patches could be determined to be somewhat persistent. Despite this, due to several different growth factors, there are recognisable differences in both macrophyte patch shape and distribution when comparing data from July 2014 and July 2015, emphasising the unpredictability of macrophyte growth. The decay period of the Ranunculus p. coincided with seasonal high discharges in this catchment. Discharge remained high from January until March 2015, but then began to decrease, reflecting annual peaks in historical records for the study area. Large discharge variations were not matched by a large stage range. Displacement of water by vegetation growth maintained the stage height when

  5. Abandoning the mentally ill.

    PubMed

    Barton, R

    1975-12-01

    Mentally ill people have been avoided and abandoned by their families and public authorities for hundreds of years. Present day abandonment includes the deployment of professionals from patients to paper; the destruction of availability and effectiveness of institutional facilities; the obfuscation of mental illness by captious, sematic criticism; the aspirations of paramedical and paraprofessional groups; and the subordination of the primary purpose of institutions and physicians to other objectives. The nature of authority is discussed and the need for the treatment of mentally ill people to be based on the art and science of medicine, rather than the pretension and advocacy of the gullible, unqualified or unscrupulous, is noted.

  6. Performance of an open limestone channel for treating a stream affected by acid rock drainage (León, Spain).

    PubMed

    Santofimia, Esther; López-Pamo, Enrique

    2016-07-01

    The generation of acid rock drainage (ARD) was observed after the oxidation dissolution of pyrite-rich black shales, which were excavated during the construction of a highway in León (Spain). ARDs are characterized by the presence of high concentrations of sulfate and metals (Al, Fe, Mn, Zn, Cu, Co, Ni, Th, and U) that affect the La Silva stream. Dissolved element concentrations showed values between one and four orders of magnitude higher than those of natural waters of this area. A passive treatment system was constructed; the aim of which was to improve the quality of the water of the stream. This work provides a hydrochemical characterization of the La Silva stream after its transit through the different elements that constitute the passive treatment system (open limestone channel (OLC), small ponds, and a wetland), during its first year of operation. The passive treatment system has two sections separated by a tunnel 230 m long. The first section, which stretches between the highway and the tunnel entrance, is an OLC 350 m long with a slope of 16 %. The second section, which stretches from the tunnel exit to the end wetland, has a length of 700 m and a slope of 6 %; it is in this section where six small ponds are located. In the first section of this passive treatment system, the OLC was effectively increasing the pH from 3 to 4-4.5 and eliminating all of the dissolved Fe and the partially dissolved Al. These elements, after hydrolysis at a pH 3-3.5 and 4-4.5, respectively, had precipitated as schwertmannite and hydrobasaluminite, while other dissolved metals were removed totally or partially for adsorption by the precipitates and/or by coprecipitation. The second section receives different inputs of water such as ARDs and natural waters. After exiting the treatment system, the stream is buffered by Al at a pH of 4-4.3, showing high Al concentrations (19-101 mg/L) but with a complete removal of dissolved Fe. Unfortunately, the outflow shows similar or

  7. Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km.

    PubMed

    Yoshida, Masato; Hirooka, Toshihiko; Kasai, Keisuke; Nakazawa, Masataka

    2016-01-11

    We demonstrate the first 40 Gbit/s single-channel polarization-multiplexed, 5 Gsymbol/s, 16 QAM quantum noise stream cipher (QNSC) transmission over 480 km by incorporating ASE quantum noise from EDFAs as well as the quantum shot noise of the coherent state with multiple photons for the random masking of data. By using a multi-bit encoded scheme and digital coherent transmission techniques, secure optical communication with a record data capacity and transmission distance has been successfully realized. In this system, the signal level received by Eve is hidden by both the amplitude and the phase noise. The highest number of masked signals, 7.5 x 10(4), was achieved by using a QAM scheme with FEC, which makes it possible to reduce the output power from the transmitter while maintaining an error free condition for Bob. We have newly measured the noise distribution around I and Q encrypted data and shown experimentally with a data size of as large as 2(25) that the noise has a Gaussian distribution with no correlations. This distribution is suitable for the random masking of data.

  8. MWSA's physical habitat approach - combining knowledge of habitat requirements with mechanisms of geomorphic and anthropogenic influence on stream channel form

    EPA Science Inventory

    Effective environmental policy decisions benefit from stream habitat information that is accurate, precise, and relevant. The recent National Wadeable Streams Assessment (NWSA) carried out by the U.S. EPA required physical habitat information sufficiently comprehensive to facilit...

  9. Glacial Meltwater Streams of the McMurdo Dry Valleys, Antarctica: Ecosystems Waiting for Water

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Gooseff, M.; Cozzetto, K.

    2007-12-01

    The McMurdo Dry Valleys of Antarctica contain many glacial meltwater streams that flow for 6 to 12 weeks during the austral summer and link the glaciers to the lakes on the valley floors. Dry valley streams gain solutes longitudinally through weathering reactions and microbial processes occurring in the hyporheic zone, evident as a damp area underneath and adjacent to the stream. The lower boundary of the hyporheic zone is determined by the depth to permafrost. On sunny days, stream temperatures can reach 15 °C, and advection of this warm water can erode the frozen lower boundary of the hyporheic zone. In cold summers, streamflow is fed mostly by melt from the faces of the source glaciers and a large portion of this meltwater may be stored in the hyporheic zone and then lost through sublimation, rather than discharged to the lakes. Some streams have thriving microbial mats composed of cyanobacteria and diatoms. These mats are freeze-dried through the winter and begin photosynthesizing with the onset of flow. To evaluate the longer term persistence of cynaobacterial mats, we diverted flow to an abandoned channel, which had not received substantial flow for approximately two decades. We observed that cyanobacterial mats became abundant in the reactivated channel within a week, indicating that the mats had been preserved in a cryptobiotic state in the channel. Over the next several years, these mats had high rates of productivity and nitrogen fixation compared to mats from other streams. These stream-scale experimental results indicate that the cryptobiotic preservation of cyanobacterial mats in abandoned channels in the dry valleys allows for rapid response of stream ecosystems to climatic and geomorphological change.

  10. Morphological Analyses and Simulated Flood Elevations in a Watershed with Dredged and Leveed Stream Channels, Wheeling Creek, Eastern Ohio

    USGS Publications Warehouse

    Sherwood, James M.; Huitger, Carrie A.; Ebner, Andrew D.; Koltun, G.F.

    2008-01-01

    The USGS, in cooperation with the Ohio Emergency Management Agency, conducted a study in the Wheeling Creek Basin to (1) evaluate and contrast land-cover characteristics from 2001 with characteristics from 1979 and 1992; (2) compare current streambed elevation, slope, and geometry with conditions present in the late 1980s; (3) look for evidence of channel filling and over widening in selected undredged reaches; (4) estimate flood elevations for existing conditions in both undredged and previously dredged reaches; (5) evaluate the height of the levees required to contain floods with selected recurrence intervals in previously dredged reaches; and (6) estimate flood elevations for several hypothetical dredging and streambed aggradation scenarios in undredged reaches. The amount of barren land in the Wheeling Creek watershed has decreased from 20 to 1 percent of the basin area based on land-cover characteristics from 1979 and 2001. Barren lands appear to have been converted primarily to pasture, presumably as a result of surface-mine reclamation. Croplands also decreased from 13 to 8 percent of the basin area. The combined decrease in barren lands and croplands is approximately offset by the increase in pasture. Stream-channel surveys conducted in 1987 and again in 2006 at 21 sites in four previously dredged reaches of Wheeling Creek indicate little change in the elevation, slope, and geometry of the channel at most sites. The mean change in width-averaged bed and thalweg elevations for the 21 cross sections was 0.1 feet. Bankfull widths, mean depths, and cross-sectional areas measured at 12 sites in undredged reaches were compared to estimates determined from regional equations. The mean percentage difference between measured and estimated bankfull widths was -0.2 percent, suggesting that bankfull widths in the Wheeling Creek Basin are generally about the same as regional averages for undisturbed basins of identical drainage area. For bankfull mean depth and cross

  11. Mode couplings in a two-stream free-electron laser with a helical wiggler and an ion-channel guiding

    SciTech Connect

    Mohsenpour, Taghi Alirezaee, Hajar

    2014-08-15

    In this study, the method of perturbation has been applied to obtain the dispersion relation (DR) of a two-stream free-electron laser (FEL) with a helical wiggler and an ion-channel with all relativistic effects on waves. This DR has been solved numerically to find the unstable modes and their growth rate. Numerical solutions of DR show that the growth rate is considerably enhanced in comparison with single-stream free-electron laser. In group II orbits, with relatively large wiggler induced velocities, new couplings are found. The effect of the velocity difference of the two electron beams on the instabilities has also been investigated in this study. Moreover, the effect of the ion-channel density on the maximum growth rate of FEL resonance has been analyzed.

  12. Development of regional curves of bankfull-channel geometry and discharge for streams in the non-urban, Piedmont Physiographic Province, Pennsylvania and Maryland

    USGS Publications Warehouse

    Cinotto, Peter J.

    2003-01-01

    Stream-restoration projects utilizing natural stream designs frequently are based on the bankfull-channel characteristics of stream reaches that can accommodate streamflow and sediment transport without excessive erosion or deposition and lie within a watershed that has similar runoff characteristics. The bankfull channel at an ungaged impaired site or reference reach is identified by use of field indicators and is confirmed with tools such as regional curves. Channel dimensions were surveyed at 14 streamflow-measurement stations operated by the U.S. Geological Survey (USGS) in the Gettysburg-Newark Lowland Section, Piedmont Lowland Section, and the Piedmont Upland Section of the Piedmont Physiographic Province1 in Pennsylvania and Maryland. From the surveyed channel dimensions, regional curves were developed from regression analyses of the relations between drainage area and the cross-sectional area, mean depth, width, and streamflow of the bankfull channel at these sites. Bankfull cross-sectional area and bankfull discharge have the strongest relation to drainage area as evidenced by R2 values of 0.94 and 0.93, respectively. The relation between bankfull crosssectional area and drainage area has a p-value of less than 0.001; no p-value is presented for the relation between bankfull discharge and drainage area because of a non-normal residual distribution. The relation between bankfull width and drainage area has an R2 value of 0.80 and a p-value of less than 0.001 indicating a moderate linear relation between all stations. The relation between bankfull mean depth and drainage area, with an R2 value of 0.72 and a p-value of less than 0.001, also indicates a moderate linear relation between all stations. The concept of regional curves can be a valuable tool to support efforts in stream restoration. Practitioners of stream restoration need to recognize it as such and realize the limitations. The small number of USGS streamflow-measurement stations available for

  13. Water quality, sediment quality, and stream-channel classification of Rock Creek, Washington, D.C., 1999-2000

    USGS Publications Warehouse

    Anderson, Anita L.; Miller, Cherie V.; Olsen, Lisa D.; Doheny, Edward J.; Phelan, Daniel J.

    2002-01-01

    Rock Creek Park is within the National Capital Region in Washington, D.C., and is maintained by the National Park Service. Part of Montgomery County, Maryland, and part of the District of Columbia drain into Rock Creek, which is a tributary of the Potomac River. Water quality in Rock Creek is important to biotic life in and near the creek, and in the Potomac River Basin and the Chesapeake Bay. The water quality of the Rock Creek Basin has been affected by continued urban and agricultural growth and development. The U.S. Geological Survey, in cooperation with the National Park Service, investigated water quality and sediment quality in Rock Creek over a 2-year period (1998?2000), and performed a stream-channel classification to determine the distribution of bottom sediment in Rock Creek. This report presents and evaluates water quality and bottom sediment in Rock Creek for water years 1999 (October 1, 1998 to September 30, 1999) and 2000 (October 1, 1999 to September 30, 2000). A synoptic surface-water assessment was conducted at five stations from June 23 to June 25, 1999, a temporal surface-water assessment was conducted at one station from February 18, 1999 to September 26, 2000, and bed-sediment samples were collected and assessed from three stations from August 17 to August 19, 1999. The synoptic surface-water assessment included pesticides (parent compounds and selected transformation products), field parameters, nutrients, and major ions. The temporal surface-water assessment included pesticides (parent compounds and selected transformation products) and field parameters. The bed-sediment assessment included trace elements and organic compounds (including low- and high-molecular weight polycyclic aromatic hydrocarbons, poly-chlorinated biphenyls, pesticides, and phthalates). Some, but not all, of the pesticides known to be used in the area were included in the synoptic water-quality assessment, the temporal water-quality assessment, and the bed

  14. Immediate changes in stream channel geomorphology, aquatic habitat, and fish assemblages following dam removal in a small upland catchment

    NASA Astrophysics Data System (ADS)

    Magilligan, F. J.; Nislow, K. H.; Kynard, B. E.; Hackman, A. M.

    2016-01-01

    Dam removal is becoming an increasingly important component of river restoration, with > 1100 dams having been removed nationwide over the past three decades. Despite this recent progression of removals, the lack of pre- to post-removal monitoring and assessment limits our understanding of the magnitude, rate, and sequence of geomorphic and/or ecological recovery to dam removal. Taking advantage of the November 2012 removal of an old ( 190 year-old) 6-m high, run-of-river industrial dam on Amethyst Brook (26 km2) in central Massachusetts, we identify the immediate eco-geomorphic responses to removal. To capture the geomorphic responses to dam removal, we collected baseline data at multiple scales, both upstream ( 300 m) and downstream (> 750 m) of the dam, including monumented cross sections, detailed channel-bed longitudinal profiles, embeddedness surveys, and channel-bed grain size measurements, which were repeated during the summer of 2013. These geomorphic assessments were combined with detailed quantitative electrofishing surveys of stream fish richness and abundance above and below the dam site and throughout the watershed and visual surveys of native anadromous sea lamprey (Petromyzon marinus) nest sites. Post-removal assessments were complicated by two events: (1) upstream knickpoint migration exhumed an older (ca. late eighteenth century) intact wooden crib dam 120 m upstream of the former stone dam, and (2) the occurrence of a 10-20 year RI flood 6 months after removal that caused further upstream incision and downstream aggradation. Now that the downstream reach has been reconnected to upstream sediment supply, the predominant geomorphic response was bed aggradation and associated fining (30-60% reduction). At dam proximal locations, aggradation ranged from 0.3 to > 1 m where a large woody debris jam enhanced aggradation. Although less pronounced, distal locations still showed aggradation with a mean depth of deposition of 0.20 m over the 750-m

  15. Comparison of self-fields effects in two-stream electromagnetically pumped FEL with ion-channel guiding and axial magnetic field

    NASA Astrophysics Data System (ADS)

    Saviz, S.; Mehdian, H.; Aghamir, Farzin M.; Ghorannevis, M.; Ashkarran, A. A.

    2011-12-01

    A theory of two-stream free-electron laser in a combined electromagnetic wiggler and an ion-channel guiding is developed. In the analysis, the electron trajectories and the small signal gain are derived by considering the effects of self-fields. Numerical calculations show that there are seven group's trajectories rather than nine groups reported in Mehdian and Saviz (2010 Chin. Phys. B 19(1), 014214). The comparison of the normalized gains and their corresponding normalized frequencies by employing the axial magnetic field and ion-channel guiding, with and without self-fields, in FEL has been studied numerically. The results show that the normalized maximum gain in FEL with axial magnetic is larger than that for using ion-channel guiding except in small region, but the results for their corresponding normalized frequencies are opposite.

  16. Diel fluctuations in summer streamflow depend on stream channel sediment storage and valley-floor vegetation in the forested western Cascades of Oregon, USA

    NASA Astrophysics Data System (ADS)

    Albright, E. J.; Gustafson, N.; Nelson, M. B.; Ramirez, J. M.; Rodriguez-Cardona, B. M.; Shughrue, C. M.; Jones, J. A.

    2010-12-01

    During summer lowflow conditions, the zone of influence of evapotranspiration (ET) on streamflow is expected to be restricted to a small portion of a watershed, but the nature of the effective contributing area during lowflows is debated. We tested alternative hypotheses about the effective contributing area of ET-induced diel fluctuations in stream discharge based on high-resolution streamflow records since 2000 from eight small, forested watersheds at the HJ Andrews Experimental Forest in the Western Cascades of Oregon. Using field observations, satellite data, and a mathematical model, we tested the hypothesis that valley floor sediment storage influences the magnitude of diel fluctuations by controlling the area of potential connectivity between shallow groundwater (hyporheic flow) and surface flow. Correlations between minimum stream discharge and maximum air temperature were highest during early summer and wet years in WS1, which has a wide valley floor and high sediment storage. Field surveys and capacitance rod data in WS1 (young forest, alluvial reaches) and WS2 (old growth forest, bedrock reaches) revealed that diel fluctuations in local water tables were synchronized throughout the watersheds, and fluctuations were larger in vegetated alluvial reaches (1 to 2 cm) than in bedrock reaches, which lacked trees (<0.5 cm). Stream channels and tree heights delineated on LiDAR data were combined with published allometric relationships and sapflow data to estimate total transpiration from trees growing only in alluvial reaches; this could account for daily ET estimated from whole-watershed discharge records. Analytical solutions of a simple mathematical model describing the outflow from stream banks as a function of sapflow and hydraulic conductivity indicated that daily maximum and minimum sapflow could produce the fluctuations observed in water table heights in alluvial reaches of the stream channel.

  17. Influence of Herbaceous Riparian Buffers on Fish and Amphibian Communities Within Channelized Headwater Streams in Central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous riparian buffers are a widely used conservation practice in the United States for reducing nutrient, pesticide, and sediment loadings in agricultural streams. The importance of forested riparian zones for headwater streams has been documented, but the ecological impacts of herbaceous ripa...

  18. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  19. Abandoned floodplain plant communities along a regulated dryland river

    USGS Publications Warehouse

    Reynolds, L. V.; Shafroth, Patrick B.; House, P. K.

    2014-01-01

    Rivers and their floodplains worldwide have changed dramatically over the last century because of regulation by dams, flow diversions and channel stabilization. Floodplains no longer inundated by river flows following dam-induced flood reduction comprise large areas of bottomland habitat, but the effects of abandonment on plant communities are not well understood. Using a hydraulic flow model, geomorphic mapping and field surveys, we addressed the following questions along the Bill Williams River, Arizona: (i) What per cent of the bottomland do abandoned floodplains comprise? and (ii) Are abandoned floodplains quantitatively different from adjacent xeric and riparian surfaces in terms of vegetation composition and surface sediment? We found that nearly 70% of active channel and floodplain area was abandoned following dam installation. Abandoned floodplains along the Bill Williams River tend to be similar to each other yet distinct from neighbouring habitats: they have been altered physically from their historic state, leading to distinct combinations of surface sediments, hydrology and plant communities. Abandoned floodplains may transition to xeric communities over time but are likely to retain some riparian qualities as long as there is access to relatively shallow ground water. With expected increases in water demand and drying climatic conditions in many regions, these surfaces and associated vegetation will continue to be extensive in riparian landscapes worldwide

  20. Ephemeral-Stream Channel and Basin-Floor Infiltration and Recharge in the Sierra Vista Subwatershed of the Upper San Pedro Basin, Southeastern Arizona

    USGS Publications Warehouse

    Coes, A.L.; Pool, D.R.

    2007-01-01

    The timing and location of streamflow in the San Pedro River are partially dependent on the aerial distribution of recharge in the Sierra Vista subwatershed. Previous investigators have assumed that recharge in the subwatershed occurs only along the mountain fronts by way of stream-channel infiltration near the contact between low-permeability rocks of the mountains and the basin fill. Recent studies in other alluvial basins of the Southwestern United States, however, have shown that significant recharge can occur through the sediments of ephemeral stream channels at locations several kilometers distant from the mountains. The purpose of this study was to characterize the spatial distribution of infiltration and subsequent recharge through the ephemeral channels in the Sierra Vista subwatershed. Infiltration fluxes in ephemeral channels and through the basin floor of the subwatershed were estimated by using several methods. Data collected during the drilling and coring of 16 boreholes included physical, thermal, and hydraulic properties of sediments; chloride concentrations of sediments; and pore-water stable-isotope values and tritium activity. Surface and subsurface sediment temperatures were continuously measured at each borehole. Twelve boreholes were drilled in five ephemeral stream channels to estimate infiltration within ephemeral channels. Active infiltration was verified to at least 20 meters at 11 of the 12 borehole sites on the basis of low sediment-chloride concentrations, high soil-water contents, and pore-water tritium activity similar to present-day precipitation. Consolidated sediments at the twelfth site prevented core recovery and estimation of infiltration. Analytical and numerical methods were applied to determine the surface infiltration flux required to produce the observed sediment-temperature fluctuations at six sites. Infiltration fluxes were determined for summer ephemeral flow events only because no winter flows were recorded at the sites

  1. Meta-Analysis of Lost Ecosystem Attributes in Urban Streams and the Effectiveness of Out-of-Channel Management Practices

    EPA Science Inventory

    Watershed development is a leading cause of stream impairment, and it increasingly threatens the availability, quality, and sustainability of freshwater resources as human populations continue to grow and migrate. Most efforts have focused on trying to improve ecological conditio...

  2. Suspended-sediment yields and stream-channel processes on Judy's Branch watershed in the St. Louis Metro East region in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Johnson, Gary P.; Roseboom, Donald P.; Sierra, Carlos R.

    2006-01-01

    Judy's Branch watershed, a small basin (8.64 square miles) in the St. Louis Metro East region in Illinois, was selected as a pilot site to determine suspended-sediment yields and stream-channel processes in the bluffs and American Bottoms (expansive low-lying valley floor in the region). Suspended-sediment and stream-chan-nel data collected and analyzed for Judy's Branch watershed are presented in this report to establish a baseline of data for water-resource managers to evaluate future stream rehabilitation and manage-ment alternatives. The sediment yield analysis determines the amount of sediment being delivered from the watershed and two subwatersheds: an urban tributary and an undeveloped headwater (pri-marily agricultural). The analysis of the subwater-sheds is used to compare the effects of urbanization on sediment yield to the river. The stream-channel contribution to sediment yield was determined by evaluation of the stream-channel processes operat-ing on the streambed and banks of Judy's Branch watershed. Bank stability was related to hydrologic events, bank stratigraphy, and channel geometry through model development and simulation. The average suspended-sediment yield from two upland subwatersheds (drainage areas of 0.23 and 0.40 sq.mi. was 1,163 tons per square mile per year (tons/sq.mi.-year) between July 2000 and June 2004. The suspended-sediment yield at the Route 157 station was 2,523 tons/sq.mi.-year, near the outlet of Judy's Branch watershed (drainage area = 8.33 sq.mi.). This is approximately 1,360 tons/sq.mi.-year greater than the average at the upland stations for the same time period. This result is unexpected in that, generally, the suspended-sediment yield decreases as the watershed area increases because of sediment stored in the channel and flood plain. The difference indicates a possible increase in yield from a source, such as bank retreat, and supports the concept that land-use changes increase stream-flows that may in turn result in

  3. The Abandonment of Social Studies?

    ERIC Educational Resources Information Center

    Griffith, Bryant

    1991-01-01

    Addresses the question of whether the social studies should be abandoned. Discusses Kieran Egan's analysis of the importance of storytelling and Egan's proposal to abandon the social studies curriculum in favor of a pedagogy more consistent with the way children think. Critiques Egan's view and examines implications for educators. (SG)

  4. Near-Channel Sources and Sinks along a Mountainous Stream: Establishing the Controls and Time Scales of the Lateral Transfer of Sediment and Carbon

    NASA Astrophysics Data System (ADS)

    Gartner, J. D.; Renshaw, C. E.

    2015-12-01

    River channels exchange sediment, carbon, and other matter with hillslopes and floodplains. An ongoing challenge is to quantify the time and length scales of these lateral interactions, and to establish physical controls on direction of transfer. Here we investigate whether downstream changes in stream power (Ω) can predict near-channel sources or sinks of matter on decadal time scales in a case study of Mink Brook, a 50 km2 watershed in New Hampshire, USA. Building on the Exner equation, we hypothesize that reaches with downstream increases in stream power (Ω↑) exhibit near-channel deposition and accumulation of organic matter, and reaches of downstream decreases in stream power (Ω↓) exhibit near-channel erosion and stripping of organic matter. We measured 210Pbex inventory (an indicator of erosion versus deposition), organic matter inventory, grain size, and depth of alluvium/colluvium in 29 soil pits at 6 cross sections along the brook. Sites had equivalent total Ω for a given storm event. However, 3 cross sections exhibited Ω↑, and 3 exhibited Ω↓. All cross sections showed a general trend of stripping of organic matter and fine sediment particles in the channel, paired with loading of matter at the ~2-year flood elevation. From the ~2- to ~25-year flood elevation, a marked difference appeared between sites. The Ω↑ cross sections exhibited several locations of erosion and stripping of organic matter, as evidenced by low 210Pbex inventories (70 to 1,000 bq m-2), low organic matter inventories (17 to 219 kg m-2), and thin alluvial cover (average 23 cm). The low 210Pbex inventories, below the characteristic 6,000 bq m-2 of stable soil profiles in this region, suggest no areas had consistent deposition over the last century. In contrast, the Ω↓ cross sections exhibited deposition of fine particles and organic matter from the ~2- to ~25-year flood elevation, as evidenced by elevated 210Pbex inventories (up to 9,100 bq m-2), elevated organic matter

  5. CHNTRN: a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network

    SciTech Connect

    Yeh, G.T.

    1983-09-01

    This report presents the development of a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network. A particular feature of the model is its capability to deal with the network system that may consist of any number of joined and branched streams/rivers of comparable size. The model employs a numerical method - an integrated compartment method (ICM) - which greatly facilitates the setup of the matrix equation for the discrete field approximating the corresponding continuous field. Most of the possible boundary conditions that may be anticipated in real-world problems are considered. These include junctions, prescribed concentration, prescribed dispersive flux, and prescribed total flux. The model is applied to two case studies: (1) a single river and (2) a five-segment river in a watershed. Results indicate that the model can realistically simulate the behavior of the sediment and chemical variations in a stream/river network. 11 references, 10 figures, 3 tables.

