Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... Convenience and Necessity Take notice that on March 4, 2011, Liberty Gas Storage, LLC (Liberty) and LA Storage... Liberty to abandon by transfer certain facilities to LA Storage; (ii) a certificate of public convenience...
78 FR 77445 - Tres Palacios Gas Storage LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... Gas Storage LLC; Notice of Application Take notice that on December 6, 2013, Tres Palacios Gas Storage... working gas storage capacity in its salt cavern natural gas storage facility located in Matagorda, Colorado, and Wharton Counties, Texas. Tres Palacios states that the proposed abandonment of storage...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... To Abandon Facilities and Services and To Acquire Facilities by Merger Steuben Gas Storage Company... Field Storage Facilities (Adrian Field) which Steuben operates pursuant to certificates of public... authorization to charge market based rates following its acquisition of the Adrian Field Storage Facility. The...
18 CFR 157.213 - Underground storage field facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Underground storage... of the Natural Gas Act for Certain Transactions and Abandonment § 157.213 Underground storage field... operate facilities for the remediation and maintenance of an existing underground storage facility...
18 CFR 157.213 - Underground storage field facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Underground storage... of the Natural Gas Act for Certain Transactions and Abandonment § 157.213 Underground storage field... operate facilities for the remediation and maintenance of an existing underground storage facility...
18 CFR 157.214 - Increase in storage capacity.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Increase in storage... Act for Certain Transactions and Abandonment § 157.214 Increase in storage capacity. (a) Prior notice... maximum volume of natural gas authorized to be stored in a storage field to the extent that geological...
18 CFR 157.214 - Increase in storage capacity.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Increase in storage... Act for Certain Transactions and Abandonment § 157.214 Increase in storage capacity. (a) Prior notice... maximum volume of natural gas authorized to be stored in a storage field to the extent that geological...
18 CFR 157.214 - Increase in storage capacity.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Increase in storage... Act for Certain Transactions and Abandonment § 157.214 Increase in storage capacity. (a) Prior notice... maximum volume of natural gas authorized to be stored in a storage field to the extent that geological...
18 CFR 157.214 - Increase in storage capacity.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Increase in storage... Act for Certain Transactions and Abandonment § 157.214 Increase in storage capacity. (a) Prior notice... maximum volume of natural gas authorized to be stored in a storage field to the extent that geological...
18 CFR 157.214 - Increase in storage capacity.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Increase in storage... Act for Certain Transactions and Abandonment § 157.214 Increase in storage capacity. (a) Prior notice... maximum volume of natural gas authorized to be stored in a storage field to the extent that geological...
76 FR 63916 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... associated storage deliverability and capacity at the Eminence Storage Field (Eminence) in Covington County... Caverns 1, 2, 3, and 4, and reduce deliverability and capacity from 20.5 Bcf to 15.025 Bcf in Caverns 5, 6, and 7. Transco also seeks to partially abandon the total storage capacity and deliverability...
Model for CO2 leakage including multiple geological layers and multiple leaky wells.
Nordbotten, Jan M; Kavetski, Dmitri; Celia, Michael A; Bachu, Stefan
2009-02-01
Geological storage of carbon dioxide (CO2) is likely to be an integral component of any realistic plan to reduce anthropogenic greenhouse gas emissions. In conjunction with large-scale deployment of carbon storage as a technology, there is an urgent need for tools which provide reliable and quick assessments of aquifer storage performance. Previously, abandoned wells from over a century of oil and gas exploration and production have been identified as critical potential leakage paths. The practical importance of abandoned wells is emphasized by the correlation of heavy CO2 emitters (typically associated with industrialized areas) to oil and gas producing regions in North America. Herein, we describe a novel framework for predicting the leakage from large numbers of abandoned wells, forming leakage paths connecting multiple subsurface permeable formations. The framework is designed to exploit analytical solutions to various components of the problem and, ultimately, leads to a grid-free approximation to CO2 and brine leakage rates, as well as fluid distributions. We apply our model in a comparison to an established numerical solverforthe underlying governing equations. Thereafter, we demonstrate the capabilities of the model on typical field data taken from the vicinity of Edmonton, Alberta. This data set consists of over 500 wells and 7 permeable formations. Results show the flexibility and utility of the solution methods, and highlight the role that analytical and semianalytical solutions can play in this important problem.
Identification and characterization of high methane-emitting abandoned oil and gas wells
Kang, Mary; Christian, Shanna; Celia, Michael A.; Mauzerall, Denise L.; Bill, Markus; Miller, Alana R.; Chen, Yuheng; Conrad, Mark E.; Darrah, Thomas H.; Jackson, Robert B.
2016-01-01
Recent measurements of methane emissions from abandoned oil/gas wells show that these wells can be a substantial source of methane to the atmosphere, particularly from a small proportion of high-emitting wells. However, identifying high emitters remains a challenge. We couple 163 well measurements of methane flow rates; ethane, propane, and n-butane concentrations; isotopes of methane; and noble gas concentrations from 88 wells in Pennsylvania with synthesized data from historical documents, field investigations, and state databases. Using our databases, we (i) improve estimates of the number of abandoned wells in Pennsylvania; (ii) characterize key attributes that accompany high emitters, including depth, type, plugging status, and coal area designation; and (iii) estimate attribute-specific and overall methane emissions from abandoned wells. High emitters are best predicted as unplugged gas wells and plugged/vented gas wells in coal areas and appear to be unrelated to the presence of underground natural gas storage areas or unconventional oil/gas production. Repeat measurements over 2 years show that flow rates of high emitters are sustained through time. Our attribute-based methane emission data and our comprehensive estimate of 470,000–750,000 abandoned wells in Pennsylvania result in estimated state-wide emissions of 0.04–0.07 Mt (1012 g) CH4 per year. This estimate represents 5–8% of annual anthropogenic methane emissions in Pennsylvania. Our methodology combining new field measurements with data mining of previously unavailable well attributes and numbers of wells can be used to improve methane emission estimates and prioritize cost-effective mitigation strategies for Pennsylvania and beyond. PMID:27849603
78 FR 11639 - Dominion Transmission, Inc.; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... under the Natural Gas Act (NGA) as amended, to plug and abandon two storage wells and their associated... plug wells JW-451F and JW-454F and their associated pipelines located near the Murrysville Pool of the.... Dominion further states that the certificated physical parameters, including total natural gas inventory...
75 FR 55324 - Columbia Gas Transmission, LLC; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-10
... regulations under the Natural Gas Act (NGA) for authorization to abandon: (1) The Weaver Storage Well No. 9297... NGA (18 CFR 157.205) file a protest to the request. If no protest is filed within the time allowed... section 7 of the NGA. The Commission strongly encourages electronic filings of comments, protests, and...
40 CFR 144.19 - Transitioning from Class II to Class VI.
Code of Federal Regulations, 2014 CFR
2014-07-01
... primary purpose of long-term storage into an oil and gas reservoir must apply for and obtain a Class VI...) Quality of abandoned well plugs within the area of review; (7) The owner's or operator's plan for recovery...
40 CFR 144.19 - Transitioning from Class II to Class VI.
Code of Federal Regulations, 2013 CFR
2013-07-01
... primary purpose of long-term storage into an oil and gas reservoir must apply for and obtain a Class VI...) Quality of abandoned well plugs within the area of review; (7) The owner's or operator's plan for recovery...
40 CFR 144.19 - Transitioning from Class II to Class VI.
Code of Federal Regulations, 2012 CFR
2012-07-01
... primary purpose of long-term storage into an oil and gas reservoir must apply for and obtain a Class VI...) Quality of abandoned well plugs within the area of review; (7) The owner's or operator's plan for recovery...
CO2CARE - Site Closure Assessment Research - Recent Results
NASA Astrophysics Data System (ADS)
Wipki, Mario; Liebscher, Axel; Kühn, Michael; Lüth, Stefan; Durucan, Sevket; Deflandre, Jean-Pierre; Wollenweber, Jens; Chadwick, Andy; Böhm, Gualtiero
2013-04-01
The EU project CO2CARE, which started in January 2011, supports the large scale demonstration of CCS technology by addressing requirements of operators and regulators face in terms of CO2 storage site abandonment. The CO2CARE consortium, consisting of 24 project partners from universities, research institutes, and the industry, investigate technologies and procedures for abandonment and post-closure safety, satisfying the regulatory requirements for the transfer of responsibility. Nine key injections sites in Europe, USA, Japan, and Australia, each with a specific (hydro) geological and environmental character, were selected for investigations. These sites can be divided into the CO2 storage types on-shore, off-shore, natural CO2 reservoir, depleted gas reservoirs, and saline aquifers. The project mainly focuses on three key areas: - well abandonment and long-term integrity; - reservoir management and prediction from closure to the long-term; - risk management methodologies for long-term safety. These key areas are in turn closely linked to the three high-level requirements of the EU Directive 2009/31/EC, Article 18 for CO2 storage which are: (i) absence of any detectable leakage, (ii) conformity of actual behaviour of the injected CO2 with the modeled behaviour, and (iii) the storage site is evolving towards a situation of long-term stability. The identification of criteria and the development of site abandonment procedures and technologies, which guarantee the fulfillment of the high-level requirements, are the major objectives in CO2CARE. These criteria have to be fulfilled prior to subsequent transfer of responsibility to the competent authorities, typically 20 or 30 years after site closure. Finally, the essential results of the different working groups in CO2CARE will feed into overall guidelines for regulatory compliance and "Best Practice" for site abandonment. Dissemination of the results will show policy makers and the general public how site abandonment procedures for CO2 storage sites can be undertaken sustainably, cost-effectively and with no adverse effect to the local population and the natural environment. After more than two-thirds of the project`s lifetime, an overview of the project`s goals and the most relevant research findings are presented.
Shaft sealing issue in CO2 storage sites
NASA Astrophysics Data System (ADS)
Dieudonné, A.-C.; Charlier, R.; Collin, F.
2012-04-01
Carbon capture and storage is an innovating approach to tackle climate changes through the reduction of greenhouse gas emissions. Deep saline aquifers, depleted oil and gas reservoirs and unmineable coal seams are among the most studied reservoirs. However other types of reservoir, such as abandonned coal mines, could also be used for the storage of carbon dioxide. In this case, the problem of shaft sealing appears to be particularly critical regarding to the economic, ecologic and health aspects of geological storage. The purpose of the work is to study shaft sealing in the framework of CO2 storage projects in abandoned coal mines. The problem of gas transfers around a sealing system is studied numerically using the finite elements code LAGAMINE, which has been developped for 30 years at the University of Liege. A coupled hydro-mechanical model of unsaturated geomaterials is used for the analyses. The response of the two-phase flow model is first studied through a simple synthetic problem consisting in the injection of gas in a concrete-made column. It stands out of this first modeling that the advection of the gas phase represents the main transfer mechanism of CO2 in highly unsaturated materials. Furthermore the setting of a bentonite barrier seal limits considerably the gas influx into the biosphere. A 2D axisymetric hydromechanical modeling of the Anderlues natural gas storage site is then performed. The geological and hydrogeological contexts of the site are used to define the problem, for the initial and boundary conditions, as well as the material properties. In order to reproduce stress and water saturation states in the shale before CO2 injection in the mine, different phases corresponding to the shaft sinking, the mining and the set up of the sealing system are simulated. The system efficiency is then evaluated by simulating the CO2 injection with the imposed pressure at the shaft wall. According to the modeling, the low water saturation of concrete and its higher intrinsic permeability give the concrete a higher gas permeability than the one of the rock. Thus, the major part of CO2 fluxes flows through concrete elements. Moreover, the hydraulic seal of bentonite doesn't contribute to the reduction of CO2 fluxes to the atmosphere since it is in contact with the concrete shaft support. Indeed, in the present case, CO2 fluxes bypass the seal, going through the more permeable concrete. Consequently, the design of the shaft sealing system contributes significantly to a loss in performance and appears to be a significant parameter to evaluate the risks of CO2 leakage.
Estimation of Carbon Dioxide Storage Capacity for Depleted Gas Reservoirs
NASA Astrophysics Data System (ADS)
Lai, Yen Ting; Shen, Chien-Hao; Tseng, Chi-Chung; Fan, Chen-Hui; Hsieh, Bieng-Zih
2015-04-01
A depleted gas reservoir is one of the best options for CO2 storage for many reasons. First of all, the storage safety or the caprock integrity has been proven because the natural gas was trapped in the formation for a very long period of time. Also the formation properties and fluid flow characteristics for the reservoir have been well studied since the discovery of the gas reservoir. Finally the surface constructions and facilities are very useful and relatively easy to convert for the use of CO2 storage. The purpose of this study was to apply an analytical approach to estimate CO2 storage capacity in a depleted gas reservoir. The analytical method we used is the material balance equation (MBE), which have been widely used in natural gas storage. We proposed a modified MBE for CO2 storage in a depleted gas reservoir by introducing the z-factors of gas, CO2 and the mixture of the two. The MBE can be derived to a linear relationship between the ratio of pressure to gas z-factor (p/z) and the cumulative term (Gp-Ginj, where Gp is the cumulative gas production and Ginj is the cumulative CO2 injection). The CO2 storage capacity can be calculated when constraints of reservoir recovery pressure are adopted. The numerical simulation was also used for the validation of the theoretical estimation of CO2 storage capacity from the MBE. We found that the quantity of CO2 stored is more than that of gas produced when the reservoir pressure is recovered from the abandon pressure to the initial pressure. This result was basically from the fact that the gas- CO2 mixture z-factors are lower than the natural gas z-factors in reservoir conditions. We also established a useful p/z plot to easily observe the pressure behavior of CO2 storage and efficiently calculate the CO2 storage capacity. The application of the MBE we proposed was demonstrated by a case study of a depleted gas reservoir in northwestern Taiwan. The estimated CO2 storage capacities from conducting reservoir simulation and using analytical equation were very consistent. The validation results showed that the modified MBE we proposed in this study can be efficiently used for the estimation of CO2 storage capacity in a depleted gas reservoir.
Detection of abandoned underground storage tanks in rights-of-way with ground-penetrating radar.
DOT National Transportation Integrated Search
1995-01-01
Highway agencies need a simple, effective, nondestructive way to inspect certain properties in rights-of-way for the possible presence of abandoned underground storage tanks, without disturbing the ground, before actual construction begins. Overall, ...
Key site abandonment steps in CO2 storage
NASA Astrophysics Data System (ADS)
Kühn, M.; Wipki, M.; Durucan, S.; Deflandre, J.-P.; Lüth, S.; Wollenweber, J.; Chadwick, A.; Böhm, G.
2012-04-01
CO2CARE is an EU funded project within FP7-research, which started in January 2011 with a funding period of three years. The project objectives will be achieved through an international consortium consisting of 23 partners from Europe, USA, Canada, Japan, and Australia, belonging to universities, research institutes, and energy companies. According to the EC Guidance Document 3, the lifetime of a CO2 storage site can be generally subdivided into 6 phases: 1. assessment, 2. characterisation, 3. development, 4. operation, 5. post-closure/pre-transfer, and 6. post transfer. CO2CARE deals with phases 5 and 6. The main goals of the project are closely linked to the three high-level requirements of the EU Directive 2009/31/EC, Article 18 for CO2 storage which are: (i) absence of any detectable leakage, (ii) conformity of actual behaviour of the injected CO2 with the modelled behaviour, and (iii) the storage site is evolving towards a situation of long-term stability. These criteria have to be fulfilled prior to subsequent transfer of responsibility to the competent authorities, typically 20 or 30 years after site closure. CO2CARE aims to formulate robust procedures for site abandonment which will meet the regulatory requirements and ensure long-term integrity of the storage complex. We present key results from the first year of the project via a report on international regulatory requirements on CO2 geological storage and site abandonment that includes a general overview on the current state-of-the art in abandonment methodologies in the oil and gas industry worldwide. Due to the long time-frames involved in CO2 storage (in the range of several thousands of years), the behaviour of a system with respect to, for example, long-term well stability can be demonstrated only by using long-term predictive modelling tools to study potential leakage pathways. Trapping mechanisms for CO2 are of high interest concerning a quantitative estimation of physically captured, capillary bound, dissolved, and precipitated CO2 in form of specific mineral phases. Useful results, partly supported by laboratory and field experiments, can be gained by process simulations considering periods of hundreds or thousands of years. Risk management for the post-operational phases is another essential part of the workflow. A first version of a decision support system has been created by means of a number of high-level and low-level criteria, most of which had to be defined in advance. The system provides instructions for the operators on how to act in case of irregularities after site closure. A compilation of all relevant results will be available at the end of the project in form of best practice guidelines. However, dissemination of information about the latest results and developments in the field of site abandonment are given via the CO2CARE-website (www.co2care.org) and also in conferences, workshops or radio and TV interviews.
Cho, Eun Seon; Ruminski, Anne M; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J
2016-02-23
Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.
Quantification of Methane Leaks from Abandoned Oil and Gas Wells in California
NASA Astrophysics Data System (ADS)
Lebel, E.; Kang, M.; Lu, H.; Jackson, R. B.
2016-12-01
Abandoned oil and gas wells can provide a pathway for subterranean methane and other gases to be emitted to the atmosphere. However, abandoned wells are unaccounted for in greenhouse gas emissions inventories. While relatively little is known about abandoned wells, previous studies have shown that emissions from abandoned wells contribute approximately 4-7% of anthropogenic methane emissions in Pennsylvania (Kang et al. 2014) and <1% of regional methane emissions in oil and gas producing regions of Colorado, Utah, Ohio, and Wyoming (Townsend-Small et al. 2015). Another study (Boothroyd et al. 2016) has shown that 30% of abandoned wells in the UK have a positive surface methane flux. California has a long history of oil and gas production, beginning from the 1860s, and currently ranks third in oil production by state. As a result, there are more than 100,000 wells across the state. Our study uses static flux chambers to measure individual abandoned wells in California to estimate state-wide methane emissions from these wells. In addition to measuring methane concentrations, we measure ethane, propane, isobutane, n-butane, and 13-CH4 to understand whether this methane has a biogenic or thermogenic source. We hope that our research will determine whether or not abandoned oil and gas wells are a significant source of anthropogenic methane emissions in California. Our results along with measurements in other parts of the United States can be used to scale up methane emission estimates to the national level, accounting for the millions of abandoned wells in the country.
Deng, Lei; Shangguan, Zhou-Ping; Sweeney, Sandra
2013-01-01
The revegetation of abandoned farmland significantly influences soil organic C (SOC) and total N (TN). However, the dynamics of both soil OC and N storage following the abandonment of farmland are not well understood. To learn more about soil C and N storages dynamics 30 years after the conversion of farmland to grassland, we measured SOC and TN content in paired grassland and farmland sites in the Zhifanggou watershed on the Loess Plateau, China. The grassland sites were established on farmland abandoned for 1, 7, 13, 20, and 30 years. Top soil OC and TN were higher in older grassland, especially in the 0–5 cm soil depths; deeper soil OC and TN was lower in younger grasslands (<20 yr), and higher in older grasslands (30 yr). Soil OC and N storage (0–100 cm) was significantly lower in the younger grasslands (<20 yr), had increased in the older grasslands (30 yr), and at 30 years SOC had increased to pre-abandonment levels. For a thirty year period following abandonment the soil C/N value remained at 10. Our results indicate that soil C and TN were significantly and positively correlated, indicating that studies on the storage of soil OC and TN needs to focus on deeper soil and not be restricted to the uppermost (0–30 cm) soil levels. PMID:23940793
Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States
NASA Astrophysics Data System (ADS)
Townsend-Small, Amy; Ferrara, Thomas W.; Lyon, David R.; Fries, Anastasia E.; Lamb, Brian K.
2016-03-01
Recent work indicates that oil and gas methane (CH4) inventories for the United States are underestimated. Here we present results from direct measurements of CH4 emissions from 138 abandoned oil and gas wells, a source currently missing from inventories. Most abandoned wells do not emit CH4, but 6.5% of wells had measurable CH4 emissions. Twenty-five percent of wells we visited that had not been plugged emitted > 5 g CH4 h-1. Stable isotopes indicate that wells emit natural gas and/or coalbed CH4. We estimate that abandoned wells make a small contribution (<1%) to regional CH4 emissions in our study areas. Additional data are needed to accurately determine the contribution of abandoned wells to national CH4 budgets, particularly measurements in other basins and better characterization of the abundance and regional distribution of high emitters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Preston; Jordan, Preston D.; Benson, Sally M.
2008-05-15
Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was viamore » thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul
Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H 2 per litre inmore » the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. In conclusion, these multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.« less
Spatial Risk Analysis of Hydraulic Fracturing near Abandoned and Converted Oil and Gas Wells.
Brownlow, Joshua W; Yelderman, Joe C; James, Scott C
2017-03-01
Interaction between hydraulically generated fractures and existing wells (frac hits) could represent a potential risk to groundwater. In particular, frac hits on abandoned oil and gas wells could lead to upward leakage into overlying aquifers, provided migration pathways are present along the abandoned well. However, potential risk to groundwater is relatively unknown because few studies have investigated the probability of frac hits on abandoned wells. In this study, actual numbers of frac hits were not determined. Rather, the probability for abandoned wells to intersect hypothetical stimulated reservoir sizes of horizontal wells was investigated. Well data were compiled and analyzed for location and reservoir information, and sensitivity analyses were conducted by varying assumed sizes of stimulated reservoirs. This study used public and industry data for the Eagle Ford Shale play in south Texas, with specific attention paid to abandoned oil and gas wells converted into water wells (converted wells). In counties with Eagle Ford Shale activity, well-data analysis identified 55,720 abandoned wells with a median age of 1983, and 2400 converted wells with a median age of 1954. The most aggressive scenario resulted in 823 abandoned wells and 184 converted wells intersecting the largest assumed stimulated reservoir size. Analysis showed abandoned wells have the potential to be intersected by multiple stimulated reservoirs, and risks for intersection would increase if currently permitted horizontal wells in the Eagle Ford Shale are actually completed. Results underscore the need to evaluate historical oil and gas activities in areas with modern unconventional oil and gas activities. © 2016, National Ground Water Association.
Tracking Emissions of Methane Leaks from Abandoned Oil and Gas Wells in California
NASA Astrophysics Data System (ADS)
Lebel, E.; Lu, H.; Vielstädte, L.; Kang, M.; Jackson, R. B.
2017-12-01
Abandoned oil and gas wells can provide a substantial pathway for subterranean methane and other gases to be emitted to the atmosphere. However, abandoned wells are unaccounted for in greenhouse gas emissions inventories, primarily because monitoring these wells is not mandatory and quantitative data on leakage rates are rare. Here, we focus on California, which has a long history of oil and gas production, beginning from the 1860s, and currently ranks third in oil production by state. As a result, there are more than 100,000 abandoned wells across the state with yet unknown well integrity status. We tested and improved our static flux chamber design to minimize potential errors and designed new chambers with which we measured methane emissions from individual abandoned wells across California (both exposed and buried) and their surrounding soils. We characterized the respective gas source by measuring stable carbon isotopes of methane and the concentration of heavier hydrocarbons. So far, 6 out of 66 measured wells had a statistically significant methane flux >1mg/hr, with higher release rates linked to exposed and unplugged wells, rather than plugged and buried wells. Our results improve the current understanding of abandoned oil and gas wells as a methane emissions source and along with measurements in other parts of the United States can be used to scale up methane emission estimates to the national level, accounting for the millions of abandoned wells in the country.
Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul; ...
2016-02-23
Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H 2 per litre inmore » the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. In conclusion, these multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.« less
El Paso Natural Gas Mines Fact Sheets
These fact sheets contain information about El Paso Natural Gas Mines and the Western Abandoned Uranium Mine Region, 19 abandoned uranium mine claims generally located along the Little Colorado River or Highway 89 near Cameron, AZ.
Li, Zeng-quan; Jiang, Chang-sheng; Hao, Qing-ju
2015-11-01
In this study, four land use types including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude in Jinyun Mountain. Four sizes of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (0.053-0.25 mm) and silt + clay (< 0.053 mm) were achieved by wet sieving method and the contents of microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) in each aggregate fraction were measured to study the impacts of the different land use types on MBC and MBN in soil aggregates. The results showed that the contents of MBC and MBN in all aggregates in the four land use types decreased with the increasing soil depth. Except large macroaggregetes, the contents of MBC and MBN in the other three soil aggregates decreased when the forest was reclamated into orchard and sloping farmland. MBC and MBN contents in large macroaggregates, small macroaggregates and microaggregates all increased when the sloping farmland was abandoned. The storages of organic carbon and nitrogen in soil depth of 0-60 cm in the four proportions were calculated by the equivalent soil mass method. The results revealed that MBC storages in the other three sizes except silt + clay were higher in the forest than those in orchard and sloping land. And MBC storages in the all aggregates were higher in the abandoned land than those in the sloping land. MBN storages in small macroaggregates and microaggregates were higher in the forest than those in orchard and sloping land. And MBN storages in the other three aggregates except silt + clay were higher in the abandoned land than those in the sloping land. Generally speaking, the storages of MBC in soil aggregates of forest and abandoned land were higher than in orchard and sloping land, MBN storage in soil aggregates of forest was nearly equal to the storage in orchard. However, the storages of MBN in soil aggregates of forest and abandoned land were higher than those in sloping land. The results showed that the reclamation of the forest resulted in the loss of MBC and MBN in soil aggregates of sloping land. However, the abandon of the sloping land contributed to the acumulation of MBC and MBN in soil aggregates. In the process of land use change, the direction and quantity of change in MBC in the soil aggregates were not consistent with those of the total soil organic carbon, which meant the microbial quotient in soil aggregates was not suitable for using to evaluate the impact of land use change on soil quality, using the total organic carbon as an index to express the sensitivity of the land use change may be better.
18 CFR 157.22 - Schedule for final decisions on a request for a Federal authorization
Code of Federal Regulations, 2011 CFR
2011-04-01
... Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT... ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for Orders Permitting and Approving Abandonment under Section 7 of the Natural Gas Act, as...
18 CFR 157.22 - Schedule for final decisions on a request for a Federal authorization
Code of Federal Regulations, 2012 CFR
2012-04-01
... Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT... ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for Orders Permitting and Approving Abandonment under Section 7 of the Natural Gas Act, as...
18 CFR 157.22 - Schedule for final decisions on a request for a Federal authorization
Code of Federal Regulations, 2010 CFR
2010-04-01
... Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT... ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for Orders Permitting and Approving Abandonment under Section 7 of the Natural Gas Act, as...
18 CFR 157.22 - Schedule for final decisions on a request for a Federal authorization
Code of Federal Regulations, 2014 CFR
2014-04-01
... Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT... ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for Orders Permitting and Approving Abandonment under Section 7 of the Natural Gas Act, as...
18 CFR 157.22 - Schedule for final decisions on a request for a Federal authorization
Code of Federal Regulations, 2013 CFR
2013-04-01
... Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT... ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for Orders Permitting and Approving Abandonment under Section 7 of the Natural Gas Act, as...
Microbial Community and Greenhouse Gas Fluxes from Abandoned Rice Paddies with Different Vegetation.
Kim, Sunghyun; Lee, Seunghoon; McCormick, Melissa; Kim, Jae Geun; Kang, Hojeong
2016-10-01
The area of rice paddy fields has declined continuously in East Asian countries due to abandonment of agriculture and concurrent socioeconomic changes. When they are abandoned, rice paddy fields generally transform into wetlands by natural succession. While previous studies have mainly focused on vegetation shifts in abandoned rice paddies, little information is available about how these changes may affect their contribution to wetland functions. As newly abandoned fields proceed through succession, their hydrology and plant communities often change. Moreover, the relationships between these changes, soil microbial characteristics, and emissions of greenhouse gasses are poorly understood. In this study, we examined changes over the course of secondary succession of abandoned rice paddies to wetlands and investigated their ecological functions through changes in greenhouse gas fluxes and microbial characteristics. We collected gas and soil samples in summer and winter from areas dominated by Cyperaceae, Phragmites, and Sphagnum in each site. We found that CO2 emissions in summer were significantly higher than those in winter, but CH4 and N2O emission fluxes were consistently at very low levels and were similar among seasons and locations, due to their low nutrient conditions. These results suggest that microbial activity and abundance increased in summer. Greenhouse gas flux, soil properties, and microbial abundance were not affected by plant species, although the microbial community composition was changed by plant species. This information adds to our basic understanding of the contribution of wetlands that are transformed from abandoned rice paddy systems.
NASA Astrophysics Data System (ADS)
Zhang, Wei
2013-06-01
It is well known that during CO2 geological storage, density-driven convective activity can significantly accelerate the dissolution of injected CO2 into water. This action could limit the escape of supercritical CO2 from the storage formation through vertical pathways such as fractures, faults and abandoned wells, consequently increasing permanence and security of storage. First, we investigated the effect of numerical perturbation caused by time and grid resolution and the convergence criteria on the dissolution-diffusion-convection (DDC) process. Then, using the model with appropriate spatial and temporal resolution, some uncertainty parameters investigated in our previous paper such as initial gas saturation and model boundaries, and other factors such as relative liquid permeability and porosity modification were used to examine their effects on the DDC process. Finally, we compared the effect of 2D and 3D models on the simulation of the DDC process. The above modeling results should contribute to clear understanding and accurate simulation of the DDC process, especially the onset of convective activity, and the CO2 dissolution rate during the convection-dominated stage.
A case study of methane gas migration through sealed mine GOB into active mine workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, F.; McCall, F.E.; Trevits, M.A.
1995-12-31
The U.S. Bureau of Mines investigated the influence of atmospheric pressure changes on methane gas migration through mine seals at a mine site located in the Pittsburgh Coalbed. The mine gained access to a coal reserve through part of an abandoned mine and constructed nine seals to isolate the extensive old workings from the active mine area. Underground problems were experienced when atmospheric pressure fell, causing methane gas to migrate around the seals and into the active workings. During mining operations, methane gas levels exceeded legal limits and coal production was halted until the ventilation system could be improved. Whenmore » mining resumed with increased air flow, methane gas concentrations occasionally exceeded the legal limits and production had to be halted until the methane level fell within the mandated limit. To assist the ventilation system, a pressure relief borehole located in the abandoned workings near the mine seals was proposed. Preliminary estimates by a gob gas simulator (computer model) suggested that a 0.76 m (2.5 ft) diameter pressure relief borehole with an exhaust fan would be necessary to remove enough methane from the abandoned area so that the ventilation system could dilute the gas in the active workings. However, by monitoring methane gas emissions and seal pressure, during periods of low atmospheric pressure, the amount of methane gas that migrated into the active mine workings was calculated. Researchers then determined that a relief borehole, 20.3 cm (8-in) with an exhaust fan could remove at least twice the maximum measured volume of migrating methane gas. Because gas concentrations in the abandoned workings could potentially reach explosive limits, it was proposed that the mine eliminate the exhaust fan. Installation of the recommended borehole and enlarging two other ventilation boreholes located In the abandoned area reduced methane gas leakage through the seals by at least 63%.« less
Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania
Kang, Mary; Kanno, Cynthia M.; Reid, Matthew C.; Zhang, Xin; Mauzerall, Denise L.; Celia, Michael A.; Chen, Yuheng; Onstott, Tullis C.
2014-01-01
Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells (“controls”) in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10−6 kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10−3 kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4–7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories. PMID:25489074
Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania.
Kang, Mary; Kanno, Cynthia M; Reid, Matthew C; Zhang, Xin; Mauzerall, Denise L; Celia, Michael A; Chen, Yuheng; Onstott, Tullis C
2014-12-23
Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells ("controls") in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10(-6) kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10(-3) kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4-7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories.
The purpose of the activities described in this document is to provide a demonstration of the procedures and methodologies described within the "Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities" (Guidance). This demonstration provides an example ...
25 CFR 226.28 - Shutdown, abandonment, and plugging of wells.
Code of Federal Regulations, 2010 CFR
2010-04-01
... OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Cessation of Operations § 226.28 Shutdown, abandonment... production of oil and/or gas has been demonstrated to the satisfaction of the Superintendent. Lessee shall... the means by which the well bore is to be protected, and the contemplated eventual disposition of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-19
... Abandonment and Replacement Project and Request for Comments on Environmental Issues February 5, 2010. The... Replacement Project, involving the abandonment and replacement of facilities by Southern Natural Gas Company... process to determine whether the project is in the public convenience and necessity. This notice announces...
The purpose of the activities described in this document is to provide a demonstration of the procedures and methodologies described within the "Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities" (Guidance). This demonstration provides an example ...
Wen, Yue-rong; Dang, Ting-hui; Tang, Jun; Li, Jun-chao
2016-01-01
The content and storage of soil organic carbon (SOC) were compared in six wood restoration modes and adjacent abandoned land on opencast coal mine dump, and the mechanisms behind the differences and their influencing factors were analyzed. Results showed that the contents of SOC in six wood lands were significantly higher (23.8%-53.2%) than that of abandoned land (1.92 g · kg⁻¹) at 0-10 cm soil depth, the index were significantly higher (5.8%-70.4%) at 10-20 cm soil depth than the abandoned land (1.39 g · kg⁻¹), and then the difference of the contents of SOC in the deep soil (20-100 cm) were not significant. The contents of SOC decreased with increase of soil depth, but the decreasing magnitude of the topsoil (0-20 cm) was higher than that of the deep soil (20-100 cm). Compared with the deep soil, the topsoil significant higer storage of SOC in different woods, the SOC storage decreased with the soil depth. Along the 0-100 cm soil layer, the storage of SOC in six wood lands higher (18.1%-42.4%) than that of the abandoned land (17.52 t · hm⁻²). The SOC storage of Amorpha fruticosa land (24.95 t · hm⁻²) was obviously higher than that in the other wood lands. The SOC storage in the shrub lands was 12.4% higher than that of the arbor woods. There were significantly positive correlations among forest litter, fine root biomass, soil water content and SOC on the dump. Consequently, different plantation restorations significantly improved the SOC level on the dump in 0-100 cm soil, especially the topsoil. But there was still a big gap about SOC level between the wood restoration lands and the original landform. To improve the SOC on opencast coal mine dump, A. fruticosa could be selected as the main wood vegetation.
43 CFR 3162.3-4 - Well abandonment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Well abandonment. 3162.3-4 Section 3162.3... Operating Rights Owners and Operators § 3162.3-4 Well abandonment. (a) The operator shall promptly plug and... newly completed or recompleted well in which oil or gas is not encountered in paying quantities or which...
43 CFR 3162.3-4 - Well abandonment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Well abandonment. 3162.3-4 Section 3162.3... Operating Rights Owners and Operators § 3162.3-4 Well abandonment. (a) The operator shall promptly plug and... newly completed or recompleted well in which oil or gas is not encountered in paying quantities or which...
43 CFR 3162.3-4 - Well abandonment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Well abandonment. 3162.3-4 Section 3162.3... Operating Rights Owners and Operators § 3162.3-4 Well abandonment. (a) The operator shall promptly plug and... newly completed or recompleted well in which oil or gas is not encountered in paying quantities or which...
43 CFR 3162.3-4 - Well abandonment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Well abandonment. 3162.3-4 Section 3162.3... Operating Rights Owners and Operators § 3162.3-4 Well abandonment. (a) The operator shall promptly plug and... newly completed or recompleted well in which oil or gas is not encountered in paying quantities or which...
Influence of Hydraulic Fracturing on Overlying Aquifers in the Presence of Leaky Abandoned Wells.
