Science.gov

Sample records for abarema cochliacarpos gomes

  1. Redox properties of Abarema cochliacarpos (Gomes) Barneby & Grime (Fabaceae) stem bark ethanol extract and fractions.

    PubMed

    Dias, A S; Lima, A C B; Santos, A L M L; Rabelo, T K; Serafini, M R; Andrade, C R; Fernandes, X A; Moreira, J C F; Gelain, D P; Estevam, C S; Araujo, B S

    2013-01-01

    The redox properties of the hydroethanol extract (EE) and its ethyl acetate (EAF) and hydromethanol (HMF) fractions obtained from Abarema cochliacarpos (Gomes) Barneby & Grimes stem bark were evaluated. EAF had the highest total phenol content (848.62 ± 78.18 mg g⁻¹), while EE showed the highest content of catechin (71.2 µg g⁻¹). EE, EAF and HMF exhibited the highest levels of antioxidant activity at 100 and 1000 µg mL⁻¹ when the non-enzymatic antioxidant potential was evaluated by the total reactive antioxidant potential, total antioxidant reactivity and nitric oxide scavenging assays. In addition, EAF and HMF showed SOD-like activity. The results for EE, EAF and HMF in this study showed that A. cochliacarpos (Gomes) Barneby & Grimes stem bark have redox properties and may be able to help the endogenous enzymatic and non-enzymatic systems to keep the redox balance.

  2. Abarema cochliacarpos extract decreases the inflammatory process and skeletal muscle injury induced by Bothrops leucurus venom.

    PubMed

    Saturnino-Oliveira, Jeison; Santos, Daiana Do Carmo; Guimarães, Adriana Gibara; Santos Dias, Antônio; Tomaz, Marcelo Amorim; Monteiro-Machado, Marcos; Estevam, Charles Santos; De Lucca Júnior, Waldecy; Maria, Durvanei Augusto; Melo, Paulo A; Araújo, Adriano Antunes de Souza; Santos, Márcio Roberto Viana; Almeida, Jackson Roberto Guedes da Silva; Oliveira, Rita de Cássia Meneses; Pereira de Oliveira, Aldeidia; Quintans Júnior, Lucindo José

    2014-01-01

    Snakebites are a public health problem, especially in tropical countries. However, treatment with antivenom has limited effectiveness against venoms' local effects. Here, we investigated the ability of Abarema cochliacarpos hydroethanolic extract (EAc) to protect mice against injection of Bothrops leucurus venom. Swiss mice received perimuscular venom injection and were subsequently treated orally with EAc in different doses. Treatment with EAc 100, 200, and 400 mg/kg reduced the edema induced by B. leucurus in 1%, 13%, and 39%, respectively. Although lower doses showed no antihypernociceptive effect in the Von Frey test, the higher dose significantly reduced hyperalgesia induced by the venom. Antimyotoxic activity of EAc was also observed by microscopy assessment, with treated muscles presenting preserved structures, decreased edema, and inflammatory infiltrate as compared to untreated ones. Finally, on the rotarod test, the treated mice showed better motor function, once muscle fibers were preserved and there were less edema and pain. Treated mice could stand four times more time on the rotating rod than untreated ones. Our results have shown that EAc presented relevant activities against injection of B. leucurus venom in mice, suggesting that it can be considered as an adjuvant in the treatment of envenomation.

  3. Abarema cochliacarpos Extract Decreases the Inflammatory Process and Skeletal Muscle Injury Induced by Bothrops leucurus Venom

    PubMed Central

    Saturnino-Oliveira, Jeison; Santos, Daiana Do Carmo; Guimarães, Adriana Gibara; Santos Dias, Antônio; Tomaz, Marcelo Amorim; Monteiro-Machado, Marcos; Estevam, Charles Santos; Lucca Júnior, Waldecy De; Maria, Durvanei Augusto; Melo, Paulo A.; Araújo, Adriano Antunes de Souza; Santos, Márcio Roberto Viana; Almeida, Jackson Roberto Guedes da Silva; Oliveira, Rita de Cássia Meneses; Pereira de Oliveira, Aldeidia; Quintans Júnior, Lucindo José

    2014-01-01

    Snakebites are a public health problem, especially in tropical countries. However, treatment with antivenom has limited effectiveness against venoms' local effects. Here, we investigated the ability of Abarema cochliacarpos hydroethanolic extract (EAc) to protect mice against injection of Bothrops leucurus venom. Swiss mice received perimuscular venom injection and were subsequently treated orally with EAc in different doses. Treatment with EAc 100, 200, and 400 mg/kg reduced the edema induced by B. leucurus in 1%, 13%, and 39%, respectively. Although lower doses showed no antihypernociceptive effect in the Von Frey test, the higher dose significantly reduced hyperalgesia induced by the venom. Antimyotoxic activity of EAc was also observed by microscopy assessment, with treated muscles presenting preserved structures, decreased edema, and inflammatory infiltrate as compared to untreated ones. Finally, on the rotarod test, the treated mice showed better motor function, once muscle fibers were preserved and there were less edema and pain. Treated mice could stand four times more time on the rotating rod than untreated ones. Our results have shown that EAc presented relevant activities against injection of B. leucurus venom in mice, suggesting that it can be considered as an adjuvant in the treatment of envenomation. PMID:25136627

  4. GOME Observations of Atmospheric SO2

    NASA Astrophysics Data System (ADS)

    Khokhar, M. F.; Beirle, S.; Frankenberg, C.; Hollwedel, J.; Kraus, S.; Kühl, S.; Shangavi, S.; Platt, U.; Wilms-Grabe, W.; Wagner, T.

    2003-04-01

    The GOME instrument on board ERS-2 has been proven to be sensitive to various tropospheric trace gases, like NO2, SO2, HCHO, H2O, BrO, and O4. Thus many important atmospheric phenomena (like biomass burning, anthropogenic pollution, long range transport of trace gases, etc.) can be monitored on a global scale and over an extended period of time (from 1995 to present). Satellite in particular, observations allow to monitor the temporal as well as the spatial variability of atmospheric trace gases. In this contribution we focus on GOME measurement of tropospheric SO2. SO2 is emitted from both natural (like Vulcaneos) and anthropogenic sources (like industrial emissions and heating during winter). Several case studies of high atmospheric SO2 concentrations measured by GOME are presented.

  5. GOME wavelength calibration using solar and atmospheric spectra

    NASA Technical Reports Server (NTRS)

    Caspar, C.; Chance, K.

    1997-01-01

    Spectral information in the global ozone monitoring experiment (GOME) solar irradiance spectra and GOME earth radiance spectra are used in conjunction with the GOME solar reference spectrum to provide absolute vacuum internal wavelength calibration for GOME. Two methods for wavelength calibration of GOME data are investigated. The first employs chi-square minimization of a merit function involving wavelength and the GOME slit function. It is quite robust and requires little GOME data in the processing (calibration window regions from 15 to 40 pixels). The second employs cross correlation of GOME data and the solar reference spectrum in the Fourier transform domain, using a procedure in the image reduction and analysis facility (IRAF) software system developed for the determination of galaxy redshifts. It also requires small amounts of GOME data (calibration window regions with from 10 to 15 pixels). Both methods provide absolute wavelength calibration accurate to a small fraction of a GOME pixel across the entire GOME spectrum, and to 0.001 nm over much of the range.

  6. Ozone profile retrievals from the ESA GOME instrument

    NASA Technical Reports Server (NTRS)

    Munro, Rosemary; Kerridge, Brian J.; Burrows, John P.; Chance, Kelly

    1994-01-01

    The potential of the ESA Global Ozone Monitoring Experiment (GOME) to produce ozone profile information has been examined by carrying out two sample retrievals using simulated GOME data. The first retrieval examines the potential of the GOME instrument to produce stratospheric ozone profiles using the traditional back-scatter ultraviolet technique, while the second examines the possibility of obtaining tropospheric profile information, and improving the quality of the stratospheric profile retrievals, by exploiting the temperature dependence of the ozone Huggins bands.

  7. US Participation in the GOME and SCIAMACHY Projects

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Geary, J. C.; Spurr, R. J. D.

    1998-01-01

    This report summarizes research done under NASA Grant NAGW-2541 through September 30, 1997. The research performed under this grant includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, sensitivity and instrument studies to define GOME and SCIAMACHY instruments, consultation on optical and detector issues for both GOME and SCIAMACHY, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and development of infrared line-by-line atmospheric modeling and retrieval capability for SCIAMACHY. The European Space Agency selected the SAO to participate in GOME validation and science studies, part of the overall ERS AO. This provided access to all GOME data; The SAO activities that are carried out as a result of selection by ESA were funded by the present grant. The Global Ozone Monitoring Experiment was successfully launched on the ERS- 2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY is currently scheduled for launch in early 2000. The first two European ozone monitoring instruments (OMI), to fly on the q series of operational meteorological satellites being planned by Eumetsat, have been selected to be GOME-type instruments (the first, in fact, will be the refurbished GOME flight spare). K. Chance is the U.S. member of the OMI Users Advisory Group.

  8. Defining the mammalian CArGome

    PubMed Central

    Sun, Qiang; Chen, Guang; Streb, Jeffrey W.; Long, Xiaochun; Yang, Yumei; Stoeckert, Christian J.; Miano, Joseph M.

    2006-01-01

    Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered >100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton. PMID:16365378

  9. Cell scientist to watch - Edgar Gomes.

    PubMed

    2017-01-15

    Edgar Gomes earned his PhD at the University of Coimbra in Portugal under the supervision of Carlos Duarte. He then travelled to the USA to train as a postdoctoral fellow in the laboratory of Gregg Gundersen at Columbia University in New York. Before moving back to Portugal in 2014, Edgar was a group leader in the Myology Institute at the University of Pierre and Marie Curie in Paris (France) as an INSERM Avenir Fellow. His lab investigates the mechanisms of nuclear positioning in skeletal muscle and in migrating cells.

  10. Tropospheric Chemistry Studies using Observations from GOME and TOMS

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Spurr, Robert J. D.; Kurosu, Thomas P.; Jacob, Daniel J.; Gleason, James F.

    2003-01-01

    Studies to quantitatively determine trace gas and aerosol amounts from the Global Ozone Monitoring Experiment (GOME) and the Total Ozone Monitoring Experiment (TOMS) and to perform chemical modeling studies which utilize these results are given. This includes: 1. Analysis of measurements from the GOME and TOMS instruments for troposphere distributions of O3 and HCHO; troposphere enhancements of SO2, NO2 and aerosols associated with major sources; and springtime events of elevated BrO in the lower Arctic troposphere. 2. Application of a global 3-dimensional model of troposphere chemistry to interpret the GOME observations in terms of the factors controlling the abundances of troposphere ozone and OH.

  11. A new cloud algorithm for gome data

    NASA Astrophysics Data System (ADS)

    Grzegorski, M.; Beierle, S.; Friedeburg, C.; Hollwedel, J.; Khokhar, F.; Kühl, S.; Platt, U.; Wenig, M.; Wilms-Grabe, W.; Wagner, T.

    2003-04-01

    The Global Ozone Monitoring Experiment (GOME) on the ERS-2 satellite allows the measurement of many tropospheric trace gases (e.g. NO_2, SO_2, BrO, HCHO, H_2O) using the DOAS technique. Cloud algorithms are essential for the accurate retrieval of the tropospheric vertical column density of these trace gases. A new algorithm using PMD-data is presented. The results are validated through comparison with other algorithms (e.g. FRESCO, CRUSA). Problems found in existing algorithms such as overestimated cloud fractions over desert regions and negative values over oceans are significantly improved with the new algorithm. Also other possible errorsources like the systematic intensity decrease across the subpixels influences the calculation of the cloud fractions. The new algorithm tries to correct this effect.

  12. Tropospheric Formaldehyde Measurements from the ESA GOME Instrument

    NASA Technical Reports Server (NTRS)

    Chance, K.; Spurr, R. J. D.; Kurosu, T. P.; Palmer, P. I.; Martin, R. V.; Fiore, A.; Li, Q.; Jacob, D. J.

    2001-01-01

    The Global Ozone Monitoring Experiment (GOME) was launched on the European Space Agency's ERS-2 satellite on April 20, 1995. GOME measures the Earth's atmosphere in the nadir geometry, using a set of spectrometers that cover the UV and visible (240-790 nm) at moderate resolution (0.2 nm in the UV, 0.4 nm in the visible), employing silicon diode array detectors. GOME takes some 30,000 spectra per day, obtaining full global coverage in three days. We directly fit GOME radiance spectra using nonlinear least-squares analysis to obtain column amounts of several trace species with significant tropospheric concentrations, including ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO). Measurements of HCHO due to biogenic activity in the troposphere are presented here.

  13. NLC occurrence frequency retrieval from SCIAMACHY, GOME and GOME-2 nadir data

    NASA Astrophysics Data System (ADS)

    Langowski, Martin; Von Savigny, Christian

    2016-07-01

    Noctilucent clouds NLCs are clouds occurring in the polar summer mesopause region at about 82-86 km altitude, and they can be observed poleward of about 50 degrees latitude. Due to their high altitude, they can scatter sunlight to the ground, even if it is dark at the ground, which makes them a fascinating bright phenomenon in the summer night sky. First observations of NLCs were reported in the 1880ies after the eruption of the Krakatau volcano. Afterwards they were seen every year and current long time studies show, that their occurrence rate is well anticorrelated with solar activity and it increased over time for the last decades. Ever since the NLCs were observed it was discussed whether their increasing occurrence rate can be interpreted as a sign of climate change in the upper atmosphere. With the SCIAMACHY, GOME and GOME 2 nadir measurements, which are very similar for each instrument a long time dataset of over 20 years of data is available to retrieve NLC occurrence frequencies. All three instruments have a very stable local times with descending nodes ranging between 9:30 a.m. and 10:30 a.m.. We present the algorithm to retrieve NLC occurrence frequencies from these instruments and results of this retrieval.

  14. U.S. Participation in the GOME and SCIAMACHY Projects

    NASA Technical Reports Server (NTRS)

    Chance, K. V.

    1996-01-01

    This report summarizes research done under NASA Grant NAGW-2541 from April 1, 1996 through March 31, 1997. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and development of infrared line-by-line atmospheric modeling and retrieval capability for SCIAMACHY. SAO also continues to participate in GOME validation studies, to the limit that can be accomplished at the present level of funding. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY is currently in instrument characterization. The first two European ozone monitoring instruments (OMI), to fly on the Metop series of operational meteorological satellites being planned by Eumetsat, have been selected to be GOME-type instruments (the first, in fact, will be the refurbished GOME flight spare). K. Chance is the U.S. member of the OMI Users Advisory Group.

  15. SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest (Technical Monitor); Chance, Kelly; Kurosu, Thomas

    2004-01-01

    This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents h m the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBUV, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.

  16. SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas

    2003-01-01

    This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents from the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBW, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.

  17. US Participation in the GOME and SCIAMACHY Projects

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Geary, J. C.

    1996-01-01

    The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, further sensitivity and instrument studies to help finalize the definition of the SCIAMACHY instrument, and consultation on optical and detector issues for both GOME and SCIAMACHY. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, during this reporting period, and is working in the expected fashion. The European Space Agency has made their selections from responses to the Announcement of Opportunity for GOME validation and science studies, part of the overall ERS AO. The Smithsonian Astrophysical Observatory (SAO) proposal has been selected. These proposals are primarily for access to the data; ESA does not provide research funding for the selected investigations. The SAO activities that are carried out as a result of selection by ESA are funded by the present grant, to the limit that can be accomplished at the present level of funding. SCIAMACHY is currently in Phase C/D. Instrument design is almost finalized and selection of infrared detectors from the initial production run has been made.

  18. Quantitative spectroscopy for the analysis of GOME data

    NASA Technical Reports Server (NTRS)

    Chance, K.

    1997-01-01

    Accurate analysis of the global ozone monitoring experiment (GOME) data to obtain atmospheric constituents requires reliable, traceable spectroscopic parameters for atmospheric absorption and scattering. Results are summarized for research that includes: the re-determination of Rayleigh scattering cross sections and phase functions for the 200 nm to 1000 nm range; the analysis of solar spectra to obtain a high-resolution reference spectrum with excellent absolute vacuum wavelength calibration; Ring effect cross sections and phase functions determined directly from accurate molecular parameters of N2 and O2; O2 A band line intensities and pressure broadening coefficients; and the analysis of absolute accuracies for ultraviolet and visible absorption cross sections of O3 and other trace species measurable by GOME.

  19. Quantitative spectroscopy for the analysis of GOME data

    NASA Technical Reports Server (NTRS)

    Chance, K.

    1997-01-01

    Accurate analysis of the global ozone monitoring experiment (GOME) data to obtain atmospheric constituents requires reliable, traceable spectroscopic parameters for atmospheric absorption and scattering. Results are summarized for research that includes: the re-determination of Rayleigh scattering cross sections and phase functions for the 200 nm to 1000 nm range; the analysis of solar spectra to obtain a high-resolution reference spectrum with excellent absolute vacuum wavelength calibration; Ring effect cross sections and phase functions determined directly from accurate molecular parameters of N2 and O2; O2 A band line intensities and pressure broadening coefficients; and the analysis of absolute accuracies for ultraviolet and visible absorption cross sections of O3 and other trace species measurable by GOME.

  20. Development of microsatellite markers for Hancornia speciosa Gomes (Apocynaceae).

    PubMed

    Rodrigues, A J L; Yamaguishi, A T; Chaves, L J; Coelho, A S G; Lima, J S; Telles, M P C

    2015-07-03

    Herein, we describe 34 microsatellite loci developed using an enrichment genomic library for the tree species Hancornia speciosa Gomes (Apocynaceae). Thirty-five individuals were genotyped using 34 primers to analyze the polymorphisms at each locus. The number of alleles per locus ranged from 4 to 20. The average number of alleles was 8.11, and the expected heterozygosity ranged from 0.62 to 0.94. These microsatellite primers will be useful in population genetics studies for this species.

  1. Spectral surface albedo derived from GOME-2/Metop measurements

    NASA Astrophysics Data System (ADS)

    Pflug, Bringfried; Loyola, Diego

    2009-09-01

    Spectral surface albedo is an important input for GOME-2 trace gas retrievals. An algorithm was developed for estimation of spectral surface albedo from top-of-atmosphere (TOA)-radiances measured by the Global Ozone Monitoring Experiment GOME-2 flying on-board MetOp-A. The climatologically version of this algorithm estimates Minimum Lambert-Equivalent Reflectivity (MLER) for a fixed time window and can use data of many years in contrast to the Near-real time version. Accuracy of surface albedo estimated by MLER-computation increases with the amount of available data. Unfortunately, most of the large GOME pixels are partly covered by clouds, which enhance the LER-data. A plot of LER-values over cloud fraction is used within this presentation to account for this influence of clouds. This "cloud fraction plot" can be applied over all surface types. Surface albedo obtained using the "cloud fraction plot" is compared with reference surface albedo spectra and with the FRESCO climatology. There is a general good agreement; however there are also large differences for some pixels.

  2. Tropical tropospheric column ozone from GOME-I, SCIAMACHY and GOME-II using the Convective Cloud Differential (CCD) method

    NASA Astrophysics Data System (ADS)

    Leventidou, Elpida; Weber, Mark; Eichmann, Kai-Uwe; Burrows, P. John

    2014-05-01

    Tropospheric ozone column can be retrieved with the Convective Clouds Differential (CCD) technique (Ziemke et al., 1998) using total ozone column and cloud retrievals. The CCD technique uses the clear-sky and above-cloud ozone column measurements to derive a monthly mean tropospheric column amount by the subtraction of the above cloud column from the total column. An important assumption here is that stratospheric ozone is nearly invariant with longitude, which is only approximately true in the tropical region. A CCD algorithm has been developed and is applied to GOME-I, SCIAMACHY and GOME-II measurements so that a unique long-term record of monthly averaged tropical tropospheric ozone (20oN - 20oS) can be created starting in 1995. First results of the CCD application that includes validation with SHADOZ ozonesonde data will be presented.

  3. An Improved Retrieval of Tropospheric Nitrogen Dioxide from GOME

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Chance, Kelly; Jacob, Daniel J.; Kurosu, Thomas P.; Spurr, Robert J. D.; Bucsela, Eric; Gleason, James F.; Palmer, Paul I.; Bey, Isabelle; Fiore, Arlene M.

    2002-01-01

    We present a retrieval of tropospheric nitrogen dioxide (NO2) columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument that improves in several ways over previous retrievals, especially in the accounting of Rayleigh and cloud scattering. Slant columns, which are directly fitted without low-pass filtering or spectral smoothing, are corrected for an artificial offset likely induced by spectral structure on the diffuser plate of the GOME instrument. The stratospheric column is determined from NO2 columns over the remote Pacific Ocean to minimize contamination from tropospheric NO2. The air mass factor (AMF) used to convert slant columns to vertical columns is calculated from the integral of the relative vertical NO2 distribution from a global 3-D model of tropospheric chemistry driven by assimilated meteorological data (Global Earth Observing System (GEOS)-CHEM), weighted by altitude dependent scattering weights computed with a radiative transfer model (Linearized Discrete Ordinate Radiative Transfer), using local surface albedos determined from GOME observations at NO2 wavelengths. The AMF calculation accounts for cloud scattering using cloud fraction, cloud top pressure, and cloud optical thickness from a cloud retrieval algorithm (GOME Cloud Retrieval Algorithm). Over continental regions with high surface emissions, clouds decrease the AMT by 20- 30% relative to clear sky. GOME is almost twice as sensitive to tropospheric NO2 columns over ocean than over land. Comparison of the retrieved tropospheric NO2 columns for July 1996 with GEOS-CHEM values tests both the retrieval and the nitrogen oxide radical (NOx) emissions inventories used in GEOS-CHEM. Retrieved tropospheric NO2 columns over the United States, where NOx emissions are particularly well known, are within 18% of GEOS-CHEM columns and are strongly spatially correlated (r = 0.78, n = 288, p less than 0.005). Retrieved columns show more NO2 than GEOS-CHEM columns over the Transvaal

  4. An Improved Retrieval of Tropospheric Nitrogen Dioxide from GOME

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Chance, Kelly; Jacob, Daniel J.; Kurosu, Thomas P.; Spurr, Robert J. D.; Bucsela, Eric; Gleason, James F.; Palmer, Paul I.; Bey, Isabelle; Fiore, Arlene M.

    2002-01-01

    We present a retrieval of tropospheric nitrogen dioxide (NO2) columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument that improves in several ways over previous retrievals, especially in the accounting of Rayleigh and cloud scattering. Slant columns, which are directly fitted without low-pass filtering or spectral smoothing, are corrected for an artificial offset likely induced by spectral structure on the diffuser plate of the GOME instrument. The stratospheric column is determined from NO2 columns over the remote Pacific Ocean to minimize contamination from tropospheric NO2. The air mass factor (AMF) used to convert slant columns to vertical columns is calculated from the integral of the relative vertical NO2 distribution from a global 3-D model of tropospheric chemistry driven by assimilated meteorological data (Global Earth Observing System (GEOS)-CHEM), weighted by altitude dependent scattering weights computed with a radiative transfer model (Linearized Discrete Ordinate Radiative Transfer), using local surface albedos determined from GOME observations at NO2 wavelengths. The AMF calculation accounts for cloud scattering using cloud fraction, cloud top pressure, and cloud optical thickness from a cloud retrieval algorithm (GOME Cloud Retrieval Algorithm). Over continental regions with high surface emissions, clouds decrease the AMT by 20- 30% relative to clear sky. GOME is almost twice as sensitive to tropospheric NO2 columns over ocean than over land. Comparison of the retrieved tropospheric NO2 columns for July 1996 with GEOS-CHEM values tests both the retrieval and the nitrogen oxide radical (NOx) emissions inventories used in GEOS-CHEM. Retrieved tropospheric NO2 columns over the United States, where NOx emissions are particularly well known, are within 18% of GEOS-CHEM columns and are strongly spatially correlated (r = 0.78, n = 288, p less than 0.005). Retrieved columns show more NO2 than GEOS-CHEM columns over the Transvaal

  5. Operational trace gas column observations from GOME-2 on MetOp

    NASA Astrophysics Data System (ADS)

    Valks, Pieter; Hao, Nan; Pinardi, Gaia; Hedelt, Pascal; Liu, Song; Van Roozendael, Michel; De Smedt, Isabelle; Theys, Nicolas; Koukouli, MariLiza; Balis, Dimitris

    2017-04-01

    This contribution focuses on the operational GOME-2 trace gas column products developed in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Composition Monitoring (AC-SAF). We present an overview of the retrieval algorithms for ozone, OClO, NO2, SO2 and formaldehyde, and we show examples of various applications such as air quality and climate monitoring, using observations from the GOME-2 instruments on MetOp-A and MetOp-B. Total ozone and the minor trace gas columns from GOME-2 are retrieved with the latest version 4.8 of the GOME Data Processor (GDP), which uses an optimized Differential Optical Absorption Spectroscopy (DOAS) algorithm, with air mass factor conversions based on the LIDORT model. Improved total and tropospheric NO2 columns are retrieved in the visible wavelength region between 425 and 497 nm. SO2 emissions from volcanic and anthropogenic sources can be measured by GOME-2 using the UV wavelength region around 320 nm. For formaldehyde, an optimal DOAS fitting window around 335 nm has been determined for GOME-2. The GOME-2 trace gas columns have reached the operational EUMETSAT product status, and are available to the users in near real time (within two hours after sensing by GOME-2). The use of trace gas observations from the GOME-2 instruments on MetOp-A and MetOp-B for air quality purposed will be illustrated, e.g. for South-East Asia and Europe. Furthermore, comparisons of the GOME-2 satellite observations with ground-based measurements will be shown. Finally, the use of GOME-2 trace-gas column data in the Copernicus Atmosphere Monitoring Service (CAMS) will be presented.

  6. Development of a prototype algorithm for the operational retrieval of height-resolved products from GOME

    NASA Technical Reports Server (NTRS)

    Spurr, Robert J. D.

    1997-01-01

    Global ozone monitoring experiment (GOME) level 2 products of total ozone column amounts have been generated on a routine operational basis since July 1996. These products and the level 1 radiance products are the major outputs from the ERS-2 ground segment GOME data processor (GDP) at DLR in Germany. Off-line scientific work has already shown the feasibility of ozone profile retrieval from GOME. It is demonstrated how the retrievals can be performed in an operational context. Height-resolved retrieval is based on the optimal estimation technique, #and cloud-contaminated scenes are treated in an equivalent reflecting surface approximation. The prototype must be able to handle GOME measurements routinely on a global basis. Requirements for the major components of the algorithm are described: this incorporates an overall strategy for operational height-resolved retrieval from GOME.

  7. Development of a prototype algorithm for the operational retrieval of height-resolved products from GOME

    NASA Technical Reports Server (NTRS)

    Spurr, Robert J. D.

    1997-01-01

    Global ozone monitoring experiment (GOME) level 2 products of total ozone column amounts have been generated on a routine operational basis since July 1996. These products and the level 1 radiance products are the major outputs from the ERS-2 ground segment GOME data processor (GDP) at DLR in Germany. Off-line scientific work has already shown the feasibility of ozone profile retrieval from GOME. It is demonstrated how the retrievals can be performed in an operational context. Height-resolved retrieval is based on the optimal estimation technique, #and cloud-contaminated scenes are treated in an equivalent reflecting surface approximation. The prototype must be able to handle GOME measurements routinely on a global basis. Requirements for the major components of the algorithm are described: this incorporates an overall strategy for operational height-resolved retrieval from GOME.

  8. An empirical sun-glint index for GOME-2

    NASA Astrophysics Data System (ADS)

    Beirle, Steffen; Penning de Vries, Marloes; Lang, Rüdiger; Wagner, Thomas

    2014-05-01

    Sun-glint has high impact on several kinds of remote sensing applications over oceans, e.g. ocean color, detection of oil spills, retrieval of cloud and aerosol properties, or the retrieval of trace gas columns from spectral measurements. Here we investigate to what extent information about sun-glint can be derived from spectrally resolved measurements from satellite, e.g. GOME-2, covering the UV/vis spectral range, but with rather coarse spatial resolution. Several different quantities are investigated, e.g. radiance, operational cloud products, a color index, polarization state (Stokes fraction), and the oxygen column density. From the combination of color index and Stokes fraction, it is possible to differentiate between the occurrence of sun-glint and clouds, and an empirical sun-glint flag can be defined on the high spatial resolution of GOME-2 PMD measurements. This flag can be used to either exclude sun-glint situations, or to explicitly select them for their well-defined radiative transfer conditions and high reflectance. Going beyond simple flagging, a float sun-glint index might allow for a gradual quantification or correction of sun-glint effects, with potential applications in various fields of research (work in progress).

  9. Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements

    NASA Astrophysics Data System (ADS)

    Kalakoski, Niilo; Kujanpää, Jukka; Sofieva, Viktoria; Tamminen, Johanna; Grossi, Margherita; Valks, Pieter

    2016-04-01

    The total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde observations and global positioning system (GPS) retrievals. The validation is performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The time periods for the validation are January 2007-July 2013 (GOME-2A) and December 2012-July 2013 (GOME-2B). The radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by the National Climatic Data Center (NCDC). The ground-based GPS observations from the COSMIC/SuomiNet network are used as the second independent data source. We find a good general agreement between the GOME-2 and the radiosonde/GPS data. The median relative difference of GOME-2 to the radiosonde observations is -2.7 % for GOME-2A and -0.3 % for GOME-2B. Against the GPS, the median relative differences are 4.9 % and 3.2 % for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against the GPS retrievals. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.

  10. GOME Total Ozone and Calibration Error Derived Usign Version 8 TOMS Algorithm

    NASA Technical Reports Server (NTRS)

    Gleason, J.; Wellemeyer, C.; Qin, W.; Ahn, C.; Gopalan, A.; Bhartia, P.