  6. Influence of adding small instream wood on fishes and hydrology within channelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large instream wood is well known for its importance in headwater streams because it promotes the development of pool habitat for fishes and provides them with cover from predators during the summer. However, little is known about the influence of small instream wood (diameter < 10 cm, length < 1 m...

  7. Ice keel seabed features in marine channels of the central Canadian Arctic Archipelago: evidence for former ice streams and iceberg scouring

    NASA Astrophysics Data System (ADS)

    MacLean, B.; Blasco, S.; Bennett, R.; England, J.; Rainey, W.; Hughes-Clarke, J.; Beaudoin, J.

    2010-08-01

    The study area lies within the central part of the Canadian Arctic Archipelago; a region that was covered by the Laurentide Ice Sheet during the Late Wisconsinan glaciation and earlier. Multibeam imagery from widely spaced transects indicates the presence of linear groove and ridge features on the seabed at several localities in Peel Sound, Franklin Strait, northern Larsen Sound, and within M'Clintock Channel. These lineations resemble features in Antarctica and in several formerly glaciated regions that have been interpreted to be sole marks emplaced beneath fast-flowing ice streams. Based on these analogies, a similar origin is inferred for the lineations on the channel floors within the study area The lineations are oriented parallel to the channel axes and margins. They occur on all transects within the bathymetrically deeper area at the junction of Franklin Strait and Peel Sound. Northward in Peel Sound they occur extensively on the western and central transects, and more locally on the eastern transect. Their north-south orientation is normal to that of glacial flow features on Somerset Island and most of eastern Prince of Wales Island, which border Peel Sound to the east and west, respectively. The trend of the lineations is northeasterly (parallel to the channel axis) in Franklin Strait and mainly northerly in Larsen Sound and M'Clintock Channel. Elsewhere, the seabed imagery commonly displays scours of various sizes and orientations created by the keels of icebergs. Seabed sediments revealed by 3.5 kHz sub-bottom profiles are interpreted to consist primarily of ice-contact sediments, that in part are thinly mantled by draped water lain sediments. The age of the lineations has not been established. Possibly their formation was coincident with an ice stream in the M'Clintock Channel - eastern Victoria Island region, which formed an ice shelf in Viscount Melville Sound that grounded on southern Melville and Byam Martin islands at ca. 10.4-9.6 14C ka BP

  8. Salmon carcasses increase stream productivity more than inorganic fertilizer pellets: A test on multiple trophic levels in streamside experimental channels

    USGS Publications Warehouse

    Wipfli, Mark S.; Hudson, John P.; Caouette, John P.; Mitchell, N.L.; Lessard, Joanna L.; Heintz, Ron A.; Chaloner, D.T.

    2010-01-01

    Inorganic nutrient amendments to streams are viewed as possible restoration strategies for re-establishing nutrients and stream productivity throughout the western coast of North America, where salmon runs and associated marine-derived nutrient subsidies have declined. In a mesocosm experiment, we examined the short-term (6 weeks) comparative effects of artificial nutrient pellets and salmon carcasses, alone (low and high amounts) and in combination, on stream food webs. Response variables included dissolved nutrient concentrations, biofilm ash-free dry mass (AFDM) and chlorophyll-alevels, macroinvertebrate density, growth and body condition of juvenile coho salmon Oncorhynchus kisutch, and whole-body lipid content of invertebrates and juvenile coho salmon. Most of the response variables were significantly influenced by carcass treatment; the only response variable significantly influenced by fertilizer pellet treatment was soluble reactive phosphorus (SRP) concentration. Ammonium-nitrogen concentration was the only response variable affected by both (low and high) levels of carcass treatment; all others showed no significant response to the two carcass treatment levels. Significant treatment × time interactions were observed for all responses except nitrate; for most responses, significant treatment effects were detected at certain time periods and not others. For example, significantly higher SRP concentrations were recorded earlier in the experiment, whereas significant fish responses were observed later. These results provide evidence that inorganic nutrient additions do not have the same ecological effects in streams as do salmon carcasses, potentially because inorganic nutrient additions lack carbon-based biochemicals and macromolecules that are sequestered directly or indirectly by consumers. Salmon carcasses, preferably deposited naturally during spawning migrations, appear to be far superior to inorganic nutrient amendments for sustaining and restoring

  9. Linking spatial patterns of bed surface texture, bed mobility, and channel hydraulics in a mountain stream to potential spawning substrate for small resident trout

    NASA Astrophysics Data System (ADS)

    Cienciala, Piotr; Hassan, Marwan A.

    2013-09-01

    In this paper we examined spatial patterns of bed texture, bed mobility, and channel hydraulics in four reaches of a mountain stream with moderate gradient (< 0.02) and linked them to availability and disturbance of potential spawning substrate for small resident cutthroat trout (body size 200 mm). Within-reach spatial distribution and extent of potential substrate and disturbance risk enabled us to identify between-reach differences, which pointed to existence of two distinct domains within the study area. In two cobble-gravel reaches bed was generally too coarse for spawning and potential substrate appeared to be limited to small areas protected by flow obstructions. These hydraulically sheltered sites promoted accumulation of large quantities of fine sediment that seemed to pose high disturbance risk to the associated substrate patches. In contrast, general bed fining resulted in development of extensive areas of spawning substrate, unaffected by excess fine sediment deposition, in the unobstructed portions of gravel-dominated reaches. In all study reaches bed mobility and risk of scour disturbance was generally limited, even though its significance was sensitive to the adopted value of eggs burial depth. Abrupt transition between the two contrasting domains in response to relatively modest changes in channel texture led us to hypothesize that small-bodied salmonids in similar mountain streams may be vulnerable to habitat fragmentation that prevent fish movement between reaches but also to climate and land use changes that alter inputs of water and sediment into the channels. Overall, our within-reach analyses illustrated that between-reach differences in potential substrate availability and disturbance risk may be strongly dependent on small-scale hydro-geomorphic processes and their configuration in space relative to one another.

  10. Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

    2013-02-28

    This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, and which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life.

  11. Tectonics, climate and mountain building in the forearc of southern Peru recorded in the 10Be chronology of low-relief surface abandonment

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.

    2009-12-01

    Regional low-relief surfaces have long been recognized as key features to understanding the response of landscapes to surface uplift. The canonical models of low-relief surface formation involve an extended period of tectonic quiescence during which, the fluvial systems bevel the landscape to a uniform elevation. This quiescent period is punctuated by a period(s) of surface uplift, which causes fluvial incision thereby abandoning the low-relief landscape. Over time, as rivers continue to incise in response to changes in sediment supply, river discharge, and base level fall, pieces of the relict low-relief landscape are left as abandoned remnants stranded above active channels. By determining the age of abandoned surfaces, previous workers have identified the onset of a change in the tectonic or climatic setting. One key assumption of this model is that the low-relief surfaces are truly abandoned with no current processes further acting on the surface. To improve our understanding of the underlying assumptions and problems of low-relief surface formation, we have used detailed mapping and absolute dating with cosmogenic 10Be to investigate surfaces in the hyperarid forearc region of southern Peru between ~14° and 18°S. Within this region, marine terraces and strath terraces reflect Plio-Pleistocene surface uplift, and together with the hyperarid climate, ongoing surface uplift provides a perfect natural laboratory to examine the processes affecting low-relief surface abandonment and preservation. With our new chronology we address: 1) the space and time correlations of surfaces, 2) incision rates of streams in response to base-level fall, and 3) surface erosion rates. Multiple surfaces have yielded 10Be surface abandonment ages that span >2 Ma - ~35 ka. While most of the surfaces we have dated are considerably less than 1 Ma, we have located two surfaces which are likely older than 2 Ma and constrain regional erosion rates to be <0.5mm/yr. Where the surface age

  12. Development of regional curves relating bankfull-channel geometry and discharge to drainage area for streams in Pennsylvania and selected areas of Maryland

    USGS Publications Warehouse

    Chaplin, Jeffrey J.

    2005-01-01

    Natural-stream designs are commonly based on the dimensions of the bankfull channel, which is capable of conveying discharges that transport sediment without excessive erosion or deposition. Regional curves relate bankfull-channel geometry and discharge to drainage area in watersheds with similar runoff characteristics and commonly are utilized by practitioners of natural-stream design to confirm or refute selection of the field-identified bankfull channel. Data collected from 66 streamflow-gaging stations and associated stream reaches between December 1999 and December 2003 were used in one-variable ordinary least-squares regression analyses to develop regional curves relating drainage area to cross-sectional area, discharge, width, and mean depth of the bankfull channel. Watersheds draining to these stations are predominantly within the Piedmont, Ridge and Valley, and Appalachian Plateaus Physiographic Provinces of Pennsylvania and northern Maryland. Statistical analyses of physiography, percentage of watershed area underlain by carbonate bedrock, and percentage of watershed area that is glaciated indicate that carbonate bedrock, not physiography or glaciation, has a controlling influence on the slope of regional curves. Regional curves developed from stations in watersheds underlain by 30 percent or less carbonate bedrock generally had steeper slopes than the corresponding relations developed from watersheds underlain by greater than 30 percent carbonate bedrock. In contrast, there is little evidence to suggest that regional curves developed from stations in the Piedmont or Ridge and Valley Physiographic Province are different from the corresponding relations developed from stations in the Appalachian Plateaus Physiographic Province. On the basis of these findings, regional curves are presented to represent two settings that are independent of physiography: (1) noncarbonate settings characterized by watersheds with carbonate bedrock underlying 30 percent or less

  13. 23 CFR 752.10 - Abandoned vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Abandoned vehicles. 752.10 Section 752.10 Highways... ROADSIDE DEVELOPMENT § 752.10 Abandoned vehicles. (a) Abandoned motor vehicles may be removed from the... collection of abandoned motor vehicles from within the right-of-way must be a development project and not...

  14. 23 CFR 752.10 - Abandoned vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Abandoned vehicles. 752.10 Section 752.10 Highways... ROADSIDE DEVELOPMENT § 752.10 Abandoned vehicles. (a) Abandoned motor vehicles may be removed from the... collection of abandoned motor vehicles from within the right-of-way must be a development project and not...

  15. 23 CFR 752.10 - Abandoned vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Abandoned vehicles. 752.10 Section 752.10 Highways... ROADSIDE DEVELOPMENT § 752.10 Abandoned vehicles. (a) Abandoned motor vehicles may be removed from the... collection of abandoned motor vehicles from within the right-of-way must be a development project and not...

  16. 23 CFR 752.10 - Abandoned vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Abandoned vehicles. 752.10 Section 752.10 Highways... ROADSIDE DEVELOPMENT § 752.10 Abandoned vehicles. (a) Abandoned motor vehicles may be removed from the... collection of abandoned motor vehicles from within the right-of-way must be a development project and not...

  17. 23 CFR 752.10 - Abandoned vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Abandoned vehicles. 752.10 Section 752.10 Highways... ROADSIDE DEVELOPMENT § 752.10 Abandoned vehicles. (a) Abandoned motor vehicles may be removed from the... collection of abandoned motor vehicles from within the right-of-way must be a development project and not...

  18. Flow resistance dynamics in step-pool stream channels: 1. Large woody debris and controls on total resistance

    USGS Publications Warehouse

    Wilcox, A.C.; Wohl, E.E.

    2006-01-01

    Flow resistance dynamics in step-pool channels were investigated through physical modeling using a laboratory flume. Variables contributing to flow resistance in step-pool channels were manipulated in order to measure the effects of various large woody debris (LWD) configurations, steps, grains, discharge, and slope on total flow resistance. This entailed nearly 400 flume runs, organized into a series of factorial experiments. Factorial analyses of variance indicated significant two-way and three-way interaction effects between steps, grains, and LWD, illustrating the complexity of flow resistance in these channels. Interactions between steps and LWD resulted in substantially greater flow resistance for steps with LWD than for steps lacking LWD. LWD position contributed to these interactions, whereby LWD pieces located near the lip of steps, analogous to step-forming debris in natural channels, increased the effective height of steps and created substantially higher flow resistance than pieces located farther upstream on step treads. Step geometry and LWD density and orientation also had highly significant effects on flow resistance. Flow resistance dynamics and the resistance effect of bed roughness configurations were strongly discharge-dependent; discharge had both highly significant main effects on resistance and highly significant interactions with all other variables. Copyright 2006 by the American Geophysical Union.

  19. Quantifying N2 and N2O production in agricultural streams using open channel methods: a tool for finding missing watershed nitrogen

    NASA Astrophysics Data System (ADS)

    Gardner, J. R.; Jordan, T. E.; Knee, K.; Fisher, T. R.

    2013-12-01

    Anthropogenic nitrogen (N) inputs are altering biogeochemical cycles, impairing aquatic ecosystems, and contributing to climate change. Agricultural watersheds, such as those in our study area on the eastern shore of Maryland, play a significant role as one of the greatest sources of N to coastal waters and N2O to the atmosphere. Denitrification can permanently remove N from the landscape through conversion to N2 and N2O gases, and gaseous N loss from streams and rivers is thought to be an important loss term in watershed N budgets. However, denitrification and fluxes of biogenic gases in streams are poorly understood, especially at ecologically relevant scales. In this study, we applied open channel methods to quantify in-situ N2 and N2O production at the reach scale. We accounted for both in-stream N2 production and watershed-derived N2 delivered to the stream via groundwater influx, and used two naturally present gases, 222Rn and Ar, as tracers for gas transfer velocity (k). We conducted eleven studies, each lasting six hours and repeated approximately quarterly in three different stream branches within a small watershed. Ultimately, these data will be part of a watershed nitrogen budget to assess the role of streams in the fate of Net Anthropogenic Nitrogen Inputs (NANI). Gas transfer velocity using 222Rn was 9-98% greater than k derived from Ar. However, k 222Rn agreed better with previous estimates; thus, the presented rates were estimated using k 222Rn. Biogenic N2 production rates ranged from 0.5 to 63.0 mmol N2-N m-2hr-1 with an average of 12.8. Biogenic N2O production ranged from 1.8 to 484.4 μmol N2O-N m-2hr-1 with an average of 98.0. N2O emissions to the atmosphere varied from 1.2 to 464.9 μmol N2O-N m-2 hr-1. Rates generally increased with temperature and spatial variation was fairly consistent across seasons. N2O will not contribute significantly to the watershed N budget (<2% of NANI); however, N2O was always supersaturated (344-3110%) and

  20. [Characteristics of nitrogen and phosphorus retention in two different channel forms in a typical headwater stream in the suburb of Hefei City, China ].

    PubMed

    Li, Ru-zhong; Yang, Ji-wei; Qian, Jing; Dong, Yu-hong; Tang, Wen-kun

    2014-09-01

    To investigate the characteristics of ammonium and phosphorus retention in two typical channel forms, deep pool and winding ditch in headwater stream, four field tracer experiments were conducted in a first-order stream of Ershibu River in Hefei suburban, in which a solution of biologically active (NH4Cl and KH2PO4) and conservative (NaCl) tracers was released to the head of each reach at a constant rate. According to the data sets of tracer experiments, mechanisms of ammonium and phosphorus retention were interpreted by using OTIS model code, transient storage metrics and nutrient spiraling theory. Study results showed that: (1) The value of As in deep pool was larger than that in winding ditch, whereas its value of hydrological parameter α was lower by an order of magnitude than that of winding ditch; (2) The value of NH(4)+ -λ in main channel was higher by two to three orders of magnitude than that of NH(4)+ -λs,in transient storage zone in deep pool, but in winding ditch the two parameters were closer in terms of numerical size; (3) In deep pool, the value of NH+(4) -Vf was higher by an order of magnitude than that of SRP-Vf, in winding ditch, however, not only the two values of NH(4)+ -Vf and SRP-Vf were close to each other, but NH(4)+ -Sw was nearly equal to SRP-Sw in numerical size as well; (4) The value of NH(4)+ -U was larger by two to three orders of magnitude than that of SRP-U in deep pool, whereas in winding ditch NH(4)+ -U was just larger by one to two orders of magnitude than SRP-U in size; (5) In general, significant difference existed between deep pool and winding ditch in the effect on ammonium and phosphorus retention, and marked retention efficiency was observed for ammonium rather than SRP in deep pool.

  1. Evaluation of irrigation canal networks to assess stream connectivity in a watershed

    USGS Publications Warehouse

    Colvin, M.E.; Moffitt, C.M.

    2009-01-01

    We used digital data sets, aerial photos and direct field observations in a geographical information system to evaluate the stream habitat in an Idaho watershed affected by agriculture. We found that the scale of the digital data sets affected the outcome of the assessment due to the presence of dewatered stream channels in the drainage. We analysed the spatial configuration of irrigation canals in the watershed to determine if the contemporary stream network connectivity could be attributed to human- caused or to natural hydrological processes. Many irrigation canals were significantly longer than would have been expected if these canals were constructed to capture water from the closest portion of the abandoned stream channels. Our findings provide evidence that some of these tributary streams had reaches that were likely ephemeral or intermittent at the time of canal construction. Our approach for assessing stream and irrigation network connectivity in pastoral and agricultural lands should aid managers in prioritizing the effective and appropriate reconnection efforts. Published in 2008 by John Wiley & Sons Ltd. ?? 2008 John Wiley & Sons, Ltd.

  2. Use of the Continuous Slope-Area Method to Estimate Runoff Through Ephemeral Stream Channels in SE Arizona

    NASA Astrophysics Data System (ADS)

    Stewart, A. M.; Callegary, J. B.; Smith, C. F.; Wiele, S. M.; Cordova, J. T.; Fritzinger, R. A.; Gupta, H. V.

    2008-12-01

    Quantifying discharge and associated ground-water recharge from ephemeral flow events in the desert southwest USA is of increasing importance because of mandates to achieve sustainability of water resources; however, low-cost techniques for accurate and continuous monitoring of ephemeral flows are not established. The continuous-slope area (CSA) method extends the well-known slope area method (used to develop peak-flow hydrographs) to permit complete-event discharge hydrographs to be developed. The method was tested by installing 11 CSA gaging sites within three sand-bedded ephemeral tributaries to the San Pedro River near Sierra Vista and Fort Huachuca, Arizona. CSA gages were located in reaches with 1) slowly varying flow paths, 2) total channel length at least nine times the channel width, 3) nearly constant cross-widths along the reach, and, 4) accessibility. A single CSA gage required three pressure transducers to be installed along the selected reach, separated by flow-path lengths about five times the channel width. Perforated pipes were driven 1 to 1.5 meters into bed sediments at a downstream angle of 45 degrees. Transducers were set in pipes with sensors located five to 10 centimeters below the channel bed. Channel cross-sections, cutting through each transducer location, were surveyed after installation and after significant flow events. For an independent check of stage/discharge, one gage was installed upstream of a broad-crested weir; this gage was fitted with a staff-plate to allow confirmatory observations. The USGS slope-area-computation program was modified to compute continuous discharge hydrographs, using survey data, stage time series, and estimates of channel roughness. The highest stage measured was 1.3 meters above the bed with an associated peak discharge of 34 cubic meters per second, and with a sustained flow of 28 cubic meters per second for 10 minutes. Runoff and ground-water recharge from flow events will be estimated using

  3. A Modeling Study of In-stream Tidal Energy Extraction and Its Potential Environmental Impacts in a Tidal Channel and Bay System

    NASA Astrophysics Data System (ADS)

    Wang, T.; Yang, Z.; Copping, A. E.

    2012-12-01

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While efforts have been made to assess and map available tidal energy resources using numerical models, little attention has been paid directly quantifying the associated potential environmental impacts as part of tidal energy generation. This paper presents the development of a tidal turbine module within a three-dimensional (3-D) unstructured grid coastal ocean model. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a stratified estuarine system. A series of numerical experiments with varying numbers and configurations of turbines were carried out to assess the changes in the hydrodynamics and biological processes in the tidal channel and bay system due to tidal energy extraction. Model results show the maximum extractable energy depends strongly on the turbine hub height, and that the effects of energy extraction on the flow fields vary vertically. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in the estuary. As one of the early modeling efforts aimed directly at examining the impacts of tidal energy extraction on estuarine circulation and biological processes, this study demonstrates that numerical models can serve as a very useful tool for this purpose. However, careful efforts are warranted to address system-specific environmental issues in real world, complex estuarine systems.

  4. Effects of streamflows on stream-channel morphology in the eastern Niobrara National Scenic River, Nebraska, 1988–2010

    USGS Publications Warehouse

    Schaepe, Nathaniel J.; Alexander, Jason S.; Folz-Donahue, Kiernan

    2016-03-09

    Changes in channel metrics generally corresponded to changes in streamflow conditions, but other than changes in incipient flood-plain area, these changes were small and were not measured in all three segments simultaneously. Increases in total channel width (except in segment 1) and incipient flood-plain area between 1993 and 1999 corresponded to increases in streamflow. Channel narrowing (except in segment 1) between 1999 and 2003 corresponded to lower summer streamflows and extended durations of very low summer streamflow. Although the pattern of low summer streamflow and extended durations of very low summer streamflow continued during the 2004–6 period and at the beginning of the 2007–10 period, no further narrowing was measured. Consistent tributary summer inflows help to explain the resistance of segments 2 and 3 to further narrowing. Because segment 1 is already much narrower than segments 2 and 3, its average current velocity is likely to be swifter and, therefore, competent to offset further effects of the processes that led to its narrowness.

  5. Rock riprap design for protection of stream channels near highway structures; Volume 2, Evaluation of Riprap design procedures

    USGS Publications Warehouse

    Blodgett, J.C.; McConaughy, C.E.

    1986-01-01

    In volume 2, seven procedures now being used for design of rock riprap installations were evaluated using data from 26 field sites. Four basic types of riprap failures were identified: Particle erosion, translational slide, modified slump, and slump. Factors associated with riprap failure include stone size , bank side slope, size gradation, thickness, insufficient toe or endwall, failure of the bank material, overtopping during floods, and geomorphic changes in the channel. A review of field data and the design procedures suggests that estimates of hydraulic forces acting on the boundary based on flow velocity rather than shear stress are more reliable. Several adjustments for local conditions, such as channel curvature, superelevation, or boundary roughness, may be unwarranted in view of the difficulty in estimating critical hydraulic forces for which the riprap is to be designed. Success of the riprap is related not only to the appropriate procedure for selecting stone size, but also to the reliability of estimated hydraulic and channel factors applicable to the site. (See also W89-04910) (Author 's abstract)

  6. Storms, channel changes, and a sediment budget for an urban-suburban stream, Difficult Run, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Gellis, A. C.; Myers, M. K.; Noe, G. B.; Hupp, C. R.; Schenk, E. R.; Myers, L.

    2017-02-01

    Determining erosion and deposition rates in urban-suburban settings and how these processes are affected by large storms is important to understanding geomorphic processes in these landscapes. Sediment yields in the suburban and urban Upper Difficult Run are among the highest ever recorded in the Chesapeake Bay watershed, ranging from 161 to 376 Mg/km2/y. Erosion and deposition of streambanks, channel bed, and bars and deposition of floodplains were monitored between 1 March 2010 and 18 January 2013 in Upper Difficult Run, Virginia, USA. We documented the effects of two large storms, Tropical Storm Lee (September 2011), a 100-year event, and Super Storm Sandy (October 2012) a 5-year event, on channel erosion and deposition. Variability in erosion and deposition rates for all geomorphic features, temporally and spatially, are important conclusions of this study. Tropical Storm Lee was an erosive event, where erosion occurred on 82% of all streambanks and where 88% of streambanks that were aggrading before Tropical Storm Lee became erosional. Statistical analysis indicated that drainage area explains linear changes (cm/y) in eroding streambanks and that channel top width explains cross-sectional area changes (cm2/y) in eroding streambanks and floodplain deposition (mm/y). A quasi-sediment budget constructed for the study period using the streambanks, channel bed, channel bars, and floodplain measurements underestimated the measured suspended-sediment load by 61% (2130 Mg/y). Underestimation of the sediment load may be caused by measurement errors and to contributions from upland sediment sources, which were not measured but estimated at 36% of the gross input of sediment. Eroding streambanks contributed 42% of the gross input of sediment and accounted for 70% of the measured suspended-sediment load. Similar to other urban watersheds, the large percentage of impervious area in Difficult Run and direct runoff of precipitation leads to increased streamflow and

  7. Storms, channel changes, and a sediment budget for an urban-suburban stream, Difficult Run, Virginia, USA

    USGS Publications Warehouse

    Gellis, Allen; Myers, Michael; Noe, Gregory; Hupp, Cliff R.; Shenk, Edward; Myers, Luke

    2017-01-01

    Determining erosion and deposition rates in urban-suburban settings and how these processes are affected by large storms is important to understanding geomorphic processes in these landscapes. Sediment yields in the suburban and urban Upper Difficult Run are among the highest ever recorded in the Chesapeake Bay watershed, ranging from 161 to 376 Mg/km2/y. Erosion and deposition of streambanks, channel bed, and bars and deposition of floodplains were monitored between 1 March 2010 and 18 January 2013 in Upper Difficult Run, Virginia, USA. We documented the effects of two large storms, Tropical Storm Lee (September 2011), a 100-year event, and Super Storm Sandy (October 2012) a 5-year event, on channel erosion and deposition. Variability in erosion and deposition rates for all geomorphic features, temporally and spatially, are important conclusions of this study. Tropical Storm Lee was an erosive event, where erosion occurred on 82% of all streambanks and where 88% of streambanks that were aggrading before Tropical Storm Lee became erosional. Statistical analysis indicated that drainage area explains linear changes (cm/y) in eroding streambanks and that channel top width explains cross-sectional area changes (cm2/y) in eroding streambanks and floodplain deposition (mm/y). A quasi-sediment budget constructed for the study period using the streambanks, channel bed, channel bars, and floodplain measurements underestimated the measured suspended-sediment load by 61% (2130 Mg/y). Underestimation of the sediment load may be caused by measurement errors and to contributions from upland sediment sources, which were not measured but estimated at 36% of the gross input of sediment. Eroding streambanks contributed 42% of the gross input of sediment and accounted for 70% of the measured suspended-sediment load. Similar to other urban watersheds, the large percentage of impervious area in Difficult Run and direct runoff of precipitation leads to increased streamflow and

  8. Inactive and abandoned noncoal mines

    SciTech Connect

    Not Available

    1991-08-01

    Volume 1 outlines the environmental, health and safety problems at IAMS (Inactive, Abandoned Mine Sites), remediation technologies, remediation costs, the methodology states used in preparing state reports, and state summary tables. It also describes the broad range of policy options for remediation of problems associated with IAMS. Volume 2 gives state reports for inactive and abandoned noncoal mines for the following states: Alaska, Arizona, California, Colorado, Florida, Idaho, Minnesota, Missouri, Montana, Nevada, New Mexico, Oregon, South Carolina, South Dakota, Utah, Washington, Wisconsin and Wyoming. Volume 3 lists the State reports for the inactive and abandoned noncoal mines for the following states: Alabama, Arkansas, Illinois, Indiana, Iowa, Louisiana, Maine, Maryland, Mississippi, New York, North Carolina, Ohio, Oklahoma, Pennsylvania, Texas, and Virginia. A separate abstract is included for each of the 3 volumes of this set.