Brownlow, Joshua W; James, Scott C; Yelderman, Joe C
2016-11-01
The association between hydrocarbon-rich reservoirs and organic-rich source rocks means unconventional oil and gas plays usually occur in mature sedimentary basins-where large-scale conventional development has already taken place. Abandoned wells in proximity to hydraulic fracturing could be affected by increased fluid pressures and corresponding newly generated fractures that directly connect (frac hit) to an abandoned well or to existing fractures intersecting an abandoned well. If contaminants migrate to a pathway hydraulically connected to an abandoned well, upward leakage may occur. Potential effects of hydraulic fracturing on upward flow through a particular type of leaky abandoned well-abandoned oil and gas wells converted into water wells were investigated using numerical modeling. Several factors that affect flow to leaky wells were considered including proximity of a leaky well to hydraulic fracturing, flowback, production, and leaky well abandonment methods. The numerical model used historical records and available industry data for the Eagle Ford Shale play in south Texas. Numerical simulations indicate that upward contaminant migration could occur through leaky converted wells if certain spatial and hydraulic conditions exist. Upward flow through leaky converted wells increased with proximity to hydraulic fracturing, but decreased when flowback and production occurred. Volumetric flow rates ranged between 0 and 0.086 m 3 /d for hydraulic-fracturing scenarios. Potential groundwater impacts should be paired with plausible transport mechanisms, and upward flow through leaky abandoned wells could be unrelated to hydraulic fracturing. The results also underscore the need to evaluate historical activities. © 2016, National Ground Water Association.
Abandoned coal mine stores gas for Colorado peak-day demands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, L.W.
1978-09-01
Since 1961, the Leyden Mine, from which 6 million tons of coal had been removed to leave a 150 million cu ft void, has been used for gas storage at 250 psig max pressure, after the hoisting and ventilation shafts had been sealed with concrete, rock, sand, and mud. Following several withdrawal expansions, a design for maximum delivery of 230 million cu ft/day for five days with a pressure drop in the cavern down to 100 psig was developed to satisfy customer requirements for peak shaving. This required redesigning the gathering system by looping large existing lines, eliminating inefficient ones,more » and drilling additional wells; installing three lightweight 3500-hp Centaur turbine/compressor units from Solar Turbines International to provide the minimum 200 psig compressor discharge pressure needed for gas distribution on peak usage days; and installing Donaldson Co. engine air-inlet silencers on the turbine inlets to reduce noise levels below the public code requirement. In the 1977-78 heating season, the Leyden facility produced 196 million cu ft/day of gas; with continued load growth and well drilling to reduce pressure loss, the maximum design flow rate will be attained.« less
Towards Understanding Methane Emissions from Abandoned Wells
Reconciliation of large-scale top-down methane measurements and bottom-up inventories requires complete accounting of source types. Methane emissions from abandoned oil and gas wells is an area of uncertainty. This presentation reviews progress to characterize the potential inv...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.
2013-04-01
Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotopemore » mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.« less
ENZYMES FOR ENHANCING BIOREMEDIATION OF PETROLEUM- CONTAMINATED SOILS: A BRIEF REVIEW
During the 1950s and 1960s, hundreds of thousands of underground storage tanks (and above-ground storage tanks) containing petroleum products and hazardous chemicals were installed. Many of these tanks either have been abandoned or have exceeded their useful lives and are leakin...
77 FR 48150 - Carolina Gas Transmission Corporation; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... Gas Transmission Corporation (Carolina Gas), 601 Old Taylor Road, Cayce, South Carolina 29033, filed... capacity on Carolina Gas' system. Carolina Gas also states that no construction, abandonment, or earth... Randy D. Traylor, Jr., Manager--System Planning, Carolina Gas Transmission Corporation, 601 Old Taylor...
40 CFR 761.240 - Scope and definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROHIBITIONS Determining a PCB Concentration for Purposes of Abandonment or Disposal of Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.240 Scope... determine its PCB surface concentration for abandonment-in-place or removal and disposal off-site in...
Refining Field Measurements of Methane Flux Rates from Abandoned Oil and Gas Wells
NASA Astrophysics Data System (ADS)
Lagron, C. S.; Kang, M.; Riqueros, N. S.; Jackson, R. B.
2015-12-01
Recent studies in Pennsylvania demonstrate the potential for significant methane emissions from abandoned oil and gas wells. A subset of tested wells was high emitting, with methane flux rates up to seven orders of magnitude greater than natural fluxes (up to 105 mg CH4/hour, or about 2.5LPM). These wells contribute disproportionately to the total methane emissions from abandoned oil and gas wells. The principles guiding the chamber design have been developed for lower flux rates, typically found in natural environments, and chamber design modifications may reduce uncertainty in flux rates associated with high-emitting wells. Kang et al. estimate errors of a factor of two in measured values based on previous studies. We conduct controlled releases of methane to refine error estimates and improve chamber design with a focus on high-emitters. Controlled releases of methane are conducted at 0.05 LPM, 0.50 LPM, 1.0 LPM, 2.0 LPM, 3.0 LPM, and 5.0 LPM, and at two chamber dimensions typically used in field measurements studies of abandoned wells. As most sources of error tabulated by Kang et al. tend to bias the results toward underreporting of methane emissions, a flux-targeted chamber design modification can reduce error margins and/or provide grounds for a potential upward revision of emission estimates.
Numerical Simulation of Abandoned Gob Methane Drainage through Surface Vertical Wells
Hu, Guozhong
2015-01-01
The influence of the ventilation system on the abandoned gob weakens, so the gas seepage characteristics in the abandoned gob are significantly different from those in a normal mining gob. In connection with this, this study physically simulated the movement of overlying rock strata. A spatial distribution function for gob permeability was derived. A numerical model using FLUENT for abandoned gob methane drainage through surface wells was established, and the derived spatial distribution function for gob permeability was imported into the numerical model. The control range of surface wells, flow patterns and distribution rules for static pressure in the abandoned gob under different well locations were determined using the calculated results from the numerical model. PMID:25955438
40 CFR 761.250 - Sample site selection for pipeline section abandonment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sample site selection for pipeline... Disposal of Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.250 Sample site selection for pipeline section abandonment. This procedure...
40 CFR 761.250 - Sample site selection for pipeline section abandonment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sample site selection for pipeline... Disposal of Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.250 Sample site selection for pipeline section abandonment. This procedure...
18 CFR 284.285 - Pregrant of abandonment of unbundled sales services.
Code of Federal Regulations, 2011 CFR
2011-04-01
... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain Natural Gas...
77 FR 3757 - El Paso Natural Gas Company; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... Gas Company; Notice of Application Take notice that on January 5, 2012, El Paso Natural Gas Company... referenced docket pursuant to section 7(b) of the Natural Gas Act (NGA) for approval to abandon in place... application may be directed to Susan C. Stires, Director, Regulatory Affairs Department, El Paso Natural Gas...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... based upon the suitability for future transportation of natural gas liquids. Texas Gas states it has... facilities and that Bluegrass would convert the abandoned facilities to natural gas liquids (NGL... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-485-000] Texas Gas...
75 FR 13535 - Northern Natural Gas Company; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Natural Gas Company; Notice of Request Under Blanket Authorization March 16, 2010. Take notice that on March 12, 2010, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124... Federal Energy Regulatory Commission's regulations under the Natural Gas Act for authorization to abandon...
30 CFR 203.89 - What is in a cost report?
Code of Federal Regulations, 2011 CFR
2011-07-01
... estimates, or analogous projects. These costs cover: (1) Oil or gas tariffs from pipeline or tankerage; (2) Trunkline and tieback lines; and (3) Gas plant processing for natural gas liquids. (e) Abandonment costs... INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General...
Spatial patterns in carbon storage in a lake states' landscape
J. C. Bell; D. F. Grigal; P. C. Bates; C. A. Butler
1996-01-01
We estimated total organic carbon storage (C -- kg m-2) in biomass, forest floor, and soil for a gently undulating glacial outwash landscape in east-central Minnesota (45° 25'N, 93° 10'W). Abandoned agricultural tracts are common, and nearly 40 percent of the area is wet mineral or organic soil. Quantitative models...
18 CFR 157.204 - Application procedure.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural Gas Act...
18 CFR 157.204 - Application procedure.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural Gas Act...
18 CFR 157.204 - Application procedure.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural Gas Act...
18 CFR 157.204 - Application procedure.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural Gas Act...
Oil and Gas Wells and Pipelines on U.S. Wildlife Refuges: Challenges for Managers
2015-01-01
The increased demand for oil and gas places a burden on lands set aside for natural resource conservation. Oil and gas development alters the environment locally and on a much broader spatial scale depending on the intensity and extent of mineral resource extraction. The current increase in oil and gas exploration and production in the United States prompted an update of the number of pipelines and wells associated with oil and gas production on National Wildlife Refuge System (NWRS) lands. We obtained geospatial data on the location of oil and gas wells and pipelines within and close to the boundaries of NWRS lands (units) acquired as fee simple (i.e. absolute title to the surface land) by the U.S. Fish and Wildlife Service. We found that 5,002 wells are located in 107 NWRS units and 595 pipelines transect 149 of the 599 NWRS units. Almost half of the wells (2,196) were inactive, one-third (1,665) were active, and the remainder of the wells were either plugged and abandoned or the status was unknown. Pipelines crossed a total of 2,155 kilometers (1,339 miles) of NWRS fee simple lands. The high level of oil and gas activity warrants follow up assessments for wells lacking information on production type or well status with emphasis on verifying the well status and identifying abandoned and unplugged wells. NWRS fee simple lands should also be assessed for impacts from brine, oil and other hydrocarbon spills, as well as habitat alteration associated with oil and gas, including the identification of abandoned oil and gas facilities requiring equipment removal and site restoration. PMID:25915417
76 FR 41235 - El Paso Natural Gas Company; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... Natural Gas Company; Notice of Application Take notice that on June 28, 2011, El Paso Natural Gas Company... request for authority, pursuant to 18 CFR part 157 and section 7(b) of the Natural Gas Act, to abandon, by..., Director, Regulatory affairs Department, Colorado Interstate Gas Company, P.O. Box 1087, Colorado Springs...
76 FR 48833 - El Paso Natural Gas Company; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... Natural Gas Company; Notice of Application Take notice that on July 20, 2011, El Paso Natural Gas Company... request for authority, pursuant to 18 CFR part 157 and section 7(b) of the Natural Gas Act, to abandon, in... Department, Colorado Interstate Gas Company, P.O. Box 1087, Colorado Springs, CO 80944, telephone no. (719...
Geospatial Analysis of Oil and Gas Wells in California
NASA Astrophysics Data System (ADS)
Riqueros, N. S.; Kang, M.; Jackson, R. B.
2015-12-01
California currently ranks third in oil production by U.S. state and more than 200,000 wells have been drilled in the state. Oil and gas wells provide a potential pathway for subsurface migration, leading to groundwater contamination and emissions of methane and other fluids to the atmosphere. Here we compile available public databases on oil and gas wells from the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources, the U.S. Geological Survey, and other state and federal sources. We perform geospatial analysis at the county and field levels to characterize depths, producing formations, spud/completion/abandonment dates, land cover, population, and land ownership of active, idle, buried, abandoned, and plugged wells in California. The compiled database is designed to serve as a quantitative platform for developing field-based groundwater and air emission monitoring plans.
76 FR 18216 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on March 16, 2011, Southern Natural Gas Company (Southern), Post Office Box 2563, Birmingham, Alabama 35202-2563, filed in... Regulations under the Natural Gas Act (NGA) as amended, to abandon in place a supply lateral that extends from...
30 CFR 203.89 - What is in a cost report?
Code of Federal Regulations, 2013 CFR
2013-07-01
... projects. These costs cover: (1) Oil or gas tariffs from pipeline or tankerage; (2) Trunkline and tieback lines; and (3) Gas plant processing for natural gas liquids. (e) Abandonment costs, based on historical... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.89 What is...
30 CFR 203.89 - What is in a cost report?
Code of Federal Regulations, 2010 CFR
2010-07-01
... projects. These costs cover: (1) Oil or gas tariffs from pipeline or tankerage; (2) Trunkline and tieback lines; and (3) Gas plant processing for natural gas liquids. (e) Abandonment costs, based on historical... RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Required Reports § 203.89 What is...
30 CFR 203.89 - What is in a cost report?
Code of Federal Regulations, 2012 CFR
2012-07-01
... projects. These costs cover: (1) Oil or gas tariffs from pipeline or tankerage; (2) Trunkline and tieback lines; and (3) Gas plant processing for natural gas liquids. (e) Abandonment costs, based on historical... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.89 What is...
30 CFR 203.89 - What is in a cost report?
Code of Federal Regulations, 2014 CFR
2014-07-01
... projects. These costs cover: (1) Oil or gas tariffs from pipeline or tankerage; (2) Trunkline and tieback lines; and (3) Gas plant processing for natural gas liquids. (e) Abandonment costs, based on historical... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.89 What is...
77 FR 24191 - CenterPoint Energy Gas Transmission Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-23
... amended, to abandon and remove the Tate Island compressor station in Johnson County, Arkansas, all as more..., or TTY, contact (202) 502-8659. CEGT proposes to abandon the Tate Island compressor station, which is located on CEGT's Line B in Johnson County. CEGT would remove two rented 400 horsepower (HP) Caterpillar...
30 CFR 944.20 - Approval of Utah abandoned mine plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Division of Oil, Gas and Mining, Department of Natural Resources, 3 Triad Center, Suite 350, 355 West North... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Utah abandoned mine plan. 944.20... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.20 Approval of...
30 CFR 944.20 - Approval of Utah abandoned mine plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Division of Oil, Gas and Mining, Department of Natural Resources, 3 Triad Center, Suite 350, 355 West North... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Utah abandoned mine plan. 944.20... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.20 Approval of...
30 CFR 944.20 - Approval of Utah abandoned mine plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Division of Oil, Gas and Mining, Department of Natural Resources, 3 Triad Center, Suite 350, 355 West North... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Utah abandoned mine plan. 944.20... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.20 Approval of...
30 CFR 944.20 - Approval of Utah abandoned mine plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Division of Oil, Gas and Mining, Department of Natural Resources, 3 Triad Center, Suite 350, 355 West North... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of Utah abandoned mine plan. 944.20... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.20 Approval of...
30 CFR 944.20 - Approval of Utah abandoned mine plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Division of Oil, Gas and Mining, Department of Natural Resources, 3 Triad Center, Suite 350, 355 West North... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Utah abandoned mine plan. 944.20... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.20 Approval of...
Chi Zhang; Hanqin Tian; Shufen Pan; Mingliang Liu; Graeme Lockaby; Erik B. Schilling; John Stanturf
2008-01-01
Forest regrowth after cropland abandonment and urban sprawl are two counteracting processes that have influenced carbon (C) sequestration in the southeastern United States in recent decades. In this study, we examined patterns of land-use/landcover change and their effect on ecosystem C storage in three west Georgia counties (Muscogee,...
18 CFR 157.15 - Requirements for applications covering acquisitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR... SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for Orders Permitting and Approving Abandonment under Section 7 of the Natural Gas Act, as Amended...
18 CFR 157.15 - Requirements for applications covering acquisitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR... SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for Orders Permitting and Approving Abandonment under Section 7 of the Natural Gas Act, as Amended...
18 CFR 157.15 - Requirements for applications covering acquisitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR... SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for Orders Permitting and Approving Abandonment under Section 7 of the Natural Gas Act, as Amended...
18 CFR 157.15 - Requirements for applications covering acquisitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR... SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for Orders Permitting and Approving Abandonment under Section 7 of the Natural Gas Act, as Amended...
Drilling and abandonment preparation of CO₂ storage wells – Experience from the Ketzin pilot site
Prevedel, Bernhard; Martens, Sonja; Norden, Ben; ...
2014-12-31
At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO₂ research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO₂ were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation ofmore » the observation well Ktzi 202 shortly after shut-in of CO₂ injection. The experience with the first CO₂ well killing operation will be reviewed.« less
18 CFR 157.210 - Mainline natural gas facilities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Mainline natural gas... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE NATURAL...
Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, I.; Anthony, R.V.; Gabrielson, J.
1995-08-01
Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologiesmore » because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.« less
Geologic Storage of CO2: Leakage Pathways and Environmental Risks
NASA Astrophysics Data System (ADS)
Celia, M. A.; Peters, C. A.; Bachu, S.
2002-05-01
Geologic storage of CO2 appears to be an attractive option for carbon mitigation because it offers sufficient capacity to solve the problem, and it can be implemented with existing technology. Among the list of options for storage sites, depleted hydrocarbon reservoirs and deep saline aquifers are two major categories. While injection into hydrocarbon reservoirs offers immediate possibilities, especially in the context of enhanced oil recovery, it appears that deep saline aquifers provide the extensive capacity necessary to solve the problem over the decade to century time scale. Capacity and technology argue favorably for this option, but remaining obstacles to implementation include capture technologies, overall economic considerations, and potential environmental consequences of the injection. Of these, the environmental questions may be most difficult to solve. Experience from CO2 floods for enhanced oil recovery and from CO2 and acid gas disposal operations indicates that geological storage of CO2 is safe over the short term for comparatively small amounts of CO2. However, there is no experience to date regarding the long-term fate and safety of the large volumes of CO2 that must be injected to significantly reduce atmospheric emissions. In order to make proper evaluation of environmental risks, the full range of possible environmental consequences must be considered. Most of these environmental concerns involve migration and leakage of CO2 into shallow portions of the subsurface and eventually into the atmosphere. In shallow subsurface zones, elevated levels of carbon dioxide can cause pH changes, leading to possible mobilization of ground-water contaminants including metals. In the unsaturated zone, vegetation can be adversely affected, as can other ecosystem components. At the land surface, elevated levels of CO2 can lead to asphyxiation in humans and other animals. And finally, in the atmosphere, CO2 that leaks from underground diminishes the effectiveness of the overall storage scheme and contributes to possible climate change. To characterize these environmental consequences, reliable models of leakage characteristics and rates are needed. While leakage through natural flowpaths in the subsurface may occur, a more likely pathway is leakage through abandoned wells. This may be especially troublesome in mature sedimentary basins, which are often "punctured" by a very large number of exploration and production wells. For example, in the Alberta Basin there are more than 100,000 abandoned wells, the oldest from 1883. The cement used in the completion and abandonment of these wells, historically of variable quality and quantity, most probably has degraded with age and under the effect of formation brines. The cement may degrade even more rapidly when contacted by CO2 and possibly other components in the injection mixture (such as H2S). Cement properties and their modification through time must be understood in order to provide reliable estimates of leakage rates. Those leakage rates must then be linked to models of environmental consequences, and ultimately the entire analysis must be embedded in a probabilistic framework. Such an approach will allow leakage to be addressed rationally in terms of safety and long-term environmental impacts.
76 FR 44324 - Tennessee Gas Pipeline Company; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... under the Natural Gas Act (NGA) as amended, to abandon in place and by sale to Famcor Oil, Inc. (Famcor...-1601 (facsimile) or Juan Eligio, Analyst, Certificates & Regulatory Compliance, at (713) 420-3294 or...
GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES
This document provides guidance to Superfund remedial project managers, on scene coordinators, facility owners, and potentially responsible parties for conducting an air pathway analysis for landfill gas (LFG) emissions under the Comprehensive Environmental Response, Compensation...
76 FR 22686 - Colorado Interstate Gas Company; Notice of Application for Abandonment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-22
... Interstate Gas Company (CIG), Post Office Box 1087 Colorado Springs, CO 80944, filed in Docket No. CP11-186... 1087 Colorado Springs, CO 80944; telephone (719) 667-7514; facsimile (719) 667-7534; e-mail...
77 FR 24483 - Southern Natural Gas Company, L.L.C.; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... response to a Corrective Action Order issued by the Southern Region of the Pipeline and Hazardous Materials... Natural Gas Company, L.L.C.; Notice of Filing Take notice that on April 5, 2012, Southern Natural Gas... application, pursuant to Section 7(b) of the Natural Gas Act (NGA), for authorization to abandon in place 19...
Dilmore, Robert M; Sams, James I; Glosser, Deborah; Carter, Kristin M; Bain, Daniel J
2015-10-20
Recent large-scale development of oil and gas from low-permeability unconventional formations (e.g., shales, tight sands, and coal seams) has raised concern about potential environmental impacts. If left improperly sealed, legacy oil and gas wells colocated with that new development represent a potential pathway for unwanted migration of fluids (brine, drilling and stimulation fluids, oil, and gas). Uncertainty in the number, location, and abandonment state of legacy wells hinders environmental assessment of exploration and production activity. The objective of this study is to apply publicly available information on Pennsylvania oil and gas wells to better understand their potential to serve as pathways for unwanted fluid migration. This study presents a synthesis of historical reports and digital well records to provide insights into spatial and temporal trends in oil and gas development. Areas with a higher density of wells abandoned prior to the mid-20th century, when more modern well-sealing requirements took effect in Pennsylvania, and areas where conventional oil and gas production penetrated to or through intervals that may be affected by new Marcellus shale development are identified. This information may help to address questions of environmental risk related to new extraction activities.
Deliquification (SIC) of gas wells. Liberal District-Amoco Production Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smalley, R. Jr.
Various solutions are presented to the problem of deliquefying gas wells to achieve maximum ultimate recovery and avoid premature abandonment. Advantages and disadvantages of each method of deliquefication are discussed. The methods described include blowing up the casing, siphon strings (gas and liquids up tubing, or gas up casing-tubing annulus, and liquids up tubing), gas cycling, compression, bottomhole separators, plunger lift, and sucker rod pumping.
76 FR 12095 - Monroe Gas Storage Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... Storage Company, LLC; Notice of Application Take notice that on February 18, 2011, Monroe Gas Storage... Monroe Gas Storage Project. Specifically, through this Application, Monroe seeks authorization to (1...) of high-deliverability working gas storage capacity, with about 4.46 Bcf of base gas. Nor is any...
Code of Federal Regulations, 2011 CFR
2011-04-01
... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE NATURAL...
76 FR 81924 - East Cheyenne Gas Storage, LLC; Notice of Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... Gas Storage, LLC; Notice of Amendment Take notice that on December 16, 2011, East Cheyenne Gas Storage... the West Peetz Field of its East Cheyenne Gas Storage Project to a maximum bottom-hole pressure of 2..., East Cheyenne Gas Storage, LLC, 10370 Richmond Avenue, Suite 510, Houston, Texas 77042, by Telephone...
77 FR 24190 - East Cheyenne Gas Storage, LLC; Notice of Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-23
... Gas Storage, LLC; Notice of Amendment Take notice that on April 6, 2012, East Cheyenne Gas Storage... certain changes to its certificated gas storage project, which relate primarily to the design and number... directed to William A. Lang, President, East Cheyenne Gas Storage, LLC, 10370 Richmond Avenue, Suite 510...
25 CFR 226.22 - Prohibition of pollution.
Code of Federal Regulations, 2014 CFR
2014-04-01
... all times conduct their operations and drill, equip, operate, produce, plug and abandon all wells drilled for oil or gas, service wells or exploratory wells (including seismic, core and stratigraphic... LANDS FOR OIL AND GAS MINING Operations § 226.22 Prohibition of pollution. (a) All operators...
25 CFR 226.22 - Prohibition of pollution.
Code of Federal Regulations, 2013 CFR
2013-04-01
... all times conduct their operations and drill, equip, operate, produce, plug and abandon all wells drilled for oil or gas, service wells or exploratory wells (including seismic, core and stratigraphic... LANDS FOR OIL AND GAS MINING Operations § 226.22 Prohibition of pollution. (a) All operators...
25 CFR 226.22 - Prohibition of pollution.
Code of Federal Regulations, 2012 CFR
2012-04-01
... all times conduct their operations and drill, equip, operate, produce, plug and abandon all wells drilled for oil or gas, service wells or exploratory wells (including seismic, core and stratigraphic... LANDS FOR OIL AND GAS MINING Operations § 226.22 Prohibition of pollution. (a) All operators...
Geochemical detection of carbon dioxide in dilute aquifers
2009-01-01
Background Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 103 to 2 × 106 t/yr (0.63 to 1250 t/m2/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. Results For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux ≥ 104 t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase in the lower most permeable unit and does not reach the monitoring well. Sustained pumping in a developed aquifer mixes the CO2-affected water with the ambient water and enhances pH signal for small leaks (103 t/yr) and reduces pH signal for larger leaks (≥ 104t/yr). Conclusion The ability to detect CO2 leakage from a storage reservoir to overlying dilute groundwater is dependent on CO2 solubility, leak flux, CO2 buoyancy, and groundwater flow. Our simulations show that the most likely places to detect CO2 are at the base of the confining layer near the water table where CO2 gas accumulates and is transported laterally in all directions, and downstream of the vertical gas trace where groundwater flow is great enough to transport dissolved CO2 laterally. Our simulations show that CO2 may not rise high enough in the aquifer to be detected because aqueous solubility and lateral groundwater transport within the lower aquifer unit exceeds gas pressure build-up and buoyancy needed to drive the CO2 gas upwards. PMID:19323832
Geochemical detection of carbon dioxide in dilute aquifers.
Carroll, Susan; Hao, Yue; Aines, Roger
2009-03-26
Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 10(3) to 2 x 10(6) t/yr (0.63 to 1250 t/m2/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux >or= 10(4) t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase in the lower most permeable unit and does not reach the monitoring well. Sustained pumping in a developed aquifer mixes the CO2-affected water with the ambient water and enhances pH signal for small leaks (10(3) t/yr) and reduces pH signal for larger leaks (>or= 10(4) t/yr). The ability to detect CO2 leakage from a storage reservoir to overlying dilute groundwater is dependent on CO2 solubility, leak flux, CO2 buoyancy, and groundwater flow. Our simulations show that the most likely places to detect CO2 are at the base of the confining layer near the water table where CO2 gas accumulates and is transported laterally in all directions, and downstream of the vertical gas trace where groundwater flow is great enough to transport dissolved CO2 laterally. Our simulations show that CO2 may not rise high enough in the aquifer to be detected because aqueous solubility and lateral groundwater transport within the lower aquifer unit exceeds gas pressure build-up and buoyancy needed to drive the CO2 gas upwards.
Economic analysis of using above ground gas storage devices for compressed air energy storage system
NASA Astrophysics Data System (ADS)
Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing
2014-12-01
Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.
Cheetah do not abandon hunts because they overheat.
Hetem, Robyn S; Mitchell, Duncan; de Witt, Brenda A; Fick, Linda G; Meyer, Leith C R; Maloney, Shane K; Fuller, Andrea
2013-10-23
Hunting cheetah reportedly store metabolic heat during the chase and abandon chases because they overheat. Using biologging to remotely measure the body temperature (every minute) and locomotor activity (every 5 min) of four free-living cheetah, hunting spontaneously, we found that cheetah abandoned hunts, but not because they overheated. Body temperature averaged 38.4°C when the chase was terminated. Storage of metabolic heat did not compromise hunts. The increase in body temperature following a successful hunt was double that of an unsuccessful hunt (1.3°C ± 0.2°C versus 0.5°C ± 0.1°C), even though the level of activity during the hunts was similar. We propose that the increase in body temperature following a successful hunt is a stress hyperthermia, rather than an exercise-induced hyperthermia.
Cheetah do not abandon hunts because they overheat
Hetem, Robyn S.; Mitchell, Duncan; de Witt, Brenda A.; Fick, Linda G.; Meyer, Leith C. R.; Maloney, Shane K.; Fuller, Andrea
2013-01-01
Hunting cheetah reportedly store metabolic heat during the chase and abandon chases because they overheat. Using biologging to remotely measure the body temperature (every minute) and locomotor activity (every 5 min) of four free-living cheetah, hunting spontaneously, we found that cheetah abandoned hunts, but not because they overheated. Body temperature averaged 38.4°C when the chase was terminated. Storage of metabolic heat did not compromise hunts. The increase in body temperature following a successful hunt was double that of an unsuccessful hunt (1.3°C ± 0.2°C versus 0.5°C ± 0.1°C), even though the level of activity during the hunts was similar. We propose that the increase in body temperature following a successful hunt is a stress hyperthermia, rather than an exercise-induced hyperthermia. PMID:23883578
Breen, Kevin J.; Revesz, Kinga; Baldassare, Fred J.; McAuley, Steven D.
2007-01-01
In January 2001, State oil and gas inspectors noted bubbles of natural gas in well water during a complaint investigation near Tioga Junction, Tioga County, north-central Pa. By 2004, the gas occurrence in ground water and accumulation in homes was a safety concern; inspectors were taking action to plug abandoned gas wells and collect gas samples. The origins of the natural-gas problems in ground water were investigated by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, in wells throughout an area of about 50 mi2, using compositional and isotopic characteristics of methane and ethane in gas and water wells. This report presents the results for gas-well and water-well samples collected from October 2004 to September 2005. Ground water for rural-domestic supply and other uses near Tioga Junction is from two aquifer systems in and adjacent to the Tioga River valley. An unconsolidated aquifer of outwash sand and gravel of Quaternary age underlies the main river valley and extends into the valleys of tributaries. Fine-grained lacustrine sediments separate shallow and deep water-bearing zones of the outwash. Outwash-aquifer wells are seldom deeper than 100 ft. The river-valley sediments and uplands adjacent to the valley are underlain by a fractured-bedrock aquifer in siliciclastic rocks of Paleozoic age. Most bedrock-aquifer wells produce water from the Lock Haven Formation at depths of 250 ft or less. A review of previous geologic investigations was used to establish the structural framework and identify four plausible origins for natural gas. The Sabinsville Anticline, trending southwest to northeast, is the major structural feature in the Devonian bedrock. The anticline, a structural trap for a reservoir of deep native gas in the Oriskany Sandstone (Devonian) (origin 1) at depths of about 3,900 ft, was explored and tapped by numerous wells from 1930-60. The gas reservoir in the vicinity of Tioga Junction, depleted of native gas, was converted to the Tioga gas-storage field for injection and withdrawal of non-native gases (origin 2). Devonian shale gas (shallow native gas) also has been reported in the area (origin 3). Gas might also originate from microbial degradation of buried organic material in the outwash deposits (origin 4). An inventory of combustible-gas concentrations in headspaces of water samples from 91 wells showed 49 wells had water containing combustible gases at volume fractions of 0.1 percent or more. Well depth was a factor in the observed occurrence of combustible gas for the 62 bedrock wells inventoried. As well-depth range increased from less than 50 ft to 51-150 ft to greater than 151 ft, the percentage of bedrock-aquifer wells with combustible gas increased. Wells with high concentrations of combustible gas occurred in clusters; the largest cluster was near the eastern boundary of the gas-storage field. A subsequent detailed gas-sampling effort focused on 39 water wells with the highest concentrations of combustible gas (12 representing the outwash aquifer and 27 from the bedrock aquifer) and 8 selected gas wells. Three wells producing native gas from the Oriskany Sandstone and five wells (two observation wells and three injection/withdrawal wells) with non-native gas from the gas-storage field were sampled twice. Chemical composition, stable carbon and hydrogen isotopes of methane (13CCH4 and DCH4), and stable carbon isotopes of ethane (13CC2H6) were analyzed. No samples could be collected to document the composition of microbial gas originating in the outwash deposits (outwash or 'drift' gas) or of native natural gas originating solely in Devonian shale at depths shallower than the Oriskany Sandstone, although two of the storage-field observation wells sampled reportedly yielded some Devonian shale gas. Literature values for outwash or 'drift' gas and Devonian shale gases were used to supplement the data collection. Non-native gases fr
78 FR 19700 - Columbia Gas Transmission, LLC; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
... Regulations under the Natural Gas Act (NGA) as amended, to abandon and construct certain natural gas pipeline... to Section 157.205 of the regulations under the NGA (18 CFR 157.205), a protest to the request. If no... application for authorization pursuant to Section 7 of the NGA. Dated: March 26, 2013. Kimberly D. Bose...
77 FR 50101 - Cadeville Gas Storage LLC; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
... Storage LLC; Notice of Request Under Blanket Authorization On July 27, 2012, Cadeville Gas Storage LLC....213(b) of the Commission's Regulations for authority to construct an additional natural gas storage and injection well at Cadeville's natural gas storage facility in Ouachita Parish, Louisiana. The...
76 FR 25328 - Worsham-Steed Gas Storage, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... Gas Storage, LLC; Notice of Filing Take notice that on April 27, 2011, Worsham-Steed Gas Storage, LLC... of Operating Conditions for Gas Storage and Transportation Services provided under section 311 of the... and to consolidate various firm and interruptible storage and transportation services into more...
Adam Gahagan; Christian P. Giardina; John S. King; Dan Binkley; Kurt S. Pregitzer; Andrew J. Burton
2015-01-01
The storage and flow of carbon (C) into and out of forests can differ under the influence of dominant tree species because of species-based variation in C production, decomposition, retention, and harvest-based export. Following abandonment of agricultural activities in the first half of the 20th century, many landscapes of the Great Lakes region (USA) were planted to...
76 FR 58741 - Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-22
... sets of pipelines must include: (1) The identity of each customer injecting gas into storage and/or withdrawing gas from storage (including, for interstate pipelines, any affiliate relationship), (2) The rate... applicable to each storage customer, (4) For each storage customer, the volume of gas (in dekatherms...
77 FR 2715 - D'Lo Gas Storage, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... Storage, LLC; Notice of Application Take notice that on December 29, 2011, D'Lo Gas Storage, LLC (D'Lo... natural gas storage project to be located in Simpson County, Mississippi. Additionally, D'Lo requests a...- discriminatory firm interruptible natural gas storage services and hub services, and a blanket certificate...
78 FR 58529 - Floridian Natural Gas Storage Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... Natural Gas Storage Company, LLC; Notice of Application Take notice that on September 4, 2013, Floridian Natural Gas Storage Company, LLC (Floridian Gas Storage), 1000 Louisiana Street, Suite 4361, Houston, Texas 77002, filed in Docket No. CP13-541-000 an application under section 7(c) of the Natural Gas Act...
Wang, Ning; Jiao, Juying; Jia, Yanfeng; Wang, Dongli
2017-10-24
The Chinese Loess Plateau region has long been suffering from serious soil erosion. Thus, large-scale afforestation has continued during the past decades in order to control soil erosion. Afforestation can dramatically alter nutrient cycles, affect soil-carbon storage, and change hydrology. However, it is unknown how afforestation influences species diversity of the soil seed bank and understory vegetation compared with spontaneous restoration of abandoned land. Forest land with trees planted 30 years ago, abandoned slope land restored spontaneously for 30 years, and the corresponding slopes with remnant natural vegetation were selected as sampling sites. The species richness both in the soil seed bank and vegetation was significantly higher on the afforested slope compared to the spontaneously restored abandoned land. The species similarity between the afforested slope and the remnant slope land was high both in the soil seed bank and standing vegetation compared to the abandoned land. The soil seed bank density varied from 1778 ± 187 to 3896 ± 221 seeds/m², and more than half of it was constituted by annual and biennial species, with no significant difference among sampling habitats. However, the afforested slope had higher seed density of grass and shrub/subshrubs compared to the abandoned slope. The present study indicates that in the study region, characterized by serious soil erosion, afforestation can better facilitate vegetation succession compared to spontaneously restoration of abandoned slope land.
Wang, Ning; Jiao, Juying; Jia, Yanfeng; Wang, Dongli
2017-01-01
The Chinese Loess Plateau region has long been suffering from serious soil erosion. Thus, large-scale afforestation has continued during the past decades in order to control soil erosion. Afforestation can dramatically alter nutrient cycles, affect soil-carbon storage, and change hydrology. However, it is unknown how afforestation influences species diversity of the soil seed bank and understory vegetation compared with spontaneous restoration of abandoned land. Forest land with trees planted 30 years ago, abandoned slope land restored spontaneously for 30 years, and the corresponding slopes with remnant natural vegetation were selected as sampling sites. The species richness both in the soil seed bank and vegetation was significantly higher on the afforested slope compared to the spontaneously restored abandoned land. The species similarity between the afforested slope and the remnant slope land was high both in the soil seed bank and standing vegetation compared to the abandoned land. The soil seed bank density varied from 1778 ± 187 to 3896 ± 221 seeds/m2, and more than half of it was constituted by annual and biennial species, with no significant difference among sampling habitats. However, the afforested slope had higher seed density of grass and shrub/subshrubs compared to the abandoned slope. The present study indicates that in the study region, characterized by serious soil erosion, afforestation can better facilitate vegetation succession compared to spontaneously restoration of abandoned slope land. PMID:29064405
Saga of coal bed methane, Ignacio Blanco gas field, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyce, B.C.; Harr, C.L.; Burch, L.C.