    2003-01-01

    The Global Ozone Monitoring Experiment (GOME) is a hyper-spectral satellite instrument measuring the ultraviolet backscatter at relatively high spectral resolution. GOME radiances have been slit averaged to emulate measurements of the Total Ozone Mapping Spectrometer (TOMS) made at discrete wavelengths and processed using the new TOMS Version 8 Ozone Algorithm. Compared to Differential Optical Absorption Spectroscopy (DOAS) techniques based on local structure in the Huggins Bands, the TOMS uses differential absorption between a pair of wavelengths including the local stiucture as well as the background continuum. This makes the TOMS Algorithm more sensitive to ozone, but it also makes the algorithm more sensitive to instrument calibration errors. While calibration adjustments are not needed for the fitting techniques like the DOAS employed in GOME algorithms, some adjustment is necessary when applying the TOMS Algorithm to GOME. Using spectral discrimination at near ultraviolet wavelength channels unabsorbed by ozone, the GOME wavelength dependent calibration drift is estimated and then checked using pair justification. In addition, the day one calibration offset is estimated based on the residuals of the Version 8 TOMS Algorithm. The estimated drift in the 2b detector of GOME is small through the first four years and then increases rapidly to +5% in normalized radiance at 331 nm relative to 385 nm by mid 2000. The lb detector appears to be quite well behaved throughout this time period.

  11. GOME Total Ozone and Calibration Error Derived Usign Version 8 TOMS Algorithm

    NASA Technical Reports Server (NTRS)

    Gleason, J.; Wellemeyer, C.; Qin, W.; Ahn, C.; Gopalan, A.; Bhartia, P.

    2003-01-01

    The Global Ozone Monitoring Experiment (GOME) is a hyper-spectral satellite instrument measuring the ultraviolet backscatter at relatively high spectral resolution. GOME radiances have been slit averaged to emulate measurements of the Total Ozone Mapping Spectrometer (TOMS) made at discrete wavelengths and processed using the new TOMS Version 8 Ozone Algorithm. Compared to Differential Optical Absorption Spectroscopy (DOAS) techniques based on local structure in the Huggins Bands, the TOMS uses differential absorption between a pair of wavelengths including the local stiucture as well as the background continuum. This makes the TOMS Algorithm more sensitive to ozone, but it also makes the algorithm more sensitive to instrument calibration errors. While calibration adjustments are not needed for the fitting techniques like the DOAS employed in GOME algorithms, some adjustment is necessary when applying the TOMS Algorithm to GOME. Using spectral discrimination at near ultraviolet wavelength channels unabsorbed by ozone, the GOME wavelength dependent calibration drift is estimated and then checked using pair justification. In addition, the day one calibration offset is estimated based on the residuals of the Version 8 TOMS Algorithm. The estimated drift in the 2b detector of GOME is small through the first four years and then increases rapidly to +5% in normalized radiance at 331 nm relative to 385 nm by mid 2000. The lb detector appears to be quite well behaved throughout this time period.

  12. GOME total ozone and calibration error derived using Version 8 TOMS Algorithm

    NASA Astrophysics Data System (ADS)

    Gleason, J.; Wellemeyer, C.; Qin, W.; Ahn, C.; Gopalan, A.; Bhartia, P.

    2003-04-01

    The Global Ozone Monitoring Experiment (GOME) is a hyper-spectral satellite instrument measuring the ultraviolet backscatter at relatively high spectral resolution. GOME radiances have been slit averaged to emulate measurements of the Total Ozone Mapping Spectrometer (TOMS) made at discrete wavelengths and processed using the new TOMS Version 8 Ozone Algorithm. Compared to Differential Optical Absorption Spectroscopy (DOAS) techniques based on local structure in the Huggins Bands, the TOMS uses differential absorption between a pair of wavelengths including the local structure as well as the background continuum. This makes the TOMS Algorithm more sensitive to ozone, but it also makes the algorithm more sensitive to instrument calibration errors. While calibration adjustments are not needed for the fitting techniques like the DOAS employed in GOME algorithms, some adjustment is necessary when applying the TOMS Algorithm to GOME. Using spectral discrimination at near ultraviolet wavelength channels unabsorbed by ozone, the GOME wavelength dependent calibration drift is estimated and then checked using pair justification. In addition, the day one calibration offset is estimated based on the residuals of the Version 8 TOMS Algorithm. The estimated drift in the 2b detector of GOME is small through the first four years and then increases rapidly to +5% in normalized radiance at 331 nm relative to 385 nm by mid 2000. The 1b detector appears to be quite well behaved throughout this time period.

  13. GOME and Sciamachy data access using the Netherlands Sciamachy Data Center

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; de Vreede, Ernst; van de Vegte, John; van Hees, Ricard; van der Neut, Ian; Stammes, Piet; Pieters, Ankie; van der A, Ronald

    2010-05-01

    The Netherlands Sciamachy Data Center (NL-SCIA-DC) provides access to satellite data from the GOME and Sciamachy instruments for over 10 years now. GOME and Sciamachy both measure trace gases like Ozone, Methane, NO2 and aerosols, which are important for climate and air quality monitoring. Recently (February 2010) a new release of the NL-SCIA-DC provides an improved processing and archiving structure and an improved user interface. This Java Webstart application allows the user to browse, query and download GOME and Sciamachy data products, including KNMI and SRON GOME and Sciamachy products (cloud products, CH4, NO2, CO). Data can be searched on file and pixel level, and can be graphically displayed. The huge database containing all pixel information of GOME and Sciamachy is unique and allows specific selection, e.g., selecting cloud free pixels. Ordered data is delivered by FTP or email. The data available spans the mission times of GOME and Sciamachy, and is constantly updated as new data becomes available. The data services future upgrades include offering additional functionality to end-users of Sciamachy data. One of the functionalities provided will be the possibility to select and process Sciamachy products using different data processors, using Grid technology. This technology was successfully researched and will be made operationally available in the near future.

  14. Monitoring of volcanic SO2 emissions using the GOME-2 instrument

    NASA Astrophysics Data System (ADS)

    Hedelt, Pascal; Valks, Pieter; Loyola, Diego

    2014-05-01

    This contribution focusses on the GOME-2 SO2 column products from the METOP-A and B satellites. The GOME-2 SO2 column product has been developed in the framework of EUMETSAT's Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF). Satellite-based remote sensing measurements of volcanic SO2 provide critical information for reducing volcanic hazards. Volcanic eruptions may bring ash and gases (e.g. SO2) high up into the atmosphere, where a long-range transport can occur. SO2 is an important indicator for volcanic activity and an excellent tracer for volcanic eruption clouds, especially if ash detection techniques fail. SO2 can affect aviation safety: In the cabin it can cause disease and respiratory symptoms, whereas in its hydrogenated form H2SO4 it is highly corrosive and can cause damage to jet engines as well as pitting of windscreens. We will present results for volcanic events retrieved from GOME-2 solar backscattered measurements in the UV wavelength region around 320nm using the Differential Optical Absorption Spectroscopy (DOAS) method. SO2 columns are generated operationally by DLR with the GOME Data Processor (GDP) version 4.7 and are available in near-real-time, i.e. within two hours after sensing. Using data from both MetOp satellites allows for a daily global coverage. We will furthermore present current improvements to the GOME-2 SO2 column product.

  15. Improvement of total and tropospheric NO2 column retrieval for GOME-2

    NASA Astrophysics Data System (ADS)

    Liu, Song; Valks, Pieter; Pinardi, Gaia; De Smedt, Isabelle; Huan, Yu; Beirle, Steffen

    2016-04-01

    This contribution focuses on the development and refinement of novel scientific algorithms for the retrieval of total and tropospheric nitrogen dioxide (NO2) columns for the GOME-2 satellite instrument. NO2 plays significant roles in atmospheric chemistry. It is strongly related to ozone destruction in the stratosphere, and is regarded as an important air pollutant and ozone precursor in the troposphere. Total NO2 columns from GOME-2 are retrieved with the Differential Optical Absorption Spectroscopy (DOAS) method using the large 425-497 nm wavelength fitting window in order to increase the signal to noise ratio. The tropospheric NO2 column is derived using an improved Stratospheric-Tropospheric separation (STS) algorithm, followed by an air mass factor (AMF) conversion calculated with the LIDORT model. For the calculation of the tropospheric AMF, improved GOME-2 cloud parameters are used and a new surface albedo (LER) climatology based on GOME-2 observations for 2007-2013 is applied. We present the improvements in the NO2 retrieval algorithm, and we show examples of air quality applications with GOME-2 NO2 data.

  16. Improved retrieval of total and tropospheric NO2 column for GOME-2

    NASA Astrophysics Data System (ADS)

    Liu, Song; Valks, Pieter; Pinardi, Gaia; De Smedt, Isabelle; Yu, Huan; Beirle, Steffen

    2017-04-01

    This contribution focuses on the algorithm refinement for the retrieval of total and tropospheric nitrogen dioxide (NO2) columns for the GOME-2 satellite instrument. The improved algorithm will be implemented in the upcoming version of the operational GOME Data Processor (GDP) at the German Aerospace Center (DLR). A larger 425-497 nm wavelength fitting window is used in the differential optical absorption spectroscopy (DOAS) retrieval of the NO2 slant column density. The reference spectra are updated, and the GOME-2 slit function variations over time and along orbit is taken into account. In addition, the effect of the new level 1b data version 6.1 on the retrieved NO2 slant column is analyzed. The STRatospheric Estimation Algorithm from Mainz (STREAM) is applied to determine the stratospheric column density of NO2. For the calculation of the tropospheric AMF, a new surface albedo climatology based on GOME-2 observations for 2007-2013 and a priori NO2 profile obtained from the chemical transport model IMAGESv2 are used. We present the improvements in the NO2 retrieval algorithm and show comparisons with OMI NO2 data. Furthermore, we show examples of air quality applications with GOME-2 NO2 data.

  17. Ozone Profile Retrievals from GOME-2 UV/Visible Measurements

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Nowlan, C. R.

    2014-12-01

    It has been shown that adding visible measurements in the Chappuis band to ultraviolet (UV) measurements in the Hartley/Huggins bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA Eearth Venture Instrument TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels (~290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit; the primary purpose of including the second channel is to improve lower tropospheric ozone retrieval for air quality monitoring. However, this retrieval enhancement has yet to be solidly demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interference from surface reflectance. We present retrievals from GOME-2 (Global Ozone Monitoring and Experiment-2) UV and visible measurements using the SAO optimal estimation based ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible into the ozone profile algorithm based on existing surface reflectance spectra and MODIS (Moderate-resolution Imaging Spectroradiometer) BRDF (Bidirectional Reflectance Distribution Function) climatology. We evaluate the retrieval performance of UV/visible retrieval over the UV retrieval in terms of retrieved lower tropospheric ozone and increase in degree of free for signal (DFS) over the globe in different seasons, and we validate both retrievals against ozonesonde measurements.

  18. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    NASA Astrophysics Data System (ADS)

    Lutz, R.; Loyola, D.; Gimeno García, S.; Romahn, F.

    2015-12-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) on-board the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) and to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud top height (CTH), cloud top pressure (CTP), cloud top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than six years of GOME-2A data (February 2007-June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing angle dependent and latitude dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with co-located AVHRR geometrical cloud fractions shows a general good agreement with a mean difference of -0.15±0.20. From operational point of view, an advantage of the OCRA algorithm is its extremely fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud fraction estimation for GOME-2 can be achieved with OCRA by using the polarization measurement devices (PMDs).

  19. Highly resolved global distribution of tropospheric NO2 using GOME narrow swath mode data

    NASA Astrophysics Data System (ADS)

    Beirle, S.; Platt, U.; Wenig, M.; Wagner, T.

    2004-09-01

    The Global Ozone Monitoring Experiment (GOME) allows the retrieval of tropospheric vertical column densities (VCDs) of NO2 on a global scale. Regions with enhanced industrial activity can clearly be detected, but the standard spatial resolution of the GOME ground pixels (320x40km2) is insufficient to resolve regional trace gas distributions or individual cities.

    Every 10 days within the nominal GOME operation, measurements are executed in the so called narrow swath mode with a much better spatial resolution (80x40km2). We use this data (1997-2001) to construct a detailed picture of the mean global tropospheric NO2 distribution. Since - due to the narrow swath - the global coverage of the high resolution observations is rather poor, it has proved to be essential to deseasonalize the single narrow swath mode observations to retrieve adequate mean maps. This is done by using the GOME backscan information.

    The retrieved high resolution map illustrates the shortcomings of the standard size GOME pixels and reveals an unprecedented wealth of details in the global distribution of tropospheric NO2. Localised spots of enhanced NO2 VCD can be directly associated to cities, heavy industry centers and even large power plants. Thus our result helps to check emission inventories.

    The small spatial extent of NO2 "hot spots" allows us to estimate an upper limit of the mean lifetime of boundary layer NOx of 17h on a global scale.

    The long time series of GOME data allows a quantitative comparison of the narrow swath mode data to the nominal resolution. Thus we can analyse the dependency of NO2 VCDs on pixel size. This is important for comparing GOME data to results of new satellite instruments like SCIAMACHY (launched March 2002 on ENVISAT), OMI (launched July 2004 on AURA) or GOME II (to be launched 2005) with an improved spatial resolution.

  20. The GODFIT Direct Fitting Algorithm: A New Approach for Total Ozone Retrieval From GOME

    NASA Astrophysics Data System (ADS)

    Spurr, R. J.; van Roozendael, M.; Lambert, J.; Fayt, C.

    2004-05-01

    We present a new Direct Fitting algorithm (GODFIT) for the retrieval of total ozone amounts from nadir viewing remote sensing spectrometers (such as GOME, SCIAMACHY, OMI and GOME-2) which take earthshine measurements in the UV ozone Huggins bands. The algorithm is designed for direct comparison with measurements, and all radiative transfer (RT) calculations are done from scratch. We use the linearized RT model LIDORT, which has a single-call facility for simultaneous computations of radiances and fast analytic calculations of Jacobians with respect to surface and atmospheric properties. RT calculations require an input profile of ozone partial columns; we use a column-classified ozone profile climatology (the TOMS Version 8 data set) which provides a unique map between the fitted total column and the input RT profile. To compensate for lack of knowledge of tropospheric aerosol, we perform calculations in a Rayleigh atmosphere and fit for the surface albedo as an internal closure parameter; the algorithm is less sensitive to the presence of aerosol than DOAS-AMF algorithms customarily used for this retrieval. The Ring effect is important in the UV, and GODFIT contains a new treatment for the correction of interference effects due to the filling-in of ozone molecular features by inelastic rotational Raman scattering. The algorithm is flexible and direct, and operates without the need for extensive look-up tables. The algorithm was applied to a subset of some 2000 GOME orbits used in validation studies for the total ozone product. The algorithm can process one orbit (~2000 scenes) in under half an hour. Results were compared with ground data from a well-documented network of surface stations, with TOMS total ozone measurements (Version 8), and also with GOME-derived columns from the latest version of the GDP (operational GOME Data Processor DOAS-type total ozone algorithm). With the new results, previously observed seasonality and solar angle dependencies are greatly

  1. GOME level 1-to-2 data processor version 3.0: a major upgrade of the GOME/ERS-2 total ozone retrieval algorithm.

    PubMed

    Spurr, Robert; Loyola, Diego; Thomas, Werner; Balzer, Wolfgang; Mikusch, Eberhard; Aberle, Bernd; Slijkhuis, Sander; Ruppert, Thomas; van Roozendael, Michel; Lambert, Jean-Christopher; Soebijanta, Trisnanto

    2005-11-20

    The global ozone monitoring experiment (GOME) was launched in April 1995, and the GOME data processor (GDP) retrieval algorithm has processed operational total ozone amounts since July 1995. GDP level 1-to-2 is based on the two-step differential optical absorption spectroscopy (DOAS) approach, involving slant column fitting followed by air mass factor (AMF) conversions to vertical column amounts. We present a major upgrade of this algorithm to version 3.0. GDP 3.0 was implemented in July 2002, and the 9-year GOME data record from July 1995 to December 2004 has been processed using this algorithm. The key component in GDP 3.0 is an iterative approach to AMF calculation, in which AMFs and corresponding vertical column densities are adjusted to reflect the true ozone distribution as represented by the fitted DOAS effective slant column. A neural network ensemble is used to optimize the fast and accurate parametrization of AMFs. We describe results of a recent validation exercise for the operational version of the total ozone algorithm; in particular, seasonal and meridian errors are reduced by a factor of 2. On a global basis, GDP 3.0 ozone total column results lie between -2% and +4% of ground-based values for moderate solar zenith angles lower than 70 degrees. A larger variability of about +5% and -8% is observed for higher solar zenith angles up to 90 degrees.

  2. Intercomparison of 4 Years of Global Formaldehyde Observations from the GOME-2 and OMI Sensors

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Van Roozendael, Michel; Stravrakou, Trissevgeni; Muller, Jean-Francois; Chance, Kelly; Kurosu, Thomas

    2012-11-01

    Formaldehyde (H2CO) tropospheric columns have been retrieved since 2007 from backscattered UV radiance measurements performed by the GOME-2 instrument on the EUMETSAT METOP-A platform. This data set extends the successful time-series of global H2CO observations established with GOME/ ERS-2 (1996-2003), SCIAMACHY/ ENVISAT (2003-2012), and OMI on the NASA AURA platform (2005-now). In this work, we perform an intercomparison of the H2CO tropospheric columns retrieved from GOME-2 and OMI between 2007 and 2010, respectively at BIRA-IASB and at Harvard SAO. We first compare the global formaldehyde data products that are provided by each retrieval group. We then investigate each step of the retrieval procedure: the slant column fitting, the reference sector correction and the air mass factor calculation. New air mass factors are computed for OMI using external parameters consistent with those used for GOME-2. By doing so, the impacts of the different a priori profiles and aerosol corrections are quantified. The remaining differences are evaluated in view of the expected diurnal variations of the formaldehyde concentrations, based on ground-based measurements performed in the Beijing area.

  3. Comparison of GOME-2/Metop-A ozone profiles with GOMOS, OSIRIS and MLS measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Tuinder, O. N. E.; Tukiainen, S.; Sofieva, V.; Tamminen, J.

    2015-07-01

    This paper presents a comparison of vertical ozone profiles retrieved by the Ozone ProfilE Retrieval Algorithm (OPERA) from the Global Ozone Monitoring Experiment 2 (GOME-2) measurements on board Metop-A with high-vertical-resolution ozone profiles by Global Ozone Monitoring by Occultation of Stars (GOMOS), Optical Spectrograph and Infrared Imager System (OSIRIS) and Microwave Limb Sounder (MLS). The comparison, with global coverage, focuses on the stratosphere and the lower mesosphere and covers the period from March 2008 until the end of 2011. The comparison shows an agreement of the GOME-2 ozone profiles with those of GOMOS, OSIRIS and MLS within ±15 % in the altitude range from 15 km up to ~ 35-40 km depending on latitude. The GOME-2 ozone profiles from non-degradation corrected radiances have a tendency to a systematic negative bias with respect to the reference data above ~ 30 km. The GOME-2 bias with respect to the high-vertical resolution instruments depends on season, with the strongest dependence observed at high latitudes.

  4. A preliminary comparison between TOVS and GOME level 2 ozone data

    NASA Astrophysics Data System (ADS)

    Rathman, William; Monks, Paul S.; Llewellyn-Jones, David; Burrows, John P.

    1997-09-01

    A preliminary comparison between total column ozone concentration values derived from TIROS Operational Vertical Sounder (TOVS) and Global Ozone Monitoring Experiment (GOME) has been carried out. Two comparisons of ozone datasets have been made: a) TOVS ozone analysis maps vs. GOME level 2 data; b) TOVS data located at Northern Hemisphere Ground Ozone Stations (NHGOS) vs. GOME data. Both analyses consistently showed an offset in the value of the total column ozone between the datasets [for analyses a) 35 Dobson Units (DU); and for analyses b) 10 DU], despite a good correlation between the spatial and temporal features of the datasets. A noticeably poor correlation in the latitudinal bands 10°/20° North and 10°/20° South was observed—the reasons for which are discussed. The smallest region which was statistically representative of the ozone value correlation dataset of TOVS data at NHGOS and GOME level-2 data was determined to be a region that was enclosed by effective radius of 0.75 arc-degrees (83.5km).

  5. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    NASA Astrophysics Data System (ADS)

    Lutz, Ronny; Loyola, Diego; Gimeno García, Sebastián; Romahn, Fabian

    2016-05-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud-fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) onboard the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud-top height (CTH), cloud-top pressure (CTP), cloud-top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than five years of GOME-2A data (April 2008 to June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing-angle-dependent and latitude-dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with colocated AVHRR (Advanced Very High Resolution Radiometer) geometrical cloud fractions shows a general good agreement with a mean difference of -0.15 ± 0.20. From an operational point of view, an advantage of the OCRA algorithm is its very fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud-fraction estimation for GOME-2 can be achieved with OCRA using polarization measurement devices (PMDs).

  6. Long-term analysis of GOME in-flight calibration parameters and instrument degradation.

    PubMed

    Coldewey-Egbers, Melanie; Slijkhuis, Sander; Aberle, Bernd; Loyola, Diego

    2008-09-10

    Since 1995, the Global Ozone Monitoring Experiment (GOME) has measured solar and backscattered spectra in the ultraviolet and visible wavelength range. Now, the extensive data set of the most important calibration parameters has been investigated thoroughly in order to analyze the long-term stability and performance of the instrument. This study focuses on GOME in-flight calibration and degradation for the solar path. Monitoring the sensor degradation yields an intensity decrease of 70% to 90% in 240-316 nm and 35% to 65% in 311-415 nm. The spectral calibration is very stable over the whole period, although a very complex interaction between predisperser temperature and wavelength was found. The leakage current and the pixel-to-pixel gain increased significantly during the mission, which requires an accurate correction of the measured radiance and irradiance signals using proper calibration parameters. Finally, several outliers in the data sets can be directly assigned to instrument and satellite anomalies.

  7. SO2 columns over China: Temporal and spatial variations using OMI and GOME-2 observations

    NASA Astrophysics Data System (ADS)

    Huanhuan, Yan; Liangfu, Chen; Lin, Su; Jinhua, Tao; Chao, Yu

    2014-03-01

    Enhancements of SO2 column amounts due to anthropogenic emission sources over China were shown in this paper by using OMI and GOME-2 observations. The temporal and spatial variations of SO2 columns over China were analyzed for the time period 2005-2010. Beijing and Chongqing showed a high concentration in the SO2 columns, attributable to the use of coal for power generation in China and the characteristic of terrain and meteorology. The reduction of SO2 columns over Beijing and surrounding provinces in 2008 was observed by OMI, which confirms the effectiveness of strict controls on pollutant emissions and motor vehicle traffic before and during 2008 Olympic and Paralympic Games. The SO2 columns over China from GOME-2 (0.2-0.5 DU) were lower than those from OMI (0.6-1 DU), but both showed a decrease in SO2 columns over northern China since 2008 (except an increase in OMI SO2 in 2010).

  8. Combined Characterisation of GOME and TOMS Total Ozone Using Ground-Based Observations from the NDSC

    NASA Technical Reports Server (NTRS)

    Lambert, J.-C.; VanRoozendael, M.; Simon, P. C.; Pommereau, J.-P.; Goutail, F.; Andersen, S. B.; Arlander, D. W.; BuiVan, N. A.; Claude, H.; deLaNoee, J.; hide

    1998-01-01

    Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe Total Ozone Mapping Spectrometer (TOMS), and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both Global Ozone Monitoring Experiment (GOME) and TOMS several sources of discrepancies, including a dependence on the SZA at high latitudes and internal inconsistencies.

  9. Simulations of Solar Induced Fluorescence compared to observations from GOSAT and GOME-2 Satellites

    NASA Astrophysics Data System (ADS)

    Baker, I. T.; Berry, J. A.; Frankenberg, C.; Joiner, J.; Van der Tol, C.; Lee, J. E.; Denning, S.

    2014-12-01

    Observations of Solar-Induced Fluorescence (SIF) are currently retrieved from the GOSAT and GOME-2 satellites, and will become available from OCO-2 shortly. The GOSAT (and OCO-2) satellite has a midday overpass time, while GOME-2 has a variable observation of approximately 0800-1100 local time. Previous studies have demonstrated a linear relationship between SIF and Gross Primary Productivity (GPP), but lack the ability to investigate causes of spatiotemporal variability. We demonstrate an ability to simulate SIF using a landsurface model (the Simple Biosphere Model; SIB) for direct comparison to observations. We calculate fluorescence yield based on known relationships between photosynthesis and fluorescence, and calculate total SIF using existing leaf-to-canopy scaling factors. We find that simulated SIF exceeds GOSAT retrieved SIF, especially in tropical and Boreal forests. Simulated SIF exceeds GOME-2 values in Boreal forest and in lower-productivity areas such as marginal desert and tundra. Observed SIF GOME-2 in croplands is significantly higher than simulations. SIF simulated for low- and high-productivity grassland and savanna show much less seasonal and interannual amplitude when compared to values from both satellites, implicating that model phenology and/or response to meteorological forcing is damped. Simulated SIF seasonal cycles are similar to observed from both satellites, and simulations are able to reproduce drought events such as occurred in Russia in 2010 and the Central USA in 2012. As simulated SIF more closely resembles observations, model estimates of GPP become more robust, as does our ability to understand and recreate the mechanisms involved in vegetation response to seasonal cycles and anomalous stress events such as drought.

  10. 7-year temporal trend of anthropogenic SO2 emissions over China identified from GOME observations

    NASA Astrophysics Data System (ADS)

    Khokhar, M. F.; Beirle, S.; Platt, U.; Wagner, T.

    Fossil fuels such as coal and oil contain significant amounts of sulfur When burned this sulfur is generally converted to SO2 The GOME observations showed enhancements of SO2 column amounts due to anthropogenic emission sources These enhancements are identified from the regions with extensive burning of coal smelting of metal ores and heavy industrial activities such as from China Eastern USA the Arabian Peninsula Eastern Europe South Africa and particularly Norilsk Russia Also a comparison with GOME observations of anthropogenic NO2 column amounts is presented In this paper we present time series of SO2 SCDs over China We analyzed GOME data for the time period 1996-2002 Time series over the highly industrialized regions Beijing and Shanghai showed a slight increase in the SO2 SCD attributable to the increased use of coal for power generation in China Zhou 2001 Especially during the GOME-period 1996-2001 coal consumption and SO2 time series reflect similar behaviour However Richter et al 2005 calculated a significant increase in the NO2 concentrations over the industrial areas of China for the time period of 1996-2004 Additionally preliminary results of atmospheric SO2 from SCIAMACHY on board EnviSAT-1 since March 2002 instrument with broader spectral and better spatial resolution is presented The better spatial resolution will help to study and localize the impacts of SO2 emissions on a finer spatial scale References Richter A J P Burrows H Nuess C Granier and U Niemeier Increase in tropospheric nitrogen

  11. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation

    NASA Astrophysics Data System (ADS)

    Miles, G. M.; Siddans, R.; Kerridge, B. J.; Latter, B. G.; Richards, N. A. D.

    2015-01-01

    This paper describes and assesses the performance of the RAL (Rutherford Appleton Laboratory) ozone profile retrieval scheme for the Global Ozone Monitoring Experiment 2 (GOME-2) with a focus on tropospheric ozone. Developments to the scheme since its application to GOME-1 measurements are outlined. These include the approaches developed to account sufficiently for UV radiometric degradation in the Hartley band and for inadequacies in knowledge of instrumental parameters in the Huggins bands to achieve the high-precision spectral fit required to extract information on tropospheric ozone. The assessment includes a validation against ozonesondes (sondes) sampled worldwide over 2 years (2007-2008). Standard deviations of the ensemble with respect to the sondes are considerably lower for the retrieved profiles than for the a priori, with the exception of the lowest subcolumn. Once retrieval vertical smoothing (averaging kernels) has been applied to the sonde profiles there is a retrieval bias of 6% (1.5 DU) in the lower troposphere, with smaller biases in the subcolumns above. The bias in the troposphere varies with latitude. The retrieval underestimates lower tropospheric ozone in the Southern Hemisphere (SH) (15-20% or ~ 1-3 DU) and overestimates it in the Northern Hemisphere (NH) (10% or 2 DU). The ability of the retrieval to reflect the geographical distribution of lower tropospheric ozone, globally (rather than just ozonesonde launch sites) is demonstrated by comparison with the chemistry transport model TOMCAT. For a monthly mean of cloud-cleared GOME-2 pixels, a correlation of 0.66 is found between the retrieval and TOMCAT sampled accordingly, with a bias of 0.7 Dobson Units. GOME-2 estimates higher concentrations in NH pollution centres but lower ozone in the Southern Ocean and South Pacific, which is consistent with the comparison to ozonesondes.

  12. An Advanced Cloud Product For The Interpretation of Tropospheric Data From Gome and Sciamachy

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Friedeburg, Christoph V.; Grzegorski, Michael; Wenig, Mark; Platt, Ulrich

    During the last years advanced algorithms for the analysis of tropospheric trace gases from satellite have been developed. In particular, it was possible to determine tro- pospheric column densities of BrO, NO2, HCHO, SO2, H2O, O2, and (O2)2 from observations of GOME. However, all of these data products are strongly affected by clouds, which (a) shield the atmosphere below the cloud cover and (b) show typically a larger albedo compared to the earths surface. These effects strongly limit the quan- titative analysis of tropospheric trace gas products. Already existing cloud algorithms are based on spatially resolved intensity measurements and on the measurement of the O2-A-band absorption. However, both quantities show important shortcomings, especially over snow and ice surfaces. We investigate a large variety of cloud sensitive parameters measured by GOME including also the polarisation of the measured light and in particular various absorption bands of the oxygen dimer O4 (at 360, 380, 477, 577, and 630 nm) as well as the Ring effect. It turned out that several of these quan- tities are well suited for the characterisation of clouds even over bright surfaces. Here present first results of a GOME cloud product for polar regions.

  13. Retrieval Of Cloud Pressure And Chlorophyll Content Using Raman Scattering In GOME Ultraviolet Spectra

    NASA Technical Reports Server (NTRS)

    Atlas, Robert (Technical Monitor); Joiner, Joanna; Vasikov, Alexander; Flittner, David; Gleason, James; Bhartia, P. K.