  9. Urban Stream Ecology

    EPA Science Inventory

    Urban watersheds characteristically have high impervious surface cover, resulting in high surface runoff and low infiltration following storms. In response, urban streams experience “flashy” stormflows, reduced baseflows, bank erosion, channel widening, and sedimentation. Urban ...

  10. Glacially-megalineated limestone terrain of Anticosti Island, Gulf of St. Lawrence, Canada; onset zone of the Laurentian Channel Ice Stream

    NASA Astrophysics Data System (ADS)

    Eyles, Nick; Putkinen, Niko

    2014-03-01

    postulated Laurentian Channel Ice Stream (LCIS) within the Gulf of St. Lawrence sector of the Laurentide Ice Sheet.

  11. Discontinuous ephemeral streams

    NASA Astrophysics Data System (ADS)

    Bull, William B.

    1997-07-01

    Many ephemeral streams in western North America flowed over smooth valley floors before transformation from shallow discontinuous channels into deep arroyos. These inherently unstable streams of semiarid regions are sensitive to short-term climatic changes, and to human impacts, because hillslopes supply abundant sediment to infrequent large streamflow events. Discontinuous ephemeral streams appear to be constantly changing as they alternate between two primary modes of operation; either aggradation or degradation may become dominant. Attainment of equilibrium conditions is brief. Disequilibrium is promoted by channel entrenchment that causes the fall of local base level, and by deposition of channel fans that causes the rise of local base level. These opposing base-level processes in adjacent reaches are maintained by self-enhancing feedback mechanisms. The threshold between erosion and deposition is crossed when aggradational or degradational reaches shift upstream or downstream. Extension of entrenched reaches into channel fans tends to create continuous arroyos. Upvalley migration of fan apexes tends to create depositional valley floors with few stream channels. Less than 100 years is required for arroyo cutting, but more than 500 years is required for complete aggradation of entrenched stream channels and valley floors. Discontinuous ephemeral streams have a repetitive sequence of streamflow characteristics that is as distinctive as sequences of meander bends or braided gravel bars in perennial rivers. The sequence changes from degradation to aggradation — headcuts concentrate sheetflow, a single trunk channel conveys flow to the apex of a channel fan, braided distributary channels end in an area of diverging sheetflow, and converging sheetflow drains to headcuts. The sequence is repeated at intervals ranging from 15 m for small streams to more than 10 km for large streams. Lithologic controls on the response of discontinuous ephemeral streams include: (1

  12. Bearing the risk of abandonment

    SciTech Connect

    Attanasio, Donna M.

    2010-05-15

    In Order Nos. 679 and 679-A, FERC adopted a policy of authorizing rate incentives for new transmission early in the development process to encourage transmission investment. The abandoned-plant cost recovery incentive creates a tension between ratepayer and investor interests, which is increasingly reflected in FERC's orders. (author)

  13. Effects of hatchery fish density on emigration, growth, survival, and predation risk of natural steelhead parr in an experimental stream channel

    USGS Publications Warehouse

    Tatara, Christopher P.; Riley, Stephen C.; Berejikian, Barry A.

    2011-01-01

    Hatchery supplementation of steelhead Oncorhynchus mykiss raises concerns about the impacts on natural populations, including reduced growth and survival, displacement, and increased predation. The potential risks may be density dependent.We examined how hatchery stocking density and the opportunity to emigrate affect the responses of natural steelhead parr in an experimental stream channel and after 15 d found no density-dependent effects on growth, emigration, or survival at densities ranging from 1-6 hatchery parr/m2. The opportunity for steelhead parr to emigrate reduced predation by coastal cutthroat trout O. clarkii clarkii on both hatchery and natural steelhead parr. The cutthroat trout exhibited a type-I functional response (constant predation rate with increased prey density) for the hatchery and composite populations. In contrast, the predation rate on natural parr decreased as hatchery stocking density increased. Supplementation with hatchery parr at any experimental stocking density reduced the final natural parr density. This decline was explained by increased emigration fromthe supplemented groups. Natural parr had higher mean instantaneous growth rates than hatchery parr. The proportion of parr emigrating decreased as parr size increased over successive experimental trials. Smaller parr had lower survival and suffered higher predation. The final density of the composite population, a measure of supplementation effectiveness, increased with the hatchery steelhead stocking rate. Our results indicate that stocking larger hatchery parr (over 50 d postemergence) at densities within the carrying capacity would have low short-term impact on the growth, survival, and emigration of natural parr while increasing the density of the composite population; in addition, a stocking density greater than 3 fish/m2 might be a good starting point for the evaluation of parr stocking in natural streams.

  14. Experimental Tests of Priority Effects and Light Availability on Relative Performance of Myriophyllum spicatum and Elodea nuttallii Propagules in Artificial Stream Channels

    PubMed Central

    Zefferman, Emily P.

    2015-01-01

    Submersed macrophytes have important ecological functions in many streams, but fostering growth of beneficial native species while suppressing weedy invasives may be challenging. Two approaches commonly used in management of terrestrial plant communities may be useful in this context: (1) altering resource availability and (2) establishing desirable species before weeds can invade (priority effects). However, these approaches are rarely used in aquatic systems, despite widespread need for sustainable solutions to aquatic weed problems. In artificial stream channels in California, USA, I conducted experiments with asexual propagules of non-native invasive Myriophyllum spicatum (Eurasian watermilfoil) and native Elodea nuttallii (western waterweed) to address the questions: (1) How does light availability affect relative performance of the two species?; (2) Does planting the native earlier than the invasive decrease survival or growth rate of the invasive?; and (3) Do light level and priority effects interact? The relative performance between E. nuttallii and M. spicatum had an interesting and unexpected pattern: M. spicatum had higher growth rates than E. nuttallii in the zero and medium shade levels, but had similar performance in the low and high shade levels. This pattern is most likely the result of E. nutallii’s sensitivity to both very low and very high light, and M. spicatum’s sensitivity to very low light only. Native priority did not significantly affect growth rate or survival of M. spicatum, possibly because of unexpectedly poor growth of the E. nuttallii planted early. This study suggests that altering light levels could be effective in reducing growth of an invasive macrophyte, and for changing the competitive balance between a native and a non-native species in the establishment phase. Further investigations into the use of priority effects and resource alteration for submersed macrophyte management are warranted, given their mixed results in other

  15. Model stream channel testing of a UV-transparent polymer-based passive sampler for ultra-low-cost water screening applications.

    PubMed

    Kibbey, Tohren C G; Chen, Lixia; Sabatini, David A; Mills, Marc A; Nietch, Christopher

    2010-08-01

    Passive samplers are increasingly being considered for analyses of waters for screening applications, to monitor for the presence of unwanted chemical compounds. Passive samplers typically work by accumulating and concentrating chemicals from the surrounding water over time, allowing analyses to identify temporally short concentration surges that might be missed by water grab samples, and potentially reducing analysis and sample handling costs, allowing a greater number of sites to be monitored. The work described here tests a recently-developed passive sampling device which was designed to provide an ultra-low-cost screening method for organic chemicals in waters. The device was originally designed for detection of endocrine disrupting chemicals, but has the advantage that it is capable of simultaneously detecting a wide range of other aqueous organic contaminants as well. The device is based on a UV-transparent polymer which is used both to concentrate dissolved chemicals, and as an optical cell for absorbance detection and full-spectrum deconvolution to identify compounds. This paper describes the results of a test of the device conducted at the US EPA Experimental Stream Facility in Milford, Ohio. The test examined detection of triclosan and 4-nonylphenol in model stream channels using two different deployment methods. Results indicate that deployment method can significantly impact measured results due to differences in mass transfer. Passive samplers deployed in vials with permeable membrane septa showed no detection of either compound, likely due to lack of water motion in the vials. In contrast, passive samplers deployed directly in the flow were able to track concentrations of both compounds, and respond to temporal changes in concentration. The results of the work highlight the importance of using internal spiking standards (performance reference compounds) to avoid false non-detection results in passive sampler applications.

  16. 7 CFR 767.51 - Property abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Property abandonment. 767.51 Section 767.51... AGRICULTURE SPECIAL PROGRAMS INVENTORY PROPERTY MANAGEMENT Property Abandonment and Personal Property Removal § 767.51 Property abandonment. The Agency will take actions necessary to secure, maintain,...

  17. 7 CFR 767.51 - Property abandonment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Property abandonment. 767.51 Section 767.51... AGRICULTURE SPECIAL PROGRAMS INVENTORY PROPERTY MANAGEMENT Property Abandonment and Personal Property Removal § 767.51 Property abandonment. The Agency will take actions necessary to secure, maintain,...

  18. 32 CFR 644.496 - Abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Abandonment. 644.496 Section 644.496 National... HANDBOOK Disposal Disposal of Buildings and Other Improvements (without the Related Land) § 644.496 Abandonment. Abandonment, as used herein, has reference to cases where the lessor or a permittor...

  19. Legacy soil contamination at abandoned mine sites: making a case for guidance on soil protection.

    PubMed

    Kostarelos, Konstantinos; Gavriel, Ifigenia; Stylianou, Marinos; Zissimos, Andreas M; Morisseau, Eleni; Dermatas, Dimitris

    2015-03-01

    Within the European Union, guidance in the form of a uniform Soil Directive does not exist and member states are left to enact their own legislation governing historic soil contamination. Several historic or "legacy" sites exist in Cyprus - an EU member state with a long history of mining and a significant number of abandoned mining sites. The gold-silver enrichment plant of Mitsero village was abandoned 70 years ago, yet soil samples inside and outside the plant were extremely low in pH, exhibited high leachability of heavy metals and high cyanide levels. Water samples collected from an ephemeral stream located down-gradient of the site contained high levels of heavy metals. Two abandoned open-pit mines (Kokkinopezoula and Mathiatis) were investigated, where elevated metal content in soil samples from the surrounding streams and spoil heaps, and extremely low pH and high metal content in water samples from the mine crater were measured.

  20. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope/channel

  1. Multiple factors drive regional agricultural abandonment.

    PubMed

    Osawa, Takeshi; Kohyama, Kazunori; Mitsuhashi, Hiromune

    2016-01-15

    An understanding of land-use change and its drivers in agroecosystems is important when developing adaptations to future environmental and socioeconomic pressures. Agricultural abandonment occurs worldwide with multiple potentially positive and negative consequences; however, the main factors causing agricultural abandonment in a country i.e., at the macro scale, have not been identified. We hypothesized that socio-environmental factors driving agricultural abandonment could be summarized comprehensively into two, namely "natural" and "social", and the relative importance of these differs among regions. To test this postulate, we analyzed the factors currently leading to agricultural abandonment considering ten natural environment variables (e.g., temperature) and five social variables (e.g., number of farmers) using the random forest machine learning method after dividing Japan into eight regions. Our results showed that agricultural abandonment was driven by various socio-environmental factors, and the main factors leading to agricultural abandonment differed among regions, especially in Hokkaido in northern Japan. Hokkaido has a relatively large area of concentrated farmland, and abandonment might have resulted from the effectiveness of cultivation under specific climate factors, whereas the other regions have relatively small areas of farmland with many elderly part-time farmers. In such regions, abandonment might have been caused by the decreasing numbers of potential farmers. Thus, two different drivers of agricultural abandonment were found: inefficient cultivation and decreasing numbers of farmers. Therefore, agricultural abandonment cannot be prevented by adopting a single method or policy. Agricultural abandonment is a significant problem not only for food production but also for several ecosystem services. Governments and decision-makers should develop effective strategies to prevent further abandonment to ensure sustainable future management of agro-ecosystems.

  2. Riparian deforestation, stream narrowing, and loss of stream ecosystem services

    PubMed Central

    Sweeney, Bernard W.; Bott, Thomas L.; Jackson, John K.; Kaplan, Louis A.; Newbold, J. Denis; Standley, Laurel J.; Hession, W. Cully; Horwitz, Richard J.

    2004-01-01

    A study of 16 streams in eastern North America shows that riparian deforestation causes channel narrowing, which reduces the total amount of stream habitat and ecosystem per unit channel length and compromises in-stream processing of pollutants. Wide forest reaches had more macroinvertebrates, total ecosystem processing of organic matter, and nitrogen uptake per unit channel length than contiguous narrow deforested reaches. Stream narrowing nullified any potential advantages of deforestation regarding abundance of fish, quality of dissolved organic matter, and pesticide degradation. These findings show that forested stream channels have a wider and more natural configuration, which significantly affects the total in-stream amount and activity of the ecosystem, including the processing of pollutants. The results reinforce both current policy of the United States that endorses riparian forest buffers as best management practice and federal and state programs that subsidize riparian reforestation for stream restoration and water quality. Not only do forest buffers prevent nonpoint source pollutants from entering small streams, they also enhance the in-stream processing of both nonpoint and point source pollutants, thereby reducing their impact on downstream rivers and estuaries. PMID:15381768

  3. Riparian deforestation, stream narrowing, and loss of stream ecosystem services.

    PubMed

    Sweeney, Bernard W; Bott, Thomas L; Jackson, John K; Kaplan, Louis A; Newbold, J Denis; Standley, Laurel J; Hession, W Cully; Horwitz, Richard J

    2004-09-28

    A study of 16 streams in eastern North America shows that riparian deforestation causes channel narrowing, which reduces the total amount of stream habitat and ecosystem per unit channel length and compromises in-stream processing of pollutants. Wide forest reaches had more macroinvertebrates, total ecosystem processing of organic matter, and nitrogen uptake per unit channel length than contiguous narrow deforested reaches. Stream narrowing nullified any potential advantages of deforestation regarding abundance of fish, quality of dissolved organic matter, and pesticide degradation. These findings show that forested stream channels have a wider and more natural configuration, which significantly affects the total in-stream amount and activity of the ecosystem, including the processing of pollutants. The results reinforce both current policy of the United States that endorses riparian forest buffers as best management practice and federal and state programs that subsidize riparian reforestation for stream restoration and water quality. Not only do forest buffers prevent nonpoint source pollutants from entering small streams, they also enhance the in-stream processing of both nonpoint and point source pollutants, thereby reducing their impact on downstream rivers and estuaries.

  4. Stream biogeochemical and suspended sediment responses to permafrost degradation in stream banks in Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Gooseff, Michael N.; Van Horn, David; Sudman, Zachary; McKnight, Diane M.; Welch, Kathleene A.; Lyons, William B.

    2016-03-01

    Stream channels in the McMurdo Dry Valleys are characteristically wide, incised, and stable. At typical flows, streams occupy a fraction of the oversized channels, providing habitat for algal mats. In January 2012, we discovered substantial channel erosion and subsurface thermomechanical erosion undercutting banks of the Crescent Stream. We sampled stream water along the impacted reach and compared concentrations of solutes to the long-term data from this stream ( ˜ 20 years of monitoring). Thermokarst-impacted stream water demonstrated higher electrical conductivity, and concentrations of chloride, sulfate, sodium, and nitrate than the long-term medians. These results suggest that this mode of lateral permafrost degradation may substantially impact stream solute loads and potentially fertilize stream and lake ecosystems. The potential for sediment to scour or bury stream algal mats is yet to be determined, though it may offset impacts of associated increased nutrient loads to streams.

  5. 32 CFR 636.31 - Abandoned vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Abandoned vehicles. 636.31 Section 636.31... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.31 Abandoned vehicles. (a) Any MP or DOD police officer who finds or has knowledge of a...

  6. 32 CFR 636.31 - Abandoned vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Abandoned vehicles. 636.31 Section 636.31... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.31 Abandoned vehicles. (a) Any MP or DOD police officer who finds or has knowledge of a...

  7. 32 CFR 636.31 - Abandoned vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Abandoned vehicles. 636.31 Section 636.31... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.31 Abandoned vehicles. (a) Any MP or DOD police officer who finds or has knowledge of a...

  8. Evolution of abandoned underground hardrock mine closures by the Texas abandoned mine land reclamation program

    SciTech Connect

    Rhodes, M.J.

    1997-12-31

    The Texas Abandoned Mine Land (AML) Reclamation program began investigating, designing and implementing hard rock abandoned underground mine closures, after a young boy fell to his death in an abandoned mine opening in 1982. This paper discusses the evolution of abandoned hard rock mine closures in west Texas, by the Texas AML program in response to the development of abandoned underground mine resource information. Case histories are presented of the Texas AML program`s efforts in west Texas including: mine history summaries; site characterization, environmental assessment; design and construction planning considerations, and construction cost information.

  9. Application of electromagnetic techniques in survey of contaminated groundwater at an abandoned mine complex in southwestern Indiana, U.S.A.

    USGS Publications Warehouse

    Brooks, G.A.; Olyphant, G.A.; Harper, D.

    1991-01-01

    In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine. ?? 1991 Springer-Verlag New York Inc.

  10. Stream dynamics at pipeline river crossings

    SciTech Connect

    Beckstead, G.R.E.; Cavers, D.S.

    1996-12-31

    Pipeline crossings of streams, whether large or small, must consider the ability of the stream channel to scour its bed and erode its banks. Case studies are presented to illustrate the kinds of dynamic environments which must be considered in designing pipeline stream crossings. These characteristics may be determined through the use of comparative historical aerial photography and site photographs and surveys. The case studies presented as examples in this paper include gullies, bedrock-lined channels, entrenched meandering streams, multi-channel wandering streams, degrading channels, alluvial fans, and major channels affected by regulation and man-made structures. Natural hazards such as debris jams and beaver dams are also discussed. For each case study, the characteristics of the channels are described, the design approach discussed and site-specific constraints presented which affected the final design.

  11. Stream Response to Storm Events Downstream of Mine Tailings: Identifying Contaminant Sources Using Hydrograph Separation and Stream Chemistry

    NASA Astrophysics Data System (ADS)

    Holmes, J.; Renshaw, C. E.; Feng, X.

    2001-05-01

    Quantifying sources of contamination is paramount to good remediation plans at abandoned mine sites. We collected surface water samples from Copperas Brook, a second order stream draining over 16 ha (40 acres) of mine tailings from the abandoned Elizabeth Copper Mine in east central Vermont. Streamflow exhibits a rapid response to rain events. Hydrograph separations using oxygen isotopes consistently indicate considerably higher percentages of new water during rain events compared to a nearby control catchment and to other northeastern U.S. catchments. We attribute most of the new water to direct precipitation on low-infiltration hardpans at the base of the mine tailings, as well as to direct precipitation on to the stream channel itself. In stormflow, base cations (Ca, Mg, Na, K) are diluted, consistent with other studies. By contrast, heavy metal concentrations (Cu, Zn, Cd, Co) increase by up to an order of magnitude. Other studies have suggested that the increased metals in stormflow may be the result of rapid dissolution and transport of the soluble efflorescent sulfate minerals coating the hardpans. Copperas Brook could be highly susceptible to this process given the high percentage of new water in its stormflow. However, multiple regression of stormflow chemical source end-members shows that neither dissolved sulfur salts nor groundwater seeps from the major tailings pile are primarily responsible for the increased metals concentrations at this site. Rather, the majority of heavy metals derive from an isolated 2 ha (5 acres) tailings pile via a pathway that is not connected with the major tailings. This may have profound implications for prioritizing the remediation of this site.

  12. REACH SPECIFIC CHANNEL STABILIZATION BASED ON COMPREHENSIVE EVALUATION OF VALLEY FILL HISTORY, ALLUVIAL ARCHITECTURE AND GROUNDWATER HYDROLOGY IN A MOUNTAIN STREAM IN THE CENTRAL GREAT BASIN, NEVADA

    EPA Science Inventory

    Kingston meadow, located in the Toiyabe Range, is one of many wet meadow complexes threatened by rapid channel incision in the mountain ranges of the central Great Basin. Channel incision can lower the baselevel for groundwater discharge and de-water meadow complexes resulting in...

  13. Navajo Nation: Cleaning Up Abandoned Uranium Mines

    EPA Pesticide Factsheets

    This site provides information about the progress of EPA's cleanup of abandoned uranium mines on Navajo and Hopi lands and in other areas of Arizona and New Mexico, including health impacts, major enforcement and removal milestones, and community actions.

  14. 7 CFR 767.51 - Property abandonment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., manage, and operate the abandoned security property, including marketing perishable security property on behalf of the borrower when such action is in the Agency's financial interest. If the security is...

  15. Asymptomatic bowel perforation by abandoned ventriculoperitoneal shunt.

    PubMed

    Rinker, Eric K; Osborn, Daniel A; Williams, Todd R; Spizarny, David L

    2013-09-01

    We report a case of an abandoned abdominal ventriculoperitoneal shunt that migrated into the gastric antrum, colonic hepatic flexure, and liver parenchyma, which was discovered incidentally on an abdominal CT obtained for renal stones. In regards to the migrated abandoned VP shunt, the patient was asymptomatic. Upon review of prior CT scans, these findings had progressed over approximately 7 years. We describe the case and discuss the clinical and radiologic findings, complications resulting from ventriculoperitoneal shunts, and possible approaches to their management.

  16. The rail abandonment process: A southern perspective

    SciTech Connect

    Not Available

    1988-12-01

    One factor in evaluating the desirability of rail transport for high-level radioactive wastes or spent fuels is the frequency, or lack thereof, with which railroad and railroad lines have been, and are, abandoned. If DOE makes a decision to use the rail option and a line is subsequently abandoned, the choice results in increased cost, time delays and possibly safety problems: Information is therefore needed prior to the decision-making process to evaluate the desirability of the rail shipping option. One result of the abandonments mentioned herein, as well as other later abandonments, is the creation of a US rail system undergoing an evolutionary process in the 1980s as far-reaching as the changes that occurred when the industry was in its infancy a century and-a-half ago. The purpose of this paper is to examine the factors leading to some of these changes by tracing the historical development of the rail abandonment process, with particular emphasis on the rise of regional railroads, their problems in the modern era and current trends in rail abandonments as well as their effects on the southeastern United States.

  17. Towards Understanding Methane Emissions from Abandoned ...

    EPA Pesticide Factsheets

    Reconciliation of large-scale top-down methane measurements and bottom-up inventories requires complete accounting of source types. Methane emissions from abandoned oil and gas wells is an area of uncertainty. This presentation reviews progress to characterize the potential inventory impacts of abandoned wells for the U.S. . Available methane emission rate data for abandoned wells is reviewed and some of the ongoing research to better characterize emissions is discussed. Efforts to compile a database of well drilling activities since the 1870’s for each state and each state’s establishment of well plugging standards for abandoned wells is described. Progress towards an estimate of national methane emissions from abandoned wells and major sources of uncertainty are presented. These emissions are put in to context by comparing to other sources of methane emissions from oil and gas production activities. This is an abstract for a presentation at the Natural GasSTAR Annual Implementation Workshop on November 16-18, 2015 in Pittsburgh, PA. The subject is methane emissions fro abandoned wells. This is a report on interim progress on a effort we have with ERG. OAP is involved in the project and will review slides.

  18. 37 CFR 2.66 - Revival of abandoned applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... application abandoned because the applicant did not timely respond to an Office action or notice of allowance... abandonment, if the applicant did not receive the notice of abandonment, and the applicant was diligent in... for filing a petition to revive an application abandoned because the applicant did not timely...

  19. Effect of in-stream physicochemical processes on the seasonal variations in δ13C and δ18O values in laminated travertine deposits in a mountain stream channel

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Liu, Zaihua; Sun, Hailong

    2017-04-01

    Travertines are potential archives of continental paleoclimate. Records of stable carbon and oxygen isotopic composition (δ13C and δ18O) in laminated travertine deposits from endogene spring waters show regular cyclic patterns which may be due to seasonal change in climate determinants such as temperature and rainfall. In this study, δ13C and δ18O measurements of three travertine specimens that grew naturally over the eight years, 2004-2011, at upstream, middle and downstream sites in a canal at Baishuitai, SW China, are presented. They exhibit clear seasonal variations that generally correlate with biannual laminations. Specifically, δ13C and δ18O values show significant positive correlation with each other for the three travertine specimens, with the correlation coefficients increasing downstream along the canal. To reveal the factors governing the seasonal and spatial variations in δ13C and δ18O values, newly formed travertines precipitated on Plexiglas substrates are also examined. Both δ13C and δ18O of the substrate travertines are low in the summer/rainy season and high in the winter/dry season, showing a great consistency with the patterns in the natural travertines. Spatially, isotope values increase downstream in both seasons, with higher increase rates in winter that are related to removal of larger fractions of dissolved inorganic carbon (DIC) from the solution and stronger kinetic isotopic fractionation in winter. Due to in-stream physicochemical processes, including CaCO3 precipitation and the associated degassing of CO2, seasonal changes in δ13C and δ18O in the travertines are amplified by two times between the upstream and downstream sites: this is opposite to trends for epigene (meteogene) tufas whose seasonal changes in stable isotope compositions are reduced downstream. We suggest in-stream physicochemical processes are a potential reason for underestimation of annual temperature ranges that are inferred from epigene tufa δ18O data.