1989-09-01
Prior to the 1977 discovery of the Cedar Hill Basal Fruitland pool (the first officially designated coal-bed methane field in the western US) 28.5 bcf of gas had been produced from Fruitland Formation coal seams in the Ignacio Blanco Fruitland-Pictured Cliffs field, Northern San Juan basin, Colorado. The discovery well for the field, Southern Ute D-1, was drilled and completed in 1951 on the Ignacio anticline, La Plata County, Colorado. Initial completion was attempted in the Pictured Cliffs Sandstone. The well was plugged back after making water from the Pictured Cliffs and was completed in the lower coal-bearing section ofmore » the Fruitland Formation. The well produced 487,333 mcf of gas in nine years and was abandoned in 1959 due to water encroachment. Additionally, 52 similarly completed Ignacio anticline Fruitland wells were abandoned by the early 1970s due to the nemesis of If it's starting to kick water, you're through. Under today's coal-bed methane technology and economics, Amoco has twinned 12 of the abandoned wells, drilled five additional wells, and is successfully dewatering and producing adsorbed methane from previously depleted coal sections of the Ignacio structure. Field-wide drilling activity in 1988 exceeded all previous annual levels, with coal-seam degasification projects leading the resurgence. Drilling and completion forecasts for 1989 surpass 1988 levels by 50%.« less
The report describes a case study that applies EPA/600/R-05/123a, the guidance for conducting air pathway analyses of landfill gas emissions that are of interest to superfund remedial project managers, on-scene coordinators, facility owners, and potentially responsible parties. T...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-179-000] Southern Star..., 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky... free). For TTY, call (202) 502-8659. Specifically, Southern Star proposes to abandon in place four...
30 CFR 250.527 - What must I include in my casing pressure request?
Code of Federal Regulations, 2011 CFR
2011-07-01
... casing/riser calculated MAWOPs; (h) All casing/riser pre-bleed down pressures; (i) Shut-in tubing... test (oil, gas, basic sediment, and water); (l) Well status (shut-in, temporarily abandoned, producing, injecting, or gas lift); (m) Well type (dry tree, hybrid, or subsea); (n) Date of diagnostic test; (o) Well...
49 CFR 192.727 - Abandonment or deactivation of facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with water or inert materials; and sealed at the ends. However, the pipeline need not be purged when... supplies of gas; purged of gas; in the case of offshore pipelines, filled with water or inert materials...-317-3073. A digital data format is preferred, but hard copy submissions are acceptable if they comply...
49 CFR 192.727 - Abandonment or deactivation of facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with water or inert materials; and sealed at the ends. However, the pipeline need not be purged when... supplies of gas; purged of gas; in the case of offshore pipelines, filled with water or inert materials...-317-3073. A digital data format is preferred, but hard copy submissions are acceptable if they comply...
49 CFR 192.727 - Abandonment or deactivation of facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with water or inert materials; and sealed at the ends. However, the pipeline need not be purged when... supplies of gas; purged of gas; in the case of offshore pipelines, filled with water or inert materials...-317-3073. A digital data format is preferred, but hard copy submissions are acceptable if they comply...
77 FR 8248 - Bluewater Gas Storage, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-51-000] Bluewater Gas Storage, LLC; Notice of Application Take notice that on January 27, 2012, Bluewater Gas Storage, LLC... Wilson Kisluk, Senior Attorney, Bluewater Gas Storage, LLC, 333 Clay Street, Suite 1500, Houston, Texas...
Spacecraft cryogenic gas storage systems
NASA Technical Reports Server (NTRS)
Rysavy, G.
1971-01-01
Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.
ERDA's Chemical Energy Storage Program
NASA Technical Reports Server (NTRS)
Swisher, J. H.; Kelley, J. H.
1977-01-01
The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.
18 CFR 157.7 - Abbreviated applications.
Code of Federal Regulations, 2010 CFR
2010-04-01
... CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for Orders Permitting...
75 FR 35007 - Wyckoff Gas Storage Company LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-454-000] Wyckoff Gas Storage Company LLC; Notice of Application June 15, 2010. On June 10, 2010, Wyckoff Gas Storage Company..., Wyckoff Gas Storage Company, LLC, 6733 South Yale, Tulsa, OK 74136, (918) 491-4440 or [email protected
75 FR 57747 - Tres Palacios Gas Storage LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... Gas Storage LLC; Notice of Application September 15, 2010. Take notice that on September 3, 2010, Tres Palacios Gas Storage LLC (Tres Palacios), 53 Riverside Avenue, Westport, Connecticut 06880, filed in Docket... natural gas storage caverns to the actual capacities available in each cavern as established by the most...
75 FR 45610 - Liberty Gas Storage LLC; Notice of Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP05-92-007] Liberty Gas Storage LLC; Notice of Amendment Take notice that on July 26, Liberty Gas Storage LLC (``Liberty''), 101... Gas Storage, 101 Ash Street, San Diego, CA 92101, phone (619) 699-5050. The filing is available for...
75 FR 21288 - Henry Gas Storage LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-125-000] Henry Gas Storage LLC; Notice of Application April 16, 2010. Take notice that on April 5, 2010, Henry Gas Storage... developing the Cote Blanche Island salt dome for natural gas storage in St. Mary Parish, Louisiana, all as...
75 FR 52937 - Turtle Bayou Gas Storage Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-30
...] Turtle Bayou Gas Storage Company, LLC; Notice of Application August 20, 2010. Take notice that on August 6, 2010, Turtle Bayou Gas Storage Company, LLC (Turtle Bayou), One Office Park Circle, Suite 300..., operate, and maintain a new salt dome natural gas storage facility in two caverns and related facilities...
9. Photographic copy enlargement from a 4x5 copy negative. (Original ...
9. Photographic copy enlargement from a 4x5 copy negative. (Original drawing located on abandoned NASA site, currently owned by the City of Downey, Downey, California). 1976 BLDGS.25, 41 SITE PLAN. - NASA Industrial Plant, Storage Facility, 12214 Lakewood Boulevard, Downey, Los Angeles County, CA
78 FR 65639 - Questar Pipeline Company; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP14-6-000] Questar Pipeline... appurtenant facilities located in Moffat County, Colorado. Specifically, Questar proposes to abandon one Solar Saturn 1200 compressor, a compressor building, two generators and a generator building, a liquids storage...
18 CFR 157.12 - Dismissal of application.
Code of Federal Regulations, 2010 CFR
2010-04-01
... CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for Orders Permitting...
NASA Astrophysics Data System (ADS)
Quattrocchi, F.; Vinciguerra, S.; Chiarabba, C.; Boschi, E.; Anselmi, M.; Burrato, P.; Buttinelli, M.; Cantucci, B.; Cinti, D.; Galli, G.; Improta, L.; Nazzari, M.; Pischiutta, M.; Pizzino, L.; Procesi, M.; Rovelli, A.; Sciarra, A.; Voltattorni, N.
2012-12-01
The CO2GAPS project proposed by INGV is intended to build up an European Proposal for a new kind of research strategy in the field of the geogas storage. Aim of the project would be to fill such key GAPS concerning the main risks associated to CO2 storage and their implications on the entire Carbon Capture and Storage (CCS) process, which are: i) the geogas leakage both in soils and shallow aquifers, up to indoor seepage; ii) the reservoirs contamination/mixing by hydrocarbons and heavy metals; iii) induced or triggered seismicity and microseismicity, especially for seismogenic blind faults. In order to consider such risks and make the CCS public acceptance easier, a new kind of research approach should be performed by: i) a better multi-disciplinary and "site specific" risk assessment; ii) the development of more reliable multi-disciplinary monitoring protocols. In this view robust pre-injection base-lines (seismicity and degassing) as well as identification and discrimination criteria for potential anomalies are mandatory. CO2 injection dynamic modelling presently not consider reservoirs geomechanical properties during reactive mass-transport large scale simulations. Complex simulations of the contemporaneous physic-chemical processes involving CO2-rich plumes which move, react and help to crack the reservoir rocks are not totally performed. These activities should not be accomplished only by the oil-gas/electric companies, since the experienced know-how should be shared among the CCS industrial operators and research institutions, with the governments support and overview, also flanked by a transparent and "peer reviewed" scientific popularization process. In this context, a preliminary and reliable 3D modelling of the entire "storage complex" as defined by the European Directive 31/2009 is strictly necessary, taking into account the above mentioned geological, geochemical and geophysical risks. New scientific results could also highlighting such opportunities recently shown by strategic researches on the synergies between the use of underground space (e.g. CH4, CO2 storage and deep geothermics) for energetic supplying purposes. The CO2GAPS approach would merge together geomechanical and geochemical data with seismic velocity and anisotropy properties of the crust, induced seismicity data, gravimetry, EM techniques, and "early alarm" procedures for leakage/cracks detection in shallow geo-spheres (e.g. abandoned wells, naturally seismic and degassing zones). Moreover, a full merging of those data is necessary for a reliable 3D-Earth modelling and the subsequent reactive transport simulations. CO2GAPS vision would apply and verify these issues working on several European selected sites, taking also into account complex systems such as "inland" active faulted blocks close to potential off-shore CO2 storage sites, ECBM faulted prone-areas, "inland" injection test site and CO2 natural faulted analogues. The purpose of these activities focus on the study of long-term fate of stored CO2, leakage mechanisms through the cap-rock and/or abandoned wells, cement wells reactivity, as well as the effects of impurities in the CO2 streams, their removal costs, the use of tracers and the role of biota.
76 FR 41235 - Tres Palacios Gas Storage LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... Gas Storage LLC; Notice of Application Take notice that on July 5, 2011, Tres Palacios Gas Storage LLC.... CP07-90-000; authorizing TPGS to implement limited changes to the certificated Tres Palacios Storage... existing footprint of the Tres Palacios Storage Facility on previous cleared land. TPGS does not propose...
75 FR 36376 - Tallulah Gas Storage LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
... Storage LLC; Notice of Application June 17, 2010. Take notice that on June 11, 2010, Tallulah Gas Storage... characteristics and the feasibility of developing the South Tallulah salt dome for natural gas storage and the... Storage LLC, 10370 Richmond Avenue, Suite 510, Houston, TX 77042, or by calling (713) 403-6454 (telephone...
76 FR 66709 - Trunkline Gas Company, LLC, Sea Robin Pipeline Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... Company, LLC, Sea Robin Pipeline Company, LLC; Notice of Application Take notice that on October 7, 2011, Trunkline Gas Company, LLC (Trunkline) and Sea Robin Pipeline Company, LLC (Sea Robin), together referred to...), for permission and approval for Trunkline to abandon by sale to Sea Robin and for Sea Robin to acquire...
49 CFR 192.727 - Abandonment or deactivation of facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... that there is no potential hazard. (d) Whenever service to a customer is discontinued, one of the following must be complied with: (1) The valve that is closed to prevent the flow of gas to the customer... the flow of gas must be installed in the service line or in the meter assembly. (3) The customer's...
78 FR 34093 - WBI Energy Transmission; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... Gas Act (NGA), and WBI's blanket certificate issued in Docket No. CP82-487-000, to abandon natural gas... section 157.205 of the Commission's Regulations under the NGA (18 CFR 157.205) file a protest to the... as an application for authorization pursuant to section 7 of the NGA. Persons who wish to comment...
78 FR 2394 - Columbia Gas Transmission, LLC; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
... under the Natural Gas Act (NGA) for authorization to abandon and relocate a compressor from its Adaline... Commission's regulations under the NGA (18 CFR 157.205) file a protest to the request. If no protest is filed... authorization pursuant to section 7 of the NGA. The Commission strongly encourages electronic filings of...
78 FR 16497 - Columbia Gas Transmission, LLC; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
... the Commission's regulations under the Natural Gas Act (NGA), seeking authorization to abandon and... NGA (18 CFR 157.205) file a protest to the request. If no protest is filed within the time allowed... section 7 of the NGA. Persons who wish to comment only on the environmental review of this project should...
Wind Power Potential at Abandoned Mines in Korea
NASA Astrophysics Data System (ADS)
jang, M.; Choi, Y.; Park, H.; Go, W.
2013-12-01
This study performed an assessment of wind power potential at abandoned mines in the Kangwon province by analyzing gross energy production, greenhouse gas emission reduction and economic effects estimated from a 600 kW wind turbine. Wind resources maps collected from the renewable energy data center in Korea Institute of Energy Research(KIER) were used to determine the average wind speed, temperature and atmospheric pressure at hub height(50 m) for each abandoned mine. RETScreen software developed by Natural Resources Canada(NRC) was utilized for the energy, emission and financial analyses of wind power systems. Based on the results from 5 representative mining sites, we could know that the average wind speed at hub height is the most critical factor for assessing the wind power potential. Finally, 47 abandoned mines that have the average wind speed faster than 6.5 m/s were analyzed, and top 10 mines were suggested as relatively favorable sites with high wind power potential in the Kangwon province.
Exploration and Production of Hydrocarbon Resources in Coastal Alabama and Mississippi.
1984-11-01
and R.L. Bluntzer. 984. Laud Subsidence Near Oil and Gas Fields , Houston, Texas. Ground Water 22(4):450-459. Holzworth, G.C. 1972. Mixing Heights, Wind... field is abandoned., The operation of drilling rigs, offshore production facilities, and onshore gas and oil cleaning and processing facilities would...a pipeline releasing natural gas containing hydrogen sulfide could endanger human health and be harmful .-. to plants and animals near the point of
Suggested Best Practice for seismic monitoring and characterization of non-conventional reservoirs
NASA Astrophysics Data System (ADS)
Malin, P. E.; Bohnhoff, M.; terHeege, J. H.; Deflandre, J. P.; Sicking, C.
2017-12-01
High rates of induced seismicity and gas leakage in non-conventional production have become a growing issue of public concern. It has resulted in calls for independent monitoring before, during and after reservoir production. To date no uniform practice for it exists and few reservoirs are locally monitored at all. Nonetheless, local seismic monitoring is a pre-requisite for detecting small earthquakes, increases of which can foreshadow damaging ones and indicate gas leaks. Appropriately designed networks, including seismic reflection studies, can be used to collect these and Seismic Emission Tomography (SET) data, the latter significantly helping reservoir characterization and exploitation. We suggest a Step-by-Step procedure for implementing such networks. We describe various field kits, installations, and workflows, all aimed at avoiding damaging seismicity, as indicators of well stability, and improving reservoir exploitation. In Step 1, a single downhole seismograph is recommended for establishing baseline seismicity before development. Subsequent Steps are used to decide cost-effective ways of monitoring treatments, production, and abandonment. We include suggestions for monitoring of disposal and underground storage. We also describe how repeated SET observations improve reservoir management as well as regulatory monitoring. Moreover, SET acquisition can be included at incremental cost in active surveys or temporary passive deployments.
Gas storage using fullerene based adsorbents
NASA Technical Reports Server (NTRS)
Mikhael, Michael G. (Inventor); Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor)
2000-01-01
This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... ``Gallery 2''), previously used for liquid propane gas (LPG) storage, to natural gas storage. The Project is... an area used for salt mining and/or natural gas activities. Project work areas have been previously... ``Gallery 2'') to natural gas storage. The addition of Gallery 2 would add an incremental 0.55 billion cubic...
Records of wells drilled for oil and gas in Montana, June 1, 1951 through December 31, 1953
Smith, Howard R.
1955-01-01
Data concerning about 1, 800 dry holes and selected producing wells drilled in Montana from June 1, 1951, through December 31, 1953, are contained in this circular, which supplements Circular 172 published in 1952. Also included is a table listing the oil and gas fields of Montana. WELLS DRILLED FOR OIL AND GAS IN MONTANA FROM JUNE 1, 1951, THOROUGH DECEMBER 31, 1953 This circular contains data on dry holes and selected producing wells drilled in Montana from June 1, 1951, through December 31, 1953, and supplements Circular 172 published in 1952 showing records of wells drilled prior to June 1, 1951. Table 1 lists the oil and gas fields of Montana (see map OM 130). The list of wells in table 2 has been compiled from information in Geological Survey files and includes most if not all the unsuccessful wildcat test wells and unsuccessful field extension wells drilled from June 1, 1951 to December 31, 1953. It also includes some older but successful field extension wells that had not been listed in Circular 172. Data are tabulated under location, county, field or geologic structure, operator, lease, and well number, elevation, geologic formation (at the surface and lowest formation reached), production or shows of oil or gas, total depth, and status and date. The wells are tabulated by township, range, quarter, and section in the order of townships north-ranges west, townships north-ranges east, townships south-ranges east, and townships south-ranges west. The names entered under 'Field or geologic structure' are those of the productive area or the geologic structure on or near which the wells have been drilled. Ground elevations have been given for wells for which the records indicated the reference point of the elevation. The surface formation and lowest formation reached in the wells are indicated by symbols which are identified on the accompanying explanation of formation symbols (fig. 1). Not all of the nomenclature is in accord with current Geological Survey usage. In the column 'Production or shows of oil and gas' the symbol GS is used for gas shows, OS for oil shows, GOS for shows of both gas and oil, GP for gas production, and OP for oil production. A number following the symbol for a show or production indicates the depth to the top of the zone in which the gas or oil was found. The letter symbol following the number or the hyphen indicates the geologic formation in which the gas or oil occurs. The status and depth of each well is indicated. The letters A, C, and D preceding the date indicate abandoned, completed, or drilling, respectively, in the specified year. Most if not all producing wells that have been abandoned are shown as completed wells. The date of abandonment is the year in which drilling ceased, except for a few wells in which the abandonment was preceded by one or more years of suspended operations. The diagrammatic representation of the succession of geologic formations in Montana (fig. 1) provides identification of the letter symbols used in the tabulation to indicate geologic formations.
Salt deposits in Arizona promise gas-storage opportunities
Rauzi, S.L.
2002-01-01
Massive salt formations and their proximity to pipeline systems and power plants make Arizona attractive for natural gas storage. Caverns dissolved in subsurface salt are used to store LPG at Ferrellgas Partners LP facility near Holbrook and the AmeriGas Partners LP facility near Glendale. Three other companies are investigating the feasibility of storing natural gas in Arizona salt: Copper Eagle Gas Storage LLC, Desert Crossing Gas Storage and Transportation System LLC, and Aquila Inc. The most extensive salt deposits are in the Colorado Plateau Province. Marine and nonmarine salt deposits are present in Arizona.
Technology's Impact on Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rachel Amann; Ellis Deweese; Deborah Shipman
2009-06-30
As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b)more » a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.« less
Karlowsky, Stefan; Augusti, Angela; Ingrisch, Johannes; Hasibeder, Roland; Lange, Markus; Lavorel, Sandra; Bahn, Michael; Gleixner, Gerd
2018-05-01
Mountain grasslands have recently been exposed to substantial changes in land use and climate and in the near future will likely face an increased frequency of extreme droughts. To date, how the drought responses of carbon (C) allocation, a key process in the C cycle, are affected by land-use changes in mountain grassland is not known.We performed an experimental summer drought on an abandoned grassland and a traditionally managed hay meadow and traced the fate of recent assimilates through the plant-soil continuum. We applied two 13 CO 2 pulses, at peak drought and in the recovery phase shortly after rewetting.Drought decreased total C uptake in both grassland types and led to a loss of above-ground carbohydrate storage pools. The below-ground C allocation to root sucrose was enhanced by drought, especially in the meadow, which also held larger root carbohydrate storage pools.The microbial community of the abandoned grassland comprised more saprotrophic fungal and Gram(+) bacterial markers compared to the meadow. Drought increased the newly introduced AM and saprotrophic (A+S) fungi:bacteria ratio in both grassland types. At peak drought, the 13 C transfer into AM and saprotrophic fungi, and Gram(-) bacteria was more strongly reduced in the meadow than in the abandoned grassland, which contrasted the patterns of the root carbohydrate pools.In both grassland types, the C allocation largely recovered after rewetting. Slowest recovery was found for AM fungi and their 13 C uptake. In contrast, all bacterial markers quickly recovered C uptake. In the meadow, where plant nitrate uptake was enhanced after drought, C uptake was even higher than in control plots. Synthesis . Our results suggest that resistance and resilience (i.e. recovery) of plant C dynamics and plant-microbial interactions are negatively related, that is, high resistance is followed by slow recovery and vice versa. The abandoned grassland was more resistant to drought than the meadow and possibly had a stronger link to AM fungi that could have provided better access to water through the hyphal network. In contrast, meadow communities strongly reduced C allocation to storage and C transfer to the microbial community in the drought phase, but in the recovery phase invested C resources in the bacterial communities to gain more nutrients for regrowth. We conclude that the management of mountain grasslands increases their resilience to drought.
NASA Astrophysics Data System (ADS)
Atherton, E. E.; Risk, D. A.; Fougère, C. R.; Lavoie, M.; Marshall, A. D.; Werring, J.
2016-12-01
If we are to attain the recent North American goals to reduce methane (CH4) emissions, we must understand emission patterns across developments of different types. In this study we quantified the incidence of CH4 emissions from unconventional natural gas infrastructure accessing the Montney play in British Columbia, Canada. We used mobile surveying to collect CH4 and CO2 measurements over 11,000 km of survey campaigns. Our routes brought us past more than 1600 unique well pads and facilities, and we repeated the six routes 7-10 times during summer (2015) and winter (2016) to explore temporal variability. Well pads and facilities were considered probable emission sources only if they were upwind by 500 m or less from the survey vehicle, and on-road concentrations were in excess of local background. In the summer campaigns we found that 47% of individual active production wells emitted CH4-rich plumes, and most of them emitted persistently across repeat surveys. Older infrastructure tended to emit more frequently (per unit), with comparable severity to younger infrastructure in terms of measured excess concentrations on-road. About 26% of abandoned wells were also found to be emitting. Extrapolating our emission incidence values across all abandoned oil and gas infrastructure in the BC portion of the Montney, we estimate that there are more than 550 abandoned wells in this area that could be emitting CH4-rich plumes. The results of this study suggest that analyzing emitting infrastructure by ages and operational differences can help delineate emission trends. Considering the recent industry downturn, our results also highlight the importance of focusing emission reduction efforts on abandoned and suspended infrastructure, as well as active. This is the first bottom-up monitoring study of fugitive emissions in the Canadian energy sector, and the results can be used to inform policy development to reduce energy-related emissions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-464-000] Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Offer of Settlement Take notice that on November 8, 2012, Petal Gas Storage, L.L.C. (Petal) and Hattiesburg Industrial Gas Sales, L.L.C...
75 FR 57011 - Tallulah Gas Storage LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... Storage LLC; Notice of Application September 9, 2010. Take notice that on August 31, 2010, Tallulah Gas Storage LLC (Tallulah), 10370 Richmond Avenue, Suite 510, Houston, TX 77042, filed in Docket No. CP10-494... necessity authorizing Tallulah to construct and operate a natural gas storage facility and pipeline...
76 FR 22092 - Perryville Gas Storage LLC; Notice of Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-159-000] Perryville Gas Storage LLC; Notice of Amendment Take notice that on March 30, 2011, Perryville Gas Storage LLC... granted authorization to charge market-based rates for its storage and hub services, as well as the...
78 FR 30918 - Perryville Gas Storage LLC; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-23
... Storage LLC; Notice of Request Under Blanket Authorization Take notice that on May 3, 2013, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite 1350, Houston, Texas 77056, filed a prior notice request... Perryville's natural gas storage facility in Franklin and Richland Parishes, Louisiana. Perryville does not...
77 FR 74838 - Perryville Gas Storage LLC; Notice of Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-18
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-23-000] Perryville Gas Storage LLC; Notice of Amendment Take notice that on December 3, 2012, Perryville Gas Storage LLC... the approved storage cavern wells (Cavern Well PGS- 2) approximately 400 feet, all as more fully set...
Hildebrand, Richard J.; Wozniak, John J.
2001-01-01
A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.
75 FR 31429 - Bay Gas Storage Company, Ltd.; Notice of Compliance Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR08-17-002] Bay Gas Storage Company, Ltd.; Notice of Compliance Filing May 27, 2010. Take notice that on May 21, 2010, Bay Gas Storage Company, Ltd (Bay Gas) filed to comply with the April 15, 2010, Commission Order which directed Bay Gas to...
75 FR 47295 - Combined Notice of Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
.... Take notice that the Commission has received the following Natural Gas Pipeline Rate and Refund Report.... Applicants: Monroe Gas Storage Company, L.P. Description: Monroe Gas Storage Company, LLC submits Substitute... 28, 2010. Docket Numbers: RP10-847-001. Applicants: Monroe Gas Storage Company, L.P. Description...
Reservoir model for Hillsboro gas storage field management
Udegbunam, Emmanuel O.; Kemppainen, Curt; Morgan, Jim; ,
1995-01-01
A 3-dimensional reservoir model is used to understand the behavior of the Hillsboro Gas Storage Field and to investigate the field's performance under various future development. Twenty-two years of the gas storage reservoir history, comprising the initial gas bubble development and seasonal gas injection and production cycles, are examined with a full-field, gas water, reservoir simulation model. The results suggest that the gas-water front is already in the vicinity of the west observation well that increasing the field's total gas-in-place volume would cause gas to migrate beyond the east, north and west observation well. They also suggest that storage enlargement through gas injection into the lower layers may not prevent gas migration. Moreover, the results suggest that the addition of strategically-located new wells would boost the simulated gas deliverabilities.
NASA Astrophysics Data System (ADS)
Kim, Yong Seong; Kim, Juhee; Hwang, Wonjae; Hyun, Seunghun
2015-04-01
Contaminated soils near an abandoned mine site included the high acidic mine tailing have received great interest due to potential risk to human health, because leachable elements in low pH continuously release from mine site soil with ground water and precipitation event. Biochar, which is the obtained pyrolysis process of biomass, is used as a soil amendments and carbon storage. Especially, many researchers report that the biochar application to soil show increasing soil pH, CEC, adsorption capacity of various elements, as well as, enhanced microbial activity. Therefore, biochar application to contaminated soil near abandoned mine site is expected to have a positive effects on management of these site and soils through the decreased leachability of contaminants. However, effects of biochar application to these site on the soil respiration, as a common measure of soil health, are poorly understood. The objective of this study is to evaluate the effects of biochar application to abandoned mine site soil on the microbial activity with soil respiration test. Biochar was obtained from giant Miscanthus in a slow pyrolysis process (heating rate of 10° C min-1 and N2 gas flow rate of 1.2 L min-1) at the temperature of 400° C (BC4) and 700° C (BC7), respectively. All biochar samples were prepared with grinding and sieving for particle size control (150~500μm). Soil sample was collected from abandoned mine site at Korea (36° 58'N, 128° 10'E). Main contaminants of this soil were As (12.5 g kg-1), Pb (7.3 g kg-1), and Zn (1.1 g kg-1). Biochars were applied (5% by dry weight) to the soil (final mixture weight were 800g), and then moisture contents were adjusted to 100% field capacity (-0.33 bar) in the respirometer with vacuum pump. CO2 efflux of each samples was continuously assessed using continuous aeration system (air flow rate 25 cc min-1) using air cylinder during 130hr (at 20° C and darkness condition). The CO2 emitted from the samples were carried to the infrared gas sensor, and these data were sent to a data logger. During the measuring periods, the cumulative CO2 emission were similar between the control (516.8 mg-CO2 kg-1-soil) and BC4 5% mixture (519.3 mg-CO2 kg-1-soil), while BC7 5% mixture was significantly decreased (356.1 mg-CO2 kg-1-soil) compared to other treatment and control. Because the degradation rate of biochar generally increased with decreasing pyrolysis temperature, this result suggest that the soil respiration rates of biochar amended soils are affected by physico-chemical properties of biochar during early incubation periods (about 1 weeks), For example, surface properties of used biochars, which are related to adsorption of soil organic matter and CO2, have different properties with pyrolysis temperature such as specific surface area (BC4=5.08 m2g-1; BC7=260.75 m2 g-1, respectively), average pore diameter (BC4=4,673 nm; BC7=2,606 nm, respectively), and functional groups of biochar surface. However, there was not clear evidence of biochar-mine soil interaction process, because of the short observation periods. Future work should focus on the adsorption of CO2 and soil organic matter of biochar and soil-biochar interaction with long time periods and various biological test.
Carroll, Susan A; Iyer, Jaisree; Walsh, Stuart D C
2017-08-15
Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids from the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.
Carroll, Susan A.; Iyer, Jaisree; Walsh, Stuart D. C.
2017-07-25
Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids frommore » the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Susan A.; Iyer, Jaisree; Walsh, Stuart D. C.
Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids frommore » the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.« less
Natural Gas Storage in the United States in 2001: A Current Assessment and Near-Term Outlook
2001-01-01
This report examines the large decline of underground natural gas storage inventories during the 2000-2001 heating season and the concern that the nation might run out of working gas in storage prior to the close of the heating season on March 31, 2001. This analysis also looks at the current profile and capabilities of the U.S. natural gas underground storage sector.
76 FR 544 - PetroLogistics Natural Gas Storage, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... Natural Gas Storage, LLC; Notice of Application December 28, 2010. Take notice that on December 14, 2010, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470 Bluebonnet Blvd., Baton Rouge, Louisiana... Natural Gas Act (NGA) and Part 157 of the Commission's regulations, requesting a certificate of public...
Spatial Variability in Decomposition of Organic Carbon Along a Meandering River Floodplain
NASA Astrophysics Data System (ADS)
Sutfin, N. A.; Rowland, J. C.; Tfaily, M. M.; Bingol, A. K.; Washton, N.
2017-12-01
Rivers are an important component of the terrestrial carbon cycle and floodplains can provide significant storage of organic carbon. Quantification of long-term storage, however, requires determination of the residence time of sediment and the decomposition rate of organic carbon in floodplains. We use fourier transform ion cyclotron resonance (FTICR) mass spectrometry to examine the organic carbon compounds present in sediment within three floodplain settings: point bars, cutbanks, and abandoned channels. We define decomposition of organic carbon in floodplain sediment as the ratio between the number of protein versus lignin, which serve as proxies for microbial-derived and terrestrial-derived organic carbon, respectively. Samples were collected at 0-5 cm, 5-15cm, and 15-30 cm depth along four transects that span a longitudinal valley distance of 8 km on the East River near Crested Butte, CO. Although no significant trends in decomposition ratio exist longitudinally between the fours transects, floodplain settings exhibit significant differences. At shallow depths (0-5 cm), there are no significant differences among settings, with the exception of gravel portions of point bars below bankfull flow, where the highest decomposition is present. Conversely, cutbanks contain significantly lower decomposition ratios compared with point bars, gravel bars, and abandoned channels when considering all depth intervals. Pointbars exhibit significantly greater protein vs. lignin at the surface compared to greater depth. Higher decomposition ratios along abandoned channels and point bars suggest that frequent wetting and drying periods, abundant oxygen, and continuous downstream movement and decomposition of organic matter occurs within the channel. Lower decomposition ratios and consistent trends with depth along cutbanks, suggest that these stable surfaces serve as organic carbon reservoirs that could become an increased source of carbon to the channel with increasing bank erosion. Detailed differences of organic carbon compounds in sediments of cutbanks, point bars, and abandoned channel will be examined in September 2017 using nuclear magnetic resonance (NMR).
18 CFR 157.13 - Form of exhibits to be attached to applications.
Code of Federal Regulations, 2010 CFR
2010-04-01
... OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE NATURAL GAS ACT Applications for Certificates of Public Convenience and Necessity and for...
Mining (except Oil and Gas) Sector (NAICS 212)
EPA Regulatory and enforcement information for the mining sector, including metal mining & nonmetallic mineral mining and quarrying. Includes information about asbestos, coal mining, mountaintop mining, Clean Water Act section 404, and abandoned mine lands
78 FR 69405 - Enable Gas Transmission, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
..., by sell and transfer from Enable to Enable Midstream Partners, LP (EMP), certain facilities and... Leedey Purification Facility and to abandon by sale to EMP the following facilities in Oklahoma: (1) The...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application Take notice that on May 21, 2012, Petal Gas Storage, L.L.C. (Petal) and Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg... pursuant to sections 7(c) and 7(b) of the Natural Gas Act (NGA), for authorization for Petal to acquire the...
Yager, R M; Fountain, J C
2001-01-01
The specific storage of a porous medium, a function of the compressibility of the aquifer material and the fluid within it, is essentially constant under normal hydrologic conditions. Gases dissolved in ground water can increase the effective specific storage of a confined aquifer, however, during water level declines. This causes a reduction in pore pressure that lowers the gas solubility and results in exsolution. The exsolved gas then displaces water from storage, and the specific storage increases because gas compressibility is typically much greater than that of water or aquifer material. This work describes the effective specific storage of a confined aquifer exsolving dissolved gas as a function of hydraulic head and the dimensionless Henry's law constant for the gas. This relation is applied in a transient simulation of ground water discharge from a confined aquifer system to a collapsed salt mine in the Genesee Valley in western New York. Results indicate that exsolution of gas significantly increased the effective specific storage in the aquifer system, thereby decreasing the water level drawdown.
Yager, R.M.; Fountain, J.C.
2001-01-01
The specific storage of a porous medium, a function of the compressibility of the aquifer material and the fluid within it, is essentially constant under normal hydrologic conditions. Gases dissolved in ground water can increase the effective specific storage of a confined aquifer, however, during water level declines. This causes a reduction in pore pressure that lowers the gas solubility and results in exsolution. The exsolved gas then displaces water from storage, and the specific storage increases because gas compressibility is typically much greater than that of water or aquifer material. This work describes the effective specific storage of a confined aquifer exsolving dissolved gas as a function of hydraulic head and the dimensionless Henry's law constant for the gas. This relation is applied in a transient simulation of ground water discharge from a confined aquifer system to a collapsed salt mine in the Genesee Valley in western New York. Results indicate that exsolution of gas significantly increased the effective specific storage in the aquifer system, thereby decreasing the water level drawdown.
75 FR 63465 - Hill-Lake Gas Storage, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-137-000] Hill-Lake Gas Storage, LLC; Notice of Filing October 7, 2010. Take notice that on September 30, 2010, Hill-Lake Gas Storage, LLC (Hill-Lake) filed a revised Statement of Operating Conditions (SOC) for its Storage Services...
75 FR 70727 - Perryville Gas Storage LLC ; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... Storage LLC ; Notice of Application November 10, 2010. Take notice that on November 5, 2010, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite 1350, Houston, Texas 77056, filed in Docket No... interpretations for the location of the edge of the salt dome relative to the approved natural gas storage Cavern...
75 FR 35780 - ONEOK Texas Gas Storage, LLC; Notice of Baseline Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-36-000] ONEOK Texas Gas Storage, LLC; Notice of Baseline Filing June 16, 2010. Take notice that on June 15, 2010, ONEOK Texas Gas Storage, LLC submitted a baseline filing of its Storage Statement of Operating Conditions for services...
76 FR 78641 - Southwestern Gas Storage Technical Conference; Notice of Public Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... Storage Technical Conference; Notice of Public Conference Take notice that on February 16, 2012 at 9 a.m... technical conference with interested parties to discuss issues related to natural gas storage development in... Cold Weather Event of February 1-5, 2011: Causes and Recommendations, ``[a]dditional gas storage...
75 FR 61478 - D'Lo Gas Storage, LLC; Notice of Petition
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... Storage, LLC; Notice of Petition September 24, 2010. Take notice that on September 21, 2010, D'Lo Gas Storage, LLC (Petitioner), 1002 East St. Mary Boulevard, Lafayette, Louisiana 70503, filed in Docket No... determine feasibility of developing the underlying salt dome formation for natural gas storage, all as more...
77 FR 789 - Tres Palacios Gas Storage LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... Gas Storage LLC; Notice of Application Take notice that on December 20, 2011, Tres Palacios Gas Storage LLC (Tres Palacios), Two Brush Creek Boulevard, Kansas City, Missouri 64112, filed in the above... on its storage facility header pipeline system by: (i) Constructing a 19.7-mile, 24-inch diameter...