    2002-01-01

    Reliable cloud pressure estimates are needed for accurate retrieval of ozone and other trace gases using satellite-borne backscatter ultraviolet (buv) instruments such as the global ozone monitoring experiment (GOME). Cloud pressure can be derived from buv instruments by utilizing the properties of rotational-Raman scattering (RRS) and absorption by O2-O2. In this paper we estimate cloud pressure from GOME observations in the 355-400 nm spectral range using the concept of a Lambertian-equivalent reflectivity (LER) surface. GOME has full spectral coverage in this range at relatively high spectral resolution with a very high signal-to-noise ratio. This allows for much more accurate estimates of cloud pressure than were possible with its predecessors SBUV and TOMS. We also demonstrate the potential capability to retrieve chlorophyll content with full-spectral buv instruments. We compare our retrieved LER cloud pressure with cloud top pressures derived from the infrared ATSR instrument on the same satellite. The findings confirm results from previous studies that showed retrieved LER cloud pressures from buv observations are systematically higher than IR-derived cloud-top pressure. Simulations using Mie-scattering radiative transfer algorithms that include O2-O2 absorption and RRS show that these differences can be explained by increased photon path length within and below cloud.

  14. Development of an OClO Slant Column Product for the GOME-2 Sensors

    NASA Astrophysics Data System (ADS)

    Richter, Andreas; Wittrock, Folkard; Burrows, John P.

    2016-04-01

    Stratospheric ozone depletion by catalytic reactions involving halogens is one of the most prominent examples of anthropogenic impacts on the atmosphere. In spite of the rapid and successful international action to reduce emissions of CFCs and other ozone depleting substances leading to the Montreal Protocol and its amendments, ozone depletion in polar spring is still observed in both hemispheres on a regular basis. For the coming years, slow ozone recovery is expected but individual years will still see very low ozone columns depending on meteorology and possible interactions with climate change. Monitoring of both ozone and ozone depleting substances in the stratosphere remains a priority to ensure that the predicted reduction in halogen levels and recovery of ozone columns is taking place as predicted. One way to observe stratospheric chlorine activation is by measurements of OClO which can be detected by UV/visible remote sensing from the ground and from satellite. While the link between OClO levels and chlorine activation is complicated by the fact that a) OClO is not directly involved in ozone depletion but is produced by reaction of BrO and ClO and b) is rapidly photolysed at daylight, the long existing data series from both ground-based and satellite observations makes it an interesting tracer of chlorine activation. The GOME-2 instruments on the MetOp series of satellites are nadir viewing UV/vis spectrometers having the spectral coverage and resolution needed for Differential Optical Absorption Spectroscopy retrievals of OClO. With their combined lifetime of more than 15 years, they can provide a long-term data set. However, previous attempts to create an OClO product for GOME-2 suffered from large scatter in the OClO data and time-dependent offsets. Here we present an improved OClO slant column retrieval for the two instruments GOME2-A and GOME2-B. The data is shown to be of similar quality as for earlier instruments such as SCIAMACHY, and is consistent

  15. Evaluating a new homogeneous total ozone climate data record from GOME/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A

    NASA Astrophysics Data System (ADS)

    Koukouli, M. E.; Lerot, C.; Granville, J.; Goutail, F.; Lambert, J.-C.; Pommereau, J.-P.; Balis, D.; Zyrichidou, I.; Van Roozendael, M.; Coldewey-Egbers, M.; Loyola, D.; Labow, G.; Frith, S.; Spurr, R.; Zehner, C.

    2015-12-01

    The European Space Agency's Ozone Climate Change Initiative (O3-CCI) project aims at producing and validating a number of high-quality ozone data products generated from different satellite sensors. For total ozone, the O3-CCI approach consists of minimizing sources of bias and systematic uncertainties by applying a common retrieval algorithm to all level 1 data sets, in order to enhance the consistency between the level 2 data sets from individual sensors. Here we present the evaluation of the total ozone products from the European sensors Global Ozone Monitoring Experiment (GOME)/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A produced with the GOME-type Direct FITting (GODFIT) algorithm v3. Measurements from the three sensors span more than 16 years, from 1996 to 2012. In this work, we present the latest O3-CCI total ozone validation results using as reference ground-based measurements from Brewer and Dobson spectrophotometers archived at the World Ozone and UV Data Centre of the World Meteorological Organization as well as from UV-visible differential optical absorption spectroscopy (DOAS)/Système D'Analyse par Observations Zénithales (SAOZ) instruments from the Network for the Detection of Atmospheric Composition Change. In particular, we investigate possible dependencies in these new GODFIT v3 total ozone data sets with respect to latitude, season, solar zenith angle, and different cloud parameters, using the most adequate type of ground-based instrument. We show that these three O3-CCI total ozone data products behave very similarly and are less sensitive to instrumental degradation, mainly as a result of the new reflectance soft-calibration scheme. The mean bias to the ground-based observations is found to be within the 1 ± 1% level for all three sensors while the near-zero decadal stability of the total ozone columns (TOCs) provided by the three European instruments falls well within the 1-3% requirement of the European Space Agency's Ozone Climate Change

  16. A new scientific product of water vapor derived from GOME, SCHIAMACHY and GOME-2 based on look-up-table AMF approach

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Lampel, Johannes; Grossi, Margherita; Beirle, Steffen; Wagner, Thomas

    2017-04-01

    Water vapour (H2O) is a key component of the Earth atmosphere and has a strong impact on the Earth's radiative balance. Satellite observations offer the unique opportunity to study the spatial and temporal variability of H2O on a global scale. The operational DLR H2O total column products of GOME, SCIAMACHY and GOME-2 are retrieved using the absorptions of H2O and of molecular oxygen (O2) in the spectral range from 614-683.2 nm (http://atmos.eoc.dlr.de/gome/product_h2o.html). This algorithm is robust and easy to implement and is almost independent of external data sets. However the operational retrieval also has its limitations: 1) the differences in vertical profiles of H2O and O2 can lead to large errors for individual observations (especially if clouds are present); 2) the retrieval contains a number of corrections, which complicate a detailed error analysis; 3) the retrieval does not explicitly account for the impact of strong absorptions on the effective light path and terrain height variations. In order to overcome these limitations, a new H2O retrieval has been developed based on a look-up-table (LUT) approach. The input to the LUT is the H2O slant column densities (SCDs) as derived from the DOAS analysis as well as information about the cloud properties and the observation geometry. The output is the corresponding H2O VCD. The LUT is computed for all relevant viewing geometries, H2O VCD scenarios, terrain heights, surface albedos, and cloud scenarios using the Radiative Transfer Model LIDORT. In order to explicitly represent retrieved H2O SCDs of real observations, the LUT is generated by retrieving a series of synthetic spectra covering all LUT scenarios. The synthetic spectra are generated at high spectral resolution (1pm) and then convoluted with the instrument slit function, and analysed in the same way as observed spectra to retrieve H2O SCDs.

  17. Evaluating a New Homogeneous Total Ozone Climate Data Record from GOME/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A

    NASA Technical Reports Server (NTRS)

    Koukouli, M.E.; Lerot, C.; Granville, J.; Goutail, F.; Lambert, J.-C.; Pommereau, J.-P.; Balis, D.; Zyrichidou, I.; Van Roozendael, M.; Coldewey-Egbers, M.; hide

    2015-01-01

    The European Space Agency's Ozone Climate Change Initiative (O3-CCI) project aims at producing and validating a number of high-quality ozone data products generated from different satellite sensors. For total ozone, the O3-CCI approach consists of minimizing sources of bias and systematic uncertainties by applying a common retrieval algorithm to all level 1 data sets, in order to enhance the consistency between the level 2 data sets from individual sensors. Here we present the evaluation of the total ozone products from the European sensors Global Ozone Monitoring Experiment (GOME)/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A produced with the GOME-type Direct FITting (GODFIT) algorithm v3. Measurements from the three sensors span more than 16 years, from 1996 to 2012. In this work, we present the latest O3-CCI total ozone validation results using as reference ground-based measurements from Brewer and Dobson spectrophotometers archived at the World Ozone and UV Data Centre of the World Meteorological Organization as well as from UV-visible differential optical absorption spectroscopy (DOAS)/Système D'Analyse par Observations Zénithales (SAOZ) instruments from the Network for the Detection of Atmospheric Composition Change. In particular, we investigate possible dependencies in these new GODFIT v3 total ozone data sets with respect to latitude, season, solar zenith angle, and different cloud parameters, using the most adequate type of ground-based instrument. We show that these three O3-CCI total ozone data products behave very similarly and are less sensitive to instrumental degradation, mainly as a result of the new reflectance soft-calibration scheme. The mean bias to the ground-based observations is found to be within the 1 plus or minus 1 percent level for all three sensors while the near-zero decadal stability of the total ozone columns (TOCs) provided by the three European instruments falls well within the 1-3 percent requirement of the European Space

  18. Observing lowermost tropospheric ozone pollution with a new multispectral synergic approach of IASI infrared and GOME-2 ultraviolet satellite measurements

    NASA Astrophysics Data System (ADS)

    Cuesta, Juan; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Coman, Adriana; Gaubert, Benjamin; Beekmann, Matthias; Liu, Xiong; Cai, Zhaonan; Von Clarmann, Thomas; Spurr, Robert; Flaud, Jean-Marie

    2014-05-01

    Tropospheric ozone is currently one of the air pollutants posing greatest threats to human health and ecosystems. Monitoring ozone pollution at the regional, continental and global scale is a crucial societal issue. Only spaceborne remote sensing is capable of observing tropospheric ozone at such scales. The spatio-temporal coverage of new satellite-based instruments, such as IASI or GOME-2, offer a great potential for monitoring air quality by synergism with regional chemistry-transport models, for both inter-validation and full data assimilation. However, current spaceborne observations using single-band either UV or IR measurements show limited sensitivity to ozone in the atmospheric boundary layer, which is the major concern for air quality. Very recently, we have developed an innovative multispectral approach, so-called IASI+GOME-2, which combines IASI and GOME-2 observations, respectively in the IR and UV. This unique multispectral approach has allowed the observation of ozone plumes in the lowermost troposphere (LMT, below 3 km of altitude) over Europe, for the first time from space. Our first analyses are focused on typical ozone pollution events during the summer of 2009 over Europe. During these events, LMT ozone plumes at different regions are produced photo-chemically in the boundary layer, transported upwards to the free troposphere and also downwards from the stratosphere. We have analysed them using IASI+GOME-2 observations, in comparison with single-band methods (IASI, GOME-2 and OMI). Only IASI+GOME-2 depicts ozone plumes located below 3 km of altitude (both over land and ocean). Indeed, the multispectral sensitivity in the LMT is greater by 40% and it peaks at 2 to 2.5 km of altitude over land, thus at least 0.8 to 1 km below that for all single-band methods. Over Europe during the summer of 2009, IASI+GOME-2 shows 1% mean bias and 21% precision for direct comparisons with ozonesondes and also good agreement with CHIMERE model simulations

  19. Investigation of BrO in volcanic plumes: Comparing satellite data from OMI and GOME-2

    NASA Astrophysics Data System (ADS)

    Warnach, Simon; Hörmann, Christoph; Sihler, Holger; Bobrowski, Nicole; Beirle, Steffen; Penning de Vries, Marloes; Dinger, Florian; Platt, Ulrich; Wagner, Thomas

    2017-04-01

    It has been repeatedly shown in the past by measurements from the ground and from space that volcanic plumes contain widely varying amounts of bromine monoxide (BrO). The relative amount of BrO in a volcanic plume, i. e. with respect to sulphur dioxide (SO2), is mainly affected by degassing composition as well as chemical processes, but the reasons for the variation is still not fully understood. Our study aims at obtaining a better understanding of bromine emissions from volcanoes. The high spatial resolution of current satellite instruments such as OMI (13x24 km2) and GOME-2 (40x80 km2), and particularly that of future instruments like TROPOMI (3.5x7 km2) allows to resolve the volcanic plume of eruptive events and makes. The combination of the high spatial resolution and the global coverage of satellite instruments make it possible to study the spatial variability of trace gases in a large number of volcanic plumes from a large number of volcanoes. In this study, we investigate the BrO and SO2 distribution as well as the BrO/SO2 ratio within volcanic plumes observed by OMI since 2007. We apply a plume detection algorithm which uses the retrieved SO2 column for plume identification. These data obtained from OMI measurements are compared to plumes identified from GOME-2 data. Differences in the number of identified plumes and the degree of agreement regarding the retrieved spatial distribution of BrO and SO2, as well as the calculated BrO/SO2 ratio between plumes observed by both instruments, are discussed. Differences are mainly attributed to the differences between the two instruments with respect to spatial resolution and overpass time (GOME-2 at 9:30, OMI at 13:30 local time).

  20. Equatorial Kelvin wave signatures in ozone profile measurements from Global Ozone Monitoring Experiment (GOME)

    NASA Astrophysics Data System (ADS)

    Timmermans, R. M. A.; van Oss, R. F.; Kelder, H. M.

    2005-11-01

    This study investigates the ability to derive height-resolved information on equatorial Kelvin wave activity from three different Global Ozone Monitoring Experiment (GOME) ozone profile data sets. The ozone profiles derived using the Ozone Profile Retrieval Algorithm (OPERA) based on optimal estimation and the Neural Network Ozone Retrieval System (NNORSY) both show Kelvin wave signals in agreement with previously identified signals in the GOME total ozone columns. However, because of the inadequate vertical resolution, these two data sets are not able to resolve the vertical structure of the Kelvin wave activity. The third data set, consisting of assimilated OPERA ozone profiles, does provide height-resolved information on Kelvin wave activity that is consistent with results from the analysis of GOME total ozone columns and ECMWF Re-Analysis (ERA-40) temperature data. Largest Kelvin-wave-induced perturbations of up to 0.69 DU/km coincide with the maximum vertical gradient in ozone around 35 hPa and show an in-phase relationship with temperature perturbations in ERA-40 as expected from theoretical considerations. These results indicate that the ozone perturbations in the lower stratosphere and in the total column of ozone are transport related. Between 10 and 1 hPa, large Kelvin-wave-induced fluctuations in ozone mixing ratio are present that, however, because of their small contribution to the total column, do not constitute a large contribution to the total ozone column perturbations. The ozone perturbations between 10 and 1 hPa show an out-of-phase relationship with temperature perturbations in ERA-40, indicating that the perturbations can either be caused by transport effects or photochemical influences.

  1. Recent Developments To The RAL Joint IASI+GOME-2 Ozone Profile Retrievals Using TIR, UV And Visible Spectra

    NASA Astrophysics Data System (ADS)

    Miles, Georgina; Siddans, Richard; Latter, Barry; Kerridge, Brian; Waterfall, Alison

    2013-12-01

    We present results from recent developments of the RAL Ozone Profile optimal estimation retrieval scheme. The algorithm produces both a GOME-2 only and a joint IASI and GOME-2 profile product, both of which have sensitivity to tropospheric ozone. The joint product has been selected for the ESA Climate Change Initiative Ozone nadir prototype product, for which data will be disseminated to the climate modelling community. Time-series and highlights from several years of the single and joint MetOp-A GOME-2 and IASI retrievals are presented. We further present results of the introduction of measurements from the Chappuis ozone bands to add near-surface ozone information to the retrieval under certain atmospheric and surface conditions.

  2. Variability in Tropospheric Ozone over China Derived from Assimilated GOME-2 Ozone Profiles

    NASA Astrophysics Data System (ADS)

    van Peet, J. C. A.; van der A, R. J.; Kelder, H. M.

    2016-08-01

    A tropospheric ozone dataset is derived from assimilated GOME-2 ozone profiles for 2008. Ozone profiles are retrieved with the OPERA algorithm, using the optimal estimation method. The retrievals are done on a spatial resolution of 160×160 km on 16 layers ranging from the surface up to 0.01 hPa. By using the averaging kernels in the data assimilation, the algorithm maintains the high resolution vertical structures of the model, while being constrained by observations with a lower vertical resolution.

  3. Hydrocarbon Emissions Constrained By Formaldehyde Column Measurements from Gome-2 and OMI

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Muller, J. F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; De Maziere, M.; Vigouroux, C.

    2014-12-01

    The vertical columns of formaldehyde retrieved from the spaceborne instruments GOME2 and OMI are used to constrain the biogenic, pyrogenic and anthropogenic emissions of formaldehyde precursors NMVOC at the global scale. To this end, those emissions are varied and optimized in the (updated) IMAGESv2 model. The adjoint model technique is used to minimize the bias of the model with observations from either GOME2 or OMI. The optimisation is performed on a monthly basis at the model resolution (2°x2.5°). The a priori biogenic emissions are provided by the MEGAN-ECMWF-v2 inventory for isoprene and from a previous optimization of methanol emissions based on IASI columns. Biomass burning and anthropogenic emissions are taken from GFEDv3 and from a combination of the RETRO global inventory with the regional inventory REASv2.Given the different local overpass times of GOME2 (9h30 LT) and OMI (13h40 LT), the factors which might affect the diurnal cycle of formaldehyde in the model (chemistry, diurnal profile of emissions, mixing) are examined through sensitivity calculations. The simulated diurnal cycle is evaluated against ground-based measurements obtained by either the MAX-DOAS technique (in Europe, China, and Africa) or by FTIR (in the Indian Ocean). The agreement between simulated and observed normalized columns is found to be generally better in the summer (with a clear afternoon maximum at mid-latitude sites) than in the winter.Both optimizations infer a reduction of the global biogenic emissions of isoprene (by 10-15%), which is largest (up to a factor of 2) over Eastern U.S. according to GOME2 and over Western Amazonia according to OMI. Those reductions and evaluated by comparisons with arcraft observations for different years (ARCTAS and INTEX-A). Northern Australia, Southern China and Northern Africa are also regions where both sensors indicate an overestimation of MEGAN. Biomass burning emissions appear to be likewise overestimated in Central Canada

  4. Detection of BrO plumes over various sources using OMI and GOME-2 measurements

    NASA Astrophysics Data System (ADS)

    Seo, Sora; Richter, Andreas; Blechschmidt, Anne-Marlene; Burrows, John P.

    2017-04-01

    Reactive halogen species (RHS) play important roles in the chemistry of the stratosphere and troposphere. They are responsible for ozone depletion through catalytic reaction cycles, changes in the OH/HO2 and NO/NO2 ratios, and oxidation of compounds such as gaseous elemental mercury (GEM) and dimethyl sulphide (DMS). Thus, monitoring of halogen oxides is important for understanding global atmospheric oxidation capacity and climate change. Bromine monoxide (BrO) is one of the most common active halogen oxides. In the troposphere, large amounts of bromine are detected in Polar Regions in spring, over salt lakes, and in volcanic plumes. In this study, we analyse BrO column densities using OMI and GOME-2 observations. The measured spectra from both UV-visible nadir satellites were analyzed using the differential optical absorption spectroscopy (DOAS) method with different settings depending on the instrumental characteristics. Large amounts of volcanic BrO from the Kasatochi eruption in 2008 were detected for 6 days from August 8 to August 13. Especially large BrO amounts were found in the plume center for 3 days from August 9 to 11 with slant column densities (SCD) of up to ˜1.6x1015 molecules cm-2 and ˜5.5x1014 molecules cm-2 in OMI and GOME-2 measurements, respectively. In addition to the volcanic sources, events of widespread BrO enhancements were also observed over the Arctic and Antarctic coastal regions during the spring time by both satellites. As the overpass time of the two instruments is not the same, differences between the two data sets are expected. In this study, the agreement between OMI and GOME-2 BrO data is investigated using both the operational products and different DOAS fits. Systematic differences are found in BrO slant columns and fitting residuals, both being larger in the case of OMI data. In addition, results are sensitive to the choice of fitting window. From a monitoring point of view, due to the higher spatial resolution of OMI compared

  5. Calculation of smoke plume mass from passive UV satellite measurements by GOME-2 polarization measurement devices

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Tuinder, O. N. E.; Wagner, T.; Fromm, M.

    2012-04-01

    The Wallow wildfire of 2011 was one of the most devastating fires ever in Arizona, burning over 2,000 km2 in the states of Arizona and New Mexico. The fire originated in the Bear Wallow Wilderness area in June, 2011, and raged for more than a month. The intense heat of the fire caused the formation of a pyro-convective cloud. The resulting smoke plume, partially located above low-lying clouds, was detected by several satellite instruments, including GOME-2 on June 2. The UV Aerosol Index, indicative of aerosol absorption, reached a maximum of 12 on that day, pointing to an elevated plume with moderately absorbing aerosols. We have performed extensive model calculations assuming different aerosol optical properties to determine the total aerosol optical depth of the plume. The plume altitude, needed to constrain the aerosol optical depth, was obtained from independent satellite measurements. The model results were compared with UV Aerosol Index and UV reflectances measured by the GOME-2 polarization measurement devices, which have a spatial resolution of roughly 10x40 km2. Although neither the exact aerosol optical properties nor optical depth can be obtained with this method, the range in aerosol optical depth values that we calculate, combined with the assumed specific extinction mass factor of 5 m2/kg lead us to a rough estimate of the smoke plume mass that cannot, at present, be assessed in another way.

  6. The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) data record from the ESA Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Coldewey-Egbers, M.; Loyola, D. G.; Koukouli, M.; Balis, D.; Lambert, J.-C.; Verhoelst, T.; Granville, J.; van Roozendael, M.; Lerot, C.; Spurr, R.; Frith, S. M.; Zehner, C.

    2015-09-01

    We present the new GOME-type Total Ozone Essential Climate Variable (GTO-ECV) data record which has been created within the framework of the European Space Agency's Climate Change Initiative (ESA-CCI). Total ozone column observations - based on the GOME-type Direct Fitting version 3 algorithm - from GOME (Global Ozone Monitoring Experiment), SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY), and GOME-2 have been combined into one homogeneous time series, thereby taking advantage of the high inter-sensor consistency. The data record spans the 15-year period from March 1996 to June 2011 and it contains global monthly mean total ozone columns on a 1°× 1° grid. Geophysical ground-based validation using Brewer, Dobson, and UV-visible instruments has shown that the GTO-ECV level 3 data record is of the same high quality as the equivalent individual level 2 data products that constitute it. Both absolute agreement and long-term stability are excellent with respect to the ground-based data, for almost all latitudes apart from a few outliers which are mostly due to sampling differences between the level 2 and level 3 data. We conclude that the GTO-ECV data record is valuable for a variety of climate applications such as the long-term monitoring of the past evolution of the ozone layer, trend analysis and the evaluation of chemistry-climate model simulations.

  7. The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) data record from the ESA Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Coldewey-Egbers, M.; Loyola, D. G.; Koukouli, M.; Balis, D.; Lambert, J.-C.; Verhoelst, T.; Granville, J.; van Roozendael, M.; Lerot, C.; Spurr, R.; Frith, S. M.; Zehner, C.

    2015-05-01

    We present the new GOME-type Total Ozone Essential Climate Variable (GTO-ECV) data record which has been created within the framework of the European Space Agency's Climate Change Initiative (ESA-CCI). Total ozone column observations - based on the GOME-type Direct Fitting version 3 algorithm - from GOME (Global Ozone Monitoring Experiment), SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY), and GOME-2 have been combined into one homogeneous time series, thereby taking advantage of the high inter-sensor consistency. The data record spans the 15-year period from March 1996 to June 2011 and it contains global monthly mean total ozone columns on a 1° × 1° grid. Geophysical ground-based validation using Brewer, Dobson, and UV-visible instruments has shown that the GTO-ECV level 3 data record is of the same high quality as the equivalent individual level 2 data products that constitute it. Both absolute agreement and long-term stability are excellent with respect to the ground-based data, for almost all latitudes apart from a few outliers which are mostly due to sampling differences between the level 2 and level 3 data. We conclude that the GTO-ECV data record is valuable for a variety of climate applications such as the long-term monitoring of the past evolution of the ozone layer, trend analysis and the evaluation of Chemistry-Climate Model simulations.

  8. Comparative study on the technological properties of latex and natural rubber from Hancornia speciosa Gomes and Hevea brasiliensis

    USDA-ARS?s Scientific Manuscript database

    This work reports a systematic comparative study of the properties of natural lattices and rubbers extracted from Hancornia speciosa Gomes and Hevea brasiliensis [(Willd. ex Adr. de Juss.) Muell.-Arg.] (clone RRIM 600) trees from 11 collections in Brazil throughout 2004. Natural rubber latex particl...

  9. The GOME-2 Level 1 Instrument Degradation Model Version 1 and its Application for Atmospheric Composition Retrievals

    NASA Astrophysics Data System (ADS)

    Huckle, R.; Lang, R.; Retscher, C.; Poli, G.; Lindstrot, R.; Lacan, A.; Trollope, E.; Munro, R.

    2015-12-01

    GOME-2 on Metop-A and -B is suffering from signal degradation in the shorter wavelength regime below 420 nm, like many instruments of this type. During its 8 years in orbit to date, GOME-2 on Metop-A has acquired enough data to enable correction of most (though not all) aspects of its signal degradation using a combination of empirical and instrument model correction. We present the first version of the GOME-2 Metop-A degradation model which covers the full spectral range between 240 nm and 790 nm and also includes signal correction for two polarisation measurement devices (PMDs). We discuss the individual model components, including a correction of the solar-spectrum and the calibration of the solar diffuser, a stray-light correction in the region below 295 nm, an angular correction of all earthshine data, as well as a correction in the spectral domain for low frequency patterns. The first version of the dataset covers the time period from launch until the start of tandem operations in July 2013, when the swath of GOME-2 Metop-A was reduced from 1920 km to 960 km. We will discuss the individual degradation components accounted for, their physical origin, and will show the first results of the corrected spectra and their impact on level-2 retrieval quality. We also present the roadmap towards the implementation of a near real-time correction scheme of GOME-2 level-1 data and discuss various options concerning its potential operational and offline functionalities.

  10. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.

    2011-11-01

    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  11. Overview of the O3M SAF GOME-2 operational atmospheric composition and UV radiation data products and data availability

    NASA Astrophysics Data System (ADS)

    Hassinen, S.; Balis, D.; Bauer, H.; Begoin, M.; Delcloo, A.; Eleftheratos, K.; Gimeno Garcia, S.; Granville, J.; Grossi, M.; Hao, N.; Hedelt, P.; Hendrick, F.; Hess, M.; Heue, K.-P.; Hovila, J.; Jønch-Sørensen, H.; Kalakoski, N.; Kauppi, A.; Kiemle, S.; Kins, L.; Koukouli, M. E.; Kujanpää, J.; Lambert, J.-C.; Lang, R.; Lerot, C.; Loyola, D.; Pedergnana, M.; Pinardi, G.; Romahn, F.; van Roozendael, M.; Lutz, R.; De Smedt, I.; Stammes, P.; Steinbrecht, W.; Tamminen, J.; Theys, N.; Tilstra, L. G.; Tuinder, O. N. E.; Valks, P.; Zerefos, C.; Zimmer, W.; Zyrichidou, I.

    2016-02-01

    The three Global Ozone Monitoring Experiment-2 instruments will provide unique and long data sets for atmospheric research and applications. The complete time period will be 2007-2022, including the period of ozone depletion as well as the beginning of ozone layer recovery. Besides ozone chemistry, the GOME-2 (Global Ozone Monitoring Experiment-2) products are important e.g. for air quality studies, climate modelling, policy monitoring and hazard warnings. The heritage for GOME-2 is in the ERS/GOME and Envisat/SCIAMACHY instruments. The current Level 2 (L2) data cover a wide range of products such as ozone and minor trace gas columns (NO2, BrO, HCHO, H2O, SO2), vertical ozone profiles in high and low spatial resolution, absorbing aerosol indices, surface Lambertian-equivalent reflectivity database, clear-sky and cloud-corrected UV indices and surface UV fields with different weightings and photolysis rates. The Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) processes and disseminates data 24/7. Data quality is guaranteed by the detailed review processes for the algorithms, validation of the products as well as by a continuous quality monitoring of the products and processing. This paper provides an overview of the O3M SAF project background, current status and future plans for the utilisation of the GOME-2 data. An important focus is the provision of summaries of the GOME-2 products including product principles and validation examples together with sample images. Furthermore, this paper collects references to the detailed product algorithm and validation papers.

  12. Use of GOME measurements for the examination of the nitrogen oxide budget in the troposphere

    NASA Astrophysics Data System (ADS)

    Stein, O.; Rohrer, F.; Toenges, N.; Schultz, M.

    2003-04-01

    Ozone in the troposphere is controlled by stratospheric-tropospheric exchange (STE) and in-situ production which depends on the concentration of precursors such as the nitrogen oxides NO_X. Due to the short tropospheric lifetime of NO_X in the troposphere of about one day its global distribution strongly corresponds to the distribution of emissions. We want to quantify the relative contributions and the geographic distributions of individual NO_X emission sources using a variety of novel satellite data. The use of these data can give additional information about the distribution and the relative importance of different types of sources (anthropogenic, lightning, biomass burning, and soil emissions). In a first step nitrogen dioxide NO_2 measured by the GOME satellite has been compared to night-time light emissions observed from space from the DMSP Operational Linescan System (OLS). The area of lighting as seen from space is closely correlated with the power consumption and CO_2 -emissions in that area and can therefore serve as a proxy for fossil fuel consumption. For comparison we performed a run with the global chemical transport model MOZART-2 which shows a strong pattern correlation to the EDGAR-2 emission database used in this model. It turns out that the light density at the Earth's surface shows a better correlation with tropospheric NO_2 measured by GOME (R=0.63) than the estimated anthropogenic emissions in the EDGAR database (R=0.52) which are widely used in global chemistry models. Recently satellite datasets of global lightning flash frequencies (NASA LIS/OTD) and fire counts (ATSR) became available. The empirical combination of lighting and lightning improves the correlation coefficient with GOME NO_2 to R=0.77 thus explaining 60 % of the total variance of measured NO2. Emissions from biomass burning are more difficult to derive from satellite observations. We want to make use of ATSR fire counts in combination with the AVHRR NDVI product for the

  13. NO2 evolution at global level using the space instruments SCIAMACHY, OMI and GOME-2

    NASA Astrophysics Data System (ADS)

    Rosu, Adrian; Constantin, Daniel-Eduard; Bocaneala, Corina; Voiculescu, Mirela; Puiu Georgescu, Lucian

    2016-04-01

    The main objective of this study is to evaluate the amount of NO2 at global level above twenty five worldwide urban agglomerations or station during 2002-2015. Tropospheric NO2 Vertical Column Density (VCD) are derived from various satellite UV-Vis instruments: SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY) onboard Envisat, OMI (Ozone Monitoring Instrument) onboard AURA and GOME-2 (Global Ozone Monitoring Experiment Measurements-2) onboard Metop-A& B. Possible dependence of the evolution of the density of NO2 molecules above the major cities on demographic, economic, industry characteristics are investigated. Causes for various trends of the NO2 column, depending on geographical characteristics, altitude, are also analysed.