  20. Which accesses should be abandoned or revised?

    PubMed

    Gibbons, Christopher P

    2014-01-01

    This review considers the factors in deciding whether to abandon a functioning access. Strong indications for ligation or excision of an access are infection or severe early-onset steal. Access ligation may also be required for central vein occlusion or high-output cardiac failure. In general, a failing or thrombosed access should be restored to function unless it is no longer required. For failing or thrombosed distal arteriovenous fistulas, it may be easiest to abandon it and create a new fistula a few centimetres proximally rather than perform angioplasty, which is likely to require repeating. Other accesses may be abandoned after repeated treatment of the same stenosis over a short period provided other options exist.

  1. Soil microbial community of abandoned sand fields.

    PubMed

    Elhottová, D; Szili-Kovács, T; Tríska, J

    2002-01-01

    Microbiological evaluation of sandy grassland soils from two different stages of secondary succession on abandoned fields (4 and 8 years old fallow) was carried out as a part of research focused on restoration of semi-natural vegetation communities in Kiskunság National Park in Hungary. There was an apparent total N and organic C enrichment, stimulation of microbial growth and microbial community structure change on fields abandoned by agricultural practice (small family farm) in comparison with native undisturbed grassland. A successional trend of the microbial community was found after 4 and 8 years of fallow-lying soil. It consisted in a shift of r-survival strategy to more efficient C economy, in a decrease of specific respiration and metabolic activity, forced accumulation of storage bacterial compounds and increased fungal distribution. The composition of microbial phospholipid fatty acids mixture of soils abandoned at various times was significantly different.

  2. Key stream/sediment exchanges of water and heat near stream mouths

    NASA Astrophysics Data System (ADS)

    Constantz, J. E.; Naranjo, R. C.; Niswonger, R. G.; Neilson, B. T.; Allander, K.; Zamora, C.; Smith, D. W.; Stonestrom, D. A.

    2014-12-01

    The section of stream discharging to a lake or other surface-water body is referred to as the stream mouth, a stream reach with rapidly changing hydrologic conditions, leading to unique aquatic and benthic ecology, as well as a visibly active fishery habitat. Of environmental significance, bridges, control structures, channelization and foot traffic are common near stream mouths, warranting comparisons of natural and channelized stream mouths. The present work completes the first investigation focusing specifically on the hydrology of surface-water/sediment exchanges at stream-mouth reaches discharging to lakes and compares these exchanges to those measured along the nearby shoreline in both a qualitative and quantitative manner. Heat and water exchanges for two common types of stream mouths (a natural stream with a summer barrier bar and a channelized stream mouth) are compared with comparable exchanges along the nearby shoreline on the north shore of Lake Tahoe located in the Central Sierra Nevada Mountain Range (CA/NV, US). The study site was selected partially due the abundance of streams discharging into the lake of both a natural and channelized nature (~30 small streams with a large number of both types of stream mouths). Heat and water exchanges were both qualitatively and quantitatively distinct for the three types of hydrologic settings, with (1) cool, low velocity, longitudinal (hyporheic) flowpaths observed below the channelized stream mouth, discharging beneath the warmer, more buoyant lakeshore water, (2) the nearby shoreline receiving relatively warm, higher velocity discharge and (3) for the natural stream mouth, there was strong diurnal temperature pattern in groundwater discharging through the seasonal barrier beach to the lake. Impacts of strong 2013 wave action on exchanges were also distinct for the three settings, with (1) channelization allowing waves to extend well upstream, (2) a lesser invasive impact in the shoreline swash zone exchanges

  3. Infanticide and illegal infant abandonment in Malaysia.

    PubMed

    Razali, Salmi; Kirkman, Maggie; Ahmad, S Hassan; Fisher, Jane

    2014-10-01

    Infant abandonment and infanticide are poorly understood in Malaysia. The information available in the public arena comes predominantly from anecdotal sources. The aim of this study was to describe the prevalence and characteristics of infanticide and illegal infant abandonment in Malaysia and to estimate annual rates for the most recent decade. Summaries of data about infanticide and illegal infant abandonment were gathered from police records; the annual number of live births was ascertained from the national registry. The estimated inferred infanticide rates for Malaysia were compared with the infanticide rates among countries of very high, high, medium, and low rankings on the Human Development, Gender Inequality, and Gini indices. From 1999 to 2011, 1,069 cases of illegal infant abandonment were recorded and 1,147 people were arrested as suspected perpetrators. The estimated inferred infanticide rate fluctuated between 4.82 and 9.11 per 100,000 live births, a moderate rate relative to the infanticide rates of other countries. There are substantial missing data, with details undocumented for about 78-87% of cases and suspected perpetrators. Of the documented cases, it appeared that more boys than girls were victims and that suspected perpetrators were predominantly Malays who were women, usually mothers of the victim; the possibility of arrest bias must be acknowledged. Economic and social inequality, particularly gender inequality, might contribute to the phenomena of infanticide and abandonment. Strategies to reduce rates of infanticide and illegal infant abandonment in Malaysia will require strengthening of the surveillance system and attention to the gender-based inequalities that underpin human development.

  4. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  5. Beaver dams and channel sediment dynamics on Odell Creek, Centennial Valley, Montana, USA

    NASA Astrophysics Data System (ADS)

    Levine, Rebekah; Meyer, Grant A.

    2014-01-01

    Beaver dams in streams are generally considered to increase bed elevation through in-channel sediment storage, thus, reintroductions of beaver are increasingly employed as a restoration tool to repair incised stream channels. Here we consider hydrologic and geomorphic characteristics of the study stream in relation to in-channel sediment storage promoted by beaver dams. We also document the persistence of sediment in the channel following breaching of dams. Nine reaches, containing 46 cross-sections, were investigated on Odell Creek at Red Rock Lakes National Wildlife Refuge, Centennial Valley, Montana. Odell Creek has a snowmelt-dominated hydrograph and peak flows between 2 and 10 m3 s- 1. Odell Creek flows down a fluvial fan with a decreasing gradient (0.018-0.004), but is confined between terraces along most of its length, and displays a mostly single-thread, variably sinuous channel. The study reaches represent the overall downstream decrease in gradient and sediment size, and include three stages of beaver damming: (1) active; (2) built and breached in the last decade; and (3) undammed. In-channel sediment characteristics and storage were investigated using pebble counts, fine-sediment depth measurements, sediment mapping and surveys of dam breaches. Upstream of dams, deposition of fine (≤ 2 mm) sediment is promoted by reduced water surface slope, shear stress and velocity, with volumes ranging from 48 to 182 m3. High flows, however, can readily transport suspended sediment over active dams. Variations in bed-sediment texture and channel morphology associated with active dams create substantial discontinuities in downstream trends and add to overall channel heterogeneity. Observations of abandoned dam sites and dam breaches revealed that most sediment stored above beaver dams is quickly evacuated following a breach. Nonetheless, dam remnants trap some sediment, promote meandering and facilitate floodplain development. Persistence of beaver dam sediment

  6. 32 CFR 636.31 - Abandoned vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 636.31 Abandoned vehicles. (a) Any MP or DOD police officer who finds or has knowledge of a motor... MP or DOD police officer who, under the provisions of this section, causes any motor vehicle to be... motor vehicle by any MP or DOD police officer should not be within the scope of either that...

  7. Towards Understanding Methane Emissions from Abandoned Wells

    EPA Science Inventory

    Reconciliation of large-scale top-down methane measurements and bottom-up inventories requires complete accounting of source types. Methane emissions from abandoned oil and gas wells is an area of uncertainty. This presentation reviews progress to characterize the potential inv...

  8. 18 CFR 157.216 - Abandonment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural Gas Act for Certain... abandon: (1) Any receipt or delivery point if all of the existing customers of the pipeline served through...) showing the location of the proposed facilities and a concise analysis discussing the relevant...

  9. 18 CFR 157.216 - Abandonment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural Gas Act for Certain... abandon: (1) Any receipt or delivery point if all of the existing customers of the pipeline served through...) showing the location of the proposed facilities and a concise analysis discussing the relevant...

  10. 18 CFR 157.216 - Abandonment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural Gas Act for Certain... abandon: (1) Any receipt or delivery point if all of the existing customers of the pipeline served through...) showing the location of the proposed facilities and a concise analysis discussing the relevant...

  11. 32 CFR 636.31 - Abandoned vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Abandoned vehicles. 636.31 Section 636.31 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart,...

  12. Modeling the Effects of Connecting Side Channels to the Long Tom River, Oregon

    NASA Astrophysics Data System (ADS)

    Appleby, C.; McDowell, P. F.

    2015-12-01

    The lower Long Tom River is a heavily managed, highly modified stream in the southwestern Willamette Valley with many opportunities for habitat improvements and river restoration. In the 1940s and 1950s, the US Army Corps of Engineers dramatically altered this river system by constructing the Fern Ridge Dam and three, large drop structures, converting the River from a highly sinuous channel to a straight, channelized stream that is interrupted by these grade control structures, and removed the majority of the riparian vegetation. As a result, juvenile spring Chinook salmon are no longer found in the Watershed and the local population of coastal cutthroat trout face limited aquatic habitat. When the river was channelized, long sections of the historical channel were left abandoned on the floodplain. Reconnecting these historical channels as side channels may improve the quality and quantity of aquatic habitat and could allow fish passage around current barriers. However, such construction may also lead to undesirable threats to infrastructure and farmland. This study uses multiple HEC-RAS models to determine the impact of reconnecting two historical channels to the lower Long Tom River by quantifying the change in area of flood inundation and identifying infrastructure in jeapordy given current and post-restoration conditions for 1.5, 5, 10, and 25-year flood discharges. Bathymetric data from ADCP and RTK-GPS surveys has been combined with LiDAR-derived topographic data to create continuous elevation models. Several types of side channel connections are modeled in order to determine which type of connection will result in both the greatest quantity of accessible habitat and the fewest threats to public and private property. In the future, this study will also consider the change in the quantity of physical salmonid habitat and map the areas prone to sedimentation and erosion using CEASAR and PHABSIM tools.

  13. Coevolution of hydrodynamics, vegetation and channel evolution in wetlands of a semi-arid floodplain

    NASA Astrophysics Data System (ADS)

    Seoane, Manuel; Rodriguez, Jose Fernando; Rojas, Steven Sandi; Saco, Patricia Mabel; Riccardi, Gerardo; Saintilan, Neil; Wen, Li

    2015-04-01

    The Macquarie Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The Marshes are comprised of a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Some of the wetlands have undergone degradation over the last four decades, which has been attributed to changes in flow management upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment, with the subsequent invasion of terrestrial vegetation. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological

  14. GEOMORPHIC CONTROLS ON C AND N PROCESSING IN A RESTORED URBAN STREAM; POWER POINT PRESENTATION

    EPA Science Inventory

    Stream channel incision due to hydraulic alteration stemming from urbanization may cause a disconnection between the stream channel and the adjacent floodplain. This disconnection may inhibit removal of nitrate via denitrification and/or stimulate nitrate production through nitr...

  15. Nitrogen dynamics at the ground water-surface water interface of a degraded urban stream

    EPA Science Inventory

    Urbanization degrades stream ecosystems by altering hydrology and nutrient dynamics. We investigated temporal and spatial patterns in biogeochemistry and hydrology in and near the stream channel of a geomorphically degraded urban stream of Baltimore County, Maryland, USA. Our o...

  16. Nitrogen Dynamics in a Degraded Urban Stream: Can the Patient be Revived? (Balitmore, MD)

    EPA Science Inventory

    Urbanization degrades stream ecosystems by altering hydrology and nutrient dynamics. We investigated temporal and spatial patterns in biogeochemistry and hydrology in and near the stream channel of a geomorphically degraded urban stream of Baltimore County, Maryland, USA. Our o...

  17. 4. INTERIOR OF ABANDONED SANTA ANA CANAL TUNNEL, SHOWING CEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR OF ABANDONED SANTA ANA CANAL TUNNEL, SHOWING CEMENT TROUGH FLOOR AND UNFINISHED GRANITE ROOF. VIEW TO SOUTHWEST. - Santa Ana River Hydroelectric System, Abandoned Tunnel, Redlands, San Bernardino County, CA

  18. USUING STREAM MORPHOLOGY CLASSIFICATION TO MANAGE ECOLOGICAL RISKS FROM LAND USE CHANGES IN THE LMR WATERSHED

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  19. USING STREAM MORPHOLOGY CLASSIFICATION TO MANAGE ECOLOGICAL RISKS FROM LAND USE CHANGES IN THE LMR WATERSHED

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  20. 30 CFR 256.56 - Lease-specific abandonment accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Lease-specific abandonment accounts. 256.56... OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Bonding § 256.56 Lease-specific abandonment accounts. (a) The Regional Director may authorize you to establish a lease-specific abandonment account...

  1. Non-Abandonment as a Foundation for Inclusive School Practice

    ERIC Educational Resources Information Center

    Razer, Michal; Friedman, Victor J.

    2013-01-01

    The authors of this article describe an essential feature of inclusive educational practice: "non-abandonment". When students' needs and difficult behavior are overwhelming, teachers may abandon them emotionally as a defensive reaction to their own experience of emotional distress and helplessness. Non-abandonment represents a…

  2. 25 CFR 214.29 - Prospecting; abandonment of mines.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.29 Prospecting; abandonment of mines. All prospecting or mining operations or the abandonment of a well or mine shall be subject to the approval of the... 25 Indians 1 2010-04-01 2010-04-01 false Prospecting; abandonment of mines. 214.29 Section...

  3. 19 CFR 18.44 - Abandonment of exportation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Control Exported Under Cover of A Tir Carnet § 18.44 Abandonment of exportation. In the event that exportation is abandoned at any time after merchandise has been placed under cover of a TIR carnet, the... 19 Customs Duties 1 2010-04-01 2010-04-01 false Abandonment of exportation. 18.44 Section...

  4. 30 CFR 900.14 - Abandoned mine land programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Abandoned mine land programs. 900.14 Section 900.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... Abandoned mine land programs. Programs for reclamation of abandoned mine lands are codified under...

  5. 30 CFR 900.14 - Abandoned mine land programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Abandoned mine land programs. 900.14 Section 900.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... Abandoned mine land programs. Programs for reclamation of abandoned mine lands are codified under...

  6. 30 CFR 900.14 - Abandoned mine land programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Abandoned mine land programs. 900.14 Section 900.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... Abandoned mine land programs. Programs for reclamation of abandoned mine lands are codified under...

  7. 30 CFR 900.14 - Abandoned mine land programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Abandoned mine land programs. 900.14 Section 900.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... Abandoned mine land programs. Programs for reclamation of abandoned mine lands are codified under...

  8. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be...

  9. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be...

  10. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be...

  11. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  12. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  13. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  14. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be...

  15. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be...

  16. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  17. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  18. 76 FR 31008 - CSX Transportation, Inc.-Abandonment Exemption-in Erie County, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Abandonments to abandon an approximately 0.56-mile rail line on its Northern Region, Albany Division, Buffalo... abandonment shall be protected under Oregon Short Line Railroad--Abandonment Portion Goshen Branch...

  19. Analyzing indicators of stream health for Minnesota streams

    USGS Publications Warehouse

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  20. Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems.

    PubMed

    Violin, Christy R; Cada, Peter; Sudduth, Elizabeth B; Hassett, Brooke A; Penrose, David L; Bernhardt, Emily S

    2011-09-01

    Streams, as low-lying points in the landscape, are strongly influenced by the stormwaters, pollutants, and warming that characterize catchment urbanization. River restoration projects are an increasingly popular method for mitigating urban insults. Despite the growing frequency and high expense of urban stream restoration projects, very few projects have been evaluated to determine whether they can successfully enhance habitat structure or support the stream biota characteristic of reference sites. We compared the physical and biological structure of four urban degraded, four urban restored, and four forested streams in the Piedmont region of North Carolina to quantify the ability of reach-scale stream restoration to restore physical and biological structure to urban streams and to examine the assumption that providing habitat is sufficient for biological recovery. To be successful at mitigating urban impacts, the habitat structure and biological communities found in restored streams should be more similar to forested reference sites than to their urban degraded counterparts. For every measured reach- and patch-scale attribute, we found that restored streams were indistinguishable from their degraded urban stream counterparts. Forested streams were shallower, had greater habitat complexity and median sediment size, and contained less-tolerant communities with higher sensitive taxa richness than streams in either urban category. Because heavy machinery is used to regrade and reconfigure restored channels, restored streams had less canopy cover than either forested or urban streams. Channel habitat complexity and watershed impervious surface cover (ISC) were the best predictors of sensitive taxa richness and biotic index at the reach and catchment scale, respectively. Macroinvertebrate communities in restored channels were compositionally similar to the communities in urban degraded channels, and both were dissimilar to communities in forested streams. The

  1. A Study on the Thermal Characteristics of Space Abandoned Satellites

    NASA Astrophysics Data System (ADS)

    Shaohua, Zhang

    Abstract: Influenced by the limited space resources and the increased space debris, it is very exigent to clean the orbital abandoned satellite. The thermal characteristic of the abandoned satellite is a key parameter for the infrared radiation study, and it is also an important gist to estimate whether or not the satellite can be worked correctly. And this paper researched on the thermal analysis of the LEO and GEO abandoned satellite, and has been acquired the temperature variety law for the the space abandoned target, which is very significant for apperceiving the space situation and cleaning the space abandoned satellites and other debris initiatively.    

  2. Explosives remain preferred methods for platform abandonment

    SciTech Connect

    Pulsipher, A.; Daniel, W. IV; Kiesler, J.E.; Mackey, V. III

    1996-05-06

    Economics and safety concerns indicate that methods involving explosives remain the most practical and cost-effective means for abandoning oil and gas structures in the Gulf of Mexico. A decade has passed since 51 dead sea turtles, many endangered Kemp`s Ridleys, washed ashore on the Texas coast shortly after explosives helped remove several offshore platforms. Although no relationship between the explosions and the dead turtles was ever established, in response to widespread public concern, the US Minerals Management Service (MMS) and National Marine Fisheries Service (NMFS) implemented regulations limiting the size and timing of explosive charges. Also, more importantly, they required that operators pay for observers to survey waters surrounding platforms scheduled for removal for 48 hr before any detonations. If observers spot sea turtles or marine mammals within the danger zone, the platform abandonment is delayed until the turtles leave or are removed. However, concern about the effects of explosives on marine life remains.

  3. Abandoned metal mine stability risk evaluation.

    PubMed

    Bétournay, Marc C

    2009-10-01

    The abandoned mine legacy is critical in many countries around the world, where mine cave-ins and surface subsidence disruptions are perpetual risks that can affect the population, infrastructure, historical legacies, land use, and the environment. This article establishes abandoned metal mine failure risk evaluation approaches and quantification techniques based on the Canadian mining experience. These utilize clear geomechanics considerations such as failure mechanisms, which are dependent on well-defined rock mass parameters. Quantified risk is computed using probability of failure (probabilistics using limit-equilibrium factors of safety or applicable numerical modeling factor of safety quantifications) times a consequence impact value. Semi-quantified risk can be based on failure-case-study-based empirical data used in calculating probability of failure, and personal experience can provide qualified hazard and impact consequence assessments. The article provides outlines for land use and selection of remediation measures based on risk.

  4. Why are pharmaceutical companies gradually abandoning vaccines?

    PubMed

    Offit, Paul A

    2005-01-01

    During the past fifty years, the number of pharmaceutical companies making vaccines has decreased dramatically, and those that still make vaccines have reduced resources to make new ones. Pharmaceutical companies are gradually abandoning vaccines because the research, development, testing, and manufacture of vaccines are expensive and because the market to sell vaccines is much smaller than the market for other drug products. Congressional action could assure both a steady supply of existing vaccines and the promise of vaccines for the future.

  5. Detecting abandoned objects using interacting multiple models

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Münch, David; Kieritz, Hilke; Hübner, Wolfgang; Arens, Michael

    2015-10-01

    In recent years, the wide use of video surveillance systems has caused an enormous increase in the amount of data that has to be stored, monitored, and processed. As a consequence, it is crucial to support human operators with automated surveillance applications. Towards this end an intelligent video analysis module for real-time alerting in case of abandoned objects in public spaces is proposed. The overall processing pipeline consists of two major parts. First, person motion is modeled using an Interacting Multiple Model (IMM) filter. The IMM filter estimates the state of a person according to a finite-state, discrete-time Markov chain. Second, the location of persons that stay at a fixed position defines a region of interest, in which a nonparametric background model with dynamic per-pixel state variables identifies abandoned objects. In case of a detected abandoned object, an alarm event is triggered. The effectiveness of the proposed system is evaluated on the PETS 2006 dataset and the i-Lids dataset, both reflecting prototypical surveillance scenarios.

  6. Flooding in ephemeral streams: incorporating transmission losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream flow in semiarid lands commonly occurs as a form of flash floods in dry ephemeral stream beds. The goal of this research is to couple hydrological and hydraulic models treats channel transmission losses and test the methodology in the USDA-ARS Walnut Gulch Experimental Watershed (WGEW). For h...

  7. Stream salamanders as indicators of stream quality in Maryland, USA

    USGS Publications Warehouse

    Southerland, M.T.; Jung, R.E.; Baxter, D.P.; Chellman, I.C.; Mercurio, G.; Volstad, J.H.

    2004-01-01

    Biological indicators are critical to the protection of small, headwater streams and the ecological values they provide. Maryland and other state monitoring programs have determined that fish indicators are ineffective in small streams, where stream salamanders may replace fish as top predators. Because of their life history, physiology, abundance, and ubiquity, stream salamanders are likely representative of biological integrity in these streams. The goal of this study was to determine whether stream salamanders are effective indicators of ecological conditions across biogeographic regions and gradients of human disturbance. During the summers of 2001 and 2002, we intensively surveyed for stream salamanders at 76 stream sites located west of the Maryland Coastal Plain, sites also monitored by the Maryland Biological Stream Survey (MBSS) and City of Gaithersburg. We found 1,584 stream salamanders, including all eight species known in Maryland, using two 15 ? 2 m transects and two 4 m2 quadrats that spanned both stream bank and channel. We performed removal sampling on transects to estimate salamander species detection probabilities, which ranged from 0.67-0.85. Stepwise regressions identified 15 of 52 non-salamander variables, representing water quality, physical habitat, land use, and biological conditions, which best predicted salamander metrics. Indicator development involved (1) identifying reference (non-degraded) and degraded sites (using percent forest, shading, riparian buffer width, aesthetic rating, and benthic macroinvertebrate and fish indices of biotic integrity); (2) testing 12 candidate salamander metrics (representing species richness and composition, abundance, species tolerance, and reproductive function) for their ability to distinguish reference from degraded sites; and (3) combining metrics into an index that effectively discriminated sites according to known stream conditions. Final indices for Highlands, Piedmont, and Non-Coastal Plain

  8. stream-stream: Stellar and dark-matter streams interactions

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2017-02-01

    Stream-stream analyzes the interaction between a stellar stream and a disrupting dark-matter halo. It requires galpy (ascl:1411.008), NEMO (ascl:1010.051), and the usual common scientific Python packages.

  9. Channel incision and water quality

    NASA Astrophysics Data System (ADS)

    Shields, F. D.

    2009-12-01

    Watershed development often triggers channel incision that leads to radical changes in channel morphology. Although morphologic evolution due to channel incision has been documented and modeled by others, ecological effects, particularly water quality effects, are less well understood. Furthermore, environmental regulatory frameworks for streams frequently focus on stream water quality and underemphasize hydrologic and geomorphic issues. Discharge, basic physical parameters, solids, nutrients (nitrogen and phosphorus), chlorophyll and bacteria were monitored for five years at two sites along a stream in a mixed cover watershed characterized by rapid incision of the entire channel network. Concurrent data were collected from two sites on a nearby stream draining a watershed of similar size and cultivation intensity, but without widespread incision. Data sets describing physical aquatic habitat and fish fauna of each stream were available from other studies. The second stream was impacted by watershed urbanization, but was not incised, so normal channel-floodplain interaction maintained a buffer zone of floodplain wetlands between the study reach and the urban development upstream. The incised stream had mean channel depth and width that were 1.8 and 3.5 times as large as for the nonincised stream, and was characterized by flashier hydrology. The median rise rate for the incised stream was 6.4 times as great as for the nonincised stream. Correlation analyses showed that hydrologic perturbations were associated with water quality degradation, and the incised stream had levels of turbidity and solids that were two to three times higher than the nonincised, urbanizing stream. Total phosphorus, total Kjeldahl N, and chlorophyll a concentrations were significantly higher in the incised stream, while nitrate was significantly greater in the nonincised, urbanizing stream (p < 0.02). Physical aquatic habitat and fish populations in the nonincised urbanizing stream were

  10. Stream Studies.

    ERIC Educational Resources Information Center

    Hamilton City Board of Education (Ontario).

    This manual provides teachers with some knowledge of ecological study methods and techniques used in collecting data when plants and animals are studied in the field. Most activities deal with the interrelatedness of plant and animal life to the structure and characteristics of a stream and pond. Also included in this unit plan designed for the…

  11. Ecoregions and stream morphology in eastern Oklahoma

    USGS Publications Warehouse

    Splinter, D.K.; Dauwalter, D.C.; Marston, R.A.; Fisher, W.L.

    2010-01-01

    Broad-scale variables (i.e., geology, topography, climate, land use, vegetation, and soils) influence channel morphology. How and to what extent the longitudinal pattern of channel morphology is influenced by broad-scale variables is important to fluvial geomorphologists and stream ecologists. In the last couple of decades, there has been an increase in the amount of interdisciplinary research between fluvial geomorphologists and stream ecologists. In a historical context, fluvial geomorphologists are more apt to use physiographic regions to distinguish broad-scale variables, while stream ecologists are more apt to use the concept of an ecosystem to address the broad-scale variables that influence stream habitat. For this reason, we designed a study using ecoregions, which uses physical and biological variables to understand how landscapes influence channel processes. Ecoregions are delineated by similarities in geology, climate, soils, land use, and potential natural vegetation. In the fluvial system, stream form and function are dictated by processes observed throughout the fluvial hierarchy. Recognizing that stream form and function should differ by ecoregion, a study was designed to evaluate how the characteristics of stream channels differed longitudinally among three ecoregions in eastern Oklahoma, USA: Boston Mountains, Ozark Highlands, and Ouachita Mountains. Channel morphology of 149 stream reaches was surveyed in 1st- through 4th-order streams, and effects of drainage area and ecoregion on channel morphology was evaluated using multiple regressions. Differences existed (?????0.05) among ecoregions for particle size, bankfull width, and width/depth ratio. No differences existed among ecoregions for gradient or sinuosity. Particle size was smallest in the Ozark Highlands and largest in the Ouachita Mountains. Bankfull width was larger in the Ozark Highlands than in the Boston Mountains and Ouachita Mountains in larger streams. Width/depth ratios of the

  12. Evaluation of reclaimed abandoned bentonite mine lands

    SciTech Connect

    Edinger, K.D.; Schuman, G.E.; Vance, G.F.