78 FR 15712 - Arlington Storage Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-12
... Storage Company, LLC; Notice of Application Take notice that on February 26, 2013, Arlington Storage... Commission's regulations, requesting authorization to expand its Seneca Lake natural gas storage facility... ``Gallery 2''), previously used for propane storage, and related facilities to natural gas storage. The...
The potential of geological storage of CO2 in Austria: a techno-economic assessment
NASA Astrophysics Data System (ADS)
Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy
2014-05-01
An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a combined emission of just over 20Mt/y. According to the IEA, CO2 capture and geological storage (CCS) can reduce the global CO2 emission until 2050 by 17%. A correct assessment of CCS needs to start with the storage potential. Prior to this study, only general estimates of the theoretical capacity of Austrian reservoirs were available, thus, up until now, the realistic potential for CCS technology has not been assessed. Both for policy and industry, an assessment of the matched capacity is required, which is the capacity that actually will be used in CCS projects. This hurdle can be taken by applying a recently developed methodology (Welkenhuysen et al., 2013). This policy support system (PSS) consists of two parts, PSS Explorer and PSS III simulator. In brief, the methodology is based on expert judgements of potential reservoirs. These assessments can provide the best available data, including the expert's experience and possibly confidential data, without disclosing specific data. The geo-techno-economic calculation scheme PSS Explorer uses the expert input to calculate for each individual reservoir an assessment of the practical capacity (as probability density functions), in function of an acceptable price for storage. This practical capacity can then be used by the techno-economic PSS III simulator to perform advanced source-sink matching until 2050 and thus provide the matched reservoir capacity. The analysed reservoirs are 7 active or abandoned oil and gas reservoirs in Austria. The simulation of the electricity and iron & steel sector of Austria resulted in the estimation of the geological storage potential, taking into account geological, technological and economic uncertainties. Results indicate a significant potential for CCS in Austria and a very high probability for any CO2 storage activity. The assessment of the average practical capacity of the whole country is 120Mt at 15€/tCO2 of storage budget, while the average matched national capacity is 40Mt. Concerning the individual reservoirs, reservoir development probabilities generally lie between 20 and 30%. These numbers served as basis for a reservoir exploration ranking. Compared to current emissions, total storage capacity is at the low end, which is likely the main technical limiting factor for CCS deployment in Austria. Also, current policy seems not in favour of CCS. Storage capacity is however high enough to provide a significant contribution to the reduction of CO2 emissions in the country, in the order of a few million tonnes per year. Opportunities to combine CO2 geological storage and geothermal energy seem promising, but require additional evaluation. Welkenhuysen, K., Ramirez, A., Swennen, R. & Piessens, K., 2013. Ranking potential CO2 storage reservoirs: an exploration priority list for Belgium. International Journal of Greenhouse Gas Control, 17, p. 431-449
Gas hydrate cool storage system
Ternes, M.P.; Kedl, R.J.
1984-09-12
The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)
NASA Astrophysics Data System (ADS)
Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain
2016-04-01
Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.
75 FR 80758 - Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
...] Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies December 16, 2010... natural gas pipelines to report semi-annually on their storage activities. This Notice of Inquiry will... reports required of interstate and intrastate natural gas companies pursuant to 18 CFR 284.13(e) and 284...
75 FR 71101 - Monroe Gas Storage Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... to comment only on the environmental review of this project should submit an original and two copies... Monroe to make changes to the certificated design of the Monroe Gas Storage Project. Specifically... high-deliverability working gas storage capacity, with about 4.46 Bcf of base gas. Nor is any change...
76 FR 13611 - Bay Gas Storage, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-91-000] Bay Gas Storage, LLC; Notice of Filing Take notice that on February 28, 2011, Bay Gas Storage, LLC (Bay Gas) filed pursuant to Section 12.2.4 of its Statement of Operating Conditions to revise its Company Use Percentage as...
75 FR 66077 - Bay Gas Storage Company Ltd.; Notice of Compliance Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-15-002] Bay Gas Storage Company Ltd.; Notice of Compliance Filing October 20, 2010. Take notice that on October 13, 2010, Bay Gas Storage Company Ltd. (Bay Gas) filed its Refund Report pursuant to its August 30, 2010 Settlement...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
Comparison of Natural Gas Storage Estimates from the EIA and AGA
1997-01-01
The Energy Information Administration (EIA) has been publishing monthly storage information for years. In order to address the need for more timely information, in 1994 the American Gas Association (AGA) began publishing weekly storage levels. Both the EIA and the AGA series provide estimates of the total working gas in storage, but use significantly different methodologies.
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
78 FR 63179 - Notice of Request Under Blanket Authorization; Petal Gas Storage, LLC.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... Request Under Blanket Authorization; Petal Gas Storage, LLC. Take notice that on October 9, 2013, Petal Gas Storage, L.L.C. (Petal), 9 Greenway Plaza, Suite 2800, Houston, Texas 77046, filed in Docket No... storage capacity in the Petal Salt Dome's Cavern 12A, located in Forrest County, Mississippi, from 8.2 Bcf...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
..., Inc.; Notice of Intent To Prepare an Environmental Assessment for the Proposed Bully Camp Gas Storage... the environmental impacts of the Bully Camp Gas Storage Project involving construction and operation... storage facility in a solution-mined salt dome in Lafourche Parish, Louisiana. The Bully Camp Gas Storage...
[Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].
Li, Jian-Lin; Jiang, Chang-Sheng; Hao, Qing-Ju
2014-12-01
Soil aggregates have the important effect on soil fertility, soil quality and the sustainable utilization of soil, and they are the mass bases of water and fertilizer retention ability of soil and the supply or release of soil nutrients. In this paper, in order to study the impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain, we separated four land use types of soil, which are woodland, abandoned land, orchard and sloping farmland by wet sieving method, then we got the proportion of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (53 μm-0.25 mm) and silt + clay (< 53 μm) and measured the content of organic carbon in each aggregate fraction in soil depth of 0-60 cm and calculated the total content of organic carbon of all aggregates fraction in each soil. The results showed that reclamation of woodland will lead to fragmentation of macroaggregates and deterioration of soil structure, and the proportion of macroaggrgates (> 0.25 mm) were 44.62% and 32.28% respectively in the soils of orchard and sloping farmland, which reduced 38.58% (P < 0.05) and 91.52% (P < 0.05) compared with woodland. While after changing the sloping farmland to abandoned land, which lead to the conversion of soil fraction from silt + clay to large macroaggregates and small macroaggregates, so it will improve the soil structure. MWD (mean weight diameter) and GMD (geometric mean diameter) are important indicators of evaluating the stability of soil aggregates. We found the MWD and GWD in soil depth of 0-60 cm in orchards and sloping farmland were significantly lower than those in woodland (P < 0.05), while after changing the sloping farmland to abandoned land, the MWD and GWD increased significantly (P < 0.05), which indicated that reclamation of woodland will lead to the decrease of stability of soil aggregates, and they will be separated more easily by water. However, after changing the sloping farmland to abandoned land will enhance the stability of soil aggregates, and improve the ability of soil to resist external damage. The organic carbon content in each soil aggregate of four land use types decreased with the increase of soil depth. In soil depth of 0-60 cm, the storage of organic carbon of large macroaggregates in each soil are in orders of woodland (14.98 Mg x hm(-2)) > abandoned land (8.71 Mg x hm(-2)) > orchard (5.82 Mg x hm(-2)) > sloping farmland (2.13 Mg x hm(-2)), and abandoned land (35.61 Mg x hm(-2)) > woodland (20.38 Mg x hm-(-2)) > orchard (13.83 Mg x hm(-2)) > sloping farmland (6.77 Mg x hm(-2)) in small macroaggregates, and abandoned land (22.44 Mg x hm(-2)) > woodland (10.20 Mg x hm(-2)) > orchard (6.80 Mg x hm(-2)) > sloping farmland (5. 60 Mg x hm(-2)) in microaggregates, and abandoned land (22.21 Mg x hm(-2)) > woodland (17.01 Mg x hm(-2)) > orchard (16.70 Mg x hm(-2)) > sloping farmland (9.85 Mg x hm(-2)) in silt and clay fraction. Storage of organic carbon in each aggregate in the soils of woodland and abandoned land were higher than those in the soils of orchard and sloping farmland, which indicated that reclamation of woodland will lead to a loss of organic carbon in each soil aggregate fraction, while after changing the sloping farmland to abandoned land will contribute to restore and sequestrate the soil organic carbon. In addition, it showed that most organic carbon accumulated in small macroaggregate in soils of woodland and abandoned land, while they are in silt and clay in soils of orchard and sloping farmland, indicating that organic carbon in larger aggregates is unstable and is easier to convert during the land use change.
J. Van Haren; R.C. de Oliveira, Jr.; P.T. Beldini; P.B. de Camargo; M. Keller; S. Saleska
2013-01-01
Tropical plantations are considered a viable option to sequester carbon on abandoned agricultural lands, but implications of tree species selection for overall greenhouse gas budgets on plantations have been little studied. During three wet seasons, we investigated the influence of nine tree species on soil pH, temperature (ST), bulk density (BD), moisture content...
NASA Astrophysics Data System (ADS)
Hadley, J. L.; Urbanski, S. P.
2002-12-01
Carbon storage in forests of the northeastern U.S. and adjacent Canada may be a significant carbon sink, as forests and soils in this region have recovered after agricultural abandonment in the 19th century. Data collected during the 1990's showed that an area of 70 to 100 year old deciduous forest on abandoned farmland in central Massachusetts stored an average of 2.0 Mg C/ha/yr in trees and soil. During 2001 we measured carbon exchange and environmental parameters (above-canopy air temperature, atmospheric humidity, photosynthetically active radiation (PAR) and soil temperature) in both the 70-100 year old deciduous forest and in a nearby eastern hemlock (Tsuga canadensis L.)-dominated forest with trees up to 220 years old that was never cleared for agricultural use. The deciduous forest stored more than 4 Mg C/ ha in 2001, far higher than in any previous year since measurements started in 1991. Highest monthly deciduous forest carbon storage (1.8 - 1.9 Mg ha-1 month-1) occurred in July and August. The hemlock forest stored about 3 Mg C/ha, with peak storage in April and May (0.8 - 0.9Mg C ha-1 month-1), and little or no C storage during August. The differences in carbon storage between the two forests were related to differences in quantum use efficiency. Quantum efficiency of ecosystem carbon storage in the foliated deciduous forest averaged about 0.16 g C /mol PAR and was insensitive to temperature after leaf maturation. In contrast, the average hemlock forest quantum efficiency declined from about 0.10 g C /mol PAR at daily average above-canopy air temperature (T{a}{v}{g}) = 5 oC to zero quantum efficiency (no net carbon storage) at T{a}{v}{g} = 23 oC. Optimum temperatures for carbon storage in the hemlock forest occurred in April. Differences between the two forests are likely due primarily to a higher maximum photosynthetic rate and a more positive temperature response of leaf-level photosynthesis in red oak (the dominant deciduous species) as compared with eastern hemlock. Maintenance of high soil respiration in the hemlock forest during warm dry summer weather may also contribute to declining quantum efficiency of carbon storage in the hemlock forest during the summer.
NASA Astrophysics Data System (ADS)
Fernandez Bou, A. S.; Carrasquillo Quintana, O.; Dierick, D.; Harmon, T. C.; Johnson, S.; Schwendenmann, L.; Zelikova, T. J.
2016-12-01
The goal of this work is to advance our understanding of soil carbon cycling in highly productive neotropical wet forests. More specifically, we are investigating the influence of leaf cutter ants (LCA) on soil CO2 gas dynamics in primary and secondary forest soils at La Selva Biological Station, Costa Rica. LCA are the dominant herbivore in tropical Americas, responsible for as much as 50% of the total herbivory. Their presence is increasing and their range is expanding because of forest fragmentation and other human impacts. We installed gas sampling wells in LCA (Atta cephalotes) nest and control sites (non-nests in the same soil and forest settings). The experimental design encompassed land cover (primary and secondary forest) and soil type (residual and alluvial). We collected gas samples monthly over an 18-month period. Several of the LCA nests were abandoned during this period. Nevertheless, we continued to sample these sites for LCA legacy effects. In several of the sites, we also installed sensors to continuously monitor soil moisture content, temperature, and CO2 levels. Within the 18-month period we conducted a 2-month field campaign to collect soil and nest vent CO2 efflux data from 3 of the nest-control pairs. Integrating the various data sets, we observed that for most of the sites nest and control soils behaved similarly during the tropical dry season. However, during the wet season gas well CO2 concentrations increased in the control sites while levels in the nests remained at dry season levels. This outcome suggests that ants modify soil gas transport properties (e.g., tortuosity). In situ time series and efflux sampling campaign data corroborated these findings. Abandoned nest CO2 levels were similar to those of the active nests, supporting the notion of a legacy effect from LCA manipulations. For this work, the period of abandonment was relatively short (several months to 1 year maximum), which appears to be insufficient for estimating the duration effect. Overall, these results demonstrate that LCA exert a significant effect on carbon cycling in rain forest soils.
Abstract: Even with the large physical separation between storage reservoirs and surficial environments, there is concern that CO2 stored in reservoirs may eventually leak back to the surface through abandoned wells or along geological features such as faults. Leakage of CO2 into...
8. Photographic contact print from a 8x10 original negative. (Original ...
8. Photographic contact print from a 8x10 original negative. (Original drawing located on abandoned NASA site, currently owned by the City of Downey, Downey, California). 1956 RECORD DRAWINGS. NORTH AMERICAN AVAIATION INC, INDUSTRIAL ENGINEERS. 1956 BLDG 25 & BLDG 42 ELEVATIONS. - NASA Industrial Plant, Storage Facility, 12214 Lakewood Boulevard, Downey, Los Angeles County, CA
Assessment of ground-water contamination in the alluvial aquifer near West Point, Kentucky
Lyverse, M.A.; Unthank, M.D.
1988-01-01
Well inventories, water level measurements, groundwater quality samples, surface geophysical techniques (specifically, electromagnetic techniques), and test drilling were used to investigate the extent and sources of groundwater contamination in the alluvial aquifer near West Point, Kentucky. This aquifer serves as the principal source of drinking water for over 50,000 people. Groundwater flow in the alluvial aquifer is generally unconfined and moves in a northerly direction toward the Ohio River. Two large public supply well fields and numerous domestic wells are located in this natural flow path. High concentrations of chloride in groundwater have resulted in the abandonment of several public supply wells in the West Point areas. Chloride concentrations in water samples collected for this study were as high as 11,000 mg/L. Electromagnetic techniques indicated and test drilling later confirmed that the source of chloride in well waters was probably improperly plugged or unplugged, abandoned oil and gas exploration wells. The potential for chloride contamination of wells exists in the study area and is related to proximity to improperly abandoned oil and gas exploration wells and to gradients established by drawdowns associated with pumped wells. Periodic use of surface geophysical methods, in combination with added observation wells , could be used to monitor significant changes in groundwater quality related to chloride contamination. (USGS)
75 FR 8318 - Petrologistics Natural Gas Storage, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... Natural Gas Storage, LLC; Notice of Application February 17, 2010. Take notice that on February 12, 2010, Petrologistics Natural Gas Storage, LLC (Petrologistics), 4470 Bluebonnet Blvd., Baton Rouge, LA 70809, filed an application in Docket No. CP10-66-000, pursuant to section 7(c) of the Natural Gas Act (NGA), to amend its...
77 FR 5788 - PetroLogistics Natural Gas Storage, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... Natural Gas Storage, LLC; Notice of Application Take notice that on January 27, 2012, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470 Bluebonnet Blvd., Baton Rouge, Louisiana 70809, filed in Docket No. CP11-50-001, an application pursuant to section 7(c) of the Natural Gas Act (NGA) and Part 157...
75 FR 49917 - PetroLogistics Natural Gas Storage, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-16
... Natural Gas Storage, LLC; Notice of Application August 3, 2010. Take notice that on July 21, 2010, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470 Bluebonnet Blvd., Baton Rouge, Louisiana 70809, filed in Docket No. CP10-473-000, an application pursuant to section 7(c) of the Natural Gas Act (NGA...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-40-000] Bully Camp Gas Storage Project; Notice of Availability of the Environmental Assessment for the Proposed Bully Camp Gas...) has prepared an environmental assessment (EA) for the Bully Camp Gas Storage Project proposed by BCR...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... a central gas/liquids separation and storage facility (Ryckman Plant) where all of the pipelines meet, containing oil, water and gas handling, and natural gas liquids (NGL) storage equipment; and it... as the Ryckman Creek (Nugget Unit), into a new interstate natural gas storage field. The Project is...
Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage
NASA Astrophysics Data System (ADS)
Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong
2013-04-01
Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could provide a significant optimisation of the UCG process by means of CO2 storage efficiency. The proposed coupled UCG-CCS scheme allows for meeting EU targets for greenhouse gas emissions and increases the coal yield otherwise impossible to exploit.
Numerical modeling of underground storage system for natural gas
NASA Astrophysics Data System (ADS)
Ding, J.; Wang, S.
2017-12-01
Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).
ERIC Educational Resources Information Center
Qayoumi, Mohammad H.
2003-01-01
Reviews transformations in the field of energy over the last 30 years, including the 1970s energy crisis and the legislative response, the abandonment of nuclear energy, growing dependence on natural gas, growing dependence on electricity rather than oil, and superconducting technologies. (EV)
Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA.
McMahon, Peter B; Thomas, Judith C; Crawford, John T; Dornblaser, Mark M; Hunt, Andrew G
2018-09-01
Site-specific and regional analysis of time-series hydrologic and geochemical data collected from 15 monitoring wells in the Piceance Basin indicated that a leaking gas well contaminated shallow groundwater with thermogenic methane. The gas well was drilled in 1956 and plugged and abandoned in 1990. Chemical and isotopic data showed the thermogenic methane was not from mixing of gas-rich formation water with shallow groundwater or natural migration of a free-gas phase. Water-level and methane-isotopic data, and video logs from a deep monitoring well, indicated that a shale confining layer ~125m below the zone of contamination was an effective barrier to upward migration of water and gas. The gas well, located 27m from the contaminated monitoring well, had ~1000m of uncemented annular space behind production casing that was the likely pathway through which deep gas migrated into the shallow aquifer. Measurements of soil gas near the gas well showed no evidence of methane emissions from the soil to the atmosphere even though methane concentrations in shallow groundwater (16 to 20mg/L) were above air-saturation levels. Methane degassing from the water table was likely oxidized in the relatively thick unsaturated zone (~18m), thus rendering the leak undetectable at land surface. Drilling and plugging records for oil and gas wells in Colorado and proxies for depth to groundwater indicated thousands of oil and gas wells were drilled and plugged in the same timeframe as the implicated gas well, and the majority of those wells were in areas with relatively large depths to groundwater. This study represents one of the few detailed subsurface investigations of methane leakage from a plugged and abandoned gas well. As such, it could provide a useful template for prioritizing and assessing potentially leaking wells, particularly in cases where the leakage does not manifest itself at land surface. Published by Elsevier B.V.
Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA
McMahon, Peter B.; Thomas, Judith C.; Crawford, John T.; Dornblaser, Mark M.; Hunt, Andrew G.
2018-01-01
Site-specific and regional analysis of time-series hydrologic and geochemical data collected from 15 monitoring wells in the Piceance Basin indicated that a leaking gas well contaminated shallow groundwater with thermogenic methane. The gas well was drilled in 1956 and plugged and abandoned in 1990. Chemical and isotopic data showed the thermogenic methane was not from mixing of gas-rich formation water with shallow groundwater or natural migration of a free-gas phase. Water-level and methane-isotopic data, and video logs from a deep monitoring well, indicated that a shale confining layer ~125 m below the zone of contamination was an effective barrier to upward migration of water and gas. The gas well, located 27 m from the contaminated monitoring well, had ~1000 m of uncemented annular space behind production casing that was the likely pathway through which deep gas migrated into the shallow aquifer. Measurements of soil gas near the gas well showed no evidence of methane emissions from the soil to the atmosphere even though methane concentrations in shallow groundwater (16 to 20 mg/L) were above air-saturation levels. Methane degassing from the water table was likely oxidized in the relatively thick unsaturated zone (~18 m), thus rendering the leak undetectable at land surface. Drilling and plugging records for oil and gas wells in Colorado and proxies for depth to groundwater indicated thousands of oil and gas wells were drilled and plugged in the same timeframe as the implicated gas well, and the majority of those wells were in areas with relatively large depths to groundwater. This study represents one of the few detailed subsurface investigations of methane leakage from a plugged and abandoned gas well. As such, it could provide a useful template for prioritizing and assessing potentially leaking wells, particularly in cases where the leakage does not manifest itself at land surface.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... Conversion Gas Storage Project and Request for Comments on Environmental Issues March 19, 2010. The staff of... (EA) that will discuss the environmental impacts of the Cavern 12A Conversion Gas Storage Project...
Ultrafine hydrogen storage powders
Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.
2000-06-13
A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.
Nitrogen oxides storage catalysts containing cobalt
Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben
2010-10-12
Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan R. Dutton; H. Seay Nance
2003-06-01
Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study onmore » abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.« less
Two different sensor technologies and their properties were analyzed. he nalysis simulated a leak which occurs from an underground storage tank. igaro gas sensors and the Adsistor gas sensor were tested in simulated underground storage tank nvironments using the Carnegie Mellon R...
77 FR 23241 - Floridian Natural Gas Storage Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-100-000] Floridian Natural Gas Storage Company, LLC; Notice of Application Take notice that on March 30, 2012, Floridian Natural Gas Storage Company, LLC (FGS), 1000 Louisiana Street, Suite 4361, Houston, Texas 77002, filed in...
77 FR 10490 - Arcadia Gas Storage, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR12-12-001] Arcadia Gas Storage, LLC; Notice of Filing Take notice that on February 13, 2012, Arcadia Gas Storage, LLC filed a revised Statement of Operating Conditions to further define the priority of service of its proposed...
77 FR 6107 - Arcadia Gas Storage, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR12-12-000] Arcadia Gas Storage, LLC; Notice of Filing Take notice that on January 30, 2012, Arcadia Gas Storage, LLC filed a Statement of Operating Conditions to set forth the addition of its Enhanced Authorized Overrun Service. Any...
77 FR 31840 - Perryville Gas Storage LLC; Notice of Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-460-000] Perryville Gas Storage LLC; Notice of Amendment Take notice that on May 11, 2012, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite 1350, Houston, Texas 77056, filed in the above referenced docket an application...
GAS STORAGE TECHNOLGOY CONSORTIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert W. Watson
2004-04-23
Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feetmore » (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the first 3-months of the project and encompasses the period September 30, 2003, through December 31, 2003. During this 3-month period, the first meeting of individuals representing the storage industry, universities and the Department of energy was held. The purpose of this meeting was to initiate the dialogue necessary to for the creation and adoption of a constitution that would be used to govern the activities of the consortium.« less
GAS STORAGE TECHNOLOGY CONSORTIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert W. Watson
2004-04-17
Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feetmore » (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).« less
NASA Astrophysics Data System (ADS)
Goodman, H.
2017-12-01
This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244
E. Mar¡n-Spiotta; R. Ostertag; Silver W. L.
2007-01-01
Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for...
E. MARIN-SPIOTTA; R. OSTERTAG; SILVER W. L.
2007-01-01
Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for...
Applications for activated carbons from waste tires: Natural gas storage and air pollution control
Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.
1996-01-01
Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.
Ensuring Reliable Natural Gas-Fired Generation with Fuel Contracts and Storage - DOE/NETL-2017/1816
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myles, Paul T.; Labarbara, Kirk A.; Logan, Cecilia Elise
This report finds that natural gas-fired power plants purchase fuel both on the spot market and through firm supply contracts; there do not appear to be clear drivers propelling power plants toward one or the other type. Most natural gas-fired power generators are located near major natural gas transmission pipelines, and most natural gas contracts are currently procured on the spot market. Although there is some regional variation in the type of contract used, a strong regional pattern does not emerge. Whether gas prices are higher with spot or firm contracts varies by both region and year. Natural gas pricesmore » that push the generators higher in the supply curve would make them less likely to dispatch. Most of the natural gas generators discussed in this report would be unlikely to enter firm contracts if the agreed price would decrease their dispatch frequency. The price points at which these generators would be unlikely to enter a firm contract depends upon the region that the generator is in, and how dependent that region is on natural gas. The Electric Reliability Council of Texas (ERCOT) is more dependent on natural gas than either Eastern Interconnection or Western Interconnection. This report shows that above-ground storage is prohibitively expensive with respect to providing storage for an extended operational fuel reserve comparable to the amount of on-site fuel storage used for coal-fired plants. Further, both pressurized and atmospheric tanks require a significant amount of land for storage, even to support one day’s operation at full output. Underground storage offers the only viable option for 30-day operational storage of natural gas, and that is limited by the location of suitable geologic formations and depleted fields.« less
Multicomponent Gas Storage in Organic Cage Molecules
Zhang, Fei; He, Yadong; Huang, Jingsong; ...
2017-05-18
Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less
Langley Storage facility which houses remains of Apollo 204 craft
NASA Technical Reports Server (NTRS)
1990-01-01
The Apollo 204 command module is seen in storage at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and 81 cartons of related hardware and investigative data occupy 3,300 cubic feet of Langley's storage space. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34, Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage at the site of all the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.
Langley Storage facility which houses remains of Apollo 204 craft
NASA Technical Reports Server (NTRS)
1990-01-01
The Apollo 204 command module is seen in storage at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and 81 cartons of related hardware and investigative data occupy 3,300 cubic feet of warehouse storage space. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34 at Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage with the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.
Langley Storage facility which houses remains of Apollo 204 craft
NASA Technical Reports Server (NTRS)
1990-01-01
Part of 81 cartons of Apollo 204 hardware and investigation data are seen in storage at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and the cartons occupy 3,300 cubic feet of Langley's storage space. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34, Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage with the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.
McMahon, Peter B.; Thomas, Judith C.; Hunt, Andrew G.
2013-01-01
Fourteen monitoring wells were sampled by the U.S. Geological Survey, in cooperation with the Bureau of Land Management, to better understand the chemistry and age of groundwater in the Piceance structural basin in Rio Blanco County, Colorado, and how they may relate to the development of underlying natural-gas reservoirs. Natural gas extraction in the area has been ongoing since at least the 1950s, and the area contains about 960 producing, shut-in, and abandoned natural-gas wells.
Classification of CO2 Geologic Storage: Resource and Capacity
Frailey, S.M.; Finley, R.J.
2009-01-01
The use of the term capacity to describe possible geologic storage implies a realistic or likely volume of CO2 to be sequestered. Poor data quantity and quality may lead to very high uncertainty in the storage estimate. Use of the term "storage resource" alleviates the implied certainty of the term "storage capacity". This is especially important to non- scientists (e.g. policy makers) because "capacity" is commonly used to describe the very specific and more certain quantities such as volume of a gas tank or a hotel's overnight guest limit. Resource is a term used in the classification of oil and gas accumulations to infer lesser certainty in the commercial production of oil and gas. Likewise for CO2 sequestration, a suspected porous and permeable zone can be classified as a resource, but capacity can only be estimated after a well is drilled into the formation and a relatively higher degree of economic and regulatory certainty is established. Storage capacity estimates are lower risk or higher certainty compared to storage resource estimates. In the oil and gas industry, prospective resource and contingent resource are used for estimates with less data and certainty. Oil and gas reserves are classified as Proved and Unproved, and by analogy, capacity can be classified similarly. The highest degree of certainty for an oil or gas accumulation is Proved, Developed Producing (PDP) Reserves. For CO2 sequestration this could be Proved Developed Injecting (PDI) Capacity. A geologic sequestration storage classification system is developed by analogy to that used by the oil and gas industry. When a CO2 sequestration industry emerges, storage resource and capacity estimates will be considered a company asset and consequently regulated by the Securities and Exchange Commission. Additionally, storage accounting and auditing protocols will be required to confirm projected storage estimates and assignment of credits from actual injection. An example illustrates the use of these terms and how storage classification changes as new data become available. ?? 2009 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... the storage field. Pursuant to its blanket certificate, within 6 months of the receipt of the... Proposed Alden Gas Storage Field Expansion Project and Request for Comments On Environmental Issues As... environmental impacts of the Alden Gas Storage Field Expansion Project, involving the expansion of the...
77 FR 52713 - PetroLogistics Natural Gas Storage, LLC; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-502-000] PetroLogistics..., 2012, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470 Bluebonnet Blvd., Baton Rouge, LA... deliverability rate at the Choctaw Gas Storage Hub, located in Iberville Parish, Louisiana, under PetroLogistics...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-50-000] PetroLogistics... by PetroLogistics Natural Gas Storage, LLC (PetroLogistics) in the above-referenced docket. PetroLogistics requests authorization to build and operate high-deliverability, multi-cycle natural gas storage...
Gas storage cylinder formed from a composition containing thermally exfoliated graphite
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Prud'Homme, Robert K. (Inventor)
2012-01-01
A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF09-14-000] Turtle Bayou... Planned Turtle Bayou Natural Gas Storage Project and Request for Comments on Environmental Issues February... discuss the environmental impacts of the Turtle Bayou Natural Gas Storage Project involving construction...
75 FR 18200 - Monroe Gas Storage Company, LLC; Notice of Compliance Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RP09-447-004] Monroe Gas Storage Company, LLC; Notice of Compliance Filing April 1, 2010. Take notice that on March 23, 2010, Monroe Gas Storage Company, LLC (Monroe), submitted a compliance filing to comply with the February 18...
76 FR 28970 - Worsham-Steed Gas Storage, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-19
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-109-000] Worsham-Steed Gas Storage, LLC; Notice of Filing Take notice that on May 12, 2011, Worsham-Steed Gas Storage, LLC filed to update its address in its Statement of Operating Conditions as more fully described in the...
76 FR 30338 - Hill-Lake Gas Storage, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-110-000] Hill-Lake Gas Storage, LLC; Notice of Filing Take notice that on May 13, 2011, Hill-Lake Gas Storage, LLC filed to update its address and to clarify definitions for Maximum Daily Withdrawal Quantity and Maximum Daily...
77 FR 14514 - Bay Gas Storage, LLC: Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR12-18-000] Bay Gas Storage, LLC: Notice of Filing Take notice that on March 2, 2012, Bay Gas Storage, LLC filed pursuant to Section 12.2.4 of its Statement of Operating Conditions to revise its Company Use Percentage as more fully...
78 FR 2982 - Steuben Gas Storage Company (Steuben); Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AC13-14-000] Steuben Gas Storage Company (Steuben); Notice of Filing Take notice that on October 19, 2012, Steuben Gas Storage Company (Steuben) submitted a request for a waiver of the reporting requirement to file the FERC Form 2-A...
78 FR 16495 - Bay Gas Storage, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR13-39-000] Bay Gas Storage, LLC; Notice of Filing Take notice that on February 28, 2013, Bay Gas Storage, LLC filed pursuant to Section 12.2.4 of its Statement of Operating Conditions to revise its Company Use Percentage as more fully...
76 FR 48841 - Liberty Gas Storage, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AC11-121-000] Liberty Gas Storage, LLC; Notice of Filing Take notice that on July 25, 2011, Liberty Gas Storage, LLC (Liberty) submitted a request for confirmation that it is not required to file FERC Form No. 2-A and will not be...
76 FR 47569 - Arcadia Gas Storage, LLC; Notice of Baseline Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. PR11-111-000; PR11-111-001] Arcadia Gas Storage, LLC; Notice of Baseline Filing Take notice that on May 19, 2011 and July 26, 2011, Arcadia Gas Storage, LLC submitted a revised baseline filing of their Statement of Operating Conditions...
77 FR 3766 - Southwestern Gas Storage Technical Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... Storage Technical Conference Notice of Public Conference On December 13, 2011, the Secretary issued formal... related to natural gas storage development in the southwestern United States, to be held at the Radisson... to speak from numerous individuals representing diverse interests associated with storage development...
Analysis of Energy Storage System with Distributed Hydrogen Production and Gas Turbine
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Bartela, Łukasz; Dubiel-Jurgaś, Klaudia
2017-12-01
Paper presents the concept of energy storage system based on power-to-gas-to-power (P2G2P) technology. The system consists of a gas turbine co-firing hydrogen, which is supplied from a distributed electrolysis installations, powered by the wind farms located a short distance from the potential construction site of the gas turbine. In the paper the location of this type of investment was selected. As part of the analyses, the area of wind farms covered by the storage system and the share of the electricity production which is subjected storage has been changed. The dependence of the changed quantities on the potential of the hydrogen production and the operating time of the gas turbine was analyzed. Additionally, preliminary economic analyses of the proposed energy storage system were carried out.
Gas Hydrate Storage of Natural Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudy Rogers; John Etheridge
2006-03-31
Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5)more » rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.« less
Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.
Engle, Mark A; Radke, Lawrence F; Heffern, Edward L; O'Keefe, Jennifer M K; Hower, James C; Smeltzer, Charles D; Hower, Judith M; Olea, Ricardo A; Eatwell, Robert J; Blake, Donald R; Emsbo-Mattingly, Stephen D; Stout, Scott A; Queen, Gerald; Aggen, Kerry L; Kolker, Allan; Prakash, Anupma; Henke, Kevin R; Stracher, Glenn B; Schroeder, Paul A; Román-Colón, Yomayra; ter Schure, Arnout
2012-03-15
Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildanger, E.G.; Mahar, J.; Nieto, A.
1980-01-01
This study examined the geologic data, mining history, and subsidence trends of the St. David region. Mine subsidence has occurred due to collapse of the abandoned mine workings. The known subsidence areas have been mapped and described. Results of the study include: (1) St. David has been undermined by both large shipping mines and smaller local mines; (2) sinkholes will continue to develop in this area in response to rock failure and roof collapse above the abandoned mine workings; (3) some primary factors that contribute to the sinkhole problems are the undermining and roof rock composition; (4) sinkholes will bemore » smaller in the future; (5) ten of the 63 sinkholes occurred close enough to structures to cause damage, and only six sinkholes caused damage; (6) ways to minimize potential damage to future homes from sinkhole subsidence are manageable; (7) threats to residents lie in the collapse of heavy walls, brick chimneys, breaks in gas, water, or electrical lines; and (8) location of future subsidence is not predictable. (DP)« less
Value of Underground Storage in Today's Natural Gas Industry, The
1995-01-01
This report explores the significant and changing role of storage in the industry by examining the value of natural gas storage; short-term relationships between prices, storage levels, and weather; and some longer term impacts of the Federal Energy Regulatory Commission's (FERC) Order 636.
75 FR 8051 - Petal Gas Storage, L.L.C.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... Storage, L.L.C.; Notice of Application February 12, 2010. Take notice that on January 29, 2010, Petal Gas Storage, L.L.C. (Petal), 1100 Louisiana Street, Houston, Texas, 77002, filed with the Federal Energy Regulatory Commission an abbreviated application pursuant to section 7(c) of the Natural Gas Act (NGA), as...
75 FR 63452 - ONEOK Gas Storage, L.L.C.; Notice of Baseline Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-67-001] ONEOK Gas Storage, L.L.C.; Notice of Baseline Filing October 7, 2010. Take notice that on October 1, 2010, ONEOK Gas Storage, L.L.C. submitted a revised baseline filing of its Statement of Operating Conditions for services...
Low pressure storage of natural gas on activated carbon
NASA Astrophysics Data System (ADS)
Wegrzyn, J.; Wiesmann, H.; Lee, T.
The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.
40 CFR 761.243 - Standard wipe sample method and size.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND USE PROHIBITIONS Determining a PCB Concentration for Purposes of Abandonment or Disposal of Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe.../Rinse Cleanup as Recommended by the Environmental Protection Agency PCB Spill Cleanup Policy,” dated...
Heating and cooling system for an on-board gas adsorbent storage vessel
Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio
2017-06-20
In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.