  14. Area Sulphur Dioxide Emissions over China Extracted from GOME2/MetopA Observations

    NASA Astrophysics Data System (ADS)

    Koukouli, M. E.; Balis, D. S.; Zyrichidou, I.; van der A, R.; Ding, Jieying; Hedelt, P.; Valks, P.; Fioletov, V.

    2016-08-01

    As part of EU FP7 Monitoring and Assessment of Regional air quality in China using space Observations, Project Of Long-term sino-european co-Operation, MarcoPolo, project, http://www.marcopolo.eu/, the long trends of atmospheric sulphur dioxide, SO2, have been studied from a spade of satellite instruments and algorithms [Koukouli et al., 2016]. Point sources with negative trends have been identified, pointing to the implementation of air quality technologies, as well as locations with positive trends, pointing to the Chinese economy and industry increasing need for energy.Using mathematical tools, as well as apriori SO2 emission fields used in a renowned regional chemistry transport model, we investigate the possibility of improving the current emission fields by calculating a top-down emission inventory for China based on GOME2/MetopA SO2 measurements.

  15. Effective cloud fractions of GOME-2 measurements using an enhanced HICRU implementation

    NASA Astrophysics Data System (ADS)

    Sihler, Holger; Beirle, Steffen; Grzegorski, Michael; Hörmann, Christoph; Lampel, Johannes; Penning de Vries, Marloes; Wagner, Thomas

    2016-04-01

    The physics of clouds is one of the most important drivers of meteorology and the climate system. Apart from this, the distribution of clouds interferes with the majority of satellite measurement techniques. Tropospheric trace gas retrievals are particularly sensitivity to the distribution of clouds within the field-of-view of the instrument, because already small cloud fractions have the potential to alter the measurement error and significantly increase the uncertainty of the measurement. Hence, the accuracy of tropospheric trace gas retrievals depends on the accuracy of the cloud fraction, particularly for small cloud fractions. The original HICRU Iterative Cloud Retrieval Utilities (HICRU) algorithm has been specifically developed for the retrieval of small cloud fractions at high accuracy. This is achieved by inferring a clear sky top of atmosphere reflectance map from the dataset itself, minimising the influence of instrument degradation and/or insufficient calibration. HICRU thus requires a minimum of a-priori knowledge. So far, this approach was limited to measurements at sufficiently small viewing angles, such as GOME and SCIAMACHY, for which the use of a single, viewing-angle independent background albedo map is justified. Here, we demonstrate how this empirical approach may be enhanced by parametrising the viewing angle dependence of the TOA reflectance. It then becomes applicable to satellite instruments like GOME-2, OMI, and the upcoming TROPOMI/S5P with viewing angles up to 45 or even 70 degrees, by parametrising the viewing angle dependence of the TOA reflectance. Furthermore, the enhanced HICRU algorithm comprises an advanced treatment of the temporal evolution using a spatially averaged Fourier series fit. The enhanced HICRU has the potential to be applied also to instruments with moderate spectral resolution like MERIS, MODIS, or AVHRR as well.

  16. GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurement

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.; Huang, G.; Gonzalez Abad, G.

    2016-12-01

    It has been shown from sensitivity studies that adding visible measurements in the Chappuis ozone band to UV measurements in the Hartley/Huggins ozone bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI (Earth Venture Instrument) TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels ( 290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interferences from surface reflectance and aerosols and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on combining EOFs (Empirical Orthogonal Functions) derived from ASTER and other surface reflectance spectra with MODIS BRDF climatology into the ozone profile algorithm. The impacts of various types of aerosols and surface BRDF on the retrievals will be investigated. In addition, we will also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We will evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval based on fitting quality and validation against ozonesonde observations.

  17. Improvement of GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurements

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.

    2015-12-01

    It has been shown that adding visible measurements in the Chappuis band to UV measurements in the Hartley/Huggins bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels (~290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be solidly demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interference from surface reflectance and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO optimal estimation based ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on ASTER and other surface reflectance spectra and MODIS BRDF climatology into the ozone profile algorithm using two approaches: fitting several EOFs (Empirical Orthogonal Functions) and scaling reflectance spectra. We also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval. These results clearly show the potential of using the visible to improve lower tropospheric ozone retrieval.

  18. Monitoring the Bardarbunga eruption using GOME-2/Metop-A & -B

    NASA Astrophysics Data System (ADS)

    Hedelt, Pascal; Valks, Pieter; Loyola, Diego

    2015-04-01

    We will present here the results of the Bardarbunga eruption monitored by the GOME-2 instrument aboard MetOp-A & -B. After increased seismic activity in August, the Icelandic volcano Bardarbunga (Bárðarbunga) erupted on 31 August 2014. Since 1 September the GOME-2 instruments aboard the MetOp-A and -B satellites detect a continuous emission of sulphur-dioxide (SO2) emitted from the Holuhraun fissure at the flanks of the Bardarbunga volcano. At the beginning the emitted SO2 was mainly transported to the north-eastern direction over Scandinavia and Russia. However, on September 22 an SO2 cloud was even moving over Europe and could be detected at the Hohenpeissenberg and Schneefernerhaus observatories. SO2 emissions are a good indicator for volcanic activity, since besides weak anthropogenic emissions there are no other known sources for atmospheric SO2, which can cause respiratory problems in the local population and the aircraft passengers. Furthermore in form of acid rain it increases the oxidation of aircraft components. It was found that for some volcanic eruptions SO2 can be a good proxy for the much harder to detect volcanic ash. Volcanic ash can be hazardous not only for the local population but also for aviation since it can cause total engine failure if it melts and then congeals in the engine. Furthermore ash is highly abrasive to engine turbine vanes and propellers. Under the leadership of IMF, DLR-EOC provides operational trace gas measurements, including total SO2 columns, in near-real-time (i.e., within 2 hours of recording) in the framework of EUMETSAT's Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF).

  19. Comparison of total water vapor column from GOME-2 on MetOp-A against ground-based GPS measurements at the Iberian Peninsula.

    PubMed

    Román, R; Antón, M; Cachorro, V E; Loyola, D; Ortiz de Galisteo, J P; de Frutos, A; Romero-Campos, P M

    2015-11-15

    Water vapor column (WVC) obtained by GOME-2 instrument (GDP-4.6 version) onboard MetOp-A satellite platform is compared against reference WVC values derived from GPS (Global Positioning System) instruments from 2007 to 2012 at 21 places located at Iberian Peninsula. The accuracy and precision of GOME-2 to estimate the WVC is studied for different Iberian Peninsula zones using the mean (MBE) and the standard deviation (SD) of the GOME-2 and GPS differences. A direct comparison of all available data shows an overestimation of GOME-2 compared to GPS with a MBE of 0.7 mm (10%) and a precision quantified by a SD equals to 4.4mm (31%). South-Western zone presents the highest overestimation with a MBE of 1.9 mm (17%), while Continental zone shows the lowest SD absolute value (3.3mm) due mainly to the low WVC values reached at this zone. The influence of solar zenith angle (SZA), cloud fraction (CF), and the type of surface and its albedo on the differences between GOME-2 and GPS is analyzed in detail. MBE and SD increase when SZA increases, but MBE decreases (taking negative values) when CF increases and SD shows no significant dependence on CF. Under cloud-free conditions, the differences between WVC from GOME-2 and GPS are within the WVC error given by GOME-2. The changes of MBE and SD on Surface Albedo are not so evident, but MBE slightly decreases when the Surface Albedo increases. WVC from GOME-2 is, in general, more precise for land than for sea pixels.

  20. Polar tropospheric BrO from GOME: timeseries and analysis of area covered by BrO 'clouds'

    NASA Astrophysics Data System (ADS)

    Hollwedel, J.; Beirle, S.; Frankenberg, C.; Grzegorski, M.; Khokhar, F.; Kühl, S.; Kraus, S.; Platt, U.; Wagner, T.; Wilms-Grabe, W.

    2003-04-01

    The GOME instrument aboard ERS-2 is measuring trace gases since 1995. With the DOAS method it is possible to extract vertical column densities of BrO (and other species) from the GOME spectra. The importance of BrO for the ozone depletion in the stratosphere is well known. BrO can also be liberated by heterogenous reactions on the surfaces of halogen rich aerosols, especially over the one year old sea ice. This mechanism is known as the Bromine explosion leading to the 'tropospheric ozone hole' in polar spring. Because of the global coverage and the long time series, comparisons of year-to-year variations are feasible. We focus especially on the comparison of the time and spatial variability of BrO events by analyzing time series and the extent of areas covered by BrO 'clouds'.

  1. Is success a sin? A conversation with the reverend Peter J. Gomes. Interview by David A. Light.

    PubMed

    Gomes, P J

    2001-09-01

    The difficult task of achieving worldly success while also storing up spiritual treasure is perennially with us, in good times and in bad. Today, however, as the economy has cooled and companies have demonstrated their mortality, questions about meaning and value appear more relevant, even urgent. HBR associate editor David A. Light recently spoke with the Reverend Peter J. Gomes, one of the nation's best-known preachers and the minister at Harvard University's Memorial Church, about why and how it is both possible and necessary to reconcile a life of success with a life of faith. To do so, says Gomes, you must first "get used to it"--come to terms with the age-old tension between being rich in spirit and rich in worldly goods. Second, you should "get over it"--arrive at an understanding of the value and responsibilities associated with power and wealth. Finally, "get on with it"--figure out how you can live your life spiritually while continuing to lead in the business world. For those wondering how to get on with spiritual development, Gomes cites the growing phenomenon of senior executives gathering with peers--out of shared need, not shared accomplishment--to pray, study sacred texts, and share their religious life together. He counsels that it's never too late to get on with it: We can amend life at any time, whether we're 35, 45, or 75. Gomes concludes that business will continue to be one of the most significant forces in American culture, but it will always struggle against people's need for a perspective that is beyond this world's.

  2. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Guanter, L.; Joiner, J.

    2014-12-01

    Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last years by means of a number of space-borne atmospheric spectrometers. Here, we present a new retrieval method for medium spectral resolution instruments such as the Global Ozone Monitoring Experiment (GOME-2) and the SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY). Building upon the previous work by Joiner et al. (2013), our approach solves existing issues in the retrieval such as the non-linearity of the forward model and the arbitrary selection of the number of free parameters. In particular, we use a backward elimination algorithm to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF from real spectra from GOME-2 and for the first time, from SCIAMACHY. We find a good correspondence of the absolute SIF values and the spatial patterns from the two sensors, which suggests the robustness of the proposed retrieval method. In addition, we examine uncertainties and use our GOME-2 retrievals to show empirically the low sensitivity of the SIF retrieval to cloud contamination.

  3. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Guanter, L.; Joiner, J.

    2015-06-01

    Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last few years by means of a number of space-borne atmospheric spectrometers. Here, we present a new retrieval method for medium spectral resolution instruments such as the Global Ozone Monitoring Experiment-2 (GOME-2) and the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY). Building upon the previous work by Guanter et al. (2013) and Joiner et al. (2013), our approach provides a solution for the selection of the number of free parameters. In particular, a backward elimination algorithm is applied to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF at 740 nm from real spectra from GOME-2 and for the first time, from SCIAMACHY. We find a good correspondence of the absolute SIF values and the spatial patterns from the two sensors, which suggests the robustness of the proposed retrieval method. In addition, we compare our results to existing SIF data sets, examine uncertainties and use our GOME-2 retrievals to show empirically the relatively low sensitivity of the SIF retrieval to cloud contamination.

  4. Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from GRUAN network

    NASA Astrophysics Data System (ADS)

    Antón, M.; Loyola, D.; Román, R.; Vömel, H.

    2014-09-01

    The main goal of this article is to validate the total water vapour column (TWVC) measured by the Global Ozone Monitoring Experiment-2 (GOME-2) satellite sensor and generated using the GOME Data Processor (GDP) retrieval algorithm developed by the German Aerospace Center (DLR). For this purpose, spatially and temporally collocated TWVC data from highly accurate sounding measurements for the period January 2009-May 2014 at six sites are used. These balloon-borne data are provided by GCOS Reference Upper-Air Network (GRUAN). The correlation between GOME-2 and sounding TWVC data is reasonably good (determination coefficient (R2) of 0.89) when all available radiosondes (1400) are employed in the inter-comparison. When cloud-free cases (544) are selected by means of the satellite cloud fraction (CF), the correlation exhibits a remarkable improvement (R2 ~ 0.95). Nevertheless, analyzing the six datasets together, the relative differences between GOME-2 and GRUAN data shows mean values (in absolute term) of 19% for all-sky conditions and 14% for cloud-free cases, which evidences a notable bias in the satellite TWVC data against the reference balloon-borne measurements. The satellite-sounding TWVC differences show a strong solar zenith angle (SZA) dependence for values above 50° with a stable behaviour for values below this zenith angle. The smallest relative differences found in the inter-comparison (between -5 and +3%) are achieved for those cloud-free cases with SZA below 50°. Furthermore, the detailed analysis of the influence of cloud properties (CF, cloud top albedo (CTA) and cloud top pressure (CTP)) on the satellite-sounding differences reveals, as expected, a large effect of clouds in the GOME-2 TWVC data. For instance, the relative differences exhibit a large negative dependence on CTA, varying from +5 to -20% when CTA rises from 0.3 to 0.9. Finally, the satellite-sounding differences also show a negative dependence on the reference TWVC values, changing from

  5. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Köhler, Philipp; Guanter, Luis; Joiner, Joanna

    2015-04-01

    Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last several years by means of space-borne atmospheric spectrometers. SIF is an electromagnetic signal emitted by the chlorophyll-a of photosynthetically active vegetation in the 650-850 nm spectral range. It represents a part of the excess energy during the process of photosynthesis and provides a measure of photosynthetic activity. The key challenge to retrieve SIF from space is to isolate the signal from the about 100 times more intense reflected solar radiation in the measured top of atmosphere (TOA) radiance spectrum. Nevertheless, it has been demonstrated that a number of satellite sensors provide the necessary spectral and radiometric performance to evaluate the in-filling of solar Fraunhofer lines and/or atmospheric absorption features by SIF. We will present recent developments for the retrieval of SIF from medium spectral resolution space-borne spectrometers such as the Global Ozone Monitoring Experiment (GOME-2) and the Scanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY). Building upon the previous work by Joiner et al. 2013, our approach solves existing issues in the retrieval such as the non-linearity of the forward model and the arbitrary selection of the number of free parameters. In particular, we use a backward elimination algorithm to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF from real spectra from GOME-2 and for the first time, from SCIAMACHY. We are able to present a time series of GOME-2 SIF results covering the 2007-2011 time period and SCIAMACHY SIF results between 2003-2011. This represents an almost one decade long record of global SIF. We

  6. Estimating the lifetime of boundary layer NO_x for different polluted regions using GOME data

    NASA Astrophysics Data System (ADS)

    Beirle, S.; Hollwedel, J.; Platt, U.; Wenig, M.; Wagner, T.

    Nitrogen oxides (NO+NO_2=NO_x) are important trace gases with impact on health, rain acidity and especially ozone production and OH concentration in the troposphere. NO_2 is detectable from satellite platforms using differential optical absorption spectroscopy (DOAS). Tropospheric column densities can be retrieved by estimating and subtracting the stratospheric fraction. A major goal of NO_2 retrievals from satellites is to estimate actual NO_x emissions. Therefore, knowledge of the lifetime τ of NO_x is essential. τ is highly variable due to its dependency on factors like OH concentration, humidity, actinic flux or wind transport. Typical values in the troposphere range from hours to days. In this study we demonstrate the potential of GOME NO_2 data to estimate mean lifetimes of boundary layer NO_x for different regions and seasons. For this task, we investigate the weekly cycle of NO_2 in industrialized regions. Anthropogenic activities are reduced during the weekend. Hence, we find significant reduction (up to 50%) of tropospheric NO_2 on Sunday compared to working days. Furthermore, the weekend minimum of emissions also affects the Monday levels of NO_2. Thus the specific shape of the weekly cycle allows us to deduce τ. With this method, for instance for Germany, we obtain the mean lifetime of boundary layer NO_x to be 6 hours in summer and about 24 hours in winter.

  7. Genetic diversity of the Neotropical tree Hancornia speciosa Gomes in natural populations in Northeastern Brazil.

    PubMed

    Jimenez, H J; Martins, L S S; Montarroyos, A V V; Silva Junior, J F; Alzate-Marin, A L; Moraes Filho, R M

    2015-12-22

    Mangabeira (Hancornia speciosa Gomes) is a fruit tree of the Apocynaceae family, which is native to Brazil and is a very important food resource for human populations in its areas of occurrence. Mangabeira fruit is collected as an extractive activity, and no domesticated varieties or breeding programs exist. Due to a reduction in the area of ecosystems where it occurs, mangabeira is threatened by genetic erosion in Brazil. The objective of this study was to characterize and evaluate the genetic diversity of 38 mangabeira individuals collected from natural populations in Pernambuco State using inter-simple sequence repeat (ISSR) molecular markers. The ISSR methodology generated a total of 93 loci; 10 were monomorphic and 83 were polymorphic. The average number of loci per primer was 15.5, ranging from 9 (#UBC 866) to 21 (#UBC 834). The results showed a high level of genetic diversity (0.30), and found that only around 30% of genetic variability is distributed among populations (GST = 0.29, ФST = 0.30), with the remainder (ФCT = 70%) found within each population, as expected for forest outcrossing species. Estimates for historic gene flow (1.18) indicate that there is some isolation of these populations, and some degree of genetic differentiation.

  8. Systematic aerosol characterization by combining GOME-2 UV Aerosol Indices with trace gas concentrations

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Stammes, P.; Wagner, T.

    2012-04-01

    The task of determining aerosol type using passive remote sensing instruments is a daunting one. First, because the variety in aerosol (optical) properties is very large; and second, because the effect of aerosols on the detected top-of-atmosphere reflectance spectrum is smooth and mostly featureless. In addition, spectrometers like GOME-2 have a coarse spatial resolution, which makes aerosol characterization even more difficult due to interferences with clouds. On account of these problems, we do not attempt to derive aerosol properties from single measurements: instead, we combine time series of UV Aerosol Index and trace gas concentrations to derive the dominating aerosol type for each season. Aside from the Index values and trace gas concentrations themselves, the correlation between UV Aerosol Indices (which are indicative of aerosol absorption) with NO2, HCHO, and CHOCHO columns - or absence of it - provides clues to the (main) source of the aerosols in the investigated region and time range. For example: a high correlation of HCHO and Absorbing Aerosol Index points to aerosols from biomass burning, highly correlated CHOCHO, HCHO, and SCattering Index indicate biogenic secondary organic aerosols, and coinciding high NO2 concentrations with high SCattering Index values are associated with industrial and urban aerosols. We here present case studies for several regions to demonstrate the suitability of our approach. Then, we introduce a method to systematically derive the dominating aerosol type on a global scale on time scales varying from monthly to yearly.

  9. Hancornia speciosa Gomes (Apocynaceae) as a potential anti-diabetic drug.

    PubMed

    Pereira, Aline C; Pereira, Ana Bárbara D; Moreira, Carolina C L; Botion, Leida M; Lemos, Virgínia S; Braga, Fernão C; Cortes, Steyner F

    2015-02-23

    The leaves of Hancornia speciosa Gomes are traditionally used to treat diabetes in Brazil. The aim of the study is to evaluate the potential anti-diabetic effect of Hancornia speciosa extract and derived fractions. The ethanolic extract from Hancornia speciosa leaves and chromatographic fractions thereof were evaluated on α-glucosidase assay, on hyperglycemic effect and glucose uptake. The chemical composition of the extract and its most active fraction was investigated by ESI-LC-MS. The ethanolic extract and derived fractions inhibited α-glucosidase in vitro. However, only the crude extract and the dichloromethane fraction inhibited the hyperglycemic effect induced by starch or glucose. Both the extract and dichloromethane fraction were also able to increase glucose uptake in adipocytes. Bornesitol, quinic acid, and chorogenic acid were identified in the extract, along with flavonoid glycosides, whereas the dichloromethane fraction is majorly composed by esters of lupeol and/or α/β-amirin. Hancornia speciosa has a potential anti-diabetic effect through a mechanism dependent on inhibition of α-glucosidase and increase on glucose uptake. These results give support to the use on traditional medicine of this medicinal plant. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. A new long-term total column water vapour product from ESA's GOME Evolution project: results from comparisons to ground-based and in-situ observations

    NASA Astrophysics Data System (ADS)

    Danielczok, Anja; Schröder, Marc; Beirle, Steffen; Wagner, Thomas; Loyola, Diego; Hollmann, Rainer

    2017-04-01

    The objective of ESA's GOME Evolution project is to provide the EO user community with improved GOME Level 1 data products, based on updated GOME calibration algorithms and improved in-flight calibration characterization for the complete mission. In addition an improved Level 2 water vapour algorithm was developed and corresponding Level 2 and Level 3 H2O data products of the full mission were reprocessed and - together with the Level 1 data - distributed to the EO user community. The GOME Evolution total column water vapour (TCWV) data products were compared to radiosonde observations from Analysed RadioSoundings Archive (ARSA) and to ground-based data from the Global Navigation Satellite System (GNSS) data provided by NCAR. The quality of the GOME Evolution TCWV data record is assessed in terms of bias, RMSD and stability. Here we focus on results from the comparisons to ARSA and GNSS and discuss associated results in terms of GCOS requirements and results from the GEWEX water vapor assessment (G-VAP, http://www.gewex-vap.org).

  11. Relationship between MODIS fire counts and GOME-2 tropospheric NO2 measurements

    NASA Astrophysics Data System (ADS)

    Schreier, S. F.; Richter, A.; Schönhardt, A.; Burrows, J. P.

    2012-04-01

    Biomass burning has an ongoing role in determining the composition of Earth's surface and atmosphere. The term biomass burning comprises prescribed and wild fires (vegetation fires), as well as biofuel use, such as wood or peat for heating and cooking. Biomass burning represents an important source of aerosol particles and greenhouse gases such as CO2, CH4 and N2O, but also chemically active gases such as CO and NO2 are observed in the plumes. Even though vegetation fire emission inventories have improved considerably in recent years, large uncertainties remain in the temporally and spatially highly variable biomass burning emissions, especially due to uncertainties in input parameters. While satellite observed CO emissions from biomass burning have been investigated in great detail in the last years, NO2 has received much less attention. This can be explained by difficulties posed by the short atmospheric lifetime of NO2 and its photochemical equilibrium with NO but also the complicated retrieval of NO2 due to the presence of smoke and aerosols in the biomass burning plumes. Here, we present the relationship between observed fire counts and NO2 tropospheric vertical column densities from MODIS and GOME-2 measurements, respectively. The MOZART model for 1997 was used to determine monthly averaged air-mass factors and cloud fraction was derived by the FRESCO algorithm from SCIAMACHY measurements. The results show good correlation values (> 0.7) in many parts of the world, especially in the Subtropics. Future work will be further improvement of the retrieval for specific biomass burning situations in order to estimate total emissions from biomass burning for representative biomass burning regions by the use of appropriate models.

  12. Developmental toxicity evaluation of Pimenta pseudocaryophyllus (Gomes) Landrum, (E)-methyl isoeugenol chemotype, in Wistar rats.

    PubMed

    Cardoso, Bruce Soares; Machado, Katia Borges; de Paula, José Realino; de Paula, Joelma Abadia Marciano; Cuvinel, Wilson de Melo; Amaral, Vanessa Cristiane Santana

    2017-10-02

    Pimenta pseudocaryophyllus (Gomes) Landrum (Myrtaceae) has been traditionally used in Brazilian folk medicine. Studies have established the botanical characterization, phytochemistry profile, and pharmacological potential of this species, including antibiotic, anxiolytic, antidepressant, antioxidant, antinociceptive, and anti-inflammatory properties. Despite its widespread use, no previous study has been conducted regarding its toxicological profile, especially during pregnancy. Thus, this study investigated the developmental toxicity of the dry leaf extract of the P. pseudocaryophyllus, (E)-methyl isoeugenol chemotype, in rats. First, the dry leaf extract was prepared by a spray-drying technique. Then, pregnant Wistar rats were orally treated with dry extract at doses of 0, 2000, 2500, or 3000 mg/kg from gestational day 6 through 15 (organogenesis period). On gestational day 21, the rats underwent cesarean sections and the reproductive outcomes and biochemistry parameters related to hepatic and renal markers were evaluated. Additionally, the fetuses were examined for external and skeletal variations and malformations. The spray-drying technique preserved the phytocomplex components and showed a satisfactory yield. No relevant differences were seen in the food consumption, reproductive performances, and hepatic and renal biochemical parameters between groups. However, there was a decrease in body weight gain of the dams during the organogenesis period and an increase of minor skeletal variations in the offspring (increased fetal incidences only of delayed ossification of the metacarpals, metatarsals, phalanges, sternebra, and rudimentary ribs) treated with the dry extract. The extract of P. pseudocaryophyllus, (E)-methyl isoeugenol chemotype, showed low maternal toxicity and induced minor skeletal variations in the offspring. Birth Defects Research 109:1292-1300, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Beirle, S.; Platt, U.; Wenig, M.; Wagner, T.

    2003-12-01

    Nitrogen oxides (NO+NO2=NOx and reservoir species) are important trace gases in the troposphere with impact on human health, atmospheric chemistry and climate. Besides natural sources (lightning, soil emissions) and biomass burning, fossil fuel combustion is estimated to be responsible for about 50% of the total production of NOx. Since human activity in industrialized countries largely follows a seven-day cycle, fossil fuel combustion is expected to be reduced during weekends. This "weekend effect" is well known from local, ground based measurements, but has never been analysed on a global scale before. The Global Ozone Monitoring Experiment (GOME) on board the ESA-satellite ERS-2 allows measurements of NO2 column densities. By estimating and subtracting the stratospheric column, and considering radiative transfer, vertical column densities (VCD) of tropospheric NO2 can be determined (e.g. Leue et al., 2001). We demonstrate the statistical analysis of weekly cycles of tropospheric NO2 VCDs for different regions of the world. In the cycles of the industrialized regions and cities in the US, Europe and Japan a clear Sunday minimum of tropospheric NO2 VCD can be seen. Sunday NO2 VCDs are about 25-50% lower than working day levels. Metropolitan areas with other religious and cultural backgrounds (Jerusalem, Mecca) show different weekly patterns corresponding to different days of rest. In China, no weekly pattern can be found. The presence of a weekly cycle in the measured tropospheric NO2 VCD may help to identify the different anthropogenic source categories. Furthermore, we estimated the lifetime of tropospheric NO2 by analysing the mean weekly cycle exemplarily over Germany, obtaining a value of about 6 h in summer and 18-24 h in winter.

  14. Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Beirle, S.; Platt, U.; Wenig, M.; Wagner, T.

    2003-07-01

    Nitrogen oxides (NO+NO2=NOx) are important trace gases in the troposphere with impact on human health, atmospheric chemistry and climate. Besides natural sources (lightning, soil emissions) and biomass burning, fossil fuel combustion is estimated to be responsible for about 50% of the total production of NOx. Since human activity in industrialized countries largely follows an artificial seven-day cycle, fossil fuel combustion is expected to be reduced during weekends. This "weekend effect" is well known from local, ground based measurements, but has never been analysed on a global scale before. The Global Ozone Monitoring Experiment (GOME) on board the ESA-satellite ERS-2 allows measurements of NO2 column densities. Applying sophisticated algorithms, vertical column densities (VCD) of tropospheric NO2 can be determined. We demonstrate the statistical analysis of weekly cycles of tropospheric NO2 VCDs for different regions of the world. In the cycles of the industrialized regions and cities in the US, Europe and Japan a clear Sunday minimum of tropospheric NO2 VCD can be seen. Sunday NO2 VCDs are about 25-50% lower than working day levels. Metropolitan areas with other religious and cultural backgrounds (Jerusalem, Mecca) show different weekly patterns corresponding to different days of rest. In China, no weekly pattern can be found. The presence of a weekly cycle in the measured tropospheric NO2 VCD allows the identification of anthropogenic sources. In addition, the fraction of emissions subjected to a weekly cycle (mainly transport, power generation) with respect to a constant background (all kind of natural sources, biomass burning, heavy industry) can be estimated. Furthermore, we estimated the lifetime of tropospheric NO2 by analysing the mean weekly cycle over Germany in detail, obtaining a value of about 12 h.

  15. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    NASA Astrophysics Data System (ADS)

    Kujanpää, J.; Kalakoski, N.

    2015-10-01

    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop) satellites. Cloud cover is taken into account by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High-Resolution Radiometer (AVHRR/3) instrument aboard both Metop in the morning orbit and Polar Orbiting Environmental Satellites (POES) of the National Oceanic and Atmospheric Administration (NOAA) in the afternoon orbit. In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast). The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated ultraviolet B (UVB) and ultraviolet A (UVA) radiation, solar noon UV index and daily maximum photolysis frequencies of ozone and nitrogen dioxide at the surface level. The quantities are computed in a 0.5°×0.5° regular latitude-longitude grid and stored as daily files in the hierarchical data format (HDF5) within 2 weeks from sensing. The product files are archived in the O3M SAF distributed archive and can be ordered via the EUMETSAT Data Centre.