    1999-07-01

    In 1985, the Abandoned Mined Land Division of the Wyoming Department of Environmental Quality began reclamation of 4,148 ha of abandoned bentonite mined lands. Calcium amendments and sawmill wood wastes were applied to the regraded spoils to enhance water infiltration, displacement of Na on the clay spoil, and leaching of the displaced Na and other soluble salts. Revegetation of these lands was generally successful, but after several years small areas (0.1--0.2 ha) began to show signs of vegetation die-back and to prescribe corrective treatment options. A randomized block design was imposed on study areas near Upton, Colony, and Greybull, Wyoming to characterize spoil chemical properties of good, moderate, and dead vegetation zones, which were subjectively delineated by visual vegetation cover and density differences. Spoil analyses indicated exchangeable-sodium (Na) concentrations were high and the dead vegetation zones exhibited exchangeable-sodium-percentages (ESP) above 50%, while surrounding good vegetation zones exhibited ESP values <10%. This coupled with low soluble-Na concentrations (<2 cmol/kg) suggests insufficient calcium (Ca) amendments were initially applied to ameliorate the sodic conditions of the spoil. The sampling design used to determine Ca amendment rates, which consisted of a composite of 5 spoil cores taken from each 0.8 ha area, was apparently insufficient to account for the highly heterogeneous spoil material that occurred throughout these abandoned bentonite reclamation sites. To revegetate these small degraded sites, additional Ca amendment would be necessary and reseeding would be required. However, the authors recommend further monitoring of the affected sites to determine if unfavorable conditions continue to degrade the reclaimed landscape before any attempt is made to rehabilitate the affected sites. If the degraded sites are stable, further Remediation efforts are not warranted because small areas of little or no vegetation are

  13. Macrophyte presence is an indicator of enhanced denitrification and nitrification in sediments of a temperate restored agricultural stream

    EPA Science Inventory

    Stream macrophytes are often removed with their sediments to deepen stream channels, stabilize channel banks, or provide habitat for target species. These sediments may support enhanced nitrogen processing. To evaluate sediment nitrogen processing, identify seasonal patterns, and...

  14. Effects of urban stream burial on nitrogen uptake and ecosystem metabolism: implications for watershed nitrogen and carbon fluxes

    EPA Science Inventory

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3...

  15. Chemical data and lead isotopic compositions in stream-sediment samples from the Boulder River watershed, Jefferson County, Montana

    USGS Publications Warehouse

    Fey, David L.; Unruh, Dan M.; Church, Stanley E.

    1999-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana, have been evaluated for their environmental effects as a part of the U.S. Geological Survey Abandoned Mine Lands Project (Buxton and others, 1997). Many mine and prospect waste dumps, and mill wastes are located in the drainage basins of Basin Creek, Cataract Creek, and High Ore Creek, the three major tributaries to the Boulder River in the study area. Throughout the study area, mine-waste material has been transported into and down streams, where it mixes with and becomes incorporated into the bed sediments. In some locations, waste material was placed by mine operators directly in stream channels, and has been transported downstream forming fluvial tailings deposits along the stream banks. Water quality and aquatic habitat have been affected by acid generation and toxic-metal mobility during snowmelt and storm water runoff events. Colloids formed by the raising of pH downstream from these mine sites sorb metals contributing to the high concentrations observed in both bed and suspended sediments within the watershed. This report presents geochemical data for bed sediments from 67 sites and lead isotope data for 59 sites. Also included are geochemical data for seven suspended-sediment samples, and one smelter slag sample. 

  16. Do fish benefit from stream restoration in the Catskill Mountains?

    USGS Publications Warehouse

    Baldigo, Barry P.; Ernst, Anne G.

    2009-01-01

    Many streams across North America have been modified or restored in order to stabilize channel banks and beds; however, the effects of stream restoration on fish assemblages and stream habitat are seldom monitored, evaluated, or published.  Because the impacts on ecosystems are poorly understood, subsequent restoration projects cannot build upon known successes or failures.

  17. Biogeochemistry and Hydrology in Streams Impacted by Legacy Sediments and Urbanization: Implications for Stream Restoration

    EPA Science Inventory

    The groundwater–surface water interface, consisting of shallow groundwater adjacent to stream channels, is a hot spot for nitrogen removal processes, a storage zone for other solutes, and a target for restoration activities. Characterizing groundwater-surface water interac...

  18. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    EPA Science Inventory

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to...

  19. Crimes and misdemeanours: the case of child abandonment

    PubMed Central

    Giordano, S

    2007-01-01

    In 2002, a child was abandoned in a Burger King restaurant in Amsterdam by a Chinese woman, who hoped that the baby would be picked up by someone able to give the child a better life. She was convicted for child abandonment and imprisoned. Whereas some forms of child abandonment are criminalised, others are socially accepted and not even on the ethics agenda. This paper is an invitation to reflect on the inconsistency in the ways in which we prosecute, punish or try to correct some forms of child abandonment and yet make allowances for others. PMID:17209107

  20. Global perspectives on the urban stream syndrome

    USGS Publications Warehouse

    Roy, Allison; Booth, Derek B.; Capps, Krista A.; Smith, Benjamin

    2016-01-01

    Urban streams commonly express degraded physical, chemical, and biological conditions that have been collectively termed the “urban stream syndrome”. The description of the syndrome highlights the broad similarities among these streams relative to their less-impaired counterparts. Awareness of these commonalities has fostered rapid improvements in the management of urban stormwater for the protection of downstream watercourses, but the focus on the similarities among urban streams has obscured meaningful differences among them. Key drivers of stream responses to urbanization can vary greatly among climatological and physiographic regions of the globe, and the differences can be manifested in individual stream channels even through the homogenizing veneer of urban development. We provide examples of differences in natural hydrologic and geologic settings (within similar regions) that can result in different mechanisms of stream ecosystem response to urbanization and, as such, should lead to different management approaches. The idea that all urban streams can be cured using the same treatment is simplistic, but overemphasizing the tremendous differences among natural (or human-altered) systems also can paralyze management. Thoughtful integration of work that recognizes the commonalities of the urban stream syndrome across the globe has benefitted urban stream management. Now we call for a more nuanced understanding of the regional, subregional, and local attributes of any given urban stream and its watershed to advance the physical, chemical, and ecological recovery of these systems.

  1. Stream capture and piracy recorded by provenance in fluvial fan strata

    NASA Astrophysics Data System (ADS)

    Mikesell, Leslie R.; Weissmann, Gary S.; Karachewski, John A.

    2010-03-01

    Stream capture and piracy in tectonically active regions have been described in geomorphic systems worldwide; however, few studies show the influence stream capture has on the rock record. We present an analysis of fluvial fan stratigraphy that developed as a result of multiple stream capture events, building a complex stratigraphic succession beneath the Lawrence Livermore National Laboratory (LLNL), California. The LLNL site is located in the southeast portion of the tectonically active Livermore Basin, a transpressional basin in the California Coast Ranges. Geomorphic evidence for this stream capture include: (1) the Arroyo Seco enters the basin from the south through an uplifted fault block, (2) south of this fault block lies an abandoned Arroyo Seco fluvial fan, (3) north of the fault block, in the Livermore Basin, Arroyo Seco built a 7-km 2 fluvial fan, apparently forcing the Arroyo Las Positas, a smaller stream that enters the basin from the east, northward around the Arroyo Seco fan, and (4) a knickpoint exists near the point of capture on Arroyo Seco. Stratigraphic evidence reflecting this shift in the Arroyo Seco position into the Livermore Basin was evaluated through a provenance study of 215 gravel units from 34 boreholes spaced evenly over the 2.6 km 2 LLNL site. The Arroyo Seco derives its sediment from both the Jurassic-Cretaceous Franciscan Assemblage and the Altamont Hills (which are comprised of Mesozoic Great Valley Group and Tertiary continental sediments). The Arroyo Las Positas drains only the Altamont Hills and thus lacks the Franciscan Assemblage-derived clasts. The origin of the individual gravel units was determined by the percentage of Franciscan Assemblage indicator pebbles (red chert, green chert and blueschist) in the samples. Through this analysis, we determined that high-percentage Franciscan Assemblage-derived clasts were present below a depth of approximately 35 m below the surface, low-percentage Franciscan Assemblage

  2. Experimental and numerical investigation of Acoustic streaming (Eckart streaming)

    NASA Astrophysics Data System (ADS)

    Dridi, Walid; Botton, Valery; Henry, Daniel; Ben Hadid, Hamda

    The application of sound waves in the bulk of a fluid can generate steady or quasi-steady flows reffered to as Acoustic streaming flows. We can distinguish two kind of acoustic streaming: The Rayleigh Streaming is generated when a standing acoustic waves interfere with solid walls to give birth to an acoustic boundary layer. Steady recirculations are then driven out of the boundary layer and can be used in micro-gravity, where the free convection is too weak or absent, to enhance the convective heat or mass transfer and cooling the electronic devises [1]. The second kind is the Eckart streaming, which is a flow generated far from the solid boundaries, it can be used to mix a chemical solutions [2], and to drive a viscous liquids in channels [3-4], in micro-gravity area. Our study focuses on the Eckart streaming configuration, which is investigated both numerical and experimental means. The experimental configuration is restricted to the case of a cylindrical non-heated cavity full of water or of a water+glycerol mixture. At the middle of one side of the cavity, a plane ultrasonic transducer generates a 2MHz wave; an absorber is set at the opposite side of the cavity to avoid any reflections. The velocity field is measured with a standard PIV system. [1] P. Vainshtein, M. Fichman and C. Gutfinger, "Acoustic enhancement of heat transfer between two parallel plates", International Journal of Heat and Mass Transfert, 1995, 38(10), 1893. [2] C. Suri, K. Tekenaka, H. Yanagida, Y. Kojima and K. Koyama, "Chaotic mixing generated by acoustic streaming", Ultrasonics, 2002, 40, 393 [3] O.V. Rudenko and A.A. Sukhorukov, "Nonstationnary Eckart streaming and pumping of liquid in ultrasonic field", Acoustical Physics, 1998, 44, 653. [4] Kenneth D. Frampton, Shawn E. Martin and Keith Minor, "The scaling of acoustic streaming for application in micro-fluidic devices", Applied Acoustics, 2003, 64,681

  3. Heavy metal pollution associated with an abandoned lead-zinc mine in the Kirki region, NE Greece.

    PubMed

    Nikolaidis, Christos; Zafiriadis, Ilias; Mathioudakis, Vasileios; Constantinidis, Theodore

    2010-09-01

    The "Agios Philippos" mine in the Kirki region (NE Greece) has been abandoned in 1998 after half a century of ore exploration without a reclamation or remediation plan. This article aims at elucidating the potential environmental risks associated with this site by quantifying pollution in tailing basins, stream waters, stream sediments and agricultural fields. Concentrations of heavy metals in the abandoned mine tailings reached 12,567 mg/kg for Pb, 22,292 mg/kg for Zn, 174 mg/kg for Cd and 241 mg/kg for As. The geoaccumulation index and enrichment factor for these metals were indicative of extremely high contamination (I(geo) > 5) and extremely high enrichment (EF > 40), respectively. Stream waters in the proximity of the mine had an acidic pH equal to 5.96 and a high sulfate content (SO(4)(-2) = 545.5 mg/L), whereas concentrations of Mn, Zn and Cd reached 2,399 microg/L, 7,681 microg/L and 11.2 microg/L. High I(geo) and EF values for Cd, Zn and As in stream sediments indicates that surface water pollution has a historic background, which is typically associated with acid mine drainage. Agricultural fields in the proximity of the mine exhibited high I(geo) and EF values, which were in decreasing order Cd > Pb > Zn > As. These findings urge for an immediate remediation action of the afflicted area.

  4. The Band Must Not Be Abandoned.

    PubMed

    Brown, Wendy A; O'Brien, Paul E

    2017-03-06

    The use of laparoscopic adjustable gastric banding (LAGB) is on the decline around the world despite the evidence base suggesting that it is a safe, effective and durable short-stay procedure which can be safely revised and is well tolerated by patients when they are appropriately supported. Currently, less than 1% of eligible obese persons are choosing to undergo bariatric surgery. If we are to improve uptake of bariatric surgery we need a raft of therapeutic options, including the LAGB, which sit between the relative impotence of medical therapies and the aggression of stapling procedures. This brief communication discusses what some of the drivers may be that are leading surgeons to abandon the band.

  5. 17 CFR 230.155 - Integration of abandoned offerings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Integration of abandoned... GENERAL RULES AND REGULATIONS, SECURITIES ACT OF 1933 General § 230.155 Integration of abandoned offerings... from integration of private and registered offerings. Because of the objectives of Rule 155 and...

  6. 17 CFR 230.155 - Integration of abandoned offerings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Integration of abandoned... GENERAL RULES AND REGULATIONS, SECURITIES ACT OF 1933 General § 230.155 Integration of abandoned offerings... from integration of private and registered offerings. Because of the objectives of Rule 155 and...

  7. 17 CFR 230.155 - Integration of abandoned offerings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Integration of abandoned... GENERAL RULES AND REGULATIONS, SECURITIES ACT OF 1933 General § 230.155 Integration of abandoned offerings... from integration of private and registered offerings. Because of the objectives of Rule 155 and...

  8. 17 CFR 230.155 - Integration of abandoned offerings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Integration of abandoned... GENERAL RULES AND REGULATIONS, SECURITIES ACT OF 1933 General § 230.155 Integration of abandoned offerings... from integration of private and registered offerings. Because of the objectives of Rule 155 and...

  9. 37 CFR 2.68 - Express abandonment (withdrawal) of application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Express abandonment (withdrawal) of application. 2.68 Section 2.68 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND... Action by Applicants § 2.68 Express abandonment (withdrawal) of application. (a) Written...

  10. 32 CFR 644.494 - Donation, abandonment or destruction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Donation, abandonment or destruction. 644.494 Section 644.494 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Land) § 644.494 Donation, abandonment or destruction. (a) General. Improvements may be...

  11. 15 CFR 904.508 - Voluntary forfeiture by abandonment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Voluntary forfeiture by abandonment. 904.508 Section 904.508 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... PROCEDURES Seizure and Forfeiture Procedures § 904.508 Voluntary forfeiture by abandonment. (a) The owner...

  12. 15 CFR 904.508 - Voluntary forfeiture by abandonment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Voluntary forfeiture by abandonment. 904.508 Section 904.508 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... PROCEDURES Seizure and Forfeiture Procedures § 904.508 Voluntary forfeiture by abandonment. (a) The owner...

  13. 40 CFR 147.3102 - Plugging and abandonment plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Plugging and abandonment plans. 147... PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Lands of Certain Oklahoma Indian Tribes § 147.3102 Plugging and abandonment plans. In lieu of the requirements...

  14. 40 CFR 147.3104 - Notice of abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Notice of abandonment. 147.3104... (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Lands of Certain Oklahoma Indian Tribes § 147.3104 Notice of abandonment. (a) In addition to the notice required by §...

  15. 40 CFR 147.3105 - Plugging and abandonment report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Plugging and abandonment report. 147... PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Lands of Certain Oklahoma Indian Tribes § 147.3105 Plugging and abandonment report. (a) In lieu of the time...

  16. Book review: old fields: dynamics and restoration of abandoned farmland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2007 volume, “Old Fields: Dynamics and Restoration of Abandoned Farmland”, edited by VA Cramer and RJ Hobbs and published by the Society for Ecological Restoration International (Island Press), is a valuable attempt to synthesize a dozen case studies on agricultural abandonment from all of the ...

  17. 28 CFR 104.35 - Claims deemed abandoned by claimants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Claims deemed abandoned by claimants. 104.35 Section 104.35 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) SEPTEMBER 11TH VICTIM COMPENSATION FUND OF 2001 Claim Intake, Assistance, and Review Procedures § 104.35 Claims deemed abandoned...

  18. 28 CFR 104.35 - Claims deemed abandoned by claimants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Claims deemed abandoned by claimants. 104.35 Section 104.35 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) SEPTEMBER 11TH VICTIM COMPENSATION FUND OF 2001 Claim Intake, Assistance, and Review Procedures § 104.35 Claims deemed abandoned...

  19. 43 CFR 3162.3-4 - Well abandonment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Well abandonment. 3162.3-4 Section 3162.3... Operating Rights Owners and Operators § 3162.3-4 Well abandonment. (a) The operator shall promptly plug and... newly completed or recompleted well in which oil or gas is not encountered in paying quantities or...

  20. 43 CFR 3162.3-4 - Well abandonment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Well abandonment. 3162.3-4 Section 3162.3... Operating Rights Owners and Operators § 3162.3-4 Well abandonment. (a) The operator shall promptly plug and... newly completed or recompleted well in which oil or gas is not encountered in paying quantities or...

  1. 43 CFR 3162.3-4 - Well abandonment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Well abandonment. 3162.3-4 Section 3162.3... Operating Rights Owners and Operators § 3162.3-4 Well abandonment. (a) The operator shall promptly plug and... newly completed or recompleted well in which oil or gas is not encountered in paying quantities or...

  2. 43 CFR 3162.3-4 - Well abandonment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Well abandonment. 3162.3-4 Section 3162.3... Operating Rights Owners and Operators § 3162.3-4 Well abandonment. (a) The operator shall promptly plug and... newly completed or recompleted well in which oil or gas is not encountered in paying quantities or...

  3. 21 CFR 1315.27 - Abandonment of quota.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Abandonment of quota. 1315.27 Section 1315.27 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE IMPORTATION AND PRODUCTION QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Individual Manufacturing Quotas § 1315.27 Abandonment...

  4. 21 CFR 1315.27 - Abandonment of quota.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Abandonment of quota. 1315.27 Section 1315.27 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE IMPORTATION AND PRODUCTION QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Individual Manufacturing Quotas § 1315.27 Abandonment...

  5. 21 CFR 1315.27 - Abandonment of quota.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Abandonment of quota. 1315.27 Section 1315.27 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE IMPORTATION AND PRODUCTION QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Individual Manufacturing Quotas § 1315.27 Abandonment...

  6. 21 CFR 1315.27 - Abandonment of quota.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Abandonment of quota. 1315.27 Section 1315.27 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE IMPORTATION AND PRODUCTION QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Individual Manufacturing Quotas § 1315.27 Abandonment...

  7. 21 CFR 1315.27 - Abandonment of quota.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Abandonment of quota. 1315.27 Section 1315.27 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE IMPORTATION AND PRODUCTION QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Individual Manufacturing Quotas § 1315.27 Abandonment...

  8. 25 CFR 214.29 - Prospecting; abandonment of mines.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Prospecting; abandonment of mines. 214.29 Section 214.29 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE... prospecting or mining operations or the abandonment of a well or mine shall be subject to the approval of...

  9. Abandoning pipelines working group regulatory issues

    SciTech Connect

    1997-03-01

    The history of hydrocarbon development in Louisiana and off its coast is one of the interdependence of technological innovation, entrepreneurial risk-taking, resource management, judicial decisions, legislation, marketing, employee good will, infrastructure and support services, coupled with favorable geologic structures that made early exploration and development relatively easy. Mariners sailing off the coast of Louisiana and Texas in the 1600`s recorded one of the earliest known natural oil seeps. They shrugged it off as unimportant, as there was no market for the substance they witnessed. The seepage, however, provided a tiny clue to the vast storehouse of hydrocarbons trapped in the earth`s crust extending from the uplands, through Louisiana`s swamps and marshes, and into the subaqueous habitats of the Gulf of Mexico-the world`s ninth largest body of water. In all cases, each move into a new geographic province required considerable change in operation philosophy and in the science supporting the exploration and development activity. As technology changed, or was developed to meet the industry`s needs, new frontiers were explored. However, with time-as is the case with any nonrenewable resource-fields and wells lost their productive life. They had to be abandoned. In fact, the Minerals Management Service suggests that within the next 10 years the offshore industry will remove 150 platforms per year, or nearly half of the current number of production units. The industry will be asked to dispose of nearly one unit every 2.4 days. If this is the case, abandonment issues are going to continue to surface.

  10. Availability and distribution of low flow in Anahola Stream, Kauaʻi, Hawaiʻi

    USGS Publications Warehouse

    Cheng, Chui Ling; Wolff, Reuben H.

    2012-01-01

    Anahola Stream is a perennial stream in northeast Kauaʻi, Hawaiʻi, that supports agricultural, domestic, and cultural uses within its drainage basin. Beginning in the late 19th century, Anahola streamflow was diverted by Makee Sugar Company at altitudes of 840 feet (upper intake) and 280 feet (lower intake) for irrigating sugarcane in the Keālia area. When sugarcane cultivation in the Keālia area ceased in 1988, part of the Makee Sugar Company’s surface-water collection system (Makee diversion system) in the Anahola drainage basin was abandoned. In an effort to better manage available surface-water resources, the State of Hawaiʻi Department of Hawaiian Home Lands is considering using the existing ditches in the Anahola Stream drainage basin to provide irrigation water for Native Hawaiian farmers in the area. To provide information needed for successful management of the surface-water resources, the U.S. Geological Survey investigated the availability and distribution of natural low flow in Anahola Stream and also collected low-flow data in Goldfish Stream, a stream that discharges into Kaneha Reservoir, which served as a major collection point for the Makee diversion system. Biological surveys of Anahola Stream were conducted as part of a study to determine the distribution of native and nonnative aquatic stream fauna. Results of the biological surveys indicated the presence of the following native aquatic species in Anahola Stream: ʻoʻopu ʻakupa (Sandwich Island sleeper) and ʻoʻopu naniha (Tear-drop goby) in the lower stream reaches surveyed; and ʻoʻopu nākea (Pacific river goby), ʻoʻopu nōpili (Stimpson’s goby), and ʻōpae kalaʻole (Mountain shrimp) in the middle and upper stream reaches surveyed. Nonnative aquatic species were found in all of the surveyed stream reaches along Anahola Stream. The availability and distribution of natural low flow were determined using a combination of discharge measurements made from February 2011 to May 2012

  11. Biogeochemical and suspended sediment responses to permafrost degradation in stream banks in Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Van Horn, D.; Sudman, Z.; McKnight, D. M.; Welch, K. A.; Lyons, W. B.

    2015-09-01

    Stream channels in the McMurdo Dry Valleys are typically wide, incised, and stable. At typical flows, streams occupy a fraction of the oversized channels, providing habitat for algal mats. In January 2012, we discovered substantial channel erosion and subsurface thermomechanical erosion undercutting banks of Crescent Stream. We sampled stream water along the impacted reach and compared concentrations of solutes to the long-term data from this stream (~20 years of monitoring). Thermokarst-impacted stream water demonstrated higher electrical conductivity, and concentrations of chloride, sulfate, sodium, suspended sediments, and nitrate than the long-term medians. These results suggest that this mode of lateral permafrost degradation may substantially impact stream solute loads and potentially fertilize stream and lake ecosystems. The potential for sediment to scour or bury stream algal mats is yet to be determined, though it may offset impacts of associated increased nutrient loads to streams.

  12. Inner gorge-slot canyon system produced by repeated stream incision (eastern Alps): Significance for development of bedrock canyons

    NASA Astrophysics Data System (ADS)

    Sanders, Diethard; Wischounig, Lukas; Gruber, Alfred; Ostermann, Marc

    2014-06-01

    Many inner bedrock gorges of the Alps show abrupt downstream changes in gorge width, as well as channel type and gradient, as a result of epigenetic incision of slot canyons. Many slot canyons also are associated with older gorge reaches filled with Quaternary deposits. The age of slot canyons and inner bedrock gorges, however, commonly is difficult to constrain. For the inner-bedrock gorge system of the Steinberger Ache catchment (eastern Alps), active slot canyons as well as older, abandoned gorge reaches filled with upper Würmian proglacial deposits record three phases of gorge development and slot-canyon incision. A 234U/230Th age of cement of 29.7 ± 1.8 ka in fluvial conglomerates onlapping the flank of an inner gorge fits with late Würmian valley-bottom aggradation shortly before pleniglacial conditions; in addition, the age indicates that at least the corresponding canyon reach must be older. During advance of ice streams in the buildup of the Last Glacial Maximum (LGM), the catchment was blocked, and a proglacial lake formed. Bedrock gorges submerged in that lake were filled with fluviolacustrine deposits. During the LGM, the entire catchment was overridden by ice. During post-glacial reincision, streams largely found again their preexisting inner bedrock canyons. In some areas, however, the former stream course was 'missed', and a slot canyon formed. The distribution of Pleistocene deposits, the patterns of canyon incision, and the mentioned U/Th cementation age, however, together record a further discrete phase of base-level rise and stream incision well before the LGM. The present course of Steinberger Ache and its tributaries is a patchwork of (1) slot canyons incised during post-glacial incision; (2) vestiges of slot canyons cut upon an earlier (middle to late Würmian?) cycle of base-level rise and fall; (3) reactivated reaches up to ~ 200 m in width of inner bedrock gorge that are watershed at present, and more than at least ~ 30 ka in age; and (4

  13. Transverse mixing of simulated piscicides in small montane streams

    USGS Publications Warehouse

    Brown, Peter J.; Ard, Jenifer L.; Zale, Alexander V.