Mathematical models as tools for probing long-term safety of CO2 storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, Karsten; Birkholzer, Jens; Zhou, Quanlin
Subsurface reservoirs being considered for storing CO{sub 2} include saline aquifers, oil and gas reservoirs, and unmineable coal seams (Baines and Worden, 2004; IPCC, 2005). By far the greatest storage capacity is in saline aquifers (Dooley et al., 2004), and our discussion will focus primarily on CO{sub 2} storage in saline formations. Most issues for safety and security of CO{sub 2} storage arise from the fact that, at typical temperature and pressure conditions encountered in terrestrial crust, CO{sub 2} is less dense than aqueous fluids. Accordingly, CO{sub 2} will experience an upward buoyancy force in most subsurface environments, and willmore » tend to migrate upwards whenever (sub-)vertical permeable pathways are available, such as fracture zones, faults, or improperly abandoned wells (Bachu, 2008; Pruess, 2008a, b; Tsang et al., 2008). CO{sub 2} injection will increase fluid pressures in the target formation, thereby altering effective stress distributions, and potentially triggering movement along fractures and faults that could increase their permeability and reduce the effectiveness of a caprock in containing CO{sub 2} (Rutqvist et al., 2008; Chiaramonte et al., 2008). Induced seismicity as a consequence of fluid injection is also a concern (Healy et al., 1968; Raleigh et al., 1976; Majer et al., 2007). Dissolution of CO{sub 2} in the aqueous phase generates carbonic acid, which may induce chemical corrosion (dissolution) of minerals with associated increase in formation porosity and permeability, and may also mediate sequestration of CO{sub 2} as solid carbonate (Gaus et al., 2008). Chemical dissolution of caprock minerals could promote leakage of CO{sub 2} from a storage reservoir (Gherardi et al., 2007). Chemical dissolution and geomechanical effects could reinforce one another in compromising CO{sub 2} containment. Additional issues arise from the potential of CO{sub 2} to mobilize hazardous chemical species (Kharaka et al., 2006), and from migration of the large amounts of brine that would be mobilized by industrial-scale CO{sub 2} injection (Nicot et al., 2008; Birkholzer et al., 2008a, b).« less
Method of making improved gas storage carbon with enhanced thermal conductivity
Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN
2002-11-05
A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).
Aliso Canyon facility is giant among gas storage projects. [Underground
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magruder, P.S.
1975-11-01
Alison Canyon, the largest and newest of the Southern California Gas Company's underground storage fields, has the capacity to provide nearly 50 percent of the company's firm peak day deliverability from systemwide storage. (LK)
78 FR 18329 - Gulf South Pipeline Company, LP; Petal Gas Storage, L.L.C.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. CP13-96-000; PF12-21-000] Gulf South Pipeline Company, LP; Petal Gas Storage, L.L.C.; Notice of Application Take notice that on..., Texas 77046, and Petal Gas Storage, L.L.C. (Petal), 9 Greenway Plaza, Suite 2800, Houston, Texas 77046...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-06
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF11-6-000] Wabash Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the Planned Wabash Gas Storage Project, Request for Comments on Environmental Issues, and Notice of Public Scoping Meeting The staff of the Federal Energy Regulatory Commission ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-494-000] Tallulah Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed Tallulah Gas Storage Project, Request for Comments on Environmental Issues, and Notice of Onsite Environmental Review October 18, 2010. The staff of the Federal...
Biogeochemical interactions between of coal mine water and gas well cement
NASA Astrophysics Data System (ADS)
Gulliver, D. M.; Gardiner, J. B.; Kutchko, B. G.; Hakala, A.; Spaulding, R.; Tkach, M. K.; Ross, D.
2017-12-01
Unconventional natural gas wells drilled in Northern Appalachia often pass through abandoned coal mines before reaching the Marcellus or Utica formations. Biogeochemical interactions between coal mine waters and gas well cements have the potential to alter the cement and compromise its sealing integrity. This study investigates the mineralogical, geochemical, and microbial changes of cement cores exposed to natural coal mine waters. Static reactors with Class H Portland cement cores and water samples from an abandoned bituminous Pittsburgh coal mine simulated the cement-fluid interactions at relevant temperature for time periods of 1, 2, 4, and 6 weeks. Fluids were analyzed for cation and anion concentrations and extracted DNA was analyzed by 16S rRNA gene sequencing and shotgun sequencing. Cement core material was evaluated via scanning electron microscope. Results suggest that the sampled coal mine water altered the permeability and matrix mineralogy of the cement cores. Scanning electron microscope images display an increase in mineral precipitates inside the cement matrix over the course of the experiment. Chemistry results from the reaction vessels' effluent waters display decreases in dissolved calcium, iron, silica, chloride, and sulfate. The microbial community decreased in diversity over the 6-week experiment, with Hydrogenophaga emerging as dominant. These results provide insight in the complex microbial-fluid-mineral interactions of these environments. This study begins to characterize the rarely documented biogeochemical impacts that coal waters may have on unconventional gas well integrity.
76 FR 13612 - Freebird Gas Storage, LLC; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... Storage, LLC; Notice of Request Under Blanket Authorization Take notice that on March 1, 2011, Freebird Gas Storage, LLC (Freebird) filed a Prior Notice Request pursuant to sections 157.205 and 157.208 of... blanket certificate for authorization to increase the storage capacity and deliverability at its East...
Nanoporous Materials for the Onboard Storage of Natural Gas.
Kumar, K Vasanth; Preuss, Kathrin; Titirici, Maria-Magdalena; Rodríguez-Reinoso, Francisco
2017-02-08
Climate change, global warming, urban air pollution, energy supply uncertainty and depletion, and rising costs of conventional energy sources are, among others, potential socioeconomic threats that our community faces today. Transportation is one of the primary sectors contributing to oil consumption and global warming, and natural gas (NG) is considered to be a relatively clean transportation fuel that can significantly improve local air quality, reduce greenhouse-gas emissions, and decrease the energy dependency on oil sources. Internal combustion engines (ignited or compression) require only slight modifications for use with natural gas; rather, the main problem is the relatively short driving distance of natural-gas-powered vehicles due to the lack of an appropriate storage method for the gas, which has a low energy density. The U.S. Department of Energy (DOE) has set some targets for NG storage capacity to obtain a reasonable driving range in automotive applications, ruling out the option of storing methane at cryogenic temperatures. In recent years, both academia and industry have foreseen the storage of natural gas by adsorption (ANG) in porous materials, at relatively low pressures and ambient temperatures, as a solution to this difficult problem. This review presents recent developments in the search for novel porous materials with high methane storage capacities. Within this scenario, both carbon-based materials and metal-organic frameworks are considered to be the most promising materials for natural gas storage, as they exhibit properties such as large surface areas and micropore volumes, that favor a high adsorption capacity for natural gas. Recent advancements, technological issues, advantages, and drawbacks involved in natural gas storage in these two classes of materials are also summarized. Further, an overview of the recent developments and technical challenges in storing natural gas as hydrates in wetted porous carbon materials is also included. Finally, an analysis of design factors and technical issues that need to be considered before adapting vehicles to ANG technology is also presented.
A 3-D seismic investigation of the Ray gas storage reef, Macomb County, Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, S.F.; Dixon, R.A.
1994-08-01
A 4.2 mi[sup 2] 3-D seismic survey was acquired over the Ray Niagaran reef gas storage field in southeast Michigan as part of a program to maximize storage capacity and gas deliverability of the storage reservoir. Goals of the survey were to (1) determine if additional storage capacity could be found either as extensions to the Ray reef or as undiscovered satellite reefs, (2) investigate the relationship between the main body and a low-relief gas well east of the reef, and (3) determine if seismic data can be used to quantify reservoir parameters to maximize the productive capacity of infillmore » wells. Interpretation of the 3-D seismic data resulted in a detailed image of the reef, using several interpretive techniques. A seismic reflection within the reef was correlated with a known porosity zone, and a possible relationship between porosity and seismic amplitude was investigated. A potential connection between the main reef and the low-relief gas well was identified. This project illustrates the economic value of investigating an existing storage reef with 3-D seismic data, and underscores the necessity of such a survey prior to developing a new storage reservoir.« less
40 CFR 761.240 - Scope and definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.240 Scope and definitions. (a) Use these procedures to select surface sampling sites for natural gas pipe to determine its PCB surface concentration for abandonment-in-place or removal and disposal off-site in...
40 CFR 761.240 - Scope and definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.240 Scope and definitions. (a) Use these procedures to select surface sampling sites for natural gas pipe to determine its PCB surface concentration for abandonment-in-place or removal and disposal off-site in...
40 CFR 761.240 - Scope and definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.240 Scope and definitions. (a) Use these procedures to select surface sampling sites for natural gas pipe to determine its PCB surface concentration for abandonment-in-place or removal and disposal off-site in...
40 CFR 761.240 - Scope and definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe Samples § 761.240 Scope and definitions. (a) Use these procedures to select surface sampling sites for natural gas pipe to determine its PCB surface concentration for abandonment-in-place or removal and disposal off-site in...
Explosives remain preferred methods for platform abandonment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulsipher, A.; Daniel, W. IV; Kiesler, J.E.
1996-05-06
Economics and safety concerns indicate that methods involving explosives remain the most practical and cost-effective means for abandoning oil and gas structures in the Gulf of Mexico. A decade has passed since 51 dead sea turtles, many endangered Kemp`s Ridleys, washed ashore on the Texas coast shortly after explosives helped remove several offshore platforms. Although no relationship between the explosions and the dead turtles was ever established, in response to widespread public concern, the US Minerals Management Service (MMS) and National Marine Fisheries Service (NMFS) implemented regulations limiting the size and timing of explosive charges. Also, more importantly, they requiredmore » that operators pay for observers to survey waters surrounding platforms scheduled for removal for 48 hr before any detonations. If observers spot sea turtles or marine mammals within the danger zone, the platform abandonment is delayed until the turtles leave or are removed. However, concern about the effects of explosives on marine life remains.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
... facilities 486210 Pipeline transportation of natural gas. Petroleum and Natural Gas Systems. 221210 Natural... and Budget PHMSA Pipeline and Hazardous Material Safety Administration QA/QC quality assurance/quality... distribution pipelines, but also into liquefied natural gas storage or into underground storage. We are...
75 FR 32932 - Combined Notice of Filings No. 2
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-10
..., 2010. Take notice that the Commission has received the following Natural Gas Pipeline Rate and Refund Report filings: Docket Numbers: RP09-260-005. Applicants: Tres Palacios Gas Storage LLC. Description: Tres Palacios Gas Storage LLC submits Second Substitute First Revised Sheet 138 to FERC Gas Tariff...
NASA Astrophysics Data System (ADS)
Liebscher, Axel
2017-04-01
Initiated in 2004, the Ketzin pilot site near Berlin, Germany, was the first European onshore storage project for research and development on geological CO2 storage. After comprehensive site characterization the site infrastructure was build comprising three deep wells and the injection facility including pumps and storage tanks. The operational CO2 injection period started in June 2008 and ended in August 2013 when the site entered the post-injection closure period. During these five years, a total amount of 67 kt of CO2 was safely injected into an Upper Triassic saline sandstone aquifer at a depth of 630 m - 650 m. In fall 2013, the first observation well was partially plugged in the reservoir section with CO2 resistant cement; full abandonment of this well finished in 2015 after roughly 2 years of cement plug monitoring. Abandonment of the remaining wells will be finished by summer 2017 and hand-over of liability to the competent authority is scheduled for end of 2017. The CO2 injected was mainly of food grade quality (purity > 99.9%). In addition, 1.5 kt of CO2 from the oxyfuel pilot capture facility "Schwarze Pumpe" (purity > 99.7%) was injected in 2011. The injection period terminated with a CO2-N2 co-injection experiment of 650 t of a 95% CO2/5% N2 mixture in summer 2013 to study the effects of impurities in the CO2 stream on the injection operation. During regular operation, the CO2 was pre-heated on-site to 40°C prior to injection to ensure a single-phase injection process and avoid any phase transition or transient states within the injection facility or the reservoir. Between March and July 2013, just prior to the CO2-N2 co-injection experiment, the injection temperature was stepwise decreased down to 10°C within a "cold-injection" experiment to study the effects of two-phase injection conditions. During injection operation, the combination of different geochemical and geophysical monitoring methods enabled detection and mapping of the spatial and temporal in-reservoir behaviour of the injected CO2 even for small quantities. After the cessation of CO2 injection, post-injection monitoring continues and is guided by the three high-level criteria set out in the EU Directive for transfer of liability: i) observed behaviour of the injected CO2 conforms to the modelled behaviour, ii) no detectable leakage, and iii) site is evolving towards a situation of long-term stability. In addition, two further field experiments have been performed since end of injection. A CO2 back-production experiment was run in autumn 2014 to study the physicochemical properties of the back-produced CO2 as well as the pressure response of the reservoir. From October 2015 to January 2016, a brine injection experiment aimed at studying the imbibition process and residual gas saturation. Just prior to final well abandonment, drilling of two sidetracks in one of the wells is scheduled for summer 2017 to recover unique core samples from reservoir and cap rocks that reflect 9 years of in-situ CO2 exposure and will provide first-hand information on CO2-triggered mineralogical, mechanical and petrophysical rock property changes.
Challenges of constructing salt cavern gas storage in China
NASA Astrophysics Data System (ADS)
Xia, Yan; Yuan, Guangjie; Ban, Fansheng; Zhuang, Xiaoqian; Li, Jingcui
2017-11-01
After more than ten years of research and engineering practice in salt cavern gas storage, the engineering technology of geology, drilling, leaching, completion, operation and monitoring system has been established. With the rapid growth of domestic consumption of natural gas, the requirement of underground gas storage is increasing. Because high-quality rock salt resources about 1000m depth are relatively scarce, the salt cavern gas storages will be built in deep rock salt. According to the current domestic conventional construction technical scheme, construction in deep salt formations will face many problems such as circulating pressure increasing, tubing blockage, deformation failure, higher completion risk and so on, caused by depth and the complex geological conditions. Considering these difficulties, the differences between current technical scheme and the construction scheme of twin well and big hole are analyzed, and the results show that the technical scheme of twin well and big hole have obvious advantages in reducing the circulating pressure loss, tubing blockage and failure risk, and they can be the alternative schemes to solve the technical difficulties of constructing salt cavern gas storages in the deep rock salt.
Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Hoeschele, E. Weitzel, C. Backman
This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit withmore » lower storage volume and reduced gas input requirements.« less
NASA Astrophysics Data System (ADS)
Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.
2017-07-01
Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.
Installation Restoration Program Records Search for Kingsley Field, Oregon.
1982-06-01
Hazardous Assesment Rating Methodology (HARM), is now used for all Air Force IRP studies. To maintain consistency, AFESC had their on-call contractors review...Installation History D. Industrial Facilities E. POL Storage Tanks F. Abandoned Tanks G. Oil/Water Separators :" H. Site Hazard Rating Methodology I. Site...and implementing regulations. The pur- pose of DOD policy is to control the migration of hazardous material contaminants from DOD installations. 3
30 CFR 250.1616 - Supervision, surveillance, and training.
Code of Federal Regulations, 2014 CFR
2014-07-01
... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur... supervision of drilling operations at all times. (b) From the time drilling operations are initiated and until the well is completed or abandoned, a member of the drilling crew or the toolpusher shall maintain rig...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... associated with pipeline projects. Please note that this comment period will close on October 9, 2012. \\1... information techniques. Following the comment period, the Commission staff will submit the final revised Plan... FERC-537, ``Gas Pipeline Certificates: Construction, Acquisition, and Abandonment'' (OMB Control No...
40 CFR 761.257 - Determining the regulatory status of sampled pipe.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COMMERCE, AND USE PROHIBITIONS Determining a PCB Concentration for Purposes of Abandonment or Disposal of Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe... disposal of a pipe segment that has been sampled, the sample results for that segment determines its PCB...
Flexible LNG supply, storage and price formation in a global natural gas market
NASA Astrophysics Data System (ADS)
Hayes, Mark Hanley
The body of work included in this dissertation explores the interaction of the growing, flexible liquefied natural gas (LNG) trade with the fundamentals of pipeline gas supply, gas storage, and gas consumption. By nature of its uses---largely for residential heating and electric power generation---the consumption of natural gas is highly variable both seasonally and on less predictable daily and weekly timescales. Flexible LNG trade will interconnect previously isolated regional gas markets, each with non-correlated variability in gas demand, differing gas storage costs, and heterogeneous institutional structures. The dissertation employs a series of analytical models to address key issues that will affect the expansion of the LNG trade and the implications for gas prices, investment and energy policy. First, I employ an optimization model to evaluate the fundamentals of seasonal LNG swing between markets with non-correlated gas demand (the U.S. and Europe). The model provides insights about the interaction of LNG trade with gas storage and price formation in interconnected regional markets. I then explore how random (stochastic) variability in gas demand will drive spot cargo movements and covariation in regional gas prices. Finally, I analyze the different institutional structures of the gas markets in the U.S. and Europe and consider how managed gas markets in Europe---without a competitive wholesale gas market---may effectively "export" supply and price volatility to countries with more competitive gas markets, such as the U.S.
30 CFR 250.119 - Will MMS approve subsurface gas storage?
Code of Federal Regulations, 2010 CFR
2010-07-01
... of gas on the OCS, on and off-lease, for later commercial benefit. To receive MMS approval you must... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Will MMS approve subsurface gas storage? 250... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF General Performance Standards § 250...
Advanced onboard storage concepts for natural gas-fueled automotive vehicles
NASA Technical Reports Server (NTRS)
Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.
1984-01-01
The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.
Advanced onboard storage concepts for natural gas-fueled automotive vehicles
NASA Astrophysics Data System (ADS)
Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.
1984-06-01
The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, W.R.; Campbell, T.M.; Sturdivant, V.R.
1980-09-26
Shallow underground voids resulting from early coal mining and other resource recovery activities over the past several decades are now being recognized as a significant cause of ground subsidence problems in developing urban areas. Uncertain knowledge of abandoned coal mines also imposes potential hazards in coal excavation operations since water inundation or the release of methane gas is a principal hazard when mine excavation operations break into an abandoned mine. US Army requirements for an effective method for detecting and mapping subversive abandoned tunnels have resulted in a surface-operated automatic earth resistivity survey system with a digital computer data processingmore » system. Field tests aimed at demonstrating the system performance resulted in successful detection of tunnels having depth-to-diameter ratios up to 15 to 1. Under the sponsorship of the Bureau of Mines, a similar system was designed and constructed for use in the detection of coal mine workings. This report discusses the hardware and software aspects of the system and the application of the high-resolution earth resistivity method to the survey and mapping of abandoned coal mine workings. In the field tests reported, the targets of interest were both air- and water-filled workings.« less
Geothermally Coupled Well-Based Compressed Air Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.
2015-12-20
Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less
Chapman, M.J.
1993-01-01
Manufactured gas plants produced gas for heating and lighting in the United States from as early as 1816 into the 1960's. By-products including, but not limited to, oil residues and tar, were generated during the gas-manufacturing process. Organic compounds (hydrocarbons) were detected in water in the upper water-bearing zone of the Upper Floridan aquifer near an abandoned manufactured gas plant (MGP) in Albany, Georgia, during an earlier investigation in 1990. Chemical analyses of ground-water samples collected from five existing monitoring wells in 1991 verify the presence of hydrocarbons and metals in the upper water-beating zone of the Upper Floridan aquifer. One well was drilled into the lower water-beating zone of the Upper Floridan aquifer in 1991 for water-quality sampling and water-level monitoring. Analyses of ground water sampled from this well did not show evidence of benzene, toluene, xylene, napthalene, acenaphthlene, or other related compounds detected in the upper water-bearing zone in the study area. Low concentrations of tetrachloroethane, trichloromethane, and l,2-cisdichloroethene were detected in a water sample from the deeper well; however, these compounds were not detected in the upper water-bearing zone in the study area. Inorganic constituent concentrations also were substantially lower in the deeper well. Overall, ground water sampled from the lower water-bearing zone had lower specific conductance and alkalinity; and lower concentrations of dissolved solids, iron, and manganese compared to ground water sampled from the upper water-bearing zone. Water levels for the upper and lower water-bearing zones were similar throughout the study period.
Magnetically switched power supply system for lasers
NASA Technical Reports Server (NTRS)
Pacala, Thomas J. (Inventor)
1987-01-01
A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.
33 CFR 127.1313 - Storage of hazardous materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...
33 CFR 127.1313 - Storage of hazardous materials.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...
33 CFR 127.1313 - Storage of hazardous materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...
33 CFR 127.1313 - Storage of hazardous materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...
33 CFR 127.1313 - Storage of hazardous materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...
Surfactant process for promoting gas hydrate formation and application of the same
Rogers, Rudy E.; Zhong, Yu
2002-01-01
This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.
77 FR 20618 - PetroLogistics Natural Gas Storage, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... Natural Gas Storage, LLC; Notice of Application Take notice that on March 22, 2012, PetroLogistics Natural... Docket No. CP12-95-000, an application pursuant to section 7(c) of the Natural Gas Act (NGA) and Part 157... questions regarding this application should be directed to Kevin M. Miller, PetroLogistics Natural Gas...
Noble gas storage and delivery system for ion propulsion
NASA Technical Reports Server (NTRS)
Back, Dwight Douglas (Inventor); Ramos, Charlie (Inventor)
2001-01-01
A method and system for storing and delivering a noble gas for an ion propulsion system where an adsorbent bearing a noble gas is heated within a storage vessel to desorb the noble gas which is then flowed through a pressure reduction device to a thruster assembly. The pressure and flow is controlled using a flow restrictor and low wattage heater which heats an adsorbent bed containing the noble gas propellant at low pressures. Flow rates of 5-60 sccm can be controlled to within about 0.5% or less and the required input power is generally less than 50 W. This noble gas storage and delivery system and method can be used for earth orbit satellites, and lunar or planetary space missions.
Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian
2004-01-01
A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, E.A.; Derr, R.M.; Pope, D.H.
1995-12-31
Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI)more » in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.« less
40 CFR 98.233 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...), where gas wells are vented to the atmosphere to expel liquids accumulated in the tubing, a recording... onshore petroleum and natural gas production facilities (including stationary liquid storage not owned or... emissions from onshore production storage tanks using operating conditions in the last wellhead gas-liquid...
Repairing casing at a gas storage field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollenbaugh, B.
1992-09-01
This paper reports on the Leyden gas storage field which is a 1.5-Bcf working volume underground gas storage facility locating at the northwest edge of the Denver, Colo., metropolitan area. The field is owned by Public Service Co. of Colorado and operated by its wholly owned subsidiary, Western Gas Supply Co. Logging technology was instrumental in locating casing damage at two wells, identifying the extent of the damage and ensuring a successful repair. The well casings were repaired by installing a liner between two packers, with one packer set above the damage and the other set below it. Special equipmentmore » and procedures were required for workover and drilling operations because of the complications associated with cavern storage. Logging technology can locate damaged casing and evaluate the type and extent of the damage, and also predict the probability of gas migration behind the casing.« less
Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon
NASA Astrophysics Data System (ADS)
Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter
2011-03-01
Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).
Thermodynamics and kinetics of gas storage in porous liquids
Zhang, Fei; Yang, Fengchang; Huang, Jingsong; ...
2016-07-05
The recent synthesis of organic molecular liquids with permanent porosity (Giri et al., Nature, 2015, 527, 216) opens up exciting new avenues for gas capture, storage, and separation. Using molecular dynamics simulations, we study the thermodynamics and kinetics for the storage of CH 4, CO 2, and N 2 molecules in porous liquids consisting of crown-ether substituted cage molecules in a 15-crown-5 solvent. It is found that the gas storage capacity per cage molecule follows the order of CH 4 > CO 2 > N 2, which does not correlate simply with the size of gas molecules. Different gas moleculesmore » are stored inside the cage differently, e.g., CO 2 molecules prefer the cage s core while CH 4 molecules favor both the core and the branch regions. All gas molecules considered can enter the cage essentially without energy barriers, and their dynamics inside the cage are only slightly hindered by the nanoscale confinement. In addition, all gas molecules can leave the cage on nanosecond time scale by overcoming a modest energy penalty. The molecular mechanisms of these observations are clarified.« less
Thermodynamics and kinetics of gas storage in porous liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fei; Yang, Fengchang; Huang, Jingsong
The recent synthesis of organic molecular liquids with permanent porosity (Giri et al., Nature, 2015, 527, 216) opens up exciting new avenues for gas capture, storage, and separation. Using molecular dynamics simulations, we study the thermodynamics and kinetics for the storage of CH 4, CO 2, and N 2 molecules in porous liquids consisting of crown-ether substituted cage molecules in a 15-crown-5 solvent. It is found that the gas storage capacity per cage molecule follows the order of CH 4 > CO 2 > N 2, which does not correlate simply with the size of gas molecules. Different gas moleculesmore » are stored inside the cage differently, e.g., CO 2 molecules prefer the cage s core while CH 4 molecules favor both the core and the branch regions. All gas molecules considered can enter the cage essentially without energy barriers, and their dynamics inside the cage are only slightly hindered by the nanoscale confinement. In addition, all gas molecules can leave the cage on nanosecond time scale by overcoming a modest energy penalty. The molecular mechanisms of these observations are clarified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fei; He, Yadong; Huang, Jingsong
Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less
The measurement of water scarcity: Defining a meaningful indicator.
Damkjaer, Simon; Taylor, Richard
2017-09-01
Metrics of water scarcity and stress have evolved over the last three decades from simple threshold indicators to holistic measures characterising human environments and freshwater sustainability. Metrics commonly estimate renewable freshwater resources using mean annual river runoff, which masks hydrological variability, and quantify subjectively socio-economic conditions characterising adaptive capacity. There is a marked absence of research evaluating whether these metrics of water scarcity are meaningful. We argue that measurement of water scarcity (1) be redefined physically in terms of the freshwater storage required to address imbalances in intra- and inter-annual fluxes of freshwater supply and demand; (2) abandons subjective quantifications of human environments and (3) be used to inform participatory decision-making processes that explore a wide range of options for addressing freshwater storage requirements beyond dams that include use of renewable groundwater, soil water and trading in virtual water. Further, we outline a conceptual framework redefining water scarcity in terms of freshwater storage.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... transmission pipeline and an associated meter and regulation (M&R) station in Warren County, Virginia. In addition, the project involves the installation of minor station piping and appurtenance modifications at existing compressor stations in northern Virginia and eastern West Virginia, and abandonment and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-13
... plans to modify one interconnect in New York, three compressor stations in Pennsylvania and one compressor station in Maryland. The Commission will use this EA in its decision-making process to determine... Compressor Station (Milford, Pennsylvania): Abandon the existing compressors and replace them with two Solar...
Principle of the Boerner airship
NASA Technical Reports Server (NTRS)
Kapteyn, A
1922-01-01
The Boerner airship is built on entirely different principles from ordinary airships, of which the Zeppelin is the best known type. Mr. Boerner has abandoned the rigid body of the Zeppelin and has adopted a body with a double keel forming a rigid platform for attaching the gas ballonets, which must support the whole in the air.
25 CFR 211.53 - Assignments, overriding royalties, and operating agreements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... agreements. 211.53 Section 211.53 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND..., geothermal, and mining regulations (25 CFR part 216; 43 CFR parts 3160, 3260, 3480, and 3590; and those... approval before abandonment of any oil and gas or geothermal well or mining operation. All such obligations...
25 CFR 211.53 - Assignments, overriding royalties, and operating agreements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... agreements. 211.53 Section 211.53 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND..., geothermal, and mining regulations (25 CFR part 216; 43 CFR parts 3160, 3260, 3480, and 3590; and those... approval before abandonment of any oil and gas or geothermal well or mining operation. All such obligations...
25 CFR 226.32 - Well records and reports.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Well records and reports. 226.32 Section 226.32 Indians... LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.32 Well records and reports. (a) Lessee shall..., plugging, or abandonment of all wells. These records shall show all the formations penetrated, the content...
25 CFR 226.32 - Well records and reports.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Well records and reports. 226.32 Section 226.32 Indians... LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.32 Well records and reports. (a) Lessee shall..., plugging, or abandonment of all wells. These records shall show all the formations penetrated, the content...
25 CFR 226.32 - Well records and reports.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Well records and reports. 226.32 Section 226.32 Indians... LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.32 Well records and reports. (a) Lessee shall..., plugging, or abandonment of all wells. These records shall show all the formations penetrated, the content...
NASA Technical Reports Server (NTRS)
Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.
2005-01-01
We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.
Gas storage carbon with enhanced thermal conductivity
Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.
2000-01-01
A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. D. White; B. P. McGrail; S. K. Wurstner
Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to poremore » clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.« less
NASA Astrophysics Data System (ADS)
Albrecht, Kevin J.
Decarbonization of the electric grid is fundamentally limited by the intermittency of renewable resources such as wind and solar. Therefore, energy storage will play a significant role in the future of grid-scale energy generation to overcome the intermittency issues. For this reason, concentrating solar power (CSP) plants have been a renewable energy generation technology of interest due to their ability to participate in cost effective and efficient thermal energy storage. However, the ability to dynamically dispatch a CSP plant to meet energy demands is currently limited by the large quantities of sensible thermal energy storage material needed in a molten salt plant. Perovskite oxides have been suggested as a thermochemical energy storage material to enhance the energy storage capabilities of particle-based CSP plants, which combine sensible and chemical modes of energy storage. In this dissertation, computational models are used to establish the thermochemical energy storage potential of select perovskite compositions, identify system configurations that promote high values of energy storage and solar-to-electric efficiency, assess the kinetic and transport limitation of the chemical mode of energy storage, and create receiver and reoxidation reactor models capable of aiding in component design. A methodology for determining perovskite thermochemical energy storage potential is developed based on point defect models to represent perovskite non-stoichiometry as a function of temperature and gas phase oxygen partial pressure. The thermodynamic parameters necessary for the model are extracted from non-stoichiometry measurements by fitting the model using an optimization routine. The procedure is demonstrated for Ca0.9Sr0.1MnO 3-d which displayed combined energy storage values of 705.7 kJ/kg -1 by cycling between 773 K and 0.21 bar oxygen to 1173 K and 10 -4 bar oxygen. Thermodynamic system-level models capable of exploiting perovskite redox chemistry for energy storage in CSP plants are presented. Comparisons of sweep gas and vacuum pumping reduction as well as hot storage conditions indicate that solar-to-electric efficiencies are higher for sweep gas reduction system at equivalent values of energy storage if the energy parasitics of commercially available devices are considered. However, if vacuum pump efficiency between 15% and 30% can be achieved, the reduction methods will be approximately equal. Reducing condition oxygen partial pressures below 10-3 bar for sweep gas reduction and 10-2 bar for vacuum pumping reduction result in large electrical parasitics, which significantly reduce solar-to-electric efficiency. A model based interpretation of experimental measurements made for perovskite redox cycling using sweep gas in a packed bed is presented. The model indicates that long reduction times for equilibrating perovskites with low oxygen partial pressure sweep gas, compared to reoxidation, are primarily due to the oxygen carrying capacity of high purity sweep gas and not surface kinetic limitations. Therefore, achieving rapid reduction in the limited receiver residence time will be controlled by the quantity of sweep gas introduced. Effective kinetic parameters considering surface reaction and radial particle diffusion are fit to the experimental data. Variable order rate expressions without significant particle radial diffusion limitations are shown to be capable of representing the reduction and oxidation data. Modeling of a particle reduction receiver using continuous flow of perovskite solid and sweep gas in counter-flow configuration has identified issues with managing the oxygen evolved by the solid as well as sweep gas flow rates. Introducing sweep gas quantities necessary for equilibrating the solid with oxygen partial pressures below 10-2 are shown to result in gas phase velocities above the entrainment velocity of 500 um particles. Receiver designs with considerations for gas management are investigated and the results indicate that degrees of reduction corresponding to only oxygen partial pressures of 10-2 bar are attained. Numerical investigation into perovskite thermochemical energy storage indicates that achieving high levels of reduction through sweep gas or vacuum pumping to lower gas phase oxygen partial pressure below 10-2 bar display issues with parasitic energy consumption and gas phase management. Therefore, focus on material development should place a premium on thermal reduction and reduction by shifting oxygen partial pressure between ambient and 10-2 bar. Such a material would enable the development of a system with high solar-to-electric efficiencies and degrees of reduction which are attainable in realistic component geometries.
Procedure for preparation for shipment of natural gas storage vessel
NASA Technical Reports Server (NTRS)
Amawd, A. M.
1974-01-01
A method for preparing a natural gas storage vessel for shipment is presented. The gas is stored at 3,000 pounds per square inch. The safety precautions to be observed are emphasized. The equipment and process for purging the tank and sampling the exit gas flow are described. A diagram of the pressure vessel and the equipment is provided.
NASA Astrophysics Data System (ADS)
Kharaka, Y. K.; Cole, D. R.; Hovorka, S. D.; Phelps, T. J.; Nance, S.
2006-12-01
Deep saline aquifers in sedimentary basins, including depleted petroleum reservoirs, provide advantageous locations close to major anthropogenic sources of CO2 and potential capacity for the storage of huge volumes of this greenhouse gas. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick "C" sandstone section of the Frio Formation, a regional saline aquifer in the U.S. Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na-Ca-Cl type brine with 93,000 mg/L TDS at near saturation with CH4 at reservoir conditions; gas analyses show CH4 comprised ~95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5 to 5.7), pronounced increases in alkalinity (100 to 3000 mg/L as HCO3) and in Fe (30 to 1100 mg/L), and significant shifts in the isotopic compositions of H2O, Sr, DIC, and CH4. These data coupled with geochemical modeling indicate rapid dissolution of minerals, especially calcite and iron oxyhydroxides caused by lowered pH (~3.0 initially) of the brine in contact with the injected supercritical CO2. These geochemical parameters, together with perfluorocarbon tracer gases (PFTs) proved effective in mapping the distribution and interactions of the injected CO2 in the Frio "C". They are being used to track the migration of the injected CO2 into the local shallow groundwater and into the overlying Frio "B", comprised of a 4-m-thick sandstone bed and separated from the "C" by ~15 m of shale, muddy sandstone and siltstone beds. Results obtained to date from the four monitoring groundwater wells perforated (26-29 m) in the Beaumont aquifer show some temporal chemical changes. These changes, however, are tentatively attributed to natural variations and recharge events caused by the construction of a mud pit at the site, and not to leakage through the Anahuac Formation, the regional cap rock comprised of thick (~80 m) and impermeable marine shale and mudstone beds. Data on brine and gas compositions of samples obtained from the Frio "B" 6 mo after injection show significant CO2 (2.9% compared with 0.3% CO2 in dissolved gas) migration into the "B" sandstone. Except for two PFT tracer gases explained by desorption, results of samples collected 15 mo after injection show no other indications of injected CO2 in the "B" sandstone. The initial presence of injected CO2 near the observation well shows migration through the intervening beds or more likely a leakage through the remedial cement around the casing of a 50- year old well. These results highlight the importance of investigating the integrity of cement seals, especially in nearby abandoned wells, prior to the injection of large quantities of reactive and buoyant CO2.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-114-000; Docket No. PR10-117-000; Docket No. PR10-118- 000; Docket No. PR10-119-000; Docket No. PR10-120-000; Docket No. PR10- 121-000; Docket No. PR10-122-000 (Not Consolidated)] The Narragansett Electric Company; Arcadia Gas Storage, LLC; Salt Plains Storage, LLC;...
NASA Astrophysics Data System (ADS)
Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Ramadhan, I. T.
2017-02-01
The main problem is the process of natural gas storage and distribution, because in normal conditions of natural gas in the gas phase causes the storage capacity be small and efficient to use. The technology is commonly used Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG). The weakness of this technology safety level is low because the requirement for high-pressure CNG (250 bar) and LNG requires a low temperature (-161°C). It takes innovation in the storage of natural gas using the technology ANG (Adsorbed Natural Gas) with activated carbon as an adsorbent, causing natural gas can be stored in a low pressure of about 34.5. In this research, preparation of activated carbon using waste plastic polyethylene terephthalate (PET). PET plastic waste is a good raw material for making activated carbon because of its availability and the price is a lot cheaper. Besides plastic PET has the appropriate characteristics as activated carbon raw material required for the storage of natural gas because the material is hard and has a high carbon content of about 62.5% wt. The process of making activated carbon done is carbonized at a temperature of 400 ° C and physical activation using CO2 gas at a temperature of 975 ° C. The parameters varied in the activation process is the flow rate of carbon dioxide and activation time. The results obtained in the carbonization process yield of 21.47%, while the yield on the activation process by 62%. At the optimum process conditions, the CO2 flow rate of 200 ml/min and the activation time of 240 minutes, the value % burn off amounted to 86.69% and a surface area of 1591.72 m2/g.