  16. Operational Monitoring of GOME-2 and IASI Level 1 Product Processing at EUMETSAT

    NASA Astrophysics Data System (ADS)

    Livschitz, Yakov; Munro, Rosemary; Lang, Rüdiger; Fiedler, Lars; Dyer, Richard; Eisinger, Michael

    2010-05-01

    The growing complexity of operational level 1 radiance products from Low Earth Orbiting (LEO) platforms like EUMETSATs Metop series makes near-real-time monitoring of product quality a challenging task. The main challenge is to provide a monitoring system which is flexible and robust enough to identify and to react to anomalies which may be previously unknown to the system, as well as to provide all means and parameters necessary in order to support efficient ad-hoc analysis of the incident. The operational monitoring system developed at EUMETSAT for monitoring of GOME-2 and IASI level 1 data allows to perform near-real-time monitoring of operational products and instrument's health in a robust and flexible fashion. For effective information management, the system is based on a relational database (Oracle). An Extract, Transform, Load (ETL) process transforms products in EUMETSAT Polar System (EPS) format into relational data structures. The identification of commonalities between products and instruments allows for a database structure design in such a way that different data can be analyzed using the same business intelligence functionality. An interactive analysis software implementing modern data mining techniques is also provided for a detailed look into the data. The system is effectively used for day-to-day monitoring, long-term reporting, instrument's degradation analysis as well as for ad-hoc queries in case of an unexpected instrument or processing behaviour. Having data from different sources on a single instrument and even from different instruments, platforms or numerical weather prediction within the same database allows effective cross-comparison and looking for correlated parameters. Automatic alarms raised by checking for deviation of certain parameters, for data losses and other events significantly reduce time, necessary to monitor the processing on a day-to-day basis.

  17. Operational Monitoring of GOME-2 and IASI Level 1 Product Processing at EUMETSAT

    NASA Astrophysics Data System (ADS)

    Livschitz, Y.; Munro, R.; Lang, R.; Fiedler, L.; Dyer, R.; Eisinger, M.

    2009-12-01

    The growing complexity of operational level 1 radiance products from Low Earth Orbiting (LEO) platforms like EUMETSATs Metop series makes near-real-time monitoring of product quality a challenging task. The main challenge is to provide a monitoring system which is flexible and robust enough to identify and to react to anomalies which may be previously unknown to the system, as well as to provide all means and parameters necessary in order to support efficient ad-hoc analysis of the incident. The operational monitoring system developed at EUMETSAT for monitoring of GOME-2 and IASI level 1 data allows to perform near-real-time monitoring of operational products and instrument’s health in a robust and flexible fashion. For effective information management, the system is based on a relational database (Oracle). An Extract, Transform, Load (ETL) process transforms products in EUMETSAT Polar System (EPS) format into relational data structures. The identification of commonalities between products and instruments allows for a database structure design in such a way that different data can be analyzed using the same business intelligence functionality. An interactive analysis software implementing modern data mining techniques is also provided for a detailed look into the data. The system is effectively used for day-to-day monitoring, long-term reporting, instrument’s degradation analysis as well as for ad-hoc queries in case of an unexpected instrument or processing behaviour. Having data from different sources on a single instrument and even from different instruments, platforms or numerical weather prediction within the same database allows effective cross-comparison and looking for correlated parameters. Automatic alarms raised by checking for deviation of certain parameters, for data losses and other events significantly reduce time, necessary to monitor the processing on a day-to-day basis.

  18. Macrophytobenthic flora of the Abrolhos Archipelago and the Sebastião Gomes Reef, Brazil

    NASA Astrophysics Data System (ADS)

    Torrano-Silva, Beatriz N.; Oliveira, Eurico C.

    2013-11-01

    The Abrolhos Bank, located on the coast of Bahia, Brazil, harbors the largest coral reef system in the South Atlantic. This area has attracted the attention of biologists because of its peculiar mushroom-shaped structures, locally known as "chapeirões", and endemic species of corals and other organisms. The macrophytobenthos compartment plays an important ecological role in the functioning of the bank, and some reports on the presence of seaweeds and seagrasses have been published; however, the data are fragmentary, and a more detailed survey of the macrophytobenthos compartment is lacking. Here we consolidate the information available and add new data obtained from two expeditions focused on seaweed and seagrass diversity from two sectors of the bank: the islands of the Abrolhos archipelago (AA) and the Sebastião Gomes Reef (SG). These sites were selected for their contrasting characteristics. Specifically, SG (15 km off the mouth of the Caravelas River) is subjected to a broader range of anthropogenic impacts and to input of terrigenous sediments, while the AA (54 km offshore) is surrounded by calcareous biogenic sediments, has clearer water and is less affected by human activities. Macrophytobenthic species richness on both reference areas is larger than previously thought. Considering previous records, there are 164 species of macrophytes in AA and 111 species in SG, of which 59 and 74 species are first records for each respective location. The higher species richness at the AA may result from a higher habitat complexity and lower turbidity, but a potential negative effect of enhanced human impacts at SG cannot be ruled out. Considering that macroalgae are relevant components of the benthic community, as producers and structurer organisms, the data presented herein provide a reliable baseline for future environmental studies, and thus may contribute to improve management policies within the unique ecosystem of Abrolhos.

  19. Anthropogenic emissions of NOx over China: Reconciling the difference of inverse modeling results using GOME-2 and OMI measurements

    SciTech Connect

    Gu, Dasa; Wang, Yuhang; Smeltzer, Charles; Boersma, K. Folkert

    2014-06-27

    Inverse modeling using satellite observations of nitrogen dioxide (NO2) columns has been extensively used to estimate nitrogen oxides (NOx) emissions in China. Recently, the Global Ozone Monitoring Experiment-2 (GOME-2) and Ozone Monitoring Instrument (OMI) provide independent global NO2 column measurements on a nearly daily basis at around 9:30 and 13:30 local time across the equator, respectively. Anthropogenic NOx emission estimates by applying previously developed monthly inversion (MI) or daily inversion (DI) methods to these two sets of measurements show substantial differences. We improve the DI method by conducting model simulation, satellite retrieval, and inverse modeling sequentially on a daily basis. After each inversion, we update anthropogenic NOx emissions in the model simulation with the newly obtained a posteriori results. Consequently, the inversion-optimized emissions are used to compute the a priori NO2 profiles for satellite retrievals. As such, the a priori profiles used in satellite retrievals are now coupled to inverse modeling results. The improved procedure was applied to GOME-2 and OMI NO2 measurements in 2011. The new daily retrieval-inversion (DRI) method estimates an average NOx emission of 6.9 Tg N/yr over China, and the difference between using GOME-2 and OMI measurements is 0.4 Tg N/yr, which is significantly smaller than the difference of 1.3 Tg N/yr using the previous DI method. Using the more consistent DRI inversion results, we find that anthropogenic NOx emissions tend to be higher in winter and summer than spring (and possibly fall) and the weekday-to-weekend emission ratio tends to increase with NOx emission in China.

  20. Trends in formaldehyde columns over the Amazon rainforest, as observed from space with SCIAMACHY, OMI and GOME-2 spectrometers.

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Stavrakou, Trissevgeni; Lerot, Christophe; Yu, Huan; François, Hendrick; Gielen, Clio; Pinardi, Gaia; Muller, Jean-François; Van Roozendael, Michel

    2015-04-01

    Atmospheric formaldehyde (H2CO) is a central carbonyl compound of tropospheric chemistry. It is produced by the oxidation of a large variety of volatile organic compounds (VOCs), from biogenic, pyrogenic or anthropogenic emission sources. Tropical vegetation, in particular the Amazon forest that represents over half of the planet's remaining rainforests, emit a wide range of highly reactive biogenic volatile organic compounds (BVOCs). Those play a critical role in atmospheric chemistry and climate, by changing the oxidation capacity of the atmosphere and thus the lifetimes of other key trace gases such as CO and CH4, and by producing organic aerosols. Satellite observations of H2CO, bringing information at the global scale and over decades, are essential to trace and understand the nature and the spatio-temporal evolution of VOC emissions. We have been developing algorithms to retrieve formaldehyde columns from satellite nadir UV spectral measurements, and we have processed the full level-1 datasets of GOME/ERS-2, SCIAMACHY/ENVISAT, GOME-2/METOPA&B and OMI/AURA (De Smedt et al., 2008; 2012; 2015). Resulting H2CO products are openly distributed via the TEMIS website (http://h2co.aeronomie.be). In this work, we use the morning and afternoon H2CO columns between 2004 and 2014, respectively composed by the SCIAMACHY and GOME2 A&B datasets, and from the OMI observations, to study the diurnal, seasonal and long-term variations of H2CO over the Amazon rainforest. The highest H2CO columns worldwide are observed, with morning columns markedly higher than early afternoon. Very large variations between the dry and the wet seasons occur each year. Importantly, in some areas of the forest, mainly in the Rondonia Brazilian State, we observe a net decrease of the H2CO columns. We find very high correlation coefficients between the satellite H2CO columns and the reported deforestation fires that have significantly decreased in Rondonia since 2004 [INPE].

  1. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    NASA Astrophysics Data System (ADS)

    Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Hoepfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; Beekmann, M.; Orphal, J. J.; Chance, K.; Spurr, R. J.; Flaud, J.

    2013-12-01

    Lowermost tropospheric ozone is a major factor determining air quality, which directly affects human health in megacities and causes damages to ecosystems. Monitoring tropospheric ozone is a key societal issue which can be addressed at the regional scale by spaceborne observation. However, current satellite retrievals of tropospheric ozone using uncoupled either ultraviolet (UV) or thermal infrared (TIR) observations show limited sensitivity to ozone at the lowermost troposphere (LMT, up to 3 km asl of altitude above sea level), which is the major concern for air quality. In this framework, we have developed a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric TIR radiances observed by IASI and earth UV reflectances measured by GOME-2. Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12-km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov-Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT and KOPRA radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyze real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the LMT, in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km asl, they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km asl are only clearly depicted by the multispectral retrieval (both over land and over ocean

  2. Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOME-2

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Clerbaux, C.; George, M.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.-F.; Wespes, C.; Loyola, D.; Valks, P.; Hao, N.

    2013-09-01

    ozone (O3) columns in urban and rural regions as seen by the Infrared Atmospheric Sounding Interferometer (IASI) are analyzed along with the Global Ozone Monitoring Experiment (GOME-2) tropospheric nitrogen dioxide (NO2) columns. Results over nine cities of the Northern Hemisphere for the period 2008-2011 show a typical seasonal behavior of tropospheric O3, with a first maximum reached in late spring because of stratospheric intrusion mainly and a continuous rise till the summer because of the anthropogenic-based ozone production. Over the East Asian cities, a decrease in the O3 tropospheric column is detected during the monsoon period. Seasonal cycling of tropospheric NO2 shows consistent higher values during winter because of the higher anthropogenic sources and longer lifetime. In rural regions, a complex relation between the O3 and NO2 columns is found, with good correlation in summer and winter. O3 concentrations in rural sites are found to be comparable to those closest to the anthropogenic emission sources, with peak values in spring and summer. Furthermore, the effect of the reduction of pollutant emissions in the Beijing region during the Olympic Games of 2008 compared to the same summer period in the following 3 years is studied. GOME-2 NO2 measurements show a reduction up to 54% above Beijing during this period compared to the following 3 years. IASI O3 measurements show an increase of 12% during July 2008 followed by a decrease of 5-6% during the months of August and September.

  3. Dynamical control of NH and SH winter/spring total ozone from GOME observations in 1995-2002

    NASA Astrophysics Data System (ADS)

    Weber, M.; Dhomse, S.; Wittrock, F.; Richter, A.; Sinnhuber, B.-M.; Burrows, J. P.

    2003-06-01

    The abnormal high wave activity in austral spring 2002 led to the first observation of a major stratospheric warming in the southern hemisphere resulting in a net winter increase of mid- to high latitude total ozone until September 2002. In previous years chemical ozone depletion inside the Antarctic vortex was sufficiently high to reduce mean total ozone south of 50° in September to values slightly below that of March (fall) as observed by GOME during the period 1995-2001. This unusual event permits us to examine the interannual variability in total ozone and OClO (the latter being an indicator of the level of chlorine activation inside the polar vortex) as measured by GOME combining data from the southern and northern hemisphere. It is shown that the absolute winter eddy heat flux between 43° and 70° latitudes at 100 hPa correlates extremely well (r = 0.97) with spring-to-fall ratio of total ozone polewards of 50° and anti-correlates with the winter integrated maximum OClO column amounts (r = -0.94) using this combined data set. The unusual ozone ratio for austral winter/spring 2002 lies almost midway between typical values for Antarctica and those for recent cold Arctic winter/spring seasons.

  4. Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources

    NASA Astrophysics Data System (ADS)

    Fioletov, V. E.; McLinden, C. A.; Krotkov, N.; Yang, K.; Loyola, D. G.; Valks, P.; Theys, N.; Van Roozendael, M.; Nowlan, C. R.; Chance, K.; Liu, X.; Lee, C.; Martin, R. V.

    2013-10-01

    of sulfur dioxide (SO2) from space-based spectrometers are in a relatively early stage of development. Factors such as interference between ozone and SO2 in the retrieval algorithms often lead to errors in the retrieved values. Measurements from the Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and Global Ozone Monitoring Experiment-2 (GOME-2) satellite sensors, averaged over a period of several years, were used to identify locations with elevated SO2 values and estimate their emission levels. About 30 such locations, detectable by all three sensors and linked to volcanic and anthropogenic sources, were found after applying low and high spatial frequency filtration designed to reduce noise and bias and to enhance weak signals to SO2 data from each instrument. Quantitatively, the mean amount of SO2 in the vicinity of the sources, estimated from the three instruments, is in general agreement. However, its better spatial resolution makes it possible for OMI to detect smaller sources and with additional detail as compared to the other two instruments. Over some regions of China, SCIAMACHY and GOME-2 data show mean SO2 values that are almost 1.5 times higher than those from OMI, but the suggested spatial filtration technique largely reconciles these differences.

  5. Application of OMI, SCIAMACHY and GOME-2 Satellite SO2 Retrievals for Detection of Large Emission Sources

    NASA Technical Reports Server (NTRS)

    Fioletov, V.E.; McLinden, C. A.; Krotkov, N.; Yang, K.; Loyola, D. G.; Valks, P.; Theys, N.; Van Roozendael, M.; Nowlan, C. R.; Chance, K.; Liu, X.; Lee, C.; Martin, R. V.

    2013-01-01

    Retrievals of sulfur dioxide (SO2) from space-based spectrometers are in a relatively early stage of development. Factors such as interference between ozone and SO2 in the retrieval algorithms often lead to errors in the retrieved values. Measurements from the Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and Global Ozone Monitoring Experiment-2 (GOME-2) satellite sensors, averaged over a period of several years, were used to identify locations with elevated SO2 values and estimate their emission levels. About 30 such locations, detectable by all three sensors and linked to volcanic and anthropogenic sources, were found after applying low and high spatial frequency filtration designed to reduce noise and bias and to enhance weak signals to SO2 data from each instrument. Quantitatively, the mean amount of SO2 in the vicinity of the sources, estimated from the three instruments, is in general agreement. However, its better spatial resolution makes it possible for OMI to detect smaller sources and with additional detail as compared to the other two instruments. Over some regions of China, SCIAMACHY and GOME-2 data show mean SO2 values that are almost 1.5 times higher than those from OMI, but the suggested spatial filtration technique largely reconciles these differences.

  6. Round-robin evaluation of nadir ozone profile retrievals: methodology and application to MetOp-A GOME-2

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Lambert, J.-C.; Granville, J.; Miles, G.; Siddans, R.; van Peet, J. C. A.; van der A, R. J.; Hubert, D.; Verhoelst, T.; Delcloo, A.; Godin-Beekmann, S.; Kivi, R.; Stubi, R.; Zehner, C.

    2015-05-01

    A methodology for the round-robin evaluation and the geophysical validation of ozone profile data retrieved from nadir UV backscatter satellite measurements is detailed and discussed, consisting of data set content studies, information content studies, co-location studies, and comparisons with reference measurements. Within the European Space Agency's Climate Change Initiative on ozone (Ozone_cci project), the proposed round-robin procedure is applied to two nadir ozone profile data sets retrieved at the Royal Netherlands Meteorological Institute (KNMI) and the Rutherford Appleton Laboratory (RAL, United Kingdom), using their respective OPERA v1.26 and RAL v2.1 optimal estimation algorithms, from MetOp-A GOME-2 (i.e. the second generation Global Ozone Monitoring Experiment on the first Meteorological Operational Satellite) measurements taken in 2008. The ground-based comparisons use ozonesonde and lidar profiles as reference data, acquired by the Network for the Detection of Atmospheric Composition Change (NDACC), Southern Hemisphere Additional Ozonesonde programme (SHADOZ), and other stations of the World Meteorological Organisation's Global Atmosphere Watch (WMO GAW). This direct illustration highlights practical issues that inevitably emerge from discrepancies in e.g. profile representation and vertical smoothing, for which different recipes are investigated and discussed. Several approaches for information content quantification, vertical resolution estimation, and reference profile resampling are compared and applied as well. The paper concludes with compliance estimates of the two GOME-2 ozone profile data sets with user requirements from the Global Climate Observing System (GCOS) and from climate modellers.

  7. Round-robin evaluation of nadir ozone profile retrievals: methodology and application to MetOp-A GOME-2

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Lambert, J.-C.; Granville, J.; Miles, G.; Siddans, R.; van Peet, J. C. A.; van der A, R. J.; Hubert, D.; Verhoelst, T.; Delcloo, A.; Godin-Beekmann, S.; Kivi, R.; Stübi, R.; Zehner, C.

    2014-11-01

    A methodology for the round-robin evaluation and geophysical validation of ozone profile data retrieved from nadir UV backscatter satellite measurements is detailed and discussed, consisting of dataset content studies, information content studies, co-location studies, and comparisons with reference measurements. Within ESA's Climate Change Initiative on ozone (Ozone_cci project), the proposed round-robin procedure is applied to two nadir ozone profile datasets retrieved at KNMI and RAL, using their respective OPERA v1.26 and RAL v2.1 optimal estimation algorithms, from MetOp-A GOME-2 measurements taken in 2008. The ground-based comparisons use ozonesonde and lidar profiles as reference data, acquired by the Network for the Detection of Atmospheric Composition Change (NDACC), Southern Hemisphere Additional Ozonesonde programme (SHADOZ), and other stations of WMO's Global Atmosphere Watch. This direct illustration highlights practical issues that inevitably emerge from discrepancies in e.g. profile representation and vertical smoothing, for which different recipes are investigated and discussed. Several approaches for information content quantification, vertical resolution estimation, and reference profile resampling are compared and applied as well. The paper concludes with compliance estimates of the two GOME-2 ozone profile datasets with user requirements from GCOS and from climate modellers.

  8. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    NASA Astrophysics Data System (ADS)

    Kujanpää, J.; Kalakoski, N.

    2015-05-01

    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop) satellites. The input total ozone product is generated by the German Aerospace Center (DLR) also within the O3M SAF framework. Polar orbiting satellites provide global coverage but infrequent sampling of the diurnal cloud cover. The diurnal variation of the surface UV radiation is extremely strong due to modulation by solar elevation and rapidly changing cloud cover. At the minimum, one sample of the cloud cover in the morning and another in the afternoon are needed to derive daily maximum and daily integrated surface UV radiation quantities. This is achieved by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High Resolution Radiometer (AVHRR/3) instrument aboard both Metop in the morning orbit (daytime descending node around 09:30 LT) and Polar Orbiting Environmental Satellites (POES) of the National Oceanic and Atmospheric Administration (NOAA) in the afternoon orbit (daytime ascending node around 14:30 LT). In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast) using commercial telecommunication satellites for broadcasting the data to the user community. The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated UVB and UVA radiation, solar noon UV Index and daily maximum photolysis

  9. How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Müller, J.-F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; De Mazière, M.; Vigouroux, C.; Hendrick, F.; George, M.; Clerbaux, C.; Coheur, P.-F.; Guenther, A.

    2015-10-01

    The vertical columns of formaldehyde (HCHO) retrieved from two satellite instruments, the Global Ozone Monitoring Instrument-2 (GOME-2) on Metop-A and the Ozone Monitoring Instrument (OMI) on Aura, are used to constrain global emissions of HCHO precursors from open fires, vegetation and human activities in the year 2010. To this end, the emissions are varied and optimized using the adjoint model technique in the IMAGESv2 global CTM (chemical transport model) on a monthly basis and at the model resolution. Given the different local overpass times of GOME-2 (09:30 LT) and OMI (13:30 LT), the simulated diurnal cycle of HCHO columns is investigated and evaluated against ground-based optical measurements at seven sites in Europe, China and Africa. The modeled diurnal cycle exhibits large variability, reflecting competition between photochemistry and emission variations, with noon or early afternoon maxima at remote locations (oceans) and in regions dominated by anthropogenic emissions, late afternoon or evening maxima over fire scenes, and midday minima in isoprene-rich regions. The agreement between simulated and ground-based columns is generally better in summer (with a clear afternoon maximum at mid-latitude sites) than in winter, and the annually averaged ratio of afternoon to morning columns is slightly higher in the model (1.126) than in the ground-based measurements (1.043). The anthropogenic VOC (volatile organic compound) sources are found to be weakly constrained by the inversions on the global scale, mainly owing to their generally minor contribution to the HCHO columns, except over strongly polluted regions, like China. The OMI-based inversion yields total flux estimates over China close to the bottom-up inventory (24.6 vs. 25.5 TgVOC yr-1 in the a priori) with, however, pronounced increases in the northeast of China and reductions in the south. Lower fluxes are estimated based on GOME-2 HCHO columns (20.6 TgVOC yr-1), in particular over the northeast

  10. How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Müller, J.-F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; De Mazière, M.; Vigouroux, C.; Hendrick, F.; George, M.; Clerbaux, C.; Coheur, P.-F.; Guenther, A.

    2015-04-01

    The vertical columns of formaldehyde (HCHO) retrieved from two satellite instruments, the Global Ozone Monitoring Instrument-2 (GOME-2) on Metop-A and the Ozone Monitoring Instrument (OMI) on Aura, are used to constrain global emissions of HCHO precursors from open fires, vegetation and human activities in the year 2010. To this end, the emissions are varied and optimized using the adjoint model technique in the IMAGESv2 global CTM (chemistry-transport model) on a monthly basis and at the model resolution. Given the different local overpass times of GOME-2 (09:30 LT) and OMI (13:30 LT), the simulated diurnal cycle of HCHO columns is investigated and evaluated against ground-based optical measurements at 7 sites in Europe, China and Africa. The modelled diurnal cycle exhibits large variability, reflecting competition between photochemistry and emission variations, with noon or early afternoon maxima at remote locations (oceans) and in regions dominated by anthropogenic emissions, late afternoon or evening maxima over fire scenes, and midday minima in isoprene-rich regions. The agreement between simulated and ground-based columns is found to be generally better in summer (with a clear afternoon maximum at mid-latitude sites) than in winter, and the annually averaged ratio of afternoon to morning columns is slightly higher in the model (1.126) than in the ground-based measurements (1.043). The anthropogenic VOC (volatile organic compound) sources are found to be weakly constrained by the inversions on the global scale, mainly owing to their generally minor contribution to the HCHO columns, except over strongly polluted regions, like China. The OMI-based inversion yields total flux estimates over China close to the bottom-up inventory (24.6 vs. 25.5 in the a priori) with, however, pronounced increases in the Northeast China and reductions in the south. Lower fluxes are estimated based on GOME-2 HCHO columns (20.6 TgVOC), in particular over the Northeast, likely

  11. Evaluation of GOME Satellite Measurements of Tropospheric NO2 and HCHO using Regional Data from Aircraft Campaigns in the Southeastern United States

    NASA Technical Reports Server (NTRS)

    Martin, R. V.; Parrish, D. D.; Ryerson, T.B.; Nicks, D.K.; Chance, K.; Kurosu, T.P.; Jacob, D.J.; Sturges, E.D.; Fried, A.; Wert, B.P.

    2004-01-01

    We compare tropospheric measurements of nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Global Ozone Monitoring Experiment (GOME) satellite instrument with in situ measurements over eastern Texas and the southeast United States. On aveiage, the GOME and in situ measurements of tropospheric NO2 and HCHO columns are consistent despite pronounced sampling differences. The geometric mean in situ to GOME ratios over the campaign are 1.08 for NO2 and 0.84 for HCHO, with corresponding geometric standard deviations of 1.27 and 1.38. The correlation of the observed column spatial variability between the two NO2 measurement sets is encouraging before (r2 = 0.54, n = 18) and after (r2 = 0.67, n = 18) correcting for a sampling bias. Mean relative vertical profiles of HCHO and NO2 calculated with a global three-dimensional model (GEOS-CHEM) and used in the GOME retrieval are highly consistent with in situ measurements; differences would affect the retrieved NO2 and HCHO columns by a few percent. GOME HCHO columns over eastern Texas include contributions from anthropogenic volatile organic compound (VOC) emissions but are dominated by biogenic VOC emissions at the regional scale in August-September when HCHO columns are within 20% of those over the southeastern United States. In situ measurements show that during summer the lowest 1500 m (the lower mixed layer) contains 75% of the tropospheric NO2 column over Houston and Nashville, and 60% of the HCHO column over Houston. Future validation of space-based measurements of tropospheric NO2 and HCHO columns over polluted regions should include coincident in situ measurements that span the entire satellite footprint, especially in the heterogeneous mixed layer.

  12. Evaluation of GOME Satellite Measurements of Tropospheric NO2 and HCHO using Regional Data from Aircraft Campaigns in the Southeastern United States

    NASA Technical Reports Server (NTRS)

    Martin, R. V.; Parrish, D. D.; Ryerson, T.B.; Nicks, D.K.; Chance, K.; Kurosu, T.P.; Jacob, D.J.; Sturges, E.D.; Fried, A.; Wert, B.P.

    2004-01-01

    We compare tropospheric measurements of nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Global Ozone Monitoring Experiment (GOME) satellite instrument with in situ measurements over eastern Texas and the southeast United States. On aveiage, the GOME and in situ measurements of tropospheric NO2 and HCHO columns are consistent despite pronounced sampling differences. The geometric mean in situ to GOME ratios over the campaign are 1.08 for NO2 and 0.84 for HCHO, with corresponding geometric standard deviations of 1.27 and 1.38. The correlation of the observed column spatial variability between the two NO2 measurement sets is encouraging before (r2 = 0.54, n = 18) and after (r2 = 0.67, n = 18) correcting for a sampling bias. Mean relative vertical profiles of HCHO and NO2 calculated with a global three-dimensional model (GEOS-CHEM) and used in the GOME retrieval are highly consistent with in situ measurements; differences would affect the retrieved NO2 and HCHO columns by a few percent. GOME HCHO columns over eastern Texas include contributions from anthropogenic volatile organic compound (VOC) emissions but are dominated by biogenic VOC emissions at the regional scale in August-September when HCHO columns are within 20% of those over the southeastern United States. In situ measurements show that during summer the lowest 1500 m (the lower mixed layer) contains 75% of the tropospheric NO2 column over Houston and Nashville, and 60% of the HCHO column over Houston. Future validation of space-based measurements of tropospheric NO2 and HCHO columns over polluted regions should include coincident in situ measurements that span the entire satellite footprint, especially in the heterogeneous mixed layer.

  13. The direct fitting approach for total ozone column retrievals: a sensitivity study on GOME-2/MetOp-A measurements

    NASA Astrophysics Data System (ADS)

    Wassmann, A.; Borsdorff, T.; aan de Brugh, J. M. J.; Hasekamp, O. P.; Aben, I.; Landgraf, J.

    2015-10-01

    We present a sensitivity study of the direct fitting approach to retrieve total ozone columns from the clear sky Global Ozone Monitoring Experiment 2/MetOp-A (GOME-2/MetOp-A) measurements between 325 and 335 nm in the period 2007-2010. The direct fitting of the measurement is based on adjusting the scaling of a reference ozone profile and requires accurate simulation of GOME-2 radiances. In this context, we study the effect of three aspects that introduce forward model errors if not addressed appropriately: (1) the use of a clear sky model atmosphere in the radiative transfer demanding cloud filtering, (2) different approximations of Earth's sphericity to address the influence of the solar zenith angle, and (3) the need of polarization in radiative transfer modeling. We conclude that cloud filtering using the operational GOME-2 FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A band) cloud product, which is part of level 1B data, and the use of pseudo-spherical scalar radiative transfer is fully sufficient for the purpose of this retrieval. A validation with ground-based measurements at 36 stations confirms this showing a global mean bias of -0.1 % with a standard deviation (SD) of 2.7 %. The regularization effect inherent to the profile scaling approach is thoroughly characterized by the total column averaging kernel for each individual retrieval. It characterizes the effect of the particular choice of the ozone profile to be scaled by the inversion and is part of the retrieval product. Two different interpretations of the data product are possible: first, regarding the retrieval product as an estimate of the true column, a direct comparison of the retrieved column with total ozone columns from ground-based measurements can be done. This requires accurate a priori knowledge of the reference ozone profile and the column averaging kernel is not needed. Alternatively, the retrieval product can be interpreted as an effective column defined by the total column

  14. How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?

    SciTech Connect

    Stavrakou, T.; Muller, J. F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; De Maziere, M.; Vigouroux, C.; Hendrick, F.; George, M.; Clerbaux, C.; Coheur, P-F; Guenther, Alex B.