    2012-01-01

    Thorough mixing of piscicides into receiving waters is important for efficient and effective fish eradication. However, no guidance exists for the placement of drip stations with respect to mixing. Salt (NaCl) was used as a tracer to measure the mixing rates of center versus edge applications in riffle–pool, straight, and meandering sections of montane streams. The tracer was applied at either the center or the edge of a channel and measured with a conductivity meter across a downstream grid to determine the distances at which transverse mixing was complete. No advantage was accrued by applying piscicides in different types of channels because transverse mixing distance did not differ among them. However, mixing distance was significantly shorter at center applications. Chemicals entering a stream at the center of the channel mixed thoroughly within 10 stream widths, whereas chemicals entering a stream channel at the edge mixed thoroughly within 20 stream widths.

  14. Nitrogen Removal by Streams and Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    Our study, based on chemistry and channel dimensions data collected at 893 randomly-selected stream and river sites in the Mississippi River basin, demonstrated the interaction of stream chemistry, stream size, and NO3-N uptake metrics across a range of stream sizes and across re...

  15. Applying geomorphologic principles to restore streams impacted by surface mining

    SciTech Connect

    Ellison, M.S.

    1996-12-31

    The combination of geomorphic principles and native material restoration techniques provides a viable alternative to traditional engineering approaches to restore rivers and streams affected by surface mining. Channels can be designed to reflect ranges of stability known to occur in natural streams for measurable parameters such as bankfull width, depth, gradient, meander radius, sinuosity and entrenchment. Stable channel geometry reduces stresses on the stream bed and banks and eliminate the need for channel lining. Methods to utilize native materials have been developed and refined to stabilize stream channels constructed to appropriate dimensions until planted riparian vegetation develops mature root systems. These native materials include root wads, willow bundles, and boulders. These methods result in improved wildlife habitat in and around channels that maintain equilibria between sediment supply and sediment transport, and between erosional and depositional rates and patterns. Two streams in Baltimore County, Maryland were disturbed during mining operations and are being restored using this approach. Goodwin Run had been channelized to allow quarrying of the Cockeysville Marble. Approximately 1100 feet of stream were restored in the fall of 1992. White Marsh Run has been channelized and relocated several times to facilitate sand and gravel mining between an urbanized area and sensitive habitats of the Chesapeake Bay. The design of the White Marsh Run Restoration Project incorporated refinements to techniques used at Goodwin Run, and entails the restoration of over 5000 feet of stream and adjacent wetland habitat.

  16. Dynamic, discontinuous stream networks and their sensitivity to climate change

    NASA Astrophysics Data System (ADS)

    Godsey, S.; Kirchner, J. W.

    2011-12-01

    The temporal persistence and spatial continuity of surface flow in a stream channel is fundamentally important for the organisms that live in it. However, we lack a conceptual framework for understanding where flows are perennial versus ephemeral in channel networks, and for understanding where stream channels will be continuous versus intermittent. Here we show that stream networks are dynamic and discontinuous across a wide range of climatic regimes. We define the stream network as the extent of surface flow within the geomorphic expression of the channel network. We present a conceptual model linking extension, contraction, and intermittency of flow within channel networks to their hydroclimatic regimes and local subsurface characteristics. We discuss the sensitivity of these dynamic, discontinuous networks to climate and land use change, and discuss the ecological implications of potential changes at selected sites.

  17. Stream-subsurface nutrient dynamics in a groundwater-fed stream

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; Niederkorn, A.; Parsons, C. T.; Van Cappellen, P.

    2015-12-01

    The stream-riparian-aquifer interface plays a major role in the regional flow of nutrients and contaminants due to a strong physical-chemical gradient that promotes the transformation, retention, elimination or release of biogenic elements. To better understand the effect of the near-stream zones on stream biogeochemistry, we conducted a field study on a groundwater-fed stream located in the rare Charitable Research Reserve, Cambridge, Ontario, Canada. This study focused on monitoring the spatial and temporal distributions of nutrient elements within the riparian and hyporheic zones of the stream. Several piezometer nests and a series of passive (diffusion) water samplers, known as peepers, were installed along longitudinal and lateral transects centered on the stream to obtain data on the groundwater chemistry. Groundwater upwelling along the stream resulted in distinctly different groundwater types and associated nitrate concentrations between small distances in the riparian zone (<4m). After the upstream source of the stream surface water, concentrations of nutrients (NO3-, NH4+, SO42- and carbon) did not significantly change before the downstream outlet. Although reduction of nitrate and sulphate were found in the riparian zone of the stream, this did not significantly influence the chemistry of the adjacent stream water. Also, minimal retention in the hyporheic zones limited reduction of reactive compounds (NO3- and SO42-) within the stream channel. The results showed that the dissolved organic carbon (DOC) and residence time of water in the hyporheic zone and in surface water limited denitrification.

  18. Biology in focus: better lives through better science: new hope for acid streams

    USGS Publications Warehouse

    Watten, Barnaby

    1998-01-01

    Across the nation, a toxic pollutant turns clean streams orange, kills fish and plant life, and smells like rotten eggs. The culprit is acid mine drainage, the poisonous water leaking from more than 500,000 abandoned and inactive mines in 32 states. The toxic discharge is a problem for operational mines as well. In the Appalachian coal region, for example, acid mine drainage has degraded more than 8,000 miles of streams and has left some aquatic habitats virtually lifeless.

  19. View of abandoned Yosemite Valley Railroad track grade and trestle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of abandoned Yosemite Valley Railroad track grade and trestle remain. Seen from same camera location as HAER CA-150-39. Looking northwest - All Year Highway, Between Arch Rock & Yosemite Valley, El Portal, Mariposa County, CA

  20. 6. ANGLE VIEW OF ABANDONED INCINERATOR, INTERIOR OF BUILDING, 499 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. ANGLE VIEW OF ABANDONED INCINERATOR, INTERIOR OF BUILDING, 499 FACING NORTHWEST. - U.S. Naval Base, Pearl Harbor, Fleet Accounting & Dispersing Center, 178 Main Street, Pearl City, Honolulu County, HI

  1. 77 FR 5740 - Tennessee Abandoned Mine Land Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... 1992: This bill revised the AML program in areas of coal remining, and abandoned coal refuse sites, as... Disposal; Reclamation on Private Land; Rights of Entry; Public Participation Policies; Organization... include landslide hazards, highwalls, flooding, erosion, sedimentation, acid drainage, coal...

  2. Community Involvement Plan: Western Abandoned Uranium Mine Region

    EPA Pesticide Factsheets

    Factsheets related to the Western Abandoned Uranium Mine Region, generally located along the Little Colorado River and Highway 89, and are in the Cameron, Coalmine Canyon, Bodaway/Gap, and Leupp Chapters.

  3. Working with Communities on Cleaning Up Abandoned Uranium Mines

    EPA Pesticide Factsheets

    This site provides information about the EPA's work to inform and include communities in the cleanup of abandoned mines, including health impacts, major enforcement and removal milestones, and community actions.

  4. BOILING HOUSE, GROUND FLOOR, ABANDONED SUGAR BIN IN CENTER. IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, GROUND FLOOR, ABANDONED SUGAR BIN IN CENTER. IN BACKGROUND, THE ELEVATOR AND STAIRS GOING UP. VIEW FROM SOUTHWEST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  5. 67. View of old, abandoned vehicular bridge near entrance to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. View of old, abandoned vehicular bridge near entrance to Lake Trapps. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  6. 11. Remains of Douglasfir cordwood abandoned when kilns ceased operation, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Remains of Douglas-fir cordwood abandoned when kilns ceased operation, looking northeast. - Warren King Charcoal Kilns, 5 miles west of Idaho Highway 28, Targhee National Forest, Leadore, Lemhi County, ID

  7. 5. GENERAL VIEW OF NORTH WINGWALL LOOKING SOUTHWEST TOWARD ABANDONED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW OF NORTH WINGWALL LOOKING SOUTHWEST TOWARD ABANDONED WATERPUMP FACILITY FOR A SUGAR PROCESSING PLANT SOUTH OF THE BRIDGE. - Winnebago River Bridge, Spanning Winnebago River at U.S. Highway 65, Mason City, Cerro Gordo County, IA

  8. On the dynamics of stream piracy

    NASA Astrophysics Data System (ADS)

    Goren, L.; Willett, S. D.

    2012-04-01

    Drainage network reorganization by stream piracy is invoked repeatedly to explain the morphology of unique drainage patterns and as a possible mechanism inducing abrupt variations of sediment accumulation rates. However, direct evidence of stream piracy is usually rare, and is highly interpretation dependent. As a first step in assessing how probable capture events are and establishing the conditions that favor stream piracy versus the those that favor stable landscapes, we formulate analytically the physics of divide migration and capture events and study this formulation from a dynamical system point of view. The formulation is based on a one-dimensional topographic cross section between two channels that share a water divide. Two hillslope profiles diverge from the divide and drain into two fluvial bedrock tributaries, whose erosion rate is controlled by a stream power law. The rate of erosion at the bounding channels is thus a function of the upstream drainage area and local slope. A tectonically induced downward perturbation of the elevation of one of the bounding channels lowers the channel slope but at the same time increases the drainage area due to outward migration of the water divide. The changes in slope and area have opposing effect on the erosion rate at the bounding channels, so that the perturbation may either grow or be damped. We define the geomorphic and tectonic parameters that control the behavior of the system and find the regimes that lead to stable landscapes and to capture events.

  9. Brent spar experience haunts N. Sea platform abandonments

    SciTech Connect

    Knott, D.

    1996-06-03

    This paper reviews the environmental conflicts that oil and gas industry officials have recently encountered in their attempts to abandon offshore platforms. It reviews the various governmental policies which are in effect in the North Sea area and the effect these policies have had on removal or deepsea disposal of these facilities. It provides a prospectus of soon to be abandoned facilities in the North Sea countries and a summary of removal operations in recent history.

  10. Sediment Yield From First Order Streams in Managed Redwood Forests: Effects of Recent Harvests and Legacy Management Practices

    NASA Astrophysics Data System (ADS)

    Perry, H.; O'Connor, M.; McDavitt, W.

    2003-12-01

    First order streams in the Van Duzen River and lower Eel River watersheds owned by Pacific Lumber Company (Palco) in Humboldt County, California, were surveyed and small sedimentation basins were installed to develop quantitative estimates of sediment yield. A random study design was developed to investigate the potential effects of different geologic substrates and forest management on sediment yield. The drainage area for these streams was about 5 to 10 ha where fluvial characteristics were expressed. The erosion processes within the scope of this investigation included surface erosion from hillslopes and harvest units, rill and gully erosion that may occur in relation to skid trails (recently used or abandoned), and stream channel erosion, including bank erosion and small-scale mass wasting. Temporary sedimentation basins were installed in 30 randomly chosen channels to quantify relative amounts of sediment yield from watersheds with different management conditions (treatment sites) and second-growth stands not recently entered (control sites). Most treatment sites were clearcut harvests. Two classes of treated sites were sampled: sites harvested under stricter regulations of a Habitat Conservation Plan (HCP) and sites harvested prior to implementation of the HCP. Channel surveys were also conducted to characterize conditions and identify existing evidence of channel erosion and surface erosion in areas adjacent to the channel. Results from winter 2001/02 suggested that there may be differences in sediment yield among geologic substrates, with the Wildcat having relatively low sediment yield values. Treatment effects were significantly different (ANOVA, p < 0.05) when two large landslides were removed from the control sites; the HCP sites had significantly lower sediment yield. There was also a significant interaction between treatment and geologic substrates (ANOVA, p < 0.05). Control sites had sediment yield comparable to the pre-HCP treatment sites. The

  11. Tracing lead pollution sources in abandoned mine areas using stable Pb isotope ratios.

    PubMed

    Yoo, Eun-Jin; Lee, Jung-A; Park, Jae-Seon; Lee, Khanghyun; Lee, Won-Seok; Han, Jin-Seok; Choi, Jong-Woo

    2014-02-01

    This study focused on Pb isotope ratios of sediments in areas around an abandoned mine to determine if the ratios can be used as a source tracer. For pretreatment, sediment samples were dissolved with mixed acids, and a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Nu plasma II) was used to investigate the Pb isotopic composition of the samples. The measured isotope ratios were then corrected for instrumental mass fractionation by measuring the (203)Tl/(205)Tl ratio. Repeated measurements with the NIST SRM 981 reference material showed that the precision of all ratios was below 104 ppm (±2σ) for 50 ng/g. The isotope ratios ((207)Pb/(206)Pb) found were 0.85073 ± 0.0004~0.85373 ± 0.0003 for the main stream, while they were 0.83736 ± 0.0010 for the tributary and 0.84393 ± 0.0002 for the confluence. A binary mixing equation for isotope ratios showed that the contributions of mine lead to neighboring areas were up to 60%. Therefore, Pb isotope ratios can be a good source tracer for areas around abandoned mines.

  12. Lessons learned from the U.S. Geological Survey abandoned mine lands initiative: 1997-2002

    USGS Publications Warehouse

    Kimball, Briant A.; Church, Stanley E.; Besser, John M.

    2006-01-01

    Growth of the United States has been facilitated, in part, by hard-rock mining in the Rocky Mountains. Abandoned and inactive mines cause many significant environmental concerns in hundreds of watersheds. Those who have responsibility to address these environmental concerns must have a basic level of scientific information about mining and mine wastes in a watershed prior to initiating remediation activities. To demonstrate what information is needed and how to obtain that information, the U.S. Geological Survey implemented the Abandoned Mine Lands (AML) Initiative from 1997 to 2002 with demonstration studies in the Boulder River watershed in Montana and the Animas River watershed in Colorado. The AML Initiative included collection and analysis of geologic, hydrologic, geochemical, geophysical, and biological data. The synergy of this interdisciplinary analysis produced a perspective of the environmental concerns that could not have come from a single discipline. Two examples of these perspectives include (1) the combination of hydrological tracer techniques, structural geology, and geophysics help to understand the spatial distribution of loading to the streams in a way that cannot be evaluated by monitoring at a catchment outlet, and (2) the combination of toxicology and hydrology combine to illustrate that seasonal variability of toxicity conditions occurs. Lessons have been learned by listening to and collaborating with land-management agencies to understand their needs and by applying interdisciplinary methods to answer their questions.

  13. Re-meandering of lowland streams: will disobeying the laws of geomorphology have ecological consequences?

    PubMed

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of

  14. Re-Meandering of Lowland Streams: Will Disobeying the Laws of Geomorphology Have Ecological Consequences?

    PubMed Central

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of

  15. Water budgets and groundwater volumes for abandoned underground mines in the Western Middle Anthracite Coalfield, Schuylkill, Columbia, and Northumberland Counties, Pennsylvania-Preliminary estimates with identification of data needs

    USGS Publications Warehouse

    Goode, Daniel J.; Cravotta, Charles A.; Hornberger, Roger J.; Hewitt, Michael A.; Hughes, Robert E.; Koury, Daniel J.; Eicholtz, Lee W.

    2011-01-01

    This report, prepared in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP), the Eastern Pennsylvania Coalition for Abandoned Mine Reclamation, and the Dauphin County Conservation District, provides estimates of water budgets and groundwater volumes stored in abandoned underground mines in the Western Middle Anthracite Coalfield, which encompasses an area of 120 square miles in eastern Pennsylvania. The estimates are based on preliminary simulations using a groundwater-flow model and an associated geographic information system that integrates data on the mining features, hydrogeology, and streamflow in the study area. The Mahanoy and Shamokin Creek Basins were the focus of the study because these basins exhibit extensive hydrologic effects and water-quality degradation from the abandoned mines in their headwaters in the Western Middle Anthracite Coalfield. Proposed groundwater withdrawals from the flooded parts of the mines and stream-channel modifications in selected areas have the potential for altering the distribution of groundwater and the interaction between the groundwater and streams in the area. Preliminary three-dimensional, steady-state simulations of groundwater flow by the use of MODFLOW are presented to summarize information on the exchange of groundwater among adjacent mines and to help guide the management of ongoing data collection, reclamation activities, and water-use planning. The conceptual model includes high-permeability mine voids that are connected vertically and horizontally within multicolliery units (MCUs). MCUs were identified on the basis of mine maps, locations of mine discharges, and groundwater levels in the mines measured by PaDEP. The locations and integrity of mine barriers were determined from mine maps and groundwater levels. The permeability of intact barriers is low, reflecting the hydraulic characteristics of unmined host rock and coal. A steady-state model was calibrated to measured groundwater

  16. Beaded streams of Arctic permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Whitman, M. S.; Jones, B. M.; Grosse, G.; Gaglioti, B. V.; Heim, K. C.

    2014-07-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic inventory of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high-ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate relatively stable form and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in stream gulches effectively insulates river ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools stratify thermally, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m s-1, yet channel runs still move water rapidly between pools

  17. Beaver Activity, Holocene Climate and Riparian Landscape Change Across Stream Scales in the Greater Yellowstone Ecosystem

    NASA Astrophysics Data System (ADS)

    Levine, R.; Meyer, G. A.

    2013-12-01

    Beaver (Castor canadensis) have been part of the fluvial and riparian landscape across much of North America since the Pleistocene, increasing channel habitat complexity and expanding riparian landscapes. The fur trade, however, decimated beaver populations by the 1840s, and other human activities have limited beaver in many areas, including parts of the Greater Yellowstone Ecosystem (GYE). Understanding fluctuations in beaver occupation through the Holocene will aid in understanding the natural range of variability in beaver activity as well as climatic and anthropogenic impacts to fluvial systems. We are developing a detailed chronology of beaver-assisted sedimentation and overall fluvial activity for Odell and Red Rock Creeks (basin areas 83 and 99 km2) in Centennial Valley (CV), Montana, to augment related studies on the long-term effects of beaver on smaller GYE fluvial systems (basin areas 0.1-50 km2). In developing the CV chronology, we use the presence of concentrations of beaver-chewed sticks as a proxy for beaver occupancy. Beaver-stick deposits are found in paleochannel and fluvial terrace exposures. The relative ages of exposures were determined by elevation data from airborne LiDAR and ground surveys. Numerical ages were obtained from 36 14C ages (~30 more are pending) of beaver-stick wood collected during investigation of the stratigraphy. Most beaver-stick deposits are associated with ~ 1 meter of fine-grained sediment, interpreted as overbank deposits, commonly overlying gravelly sand or pebble gravel channel deposits which is consistent with enhanced overbank sedimentation associated with active beaver dams in CV streams. The CV deposits differ from those on smaller GYE streams where beaver-stick deposits are associated with abandoned dams (berms), infilled ponds and laminated sediments. The lack of pond-related deposition associated with CV beaver-stick deposits is consistent with frequent dam breaching (≤ 5 years) in the modern channel of Odell

  18. Comparison of Stream-Groundwater Interactions in Two Restoration Approaches

    NASA Astrophysics Data System (ADS)

    Gregg, S. E.; Gooseff, M. N.; Wagener, T.

    2010-12-01

    Stream classification systems used today do not take into account stream-groundwater interactions, hyporheic flows, or landscape characteristics. They generally ignore hydrological connectivity of a stream to its catchment by focusing on surface morphology. Thus such restoration approaches do not promote proper hydrologic function of a reach. Stream-groundwater interaction is important to stream ecosystem function and hyporheic exchange has a significant influence on a stream’s biogeochemistry. Therefore, stream restoration techniques need to address the subsurface of the stream just as much as the main channel. With the use of tracer studies and a two-storage zone transient storage model, we expect to see that restoration efforts which focused on reconnecting the floodplain (RTF) will have more of a positive effect on hyporheic exchange than those that focused on placing in-stream structures (ISS). The streams that had RTF methods of restoration should also have a greater impact on stream-groundwater interactions resulting in enhanced ecosystems. Successful stream ecosystem restoration will result from a perspective that embraces connecting the river channel to its floodplain, corridor, and catchment in order to ensure that restoration techniques at the local scale are sustainable on a regional scale and into the future.

  19. QUANTIFYING STREAM STRUCTURAL PHYSICAL HABITAT ATTRIBUTES USING LIDAR AND HYPERSPECTRAL IMAGERY

    EPA Science Inventory

    Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity and cover, riparian vegetation cover and structure, anthropogenic disturbances and channel-riparian interaction.

  20. HEADWATER INTERMITTENT STREAMS STUDY: COLLABORATION ACROSS THE NATION

    EPA Science Inventory

    Headwater streams are the most abundant and widespread of our nation's surface waters, yet little guidance is available specific to these resources. Headwater streams lie at the terrestrial-aquatic interface, both spatially because of their narrow channels and landscape position ...

  1. Effective discharge in Rocky Mountain headwater streams

    NASA Astrophysics Data System (ADS)

    Bunte, Kristin; Abt, Steven R.; Swingle, Kurt W.; Cenderelli, Dan A.

    2014-11-01

    Whereas effective discharge (Qeff) in mountain streams is commonly associated with a moderate flow such as bankfull discharge (Qbf), this study found that the maximum discharge (Qmax), and not bankfull discharge, is the channel forming or effective flow for gravel transport in plane-bed streams where partial bed mobility causes steep gravel transport rating curves. Qeff may approach bankfull flow in some step-pool channels where gravel moves over a static cobble/boulder bed. Our conclusions are based on magnitude-frequency analyses conducted at 41 gauged Rocky Mountain headwater streams. Because these gauged streams lacked gravel transport data, as is typical, comparable streams with measured transport rates were used to develop scaling relations for rating curve exponents with stream and watershed characteristics. Those scaling relations were then used to estimate the steepness of gravel rating curves at the 41 gauged but unsampled sites. The measured flow frequency distributions were characterized by two fitted power functions. The steepness of the flow frequency distributions and the estimated steepness of gravel transport relations were combined in magnitude-frequency analyses to compute Qeff.

  2. Who Says There Is No Life after Abandonment? A Grounded Theory on the Coping of Abandoned Filipino Elderly in Nursing Homes

    ERIC Educational Resources Information Center

    de Guzman, Allan B.; Lacorte, Jeremy C.; Lacsamana, Andrea Keith G.; Lagac, Mark Lawrence M.; Laguador, Jobel M.; Lapid, Jazminn Jessica R.; Lee, Lyndcie Miriele C.

    2012-01-01

    Cases of abandoned elderly are increasing worldwide. By and large, this group struggles with the sudden change in living arrangement as well as abandonment by their families. Consequently, many elderly are forced into living in nursing homes for the remainder of their lives. Abandonment among these elderly negatively affects how they view…

  3. Abandoned pastoral settlements provide concentrations of resources for savanna birds

    NASA Astrophysics Data System (ADS)

    Söderström, Bo; Reid, Robin S.

    2010-03-01

    Knowledge is poor of how fertilization affects birds in grasslands. We investigated the impact on birds of abandoned pastoral settlements that historically received very high levels of livestock dung. A total of 28 abandoned settlements and 74 landscape controls - in Koyake Group Ranch and Maasai Mara National Reserve in Kenya - were surveyed for birds during the wet and/or dry season. Our results showed that bird species richness and total abundance increased within 200 m of abandoned pastoral settlements, particularly during the dry season when foraging resources on the savanna are limited. The high concentrations of nutrients inside abandoned settlements favoured the abundance of Diptera and Coleoptera, as shown by invertebrate surveys performed during the dry season on a subset of 32 sites. Both total numbers and dry biomass of these two invertebrate orders were higher on abandoned settlements in comparison with the surrounding landscape. We conclude that higher fertilization levels cause a temporal and spatial redistribution of birds on the savanna. Livestock fertilization and bird abundance are probably linked through an increase in abundance of invertebrate food upon which birds feed in an opportunistic fashion.

  4. Seasonal energy storage using bioenergy production from abandoned croplands

    NASA Astrophysics Data System (ADS)

    Campbell, J. Elliott; Lobell, David B.; Genova, Robert C.; Zumkehr, Andrew; Field, Christopher B.

    2013-09-01

    Bioenergy has the unique potential to provide a dispatchable and carbon-negative component to renewable energy portfolios. However, the sustainability, spatial distribution, and capacity for bioenergy are critically dependent on highly uncertain land-use impacts of biomass agriculture. Biomass cultivation on abandoned agriculture lands is thought to reduce land-use impacts relative to biomass production on currently used croplands. While coarse global estimates of abandoned agriculture lands have been used for large-scale bioenergy assessments, more practical technological and policy applications will require regional, high-resolution information on land availability. Here, we present US county-level estimates of the magnitude and distribution of abandoned cropland and potential bioenergy production on this land using remote sensing data, agriculture inventories, and land-use modeling. These abandoned land estimates are 61% larger than previous estimates for the US, mainly due to the coarse resolution of data applied in previous studies. We apply the land availability results to consider the capacity of biomass electricity to meet the seasonal energy storage requirement in a national energy system that is dominated by wind and solar electricity production. Bioenergy from abandoned croplands can supply most of the seasonal storage needs for a range of energy production scenarios, regions, and biomass yield estimates. These data provide the basis for further down-scaling using models of spatially gridded land-use areas as well as a range of applications for the exploration of bioenergy sustainability.

  5. Roughness characteristics of natural channels

    USGS Publications Warehouse

    Barnes, Harry Hawthorne

    1967-01-01

    Color photographs and descriptive data are presented for 50 stream channels for which roughness coefficients have been determined. All hydraulic computations involving flow in open channels require an evaluation of the roughness characteristics of the channel. In the absence of a satisfactory quantitative procedure this evaluation remains chiefly an art. The ability to evaluate roughness coefficients must be developed through experience. One means of gaining this experience is by examining and becoming acquainted with the appearance of some typical channels whose roughness coefficients are known. The photographs and data contained in this report represent a wide range of channel conditions. Familiarity with the appearance, geometry, and roughness characteristics of these channels will improve the engineer's ability to select roughness coefficients for other channels .

  6. Geophysical methods for locating abandoned wells

    USGS Publications Warehouse

    Frischknecht, Frank C.; Muth, L.; Grette, R.; Buckley, T.; Kornegay, B.