Consistency Analysis and Data Consultation of Gas System of Gas-Electricity Network of Latvia
NASA Astrophysics Data System (ADS)
Zemite, L.; Kutjuns, A.; Bode, I.; Kunickis, M.; Zeltins, N.
2018-02-01
In the present research, the main critical points of gas transmission and storage system of Latvia have been determined to ensure secure and reliable gas supply among the Baltic States to fulfil the core objectives of the EU energy policies. Technical data of critical points of the gas transmission and storage system of Latvia have been collected and analysed with the SWOT method and solutions have been provided to increase the reliability of the regional natural gas system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichman, Joshua
This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is comparedmore » to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.« less
Natural Gas Storage Research at Savannah River National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anton, Don; Sulic, Martin; Tamburello, David A.
As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.
Effects of manure storage additivies on manure composition and greenhouse gas and ammonia emissions
USDA-ARS?s Scientific Manuscript database
Abstract: Storage of dairy manure slurry allows for flexibility in the timing of land application of manure to reduce environmental impacts related to water quality. Yet, manure storage can increase greenhouse gas (GHG) and ammonia emissions and cause operational issues due to the buildup of slurry ...
77 FR 4220 - Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
.... The reports by the two sets of pipelines must include: (1) the identity of each customer injecting gas... relationship), (2) the rate schedule (for interstate pipelines) or docket number (for intrastate pipelines... maximum daily withdrawal quantity applicable to each storage customer, (4) for each storage customer, the...
Pillar[n]arene-based supramolecular organic frameworks with high hydrocarbon storage and selectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Li-Li; Zhu, Youlong; Long, Hai
2017-01-01
We report the high hydrocarbon storage capacity and adsorption selectivity of two low-density pillar[n]arene-based SOFs. Our study would open new perspectives in the development of pillar[n]arene-based SOFs and study of their great potential in gas-storage and gas-separation applications.
A 3D seismic investigation of the Ray Gas Storage Reef in Macomb County, Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, S.F.; Dixon, R.A.
1995-09-01
A 4.2 square mile 3D seismic survey was acquired over the Ray Niagaran Reef Gas Storage Field in southeast Michigan as part of a program to maximize storage capacity and gas deliverability of the field. Goals of the survey were: (1) to determine if additional storage capacity could be found, either as extensions to the main reef or as undiscovered satellite reefs, (2) to determine if 3D seismic data can be utilized to quantify reservoir parameters in order to maximize the productive capacity of infill wells, and (3) to investigate the relationship between the main reef body and a lowmore » relief/flow volume gas well east of the reef. Interpretation of the 3D seismic data resulted in a detailed image of the reef, using several interpretive techniques. A seismic reflection within the reef was correlated with a known porosity zone, and the relationship between porosity and seismic amplitude was investigated. A possible connection between the main reef and the low relief gas well was identified. This project illustrates the economic value of investigating an existing storage reef with 3D seismic data, and underscores the necessity of acquiring such a survey prior to developing a new storage reservoir.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, C L; Bearden, Mark D; Horner, Jacob A
Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less
Underground gas storage in the Leyden lignite mine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meddles, R.M.
1978-01-01
Underground gas storage in the Leyden lignite mine by Public Service Co. of Colorado was preceded by careful studies of mine records with respect to geologic conditions and investigation of the gas-sealing potential of the rocks surrounding the cavern. The water level in shaft No. 3 in Sept. 1958 was about 100 ft above the coal seam at that point. Wells were drilled into the mine up-dip (east) of the structurally highest point that a mine shaft intersected the coal seams, and gas was injected into the mine, using the mine water as a seal. At least the up-dip partmore » of the mine was gas-tight, and tests were expanded to the rest of the mine, which also proved to be gas-tight. All that remained to complete the preparation of the mine for permanent gas storage was sealing of the old mine shafts.« less
Container and method for absorbing and reducing hydrogen concentration
Wicks, George G.; Lee, Myung W.; Heung, Leung K.
2001-01-01
A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.
Compressed gas fuel storage system
Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.
2001-01-01
A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.
NASA Astrophysics Data System (ADS)
Wang, B.; Bauer, S.; Pfeiffer, W. T.
2015-12-01
Large scale energy storage will be required to mitigate offsets between electric energy demand and the fluctuating electric energy production from renewable sources like wind farms, if renewables dominate energy supply. Porous formations in the subsurface could provide the large storage capacities required if chemical energy carriers such as hydrogen gas produced during phases of energy surplus are stored. This work assesses the behavior of a porous media hydrogen storage operation through numerical scenario simulation of a synthetic, heterogeneous sandstone formation formed by an anticlinal structure. The structural model is parameterized using data available for the North German Basin as well as data given for formations with similar characteristics. Based on the geological setting at the storage site a total of 15 facies distributions is generated and the hydrological parameters are assigned accordingly. Hydraulic parameters are spatially distributed according to the facies present and include permeability, porosity relative permeability and capillary pressure. The storage is designed to supply energy in times of deficiency on the order of seven days, which represents the typical time span of weather conditions with no wind. It is found that using five injection/extraction wells 21.3 mio sm³ of hydrogen gas can be stored and retrieved to supply 62,688 MWh of energy within 7 days. This requires a ratio of working to cushion gas of 0.59. The retrievable energy within this time represents the demand of about 450000 people. Furthermore it is found that for longer storage times, larger gas volumes have to be used, for higher delivery rates additionally the number of wells has to be increased. The formation investigated here thus seems to offer sufficient capacity and deliverability to be used for a large scale hydrogen gas storage operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This Final Supplement to the Final Environmental Impact Statement (Final Supplement) evaluates the economic, engineering, and environmental aspects of newly developed alternatives to an abandonment/conversion project proposed by Florida Gas Transmission Company (Florida Gas). It also updates the staff's previous FEIS and studies revisions to the original proposal. Wherever possible, the staff has adopted portions of its previous FEIS in lieu of reprinting portions of that analysis which require no change. 60 references, 8 figures, 35 tables.
1975-04-15
flue gas desulfurization technology seems to oe progressing so that by the late 1970s utilities may be able to burn high-sultur coal directly with...CObHqat ion•.V Conferva 1i on 0’ I , gas . and shale Coa I Lir.’I ronmcntal control Nuclear fission Nuclear fusion Other a. So I a r B...abandonment of all import controls , its findings on th: key problem of import dependence and security did not reflect a dear conviction that a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godec, Michael
Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO 2) storage in these formations. The potential storage of CO 2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO 2 storage capacity in conventional reservoirs. The goal of this cooperativemore » research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO 2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO 2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO 2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO 2 injection; (5) Identify and evaluate potential constraints to economic CO 2 storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO 2 storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO 2 injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO 2 storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO 2 storage activities would commence consistent with the historical development practices. Alternative CO 2 injection/EGR scenarios were considered and compared to well production without CO 2 injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO 2 that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO 2 in the Marcellus, Utica, Antrim, and Devonian Ohio shales.« less
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Pilz, Peter
2015-04-01
Underground gas storage is increasingly regarded as a technically viable option for meeting the energy demand and environmental targets of many industrialized countries. Besides the long-term CO2 sequestration, energy can be chemically stored in form of CO2/CH4/H2 mixtures, for example resulting from excess wind energy. A precise estimation of the impact of such gas mixtures on the mineralogical, geochemical and petrophysical properties of specific reservoirs and caprocks is crucial for site selection and optimization of storage depth. Underground gas storage is increasingly regarded as a technically viable option for meeting environmental targets and the energy demand through storage in form of H2 or CH4, i.e. resulting from excess wind energy. Gas storage in salt caverns is nowadays a mature technology; in regions where favorable geologic structures such as salt diapires are not available, however, gas storage can only be implemented in porous media such as depleted gas and oil reservoirs or suitable saline aquifers. In such settings, a significant amount of in-situ gas components such as CO2, CH4 (and N2) will always be present, making the CO2/CH4/H2 system of particular interest. A precise estimation of the impact of their gas mixtures on the mineralogical, geochemical and petrophysical properties of specific reservoirs and caprocks is therefore crucial for site selection and optimization of storage depth. In the framework of the collaborative research project H2STORE, the feasibility of industrial-scale gas storage in porous media in several potential siliciclastic depleted gas and oil reservoirs or suitable saline aquifers is being investigated by means of experiments and modelling on actual core materials from the evaluated sites. Among them are the Altmark depleted gas reservoir in Saxony-Anhalt and the Ketzin pilot site for CO2 storage in Brandenburg (Germany). Further sites are located in the Molasse basin in South Germany and Austria. In particular, two work packages hosted at the German Research Centre for Geosciences (GFZ) focus on the fluid-fluid and fluid-rock interactions triggered by CO2, H2 and their mixtures. Laboratory experiments expose core samples to hydrogen and CO2/hydrogen mixtures under site-specific conditions (temperatures up to 200 °C and pressure up to 300 bar). The resulting qualitative and, whereas possible, quantitative data are expected to ameliorate the precision of predictive geochemical and reactive transport modelling, which is also performed within the project. The combination of experiments, chemical and mineralogical analyses and models is needed to improve the knowledge about: (1) solubility model and mixing rule for multicomponent gas mixtures in high saline formation fluids: no data are namely available in literature for H2-charged gas mixtures in the conditions expected in the potential sites; (2) chemical reactivity of different mineral assemblages and formation fluids in a broad spectrum of P-T conditions and composition of the stored gas mixtures; (3) thermodynamics and kinetics of relevant reactions involving mineral dissolution or precipitation. The resulting amelioration of site characterization and the overall enhancement in understanding the potential processes will benefit the operational reliability, the ecological tolerance, and the economic efficiency of future energy storing plants, crucial aspects for public acceptance and for industrial investors.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
..., East Cheyenne planned to do enhanced oil recovery (EOR) of petroleum reserves remaining in the storage... primarily involves redeveloping a number of existing oil production wells in the West Peetz and Lewis Creek... of construction and operation of a natural gas storage facility in two nearly depleted oil production...
Natural Gas Storage Research at Savannah River National Laboratory
Anton, Don; Sulic, Martin; Tamburello, David A.
2018-01-16
As an alternative to imported oil, scientists at the Department of Energyâs Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.
Activated Carbon Fibers For Gas Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D; Contescu, Cristian I; Gallego, Nidia C
The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability ofmore » NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... Line L Abandonment Project and Request for Comments on Environmental Issues April 2, 2010. The staff of... important environmental issues. By this notice, the Commission requests public comments on the scope of the... with respect to environmental issues to formally cooperate with us in the preparation of the EA. These...
NASA Astrophysics Data System (ADS)
Lv, J. X.; Wang, B. F.; Nie, L. H.; Xu, R. R.; Zhou, J. Y.; Hao, Y. J.
2018-01-01
The simulation process of the whole CNG filling station are established using Aspen Plus V7.2. The separator (Sep) was used to simulate the desulfurization and dehydration equipment in the gas station, and the flash module separator Flash 2 was used to simulate the gas storage well with proper temperature and environmental pressure. Furthermore, the sensitivity module was used to analyse the behaviour of the dehydration and desulfurization rate, and the residual pH value of the gas storage wells was between 2.2 and 3.3. The results indicated that the effect of water content on pH value is higher than that of hydrogen sulphide in the environment of gas storage wells, and the calculation process of the pH value is feasible. Additionally, the simulation process provides basic data for the subsequent anticorrosive mechanism and work of gas storage well and has great potential for practical applications.
Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.
2017-12-01
Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given power rating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeschele, Marc; Weitzel, Elizabeth; Backman, Christine
This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unitmore » with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less
NASA Astrophysics Data System (ADS)
Hyo Park, Jung; Min Choi, Kyung; Joon Jeon, Hyung; Jung Choi, Yoon; Ku Kang, Jeung
2015-07-01
Although structures with the single functional constructions and micropores were demonstrated to capture many different molecules such as carbon dioxide, methane, and hydrogen with high capacities at low temperatures, their feeble interactions still limit practical applications at room temperature. Herein, we report in-situ growth observation of hierarchical pores in pomegranate metal-organic frameworks (pmg-MOFs) and their self-sequestering storage mechanism, not observed for pristine MOFs. Direct observation of hierarchical pores inside the pmg-MOF was evident by in-situ growth X-ray measurements while self-sequestering storage mechanism was revealed by in-situ gas sorption X-ray analysis and molecular dynamics simulations. The results show that meso/macropores are created at the early stage of crystal growth and then enclosed by micropore crystalline shells, where hierarchical pores are networking under self-sequestering mechanism to give enhanced gas storage. This pmg-MOF gives higher CO2 (39%) and CH4 (14%) storage capacity than pristine MOF at room temperature, in addition to fast kinetics with robust capacity retention during gas sorption cycles, thus giving the clue to control dynamic behaviors of gas adsorption.
NASA Technical Reports Server (NTRS)
Vickers, Brian D. (Inventor)
1994-01-01
Method for storing a waste gas mixture comprised of nitrogen, oxygen, carbon dioxide, and inert gases, the gas mixture containing corrosive contaminants including inorganic acids and bases and organic solvents, and derived from space station operations. The gas mixture is stored under pressure in a vessel formed of a filament wound composite overwrap on a metal liner, the metal liner being pre-stressed in compression by the overwrap, thereby avoiding any tensile stress in the liner, and preventing stress corrosion cracking of the liner during gas mixture storage.
Institute on oil and gas law and taxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, A.C.
1979-01-01
This volume contains discussions, by acknowledged authorities, of important legal and tax problems of the oil and gas industries. The articles were delivered in condensed form as lectures during the Thirtieth Annual Institute on Oil and Gas Law and Taxation held by the Southwest Legal Foundation. The following topics are discussed: crude oil issues; natural gas liquid-selected problems in regulation; recent developments in DOE audits of refiners and marketers; contrasting administrative procedures before the DOE, DOE organization - the limit of regulatory power, current major developments in federal natural gas legislation and regulation; dedication and abandonment - problems under sectionmore » 7(b) of the Natural Gas Act; Natural gas pipelines - their regulation and their current problems, current antitrust developments in oil and gas exploration and production; developments in nonregulatory oil and gas law; recent developments in oil and gas taxation; entity selection - an experience in alchemy - a comparison of corporations, partnerships, and joint ventures; foreign money and US oil and gas - tax considerations; 1978 legislative developments in oil and gas taxation; and recapture of intangibles under section 1254. (DC)« less
Conceptual design of thermal energy storage systems for near-term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.
1980-01-01
Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.
Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit withmore » lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less
Assessment of a Hybrid Retrofit Gas Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeschele, Marc; Weitzel, Elizabeth; Backman, Christine
2017-02-28
This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unitmore » with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less
Natural gas storage in bedded salt formations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, G.
1996-09-01
In 1990 Western Resources Inc. (WRI) identified the need for additional natural gas storage capacity for its intrastate natural gas system operated in the state of Kansas. Western Resources primary need was identified as peak day deliverability with annual storage balancing a secondary objective. Consequently, an underground bedded salt storage facility, Yaggy Storage Field, was developed and placed in operation in November 1993. The current working capacity of the new field is 2.1 BCF. Seventy individual caverns are in service on the 300 acre site. The caverns vary in size from 310,000 CF to 2,600,000 CF. Additional capacity can bemore » added on the existing acreage by increasing the size of some of the smaller existing caverns by further solution mining and by development of an additional 30 potential well sites on the property.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-19
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-159-000] Perryville Gas Storage LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed Crowville Salt Dome Storage Project Amendment and Request for Comments on Environmental Issues The staff of the Federal Energy Regulatory Commission (FERC or...
Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal
NASA Astrophysics Data System (ADS)
Kataoka, Keisuke; Katagiri, Toshimasa
2012-07-01
We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. Electronic supplementary information (ESI) available. CCDC 246922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30940h
Thermal analysis elements of liquefied gas storage tanks
NASA Astrophysics Data System (ADS)
Yanvarev, I. A.; Krupnikov, A. V.
2017-08-01
Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.
Efficiency and impacts of hythane (CH4+H2) underground storage
NASA Astrophysics Data System (ADS)
Sáinz-García, Alvaro; Abarca, Elena; Grandia, Fidel
2016-04-01
The foreseen increase share of renewable energy production requires energy storage to mitigate shortage periods of energy supply. Hydrogen is an efficient energy carrier that can be transported and storage. A very promising way to store large amounts of hydrogen is underground geological reservoirs. Hydrogen can be stored, among other options, as a mixture of natural gas and less than 20% of hydrogen (hythane) to avoid damages on the existing infrastructure for gas transport. This technology is known as power-to-gas and is being considered by a number of European countries (Simon et al., 2015). In this study, the feasibility of a deep aquifer to store CH4-H2 mixtures in the Lower Triassic of the Paris Basin is numerically analyzed. The solubility of gas mixture in the groundwater is extremely low (Panfilov, 2015) and, therefore, gas and water are considered immiscible and non-reactive. An immiscible multiphase flow model is developed using the coefficient-form PDE interface of the finite element method code, COMSOL Multiphysics. The modelled domain is a 2D section of 2500 x 290 m resembling the Lower Triassic aquifer of the Paris basin, consisting of 2 layers of sandstone separated by a layer of conglomerates. The domain dips 0.5% from east to west. The top of the aquifer is 500 m-deep and the lateral boundaries are assumed to be open. This case is considered conservative compared to a dome-like geological trap, which could be more favorable to retain higher gas concentration. A number of cycles of gas production and injection were modelled. An automatic shut-down of the pump is implemented in case pressure on the well exceeds an upper or lower threshold. The influence of the position of the well, the uncertain residual gas saturation and the regional flow are studied. The model shows that both gas and aquifer properties have a significant impact on storage. Due to its low viscosity, the mobility of the hythane is quite high and gas expands significantly, reducing the maximum gas saturation during injection/production cycles. The storage efficiency is hindered by inactivity periods. Furthermore, the gas fate is extremely affected by regional groundwater flow. References Panfilov, M., 2015. Underground and pipeline hydrogen storage, in: Gupta, R., Basile, A., Veziroglu, T.N. (Eds.), Compendium of Hydrogen Energy. Woodhead Publishing, pp. 91-116. Simon, J., Ferriz, A.M., Correas, L.C., 2015. HyUnder - Hydrogen Underground Storage at Large Scale: Case Study Spain. Energy Procedia. 73, 136 - 144.
Groundwater quality at the Saline Valley Conservancy District well field, Gallatin County, Illinois
Gorczynska, Magdalena; Kay, Robert T.
2016-08-29
The Saline Valley Conservancy District (SVCD) operates wells that supply water to most of the water users in Saline and Gallatin Counties, Illinois. The SVCD wells draw water from a shallow sand and gravel aquifer located in close proximity to an abandoned underground coal mine, several abandoned oil wells, and at least one operational oil well. The aquifer that yields water to the SVCD wells overlies the New Albany Shale, which may be subjected to shale-gas exploration by use of hydraulic fracturing. The SVCD has sought technical assistance from the U.S. Geological Survey to characterize baseline water quality at the SVCD well field so that future changes in water quality (if any) and the cause of those changes (including mine leachate and hydraulic fracturing) can be identified.
NASA Astrophysics Data System (ADS)
Xiaoqiang, W.; Li, J.; Daiqing, L.; Li, C.
2017-12-01
The surface deformation of underground gas reservoir with the change of injection pressure is an excellent opportunity to study the load response under the action of tectonic movement and controlled load. This paper mainly focuses on the elastic deformation of underground structure caused by the change of the pressure state of reservoir rock under the condition of the irregular change of pressure in the underground gas storage of Hutubi, the largest underground gas storage in Xinjiang, at the same time, it makes a fine study on the fault activities of reservoir and induced earthquakes along with the equilibrium instability caused by the reservoir. Based on the 34 deformation integrated observation points and 3 GPS continuous observation stations constructed in the underground gas storage area of Hutubi, using modern measurement techniques such as GPS observation, precise leveling survey, flow gravity observation and so on, combined with remote sensing technology such as InSAR, the 3d space-time sequence images of the surface of reservoir area under pressure change were obtained. Combined with gas well pressure, physical parameters and regional seismic geology and geophysical data, the numerical simulation and analysis of internal changes of reservoir were carried out by using elastic and viscoelastic model, the deformation mechanical relationship of reservoir was determined and the storage layer under controlled load was basically determined. This research is financially supported by National Natural Science Foundation of China (Grant No.41474016, 41474051, 41474097)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokhansanj, Shahabaddine; Kuang, Xingya; Shankar, T.S.
Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO2, CO, and CH4 from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effectmore » of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO2, CO, and CH4 in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO2 and CO were generated at room temperature under lower oxygen levels, whereas CH4 emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets.« less
Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.
Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi
2015-09-18
Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.
NASA Astrophysics Data System (ADS)
Zethof, Jeroen; Cammeraat, Erik; Nadal-Romero, Estela
2016-04-01
Soils under the Mediterranean climate are vulnerable for degradation, especially after land abandonment. Abandonment is an important factor in the Mediterranean landscape as vegetation regeneration is hampered due to the characteristic semi-arid and sub-humid Mediterranean climate regime. During the past 70 year extensive afforestation projects have been conducted with the aim to protect landscapes and soils against degradation. While large investments are still being made, little is known about the impact of afforestation on soil quality on a longer time scale. During the past decade, there is a growing interest in qualifying and quantifying the carbon storage in soils by such afforestation projects, to get a better understanding of the carbon cycle and look for possibilities to fixate atmospheric CO2 in the soil. It is generally accepted that afforestation projects will increase the soil carbon pool, but data on this process is scarce. Therefore an intensive fieldwork has been carried out in Murcia, southeastern Spain to study the effects of land abandonment and afforestation on soil quality along a chronosequence and included two afforested areas (from the early '70s and 1993). The Pinus halepensis trees were planted in rows, for which the underlying calcrete was broken. Samples were taken to study changes in soil quality (Aggregate stability, Corg, N, P, K, Na), Soil Organic Carbon (SOC) stocks and soil hydraulic properties, such as infiltration and water retention, between the afforestation projects, abandoned agricultural plots of similar age, semi-natural vegetation, cereal crop fields and almond orchards. As the natural vegetation is characterized by a spotted pattern of bare areas and trees, forming so-called "islands of fertility", both bare and vegetation covered sub-sites were sampled. First results showed a positive effect of both land abandonment and afforestation on the soil aggregation. Especially the 40-year-old plots showed underneath trees similar values as the semi-natural sites, while the open areas in the afforested sites lag behind. Especially the soil at a depth of 10-20 cm showed a clear decrease in aggregate stability, while the surface layer showed a clear increase in aggregate stability. Abandonment sites showed a non-linear increase in soil quality, which means that aggregate stability slightly declines after 20 year of abandonment, but the positive change was less than on the afforested sites. Changes in vegetation along the chronosequence studied, could be expected to have an impact on organic matter input quality and quantity. Such changes in vegetation cover, structure and composition were not observed for the afforested sites in the field, but preliminary results suggest that the 40-year-old afforested sites could have a higher soil quality than the semi-natural sites.
1991-11-19
economy with a primary emphasis on the exploitation of now extinct megafauna (Gardner 1974, Goodyear et al. 1979, Martin and Klein 1984). Evidence...associated with the rapidly changing Early Holocene environments and animal populations. While exploitation of megafauna during the Early Paleoindian Period...cash- crop economy resulted in the abandonment of old fields once they were depleted of their nutrients and the clearing of new fields. Eventually
71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ...
71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ON SLC-3W LIQUID OXYGEN APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Astrophysics Data System (ADS)
Kühn, Michael; Li, Qi; Nakaten, Natalie, Christine; Kempka, Thomas
2017-04-01
Integration and further development of the energy supply system in China is a major challenge for the years to come. Part of the strategy is the implementation of a low carbon energy system based on carbon dioxide capture and storage (CCS). The innovative idea presented here is based on an extension of the power-to-gas-to-power (PGP) technology by establishing a closed carbon dioxide cycle [1]. Thereto, hydrogen generated from excess renewable energy is transformed into methane for combustion in a combined cycle gas power plant. To comply with the fluctuating energy demand, carbon dioxide produced during methane combustion and required for the methanation process as well as excess methane are temporarily stored in two underground reservoirs located close to each other [2]. Consequently, renewable energy generation units can be operated even if energy demand is below consumption, while stored energy can be fed into the grid as energy demand exceeds production [3]. We studied a show case for Xinjiang in China [4] to determine the energy demand of the entire process chain based on numerical computer simulations for the operation of the CO2 and CH4 storage reservoirs, and to ascertain the pressure regimes present in the storage formations during the injection and production phases of the annual cycle. [1] Streibel M., Nakaten N., Kempka T., Kühn M. (2013) Analysis of an integrated carbon cycle for storage of renewables. Energy Procedia 40, 202-211. doi: 10.1016/j.egypro.2013.08.024. [2] Kühn M., Streibel M., Nakaten N.C., Kempka T. (2014) Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the "Power-to-gas-to-gas-to-power" Technology. Energy Procedia 59, 9-15. doi: 10.1016/j.egypro.2014.10.342 [3] Kühn M., Nakaten N.C., Streibel M., Kempka T. (2014) CO2 Geological Storage and Utilization for a Carbon Neutral "Power-to-gas-to-power" Cycle to Even Out Fluctuations of Renewable Energy Provision. Energy Procedia 63, 8044-8049. doi: 10.1016/j.egypro.2014.11.841 [4] Li Q., Chen Z.A., Zhang J.T., Liu L.C., Li X.C., Jia L. (2016) Positioning and Revision of CCUS Technology Development in China. International Journal of Greenhouse Gas Control 46, 282-293. doi: 10.1016/j.ijggc.2015.02.024
Mitigation of greenhouse gas emission on abandoned peatlands by growing reed canary grass
NASA Astrophysics Data System (ADS)
Järveoja, J.; Laht, J.; Soosaar, K.; Maddison, M.; Ostonen, I.; Mander, Ü.
2012-04-01
We used combined closed-chamber and plant biomass techniques to study the impact of reed canary grass (RCG, Phalaris arundinacea) cultivation on greenhouse gas (GHG) fluxes and carbon balance of an abandoned peat extraction area in Lavassaare, Estonia (N58°34'20''; E24°23'15''). Three core study sites were chosen within the abandoned peat extraction area: (I) bare peat soil (abandoned and not planted site), (II) non-fertilized Phalaris site, (III) and fertilized Phalaris site (all on drained Fibric Histosols). In addition, (IV) the natural raised bog (Fibric Histosol) and (V) the cultivated fen meadow (drained Sapric Histosol) served as reference sites. The CO2, CH4 and N2O fluxes were determined using the closed-chamber method once a month from May 2010 to December 2011. White 60 L chambers made of PVC and sealed with a water-filled ring on the soil surface were installed in 5 replicates on each site. The gas was sampled 3 times per hour in 100 mL pre-evacuated glass bottles, and in the lab the gas concentrations were measured using the Shimadzu GC-2014 (ECD, FID) gas-chromatographic system combined with a Loftfield autosampler. Measurements of groundwater level and soil temperature (10, 20, 30, and 40 cm depths) were performed simultaneously. Biomass assessments of RCG were carried out just after maximal growth of macrophytes, in early September 2010, in April 2011 just after snow melt (time of minimum aboveground biomass), and again in September 2011. Aboveground biomass samples were collected from 1×1m plots. Belowground biomass samples were collected at a depth of 25 cm in 3 replicates adjacent to each chamber using a 10×10 cm auger. Samples were analyzed for N, P and C. Our results showed high nitrous oxide emissions (up to 541 μg N2O-N m-2 h-1) from the fen meadow and high methane emissions from the natural raised bog (up to 12915 μg CH4-C m-2 h-1). The low CH4 emission from the Phalaris plots and bare soil was due to the deeper water table (up to 85 cm below ground) and high sulfur concentration in peat (up to 23 g kg-1), which probably inhibited methanogenesis. The high CO2 emission on fertilized and non-fertilized Phalaris plots in comparison to the bare peat site was probably caused by: (1) the higher plant biomass: more dissolved C coming from roots and greater amount of fine root turnover, (2) the influence of fresh plant litter on the peat mineralization on Phalaris plots, and (3) inhibited mineralization by recalcitrant C of bare peat. Our results demonstrated that as a total, the Phalaris sites acted as net carbon sinks, sequestering C in the amount of 6929.5 and 6083.5 kg CO2-C ha-1 yr-1 on the fertilized and non-fertilized plots, respectively, whereas the bare peat site acted as a carbon source (emitting 687.5 kg CO2-C ha-1 yr-1).
NASA Technical Reports Server (NTRS)
Hoover, R. B.; Rhodes, C. M. (Inventor)
1981-01-01
Dye fading during archival storage of developed color photographic film is retarded by placing the film in a sealed, opaque vault, introducing a dry, pressurized inert gas into the vault while the latter is vented, and sealing the vault after the air within the vault has been purged and replaced by the inert gas. Preferably, the gas is nitrogen; and the vault is stored at a temperature below room temperature to preserve the color photographic emulsions on the film contained within the vault. For short-term storage, sodium thiocyanate pads charged with water are placed within the vault. For long term storage, the interior of the vault is kept at a low relative humidity.
NASA Astrophysics Data System (ADS)
Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.
2017-12-01
In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.
NASA Astrophysics Data System (ADS)
Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.
2016-12-01
In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.
Two-tank working gas storage system for heat engine
Hindes, Clyde J.
1987-01-01
A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
...-000, for authorization to abandon in place: (i) Approximately 8.45 mile, 12- inch pipeline extending from South Marsh Island Block 38 to South Marsh Island Block 23, (ii) approximately 0.455 mile, 12-inch pipeline extending from production platform B in South Marsh Island Block 33 to South Marsh Island Block 38...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Timothy C.; Zigan, James A.
2017-06-20
The disclosure describes a non-condensable gas collection, detection, and removal system for a WHR system that helps to maintain cycle efficiency of the WHR system across the life of an engine system associated with the WHR system. A storage volume is configured to collect non-condensable gas received from the working fluid circuit, and a release valve is configured to selectively release non-condensable gas contained within the storage volume.
Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bollinger, Benjamin
This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAES TM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the samemore » mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.« less
Modelling the deployment of CO₂ storage in U.S. gas-bearing shales
Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.; ...
2014-12-31
The proliferation of commercial development in U.S. gas-bearing shales helped to drive a twelve-fold increase in domestic gas production between 2000 and 2010, and the nation's gas production rates continue to grow. While shales have long been regarded as a desirable caprock for CCS operations because of their low permeability and porosity, there is increasing interest in the feasibility of injecting CO₂ into shales to enhance methane recovery and augment CO₂ storage. Laboratory work published in recent years observes that shales with adsorbed methane appear to exhibit a stronger affinity for CO₂ adsorption, offering the potential to drive additional CH₄more » recovery beyond primary production and perhaps the potential to store a larger volume of CO₂ than the volume of methane displaced. Recent research by the authors on the revenues associated with CO₂-enhanced gas recovery (CO₂-EGR) in gas-bearing shales estimates that, based on a range of EGR response rates, the average revenue per ton of CO₂ for projects managed over both EGR and subsequent storage-only phases could range from $0.50 to $18/tCO₂. While perhaps not as profitable as EOR, for regions where lower-cost storage options may be limited, shales could represent another “early opportunity” storage option if proven feasible for reliable EGR and CO₂ storage. Significant storage potential exists in gas shales, with theoretical CO₂ storage resources estimated at approximately 30-50 GtCO₂. However, an analysis of the comprehensive cost competitiveness of these various options is necessary to understand the degree to which they might meaningfully impact U.S. CCS deployment or costs. This preliminary analysis shows that the degree to which EGR-based CO₂ storage could play a role in commercial-scale deployment is heavily dependent upon the offsetting revenues associated with incremental recovery; modeling the low revenue case resulted in only five shale-based projects, while under the high revenue case, shales accounted for as much as 20 percent of total U.S. storage in the first 20 years of deployment. Interestingly, even in this highest revenue case, there appear to be no negative-cost projects that would be profitable in a no-policy environment as modeled under the assumptions employed. While this reflects a very first look at the potential for shales, it is clear that more laboratory and experimental work are needed to reduce uncertainty in key variables and begin to differentiate and identify high-potential shales for early pilot study.« less
Klimešová, Jitka; Janecek, Štepán; Bartušková, Alena; Bartoš, Michael; Altman, Jan; Doležal, Jirí; Lanta, Vojtech; Latzel, Vít
2017-11-28
Below-ground carbohydrate storage is considered an adaptation of plants aimed at regeneration after disturbance. A theoretical model by Iwasa and Kubo was empirically tested which predicted (1) that storage of carbohydrates scales allometrically with leaf biomass and (2) when the disturbance regime is relaxed, the ratio of storage to leaf biomass increases, as carbohydrates are not depleted by disturbance. These ideas were tested on nine herbaceous species from a temperate meadow and the disturbance regime was manipulated to create recently abandoned and mown plots. Just before mowing in June and at the end of the season in October, plants with below-ground organs were sampled. The material was used to assess the pool of total non-structural carbohydrates and leaf biomass. In half of the cases, a mostly isometric relationship between below-ground carbohydrate storage and leaf biomass in meadow plants was found. The ratio of below-ground carbohydrate storage to leaf biomass did not change when the disturbance regime was less intensive than that for which the plants were adapted. These findings (isometric scaling relationship between below-ground carbohydrate storage and leaf biomass; no effect of a relaxed disturbance regime) imply that storage in herbs is probably governed by factors other than just the disturbance regime applied once in a growing season. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Abandoned underground storage tank location using fluxgate magnetic surveying: A case study
Van Biersel, T. P.; Bristoll, B.C.; Taylor, R.W.; Rose, J.
2002-01-01
In 1993, during the removal of a diesel and a gasoline underground storage tank at the municipal garage of the Village of Kohler, Sheboygan County, Wisconsin, soil testing revealed environmental contamination at the site. A site investigation revealed the possibility of a second on-site source of petroleum contamination. Limited historical data and the present usage of structures within the suspected source area precluded the use of most invasive sampling methods and most geophysical techniques. A fluxgate magnetometer survey, followed by confirmatory excavation, was conducted at the site. The fluxgate magnetometer survey identified nine possible magnetic anomalies within the 18 ?? 25 m area. The subsequent excavation near the anomalies revealed the presence of five paired and two individual 2000 L underground storage tanks. The fluxgate magnetometer survey, although affected by the proximity of buildings, was able to detect the buried tanks within 3 m of the brick structures, using a 1.5 ?? 1.5 m sampling array.
NASA Astrophysics Data System (ADS)
Liebscher, A. H.
2016-12-01
The Ketzin pilot site near Berlin, Germany, was initiated in 2004 as the first European onshore storage project for research and development on geological CO2 storage. The operational CO2 injection period started in June 2008 and ended in August 2013 when the site entered the post-injection closure period. During these five years, a total amount of 67 kt of CO2 was safely injected into a saline aquifer (Upper Triassic sandstone) at a depth of 630 m - 650 m. In fall 2013, the first observation well was partially plugged in the reservoir section; full abandonment of this well finished in 2015 after roughly 2 years of well closure monitoring. Abandonment of the remaining 4 wells will be finished by 2017 and hand-over of liability to the competent authority is planned for end of 2017. The CO2 injected was mainly of food grade quality (purity > 99.9%). In addition, 1.5 kt of CO2 from the pilot capture facility "Schwarze Pumpe" (oxyfuel power plant CO2 with purity > 99.7%) was injected in 2011. The injection period terminated with a CO2-N2 co-injection experiment of 650 t of a 95% CO2/5% N2 mixture in summer 2013 to study the effects of impurities in the CO2 stream on the injection operation. During regular operation, the CO2 was pre-heated on-site to 40 - 45°C prior to injection to ensure a single-phase injection process and avoid any phase transition or transient states within the injection facility or the reservoir. Between March and July 2013, just prior to the CO2-N2 co-injection experiment, the injection temperature was stepwise decreased down to 10°C within a "cold-injection" experiment to study the effects of two-phase injection conditions. During injection operation, the combination of different geochemical and geophysical monitoring methods enabled detection and mapping of the spatial and temporal in-reservoir behaviour of the injected CO2 even for small quantities. After the cessation of CO2 injection, post-injection monitoring continued and two additional field experiments have been performed. A CO2 back-production experiment was run in autumn 2014 to study the physicochemical properties of the back-produced CO2 as well as the pressure response of the reservoir. In October 2015 to January 2016, a brine injection experiment studied the imbibition process and residual gas saturation.