    2015-10-26

    The vertical columns of formaldehyde (HCHO) retrieved from two satellite instruments, the Global Ozone Monitoring Instrument-2 (GOME-2) on Metop-A and the Ozone Monitoring Instrument (OMI) on Aura, are used to constrain global emissions of HCHO precursors from open fires, vegetation and human activities in the year 2010. To this end, the emissions are varied and optimized using the ad-joint model technique in the IMAGESv2 global CTM (chem-ical transport model) on a monthly basis and at the model res-olution. Given the different local overpass times of GOME- 2 (09:30 LT) and OMI (13:30 LT), the simulated diurnal cy-cle of HCHO columns is investigated and evaluated against ground-based optical measurements at seven sites in Europe, China and Africa. The modeled diurnal cycle exhibits large variability, reflecting competition between photochemistry and emission variations, with noon or early afternoon max-ima at remote locations (oceans) and in regions dominated by anthropogenic emissions, late afternoon or evening max-ima over fire scenes, and midday minima in isoprene-rich re-gions. The agreement between simulated and ground-based columns is generally better in summer (with a clear after-noon maximum at mid-latitude sites) than in winter, and the annually averaged ratio of afternoon to morning columns is slightly higher in the model (1.126) than in the ground-based measurements (1.043).The anthropogenic VOC (volatile organic compound) sources are found to be weakly constrained by the inversions on the global scale, mainly owing to their generally minor contribution to the HCHO columns, except over strongly pol-luted regions, like China. The OMI-based inversion yields total flux estimates over China close to the bottom-up inven-tory (24.6 vs. 25.5 TgVOC yr-1 in the a priori) with, how-ever, pronounced increases in the northeast of China and re-ductions in the south. Lower fluxes are estimated based on GOME-2 HCHO columns (20.6 TgVOC yr-1), in

  15. Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations

    NASA Astrophysics Data System (ADS)

    De Smedt, I.; Stavrakou, T.; Hendrick, F.; Danckaert, T.; Vlemmix, T.; Pinardi, G.; Theys, N.; Lerot, C.; Gielen, C.; Vigouroux, C.; Hermans, C.; Fayt, C.; Veefkind, P.; Müller, J.-F.; Van Roozendael, M.

    2015-11-01

    We present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV-visible sensors. Applied to OMI measurements from Aura and to GOME-2 measurements from MetOp-A and MetOp-B, this algorithm is used to produce global distributions of H2CO representative of mid-morning and early afternoon conditions. Its main features include (1) a new iterative DOAS scheme involving three fitting intervals to better account for the O2-O2 absorption, (2) the use of earthshine radiances averaged in the equatorial Pacific as reference spectra, and (3) a destriping correction and background normalisation resolved in the across-swath position. For the air mass factor calculation, a priori vertical profiles calculated by the IMAGES chemistry transport model at 09:30 and 13:30 LT are used. Although the resulting GOME-2 and OMI H2CO vertical columns are found to be highly correlated, some systematic differences are observed. Afternoon columns are generally larger than morning ones, especially in mid-latitude regions. In contrast, over tropical rainforests, morning H2CO columns significantly exceed those observed in the afternoon. These differences are discussed in terms of the H2CO column variation between mid-morning and early afternoon, using ground-based MAX-DOAS measurements available from seven stations in Europe, China and Africa. Validation results confirm the capacity of the combined satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in the Beijing area and in Bujumbura are used for a more detailed validation exercise. In both regions, we find an agreement better than 15 % when MAX-DOAS profiles are used as a priori for the satellite retrievals. Finally, regional trends in H2CO columns are estimated for the 2004-2014 period using SCIAMACHY and GOME-2 data for morning conditions, and OMI for early afternoon conditions. Consistent features

  16. Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations

    NASA Astrophysics Data System (ADS)

    De Smedt, I.; Stavrakou, T.; Hendrick, F.; Danckaert, T.; Vlemmix, T.; Pinardi, G.; Theys, N.; Lerot, C.; Gielen, C.; Vigouroux, C.; Hermans, C.; Fayt, C.; Veefkind, P.; Müller, J.-F.; Van Roozendael, M.

    2015-04-01

    We present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV-Visible sensors. Applied to OMI measurements from Aura and to GOME-2 measurements from MetOp-A and B, this algorithm is used to produce global distributions of H2CO representative of mid-morning and early afternoon conditions. Its main features include (1) a new iterative DOAS scheme involving three fitting intervals to better account for the O2-O2 absorption, (2) the use of earthshine radiances averaged in the equatorial Pacific as reference spectra, (3) a destriping correction and background normalisation resolved in the along-swath position. For the air mass factor calculation, a priori vertical profiles calculated by the IMAGES chemistry transport model at 9.30 a.m. and 13.30 p.m. are used. Although the resulting GOME-2 and OMI H2CO vertical columns are found to be highly correlated, some systematic differences are observed. Afternoon columns are generally larger than morning ones, especially in mid-latitude regions. In contrast, over tropical rainforests, morning H2CO columns significantly exceed those observed in the afternoon. These differences are discussed in terms of the H2CO column variation between mid-morning and early afternoon, using ground-based MAX-DOAS measurements available from seven stations in Europe, China and Africa. Validation results confirm the capacity of the combined satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in the Beijing area and in Bujumbura are used for a more detailed validation exercise. In both regions, we find an agreement better than 15% when MAX-DOAS profiles are used as a priori for the satellite retrievals. Finally regional trends in H2CO columns are estimated for the 2004-2014 period using SCIAMACHY and GOME-2 data for morning conditions, and OMI for early afternoon conditions. Consistent features are

  17. Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Jacob, Daniel J.; Kim, Patrick S.; Fisher, Jenny A.; Yu, Karen; Travis, Katherine R.; Mickley, Loretta J.; Yantosca, Robert M.; Sulprizio, Melissa P.; De Smedt, Isabelle; González Abad, Gonzalo; Chance, Kelly; Li, Can; Ferrare, Richard; Fried, Alan; Hair, Johnathan W.; Hanisco, Thomas F.; Richter, Dirk; Scarino, Amy Jo; Walega, James; Weibring, Petter; Wolfe, Glenn M.

    2016-11-01

    Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs), but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) campaign over the southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS; for clarification of these and other abbreviations used in the paper, please refer to Appendix A) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the southeast US (r = 0.4-0.8 on a 0.5° × 0.5° grid) and in their day-to-day variability (r = 0.5-0.8). However, all retrievals are biased low in the mean by 20-51 %, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation, and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.

  18. The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing - an overview

    NASA Astrophysics Data System (ADS)

    Munro, R.; Lang, R.; Klaes, D.; Poli, G.; Retscher, C.; Lindstrot, R.; Huckle, R.; Lacan, A.; Grzegorski, M.; Holdak, A.; Kokhanovsky, A.; Livschitz, J.; Eisinger, M.

    2015-08-01

    The Global Ozone Monitoring Experiment-2 (GOME-2) flies on the Metop series of satellites, the space component of the EUMETSAT Polar System. In this paper we will provide an overview of the instrument design, the on-ground calibration and characterisation activities, in-flight calibration, and level 0 to 1 data processing. The quality of the level 1 data is presented and points of specific relevance to users are highlighted. Long-term level 1 data consistency is also discussed and plans for future work are outlined. The information contained in this paper summarises a large number of technical reports and related documents containing information that is not currently available in the published literature. These reports and documents are however made available on the EUMETSAT web pages (http://www.eumetsat.int) and readers requiring more details than can be provided in this overview paper will find appropriate references at relevant points in the text.

  19. The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing - an overview

    NASA Astrophysics Data System (ADS)

    Munro, Rosemary; Lang, Rüdiger; Klaes, Dieter; Poli, Gabriele; Retscher, Christian; Lindstrot, Rasmus; Huckle, Roger; Lacan, Antoine; Grzegorski, Michael; Holdak, Andriy; Kokhanovsky, Alexander; Livschitz, Jakob; Eisinger, Michael

    2016-03-01

    The Global Ozone Monitoring Experiment-2 (GOME-2) flies on the Metop series of satellites, the space component of the EUMETSAT Polar System. In this paper we will provide an overview of the instrument design, the on-ground calibration and characterization activities, in-flight calibration, and level 0 to 1 data processing. The current status of the level 1 data is presented and points of specific relevance to users are highlighted. Long-term level 1 data consistency is also discussed and plans for future work are outlined. The information contained in this paper summarizes a large number of technical reports and related documents containing information that is not currently available in the published literature. These reports and documents are however made available on the EUMETSAT web pages and readers requiring more details than can be provided in this overview paper will find appropriate references at relevant points in the text.

  20. First Directly Retrieved Global Distribution of Tropospheric Column Ozone from GOME: Comparison with the GEOS-CHEM Model

    NASA Technical Reports Server (NTRS)

    Liu, Xiong; Chance, Kelly; Sioris, Christopher E.; Kurosu, Thomas P.; Spurr, Robert J. D.; Martin, Randall V.; Fu, Tzung-May; Logan, Jennifer A.; Jacob, Daniel J.; Palmer, Paul I.; hide

    2006-01-01

    We present the first directly retrieved global distribution of tropospheric column ozone from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements during December 1996 to November 1997. The retrievals clearly show signals due to convection, biomass burning, stratospheric influence, pollution, and transport. They are capable of capturing the spatiotemporal evolution of tropospheric column ozone in response to regional or short time-scale events such as the 1997-1998 El Nino event and a 10-20 DU change within a few days. The global distribution of tropospheric column ozone displays the well-known wave-1 pattern in the tropics, nearly zonal bands of enhanced tropospheric column ozone of 36-48 DU at 20degS-30degS during the austral spring and at 25degN-45degN during the boreal spring and summer, low tropospheric column ozone of <30 DU uniformly distributed south of 35 S during all seasons, and relatively high tropospheric column ozone of >33 DU at some northern high-latitudes during the spring. Simulation from a chemical transport model corroborates most of the above structures, with small biases of <+/-5 DU and consistent seasonal cycles in most regions, especially in the southern hemisphere. However, significant positive biases of 5-20 DU occur in some northern tropical and subtropical regions such as the Middle East during summer. Comparison of GOME with monthly-averaged Measurement of Ozone and Water Vapor by Airbus in-service Aircraft (MOZAIC) tropospheric column ozone for these regions usually shows good consistency within 1 a standard deviations and retrieval uncertainties. Some biases can be accounted for by inadequate sensitivity to lower tropospheric ozone, the different spatiotemporal sampling and the spatiotemporal variations in tropospheric column ozone.

  1. Anti-inflammatory activity of aqueous extract and bioactive compounds identified from the fruits of Hancornia speciosa Gomes (Apocynaceae).

    PubMed

    Torres-Rêgo, Manoela; Furtado, Allanny Alves; Bitencourt, Mariana Angélica Oliveira; Lima, Maira Conceição Jerônimo de Souza; Andrade, Rafael Caetano Lisbôa Castro de; Azevedo, Eduardo Pereira de; Soares, Thaciane da Cunha; Tomaz, José Carlos; Lopes, Norberto Peporine; da Silva-Júnior, Arnóbio Antônio; Zucolotto, Silvana Maria; Fernandes-Pedrosa, Matheus de Freitas

    2016-08-05

    Hancornia speciosa Gomes (Apocynaceae), popularly known as "mangabeira," has been used in folk medicine to treat inflammatory disorders, hypertension, dermatitis, diabetes, liver diseases and gastric disorders. Although the ethnobotany indicates that its fruits can be used for the treatment of ulcers and inflammatory disorders, only few studies have been conducted to prove such biological activities. This study investigated the anti-inflammatory properties of the aqueous extract of the fruits of H. speciosa Gomes as well as its bioactive compounds using in vivo experimental models. The bioactive compounds were identified by High Performance Liquid Chromatography coupled with diode array detector (HPLC-DAD) and Liquid Chromatography coupled with Mass Spectrometry (LC-MS). The anti-inflammatory properties were investigated through in vivo tests, which comprised xylene-induced ear edema, carrageenan-induced peritonitis and zymosan-induced air pouch. The levels of IL-1β, IL-6, IL-12 and TNF-α were determined using ELISA. Rutin and chlorogenic acid were identified in the extract as the main secondary metabolites. In addition, the extract as well as rutin and chlorogenic acid significantly inhibited the xilol-induced ear edema and also reduced the cell migration in both carrageenan-induced peritonitis and zymosan-induced air pouch models. Reduced levels of cytokines were also observed. This is the first study that demonstrated the anti-inflammatory activity of the extract of H. speciosa fruits against different inflammatory agents in animal models, suggesting that its bioactive molecules, especially rutin and chlorogenic acid are, at least in part, responsible for such activity. These findings support the widespread use of Hancornia speciosa in popular medicine and demonstrate that its aqueous extract has therapeutical potential for the development of herbal drugs with anti-inflammatory properties.

  2. Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOME-2

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Clerbaux, C.; George, M.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.; Wespes, C.; Layola, D.; Valks, P.; Hao, N.

    2013-05-01

    Tropospheric ozone (O3) columns in urban and rural regions as seen by the infrared sounder IASI are analyzed along with GOME-2 tropospheric nitrogen dioxide (NO2) columns. Results over nine cities of the Northern Hemisphere for the period 2008-2011 show a typical seasonal behavior of tropospheric O3, with a first maximum reached in late spring because of stratospheric intrusion mainly, and a continuous rise till the summer because of the anthropogenic based ozone production. Over the East Asian cities, a decrease in the O3 tropospheric column is detected during monsoon period. Seasonal cycling of tropospheric NO2 shows consistent higher values during winter because of the higher anthropogenic sources and longer lifetime. In rural regions, a complex relation between the O3 and NO2 column is found, with higher linearity in summer. O3 concentrations in rural sites are found to be comparable to those found closest to the anthropogenic emission sources, with peak values in spring and summer. Furthermore, the effect of the reduction of pollutant emissions in China during the Olympic games of 2008 is studied. GOME-2 NO2 measurements show a reduction up to 54% above Beijing during this period compared to the following three years. IASI O3 measurements show an increase of 12% during July 2008 followed by a decrease of 5-6% during the months of August and September. A significant reduction in O3 tropospheric column values is also detected in the area downwind, few hundreds of kilometers to the south of Beijing.

  3. Yearly averaged BrO and SO2 emissions from Ambrym volcano as seen by the GOME-2 satellite instrument

    NASA Astrophysics Data System (ADS)

    Hoermann, C.; Sihler, H.; Bobrowski, N.; Beirle, S.; Platt, U.; Wagner, T.

    2013-12-01

    Since bromine monoxide (BrO) of volcanic origin was detected for the first time in the plume of the Soufrière Hills volcano by ground-based differential optical absorption spectroscopy (DOAS) measurements in 2003, this species has been regularly observed by ground-based instruments at several quiescent-degassing volcanoes worldwide. Recently, the Global Ozone Monitoring Experiment satellite instrument (GOME-2) has proven to be capable of monitoring volcanic BrO in volcanic plumes also from space, during both, minor and major eruptions. However, long-term measurements of BrO at continuous passively degassing volcanoes are usually only provided from ground-based observations due to their higher sensitivity to weaker emissions. Here, we present the first space-based observations of enhanced BrO abundances in the vicinity of the mostly quiescent-degassing Ambrym volcano (Vanuatu) by yearly averaged GOME-2 satellite data in the years 2007-2012. The observed spatial BrO distribution in the plume is compared to the corresponding mean distribution of volcanic sulphur dioxide (SO2), which is commonly used as a tracer for volcanic emissions due to its relatively long lifetime and strong absorption features in the UV wavelength range. The averaged data shows distribution patterns of both species up to distances of 100 km from the volcano and a clear linear correlation with mean BrO/SO2 ratio of 5 x 10^-5 to 1 x 10^-4 throughout the investigated time period. In addition, an estimation of the lower limit of the total sulphur and bromine emissions will be given.

  4. First Directly Retrieved Global Distribution of Tropospheric Column Ozone from GOME: Comparison with the GEOS-CHEM Model

    NASA Technical Reports Server (NTRS)

    Liu, Xiong; Chance, Kelly; Sioris, Christopher E.; Kurosu, Thomas P.; Spurr, Robert J. D.; Martin, Randall V.; Fu, Tzung-May; Logan, Jennifer A.; Jacob, Daniel J.; Palmer, Paul I.; Newchurch, Michael J.; Megretskaia, Inna A.; Chatfield, Robert B.

    2006-01-01

    We present the first directly retrieved global distribution of tropospheric column ozone from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements during December 1996 to November 1997. The retrievals clearly show signals due to convection, biomass burning, stratospheric influence, pollution, and transport. They are capable of capturing the spatiotemporal evolution of tropospheric column ozone in response to regional or short time-scale events such as the 1997-1998 El Nino event and a 10-20 DU change within a few days. The global distribution of tropospheric column ozone displays the well-known wave-1 pattern in the tropics, nearly zonal bands of enhanced tropospheric column ozone of 36-48 DU at 20degS-30degS during the austral spring and at 25degN-45degN during the boreal spring and summer, low tropospheric column ozone of <30 DU uniformly distributed south of 35 S during all seasons, and relatively high tropospheric column ozone of >33 DU at some northern high-latitudes during the spring. Simulation from a chemical transport model corroborates most of the above structures, with small biases of <+/-5 DU and consistent seasonal cycles in most regions, especially in the southern hemisphere. However, significant positive biases of 5-20 DU occur in some northern tropical and subtropical regions such as the Middle East during summer. Comparison of GOME with monthly-averaged Measurement of Ozone and Water Vapor by Airbus in-service Aircraft (MOZAIC) tropospheric column ozone for these regions usually shows good consistency within 1 a standard deviations and retrieval uncertainties. Some biases can be accounted for by inadequate sensitivity to lower tropospheric ozone, the different spatiotemporal sampling and the spatiotemporal variations in tropospheric column ozone.

  5. [Luís Gomes Ferreira reports on the health of slaves in his work entitled Erário mineral (1735)].

    PubMed

    Eugênio, Alisson

    2015-01-01

    The article analyzes the reports of Luís Gomes Ferreira published in his manual on practical medicine entitled Erário mineral, of 1735, on the most common illnesses in captivity. It is shown that such reports can be interpreted as a criticism of the social relations of the slave era by issuing some warnings to the landowners who failed to look after the health of their slaves.

  6. New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyperspectral Satellite Instruments: Simulations and Application to GOME-2 and SCIAMACHY

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-01-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths greater than 712nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths less than 712nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric andor solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) gamma band that is not affected by SIF. The SIF-free O2 gamma band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps

  7. New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyperspectral Satellite Instruments: Simulations and Application to GOME-2 and SCIAMACHY

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-01-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths greater than 712nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths less than 712nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric andor solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) gamma band that is not affected by SIF. The SIF-free O2 gamma band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps

  8. OMI/Aura, SCIAMACHY/Envisat and GOME2/MetopA Sulphur Dioxide Estimates; The Case of Eastern Asia

    NASA Astrophysics Data System (ADS)

    Koukouli, M. E.; Balis, D. S.; Theys, N.; Brenot, H.; van Gent, J.; Hendrick, F.; Wang, T.; Valks, P.; Hedelt, P.; Lichtenberg, G.; Richter, A.; Krotkov, N.; Li, C.; van der A, R.

    2015-11-01

    The EU FP7 Monitoring and Assessment of Regional air quality in China using space Observations, Project Of Long-term sino-european co-Operation, MarcoPolo, project focuses on deriving emission estimates from space, http://www.marcopolo-panda.eu. Long term satellite observations of Sulphur Dioxide, SO2, over the greater China area from the SCIAMACHY/Envisat, GOME2/MetopA and OMI/Aura missions are compared and their relative strong points and limitations are discussed. For each satellite instrument, two different datasets are being analyzed in the same manner. Rigorous spatiotemporal statistical analysis based on novel analysis techniques is performed for each data set in order to reduce noise and biases and enhance pollution signals in satellite datasets. Furthermore, identification of point sources such as power plants, smelters and urban agglomerations, as well as definition of their relative contribution to the regional SO2 levels, form the main findings of this investigation. Trend analyses and their statistical representation help locate regions of interesting SO2 loading in China.

  9. Evaluation of satellite sulphur dioxide estimates from OMI/Aura, SCIAMACHY/Envisat and GOME2/MetopA

    NASA Astrophysics Data System (ADS)

    Koukouli, MariLiza; Balis, Dimitris; Theys, Nicolas; Brenot, Hugues; van Gent, Jeroen; Valks, Pieter; Hedelt, Pascal; Lichtenberg, Günter; Richter, Andreas; Krotkov, Nickolay; van der A, Ronald

    2015-04-01

    The EU FP7 Monitoring and Assessment of Regional air quality in China using space Observations, Project Of Long-term sino-european co-Operation, MarcoPolo, project focuses on deriving emission estimates from space and their refinement by spatial downscaling and by source sector apportionment. Satellite observations of suphur dioxide, SO2, over the greater China area are analyzed using novel techniques [Fioletov et al., 2011; 2013] in order to enhance the observational signal and provide a robust SO2 dataset for the region. Observations from the SCIAMACHY/Envisat, GOME2/MetopA and OMI/Aura missions are assessed in this work and their relative strengths and shortcomings discussed at length. Rigorous screening is applied to and presented for each data source, including a full length spatiotemporal statistical analysis. Furthermore, identification of point sources such as power plants and urban agglomerations, as well as the definition of their relative contribution to the general SO2 levels, form the basis of this investigation.

  10. Surface NO2 fields derived from joint use of OMI and GOME-2A observations with EMEP model output

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Svendby, Tove; Stebel, Kerstin

    2016-04-01

    Nitrogen dioxide (NO2) is one of the most prominent air pollutants. Emitted primarily by transport and industry, NO2 has a major impact on health and economy. In contrast to the very sparse network of air quality monitoring stations, satellite data of NO2 is ubiquitous and allows for quantifying the NO2 levels worldwide. However, one drawback of satellite-derived NO2 products is that they provide solely an estimate of the entire tropospheric column, whereas what is generally needed for air quality applications are the concentrations of NO2 near the surface. Here we derive surface NO2 concentration fields from OMI and GOME-2A tropospheric column products using the EMEP chemical transport model as auxiliary information. The model is used for providing information of the boundary layer contribution to the total tropospheric column. For preparation of deriving the surface product, a comprehensive model-based analysis of the spatial and temporal patterns of the NO2 surface-to-column ratio in Europe was carried out for the year 2011. The results from this analysis indicate that the spatial patterns of the surface-to-column ratio vary only slightly. While the highest ratio values can be found in some shipping lanes, the spatial variability of the ratio in some of the most polluted areas of Europe is not very high. Some but not all urban agglomeration shows high ratio values. Focusing on the temporal behavior, the analysis showed that the European-wide average ratio varies throughout the year. The surface-to-column ratio increases from January all the way through April when it reaches its maximum, then decreases relatively rapidly to average levels and then stays mostly constant throughout the summer. The minimum ratio is observed in December. The knowledge gained from analyzing the spatial and temporal patterns of the surface-to-column ratio was then used to produce surface NO2 products from the daily NO2 data for OMI and GOME-2A. This was carried out using two methods

  11. Antioxidant, Antimicrobial and Cytotoxic Properties as Well as the Phenolic Content of the Extract from Hancornia speciosa Gomes

    PubMed Central

    Santos, Uilson P.; Campos, Jaqueline F.; Torquato, Heron Fernandes V.; Paredes-Gamero, Edgar Julian; Carollo, Carlos Alexandre; Estevinho, Leticia M.; de Picoli Souza, Kely

    2016-01-01

    Hancornia speciosa Gomes (Apocynaceae) is a fruit tree, popularly known as mangabeira, and it is widely distributed throughout Brazil. Several parts of the plant are used in folk medicine, and the leaf and bark extracts have anti-inflammatory, antihypertensive, antidiabetic, and antimicrobial properties. In this study, we investigated the chemical composition of the ethanolic extract of Hancornia speciosa leaves (EEHS) and its antioxidant, antimicrobial, and cytotoxic activities as well as the mechanisms involved in cell death. The chemical compounds were identified by liquid chromatography coupled to mass spectrometry (LC-MS/MS). The antioxidant activity of the EEHS was investigated using the method that involves the scavenging of 2,2-diphenyl-1-picrylhydrazyl free radicals as well as the inhibition of oxidative hemolysis and lipid peroxidation induced by 2,2’-azobis (2-amidinopropane) in human erythrocytes. The antimicrobial activity was determined by calculating the minimum inhibitory concentration, minimum bactericidal concentration, minimum fungicidal concentration, and zone of inhibition. Kasumi-1 leukemic cells were used to assess the cytotoxic activity and mechanisms involved in cell death promoted by the EEHS. The chemical compounds identified were quinic acid, chlorogenic acid, catechin, rutin, isoquercitrin, kaempferol-rutinoside, and catechin-pentoside. The EEHS demonstrated antioxidant activity via the sequestration of free radicals, inhibition of hemolysis, and inhibition of lipid peroxidation in human erythrocytes incubated with an oxidizing agent. The antimicrobial activity was observed against American Type Culture Collection (ATCC) and hospital strains of bacteria and fungi, filamentous fungi and dermatophytes. The cytotoxic activity of the EEHS was induced by apoptosis, reduction of the mitochondrial membrane potential, and activation of cathepsins. Together, these results indicate the presence of phenolic compounds and flavonoids in the EEHS

  12. Antioxidant, Antimicrobial and Cytotoxic Properties as Well as the Phenolic Content of the Extract from Hancornia speciosa Gomes.

    PubMed

    Santos, Uilson P; Campos, Jaqueline F; Torquato, Heron Fernandes V; Paredes-Gamero, Edgar Julian; Carollo, Carlos Alexandre; Estevinho, Leticia M; de Picoli Souza, Kely; Dos Santos, Edson Lucas

    2016-01-01

    Hancornia speciosa Gomes (Apocynaceae) is a fruit tree, popularly known as mangabeira, and it is widely distributed throughout Brazil. Several parts of the plant are used in folk medicine, and the leaf and bark extracts have anti-inflammatory, antihypertensive, antidiabetic, and antimicrobial properties. In this study, we investigated the chemical composition of the ethanolic extract of Hancornia speciosa leaves (EEHS) and its antioxidant, antimicrobial, and cytotoxic activities as well as the mechanisms involved in cell death. The chemical compounds were identified by liquid chromatography coupled to mass spectrometry (LC-MS/MS). The antioxidant activity of the EEHS was investigated using the method that involves the scavenging of 2,2-diphenyl-1-picrylhydrazyl free radicals as well as the inhibition of oxidative hemolysis and lipid peroxidation induced by 2,2'-azobis (2-amidinopropane) in human erythrocytes. The antimicrobial activity was determined by calculating the minimum inhibitory concentration, minimum bactericidal concentration, minimum fungicidal concentration, and zone of inhibition. Kasumi-1 leukemic cells were used to assess the cytotoxic activity and mechanisms involved in cell death promoted by the EEHS. The chemical compounds identified were quinic acid, chlorogenic acid, catechin, rutin, isoquercitrin, kaempferol-rutinoside, and catechin-pentoside. The EEHS demonstrated antioxidant activity via the sequestration of free radicals, inhibition of hemolysis, and inhibition of lipid peroxidation in human erythrocytes incubated with an oxidizing agent. The antimicrobial activity was observed against American Type Culture Collection (ATCC) and hospital strains of bacteria and fungi, filamentous fungi and dermatophytes. The cytotoxic activity of the EEHS was induced by apoptosis, reduction of the mitochondrial membrane potential, and activation of cathepsins. Together, these results indicate the presence of phenolic compounds and flavonoids in the EEHS and

  13. Estimating the NO(x) produced by lightning from GOME and NLDN data: A case study in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Beirle, S.; Spichtinger, N.; Stohl, A.; Cummins, K. L.; Turner, T.; Boccippio, D.; Cooper, O. R.; Wenig, M.; Grzegorski, M.; Platt, U.

    2006-01-01

    Nitrogen oxides (NO(x)=NO+NO2) play an important role in tropospheric chemistry, in particular in catalytic ozone production. Lightning provides a natural source of nitrogen oxides, dominating the production in the tropical upper troposphere, with strong impact on tropospheric ozone and the atmosphere s oxidizing capacity. Recent estimates of lightning produced NO(x) (LNO(x)) are of the order of 5 Tg [N] per year with still high uncertainties in the range of one order of magnitude. The Global Ozone Monitoring Experiment (GOME) on board the ESA-satellite ERS-2 allows the retrieval of tropospheric column densities of NO2 on a global scale. Here we present the GOME NO2 measurement directly over a large convective system over the Gulf of Mexico. Simultaneously, cloud-to-ground (CG) flashes are counted by the U.S. National Lightning Detection Network (NLDN(TradeMark)), and extrapolated to include intracloud (IC)+CG flashes based on a climatological IC:CG ratio derived from NASA s space-based lightning sensors. A series of 14 GOME pixels shows largely enhanced column densities over thick and high clouds, coinciding with strong lightning activity. The enhancements can not be explained by transport of anthropogenic NO(x) and must be due to fresh production of LNO(x). A quantitative analysis, accounting in particular for the visibility of LNO, from satellite, yields a LNO, production of 90 (32-240) moles of NO(x), or 1.3 (0.4-3.4) kg [N], per flash. If simply extrapolated, this corresponds to a global LNO(x) production of 1.7 (0.6-4.7) Tg [N]/yr.

  14. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-Spectral-Resolution Near-Infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 0.5. We also show

  15. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  16. Estimating the NO(x) produced by lightning from GOME and NLDN data: A case study in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Beirle, S.; Spichtinger, N.; Stohl, A.; Cummins, K. L.; Turner, T.; Boccippio, D.; Cooper, O. R.; Wenig, M.; Grzegorski, M.; Platt, U.

    2006-01-01

    Nitrogen oxides (NO(x)=NO+NO2) play an important role in tropospheric chemistry, in particular in catalytic ozone production. Lightning provides a natural source of nitrogen oxides, dominating the production in the tropical upper troposphere, with strong impact on tropospheric ozone and the atmosphere s oxidizing capacity. Recent estimates of lightning produced NO(x) (LNO(x)) are of the order of 5 Tg [N] per year with still high uncertainties in the range of one order of magnitude. The Global Ozone Monitoring Experiment (GOME) on board the ESA-satellite ERS-2 allows the retrieval of tropospheric column densities of NO2 on a global scale. Here we present the GOME NO2 measurement directly over a large convective system over the Gulf of Mexico. Simultaneously, cloud-to-ground (CG) flashes are counted by the U.S. National Lightning Detection Network (NLDN(TradeMark)), and extrapolated to include intracloud (IC)+CG flashes based on a climatological IC:CG ratio derived from NASA s space-based lightning sensors. A series of 14 GOME pixels shows largely enhanced column densities over thick and high clouds, coinciding with strong lightning activity. The enhancements can not be explained by transport of anthropogenic NO(x) and must be due to fresh production of LNO(x). A quantitative analysis, accounting in particular for the visibility of LNO, from satellite, yields a LNO, production of 90 (32-240) moles of NO(x), or 1.3 (0.4-3.4) kg [N], per flash. If simply extrapolated, this corresponds to a global LNO(x) production of 1.7 (0.6-4.7) Tg [N]/yr.