    1983-01-01

    A preliminary study of the feasibility of using geophysical exploration methods to locate abandoned wells containing steel casing indicated that magnetic methods promise to be effective and that some electrical techniques might be useful as auxiliary methods. Ground magnetic measurements made in the vicinity of several known cased wells yielded total field anomalies with peak values ranging from about 1,500 to 6,000 gammas. The anomalies measured on the ground are very narrow and, considering noise due to other cultural and geologic sources, a line spacing on the order of 50 feet (15.2 m) would be necessary to locate all casings in the test area. The mathematical model used to represent a casing was a set of magnetic pole pairs. By use of a non-linear least squares curve fitting (inversion) program, model parameters which characterize each test casing were determined. The position and strength of the uppermost pole was usually well resolved. The parameters of lower poles were not as well resolved but it appears that the results are adequate for predicting the anomalies which would be observed at aircraft altitudes. Modeling based on the parameters determined from the ground data indicates that all of the test casings could be detected by airborne measurements made at heights of 150 to 200 feet (45.7-61.0 m) above the ground, provided lines spaced as closely as 330 feet (100 m) were used and provided noise due to other cultural and geologic sources is not very large. Given the noise levels of currently available equipment and assuming very low magnetic gradients due to geologic sources, the detection range for total field measurements is greater than that for measurements of the horizontal or vertical gradient of the total intensity. Electrical self-potential anomalies were found to be associated with most of the casings where measurements were made. However, the anomalies tend to be very narrow and, in several cases, they are comparable in magnitude to other small

  7. Log Distribution, Persistence, and Geomorphic Function in Streams and Rivers, in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    St Pierre, L.; Burchsted, D.; Warren, D.

    2015-12-01

    Large wood provides critical ecosystem services such as fish habitat, temperature regulation and bank stabilization. In the northeastern U.S., the distribution of large wood is documented; however, there is little understanding of the movement, longevity and geomorphic function. This research examines the hypothesis that tree species control the persistence and geomorphic function of instream wood in the Appalachian region of the northeastern U.S. To do this, we assessed size, location, and species of logs in New Hampshire rivers, including locations in the White Mountain National Forest (WMNF) where these data were collected ten years ago. We expanded the previous dataset to include assessment of geomorphic function, including creation of diversion channels, pool formation, and sediment storage, among others. We also added new sites in the WMNF and sites on a large rural river in southwestern NH to increase the range of geomorphic variables to now include: confined and unconfined channels; 1st to 4th order streams; low to high gradient; meandering, multithreaded, and straight channels; and land use such as historic logging, modern agriculture, and post-agricultural abandonment. At each study site, we located all large logs (>10cm diameter, > 1m length) and log jams (>3 accumulated logs that provide a geomorphic function) along 100m-700m reaches. We marked each identified log with a numbered tag and recorded species, diameter, length, orientation, GPS location, tag number, and photographs. We assessed function and accumulation, decay, stability, and source classes for each log. Along each reach we measured riparian forest composition and structure and channel width. Preliminary analysis suggests that tree species significantly affects the function of logs: yellow birch and American sycamore are highly represented. Additionally, geomorphic setting also plays a primary role, where unconfined reaches have large logs that provide important functions; those functions

  8. Flood-frequency characteristics of Wisconsin streams

    USGS Publications Warehouse

    Walker, John F.; Krug, William R.

    2003-01-01

    Flood-frequency characteristics for 312 gaged sites on Wisconsin streams are presented for recurrence intervals of 2 to 100 years using flood-peak data collected through water year 2000. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of these equations. The state was divided into five areas with similar physiographic characteristics. The most significant basin characteristics are drainage area, main-channel slope, soil permeability, storage, rainfall intensity, and forest cover. The standard error of prediction for the equation for the 100-year flood discharge ranges from 22 to 44 percent in the state. A graphical method for estimating flood-frequency characteristics of regulated streams was developed from the relation of discharge and drainage area. Graphs for the major regulated streams are presented.

  9. Inventory of miscellaneous streams

    SciTech Connect

    Haggard, R.D.

    1998-08-14

    Miscellaneous streams discharging to the soil column on the Hanford Site are subject to requirements of several milestones identified in Consent Order No. DE 9INM-177 (Ecology and DOE 1991). The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Stream (DOE/RL-93-94) provides a plan and schedule for the disposition of miscellaneous streams to satisfy one of the Section 6.0 requirements of the Consent Order. One of the commitments (Activity 6-2.2) established in the plan and schedule is to annually update, the miscellaneous streams inventory. This document constitutes the 1998 revision of the miscellaneous streams inventory. Miscellaneous stream discharges were grouped into four permitting categories (Table 1). The first miscellaneous streams Permit (ST 4508) was issued May 30, 1997, to cover wastewater discharges from hydrotesting, maintenance, and construction activities. The second miscellaneous streams Permit (ST4509) covers discharges from cooling water and condensate discharges. The third permit application for category three waste streams was eliminated by recategorizing waste streams into an existing miscellaneous streams permit or eliminating stream discharges. Elimination of the third categorical permit application was approved by Ecology in January 1997 (Ecology 1997). The fourth permit application, to cover storm water, is due to Ecology in September 1998. Table 1 provides a history of the miscellaneous streams permitting activities.

  10. A computer model of auditory stream segregation.

    PubMed

    Beauvois, M W; Meddis, R

    1991-08-01

    A computer model is described which simulates some aspects of auditory stream segregation. The model emphasizes the explanatory power of simple physiological principles operating at a peripheral rather than a central level. The model consists of a multi-channel bandpass-filter bank with a "noisy" output and an attentional mechanism that responds selectively to the channel with the greatest activity. A "leaky integration" principle allows channel excitation to accumulate and dissipate over time. The model produces similar results to two experimental demonstrations of streaming phenomena, which are presented in detail. These results are discussed in terms of the "emergent properties" of a system governed by simple physiological principles. As such the model is contrasted with higher-level Gestalt explanations of the same phenomena while accepting that they may constitute complementary kinds of explanation.

  11. Abandoned Mine Detection in Western Pennsylvania Using Surface Wave Data

    NASA Astrophysics Data System (ADS)

    Miller, B.

    2015-12-01

    Abandoned mines throughout the Appalachian region of the United States have been recognized as problematic. Resource extraction from these mines has long ceased and few, if any, documents pertaining to these operations exist. Over time support structures internal to the mines may collapse and lead to subsidence, potentially damaging surface structures. A non-invasive, surface deployed seismic method to detect undisclosed, abandoned near-surface mines would be beneficial as a first step to remediation. The use of seismic surface waves to analyze the upper several tens of meters of the subsurface has become an important technique for near-surface investigations and may provide a method for detection of near-surface, abandoned mine shafts. While there are many undocumented abandoned mines throughout the Appalachians one known example exists within Butler County, Pennsylvania. Although little is known about the overall operation there is limited documentation which provides information as to the location of the mine tunnels. Currently there is no recognized surface subsidence associated with the mine however documents indicate that the abandoned mining operations have an estimated depth ranging from twenty to fifty feet. To assist with acquisition a seismic land streamer was constructed. Use of a land streamer increases the speed, ease and efficiency required to perform a seismic survey. Additionally the land streamer allows for the acquisition of seismic surface waves which were analyzed using the Multichannel Analysis of Surface Waves (MASW) method. Data were acquired by conducting multiple, adjacent surveys perpendicular to the suspected location of abandoned mine tunnels. Throughout the survey area to a depth of approximately 15 meters, shear wave velocities range between approximately 200-1200 m/s. Based upon shear wave velocity changes within the profile anomalies have been identified corresponding to the contrast between the suspected mined, and unmined, areas.

  12. Regex-Stream

    SciTech Connect

    Goodall, John

    2012-09-01

    Log files are typically semi-or un-structured. To be useable, they need to be parsed into a standard, structured format. Regex-Stream facilitates parsing text files into structured data (JSON) in streams of data.

  13. Prioritized Contact Transport Stream

    NASA Technical Reports Server (NTRS)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  14. Low-flow water-quality and discharge data for lined channels in Northeast Albuquerque, New Mexico, 1990 to 1994

    USGS Publications Warehouse

    Gold, R.L.; McBreen, Robert

    1997-01-01

    The water resources of the Albuquerque metropolitan area are under increasing scrutiny by Federal and State regulators. Because of a lack of available low-flow data for use in addressing potential water-quality problems, a project was established to collect low-flow water-quality and discharge data. The project was initiated under a current cooperative program between the U.S. Geological Survey and the Albuquerque Metropolitan Arroyo Flood Control Authority. This report summarizes hydrologic data for that project collected between October 31, 1990, and September 3, 1994, at three sites in the lined channel network in northeast Albuquerque. The data collection network consisted of three sampling sites on Campus Wash, Embudo Arroyo, and the North Floodway Channel. The sites on Campus Wash and the North Floodway Channel were established at existing continuous-record streamflow-gaging stations; the Embudo Arroyo site was established at the site of an abandoned streamflow-gaging station. Data presented include site descriptions, instantaneous stream discharges measured at the time of sampling, and the results of the chemical analyses of the water-quality samples.

  15. Risk Assessment of Heavy Metals in Abandoned Mine Lands as Signifcant Contamination Problem in Romania

    NASA Astrophysics Data System (ADS)

    Horvath, E.; Jordan, G.; Fugedi, U.; Bartha, A.; Kuti, L.; Heltai, G.; Kalmar, J.; Waldmann, I.; Napradean, I.; Damian, G.

    2009-04-01

    INTRODUCTION Wide-spread environmental contamination associated with historic mining in Europe has triggered social responses to improve related environmental legislation, the environmental assessment and management methods for the mining industry. Pollution by acid mine drainage (AMD) from ore and coal mining is the outstanding and most important source of mining-induced environmental pollution. Younger et al. (2002) estimates that watercourses polluted by coal mine drainage could be in the order of 2,000 to 3,000 km, and 1,000 to 1,500 km polluted by metal mine discharges for the EU 15 Member States (Younger et al. 2002). Significance of contamination risk posed by mining is also highlighted by mine accidents such as those in Baia Mare, Romania in 2002 and in Aznalcollar, Spain in 1999 (Jordan and D'Alessandro 2004). The new EU Mine Waste Directive (Directive 2006/21/EC) requires the risk-based inventory of abandoned mines in the EU. The cost-effective implementation of the inventory is especially demanding in countries with extensive historic mining and great number of abandoned mine sites, like Romania. The problem is further complicated in areas with trans-boundary effects. The objective of this investigation to carry out the risk-based contamination assessment of a mine site with possible trans-boundary effects in Romania. Assessment follows the source-pathway-receptor chain with a special attention to heavy metal leaching from waste dumps as sources and to transport modelling along surface water pathways. STUDY AREA In this paper the Baiut mine catchment located in the Gutai Mts., Romania, close to the Hungarian border is studied. The polymetallic deposites in the Tertiary Inner-Carpathian Volcanic Arc are exposed by a series of abandoned Zn and Pb mines first operated in the 14th century. Elevation in the high relief catchment ranges from 449m to 1044m. Geology is characterised by andesites hosting the ore deposits and paleogene sediments dominating at the

  16. Assessing Stream Bed Stability and Excess Sedimentation in Mountain Streams

    NASA Astrophysics Data System (ADS)

    Faustini, J. M.; Kaufmann, P. R.

    2002-12-01

    Land use and resource exploitation in headwaters catchments, such as logging, mining, and road building, often increase sediment supply to streams, potentially causing excess sedimentation. Decreases in mean substrate size and increases in fine stream bed sediments can lead to increased frequency of bed scour, while accumulation of fine sediments in the interstices of coarse bed particles can adversely impact salmon spawning habitat and reduce habitat availability for benthic organisms. We are testing an index of relative bed stability (RBS), based on reach-scale synoptic stream surveys, that is calculated as the ratio of the observed geometric mean particle diameter to the estimated critical diameter at bankfull flow after adjusting for shear stress losses due to channel morphology and large woody debris (LWD). We hypothesize that in watersheds not altered by human disturbances, transport capacity should be in rough equilibrium with sediment supply and RBS should be close to unity. In streams where human activity has substantially augmented sediment supply, we expect that textural fining may occur, leading to lower RBS values. However, downstream trends of decreasing slope and particle size and increasing sediment supply might lead to systematic downstream trends in RBS, and variations in local channel characteristics could cause variability in calculated RBS values. To test whether RBS is useful as an indicator of textural fining in response to anthropogenic disturbance, we sampled streams in watersheds spanning a wide range of disturbance intensity (high, medium and low) in two sub-regions of contrasting lithology in the northern Coast Range of Oregon and in the mid-Atlantic U.S. In each watershed we sampled 3 closely-spaced main stem reaches (30-50 km2 drainage area) and 3 reaches in one or more smaller tributaries (5-10 km2) to assess local variability and within-basin longitudinal trends in RBS relative to variation between watersheds with different land use

  17. Downstream variation in bankfull width of wadeable streams across the conterminous United States

    EPA Science Inventory

    Bankfull channel width is a fundamental measure of stream size and a key parameter of interest for many applications in hydrology, fluvial geomorphology, and stream ecology. We developed downstream hydraulic geometry relationships for bankfull channel width w as a function of dra...

  18. Solutions Network Formulation Report. Landsat Data Continuity Mission Simulated Data Products for Bureau of Land Management and Environmental Protection Agency Abandoned Mine Lands Decision Support

    NASA Technical Reports Server (NTRS)

    Estep, Leland

    2007-01-01

    Presently, the BLM (Bureau of Land Management) has identified a multitude of abandoned mine sites in primarily Western states for cleanup. These sites are prioritized and appropriate cleanup has been called in to reclaim the sites. The task is great in needing considerable amounts of agency resources. For instance, in Colorado alone there exists an estimated 23,000 abandoned mines. The problem is not limited to Colorado or to the United States. Cooperation for reclamation is sought at local, state, and federal agency level to aid in identification, inventory, and cleanup efforts. Dangers posed by abandoned mines are recognized widely and will tend to increase with time because some of these areas are increasingly used for recreation and, in some cases, have been or are in the process of development. In some cases, mines are often vandalized once they are closed. The perpetrators leave them open, so others can then access the mines without realizing the danger posed. Abandoned mine workings often fill with water or oxygen-deficient air and dangerous gases following mining. If the workings are accidentally entered into, water or bad air can prove fatal to those underground. Moreover, mine residue drainage negatively impacts the local watershed ecology. Some of the major hazards that might be monitored by higher-resolution satellites include acid mine drainage, clogged streams, impoundments, slides, piles, embankments, hazardous equipment or facilities, surface burning, smoke from underground fires, and mine openings.

  19. Comparison of Stream Restoration and Vegetation Restoration on Stream Temperature in the Middle Fork John Day River, Oregon

    NASA Astrophysics Data System (ADS)

    Diabat, M.; Wondzell, S. M.; Haggerty, R.

    2013-12-01

    Stream temperature is an important component of aquatic ecosystems. During the past century, various anthropogenic activities (such as timber harvest, mining, and agriculture) reduced riparian vegetation and channel complexity along many streams around the world. As a result, stream temperature increased and suitable habitat for cool- and cold-water organisms declined. Stream temperatures are expected to increase even more under future climate. The effects of warmer climate and anthropogenic activities are proposed to be mitigated by restoration projects aimed to reduce stream temperatures. Common restoration practices are replanting natural vegetation along stream banks and restoring channel complexity. The Middle Fork John Day River, in northeastern Oregon, USA is an example of such a process. We modeled stream temperature along a 37-km section of the Middle Fork John Day River for current and projected conditions of climate, restored riparian vegetation along 6.6-km, and restored channel meanders along 1.5 km. Preliminary simulations suggest that if current riparian vegetation remains unchanged, an average summertime air warming of 4°C increased the 7-day average daily maximum (7DADM) by about 1.3°C. However, restored riparian vegetation reduced the 7DADM by about 0.7°C relative to the current temperature. Restored channel meanders reduced the 7DADM by less than 0.05°C relative to the current temperature. These preliminary simulations assume no hyporheic exchange and riparian vegetation that is 10 m tall and has 30% canopy density.

  20. How wide is a stream? Spatial extent of the potential "stream signature" in terrestrial food webs using meta-analysis.

    PubMed

    Muehlbauer, Jeffrey D; Collins, Scott F; Doyle, Martin W; Tockner, Klement

    2014-01-01

    The magnitude of cross-ecosystem resource subsidies is increasingly well recognized; however, less is known about the distance these subsidies travel into the recipient landscape. In streams and rivers, this distance can delimit the "biological stream width," complementary to hydro-geomorphic measures (e.g., channel banks) that have typically defined stream ecosystem boundaries. In this study we used meta-analysis to define a "stream signature" on land that relates the stream-to-land subsidy to distance. The 50% stream signature, for example, identifies the point on the landscape where subsidy resources are still at half of their maximum (in- or near-stream) level. The decay curve for these data was best fit by a negative power function in which the 50% stream signature was concentrated near stream banks (1.5 m), but a non-trivial (10%) portion of the maximum subsidy level was still found > 0.5 km from the water's edge. The meta-analysis also identified explanatory variables that affect the stream signature. This improves our understanding of ecosystem conditions that permit spatially extensive subsidy transmission, such as in highly productive, middle-order streams and rivers. Resultant multivariate models from this analysis may be useful to managers implementing buffer rules and conservation strategies for stream and riparian function, as they facilitate prediction of the extent of subsidies. Our results stress that much of the subsidy remains near the stream, but also that subsidies (and aquatic organisms) are capable of long-distance dispersal into adjacent environments, and that the effective "biological stream width" of stream and river ecosystems is often much larger than has been defined by hydro-geomorphic metrics alone. Limited data available from marine and lake sources overlap well with the stream signature data, indicating that the "signature" approach may also be applicable to subsidy spatial dynamics across other ecosystems.

  1. 7. ALIGNMENT OF ABANDONED COULTERVILLE ROAD IN FORESTA AT FALLEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ALIGNMENT OF ABANDONED COULTERVILLE ROAD IN FORESTA AT FALLEN TREE IN CENTER REAR. FOREGROUND MARKS TURN OF NEW ROAD FROM FORESTA TO HIGHWAY 120. LOOKING E. GIS: N-37 42 16.6 / W-119 44 00.3 - Coulterville Road, Between Foresta & All-Weather Highway, Yosemite Village, Mariposa County, CA

  2. 90. View of east facade of powerhouse, and abandoned lightning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. View of east facade of powerhouse, and abandoned lightning arrester houses on hillside above powerhouse; looking west. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  3. 36 CFR 13.45 - Unattended or abandoned property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA General Provisions § 13.45 Unattended or abandoned property... access the contents. Storing property in a manner that wildlife can access contents is prohibited. (4..., or both. (d) In the event unattended property interferes with the safe and orderly management of...

  4. 36 CFR 13.45 - Unattended or abandoned property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA General Provisions § 13.45 Unattended or abandoned property... access the contents. Storing property in a manner that wildlife can access contents is prohibited. (4..., or both. (d) In the event unattended property interferes with the safe and orderly management of...

  5. 37 CFR 2.66 - Revival of abandoned applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applications. 2.66 Section 2.66 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE... date of issuance of the notice of abandonment; or (2) Within two months of actual knowledge of the... with firsthand knowledge of the facts, that the delay in filing the response on or before the due...

  6. Predicting Abandonment of School-Wide Behavior Support Interventions

    ERIC Educational Resources Information Center

    Nese, Rhonda N. T.; McIntosh, Kent; Nese, Joseph F. T.; Ghemraoui, Adam; Bloom, Jerry; Johnson, Nanci W.; Phillips, Danielle; Richter, Mary F.; Hoselton, Robert

    2016-01-01

    This study examines predictors of abandonment of evidence-based practices through descriptive analyses of extant state-level training data, fidelity of implementation data, and nationally reported school demographic data across 915 schools in 3 states implementing school-wide positive behavioral interventions and supports (SWPBIS). Schools…

  7. 49 CFR 195.59 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... System (NPMS) in accordance with the NPMS “Standards for Pipeline and Liquefied Natural Gas Operator... in accordance with applicable laws. Refer to the NPMS Standards for details in preparing your data... abandoned in accordance with all applicable laws. (b) [Reserved] [Amdt. 195-69, 65 FR 54444, Sept. 8,...

  8. 1. ABANDONED TURNOUT (CALLED CAPTAIN WHEEL) TO SAN TAN INDIAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ABANDONED TURN-OUT (CALLED CAPTAIN WHEEL) TO SAN TAN INDIAN CANAL OFF OF SAN TAN FLOOD-WATER CANAL, T4S, R6E, S11/12. VIEW LOOKING SOUTHWEST. - San Carlos Irrigation Project, San Tan Indian Canal, North of Gila River, Coolidge, Pinal County, AZ

  9. 2. UPSTREAM SIDE OF DAM AND BRIDGE WITH ABANDONED SAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. UPSTREAM SIDE OF DAM AND BRIDGE WITH ABANDONED SAN TAN FLOOD-WATER HEADGATE IN FOREGROUND. TAKEN FROM NORTH END OF DAM - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ

  10. Deradicalization or Disengagement : A Framework for Encouraging Jihad Abandonment

    DTIC Science & Technology

    2016-06-10

    included law enforcement, the military, and intelligence services. Only recently have soft power elements been brought to bear to encourage jihad...intelligence services. Only recently have soft power elements been brought to bear to encourage jihad abandonment. Several nations implement a variety of de

  11. The Bureau of Refugees, Freedmen, and Abandoned Lands

    ERIC Educational Resources Information Center

    Chism, Kahlil

    2006-01-01

    This article discusses the Bureau of Refugees, Freedmen, and Abandoned Lands (Freedmen's Bureau), which was established by the Congress on March 3, 1865, to assist former slaves in acquiring land, securing employment, legalizing marriages, and pursuing education. After the bureau's abolition through an act of Congress approved on June 10, 1872,…

  12. 78 FR 9803 - Tennessee Abandoned Mine Land Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... bill revised the AML program in areas of coal re-mining, abandoned coal refuse sites, as well as... Selection; Coordination with Other Programs; Land Acquisition, Management and Disposal; Reclamation on... of OSM, Tennessee revised its proposed amendment to read, ``Land Acquisition, Management and...

  13. 36 CFR 331.22 - Abandonment of personal property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Abandonment of personal property. 331.22 Section 331.22 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY REGULATIONS GOVERNING THE PROTECTION, USE AND MANAGEMENT OF THE FALLS OF THE OHIO...

  14. PARTIAL VIEW OF NORTH SIDE, SHOWING ENCLOSED CONVEYOR AND ABANDONED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PARTIAL VIEW OF NORTH SIDE, SHOWING ENCLOSED CONVEYOR AND ABANDONED PEDESTRIAN BRIDGE TO THE FORMER THIRD FLOOR. VIEW FACING SOUTH-SOUTHEAST. - U.S. Naval Base, Pearl Harbor, Aviation Storehouse, Vincennes Avenue at Simms Street, Pearl City, Honolulu County, HI

  15. 30 CFR 556.56 - Lease-specific abandonment accounts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Lease-specific abandonment accounts. 556.56 Section 556.56 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... the current Treasury Circular No. 154 from the Surety Bond Branch, Financial Management...

  16. 30 CFR 556.56 - Lease-specific abandonment accounts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Lease-specific abandonment accounts. 556.56 Section 556.56 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... the current Treasury Circular No. 154 from the Surety Bond Branch, Financial Management...

  17. 30 CFR 556.56 - Lease-specific abandonment accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Lease-specific abandonment accounts. 556.56 Section 556.56 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... the current Treasury Circular No. 154 from the Surety Bond Branch, Financial Management...

  18. Eastern Agency Navajo Abandoned Uranium Mine Open House

    EPA Pesticide Factsheets

    Learn about the Contaminated Structures Program in the greater Eastern Agency with representatives from EPA, DOE, and Navajo Abandoned Mine Lands Program with updates on activities at NE Church Rock, Kerr-McGee/Quivira, and United Nuclear Co. Mill site.

  19. 36 CFR 13.906 - Unattended or abandoned property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Unattended or abandoned property. 13.906 Section 13.906 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park...

  20. 36 CFR 13.906 - Unattended or abandoned property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Unattended or abandoned property. 13.906 Section 13.906 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park...

  1. Why We Should Abandon the Idea of the Learning Organization

    ERIC Educational Resources Information Center

    Grieves, Jim

    2008-01-01

    Purpose: The purpose of this paper is to propose that the idea of the learning organization should be abandoned on the grounds that it was an imaginative idea that has now run its course. The paper seeks to explore the roots of the definition and provoke debate about the wisdom of retaining the concept. The argument is a challenge to readers to…

  2. 36 CFR 331.22 - Abandonment of personal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Abandonment of personal property. 331.22 Section 331.22 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY REGULATIONS GOVERNING THE PROTECTION, USE AND MANAGEMENT OF THE FALLS OF THE OHIO...

  3. 7. ABANDONED OLD HIGHWAY 101. NORTH OF LEGGETT. HUMBOLDT COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ABANDONED OLD HIGHWAY 101. NORTH OF LEGGETT. HUMBOLDT COUNTY, CALIFORNIA. NOTE CANTILEVERED DECKING. SOUTH FORK OF EEL RIVER AT LEFT. LOOKING SW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  4. Inventory of Tank Farm equipment stored or abandoned aboveground

    SciTech Connect

    Hines, S.C.; Lakes, M.E.

    1994-10-12

    This document provides an inventory of Tank Farm equipment stored or abandoned aboveground and potentially subject to regulation. This inventory was conducted in part to ensure that Westinghouse Hanford Company (WHC) does not violate dangerous waste laws concerning storage of potentially contaminated equipment/debris that has been in contact with dangerous waste. The report identifies areas inventoried and provides photographs of equipment.

  5. Artesian Well Abandonment at Launch Complex 39A

    NASA Technical Reports Server (NTRS)

    Morgan, Lindsay; Johansen, Deda

    2015-01-01

    The artesian well tasked for abandonment was located on the LOX side (northwest area) of the launch complex. The exact date of well installation is unknown. The well was no longer in use at the time of the abandonment request, but was previously utilized under St. Johns River Water Management District (SJRWMD) consumptive use permit (No. 50054) for the Floridian Aquifer. The exact construction details of the LOX artesian well were also unknown; however, a similar-type artesian well was previously located on the LH2 side of the site, which was abandoned in 2012. Based on discussions with the NASA RPM and review of the LH2 artesian well abandonment completion report, the LH2 artesian well was reported to be an 8-inch diameter, 330-foot deep well. The NASA RPM communicated that the LOX artesian well was likely to be an 8-inch diameter, 380-foot deep well. This information was used for scoping, and was subsequently confirmed to be substantially accurate. No additional information could be found for the LOX artesian well using the NASA Remediation Information System (RIS).