Numerical studies of CO2 and brine leakage into a shallow aquifer through an open wellbore
NASA Astrophysics Data System (ADS)
Wang, Jingrui; Hu, Litang; Pan, Lehua; Zhang, Keni
2018-03-01
Industrial-scale geological storage of CO2 in saline aquifers may cause CO2 and brine leakage from abandoned wells into shallow fresh aquifers. This leakage problem involves the flow dynamics in both the wellbore and the storage reservoir. T2Well/ECO2N, a coupled wellbore-reservoir flow simulator, was used to analyze CO2 and brine leakage under different conditions with a hypothetical simulation model in water-CO2-brine systems. Parametric studies on CO2 and brine leakage, including the salinity, excess pore pressure (EPP) and initially dissolved CO2 mass fraction, are conducted to understand the mechanism of CO2 migration. The results show that brine leakage rates increase proportionally with EPP and inversely with the salinity when EPP varies from 0.5 to 1.5 MPa; however, there is no CO2 leakage into the shallow freshwater aquifer if EPP is less than 0.5 MPa. The dissolved CO2 mass fraction shows an important influence on the CO2 plume, as part of the dissolved CO2 becomes a free phase. Scenario simulation shows that the gas lifting effect will significantly increase the brine leakage rate into the shallow freshwater aquifer under the scenario of 3.89% dissolved CO2 mass fraction. The equivalent porous media (EPM) approach used to model the wellbore flow has been evaluated and results show that the EPM approach could either under- or over-estimate brine leakage rates under most scenarios. The discrepancies become more significant if a free CO2 phase evolves. Therefore, a model that can correctly describe the complex flow dynamics in the wellbore is necessary for investigating the leakage problems.
Methane storage in metal-organic frameworks.
He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin
2014-08-21
Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.
Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks
Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi
2015-01-01
Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596
Storage peak gas-turbine power unit
NASA Technical Reports Server (NTRS)
Tsinkotski, B.
1980-01-01
A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-123-000; PR10-124-000; PR10-125-000; PR10-126-000;. PR10-127-000; PR10-128-000; PR10-129-000 (Not Consolidated)] Northern Illinois Gas Company; Lee 8 Storage Partnership; NorthWestern Corporation; The East Ohio Gas Company; UGI...
Xu, Peng; Jiang, Chang-Sheng; Hao, Qing-Ju; Zhu, Tao
2013-10-01
The impacts of different land use on soil organic matter (SOM), soil labile organic matter (SLOM) and their efficiency ratios (ER), and soil carbon management index (CMI) were studied in this study. Subtropical evergreen broad-leaved forest (abbreviation: forest) , sloping farmland, orchard and abandoned land were selected and soils at the depths of 0-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm were sampled in the spring of 2011 to determine the contents of soil organic matter and labile organic matter. The results showed that the contents of soil organic matter and soil labile organic matter both decreased with the increase of soil depth under all four land use types; however, forest and orchard enriched SOM and SLOM contents in the 0-10 cm and 0-20 cm soil layers, respectively, while the contents of SOM and SLOM decreased evenly in sloping farmland and abandoned land. In the whole soil layer (0-60 cm) , the order of SOM and SLOM contents was abandoned land > forest > orchard > sloping farmland, indicating that at the conversion from forest into orchard or sloping farmland, SOM was reduced by 21.56% (P >0.05) and 55.90% (P <0.05), respectively, and at the conversion from sloping farmland into abandoned land, the low SLOM, middle SLOM and high SLOM increased by 144.2% (P<0.05) , 153.3% (P <0.05) and 242.7% (P <0.05), respectively. There was no significant difference in low ER, middle ER and high ER among the four land uses as suggested by ANOVA which showed that SRs were not sensible to the change of land use. All three CMis were in the order of abandoned land > forest > orchard > sloping farmland, revealing that forest reclamation resulted in the reduction of soil organic carbon storage and the decline of soil quality, and the abandonment of sloping farmland would increase soil carbon sink and improve soil quality. Three kinds of SLOM were all positively correlated with soil total nitrogen, available phosphorus and available potassium, while negatively correlated with soil density bulk, indicating that SLOM had close relationships with soil physical and chemical characters and could be used as an important index to reflect soil nutrient status and judge soil quality.
A storage gas tank is moved to a pallet in the O&C
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Operations and Checkout Building, workers check out the placement of one of four gas tanks on the Spacelab Logistics Double Pallet. Part of the STS- 104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.
A storage gas tank is moved to a pallet in the O&C
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the Operations and Checkout Building stand by while one of four gas tanks is moved toward the Spacelab Logistics Double Pallet. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.
A storage gas tank is moved to a pallet in the O&C
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- An overhead crane in the Operations and Checkout Building lowers one of four gas tanks onto the Spacelab Logistics Double Pallet while workers help guide it. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.
Erecting Gas Storage Facilities and Oil Centers
1975-01-21
these allow steam to flow from the steam lines into the storage tank and to hydraulic seals , then into the water via steam -jet conveyors. The...of the dry gas tank is similar to that of a steam engine. There is a special seal between the plate and the wall. The plate, by the action of gas...stable and sealed during the entire period of use. The formation of cracks and the leakage of gas through them may create danger for above-ground
The effect of hydrate promoters on gas uptake.
Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen
2017-08-16
Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.
Methods for Finding Legacy Wells in Residential and Commercial Areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammack, Richard W.; Veloski, Garret A.
In 1919, the enthusiasm surrounding a short-lived gas play in Versailles Borough, Pennsylvania resulted in the drilling of many needless wells. The legacy of this activity exists today in the form of abandoned, unplugged gas wells that are a continuing source of fugitive methane in the midst of a residential and commercial area. Flammable concentrations of methane have been detected near building foundations, which have forced people from their homes and businesses until methane concentrations decreased. Despite mitigation efforts, methane problems persist and have caused some buildings to be permanently abandoned and demolished. This paper describes the use of magneticmore » and methane sensing methods by the National Energy Technology Laboratory (NETL) to locate abandoned gas wells in Versailles Borough where site access is limited and existing infrastructure can interfere. Here, wells are located between closely spaced houses and beneath buildings and parking lots. Wells are seldom visible, often because wellheads and internal casing strings have been removed, and external casing has been cut off below ground level. The magnetic survey of Versailles Borough identified 53 strong, monopole magnetic anomalies that are presumed to indicate the locations of steel-cased wells. This hypothesis was tested by excavating the location of one strong, monopole magnetic anomaly that was within an area of anomalous methane concentrations. The excavation uncovered an unplugged gas well that was within 0.2 m of the location of the maximum magnetic signal. Truck-mounted methane surveys of Versailles Borough detected numerous methane anomalies that were useful for narrowing search areas. Methane sources identified during truck-mounted surveys included strong methane sources such as sewers and methane mitigation vents. However, inconsistent wind direction and speed, especially between buildings, made locating weaker methane sources (such as leaking wells) difficult. Walking surveys with the methane detector mounted on a cart or wagon were more effective for detecting leaking wells because the instrument’s air inlet was near the ground where: 1) the methane concentration from subsurface sources (including wells) was a maximum, and 2) there was less displacement of methane anomalies from methane sources by air currents. The Versailles Borough survey found 15 methane anomalies that coincided with the location of well-type magnetic anomalies; the methane sources for these anomalies were assumed to be leaking wells. For abandoned well locations where the wellhead and all casing strings have been removed and there is no magnetic anomaly, leaking wellbores can sometimes be detected by methane surveys. Unlike magnetic anomalies, methane anomalies can be: 1) ephemeral, 2) significantly displaced from the well location, and 3) from non-well sources that cannot be discriminated without isotopic analysis. If methane surveys are used for well location, the air inlet to the instrument should be kept as close to the ground as possible to minimize the likelihood of detecting methane from distant, wind-blown sources.« less
A new polymer nanocomposite repair material for restoring wellbore seal integrity
Genedy, Moneeb; Kandil, Usama F.; Matteo, Edward N.; ...
2017-03-01
Seal integrity of functional oil wells and abandoned wellbores used for CO 2 subsequent storage has become of significant interest with the oil and gas leaks worldwide. This is attributed to the fact that wellbores intersecting geographical formations contain potential leakage pathways. One of the critical leakage pathways is the cement-shale interface. In this study, we examine the efficiency of a new polymer nanocomposite repair material that can be injected for sealing micro annulus in wellbores. The bond strength and microstructure of the interface of Type G oil well cement (reference), microfine cement, Novolac epoxy incorporating Neat, 0.25%, 0.5%, andmore » 1.0% Aluminum Nanoparticles (ANPs) with shale is investigated. Interfacial bond strength testing shows that injected microfine cement repair has considerably low bond strength, while ANPs-epoxy nanocomposites have a bond strength that is an order of magnitude higher than cement. Microscopic investigations of the interface show that micro annulus interfacial cracks with widths up to 40 μm were observed at the cement-shale interface while these cracks were absent at the cement-epoxy-shale interface. Finally, Fourier Transform Infrared and Dynamic mechanical analysis measurements showed that ANPs improve interfacial bond by limiting epoxy crosslinking, and therefore allowing epoxy to form robust bonds with cement and shale.« less
System-level modeling for economic evaluation of geological CO2storage in gas reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan
2006-03-02
One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine aquifers ordepleted oil or gas reservoirs. Research is being conducted to improveunderstanding of factors affecting particular aspects of geological CO2storage (such as storage performance, storage capacity, and health,safety and environmental (HSE) issues) as well as to lower the cost ofCO2 capture and related processes. However, there has been less emphasisto date on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedprocess models to representations of engineering components andassociatedmore » economic models. The objective of this study is to develop asystem-level model for geological CO2 storage, including CO2 capture andseparation, compression, pipeline transportation to the storage site, andCO2 injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection into a gas reservoir and relatedenhanced production of methane. Potential leakage and associatedenvironmental impacts are also considered. The platform for thesystem-level model is GoldSim [GoldSim User's Guide. GoldSim TechnologyGroup; 2006, http://www.goldsim.com]. The application of the system modelfocuses on evaluating the feasibility of carbon sequestration withenhanced gas recovery (CSEGR) in the Rio Vista region of California. Thereservoir simulations are performed using a special module of the TOUGH2simulator, EOS7C, for multicomponent gas mixtures of methane and CO2.Using a system-level modeling approach, the economic benefits of enhancedgas recovery can be directly weighed against the costs and benefits ofCO2 injection.« less
Compressing Spin-Polarized 3He With a Modified Diaphragm Pump
Gentile, T. R.; Rich, D. R.; Thompson, A. K.; Snow, W. M.; Jones, G. L.
2001-01-01
Nuclear spin-polarized 3He gas at pressures on the order of 100 kPa (1 bar) are required for several applications, such as neutron spin filters and magnetic resonance imaging. The metastability-exchange optical pumping (MEOP) method for polarizing 3He gas can rapidly produce highly polarized gas, but the best results are obtained at much lower pressure (~0.1 kPa). We describe a compact compression apparatus for polarized gas that is based on a modified commercial diaphragm pump. The gas is polarized by MEOP at a typical pressure of 0.25 kPa (2.5 mbar), and compressed into a storage cell at a typical pressure of 100 kPa. In the storage cell, we have obtained 20 % to 35 % 3He polarization using pure 3He gas and 35 % to 50 % 3He polarization using 3He-4He mixtures. By maintaining the storage cell at liquid nitrogen temperature during compression, the density has been increased by a factor of four. PMID:27500044
Coupled Model for CO2 Leaks from Geological Storage: Geomechanics, Fluid Flow and Phase Transitions
NASA Astrophysics Data System (ADS)
Gor, G.; Prevost, J.
2013-12-01
Deep saline aquifers are considered as a promising option for long-term storage of carbon dioxide. However, risk of CO2 leakage from the aquifers through faults, natural or induced fractures or abandoned wells cannot be disregarded. Therefore, modeling of various leakage scenarios is crucial when selecting a site for CO2 sequestration and choosing proper operational conditions. Carbon dioxide is injected into wells at supercritical conditions (t > 31.04 C, P > 73.82 bar), and these conditions are maintained in the deep aquifers (at 1-2 km depth) due to hydrostatic pressure and geothermal gradient. However, if CO2 and brine start to migrate from the aquifer upward, both pressure and temperature will decrease, and at the depth of 500-750 m, the conditions for CO2 will become subcritical. At subcritical conditions, CO2 starts boiling and the character of the flow changes dramatically due to appearance of the third (vapor) phase and latent heat effects. When modeling CO2 leaks, one needs to couple the multiphase flow in porous media with geomechanics. These capabilities are provided by Dynaflow, a finite element analysis program [1]; Dynaflow has already showed to be efficient for modeling caprock failure causing CO2 leaks [2, 3]. Currently we have extended the capabilities of Dynaflow with the phase transition module, based on two-phase and three-phase isenthalpic flash calculations [4]. We have also developed and implemented an efficient method for solving heat and mass transport with the phase transition using our flash module. Therefore, we have developed a robust tool for modeling CO2 leaks. In the talk we will give a brief overview of our method and illustrate it with the results of simulations for characteristic test cases. References: [1] J.H. Prevost, DYNAFLOW: A Nonlinear Transient Finite Element Analysis Program. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ. http://www.princeton.edu/~dynaflow/ (last update 2013), 1981. [2] M. Preisig, J.H. Prevost, Coupled multi-phase thermo-poromechanical effects. Case study: CO2 injection at In Salah, Algeria, International Journal of Greenhouse Gas Control, 5 (2011) 1055-1064. [3] G.Y. Gor, T.R. Elliot, J.H. Prevost, Effects of thermal stresses on caprock integrity during CO2 storage, International Journal of Greenhouse Gas Control, 12 (2013) 300-309. [4] M.L. Michelsen, J.M. Mollerup, Thermodynamic Models: Fundamentals and Computational Aspects. 2nd Edition, Tie-Line Publications, 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuang, Xingya; Shankar, T.J.; Bi, X.T.
Wood pellets emit CO, CO2, CH4 and other volatiles during storage. Increased concentration of these gases in a sealed storage causes depletion of concentration of oxygen. The storage environment becomes toxic to those who operate in and around these storages. The objective of this study was to investigate the effects of temperature, moisture and storage headspace on emissions from wood pellets in an enclosed space. Twelve 10-liter plastic containers were used to study the effects of headspace ratio (25%, 50%, and 75% of container volume) and temperatures (10-50oC). Another eight containers were set in uncontrolled storage relative humidity and temperature.more » Concentrations of CO2, CO and CH4 were measured by a gas chromatography (GC). The results showed that emissions of CO2, CO and CH4 from stored wood pellets are most sensitive to storage temperature. Higher peak emission factors are associated with higher temperatures. Increased headspace volume ratio increases peak off-gas emissions because of the availability of oxygen for pellet decomposition. Increased relative humidity in the enclosed container increases the rate of off-gas emissions of CO2, CO and CH4 and oxygen depletion.« less
The high pressure gas assembly is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- With workers keeping a close watch, the overhead crane lowers the high pressure gas assembly -- two gaseous oxygen and two gaseous nitrogen storage tanks into the payload canister. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis'''s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B.
Air ejector augmented compressed air energy storage system
Ahrens, F.W.; Kartsounes, G.T.
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
Air ejector augmented compressed air energy storage system
Ahrens, Frederick W.; Kartsounes, George T.
1980-01-01
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
76 FR 4651 - Venice Gathering System, L.L.C.; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
...) of the Commission's Regulations under the Natural Gas Act (NGA) as amended, to abandon in place an... intervene or notice of intervention and pursuant to Section 157.205 of the regulations under the NGA (18 CFR... to Section 7 of the NGA. Kimberly D. Bose, Secretary. [FR Doc. 2011-1568 Filed 1-25-11; 8:45 am...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-31
The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resourcesmore » (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.« less
Thermal Analysis of of Near-Isothermal Compressed Gas Energy Storage System
Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; ...
2016-01-01
In this paper, alternative system configurations for a novel Ground-Level Integrated Diverse Energy Storage (GLIDES) system, which can store energy via input of electricity and heat and deliver dispatchable electricity, is presented. The proposed system is low-cost and hybridizes compressed air and pumped hydro storage approaches that will allow for the off-peak storage of intermittent renewable energy for use during peak times. This study reveals that implementing direct-contact low grade heat exchange via sprayed falling droplets to cool the gas during charging (compression) and warm the gas during discharging (expansion) can be achieved through a secondary recirculating loop of liquid.more » This study shows that if the recirculating liquid loop is pre-conditioned with waste-heat prior to spraying during gas expansion and considering all the round trip conversion losses from standard 120 V 60 HZ electricity input and output with utilization of low grade heat at 90 C the alternative system design leads to a 16% boost in round trip efficiency of the electricity storage to elec = 82% with an energy density of ED = 3.59 MJ/m3.« less
Control method for mixed refrigerant based natural gas liquefier
Kountz, Kenneth J.; Bishop, Patrick M.
2003-01-01
In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.
76 FR 52323 - Combined Notice of Filings; Filings Instituting Proceedings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
.... Applicants: Young Gas Storage Company, Ltd. Description: Young Gas Storage Company, Ltd. submits tariff..., but intervention is necessary to become a party to the proceeding. The filings are accessible in the.... More detailed information relating to filing requirements, interventions, protests, and service can be...
Monolithic natural gas storage delivery system based on sorbents
Hornbostel, Marc; Krishnan, Gopala N.; Sanjurjo, Angel
2016-09-27
The invention provides methods for producing a strong, light, sorbent-based storage/dispenser system for gases and fuels. The system comprises a porous monolithic material with an adherent strong impervious skin that is capable of storing a gas under pressure in a safe and usable manner.
30 CFR 715.19 - Use of explosives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wells, petroleum or gas-storage facilities, municipal water-storage facilities, fluid-transmission pipelines, gas or oil-collection lines, or water and sewage lines; and (C) 500 feet of an underground mine... explosive materials shall— (i) Have demonstrated a knowledge of, and a willingness to comply with, safety...
Large diameter metal ring seal prevents gas leakage at 5000 psi
NASA Technical Reports Server (NTRS)
Middelkoop, J. H.
1966-01-01
Large metal ring seal prevents gas leakage in hydrogen, helium, or nitrogen storage bottles at pressures up to 5,000 psi. The grooved ring seal which contains elastomer O-rings is installed between the mating faces of the access cover and the storage bottle.
NASA Astrophysics Data System (ADS)
Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge
2013-04-01
The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production potential from turbidites and their ability for carbon dioxide storage. The effects occurring during gas production and CO2 storage within a hydrate deposit are identified and described for various scenarios. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is discussed and compared for different production strategies: depressurization, CO2 injection after depressurization and simultaneous methane production and CO2 injection.
78 FR 39720 - Atmos Pipeline and Storage, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... and Storage, LLC; Notice of Application Take notice that on June 14, 2013, Atmos Pipeline and Storage... authorizing the construction and operation of the Fort Necessity Gas Storage Project (Project) and associated...) \\2\\. \\1\\ Atmos Pipeline and Storage, LLC, 127 FERC ] 61,260 (2009). \\2\\ Atmos Pipeline and Storage...
Energy Conversion and Storage Requirements for Hybrid Electric Aircraft
NASA Technical Reports Server (NTRS)
Misra, Ajay
2016-01-01
Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.
Concentrating Solar Power Projects - Solana Generating Station |
(APS). The thermal energy storage system provides up to 6 hours of generating capacity after sunset cooling Fossil Backup Type: Natural gas Thermal Storage Storage Type: 2-tank indirect Storage Capacity: 6 hours Thermal Storage Description: Molten salts
Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.
Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang
2014-01-01
Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of groundwater table.
Suitability of selected free-gas and dissolved-gas sampling containers for carbon isotopic analysis.
Eby, P; Gibson, J J; Yi, Y
2015-07-15
Storage trials were conducted for 2 to 3 months using a hydrocarbon and carbon dioxide gas mixture with known carbon isotopic composition to simulate typical hold times for gas samples prior to isotopic analysis. A range of containers (both pierced and unpierced) was periodically sampled to test for δ(13)C isotopic fractionation. Seventeen containers were tested for free-gas storage (20°C, 1 atm pressure) and 7 containers were tested for dissolved-gas storage, the latter prepared by bubbling free gas through tap water until saturated (20°C, 1 atm) and then preserved to avoid biological activity by acidifying to pH 2 with phosphoric acid and stored in the dark at 5°C. Samples were extracted using valves or by piercing septa, and then introduced into an isotope ratio mass spectrometer for compound-specific δ(13)C measurements. For free gas, stainless steel canisters and crimp-top glass serum bottles with butyl septa were most effective at preventing isotopic fractionation (pierced and unpierced), whereas silicone and PTFE-butyl septa allowed significant isotopic fractionation. FlexFoil and Tedlar bags were found to be effective only for storage of up to 1 month. For dissolved gas, crimp-top glass serum bottles with butyl septa were again effective, whereas silicone and PTFE-butyl were not. FlexFoil bags were reliable for up to 2 months. Our results suggest a range of preferred containers as well as several that did not perform very well for isotopic analysis. Overall, the results help establish better QA/QC procedures to avoid isotopic fractionation when storing environmental gas samples. Recommended containers for air transportation include steel canisters and glass serum bottles with butyl septa (pierced and unpierced). Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.
2017-12-01
Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may potentially alter bubble sizes, thus bubble storage in peats.
29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).
Code of Federal Regulations, 2013 CFR
2013-07-01
... temporary period not to exceed 6 months they need not have fire-resisting foundations or saddles but shall...) Dispensing. (1) Filling of fuel containers for trucks or motor vehicles from bulk storage containers shall be.... (2) Filling of portable containers or containers mounted on skids from storage containers shall be...
29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).
Code of Federal Regulations, 2012 CFR
2012-07-01
... temporary period not to exceed 6 months they need not have fire-resisting foundations or saddles but shall...) Dispensing. (1) Filling of fuel containers for trucks or motor vehicles from bulk storage containers shall be.... (2) Filling of portable containers or containers mounted on skids from storage containers shall be...
29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).
Code of Federal Regulations, 2011 CFR
2011-07-01
... temporary period not to exceed 6 months they need not have fire-resisting foundations or saddles but shall...) Dispensing. (1) Filling of fuel containers for trucks or motor vehicles from bulk storage containers shall be.... (2) Filling of portable containers or containers mounted on skids from storage containers shall be...
29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).
Code of Federal Regulations, 2014 CFR
2014-07-01
... temporary period not to exceed 6 months they need not have fire-resisting foundations or saddles but shall...) Dispensing. (1) Filling of fuel containers for trucks or motor vehicles from bulk storage containers shall be.... (2) Filling of portable containers or containers mounted on skids from storage containers shall be...
76 FR 30332 - Combined Notice of Filings No. 1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
..., May 18, 2011. Docket Numbers: RP11-2098-000. Applicants: Young Gas Storage Company, Ltd. Description: Young Gas Storage Company, Ltd. submits tariff filing per 154.204: Revised Reservoir Integrity Limit... action to be taken, but will not serve to make protestants parties to the proceeding. Anyone filing a...
75 FR 57754 - Combined Notice of Filings No. 2
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... Refund Report filings: Docket Numbers: RP10-1258-001. Applicants: Central New York Oil and Gas Co., LLC. Description: Central New York Oil and Gas Company, LLC submits their compliance filing to incorporate in the...-001. Applicants: Arlington Storage Company, LLC. Description: Arlington Storage Company, LLC submits...
76 FR 5571 - Combined Notice of Filings No. 2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings No. 2 January.... Description: Freebird Gas Storage, L.L.C. submits tariff filing per 154.203: Freebird Gas Storage Baseline....203: ASC Baseline Compliance Filing, to be effective 1/19/2011. Filed Date: 01/19/2011. Accession...
40 CFR 60.5365 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Natural Gas Production, Transmission and Distribution § 60.5365 Am I subject to this subpart? You are... custody transfer to the natural gas transmission and storage segment. A centrifugal compressor located at... transmission and storage segment. A reciprocating compressor located at a well site, or an adjacent well site...
NASA Astrophysics Data System (ADS)
Raynor, M. W.; Houlding, V. H.; Funke, H. H.; Frye, R.; Dietz, J. A.
2003-02-01
A sub-atmospheric (SA) pressure gas source, based on the reversible adsorption of hydride gas onto a high surface area substrate within a cylinder, has been developed for the safe storage and delivery of high-purity arsine and phosphine for MOCVD processes. SA pressure and high-pressure sources are compared with respect to gas delivery and purity, risk reduction, and cost benefits. Gas analysis and performance of epi-structures grown with SA pressure cylinders confirm that the hydride gas delivered meets the purity requirements of MOCVD processes. Further, the low gas release rates measured from 2.2 and 49 l SA pressure cylinders indicate that the technology can be scaled up without additional safety risk.
Environmental projects. Volume 2: Underground storage tanks compliance program
NASA Technical Reports Server (NTRS)
Kushner, L.
1987-01-01
Six large parabolic dish antennas are located at the Goldstone Deep Space Communications Complex north of Barstow, California. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel and hydraulic oil. These essential fluids are stored in underground storage tanks (USTs). Because USTs may develop leaks with the resultant seepage of their hazardous contents into the surrounding soil, local, State and Federal authorities have adopted stringent regulations for the testing and maintenance of USTs. Under the supervision of JPL's Office of Telecommunications and Data Acquisition, a year-long program has brought 27 USTs at the Goldstone Complex into compliance with Federal, State of California and County of San Bernadino regulations. Of these 27 USTs, 15 are operating today, 11 have been temporary closed down, and 1 abandoned in place. In 1989, the 15 USTs now operating at the Goldstone DSCC will be replaced either by modern, double-walled USTs equipped with automatic sensors for leak detection, or by above ground storage tanks. The 11 inactivated USTs are to be excavated, removed and disposed of according to regulation.
77 FR 73652 - Honeoye Storage Corporation: Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-16-000] Honeoye Storage... Storage Corporation (Honeoye) as supplemented on November 29, 2012, 4511 Egypt Road, Canandaigua, New York... to increase the maximum storage capacity and working gas capacity of the Honeoye Storage facitility...
Natural gas network resiliency to a "shakeout scenario" earthquake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellison, James F.; Corbet, Thomas Frank,; Brooks, Robert E.
2013-06-01
A natural gas network model was used to assess the likely impact of a scenario San Andreas Fault earthquake on the natural gas network. Two disruption scenarios were examined. The more extensive damage scenario assumes the disruption of all three major corridors bringing gas into southern California. If withdrawals from the Aliso Canyon storage facility are limited to keep the amount of stored gas within historical levels, the disruption reduces Los Angeles Basin gas supplies by 50%. If Aliso Canyon withdrawals are only constrained by the physical capacity of the storage system to withdraw gas, the shortfall is reduced tomore » 25%. This result suggests that it is important for stakeholders to put agreements in place facilitating the withdrawal of Aliso Canyon gas in the event of an emergency.« less
Gas chromatographic column for the storage of sample profiles
NASA Technical Reports Server (NTRS)
Dimandja, J. M.; Valentin, J. R.; Phillips, J. B.
1994-01-01
The concept of a sample retention column that preserves the true time profile of an analyte of interest is studied. This storage system allows for the detection to be done at convenient times, as opposed to the nearly continuous monitoring that is required by other systems to preserve a sample time profile. The sample storage column is essentially a gas chromatography column, although its use is not the separation of sample components. The functions of the storage column are the selective isolation of the component of interest from the rest of the components present in the sample and the storage of this component as a function of time. Using octane as a test substance, the sample storage system was optimized with respect to such parameters as storage and readout temperature, flow rate through the storage column, column efficiency and storage time. A 3-h sample profile was collected and stored at 30 degrees C for 20 h. The profile was then retrieved, essentially intact, in 5 min at 130 degrees C.
Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States.
Schimel, D; Melillo, J; Tian, H; McGuire, A D; Kicklighter, D; Kittel, T; Rosenbloom, N; Running, S; Thornton, P; Ojima, D; Parton, W; Kelly, R; Sykes, M; Neilson, R; Rizzo, B
2000-03-17
The effects of increasing carbon dioxide (CO2) and climate on net carbon storage in terrestrial ecosystems of the conterminous United States for the period 1895-1993 were modeled with new, detailed historical climate information. For the period 1980-1993, results from an ensemble of three models agree within 25%, simulating a land carbon sink from CO2 and climate effects of 0.08 gigaton of carbon per year. The best estimates of the total sink from inventory data are about three times larger, suggesting that processes such as regrowth on abandoned agricultural land or in forests harvested before 1980 have effects as large as or larger than the direct effects of CO2 and climate. The modeled sink varies by about 100% from year to year as a result of climate variability.
Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States
Schimel, D.; Melillo, J.; Tian, H.; McGuire, A.D.; Kicklighter, D.; Kittel, T.; Rosenbloom, N.; Running, S.; Thornton, P.; Ojima, D.; Parton, W.; Kelly, R.; Sykes, M.; Neilson, R.; Rizzo, B.
2000-01-01
The effects of increasing carbon dioxide (CO2) and climate on net carbon storage in terrestrial ecosystems of the conterminous United States for the period 1895-1993 were modeled with new, detailed historical climate information. For the period 1980-1993, results from an ensemble of three models agree within 25%, simulating a land carbon sink from CO2 and climate effects of 0.08 gigaton of carbon per year. The best estimates of the total sink from inventory data are about three times larger, suggesting that processes such as regrowth on abandoned agricultural land or in forests harvested before 1980 have effects as large as or larger than the direct effects of CO2 and climate. The modeled sink varies by about 100% from year to year as a result of climate variability.
Fraction-storage unit for drug-identification system
NASA Technical Reports Server (NTRS)
Campen, C. F.; Stuart, J. L.
1976-01-01
Device, connecting outputs of all gas chromatographs to single, relatively inexpensive IR spectrometer, reduces costs of system. Storage unit provides buffer storage of samples until infrared spectrometer is ready to accept them. Storage unit can be used to separate overlapping peaks.
Remote sensing of land-based voids using computer enhanced infrared thermography
NASA Astrophysics Data System (ADS)
Weil, Gary J.
1989-10-01
Experiments are described in which computer-enhanced infrared thermography techniques are used to detect and describe subsurface land-based voids, such as voids surrounding buried utility pipes, voids in concrete structures such as airport taxiways, abandoned buried utility storage tanks, and caves and underground shelters. Infrared thermography also helps to evaluate bridge deck systems, highway pavements, and garage concrete. The IR thermography techniques make it possible to survey large areas quickly and efficiently. The paper also surveys the advantages and limitations of thermographic testing in comparison with other forms of NDT.
Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
James W. Castle; Ronald W. Falta; David Bruce
2006-10-31
The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas,more » alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the fluid, but it results in a complex cavern shape. Numerical simulations were performed to evaluate the ability of storage caverns produced by the acid-dissolution method to store natural gas. In addition, analyses were conducted to evaluate cavern stability during gas injection and withdrawal from storage caverns created in carbonate formations by the acid-dissolution method. The stability analyses were conducted using FLAC2D, a commercially available geotechnical analysis and design software. The analyses indicate that a tall cylindrical cavern with a domed roof and floor will be stable under the expected range of in situ and operational conditions. This result suggests that it should be feasible to avoid mechanical instabilities that could potentially diminish the effectiveness of the storage facility. The feasibility of using pressure transients measured at the ground surface was investigated as a means to evaluate (Abstract truncated)« less
Offshore submarine storage facility for highly chilled liquified gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, S.F.
1982-12-28
Improvements in an offshore platform and submarine storage facility for highly chilled liquified gas, such as liquified natural gas, are disclosed. The improved facility includes an elongated, vertically oriented submerged anchoring frame to which one or more insulated storage tanks are moveably mounted so they can be positioned at a selected depth in the water. The double piston tank is constructed with improved seals to transfer ambient water pressure of the selected depth to the cryogenic liquified gas without intermixture. This transferred pressure at the depth selected aids in maintaining the liquified state of the stored liquified gas. Structural improvementsmore » to the tank facilitating ballasting, locking the double piston cylinders together and further facilitating surface access to the tank for inspection, repairs and removal, and structural improvements to the platform are disclosed.« less
Simulation of subsea gas hydrate exploitation
NASA Astrophysics Data System (ADS)
Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge
2014-05-01
The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within a hydrate deposit are identified and described for various scenarios. The behavior of relevant process parameters such as pressure, temperature and phase saturations is discussed and compared for different strategies: simple depressurization, simultaneous and subsequent methane production together with CO2 injection.
The high pressure gas assembly is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Operations and Checkout Building, workers wait in the payload canister as an overhead crane moves the high pressure gas assembly -- two gaseous oxygen and two gaseous nitrogen storage tanks toward it. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis'''s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS- 104 is scheduled for launch June 14 from Launch Pad 39B.
Henderson, Rory; Unthank, Michael D.; Zettwoch, Douglas D.; Lane, John W.
2010-01-01
The potable water system at Fort Knox is threatened by brine contamination from improperly abandoned natural gas exploration wells. The Fort Knox well field is located near the town of West Point, Kentucky, in the flood plain of the Ohio River. At the site, unconsolidated sediments approximately 30 – 40 m thick, overlie shale and porous limestone. Brine is believed to flow vertically from the underlying formations to the unconsolidated aquifer through damaged or leaky well casings under a high hydraulic gradient from the artificially pressurized porous limestone, which is utilized for natural gas storage by a regional energy company. Upon reaching the unconsolidated aquifer, brinecontaminated groundwater enters water supply production wells under the pumping‐induced gradient. As part of the Fort Knox remediation strategy to reduce the impact of brine contamination, electrical resistivity tomography (ERT) and borehole electromagnetic (EM) logs are being collected annually to detect gross changes in subsurface conductivity. The 2009 ERT data show areas of high conductivity on the western (contaminated) side of the site with conductivities more than an order of magnitude higher than on the eastern (uncontaminated) side of the site. The areas of high conductivity are interpreted as brine contamination, consistent with known regions of brine contamination. Conductivities from the EM logs are consistent with the results from the ERT inversions. The EM logs show little change between 2008 and 2009, except for some small changes in the brine distribution in well PZ1. Yearly ERT surveys will be continued to detect new areas of brine contamination and monitor the remediation effort.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-16-000] Cadeville Gas... Storage Project April 30, 2010. The staff of the Federal Energy Regulatory Commission (FERC or Commission... fueled engines with air intake filters/silencers, critical grade exhaust silencer/catalyst, a triethylene...
78 FR 61995 - Combined Notice of Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-10
.... Comments Due: 5 p.m. ET 10/9/13. Docket Numbers: RP13-1357-000. Applicants: Young Gas Storage Company, Ltd. Description: Annual Operational Purchases and Sales Report of Young Gas Storage Company, Ltd.. Filed Date: 9... necessary to become a party to the proceeding. Filings in Existing Proceedings Docket Numbers: PR13-62-001...
75 FR 50757 - Combined Notice of Filings No. 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-17
... Refund Report filings: Docket Numbers: RP10-1046-000. Applicants: Young Gas Storage Company, Ltd. Description: Young Gas Storage Company, Ltd. submits tariff filing per 154.203: Baseline to be effective 8/3... action to be taken, but will not serve to make protestants parties to the proceeding. Anyone filing a...
The Role of Natural Gas Power Plants with Carbon Capture and Storage in a Low-Carbon Future
Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...