  17. Global observations of glyoxal columns from OMI/Aura and GOME-2/Metop-A sensors and comparison with multi-year simulations by the IMAGES model

    NASA Astrophysics Data System (ADS)

    Lerot, Christophe; Stavrakou, Trissevgeni; Hendrick, François; De Smedt, Isabelle; Müller, Jean-François; Volkamer, Rainer; Van Roozendael, Michel

    2015-04-01

    Volatile organic compounds (VOCs) originating from both natural and human activities play a key role in air quality. Information on their atmospheric concentrations can be derived using remote sensing techniques for a limited number of species, including formaldehyde (HCHO) and glyoxal (CHOCHO). The latter is mostly produced in the atmosphere as an intermediate product in the oxidation of other non-methane VOCs. It is also directly emitted from fire events and combustion processes. Owing to its short lifetime, elevated glyoxal concentrations are observed near emission sources. Measurements of atmospheric glyoxal concentrations therefore provide quantitative information on the different types of VOC emission and can help to better assess the quality of current inventories. In addition, glyoxal is also known to significantly contribute to the total budget of secondary organic aerosols. Global observations of glyoxal columns have been realized from different space-borne spectrometers using the well-known DOAS retrieval technique. In the past, we developed an algorithm to retrieve glyoxal columns from spectra measured by the GOME-2 instrument aboard METOP-A (Lerot et al., 2010). Specificities of this algorithm were an original two-step approach in the DOAS fit to minimize the impact of spectral interferences with the liquid water absorption as well as the use of a priori information from the Chemical Transport Model IMAGES in the air mass factor calculation. In this work, we present the adaptation of this algorithm to the OMI sensor on the AURA platform. The time series of glyoxal columns derived from OMI and GOME-2 are compared in different parts of the world and a high level of consistency is found. The OMI glyoxal data product is found to be very stable over the entire duration of the mission, in contrast to the GOME-2 product which is affected by instrumental degradation. We present validation results using several years of MAX-DOAS glyoxal measurements

  18. Retrieval of Ozone Column Content from Airborne Sun Photometer Measurements During SOLVE II: Comparison with SAGE III, POAM III,THOMAS and GOME Measurements. Comparison with SAGE 111, POAM 111, TOMS and GOME Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, J.; Schmid, B.; Russell, P.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Pitts, M.

    2003-01-01

    retrievals during selected DC-8 latitudinal and longitudinal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS) and the Global Ozone Monitoring Experiment (GOME) satellite sensors. To enable this comparison, the amount of ozone in the column below the aircraft is estimated by combining SAGE and/or POAM data with high resolution, fast response in-situ ozone measurements acquired during the DC-8 ascent at the start of each science flight.

  19. Retrieval of Ozone Column Content from Airborne Sun Photometer Measurements During SOLVE II: Comparison with SAGE III, POAM III,THOMAS and GOME Measurements. Comparison with SAGE 111, POAM 111, TOMS and GOME Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, J.; Schmid, B.; Russell, P.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Pitts, M.

    2003-01-01

    retrievals during selected DC-8 latitudinal and longitudinal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS) and the Global Ozone Monitoring Experiment (GOME) satellite sensors. To enable this comparison, the amount of ozone in the column below the aircraft is estimated by combining SAGE and/or POAM data with high resolution, fast response in-situ ozone measurements acquired during the DC-8 ascent at the start of each science flight.

  20. Tropospheric O3 over Indonesia during biomass burning events measured with GOME (Global Ozone Monitoring Experiment) and compared with backtrajectory calculation

    NASA Astrophysics Data System (ADS)

    Ladstaetter-Weissenmayer, A.; Meyer-Arnek, J.; Burrows, J. P.

    During the dry season, biomass burning is an important source of ozone precursors for the tropical troposphere, and ozone formation can occur in biomass burning plumes originating in Indonesia and northern Australia. Satellite based GOME (Global Ozone Measuring experiment) data are used to characterize the amount of tropospheric ozone production over this region during the El Niño event in September 1997 compared to a so called "normal" year 1998. Large scale biomass burning occurred over Kalimantan in 1997 caused by the absence of the northern monsoon rains, leading to significant increases in tropospheric ozone. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM). Backtrajectory calculations show that Indonesia is influenced every summer by the emissions of trace gases from biomass buring over northern Australia. But in 1997 over Indonesia an increasing of tropospheric ozone amounts can be observed caused by the fires over Indonesia itself as well as by northern Australia. The analysis of the measurements of BIBLE-A (Biomass Burning and Lightning Experiment) and using ATSR (Along the Track Scanning Radiometer) data show differences in the view to the intensity of fire counts and therefore in the amount of the emission of precursors of tropospheric ozone comparing September 1997 to September 1998.

  1. A Model-Data Fusion Approach for Constraining Modeled GPP at Global Scales Using GOME2 SIF Data

    NASA Astrophysics Data System (ADS)

    MacBean, N.; Maignan, F.; Lewis, P.; Guanter, L.; Koehler, P.; Bacour, C.; Peylin, P.; Gomez-Dans, J.; Disney, M.; Chevallier, F.

    2015-12-01

    Predicting the fate of the ecosystem carbon, C, stocks and their sensitivity to climate change relies heavily on our ability to accurately model the gross carbon fluxes, i.e. photosynthesis and respiration. However, there are large differences in the Gross Primary Productivity (GPP) simulated by different land surface models (LSMs), not only in terms of mean value, but also in terms of phase and amplitude when compared to independent data-based estimates. This strongly limits our ability to provide accurate predictions of carbon-climate feedbacks. One possible source of this uncertainty is from inaccurate parameter values resulting from incomplete model calibration. Solar Induced Fluorescence (SIF) has been shown to have a linear relationship with GPP at the typical spatio-temporal scales used in LSMs (Guanter et al., 2011). New satellite-derived SIF datasets have the potential to constrain LSM parameters related to C uptake at global scales due to their coverage. Here we use SIF data derived from the GOME2 instrument (Köhler et al., 2014) to optimize parameters related to photosynthesis and leaf phenology of the ORCHIDEE LSM, as well as the linear relationship between SIF and GPP. We use a multi-site approach that combines many model grid cells covering a wide spatial distribution within the same optimization (e.g. Kuppel et al., 2014). The parameters are constrained per Plant Functional type as the linear relationship described above varies depending on vegetation structural properties. The relative skill of the optimization is compared to a case where only satellite-derived vegetation index data are used to constrain the model, and to a case where both data streams are used. We evaluate the results using an independent data-driven estimate derived from FLUXNET data (Jung et al., 2011) and with a new atmospheric tracer, Carbonyl sulphide (OCS) following the approach of Launois et al. (ACPD, in review). We show that the optimization reduces the strong positive

  2. Investigation of NOx emissions and NOx-related chemistry in East Asia using CMAQ-predicted and GOME-derived NO2 columns

    NASA Astrophysics Data System (ADS)

    Han, K. M.; Song, C. H.; Ahn, H. J.; Lee, C. K.; Richter, A.; Burrows, J. P.; Kim, J. Y.; Woo, J. H.; Hong, J. H.

    2008-09-01

    This study examined the estimation accuracy of NOx emissions over East Asia with particular focus on North China and South Korea due to their strong source (North China)-receptor (South Korea) relationship. In order to determine contributions of North China emissions to South Korean air quality accurately, it is important to examine the accuracy of the emission inventories of both regions. In this study, NO2 columns from the US EPA Models-3/CMAQ model simulations carried out using the 2001 ACE-ASIA (Asia Pacific Regional Aerosol Characterization Experiment) emission inventory over East Asia were compared with the GOME-derived NO2 columns. There were large discrepancies between the CMAQ-predicted and GOME-derived NO2 columns in the fall and winter seasons. In particular, while the CMAQ-predicted NO2 columns produced larger values than the GOME-derived NO2 columns over South Korea (receptor region) for all four seasons, the CMAQ-predicted NO2 columns produced smaller values than the GOME-derived NO2 columns over North China (source region) for all seasons with the exception of summer. It is believed that there might be some estimation error in the NOx emissions as well as large uncertainty in NOx loss rates over North China and South Korea. Regarding the latter, this study further focused on the biogenic VOC emissions that were strongly coupled with NOx chemistry in East Asia. It was found that the rates of NOx loss determined by CMAQ modeling studies might be significantly low due to the possible overestimation of biogenic isoprene emissions during summer, particularly in China. In addition, due to the possible overestimation of isoprene emissions, the CMAQ-modeled NO2/NOx ratios might show an incorrectly high level, compared with the actual NO2/NOx ratios. In addition to the retarded NOx chemical loss rates and overestimated NO2/NOx ratios, the omission of soil NOx emissions over North China during summer can lead to an underestimation of NOx emissions over North

  3. New methods for retrieval of chlorophyll red fluorescence from hyper-spectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Joiner, J.; Yoshida, Y.; Guanter, L.; Middleton, E.

    2016-12-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736nm. Phytoplankton in oceans emits entirely in the red (683nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far-red (> 712nm), since those are the most easily obtained with existing instrumentation. We examine new ways to use existing hyper-spectral satellite data sets to retrieve red SIF (< 712nm) over both land and ocean, providing complementary information to that from the far-red for terrestrial vegetation. The satellite instruments that we use, GOME-2 and SCIAMACHY, were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5nm), but offer a unique opportunity to compare red and far-red terrestrial SIF emissions. We conducted retrievals of red SIF using an extensive database of simulated radiances covering a wide range of conditions. Our new algorithm produces good agreement between the simulated truth and retrievals and shows the potential of the O2 bands for noise reduction in red SIF retrievals as compared with approaches that rely solely on solar Fraunhofer line filling. Biases seen with existing satellite data, most likely due to instrumental artifacts that vary in time, space, and with instrument, must be addressed in order to obtain reasonable results. Our 8+ year GOME-2 record of red SIF observations over land allows for the first time reliable global mapping of monthly anomalies. These anomalies have similar spatio-temporal structure as those in the far-red, particularly for drought-prone regions with a

  4. Tropospheric HCHO retrieved from OMI, GOME(-2), and SCIAMACHY within the Quality Assurance For Essential Climate Variables (QA4ECV) project

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Richter, Andreas; Beirle, Steffen; Danckaert, Thomas; Van Roozendael, Michel; Vlietinck, Jonas; Yu, Huan; Boesch, Tim; Hillboll, Andreas; Peters, Eno; doerner, Steffen; Wagner, Thomas; Wang, Yang; Lorente, Alba; Eskes, Henk; van Geffen, Jos; Zara, Marina; Boersma, Folkert

    2017-04-01

    One of the main goals of the QA4ECV project is to define community best-practices for the generation of multi-decadal ECV data records from satellite instruments. QA4ECV will develop retrieval algorithms for the Land ECVs surface albedo, leaf area index (LAI), and fraction of active photosynthetic radiation (fAPAR), as well as for the Atmosphere ECV ozone and aerosol precursors nitrogen dioxide (NO2), formaldehyde (HCHO), and carbon monoxide (CO). We present the results of the reprocessing of the OMI and GOME-2 databases using the QA4ECV HCHO retrieval algorithm that has been developed and consolidated during the first years of the project. Comparisons with the previous BIRA-IASB HCHO products distributed on the TEMIS website are presented, as well as validation results using ground-based observations of HCHO, also under development within the QA4ECV project. Each retrieval step and the corresponding code has been intercompared within the group, allowing for a consolidation of the algorithms. The main improvements of the QA4ECV HCHO retrieval baseline are (1) the use of a large fitting window for OMI and GOME-2, allowed by improved quality of the recorded spectra, (2) refinement of the wavelength calibration procedure, (3) the use of a mean background radiance as DOAS reference spectrum allowing for a stabilization of the retrievals ( the selection of reference spectra is line-of-sight dependent for all instruments), (4) a reduction of the East/West polarization biases in the GOME-2 retrieval, (5) an updated background correction based on the reference sector method has been implemented, with a significant impact over Tropical regions. As for NO2, HCHO profiles from the TM5 model are used as a priori in the AMF calculation. These are provided on a 1°x1° latitude-longitude grid, allowing for an improvement of the spatial resolution of the final product. Each step of the retrieval algorithm is documented via traceability chains, providing detailed information on

  5. Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Eskes, H. J.; Dentener, F. J.; Stevenson, D. S.; Ellingsen, K.; Schultz, M. G.; Wild, O.; Amann, M.; Atherton, C. S.; Bergmann, D. J.; Bey, I.; Boersma, K. F.; Butler, T.; Cofala, J.; Drevet, J.; Fiore, A. M.; Gauss, M.; Hauglustaine, D. A.; Horowitz, L. W.; Isaksen, I. S. A.; Krol, M. C.; Lamarque, J.-F.; Lawrence, M. G.; Martin, R. V.; Montanaro, V.; Müller, J.-F.; Pitari, G.; Prather, M. J.; Pyle, J. A.; Richter, A.; Rodriguez, J. M.; Savage, N. H.; Strahan, S. E.; Sudo, K.; Szopa, S.; van Roozendael, M.

    2006-04-01

    We present a systematic comparison of tropospheric NO2 from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997-2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30-50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between -25% and +10% of the NO2 column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO2 column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81-0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of

  6. Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Eskes, H. J.; Dentener, F. J.; Stevenson, D. S.; Ellingsen, K.; Schultz, M. G.; Wild, O.; Amann, M.; Atherton, C. S.; Bergmann, D. J.; Bey, I.; Boersma, K. F.; Butler, T.; Cofala, J.; Drevet, J.; Fiore, A. M.; Gauss, M.; Hauglustaine, D. A.; Horowitz, L. W.; Isaksen, I. S. A.; Krol, M. C.; Lamarque, J.-F.; Lawrence, M. G.; Martin, R. V.; Montanaro, V.; Müller, J.-F.; Pitari, G.; Prather, M. J.; Pyle, J. A.; Richter, A.; Rodriguez, J. M.; Savage, N. H.; Strahan, S. E.; Sudo, K.; Szopa, S.; van Roozendael, M.

    2006-07-01

    We present a systematic comparison of tropospheric NO2 from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997-2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30-50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between -25% and +10% of the NO2 column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO2 column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81-0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of

  7. [Variation of above-ground biomass of Allagoptera arenaria (Gomes) O. Kintze (Arecaceae) at a palm shrub community on the Marambaia beach ridge, Rio de Janeiro, Brazil].

    PubMed

    de Menezes, L F; de Araujo, D S

    2000-02-01

    Variation of above-ground biomass of Allagoptera arenaria (Gomes) O. Kuntze (Arecaceae) along five topographic profiles perpendicular to the ocean was examined in a palm scrub community on Marambaia beach ridge, Rio de Janeiro State, Brazil. Aerial biomass was positively correlated with distance from the sea (F = 39.57; R2 = 0.69; P < 0.01) as was detritus cover (F = 525.92; R2 = 0.92; P < 0.01). A. arenaria growth is closely related to the topography of the beach area. Dense populations of this palm enrich the soil by increasing organic matter under the plants through dead leaf material. This promotes the accumulation of nutrients and the creation of micro-climates that favor the establishment of other species.

  8. Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the effects of priori profiles and aerosols on the satellite products

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Beirle, Steffen; Lampel, Johannes; Koukouli, Mariliza; De Smedt, Isabelle; Theys, Nicolas; Li, Ang; Wu, Dexia; Xie, Pinhua; Liu, Cheng; Van Roozendael, Michel; Stavrakou, Trissevgeni; Müller, Jean-François; Wagner, Thomas

    2017-04-01

    Tropospheric vertical column densities (VCDs) of NO2, SO2 and HCHO derived from the Ozone Monitoring Instrument (OMI) on AURA and the Global Ozone Monitoring Experiment 2 aboard METOP-A (GOME-2A) and METOP-B (GOME-2B) are widely used to characterize the global distributions, trends and dominating sources of these trace gases. They are also useful for the comparison with chemical transport models (CTMs). We use tropospheric VCDs and vertical profiles of NO2, SO2 and HCHO derived from MAX-DOAS measurements from 2011 to 2014 in Wuxi, China, to validate the corresponding products (daily and bi-monthly-averaged data) derived from OMI and GOME-2A/B by different scientific teams. Prior to the comparison, the spatial and temporal coincidence criteria for MAX-DOAS and satellite data are determined by a sensitivity study using different spatial and temporal averaging conditions. Cloud effects on both MAX-DOAS and satellite observations are also investigated. Our results indicate that the discrepancies between satellite and MAX-DOAS results increase with increasing effective cloud fraction and are dominated by the effects of clouds on the satellite products. In comparison with MAX-DOAS, we found a systematic underestimation of all SO2 (40 to 57 %) and HCHO products (about 20 %), and an overestimation of the GOME-2A/B NO2 products (about 30 %), but good consistency with the DOMINO version 2 NO2 product. To better understand the reasons for these differences, we evaluated the a priori profile shapes used in the OMI retrievals (derived from CTM) by comparison with those derived from the MAX-DOAS observations. Significant differences are found for the SO2 and HCHO profile shapes derived from the IMAGES model, whereas on average good agreement is found for the NO2 profile shapes derived from the TM4 model. We also applied the MAX-DOAS profile shapes to the satellite retrievals and found that these modified satellite VCDs agree better with the MAX-DOAS VCDs than the VCDs from the

  9. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-08-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736 nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683 nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths > 712 nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths < 712 nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5 nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric and/or solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) γ band that is not affected by SIF. The SIF-free O2 γ band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps to estimate red SIF

  10. Can One Satellite Data Set Validation Another? Validation of Envisat SCIAMACHY Data by Comparisons with NOAA-16 SBUV/2 and ERS-2 GOME

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Bojkov, B. R.; Labow, G.; Weber, M.; Burrows, J.

    2004-01-01

    Validation of satellite data remains a high priority for the construction of climate data sets. Traditionally ground based measurements have provided the primary comparison data for validation. For some atmospheric parameters such as ozone, a thoroughly validated satellite data record can be used to validate a new instrument s data product in addition to using ground based data. Comparing validated data with new satellite data has several advantages; availability of much more data, which will improve precision, larger geographical coverage, and the footprints are closer in size, which removes uncertainty due to different observed atmospheric volumes. To demonstrate the applicability and some limitations of this technique, observations from the newly launched SCIAMACHY instrument were compared with the NOM-16 SBW/2 and ERS-2 GOME instruments. The SBW/2 data had all ready undergone validation by comparing to the total ozone ground network. Overall the SCIAMACHY data were found to low by 3% with respect to satellite data and 1% low with respect to ground station data. There appears to be seasonal and or solar zenith angle dependences in the comparisons with SBW/2 where differences increase with higher solar zenith angles. It is known that accuracies in both satellite and ground based total ozone algorithms decrease at high solar zenith angles. There is a strong need for more accurate measurement from and the ground under these conditions. At the present time SCIAMACHY data are limited and longer data set with more coverage in both hemispheres is needed to unravel the cause of these differences.

  11. Macrofauna associated with the brown algae Dictyota spp. (Phaeophyceae, Dictyotaceae) in the Sebastião Gomes Reef and Abrolhos Archipelago, Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Cunha, Tauana Junqueira; Güth, Arthur Ziggiatti; Bromberg, Sandra; Sumida, Paulo Yukio Gomes

    2013-11-01

    The taxonomic richness and distributional patterns of the macrofauna associated with the algae genus Dictyota from the Abrolhos Bank (Eastern Brazilian coast) are analyzed. Macrofauna comprised a total of 9586 specimens; a complete faunal list of the most abundant taxa (Crustacea, Polychaeta and Mollusca, accounting for 95.6%) resulted in 64 families and 120 species. Forty six species are registered for the first time for the Abrolhos Bank, of which 3 are also new for the Brazilian coast. The most abundant families were Ampithoidae amphipods (with Ampithoe ramondi as the main faunal component), Janiridae isopods, Rissoellidae gastropods and Syllidae polychaetes. Comparisons were made between summer and winter periods and among sites from Sebastião Gomes Reef, near the coast, and from Siriba Island, in the Abrolhos Archipelago, away from the mainland. Algae size was lower in the summer, when faunal density was higher, suggesting a possible effect of grazing. Macrofaunal communities were significantly different among sites and periods. Coastal and external communities were markedly different and winter had the greatest effects on the fauna. Environmental conditions related to sediment type and origin and turbidity appear to be a good scenario for our macrofauna distribution results.

  12. Can One Satellite Data Set Validation Another? Validation of Envisat SCIAMACHY Data by Comparisons with NOAA-16 SBUV/2 and ERS-2 GOME

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Bojkov, B. R.; Labow, G.; Weber, M.; Burrows, J.

    2004-01-01

    Validation of satellite data remains a high priority for the construction of climate data sets. Traditionally ground based measurements have provided the primary comparison data for validation. For some atmospheric parameters such as ozone, a thoroughly validated satellite data record can be used to validate a new instrument s data product in addition to using ground based data. Comparing validated data with new satellite data has several advantages; availability of much more data, which will improve precision, larger geographical coverage, and the footprints are closer in size, which removes uncertainty due to different observed atmospheric volumes. To demonstrate the applicability and some limitations of this technique, observations from the newly launched SCIAMACHY instrument were compared with the NOM-16 SBW/2 and ERS-2 GOME instruments. The SBW/2 data had all ready undergone validation by comparing to the total ozone ground network. Overall the SCIAMACHY data were found to low by 3% with respect to satellite data and 1% low with respect to ground station data. There appears to be seasonal and or solar zenith angle dependences in the comparisons with SBW/2 where differences increase with higher solar zenith angles. It is known that accuracies in both satellite and ground based total ozone algorithms decrease at high solar zenith angles. There is a strong need for more accurate measurement from and the ground under these conditions. At the present time SCIAMACHY data are limited and longer data set with more coverage in both hemispheres is needed to unravel the cause of these differences.

  13. Tropospheric NO2 retrieved from OMI, GOME(-2), and SCIAMACHY within the Quality Assurance For Essential Climate Variables (QA4ECV) project: retrieval improvement, harmonization, and quality assurance

    NASA Astrophysics Data System (ADS)

    Folkert Boersma, K.

    2017-04-01

    One of the prime targets of the EU-project Quality Assurance for Essential Climate Variables (QA4ECV, www.qa4ecv.eu) is the generation and subsequent quality assurance of harmonized, long-term data records of ECVs or precursors thereof. Here we report on a new harmonized and improved retrieval algorithm for NO2 columns and its application to spectra measured by the GOME, SCIAMACHY, OMI, and GOME-2(A) sensors over the period 1996-2016. Our community 'best practices' algorithm is based on the classical 3-step DOAS method. It benefits from a thorough comparison and iteration of spectral fitting and air mass factor calculation approaches between IUP Bremen, BIRA, Max Planck Institute for Chemistry, KNMI, WUR, and a number of external partners. For step 1 of the retrieval, we show that improved spectral calibration and the inclusion of liquid water and intensity-offset correction terms in the fitting procedure, lead to 10-30% smaller NO2 slant columns, in better agreement with independent measurements. Moreover, the QA4ECV NO2 slant columns show 15-35% lower uncertainties relative to earlier versions of the spectral fitting algorithm. For step 2, the stratospheric correction, the algorithm relies on the assimilation of NO2 slant columns over remote regions in the Tracer Model 5 (TM5-MP) chemistry transport model. The representation of stratospheric NOy in the model is improved by nudging towards ODIN HNO3:O3 ratios, leading to more realistic NO2 concentrations in the free-running mode, which is relevant at high latitudes near the terminator. The coupling to TM5-Mass Parallel also allows the calculation of air mass factors (AMFs, step 3) from a priori NO2 vertical profiles simulated at a spatial resolution of 1°×1°, so that hotspot gradients are better resolved in the a priori profile shapes. Other AMF improvements include the use of improved cloud information, and a correction for photon scattering in a spherical atmosphere. Preliminary comparisons indicate that the

  14. On the use of harmonized HCHO and NO2 MAXDOAS measurements for the validation of GOME-2 and OMI satellite sensors

    NASA Astrophysics Data System (ADS)

    Pinardi, Gaia; Hendrick, François; Gielen, Clio; Van Roozendael, Michel; De Smedt, Isabelle; Lambert, Jean-Christopher; Granville, José; Compernolle, Steven; Richter, Andreas; Peters, Enno; Piters, Ankie; Wagner, Thomas; Wang, Yang; Drosoglou, Theano; Bais, Alkis; Wang, Shanshan; Saiz-Lopez, Alfonso

    2017-04-01

    During the last decade, the MAXDOAS technique has been increasingly recognized as a source of Fiducial Reference Measurements (FRM) suitable for the validation of satellite nadir observations of species relevant for climate and air quality like NO2 and HCHO. As part of the EU FP7 QA4ECV (Quality Assurance for Essential Climate Variables; see http://www.qa4ecv.eu/) project, efforts have been recently made to harmonize a network of a dozen of MAXDOAS spectrometers in view of their use to assess the quality of satellite climate data records generated within the same project. Harmonization tasks have addressed both retrieval steps involved in MAXDOAS retrievals, i.e. the DOAS spectral fit providing the differential slant column densities (DSCDs) and the conversion of the retrieved DSCDs into vertical profiles and/or vertical column densities (VCDs). In this work, we illustrate the successive harmonization steps and present the resulting QA4ECV MAXDOAS database v2. The approach adopted for the conversion of slant to vertical columns is based on a simplified look-up-table approach. The strength and limitation of this approach are discussed using reference data retrieved using an optimal estimation scheme. The QA4ECV MAXDOAS database is then used to validate satellite data sets of NO2 and HCHO columns derived from the Aura/OMI and MetOp/GOME-2 sensors. The methodology of comparison, which is also a subject of the QA4ECV project, is reviewed with respect to co-location criteria, impact of vertical and horizontal smoothing and representativeness of validation sites. We conclude by assessing the current strengths and limitations of the existing MAXDOAS datasets for NO2 and HCHO satellite validation.

  15. Investigation of rain-induced NOx and HCHO emissions from soils as viewed by the GOME-2 and SCIAMACHY satellite sensors

    NASA Astrophysics Data System (ADS)

    Zörner, Jan; Penning de Vries, Marloes; Beirle, Steffen; Veres, Patrick; Williams, Jonathan; Wagner, Thomas

    2013-04-01

    Outside industrial areas, soil emissions of NOx (stemming from bacterial emissions of NO) represent a considerable fraction of total NOx emissions and may even dominate in remote tropical and agricultural areas. NOx fluxes from soils are controlled by abiotic and microbiological processes which depend on ambient environmental conditions, but are also strongly affected by agricultural management practices. Rain-induced spikes in NOx have been observed by in-situ measurements and also satellite observations, i.e. by Jaegle et al. (2004), Bertram et al. (2005), Ghude et al. (2010) and Hudman et al. (2010). The latter studies present the first estimation of soil NOx emissions derived from satellite observations of tropospheric NO2 columns. However, since soil emissions over broad geographic regions remain difficult to measure or even estimate using bottom-up approaches, their representation in chemical models can still be improved by accurate satellite constraints. This study extends the previous research by investigating peaks in tropospheric NO2 concentrations after rain fall events following dry spells. Additionally, we examine the possibility for detection of HCHO emissions from wetted soils which has not been previously attempted by using satellite observations. A limited number of laboratory experiments on soil fluxes suggest that significant HCHO emissions from soil can occur. Vertical NO2 and HCHO columns retrieved from GOME-2 aboard METOP and SCIAMACHY aboard ENVISAT were used. An in-depth analysis of rain-induced soil emissions was conducted for not only broad seasonal and annual averages but also investigate the soil-temperature dependencies using TRMM precipitation data and model data from the ECMWF Interim Reanalysis project. Moreover, a thorough validity check and the crucial source partitioning of the measured NO2 and HCHO signals are conducted to evaluate whether the observed signals originate from fire, other anthropogenic and biogenic influences

  16. Chemical composition and severe ozone loss derived from SCIAMACHY and GOME-2 observations during Arctic winter 2010/2011 in comparisons to Arctic winters in the past

    NASA Astrophysics Data System (ADS)

    Hommel, R.; Eichmann, K.-U.; Aschmann, J.; Bramstedt, K.; Weber, M.; von Savigny, C.; Richter, A.; Rozanov, A.; Wittrock, F.; Bauer, R.; Khosrawi, F.; Burrows, J. P.

    2013-06-01

    Record breaking losses of ozone (O3) in the Arctic stratosphere have been reported in winter and spring 2011. Trace gas amounts and polar stratospheric cloud (PSC) distributions retrieved using differential optical absorption spectroscopy (DOAS) and scattering theory applied to the measurements of radiance and irradiance by satellite-born and ground-based instrumentation, document the unusual behaviour. A chemical transport model has been used to relate and compare Arctic winter-spring conditions in 2011 with those in previous years. We examine in detail the composition and transformations occurring in the Arctic polar vortex using total column and vertical profile data products for O3, bromine oxide (BrO), nitrogen dioxide (NO2), chlorine dioxide (OClO), and PSCs retrieved from measurements made by the instrument SCIAMACHY onboard the ESA satellite Envisat, as well as the total column ozone amount, retrieved from the measurements of GOME-2 on the EUMETSAT operational meteorological polar orbiter Metop-A. In the late winter and spring 2010/2011 the chemical loss of O3 in the polar vortex is consistent with and confirms findings reported elsewhere. More than 70% of O3 was depleted between the 425 K and 525 K isentropic surfaces, i.e. in the altitude range ~16-20 km. In contrast, during the same period in the previous winter only slightly more than 20% depletion occurred below 20 km, whereas 40% of the O3 was removed above the 575 K isentrope (~23 km). This loss above the 575 K isentrope is explained by the catalytic destruction by the NOx descending from the mesosphere. At lower altitudes O3 loss results from processing by halogen driven O3 catalytic removal cycles, activated by the large volume of PSC generated throughout this winter and spring. The mid-winter 2011 conditions, prior to the catalytic cycles being fully effective, are also investigated. Surprisingly, a significant loss of O3 with 60% is observed in mid-January 2011 below 500 K (~19 km), which was

  17. The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia.

    PubMed

    Parker, Matthew A

    2015-04-01

    To analyze macroevolutionary patterns in host use by Bradyrhizobium root-nodule bacteria, 420 strains from 75 legume host genera (sampled in 25 countries) were characterized for portions of six housekeeping genes and the nifD locus in the symbiosis island chromosomal region. Most Bradyrhizobium clades utilized very divergent sets of legume hosts. This suggests that Bradyrhizobium spread across the major legume lineages early in its evolution, with only a few derived clades subsequently developing a narrower pattern of host use. Significant modularity existed in the network structure of recent host jumps (inferred from cases where closely related strain pairs were found on different legume taxa). This implies that recent host switching has occurred most often within particular subgroups of legumes. Nevertheless, the observed link structure would allow a bacterial lineage to reach almost any of the 75 legume host genera in a relatively small number of steps. However, permutation tests also showed that symbionts from certain host plant clades were significantly more similar than would be the case if bacteria were distributed at random on the trees. Related legumes thus harbored related sets of symbionts in some cases, indicating some degree of phylogenetic conservatism in partner selection.