  6. 36 CFR 13.906 - Unattended or abandoned property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Unattended or abandoned property. 13.906 Section 13.906 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park...

  7. 36 CFR 13.906 - Unattended or abandoned property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Unattended or abandoned property. 13.906 Section 13.906 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park...

  8. 36 CFR 13.906 - Unattended or abandoned property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Unattended or abandoned property. 13.906 Section 13.906 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park...

  9. 11. An abandoned electrical system was found under the pressedsteel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. An abandoned electrical system was found under the pressed-steel ceiling. For some undetermined reason the pattern of the ceiling panels has 'photographed' onto the cardboard substrate. Two different panel designs were utilized in a checkerboard pattern. One panel of each design remains in place. Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  10. View of interior of abandoned section of rail mill where ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of interior of abandoned section of rail mill where the roof has been removed (note the steel frame structure that supported the traveling crane); looking south - Bethlehem Steel Corporation, South Bethlehem Works, Iron Foundry, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  11. Simulation of fluid, heat transport to estimate desert stream infiltration

    USGS Publications Warehouse

    Kulongoski, J.T.; Izbicki, J.A.

    2008-01-01

    In semiarid regions, the contribution of infiltration from intermittent streamflow to ground water recharge may be quantified by comparing simulations of fluid and heat transport beneath stream channels to observed ground temperatures. In addition to quantifying natural recharge, streamflow infiltration estimates provide a means to characterize the physical properties of stream channel sediments and to identify suitable locations for artificial recharge sites. Rates of winter streamflow infiltration along stream channels are estimated based on the cooling effect of infiltrated water on streambed sediments, combined with the simulation of two-dimensional fluid and heat transport using the computer program VS2DH. The cooling effect of ground water is determined by measuring ground temperatures at regular intervals beneath stream channels and nearby channel banks in order to calculate temperature-depth profiles. Additional data inputs included the physical, hydraulic, and thermal properties of unsaturated alluvium, and monthly ground temperatures measurements over an annual cycle. Observed temperatures and simulation results can provide estimates of the minimum threshold for deep infiltration, the variability of infiltration along stream channels, and also the frequency of infiltration events.

  12. Persistent Temporal Streams

    NASA Astrophysics Data System (ADS)

    Hilley, David; Ramachandran, Umakishore

    Distributed continuous live stream analysis applications are increasingly common. Video-based surveillance, emergency response, disaster recovery, and critical infrastructure protection are all examples of such applications. They are characterized by a variety of high- and low-bandwidth streams as well as a need for analyzing both live and archived streams. We present a system called Persistent Temporal Streams (PTS) that supports a higher-level, domain-targeted programming abstraction for such applications. PTS provides a simple but expressive stream abstraction encompassing transport, manipulation and storage of streaming data. In this paper, we present a system architecture for implementing PTS. We provide an experimental evaluation which shows the system-level primitives can be implemented in a lightweight and high-performance manner, and an application-based evaluation designed to show that a representative high-bandwidth stream analysis application can be implemented relatively simply and with good performance.

  13. Upper limits of flash flood stream power in Europe

    NASA Astrophysics Data System (ADS)

    Marchi, Lorenzo; Cavalli, Marco; Amponsah, William; Borga, Marco; Crema, Stefano

    2016-11-01

    Flash floods are characterized by strong spatial gradients of rainfall inputs that hit different parts of a river basin with different intensity. Stream power values associated with flash floods therefore show spatial variations that depend on geological controls on channel geometry and sediment characteristics, as well as on the variations of flood intensity: this stresses the need for a field approach that takes into account the variability of the controlling factors. Post-flood assessment of peak discharge after major floods makes it possible to analyse stream power in fluvial systems affected by flash floods. This study analyses the stream power of seven intense (return period of rainfall > 100 years at least in some sectors of the river basin) flash floods that occurred in mountainous basins of central and southern Europe from 2007 to 2014. In most of the analysed cross sections, high values of unit stream power were observed; this is consistent with the high severity of the studied floods. The highest values of cross-sectional stream power and unit stream power usually occur in Mediterranean regions. This is mainly ascribed to the larger peak discharges that characterize flash floods in these regions. The variability of unit stream power with catchment area is clearly nonlinear and has been represented by log-quadratic relations. The values of catchment area at which maximum values of unit stream power occur show relevant differences among the studied floods and are linked to the spatial scale of the events. Values of stream power are generally consistent with observed geomorphic changes in the studied cross sections: bedrock channels show the highest values of unit stream power but no visible erosion, whereas major erosion has been observed in alluvial channels. Exceptions to this general pattern, which mostly occur in semi-alluvial cross sections, urge the recognition of local or event-specific conditions that increase the resistance of channel bed and

  14. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams.

    PubMed

    Ferreira, Verónica; Castagneyrol, Bastien; Koricheva, Julia; Gulis, Vladislav; Chauvet, Eric; Graça, Manuel A S

    2015-08-01

    The trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human-induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem-level process in forest streams. Here, we present a meta-analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient-enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream-reach scale. By

  15. Roles of Benthic Algae in the Structure, Function, and Assessment of Stream Ecosystems Affected by Acid Mine Drainage

    EPA Science Inventory

    Tens of thousands of stream kilometers around the world are degraded by a legacy of environmental impacts and acid mine drainage (AMD) caused by abandoned underground and surface mines, piles of discarded coal wastes, and tailings. Increased acidity, high concentrations of metals...

  16. Spatial Variations In The Fate And Transport Of Metals In A Mining-Influenced Stream, North Fork Clear Creek, Colorado

    EPA Science Inventory

    North Fork Clear Creek (NFCC) receives acid-mine drainage (AMD) from multiple abandoned mines in the Clear Creek Watershed. Point sources of AMD originate In the Black Hawk/Central City region of the stream. Water chemistry also is influenced by several non-point sources of AMD,...

  17. Determinants of the exclusive breastfeeding abandonment: psychosocial factors.

    PubMed

    Machado, Mariana Campos Martins; Assis, Karine Franklin; Oliveira, Fabiana de Cássia Carvalho; Ribeiro, Andréia Queiroz; Araújo, Raquel Maria Amaral; Cury, Alexandre Faisal; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2014-12-01

    OBJECTIVE To assess the determinants of exclusive breastfeeding abandonment. METHODS Longitudinal study based on a birth cohort in Viçosa, MG, Southeastern Brazil. In 2011/2012, 168 new mothers accessing the public health network were followed. Three interviews, at 30, 60, and 120 days postpartum, with the new mothers were conducted. Exclusive breastfeeding abandonment was analyzed in the first, second, and fourth months after childbirth. The Edinburgh Postnatal Depression Scale was applied to identify depressive symptoms in the first and second meetings, with a score of ≥ 12 considered as the cutoff point. Socioeconomic, demographic, and obstetric variables were investigated, along with emotional conditions and the new mothers' social network during pregnancy and the postpartum period. RESULTS The prevalence of exclusive breastfeeding abandonment at 30, 60, and 120 days postpartum was 53.6% (n = 90), 47.6% (n = 80), and 69.6% (n = 117), respectively, and its incidence in the fourth month compared with the first was 48.7%. Depressive symptoms and traumatic delivery were associated with exclusive breastfeeding abandonment in the second month after childbirth. In the fourth month, the following variables were significant: lower maternal education levels, lack of homeownership, returning to work, not receiving guidance on breastfeeding in the postpartum period, mother's negative reaction to the news of pregnancy, and not receiving assistance from their partners for infant care. CONCLUSIONS Psychosocial and sociodemographic factors were strong predictors of early exclusive breastfeeding abandonment. Therefore, it is necessary to identify and provide early treatment to nursing mothers with depressive symptoms, decreasing the associated morbidity and promoting greater duration of exclusive breastfeeding. Support from health professionals, as well as that received at home and at work, can assist in this process.

  18. Determinants of the exclusive breastfeeding abandonment: psychosocial factors

    PubMed Central

    Machado, Mariana Campos Martins; Assis, Karine Franklin; Oliveira, Fabiana de Cássia Carvalho; Ribeiro, Andréia Queiroz; Araújo, Raquel Maria Amaral; Cury, Alexandre Faisal; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2014-01-01

    OBJECTIVE To assess the determinants of exclusive breastfeeding abandonment. METHODS Longitudinal study based on a birth cohort in Viçosa, MG, Southeastern Brazil. In 2011/2012, 168 new mothers accessing the public health network were followed. Three interviews, at 30, 60, and 120 days postpartum, with the new mothers were conducted. Exclusive breastfeeding abandonment was analyzed in the first, second, and fourth months after childbirth. The Edinburgh Postnatal Depression Scale was applied to identify depressive symptoms in the first and second meetings, with a score of ≥ 12 considered as the cutoff point. Socioeconomic, demographic, and obstetric variables were investigated, along with emotional conditions and the new mothers’ social network during pregnancy and the postpartum period. RESULTS The prevalence of exclusive breastfeeding abandonment at 30, 60, and 120 days postpartum was 53.6% (n = 90), 47.6% (n = 80), and 69.6% (n = 117), respectively, and its incidence in the fourth month compared with the first was 48.7%. Depressive symptoms and traumatic delivery were associated with exclusive breastfeeding abandonment in the second month after childbirth. In the fourth month, the following variables were significant: lower maternal education levels, lack of homeownership, returning to work, not receiving guidance on breastfeeding in the postpartum period, mother’s negative reaction to the news of pregnancy, and not receiving assistance from their partners for infant care. CONCLUSIONS Psychosocial and sociodemographic factors were strong predictors of early exclusive breastfeeding abandonment. Therefore, it is necessary to identify and provide early treatment to nursing mothers with depressive symptoms, decreasing the associated morbidity and promoting greater duration of exclusive breastfeeding. Support from health professionals, as well as that received at home and at work, can assist in this process. PMID:26039402

  19. 76 FR 51470 - CSX Transportation, Inc.-Abandonment Exemption-In Oswego County, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... Abandonments to abandon 2 formerly connected rail lines in CSXT's Northern Region, Albany Division, Fulton... Road 57, and the end of the track between Ontario and Erie Streets; and (2) 5,938 feet between...

  20. The morphology of streams restored for market and nonmarket purposes: Insights from a mixed natural-social science approach

    NASA Astrophysics Data System (ADS)

    Doyle, Martin W.; Singh, Jai; Lave, Rebecca; Robertson, Morgan M.

    2015-07-01

    We use geomorphic surveys to quantify the differences between restored and nonrestored streams, and the difference between streams restored for market purposes (compensatory mitigation) from those restored for nonmarket programs. We also analyze the social and political-economic drivers of the stream restoration and mitigation industry using analysis of policy documents and interviews with key personnel including regulators, mitigation bankers, stream designers, and scientists. Restored streams are typically wider and geomorphically more homogenous than nonrestored streams. Streams restored for the mitigation market are typically headwater streams and part of a large, complex of long restored main channels, and many restored tributaries; streams restored for nonmarket purposes are typically shorter and consist of the main channel only. Interviews reveal that designers integrate many influences including economic and regulatory constraints, but traditions of practice have a large influence as well. Thus, social forces shape the morphology of restored streams.

  1. The design and analysis of channel transmission communication system of XCTD profiler.

    PubMed

    Zheng, Yu; Wang, Xiao-Rui; Jin, Xiang-Yu; Song, Guo-Min; Shang, Ying-Sheng; Li, Hong-Zhi

    2016-10-01

    In this paper, a channel transmission communication system of expendable conductivity-temperature-depth is established in accordance to the operation characteristics of the transmission line to more accurately assess the characteristics of deep-sea abandoned profiler channel. The wrapping inductance is eliminated to maximum extent through the wrapping pattern of the underwater spool and the overwater spool and the calculation of the wrapping diameter. The feasibility of the proposed channel transmission communication system is verified through theoretical analysis and practical measurement of the transmission signal error rate in the amplitude shift keying (ASK) modulation. The proposed design provides a new research method for the channel assessment of complex abandoned measuring instrument and an important experiment evidence for the rapid development of the deep-sea abandoned measuring instrument.

  2. Study of heavy metals transport by runoff and sediments from an abandoned mine: Alagoa, Portugal

    NASA Astrophysics Data System (ADS)

    Gerardo, R.; de Lima, J. L. M. P.; de Lima, M. I. P.

    2009-04-01

    Over time, several studies have been designed to understand heavy metals fate and its impact on the environment and on human health. However, only a few studies have focused on the transport of heavy metals in mining areas through the various hydrological processes such as runoff, infiltration, and subsurface flow. In particular, heavy rainfall events have a great impact on the dispersion of metals existing in the soil. This problem is often more serious in abandoned and inactive mining sites causing environmental problems. In Portugal, there are 175 identified abandoned mines that continuously threaten the environment through acid drainage waters that pollute the soil as well as surface and groundwater. An example is the abandoned mine of Alagoa, located near the village of Penacova (Centre of Portugal); in this site mining activities ceased about 30 years ago. The area is characterized by very steep slopes that are confining with a small stream; the mining excavation by-products were deposited on these slopes. We have selected this mine as a case study, aiming at understanding the transport mechanisms and dispersion of heavy metals and at contributing to the definition of the most appropriate mitigation measures for this area that is contaminated by heavy metals from the mine tailings. So far a total of 30 soil samples from 3 contaminated zones were collected and analysed for pH, texture and heavy metal content, using atomic absorption spectroscopy. Results indicate that the contents of Zn and Pb in the soil samples are in the range from 95-460 mg/kg and 67-239 mg/kg, respectively, which exceed the critical limit-values defined by the Portuguese legislation. These metals are dispersed downslope and downstream from the mine tailings by storm water. The next step of this work is to investigate the transport of heavy metals by runoff, by mobilization of sediments and by subsurface flow. Three spatial scales tests will be conducted: on the mine tailings, on the slope

  3. Fiscal year 1993 well plugging and abandonment program, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from December 1992 through August 20, 1993. A total of 70 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the US Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  4. Fiscal Year 1993 Well Plugging and Abandonment Program Summary Report Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1994-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from October 1993 through August 1994. A total of 57 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee.

  5. 30 CFR 904.20 - Approval of Arkansas abandoned mine land reclamation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Arkansas abandoned mine land... § 904.20 Approval of Arkansas abandoned mine land reclamation plan. The Secretary approved the Arkansas abandoned mine land reclamation plan, as submitted on July 7, 1982, effective May 2, 1983. Copies of...

  6. 30 CFR 904.25 - Approval of Arkansas abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Arkansas abandoned mine land... STATE ARKANSAS § 904.25 Approval of Arkansas abandoned mine land reclamation plan amendments. The...; Management accounting; and Abandoned mine land problem description. September 22, 1999 January 14,...

  7. 30 CFR 904.25 - Approval of Arkansas abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Arkansas abandoned mine land... STATE ARKANSAS § 904.25 Approval of Arkansas abandoned mine land reclamation plan amendments. The...; Management accounting; and Abandoned mine land problem description. September 22, 1999 January 14,...

  8. 30 CFR 904.20 - Approval of Arkansas abandoned mine land reclamation plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Arkansas abandoned mine land... § 904.20 Approval of Arkansas abandoned mine land reclamation plan. The Secretary approved the Arkansas abandoned mine land reclamation plan, as submitted on July 7, 1982, effective May 2, 1983. Copies of...

  9. 30 CFR 904.20 - Approval of Arkansas abandoned mine land reclamation plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of Arkansas abandoned mine land... § 904.20 Approval of Arkansas abandoned mine land reclamation plan. The Secretary approved the Arkansas abandoned mine land reclamation plan, as submitted on July 7, 1982, effective May 2, 1983. Copies of...

  10. 30 CFR 904.25 - Approval of Arkansas abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Arkansas abandoned mine land... STATE ARKANSAS § 904.25 Approval of Arkansas abandoned mine land reclamation plan amendments. The...; Management accounting; and Abandoned mine land problem description. September 22, 1999 January 14,...

  11. 30 CFR 904.25 - Approval of Arkansas abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Arkansas abandoned mine land... STATE ARKANSAS § 904.25 Approval of Arkansas abandoned mine land reclamation plan amendments. The...; Management accounting; and Abandoned mine land problem description. September 22, 1999 January 14,...

  12. 30 CFR 904.20 - Approval of Arkansas abandoned mine land reclamation plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Arkansas abandoned mine land... § 904.20 Approval of Arkansas abandoned mine land reclamation plan. The Secretary approved the Arkansas abandoned mine land reclamation plan, as submitted on July 7, 1982, effective May 2, 1983. Copies of...

  13. 30 CFR 904.20 - Approval of Arkansas abandoned mine land reclamation plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Arkansas abandoned mine land... § 904.20 Approval of Arkansas abandoned mine land reclamation plan. The Secretary approved the Arkansas abandoned mine land reclamation plan, as submitted on July 7, 1982, effective May 2, 1983. Copies of...

  14. 30 CFR 904.25 - Approval of Arkansas abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of Arkansas abandoned mine land... STATE ARKANSAS § 904.25 Approval of Arkansas abandoned mine land reclamation plan amendments. The...; Management accounting; and Abandoned mine land problem description. September 22, 1999 January 14,...

  15. 76 FR 12222 - Wisconsin Central, Ltd.-Abandonment Exemption-in Marathon County, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Wisconsin Central, Ltd.--Abandonment Exemption--in Marathon County, WI... ] Abandonments to abandon 1.14 miles of rail line between mileposts 17.50 and 18.64, in Weston, Marathon...

  16. 19 CFR 127.41 - Government title to unclaimed and abandoned merchandise.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Government title to unclaimed and abandoned... and Abandoned Merchandise Vesting in Government § 127.41 Government title to unclaimed and abandoned merchandise. (a) Vesting of title in Government. At the end of the 6-month period noted in § 127.11 of...

  17. 46 CFR 185.520 - Abandon ship and man overboard drills and training.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Abandon ship and man overboard drills and training. 185... overboard drills and training. (a) The master shall conduct sufficient drills and give sufficient... necessitate abandoning ship or the recovery of persons who have fallen overboard. (b) Each abandon ship...

  18. 30 CFR 931.20 - Approval of the New Mexico abandoned mine reclamation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of the New Mexico abandoned mine..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NEW MEXICO § 931.20 Approval of the New Mexico abandoned mine reclamation plan. The New Mexico Abandoned...

  19. 30 CFR 935.20 - Approval of Ohio abandoned mine land reclamation plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Ohio abandoned mine land..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OHIO § 935.20 Approval of Ohio abandoned mine land reclamation plan. The Ohio Abandoned Mine Land...

  20. 30 CFR 935.20 - Approval of Ohio abandoned mine land reclamation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Ohio abandoned mine land..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OHIO § 935.20 Approval of Ohio abandoned mine land reclamation plan. The Ohio Abandoned Mine Land...

  1. 46 CFR 131.530 - Abandon-ship training and drills.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Abandon-ship training and drills. 131.530 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.530 Abandon-ship training and drills. (a) Material for abandon-ship training must be aboard each vessel. The material must consist of a manual of one or...

  2. 46 CFR 131.530 - Abandon-ship training and drills.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Abandon-ship training and drills. 131.530 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.530 Abandon-ship training and drills. (a) Material for abandon-ship training must be aboard each vessel. The material must consist of a manual of one or...

  3. 46 CFR 131.530 - Abandon-ship training and drills.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Abandon-ship training and drills. 131.530 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.530 Abandon-ship training and drills. (a) Material for abandon-ship training must be aboard each vessel. The material must consist of a manual of one or...

  4. 46 CFR 131.530 - Abandon-ship training and drills.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Abandon-ship training and drills. 131.530 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.530 Abandon-ship training and drills. (a) Material for abandon-ship training must be aboard each vessel. The material must consist of a manual of one or...

  5. 46 CFR 131.530 - Abandon-ship training and drills.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Abandon-ship training and drills. 131.530 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.530 Abandon-ship training and drills. (a) Material for abandon-ship training must be aboard each vessel. The material must consist of a manual of one or...

  6. 19 CFR 158.42 - Abandonment by importer within 30 days after entry.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Abandonment by importer within 30 days after entry... days after entry. Allowance in duties for merchandise abandoned to the Government in accordance with... which the merchandise being abandoned appears. (b) Application within 30 days. The importer shall...

  7. 19 CFR 158.42 - Abandonment by importer within 30 days after entry.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Abandonment by importer within 30 days after entry... days after entry. Allowance in duties for merchandise abandoned to the Government in accordance with... which the merchandise being abandoned appears. (b) Application within 30 days. The importer shall...

  8. 19 CFR 158.42 - Abandonment by importer within 30 days after entry.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Abandonment by importer within 30 days after entry... days after entry. Allowance in duties for merchandise abandoned to the Government in accordance with... which the merchandise being abandoned appears. (b) Application within 30 days. The importer shall...

  9. 25 CFR 226.28 - Shutdown, abandonment, and plugging of wells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Cessation of Operations § 226.28 Shutdown, abandonment... 25 Indians 1 2010-04-01 2010-04-01 false Shutdown, abandonment, and plugging of wells. 226.28...) Prior to permanent abandonment of any well, the oil lessee or the gas lessee, as the case may be,...

  10. 30 CFR 931.20 - Approval of the New Mexico abandoned mine reclamation plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of the New Mexico abandoned mine..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NEW MEXICO § 931.20 Approval of the New Mexico abandoned mine reclamation plan. The New Mexico Abandoned...

  11. 30 CFR 931.20 - Approval of the New Mexico abandoned mine reclamation plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of the New Mexico abandoned mine..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NEW MEXICO § 931.20 Approval of the New Mexico abandoned mine reclamation plan. The New Mexico Abandoned...

  12. 30 CFR 931.20 - Approval of the New Mexico abandoned mine reclamation plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of the New Mexico abandoned mine..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NEW MEXICO § 931.20 Approval of the New Mexico abandoned mine reclamation plan. The New Mexico Abandoned...

  13. 30 CFR 931.20 - Approval of the New Mexico abandoned mine reclamation plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of the New Mexico abandoned mine..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NEW MEXICO § 931.20 Approval of the New Mexico abandoned mine reclamation plan. The New Mexico Abandoned...

  14. 30 CFR 924.20 - Approval of Mississippi abandoned mine land reclamation plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Mississippi abandoned mine land... STATE MISSISSIPPI § 924.20 Approval of Mississippi abandoned mine land reclamation plans. The Mississippi abandoned mine land reclamation plan as submitted on April 5, 2006, and June 11, 2007, and...

  15. 30 CFR 924.20 - Approval of Mississippi abandoned mine land reclamation plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Mississippi abandoned mine land... STATE MISSISSIPPI § 924.20 Approval of Mississippi abandoned mine land reclamation plans. The Mississippi abandoned mine land reclamation plan as submitted on April 5, 2006, and June 11, 2007, and...

  16. 30 CFR 924.20 - Approval of Mississippi abandoned mine land reclamation plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Mississippi abandoned mine land... STATE MISSISSIPPI § 924.20 Approval of Mississippi abandoned mine land reclamation plans. The Mississippi abandoned mine land reclamation plan as submitted on April 5, 2006, and June 11, 2007, and...

  17. 30 CFR 924.20 - Approval of Mississippi abandoned mine land reclamation plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of Mississippi abandoned mine land... STATE MISSISSIPPI § 924.20 Approval of Mississippi abandoned mine land reclamation plans. The Mississippi abandoned mine land reclamation plan as submitted on April 5, 2006, and June 11, 2007, and...

  18. 30 CFR 924.20 - Approval of Mississippi abandoned mine land reclamation plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Mississippi abandoned mine land... STATE MISSISSIPPI § 924.20 Approval of Mississippi abandoned mine land reclamation plans. The Mississippi abandoned mine land reclamation plan as submitted on April 5, 2006, and June 11, 2007, and...

  19. The Puzzling Ophiuchus Stream

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Dwarf galaxies or globular clusters orbiting the Milky Way can be pulled apart by tidal forces, leaving behind a trail of stars known as a stellar stream. One such trail, the Ophiuchus stream, has posed a serious dynamical puzzle since its discovery. But a recent study has identified four stars that might help resolve this streams mystery.Conflicting TimescalesThe stellar stream Ophiuchus was discovered around our galaxy in 2014. Based on its length, which appears to be 1.6 kpc, we can calculate the time that has passed since its progenitor was disrupted and the stream was created: ~250 Myr. But the stars within it are ~12 Gyr old, and the stream orbits the galaxy with a period of ~350 Myr.Given these numbers, we can assume that Ophiuchuss progenitor completed many orbits of the Milky Way in its lifetime. So why would it only have been disrupted 250 million years ago?Fanning StreamLed by Branimir Sesar (Max Planck Institute for Astronomy), a team of scientists has proposed an idea that might help solve this puzzle. If the Ophiuchus stellar stream is on a chaotic orbit common in triaxial potentials, which the Milky Ways may be then the stream ends can fan out, with stars spreading in position and velocity.The fanned part of the stream, however, would be difficult to detect because of its low surface brightness. As a result, the Ophiuchus stellar stream could actually be longer than originally measured, implying that it was disrupted longer ago than was believed.Search for Fan StarsTo test this idea, Sesar and collaborators performed a search around the ends of the stream, looking for stars thatare of the right type to match the stream,are at the predicted distance of the stream,are located near the stream ends, andhave velocities that match the stream and dont match the background halo stars.Histogram of the heliocentric velocities of the 43 target stars. Six stars have velocities matching the stream velocity. Two of these are located in the main stream; the other

  20. Identification of streambank erosion processes and channel changes in northeastern Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of streambank erosion processes is important for determining suitable measurement techniques and for choosing appropriate stream remedial measures. Sediment loads from watersheds located in Northeastern Mississippi can have contributions from stream channel degradation as large as 90%...