76 FR 6457 - Hill-Lake Gas Storage, LLC; Notice of Baseline Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-134-001] Hill-Lake Gas Storage, LLC; Notice of Baseline Filings January 31, 2011. Take notice that on January 28, 2011, Hill-Lake submitted a revised baseline filing of their Statement of Operating Conditions for services provided under...
76 FR 7186 - Hill-Lake Gas Storage, LLC; Notice of Baseline Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-134-002] Hill-Lake Gas Storage, LLC; Notice of Baseline Filings February 2, 2011. Take notice that on February 1, 2011, Hill-Lake submitted a revised baseline filing of their Statement of Operating Conditions for services provided under...
Lumped Multi-Bubble Analysis of Injection Cooling System for Storage of Cryogenic Liquids
NASA Astrophysics Data System (ADS)
Saha, Pritam; Sandilya, Pavitra
2017-12-01
Storage of cryogenic liquids is a critical issue in many cryogenic applications. Subcooling of the liquid by bubbling a gas has been suggested to extend the storage period by reducing the boil-off loss. Liquid evaporation into the gas may cause liquid subcooling by extracting the latent heat of vaporization from the liquid. The present study aims at studying the factors affecting the liquid subcooling during gas injection. A lumped parameter model is presented to capture the effects of bubble dynamics (coalescence, breakup, deformation etc.) on the heat and mass transport between the gas and the liquid. The liquid subcooling has been estimated as a function of the key operating variables such as gas flow rate and gas injection temperature. Numerical results have been found to predict the change in the liquid temperature drop reasonably well when compared with the previously reported experimental results. This modelling approach can therefore be used in gauging the significance of various process variables on the liquid subcooling by injection cooling, as well as in designing and rating an injection cooling system.
NASA Astrophysics Data System (ADS)
Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian
2016-04-01
Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a second example, the option of seasonal hydrogen storage in a deep saline aquifer is considered. The induced thermal and hydraulic multiphase flow processes were simulated. Also, an integrative approach towards geophysical monitoring of gas presence was evaluated by synthetically applying these monitoring methods to the synthetic, however realistically defined numerical storage scenarios. Laboratory experiments provided parameterisations of geochemical effects caused by storage gas leakage into shallow aquifers in cases of sealing failure. Ultimately, the analysis of realistically defined scenarios of subsurface energy storage within the ANGUS+ project allows a quantification of the subsurface space claimed by a storage operation and its induced effects. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".
NASA Astrophysics Data System (ADS)
Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.
2015-12-01
The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.
Saha, Dipendu; Grappe, Hippolyte A; Chakraborty, Amlan; Orkoulas, Gerassimos
2016-10-12
In today's perspective, natural gas has gained considerable attention, due to its low emission, indigenous availability, and improvement in the extraction technology. Upon extraction, it undergoes several purification protocols including dehydration, sweetening, and inert rejection. Although purification is a commercially established technology, several drawbacks of the current process provide an essential impetus for developing newer separation protocols, most importantly, adsorption and membrane separation. This Review summarizes the needs of natural gas separation, gives an overview of the current technology, and provides a detailed discussion of the progress in research on separation and purification of natural gas including the benefits and drawbacks of each of the processes. The transportation sector is another growing sector of natural gas utilization, and it requires an efficient and safe on-board storage system. Compressed natural gas (CNG) and liquefied natural gas (LNG) are the most common forms in which natural gas can be stored. Adsorbed natural gas (ANG) is an alternate storage system of natural gas, which is advantageous as compared to CNG and LNG in terms of safety and also in terms of temperature and pressure requirements. This Review provides a detailed discussion on ANG along with computation predictions. The catalytic conversion of methane to different useful chemicals including syngas, methanol, formaldehyde, dimethyl ether, heavier hydrocarbons, aromatics, and hydrogen is also reviewed. Finally, direct utilization of methane onto fuel cells is also discussed.
First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE.
Schmidt, H T; Thomas, R D; Gatchell, M; Rosén, S; Reinhed, P; Löfgren, P; Brännholm, L; Blom, M; Björkhage, M; Bäckström, E; Alexander, J D; Leontein, S; Hanstorp, D; Zettergren, H; Liljeby, L; Källberg, A; Simonsson, A; Hellberg, F; Mannervik, S; Larsson, M; Geppert, W D; Rensfelt, K G; Danared, H; Paál, A; Masuda, M; Halldén, P; Andler, G; Stockett, M H; Chen, T; Källersjö, G; Weimer, J; Hansen, K; Hartman, H; Cederquist, H
2013-05-01
We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.
Lopez, Brenda Natalia; Man, Yu Bon; Zhao, Yin Ge; Zheng, Jin Shu; Leung, Anna Oi Wah; Yao, Jun; Wong, Ming Hung
2011-07-01
Polycyclic aromatic hydrocarbon (PAH), polychlorinated biphenyl (PCB), polybrominated diphenyl ether (PBDE) compounds and five heavy metals (cadmium, copper, chromium, lead, and zinc) were determined in soil samples collected from six sites of abandoned agricultural land affected by electronic-waste: e-waste dismantling workshop [EW (DW)], e-waste open burning site [EW (OBS)], e-waste storage [EW (S)], and agricultural (A) in the New Territories, Hong Kong. Persistent organic pollutants (POPs) and heavy metals were detected in all soil samples. EW (DW) contained the highest concentrations of PAHs, Cr, Cu, and Zn, whereas EW (OBS) had the highest concentrations of PCBs, PBDEs, Cd, and Pb. PAH at EW (DW) and EW (OBS) and PCB concentrations at EW (OBS) exceeded the target values of the New Dutch list, whereas Cd, Cu, Cr, Pb, and Zn levels exceeded the Chinese legislation for the protection of agricultural production and safeguarding of human health, by 3-11 times at EW (OBS) and 5-8 times at EW (DW). Lead at EW (OBS) and EW (DW) and Cr at EW (DW) greatly exceeded the Canadian Soil Quality Guidelines by 46 and 20 times and 27 times, respectively. Concentrations of POPs and heavy metals at EW (DW) and EW (OBS) were significantly higher than at EW (S) and A. It was concluded that e-waste activities led to increases of toxic chemicals at these abandoned agricultural land, which would hinder the redevelopment of the land.
Revised Cretaceous and Tertiary stratigraphic nomenclature in the Colville Basin, Northern Alaska
Mull, Charles G.; Houseknecht, David W.; Bird, Kenneth J.
2003-01-01
A revised stratigraphic nomenclature is proposed for Cretaceous and Tertiary geologic units of the central and western North Slope of Alaska. This revised nomenclature is a simplified and broadly applicable scheme suitable for a suite of digital geologic quadrangle maps being prepared jointly by the U.S. Geological Survey and the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas. This revised nomenclature scheme is a simplification of a complex stratigraphic terminology that developed piecemeal during five decades of geologic investigations of the North Slope. It is based on helicopter-supported geologic field investigations incorporating information from high-resolution aerial photography, satellite imagery, paleontology, reflection seismic records, and sequence stratigraphic concepts. This revised nomenclature proposes the abandonment of the Colville Group; demotion of the Nanushuk Group to formation status; abandonment of six formations (Kukpowruk, Tuktu, Grandstand, Corwin, Chandler, and Ninuluk); revision of four formations (Sagavanirktok, Prince Creek, Schrader Bluff, and Seabee); elevation of the Tuluvak Tongue of the Prince Creek Formation to formation status; revision of two members (Franklin Bluffs Member and Sagwon Member of the Sagavanirktok Formation); abandonment of eight members or tongues (Kogosukruk, Rogers Creek, Barrow Trail, Sentinel Hill, Ayiyak, Shale Wall, Niakogon, and Killik); and definition of one new member (White Hills Member of the Sagavanirktok Formation).
NASA Astrophysics Data System (ADS)
Kühn, Michael; Streibel, Martin; Nakaten, Natalie; Kempka, Thomas
2014-05-01
Massive roll-out of renewable energy production units (wind turbines and solar panels) leads to date to excess energy which cannot be consumed at the time of production. So far, long-term storage is proposed via the so called 'power-to-gas' technology. Energy is transferred to methane gas and subsequently combusted for power production - 'power-to-gas-to-power' (PGP) - when needed. PGP profits from the existing infrastructure of the gas market and could be deployed immediately. However, major shortcoming is the production of carbon dioxide (CO2) from renewables and its emission into the atmosphere. We present an innovative idea which is a decarbonised extension of the PGP technology. The concept is based on a closed carbon cycle: (1) Hydrogen (H2) is generated from renewable energy by electrolysis and (2) transformed into methane (CH4) with CO2 taken from an underground geological storage. (3) CH4 produced is stored in a second storage underground until needed and (4) combusted in a combined-cycled power plant on site. (5) CO2 is separated during energy production and re-injected into the storage formation. We studied a show case for the cities Potsdam and Brandenburg/Havel in the Federal State of Brandenburg in Germany to determine the energy demand of the entire process chain and the costs of electricity (COE) using an integrated techno-economic modelling approach (Nakaten et al. 2014). Taking all of the individual process steps into account, the calculation shows an overall efficiency of 27.7 % (Streibel et al. 2013) with total COE of 20.43 euro-cents/kWh (Kühn et al. 2013). Although the level of efficiency is lower than for pump and compressed air storage, the resulting costs are similar in magnitude, and thus competitive on the energy storage market. The great advantage of the concept proposed here is that, in contrast to previous PGP approaches, this process is climate-neutral due to CO2 utilisation. For that purpose, process CO2 is temporally stored in an underground reservoir. If existing locations in Europe, where natural gas storage in porous formations is performed, were to be extended by CO2 storage sites, a significant quantity of wind and solar energy produced could be stored as methane. The overall process chain is in this case carbon neutral. Kühn M., Nakaten N., Streibel M., Kempka T. (2013) Klimaneutrale Flexibilisierung regenerativer Überschussenergie mit Untergrundspeichern. ERDÖL ERDGAS KOHLE 129(10), 348-352. Nakaten, N., Schlüter, R., Azzam, R., Kempka, T. (2014) Development of a techno-economic model for dynamic calculation of COE, energy demand and CO2 emissions of an integrated UCG-CCS process, Energy (in press). doi: 10.1016/j.energy.2014.01.014 Streibel M., Nakaten N., Kempka T., Kühn M. (2013) Analysis of an integrated carbon cycle for storage of renewables. Energy Procedia 40, 202-211. doi: 10.1016/j.egypro.2013.08.024.
Spent nuclear fuel integrity during dry storage - performance tests and demonstrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinnon, M.A.; Doherty, A.L.
1997-06-01
This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release frommore » the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs.« less
Hu, Jian-Jun; Liu, Ya-Hua; Yu, Chan-Juan; Jialielihan, Nuerbolati
2016-07-22
Adequate operation interspace is the premise of laparoscopy, and carbon dioxide (CO2) was an ideal gas for forming lacuna. A retroperitoneal space is used to form operation interspace in retroperitoneal laparoscopic radical nephrectomy by making ballooning, and the retroperitoneal space has no relative complete and airtight serous membrane, therefore CO2 absorption may be greater in retroperitoneal than transperitoneal laparoscopic radical nephrectomy. Excess CO2 absorption may induce hypercapnemia and further cause physiopathological change of respiratory and circulatory system. Therefore, exact evaluation of amount of CO2 which is eliminated from body via minute ventilation is important during retroperitoneal laparoscopic radical nephrectomy. The aim of the paper is to study the correlation between CO2 storage at the last minute of gas insufflation and area of retroperitoneal lacuna during retroperitoneal laparoscopic radical nephrectomy. Forty ASA I/II patients undergoing retroperitoneal laparoscopic radical nephrectomy were enrolled. CO2 storage at the last minute of gas insufflation and area of a retroperitoneal lacuna were observed. Linear correlation and regression were performed to determine the correlation between them. There was positive correlation between CO2 storage at the last minute of gas insufflation and area of retroperitoneal lacuna (r = 0.880, P = 0.000), and the equation of linear regression was y = -83.097 + 0.925x (R(2) = 0.780, t = 11.610, P = 0.000). Amount of CO2 which is eliminated from body via mechanical ventilation could be calculated by measuring the area of retroperitoneal lacuna during retroperitoneal laparoscopic radical nephrectomy, and an anesthetist should be aware of the size of lacuna to predict high CO2 storage at the last minute of gas insufflation.
Method for forming a bladder for fluid storage vessels
Mitlitsky, Fred; Myers, Blake; Magnotta, Frank
2000-01-01
A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-50-000] PetroLogistics... construction and operation of facilities by PetroLogistics Natural Gas Storage Company, LLC (PetroLogistics) in... to comment on their areas of concern. If you are a landowner receiving this notice, you may be...
Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... Commission's Regulations under the Natural Gas Act (NGA) as amended, for the construction and operation of... Baker Storage Reservoir. Williston Basin also adds two natural gas-fueled units, rated at 2,370 hp each... Storage Reservoir by 35,000 Mcf/day and provide 7,000 Mcf/day of incremental transportation transfer...
Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) can be a promising technology to reduce CO2 emissions in the electric sector. However, the high cost and energy penalties of current carbon capture devices, as well as methane leakage from natural ga...
Internal combustion engine with compressed air collection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P.W.
1988-08-23
This patent describes an internal combustion engine comprising cylinders respectively including a pressure port, pistons respectively movable in the cylinders through respective compression strokes, fuel injectors respectively connected to the cylinders and operative to supply, from a fuel source to the respective cylinders, a metered quantity of fuel conveyed by compressed gas in response to fuel injector operation during the compression strokes of the respective cylinders, a storage tank for accumulating and storing compressed gas, means for selectively connecting the pressure ports to the storage tank only during the compression strokes of the respective cylinders, and duct means connecting themore » storage tank to the fuel injectors for supplying the fuel injectors with compressed gas in response to fuel injector operation.« less
Burruss, Robert
2009-01-01
Geologically based methodologies to assess the possible volumes of subsurface CO2 storage must apply clear and uniform definitions of resource and reserve concepts to each assessment unit (AU). Application of the current state of knowledge of geologic, hydrologic, geochemical, and geophysical parameters (contingencies) that control storage volume and injectivity allows definition of the contingent resource (CR) of storage. The parameters known with the greatest certainty are based on observations on known traps (KTs) within the AU that produced oil, gas, and water. The aggregate volume of KTs within an AU defines the most conservation volume of contingent resource. Application of the concept of reserve growth to CR volume provides a logical path for subsequent reevaluation of the total resource as knowledge of CO2 storage processes increases during implementation of storage projects. Increased knowledge of storage performance over time will probably allow the volume of the contingent resource of storage to grow over time, although negative growth is possible.
Burruss, R.C.
2009-01-01
Geologically based methodologies to assess the possible volumes of subsurface CO2 storage must apply clear and uniform definitions of resource and reserve concepts to each assessment unit (AU). Application of the current state of knowledge of geologic, hydrologic, geochemical, and geophysical parameters (contingencies) that control storage volume and injectivity allows definition of the contingent resource (CR) of storage. The parameters known with the greatest certainty are based on observations on known traps (KTs) within the AU that produced oil, gas, and water. The aggregate volume of KTs within an AU defines the most conservation volume of contingent resource. Application of the concept of reserve growth to CR volume provides a logical path for subsequent reevaluation of the total resource as knowledge of CO2 storage processes increases during implementation of storage projects. Increased knowledge of storage performance over time will probably allow the volume of the contingent resource of storage to grow over time, although negative growth is possible. ?? 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas
2014-05-01
The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be injected in the scope of the scheduled EGR operation. Our techno-economic modeling results considering EGR reservoir simulations demonstrate that an economic and carbon neutral operation of UCG combined with fertilizer production and CCS is feasible. The suggested approach may provide a bridging technology to tackle fertilizer and power supply shortages in Bangladesh, and in addition support further production from depleting natural gas deposits. References Kempka, T., Plötz, M.L., Hamann, J., Deowan, S.A., Azzam, R. (2010) Carbon dioxide utilisation for carbamide production by application of the coupled UCG-urea process. Energy Procedia 4: 2200-2205. Nakaten, N., Schlüter, R., Azzam, R., Kempka, T. (2014) Development of a techno-economic model for dynamic calculation of COE, energy demand and CO2 emissions of an integrated UCG-CCS process. Energy (in print). Doi 10.1016/j.energy.2014.01.014
NASA Astrophysics Data System (ADS)
Van De Ven, C. J. C.; Mumford, Kevin G.
2018-05-01
The study of gas-water mass transfer in porous media is important in many applications, including unconventional resource extraction, carbon storage, deep geological waste storage, and remediation of contaminated groundwater, all of which rely on an understanding of the fate and transport of free and dissolved gas. The novel visual technique developed in this study provided both quantitative and qualitative observations of gas-water mass transfer. Findings included interaction between free gas architecture and dissolved plume migration, plume geometry and longevity. The technique was applied to the injection of CO2 in source patterns expected for stray gas originating from oil and gas operations to measure dissolved phase concentrations of CO2 at high spatial and temporal resolutions. The data set is the first of its kind to provide high resolution quantification of gas-water dissolution, and will facilitate an improved understanding of the fundamental processes of gas movement and fate in these complex systems.
Developments in the safe design of LNG tanks
NASA Astrophysics Data System (ADS)
Fulford, N. J.; Slatter, M. D.
The objective of this paper is to discuss how the gradual development of design concepts for liquefied natural gas (LNG) storage systems has helped to enhance storage safety and economy. The experience in the UK is compared with practice in other countries with similar LNG storage requirements. Emphasis is placed on the excellent record of safety and reliability exhibited by tanks with a primary metal container designed and constructed to approved standards. The work carried out to promote the development of new materials, fire protection, and monitoring systems for use in LNG storage is also summarized, and specific examples described from British Gas experience. Finally, the trends in storage tank design world-wide and options for future design concepts are discussed, bearing in mind planned legislation and design codes governing hazardous installations.
High Density Methane Storage in Nanoporous Carbon
NASA Astrophysics Data System (ADS)
Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team
2014-03-01
Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.
49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181 Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181...
49 CFR 193.2623 - Inspecting LNG storage tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG storage tank must be inspected or tested to verify that each of the following conditions does not impair...
75 FR 17707 - Arlington Storage Company, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... Storage Company, LLC; Notice of Filing March 30, 2010. Take notice that on March 24, 2010, Arlington Storage Company, LLC (ASC), Two Brush Creek Boulevard, Kansas City, Missouri 64112, filed an application... existing underground natural gas storage facility located in Schuyler County, New York known as the Seneca...
49 CFR 193.2623 - Inspecting LNG storage tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG storage tank must be inspected or tested to verify that each of the following conditions does not impair...
49 CFR 193.2623 - Inspecting LNG storage tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG storage tank must be inspected or tested to verify that each of the following conditions does not impair...
NASA Astrophysics Data System (ADS)
Denchik, N.; Pezard, P. A.; Abdoulghafour, H.; Lofi, J.; Neyens, D.; Perroud, H.; Henry, G.; Rolland, B.
2015-12-01
The Maguelone experimental site for shallow subsurface hydrogeophysical monitoring, located along the Mediterranean Lido near Montpellier (Languedoc, France) has proven over the years to provide a unique setup to test gas storage monitoring methods at shallow depth. The presence of two small reservoirs (R1: 13-16 m and R2: 8-9 m) with impermeable boundaries provides an opportunity to study a saline formation for geological storage both in the field and in a laboratory context. This integrated monitoring concept was first applied at Maguelone for characterization of the reservoir state before and during N2 and CO2 injections as part of the MUSTANG FP7 project. Multimethod monitoring was shown to be sensitive to gas storage within a saline reservoir with clear data changes immediately after the beginning of injection. Pressure remains the first indicator of gas storage at ~8-9 m depth in a small permeable unit (gravels/shells) under the Holocene lagoonal sediments. A good correlation is also obtained between the resistivity response and geochemical parameters from pore fluid sampling (pH, minor and major cation concentrations) at this depth. On the basis of previous gas injection experiments, new holes were drilled as part of PANACEA (EC project) in 2014, including an injection hole targeted for injection at 8-9 m depth in the R2 reservoir in order to have gas injection and gas storage at the same depth, a single hole multi-parameter observatory, and a seismic source hole. A total volume of ~48 m3 of CO2 was injected over ~2 hours on December 4, 2014. The injection rate varied from 24 to 30 m3/h, with a well head pressure of 1.8 bars. All downhole monitoring technologies (resistivity, temperature, pressure, SP and seismic measurements) were combined in the single hole observatory. Such device allows monitoring the downhole system before and after injection and the gas migration from the injection hole, helping to characterize the transport mechanism. Decreasing the number of monitoring-measurements and verification (MMV) holes enables a significant decrease of gas leakage risk. This specific monitoring approach is expected to give information about the safety and reliability of CO2 storage operation that guarantees public acceptance.
Langley Storage facility which houses remains of Apollo 204 craft
NASA Technical Reports Server (NTRS)
1990-01-01
A warehouse holding Apollo 204 hardware and investigative data is seen at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and 81 cartons of data and other related materials occupy 3,300 cubic feet. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34 at Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage with the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, J.T.; Bauer, S.J.; Ehgartner, B.L.
1996-10-01
A sinkhole discovered over the edge of the Strategic Petroleum Reserve storage facility at Weeks Island salt dome, Louisiana, led to decommissioning the site during 1995--1998, following extensive diagnostics in 1994. The sinkhole resulted from mine-induced fractures in the salt which took may years to develop, eventually causing fresh water to leak into the storage chamber and dissolve the overlying salt, thus causing overburden collapse into the void. Prior to initiating the oil removal, a freeze wall was constructed at depth around the sinkhole in 1995 to prevent water inflow; a freeze plug will remain in place until the minemore » is backfilled with brine in 1997--8, and stability is reached. Residual oil will be removed; environmental monitoring has been initiated and will continue until the facility is completely plugged and abandoned, and environmental surety is achieved.« less
A 3D Model for Gas Transfer, Storage and Resulting Displacement in a Permeable Volcanic Edifice
NASA Astrophysics Data System (ADS)
Collinson, Amy; Neuberg, Jurgen
2014-05-01
The total volume of gas in a magma, dissolved and subsequently exsolved, greatly influences the degree of explosiveness of a volcanic system. There is a marked contrast between the behaviour of a volcano in an open system compared to one which is closed. Whilst gas release is evident from surface gas emission measurements, gas storage is also thought to play an important role, as evidenced by large gas emissions after some large dome collapse events, suggesting gas may be stored in large volumes at shallow depths within the dome and edifice. Consequently, it is essential to understand degassing, to appreciate how much gas may be stored and where, and under what conditions it may be transferred or emitted to the atmosphere. We use previous experimental data on permeabilities to create 3D numerical models to investigate gas transport and storage in a permeable volcanic edifice. We combine the continuity equation, Darcy's law and the ideal gas law to derive a partial differential equation which is solved using a finite element method to obtain the gas pressure. The associated pressure gradient is then used within Darcy's law to calculate the gas velocity. In addition, we use the momentum equation to investigate how the presence of gas and variations in permeability influence the rate and degree of deformation in the volcanic edifice. Hence this provides two important surface constraints: gas emissions and surface displacement. Geometries are created to simulate the topography of actual volcanoes and the pressure and permeabilities incorporated into the model as boundary and domain conditions, respectively. This method is applied to investigate a variety of volcanological phenomena affecting gas, for example regions of high permeability due to fractures, or low permeability due to sealing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Mark; Sminchak, J.R.
Under this three year project, the condition of legacy oil and gas wells in the Midwest United States was evaluated through analysis of well records, well plugging information, CBL evaluation, sustained casing pressure (SCP) field testing, and analysis of hypothetical CO 2 test areas to provide a realistic description of wellbore integrity factors. The research included a state-wide review of oil and gas well records for Ohio and Michigan, along with more detailed testing of wells in Ohio. Results concluded that oil and gas wells are clustered along fields in areas. Well records vary in quality, and there may bemore » wells that have not been identified in records, but there are options for surveying unknown wells. Many of the deep saline formations being considered for CO 2 storage have few wells that penetrate the storage zone or confining layers. Research suggests that a variety of well construction and plugging approaches have been used over time in the region. The project concluded that wellbore integrity is an important issue for CO 2 storage applications in the Midwest United States. Realistic CO 2 storage projects may cover an area in the subsurface with several hundred legacy oil and gas wells. However, closer inspection may often establish that most of the wells do not penetrate the confining layers or storage zone. Therefore, addressing well integrity may be manageable. Field monitoring of SCP also indicated that tested wells provided zonal isolation of the reservoirs they were designed to isolate. Most of these wells appeared to exhibit gas pressure originating from intermediate zones. Based on these results, more flexibility in terms of cementing wells to surface, allowing well testing, and monitoring wells may aid operators in completing CO 2 storage project. Several useful products were developed under this project for examining wellbore integrity for CO 2 storage applications including, a database of over 4 million items on well integrity parameters in the study areas, a systematic CBL evaluation tool for rating cement in boreholes, SCP field testing procedures and analysis methodology, a process for summarizing well integrity at CO 2 storage fields, a statistical analysis of well integrity indicators, and an assessment of practical methods and costs necessary to repair/remediate typical wells in the region based on assessment of six test study areas. Project results may benefit both CO 2 storage and improved oil recovery applications. This study of wellbore integrity is a useful precursor to support development of geologic storage in the Midwest United States because it sheds more light on the actual well conditions (rather than the perceived condition) of historic oil and gas wells in the region.« less
Method for utilizing decay heat from radioactive nuclear wastes
Busey, H.M.
1974-10-14
Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.
Gas storage, transport and pressure changes in an evolving permeable volcanic edifice
NASA Astrophysics Data System (ADS)
Collinson, A. S. D.; Neuberg, J. W.
2012-10-01
The total volume of gas in a magma, dissolved and subsequently exsolved, greatly influences the degree of explosiveness of a volcanic system. There is a marked contrast between the behaviour of a volcano in an "open" system compared to one which is "closed". It is therefore essential to understand the entire degassing process: gas transport, storage and loss. A particular focus of this study is the effect different permeabilities and pressure gradients within a volcanic edifice have on the degree and pattern of the gas velocity. Gas loss is modelled numerically in two dimensions using a finite element approach, which allows the specification of boundary conditions with respect to pressure and different permeability domains within the volcanic edifice. By combining the time-dependent continuity equation and Darcy's law, a partial differential equation is derived and solved for the pressure. The associated pressure gradient is then used within Darcy's law to determine the corresponding gas velocity distribution. This method is used not only for stationary systems in equilibrium, but also as a time-dependent progression. It permits the modelling of different situations to study how various volcanic characteristics affect the gas loss. The model is used to investigate the change in pressure and gas in response to time-dependent scenarios. These are a dome collapse or sudden increase in permeability by magma rupture at the conduit margin, the formation of cracks within the lava dome and sealing by crystallisation. Our results show that a combination of high and low permeability regions is required for effective gas storage. High permeability allows the gas to enter the system, but impermeable areas act to confine the gas, thereby increasing its pressure and consequently, increasing the amount of gas which may be dissolved in the melt. Furthermore, our results show that permeability is an essential factor influencing the response time to system changes, which could be linked in future to deformation and other geophysical observations. Our model is highly versatile and sheds new light on the understanding of gas storage and transport in a permeable volcanic edifice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freifeld, Barry M.; Oldenburg, Curtis M.; Jordan, Preston
Introduction Motivation The 2015-2016 Aliso Canyon/Porter Ranch natural gas well blowout emitted approximately 100,000 tonnes of natural gas (mostly methane, CH 4) over four months. The blowout impacted thousands of nearby residents, who were displaced from their homes. The high visibility of the event has led to increased scrutiny of the safety of natural gas storage at the Aliso Canyon facility, as well as broader concern for natural gas storage integrity throughout the country. Federal Review of Well Integrity In April of 2016, the U.S. Department of Energy (DOE), in conjunction with the U.S. Department of Transportation (DOT) through themore » Pipeline and Hazardous Materials Safety Administration (PHMSA), announced the formation of a new Interagency Task Force on Natural Gas Storage Safety. The Task Force enlisted a group of scientists and engineers at the DOE National Laboratories to review the state of well integrity in natural gas storage in the U.S. The overarching objective of the review is to gather, analyze, catalogue, and disseminate information and findings that can lead to improved natural gas storage safety and security and thus reduce the risk of future events. The “Protecting our Infrastructure of Pipelines and Enhancing Safety Act of 2016’’ or the ‘‘PIPES Act of 2016,’’which was signed into law on June 22, 2016, created an Aliso Canyon Natural Gas Leak Task Force led by the Secretary of Energy and consisting of representatives from the DOT, Environmental Protection Agency (EPA), Department of Health and Human Services, Federal Energy Regulatory Commission (FERC), Department of Commerce and the Department of Interior. The Task Force was asked to perform an analysis of the Aliso Canyon event and make recommendations on preventing similar incidents in the future. The PIPES Act also required that DOT/PHMSA promulgate minimum safety standards for underground storage that would take effect within two years. Background on the DOE National Laboratories Well Integrity Work Group One of the primary areas that the Task Force is studying is integrity of natural gas wells at storage facilities. The DOE Office of Fossil Energy (FE) took the lead in this area and asked scientists and engineers from the National Energy Technology Laboratory (NETL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), and Lawrence Berkeley National Laboratory (LBNL)) to form a Work Group to address this area. This Work Group is an expansion of the original “Lab Team” comprising scientists and engineers from SNL, LLNL, and LBNL which was formed to support the State of California’s response to the Aliso Canyon incident and operated under the Governor of California’s Aliso Canyon Emergency Order (1/6/2016). The Lab Team played a key role in advising the State of California’s Department of Conservation (DOC) in its oversight of SoCalGas during and after the incident.« less
Monitoring induced seismicity from underground gas storage: first steps in Italy
NASA Astrophysics Data System (ADS)
Mucciarelli, Marco; Priolo, Enrico
2013-04-01
The supply of natural gas and its storage are focal points of the Italian politics of energy production and will have increasing importance in the coming years. About a dozen reservoirs are currently in use and fifteen are in development or awaiting approval. Some of these are found in the vicinity of geological structures that are seismically active. The assessment of seismic hazard (both for natural background and induced seismicity) for a geological gas storage facility has a number of unconventional aspects that must be recognized and traced in a clear, ordered way and using guidelines and rules that leave less room as possible for interpretation by the individual applicant / verification body. Similarly, for control and monitoring there are not clearly defined procedures or standard instrumentation, let alone tools for analysing and processing data. Finally, governmental organizations in charge of permission grants and operative control tend to have appropriate scientific knowledge only in certain areas and not in others (e.g. the seismic one), and the establishment of an independent multidisciplinary inspection body appears desirable. The project StoHaz (https://sites.google.com/site/s2stohaz/home) aims to initiate a series of actions to overcome these deficiencies and allow to define procedures and standards for the seismic hazard assessment and control of the activities of natural gas storage in underground reservoirs. OGS will take advantage of the experience gained with the design, installation and maintenance of the seismic network monitoring the Collalto reservoir, at the moment the only example in Italy of a public research institution monitoring independently the activities of a private gas storage company.
Simulation of Mechanical Processes in Gas Storage Caverns for Short-Term Energy Storage
NASA Astrophysics Data System (ADS)
Böttcher, Norbert; Nagel, Thomas; Kolditz, Olaf
2015-04-01
In recent years, Germany's energy management has started to be transferred from fossil fuels to renewable and sustainable energy carriers. Renewable energy sources such as solar and wind power are subjected by fluctuations, thus the development and extension of energy storage capacities is a priority in German R&D programs. This work is a part of the ANGUS+ Project, funded by the federal ministry of education and research, which investigates the influence of subsurface energy storage on the underground. The utilization of subsurface salt caverns as a long-term storage reservoir for fossil fuels is a common method, since the construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to solution mining. Another advantage of evaporate as host material is the self-healing behaviour of salt rock, thus the cavity can be assumed to be impermeable. In the framework of short-term energy storage (hours to days), caverns can be used as gas storage reservoirs for natural or artificial fuel gases, such as hydrogen, methane, or compressed air, where the operation pressures inside the caverns will fluctuate more frequently. This work investigates the influence of changing operation pressures at high frequencies on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. The salt behaviour is described by well-known constitutive material models which are capable of predicting creep, self-healing, and dilatancy processes. Our simulations include the thermodynamic behaviour of gas storage process, temperature development and distribution on the cavern boundary, the deformation of the cavern geometry, and the prediction of the dilatancy zone. Based on the numerical results, optimal operation modes can be found for individual caverns, so the risk of host rock damage can be minimized. Furthermore, the model can be used to design efficient monitoring programs to detect possible variations of the host rock due construction and operation of the storage facility. The developed model will be used by public authorities for land use planning issues.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-13-000; PR03-17-000] Chevron Keystone Gas Storage, LLC; Notice of Notification of Change in Market Power Analysis and Request for Renewed Approval of Market-Based Rates April 5, 2010. Take notice that on March 31, 2010, Chevron...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... Company LP, Worsham-Steed Gas Storage, L.P., Energy Transfer Fuel, LP, Mid Continent Market Center, L.L.C... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-44-000; Docket No. PR10... the protest or intervention to the Federal Energy Regulatory Commission, 888 First Street, NE...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-51-000] Bluewater Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed St. Clair River Crossing Replacement Project, Request for Comments on Environmental Issues, and Notice of Onsite Environmental Review The staff of the Federal...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Leader One Energy, LLC] Notice of Intent to Prepare an Environmental Assessment for the Planned Leader One Gas Storage Project, Request for Comments on Environmental Issues, and Notice of a Site Visit April 30, 2010. The staff of the Federal Energy Regulatory Commission (FERC or...
Gas hydrate cool storage system
Ternes, Mark P.; Kedl, Robert J.
1985-01-01
This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.
Weekly Natural Gas Storage Report - EIA
. Stocks were 804 Bcf less than last year at this time and 499 Bcf below the five-year average of 2,128 Bcf . At 1,629 Bcf, total working gas is within the five-year historical range. For information on sampling Underground Storage Compared with Five-Year Range Note: The shaded area indicates the range between the
System for venting gas from a liquid storage tank
NASA Astrophysics Data System (ADS)
Dugan, Regina E.
1989-07-01
Gas is vented from a non-cryogenic liquid storage tank while discharging pressurized liquid from a tube into the tank through a plurality of inclined jets, circumferentially spaced about an end of a vent tube positioned within the tube. Each jet is directed toward a central axis of the vent tube, such that the end of the vent tube receives gas from the vessel passing between individual jetstreams, which in combination form a conical shaped barrier to liquid droplets which would otherwise also pass to the vent tube and out the tank. Gas is thus vented through the central tube while pressurized liquid flows in an axially opposite direction in the annulus between the inner vent tube and the outer liquid tube. The system of the present invention is prarticularly well suited for venting gas from a tank being replenished with liquid at a zero or near zero gravity environment. A screen-type liquid acquisition device employing surface tension is provided for withdrawing substantially liquid from the tank. The withdrawn liquid may be resupplied to the liquid tube under pressure supplied by a circulating pump, thereby releasing substantially only gas from the storage tank to reduce the pressure in the tank.
Sonar surveys used in gas-storage cavern analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crossley, N.G.
1998-05-04
Natural-gas storage cavern internal configuration, inspection information, and cavern integrity data can be obtained during high-pressure operations with specialized gas-sonar survey logging techniques. TransGas Ltd., Regina, Sask., has successfully performed these operations on several of its deepest and highest pressurized caverns. The data can determine gas-in-place inventory and assess changes in spatial volumes. These changes can result from cavern creep, shrinkage, or closure or from various downhole abnormalities such as fluid infill or collapse of the sidewall or roof. The paper discusses conventional surveys with sonar, running surveys in pressurized caverns, accuracy of the sonar survey, initial development of Cavernmore » 5, a roof fall, Cavern 4 development, and a damaged string.« less
Nanostructured carbon materials for adsorption of methane and other gases
Stadie, Nicholas P.; Fultz, Brent T.; Ahn, Channing; Murialdo, Maxwell
2015-06-30
Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.