  18. Eutetrarhynchid trypanorhynchs (Cestoda) from elasmobranchs off Argentina, including the description of Dollfusiella taminii sp. n. and Parachristianella damiani sp. n., and amended description of Dollfusiella vooremi (São Clemente et Gomes, 1989).

    PubMed

    Menoret, Adriana; Ivanov, Verónica A

    2014-10-01

    During a parasitological survey of teleosts and elasmobranchs in the Argentine Sea, 3 species of eutetrarhynchids were collected from the batoids Myliobatis goodei Garman and Psammobatis bergi Marini, and the shark Mustelus schmitti Springer. The specimens collected from Mu. schmitti were identified as Dollfusiela vooremi (Sπo Clemente et Gomes, 1989), whereas the specimens from My. goodei and Ps. bergi resulted in new species of Dollfusiella Campbell et Beveridge, 1994 and Parachristianella Dollfus, 1946, respectively. Dollfusiella taminii sp. n. from Ps. bergi is characterised by a distinct basal armature with basal swelling and a heteroacanthous homeomorphous metabasal armature with 7-9 falcate hooks per principal row. Parachristianella damiani sp. n. from My. goodei lacks a distinct basal armature, having 2-3 initial rows of uncinate hooks, a heteroacanthous heteromorphous metabasal armature with the first principal row of small hooks, followed by rows with 10-14 large hooks. This is the first record of Parachristianella in the southwestern Atlantic. The amended description of D. vooremi includes the detailed description of the tentacular armature, including SEM micrographs of all tentacular surfaces. This species is characterised by a basal armature consisting of rows of uncinate and falcate hooks, a basal swelling and a metabasal armature with billhooks on the antibothrial surface and uncinate hooks on the bothrial surface. The scolex peduncle of D. vooremi is covered with enlarged spinitriches. This species is restricted to carcharhiniform sharks, since the report of D. vooremi in Sympterygia bonapartii Müller et Henle off Bahia Blanca (Argentina) is dubious.

  19. Comparison of Profile Total Ozone from SBUV (v8.6) with GOME-Type and Ground-Based Total Ozone for a 16-Year Period (1996 to 2011)

    NASA Technical Reports Server (NTRS)

    Chiou, E. W.; Bhartia, P. K.; McPeters, R. D.; Loyola, D. G.; Coldewey-Egbers, M.; Fioletov, V. E.; Van Roozendael, M.; Spurr, R.; Lerot, C.; Frith, S. M.

    2014-01-01

    This paper describes the comparison of the variability of total column ozone inferred from the three independent multi-year data records, namely, (i) Solar Backscatter Ultraviolet Instrument (SBUV) v8.6 profile total ozone, (ii) GTO (GOME-type total ozone), and (iii) ground-based total ozone data records covering the 16-year overlap period (March 1996 through June 2011). Analyses are conducted based on area-weighted zonal means for 0-30degS, 0-30degN, 50-30degS, and 30-60degN. It has been found that, on average, the differences in monthly zonal mean total ozone vary between -0.3 and 0.8% and are well within 1 %. For GTO minus SBUV, the standard deviations and ranges (maximum minus minimum) of the differences regarding monthly zonal mean total ozone vary between 0.6-0.7% and 2.8-3.8% respectively, depending on the latitude band. The corresponding standard deviations and ranges regarding the differences in monthly zonal mean anomalies show values between 0.4-0.6% and 2.2-3.5 %. The standard deviations and ranges of the differences ground-based minus SBUV regarding both monthly zonal means and anomalies are larger by a factor of 1.4-2.9 in comparison to GTO minus SBUV. The ground-based zonal means demonstrate larger scattering of monthly data compared to satellite-based records. The differences in the scattering are significantly reduced if seasonal zonal averages are analyzed. The trends of the differences GTO minus SBUV and ground-based minus SBUV are found to vary between -0.04 and 0.1%/yr (-0.1 and 0.3DU/yr). These negligibly small trends have provided strong evidence that there are no significant time-dependent differences among these multiyear total ozone data records. Analyses of the annual deviations from pre-1980 level indicate that, for the 15-year period of 1996 to 2010, all three data records show a gradual increase at 30-60degN from -5% in 1996 to -2% in 2010. In contrast, at 50-30degS and 30degS- 30degN there has been a leveling off in the 15 years after

  20. Hepatic profile of Gallus gallus Linnaeus, 1758 experimentally infected by Plasmodium juxtanucleare Versiani & Gomes, 1941.

    PubMed

    Vashist, Usha; Falqueto, Aline Duarte; Lustrino, Danilo; Tunholi, Victor Menezes; Tunholi-Alves, Vinícius Menezes; dos Santos, Marcos Antônio José; D'Agosto, Marta; Massard, Carlos Luiz; Pinheiro, Jairo

    2011-02-10

    One of the species that causes avian malaria is Plasmodium juxtanucleare. It is commonly found in poultry, especially when the birds receive food free of coccidiostats. Since industrial and organic poultry breeding is increasing in the world and few studies have been conducted examining the clinical parameters of both healthy and infected birds, this work evaluated whether the infection caused by P. juxtanucleare in Gallus gallus provokes alterations in the birds' hepatic profile. We analyzed the activity of ALT and AST and carried out histological analyses of liver sections of infected fowls by intracelomic inoculation with infected blood from a donor fowl with a parasite load of around 7%. The infected birds' parasite load was evaluated during 45 days by means of blood smears. There was a positive correlation between the increase in parasite load and higher ALT activity in the infected fowls, but there was no significant variation of the AST activity between the control and infected groups, possibly because of the non-specificity of this enzyme as an indicator of hepatic lesion. The results show that infection caused by P. juxtanucleare in G. gallus provokes hepatic alterations, indicated by the increase in the ALT enzyme activity and by the inflammatory infiltrates found in the liver sections of the infected fowls.

  1. Effects of Pimenta pseudocaryophyllus (Gomes) L. R. Landrum, on melanized and non-melanized Cryptococcus neoformans.

    PubMed

    de Fátima Lisboa Fernandes, Orionalda; Costa, Carolina Rodrigues; de Souza Lino Junior, Ruy; Vinaud, Marina Clare; Hasimoto E Souza, Lúcia Kioko; de Paula, Joelma Abadia Marciano; do Rosário Rodrigues Silva, Maria

    2012-12-01

    In the present study, the in vitro susceptibility and capsular width from both melanized and non-melanized Cryptococcus neoformans cells in the presence of Pimenta pseudocaryophyllus crude extract were determined. The results were compared with those obtained for voriconazole and amphotericin B. Melanization was obtained in minimal medium broth with the addition of L-dopa, and the antifungal susceptibility tests were performed using the broth microdilution method. Capsular width of 30 cells of each one of the isolates in medium with crude extracts of P. pseudocaryophyllus or voriconazole or amphotericin B at a concentration corresponding to 0.5 times the minimal inhibitory concentration (MIC) was measured, and the mean was calculated. The MICs and minimal fungicidal concentrations (MFCs) for plant extract and voriconazole were identical for both melanized and non-melanized C. neoformans isolates, but for amphotericin, the MFCs for melanized cells were up to 8 times higher than for non-melanized cells. The capsular width of C. neoformans cells was smaller (p < 0.001) in the presence crude extract of P. pseudocaryophyllus and of voriconazole regardless melanization. The findings of capsule alterations of C. neoformans verified in this study provide fertile ways for future research into the effects of antifungal agents on the pathogenesis of cryptococcosis.

  2. VizieR Online Data Catalog: Positions of satellites of giant planets (Gomes-Junior+, 2015)

    NASA Astrophysics Data System (ADS)

    Gomes-Junior, A. R.; Assafin, M.; Vieira Martins, R.; Arlot, J.-E.; Camargo, J. I. B.; Braga-Ribas, F.; da Silva Neto, D. N.; Andrei, A. H.; Dias-Oliveira, A.; Morgado, B. E.; Benedetti-Rossi, G.; Duchemin, Y.; Desmars, J.; Lainey, V.; Thuillot, W.

    2015-05-01

    Tables contain the topocentric ICRS coordinates of the irregular satellites, the position error estimated from the dispersion of the ephemeris offsets of the night of observation, the UTC time of the frame's mid-exposure in julian date, the estimated magnitude, the filter used, the telescope origin and correspondent IAU code. The filters may be U, B, V, R or I following the Johnson system; C stands for clear (no filter used), resulting in a broader R band magnitude, RE for the broad-band R filter ESO#844 with λ=651.725nm and Δλ=162.184nm (full width at half maximum) and "un" for unknown filter. E, OH, PE, BC and Z stand respectively for the ESO, OHP (Observatoire de Haute-Provence), Perkin-Elmer, Bollen & Chivens and Zeiss telescopes from the Observatorio do Pico dos Dias. (2 data files).

  3. Bacterial community associated with the trunk latex of Hancornia speciosa Gomes (Apocynaceae) grown in the northeast of Brazil.

    PubMed

    Silva, Thais Freitas da; Coelho, Marcia Reed Rodrigues; Vollú, Renata Estebanez; de Vasconcelos Goulart, Fátima Regina; Alviano, Daniela Sales; Alviano, Celuta Sales; Seldin, Lucy

    2011-03-01

    Prevention or cure of different illnesses through the use of plant latex is a worldwide known concept. The antifungal activity of Hancornia speciosa latex has been observed against Candida albicans. However, H. speciosa latex is not a sterile plant exudate and secondary metabolites produced by bacteria could be involved in fungal inhibition. In the present study, the bacterial communities of the latex from three H. speciosa trees were characterized using traditional plating and molecular methods. Twelve strains isolated from the latex samples were clustered into four groups by amplified ribosomal DNA restriction analysis (ARDRA). One representative of each group was sequenced and they were identified as belonging to the genera Bacillus, Klebsiella, Enterobacter and Escherichia. None of the 12 isolates showed antifungal activity against C. albicans. A lack of a microbial origin for the antifungal properties of latex was noted. DGGE profiles generated from each of the three latex samples showed unique patterns. Sequencing of the DGGE bands demonstrated the affiliation with the genera Klebsiella, Pantoea, Enterobacter and Burkholderia. In addition, clone libraries were generated and the phylogenetic distribution of the 50 analyzed clones was similar to that obtained using DGGE. The presence of some potential pathogens should be considered before using H. speciosa latex in folk medicine.

  4. The Impact of Global Climate Change on the Geographic Distribution and Sustainable Harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil

    NASA Astrophysics Data System (ADS)

    Nabout, João Carlos; Magalhães, Mara Rúbia; de Amorim Gomes, Marcos Aurélio; da Cunha, Hélida Ferreira

    2016-04-01

    The global Climate change may affect biodiversity and the functioning of ecosystems by changing the appropriate locations for the development and establishment of the species. The Hancornia speciosa, popularly called Mangaba, is a plant species that has potential commercial value and contributes to rural economic activities in Brazil. The aim of this study was to evaluate the impact of global climate change on the potential geographic distribution, productivity, and value of production of H. speciosa in Brazil. We used MaxEnt to estimate the potential geographic distribution of the species in current and future (2050) climate scenarios. We obtained the productivity and value of production for 74 municipalities in Brazil. Moreover, to explain the variation the productivity and value of production, we constructed 15 models based on four variables: two ecological (ecological niche model and the presence of Unity of conservation) and two socio-economic (gross domestic product and human developed index). The models were selected using Akaike Information Criteria. Our results suggest that municipalities currently harvesting H. speciosa will have lower harvest rates in the future (mainly in northeastern Brazil). The best model to explain the productivity was ecological niche model; thus, municipalities with higher productivity are inserted in regions with higher environmental suitability (indicated by niche model). Thus, in the future, the municipalities harvesting H. speciosa will produce less because there will be less suitable habitat for H. speciosa, which in turn will affect the H. speciosa harvest and the local economy.

  5. Stratospheric chlorine activation in the Arctic winters 1995/96-2001/02 derived from GOME OClO measurements

    NASA Astrophysics Data System (ADS)

    Kühl, S.; Wilms-Grabe, W.; Beirle, S.; Frankenberg, C.; Grzegorski, M.; Hollwedel, J.; Khokhar, F.; Kraus, S.; Platt, U.; Sanghavi, S.; von Friedeburg, C.; Wagner, T.

    2004-01-01

    In this article, we present satellite observations of OClO from the years 1995-2002. The focus is on observations of OClO in the Arctic wintertime stratosphere, which are compared to results of the SLIMCAT model and to observations in the Antarctic. In particular, we investigated the beginning and ending of the chlorine activation in the Arctic stratosphere. The Slant Column Densities (SCDs) of OClO increase significantly, when the temperature falls below the threshold for formation of Polar Stratospheric Clouds. The time for decrease of the OClO-SCDs in the deactivation phase (early spring) varies strongly and is related to the degree of denitrification. In the Arctic, chlorine activation can be further increased when there is strong activity of stratospheric mountain waves.

  6. The Impact of Global Climate Change on the Geographic Distribution and Sustainable Harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil.

    PubMed

    Nabout, João Carlos; Magalhães, Mara Rúbia; de Amorim Gomes, Marcos Aurélio; da Cunha, Hélida Ferreira

    2016-04-01

    The global Climate change may affect biodiversity and the functioning of ecosystems by changing the appropriate locations for the development and establishment of the species. The Hancornia speciosa, popularly called Mangaba, is a plant species that has potential commercial value and contributes to rural economic activities in Brazil. The aim of this study was to evaluate the impact of global climate change on the potential geographic distribution, productivity, and value of production of H. speciosa in Brazil. We used MaxEnt to estimate the potential geographic distribution of the species in current and future (2050) climate scenarios. We obtained the productivity and value of production for 74 municipalities in Brazil. Moreover, to explain the variation the productivity and value of production, we constructed 15 models based on four variables: two ecological (ecological niche model and the presence of Unity of conservation) and two socio-economic (gross domestic product and human developed index). The models were selected using Akaike Information Criteria. Our results suggest that municipalities currently harvesting H. speciosa will have lower harvest rates in the future (mainly in northeastern Brazil). The best model to explain the productivity was ecological niche model; thus, municipalities with higher productivity are inserted in regions with higher environmental suitability (indicated by niche model). Thus, in the future, the municipalities harvesting H. speciosa will produce less because there will be less suitable habitat for H. speciosa, which in turn will affect the H. speciosa harvest and the local economy.

  7. Angular normalization of GOME-2 Sun-induced chlorophyll fluorescence observation as a better proxy of vegetation productivity

    NASA Astrophysics Data System (ADS)

    He, Liming; Chen, Jing M.; Liu, Jane; Mo, Gang; Joiner, Joanna

    2017-06-01

    Sun-induced chlorophyll fluorescence (SIF) has been regarded as a promising proxy for gross primary productivity (GPP) over land. Considerable uncertainties in GPP estimation using remotely sensed SIF exist due to variations in the Sun-satellite view observation geometry that could induce unwanted variations in SIF observation. In this study, we normalize the far-red Global Ozone Monitoring Experiment-2 SIF observations on sunny days to hot spot direction (SIFh) to represent sunlit leaves and compute a weighted sum of SIF (SIFt) from sunlit and shaded leaves to represent the canopy. We found that SIFh is better correlated with sunlit GPP simulated by a process-based ecosystem model and SIFt is better correlated with the simulated total GPP than the original SIF observations. The coefficient of determination (R2) are increased by 0.04 ± 0.03, and 0.07 ± 0.04 on a global average using SIFh and SIFt, respectively. The most significant increases of the R2 (0.09 ± 0.04 for SIFt and 0.05 ± 0.03 for SIFh) appear in deciduous broadleaf forests.

  8. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and other Trace Species

    NASA Technical Reports Server (NTRS)

    Chance, K. V.

    2001-01-01

    This report summarizes research done under NASA Grant NAG5-3461 from November 1, 1996 through December 31, 2000. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, sensitivity and instrument studies to help finalize the definition of the SCIAMACHY instrument, leading the development of the SCIAMACHY Scientific Requirements Document for Data and Algorithm Development, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, radiative transfer model development for utilization in GOME, SCIAMACHY and other programs, development of infrared line-by-line atmospheric modeling and retrieval capability for SCIAMACHY, and participation in GOME and SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY is currently planned for launch in late 2001 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  9. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and Other Trace Species

    NASA Technical Reports Server (NTRS)

    Chance, Kelly

    2003-01-01

    This grant is an extension to our previous NASA Grant NAG5-3461, providing incremental funding to continue GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) studies. This report summarizes research done under these grants through December 31, 2002. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and participation in initial SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY was launched March 1, 2002 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  10. Quantifying the Seasonal and Interannual Variability of North American Isoprene Emissions Using Satellite Observations of the Formaldehyde Column

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Abbot, Dorian S.; Fu, Tzung-May; Jacob, Daniel J.; Chance, Kelly; Kurosu, Thomas P.; Guenther, Alex; Wiedinmyer, Christine; Stanton, Jenny C.; Pilling, Michael J.; Pressley, Shelley N.; Lamb, Brian; Sumner, Anne Louise

    2006-01-01

    Quantifying isoprene emissions using satellite observations of the formaldehyde (HCHO) columns is subject to errors involving the column retrieval and the assumed relationship between HCHO columns and isoprene emissions, taken here from the GEOS-CHEM chemical transport model. Here we use a 6-year (1996-2001) HCHO column data set from the Global Ozone Monitoring Experiment (GOME) satellite instrument to (1) quantify these errors, (2) evaluate GOME-derived isoprene emissions with in situ flux measurements and a process-based emission inventory (Model of Emissions of Gases and Aerosols from Nature, MEGAN), and (3) investigate the factors driving the seasonal and interannual variability of North American isoprene emissions. The error in the GOME HCHO column retrieval is estimated to be 40%. We use the Master Chemical Mechanism (MCM) to quantify the time-dependent HCHO production from isoprene, alpha- and beta-pinenes, and methylbutenol and show that only emissions of isoprene are detectable by GOME. The time-dependent HCHO yield from isoprene oxidation calculated by MCM is 20-30% larger than in GEOS-CHEM. GOME-derived isoprene fluxes track the observed seasonal variation of in situ measurements at a Michigan forest site with a -30% bias. The seasonal variation of North American isoprene emissions during 2001 inferred from GOME is similar to MEGAN, with GOME emissions typically 25% higher (lower) at the beginning (end) of the growing season. GOME and MEGAN both show a maximum over the southeastern United States, but they differ in the precise location. The observed interannual variability of this maximum is 20-30%, depending on month. The MEGAN isoprene emission dependence on surface air temperature explains 75% of the month-to-month variability in GOME-derived isoprene emissions over the southeastern United States during May-September 1996-2001.

  11. Quantifying the Seasonal and Interannual Variability of North American Isoprene Emissions Using Satellite Observations of the Formaldehyde Column

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Abbot, Dorian S.; Fu, Tzung-May; Jacob, Daniel J.; Chance, Kelly; Kurosu, Thomas P.; Guenther, Alex; Wiedinmyer, Christine; Stanton, Jenny C.; Pilling, Michael J.; hide

    2006-01-01

    Quantifying isoprene emissions using satellite observations of the formaldehyde (HCHO) columns is subject to errors involving the column retrieval and the assumed relationship between HCHO columns and isoprene emissions, taken here from the GEOS-CHEM chemical transport model. Here we use a 6-year (1996-2001) HCHO column data set from the Global Ozone Monitoring Experiment (GOME) satellite instrument to (1) quantify these errors, (2) evaluate GOME-derived isoprene emissions with in situ flux measurements and a process-based emission inventory (Model of Emissions of Gases and Aerosols from Nature, MEGAN), and (3) investigate the factors driving the seasonal and interannual variability of North American isoprene emissions. The error in the GOME HCHO column retrieval is estimated to be 40%. We use the Master Chemical Mechanism (MCM) to quantify the time-dependent HCHO production from isoprene, alpha- and beta-pinenes, and methylbutenol and show that only emissions of isoprene are detectable by GOME. The time-dependent HCHO yield from isoprene oxidation calculated by MCM is 20-30% larger than in GEOS-CHEM. GOME-derived isoprene fluxes track the observed seasonal variation of in situ measurements at a Michigan forest site with a -30% bias. The seasonal variation of North American isoprene emissions during 2001 inferred from GOME is similar to MEGAN, with GOME emissions typically 25% higher (lower) at the beginning (end) of the growing season. GOME and MEGAN both show a maximum over the southeastern United States, but they differ in the precise location. The observed interannual variability of this maximum is 20-30%, depending on month. The MEGAN isoprene emission dependence on surface air temperature explains 75% of the month-to-month variability in GOME-derived isoprene emissions over the southeastern United States during May-September 1996-2001.

  12. 78 FR 58320 - National Institute on Drug Abuse; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... Committee: National Institute on Drug Abuse Special Emphasis Panel GOMED: Grand Opportunity in Medications... Institute on Drug Abuse Special Emphasis Panel Strategic Alliances for Medications Development to Treat... Drug Abuse Special Emphasis Panel; Medications Development Centers of Excellence Cooperative...

  13. Retrieval and molecule sensitivity studies for the global ozone monitoring experiment and the scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Chance, Kelly V.; Burrows, John P.; Schneider, Wolfgang

    1991-01-01

    The Global Ozone Monitoring Experiment (GOME) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) are diode based spectrometers that will make atmospheric constituent and aerosol measurements from European satellite platforms beginning in the mid 1990's. GOME measures the atmosphere in the UV and visible in nadir scanning, while SCIAMACHY performs a combination of nadir, limb, and occultation measurements in the UV, visible, and infrared. A summary is presented of the sensitivity studies that were performed for SCIAMACHY measurements. As the GOME measurement capability is a subset of the SCIAMACHY measurement capability, the nadir, UV, and visible portion of the studies is shown to apply to GOME as well.

  14. Offsets in Weapon System Sales: A Case Study of the Korean Fighter Program

    DTIC Science & Technology

    1992-09-01

    Hite Countertrade Geringer International Joint Ventures Golden Offsets Gomes- Casseres International Joint Ventures Hennart Countertrade Howard & Yeakel... Casseres , "partners in a joint venture 36 need to have compatible goals" (48:20). Two of the authors express this idea in very strong terms. The results...not use such strong 41 TABLE 3 SELLER RELATED FACTORS FACTOR AUTHORS Compatible Goals Geringer; Verzariu; Gomes- Casseres ; Farr Proactive Strategy

  15. Mapping Isoprene Emissions over North America using Formaldehyde Column Observations from Space

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Fiore, Arlene M.; Martin, Randall V.; Chance, Kelly; Kurosu, Thomas P.

    2004-01-01

    I] We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. lsoprene is the dominant HCHO precursor over North America in summer, and its lifetime (approx. = 1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r(sup 2) = 0.69, n = 756, bias = +l1 %) and the in situ summertime HCHO measurements over North America (r(sup 2) = 0.47, n = 10, bias = -3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U S . EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements thaneitherGEIAorBEIS2 (r(sup 2) = 0.71,n= 10, bias = -10 %).

  16. Mapping Isoprene Emissions over North America using Formaldehyde Column Observations from Space

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Fiore, Arlene M.; Martin, Randall V.; Chance, Kelly; Kurosu, Thomas P.

    2004-01-01

    I] We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. lsoprene is the dominant HCHO precursor over North America in summer, and its lifetime (approx. = 1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r(sup 2) = 0.69, n = 756, bias = +l1 %) and the in situ summertime HCHO measurements over North America (r(sup 2) = 0.47, n = 10, bias = -3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U S . EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements thaneitherGEIAorBEIS2 (r(sup 2) = 0.71,n= 10, bias = -10 %).

  17. Accurate modeling of spectral fine-structure in Earth radiance spectra measured with the Global Ozone Monitoring Experiment.

    PubMed

    van Deelen, Rutger; Hasekamp, Otto P; Landgraf, Jochen

    2007-01-10

    We present what we believe to be a novel approach to simulating the spectral fine structure (<1 nm) in measurements of spectrometers such as the Global Ozone Monitoring Experiment (GOME). GOME measures the Earth's radiance spectra and daily solar irradiance spectra from which a reflectivity spectrum is commonly extracted. The high-frequency structures contained in such a spectrum are, apart from atmospheric absorption, caused by Raman scattering and by a shift between the solar irradiance and the Earth's radiance spectrum. Normally, an a priori high-resolution solar spectrum is used to simulate these structures. We present an alternative method in which all the required information on the solar spectrum is retrieved from the GOME measurements. We investigate two approaches for the spectral range of 390-400 nm. First, a solar spectrum is reconstructed on a fine spectral grid from the GOME solar measurement. This approach leads to undersampling errors of up to 0.5% in the modeling of the Earth's radiance spectra. Second, a combination of the solar measurement and one of the Earth's radiance measurement is used to retrieve a solar spectrum. This approach effectively removes the undersampling error and results in residuals close to the GOME measurement noise of 0.1%.

  18. NASA's Experience with UV Remote Using SBUV and TOMS Instruments

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.

    1999-01-01

    This paper will discuss key features of the NASA algorithm that has been used to produce several highly popular geophysical products from the Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) series of instruments. Since these instruments have a limited number of wavelengths, many innovative algorithmic approaches have been developed over the years to derive maximum information from these sensors. We will use Global Ozone Monitoring Experiment (GOME) data to test the assumptions made in these algorithms and show what additional information is contained in the GOME hyperspectral data. At NASA we are using this information to improve the SBUV and TOMS algorithms, as well as to develop more efficient algorithms to process GOME data.

  19. Summertime weekly cycles of observed and modeled NOx and O3 concentrations as a function of land use type and ozone production sensitivity over the Continental United States

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Kim, H.; Tong, D.; Lee, P.

    2012-01-01

    Simulation results from the Community Multiscale Air Quality (CMAQ) model version 4.7.1 over the Conterminous United States (CONUS) for August 2009 are analyzed to evaluate how satellite-derived O3 sensitivity regimes capture weekly cycles of the U.S. EPA's Air Quality System (AQS) observed ground-level concentrations of ozone (O3). AQS stations are classified according to a geographically-based land use designation or an O3-NOx-VOC chemical sensitivity regime. Land use designations are derived from the Advanced Very High Resolution Radiometer (AVHRR) global land cover characteristic data representing three features: urban regions, forest regions, and other regions. The O3 chemical regimes (NOx-saturated, mixed, and NOx-sensitive) are inferred from low to high values of photochemical indicators based on the ratio of the HCHO to NO2 column density from the Global Ozone Monitoring Experiment 2 (GOME-2) and CMAQ. Both AQS-observed weekly cycles of NOx at measurement sites over AVHRR geographical regions and GOME-2 sensitivity regimes show high NOx on weekdays and low NOx on weekends. However, the AQS-observed O3 weekly cycle at sites over the GOME-2 NOx-saturated regime is noticeably different from that over the AVHRR urban region. Whereas the high weekend O3 anomaly is clearly shown at sites over the GOME-2 NOx-saturated regime in both AQS and CMAQ, the weekend effect is not captured at other sites over the AVHRR urban region. In addition, the weekend effect from AQS is more clearly discernible at sites above the GOME-2 NOx-saturated regime than at other sites above the CMAQ NOx-saturated regime. This study suggests that chemical classifications of GOME-2 chemical regime stations produces better results for weekly O3 cycles than either the CMAQ chemical or AVHRR geographical classifications.

  20. Participation in the TOMS Science Team

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Hilsenrath, Ernest (Technical Monitor)

    2002-01-01

    Because of the nominal funding provided by this grant, some of the relevant research is partially funded by other sources. Research performed for this funding period included the following items: We have investigated errors in TOMS ozone measurements caused by the uncertainty in wavelength calibration, coupled with the ozone cross sections in the Huggins bands and their temperature dependence. Preliminary results show that 0.1 nm uncertainty in TOMS wavelength calibration at the ozone active wavelengths corresponds to approx. 1% systematic error in O3, and thus potential 1% biases among ozone trends from the various TOMS instruments. This conclusion will be revised for absolute O3 Measurements as cross sections are further investigated for inclusion in the HITRAN database at the SAO, but the potential for relative errors remains. In order to aid further comparisons among TOMS and GOME ozone measurements, we have implemented our method of direct fitting of GOME radiances (BOAS) for O3, and now obtain the best fitting precision to date for GOME O3 Columns. This will aid in future comparisons of the actual quantities measured and fitted for the two instrument types. We have made comparisons between GOME ICFA cloud fraction and cloud fraction determined from GOME data using the Ring effect in the Ca II lines. There is a strong correlation, as expected, but there are substantial systematic biases between the determinations. This study will be refined in the near future using the recently-developed GOME Cloud Retrieval Algorithm (GOMECAT). We have improved the SAO Ring effect determination to include better convolution with instrument transfer functions and inclusion of interferences by atmospheric absorbers (e.g., O3). This has been made available to the general community.

  1. Guido Beck, Alexandre Proca, and the Oporto Theoretical Physics Seminar

    NASA Astrophysics Data System (ADS)

    Dos Santos Fitas, Augusto José; Passos Videira, António Augusto

    2007-01-01

    We describe the pioneering attempts made by Ruy Luís Gomes (1905 1984) and other Portuguese physicists to develop a research and teaching seminar in theoretical physics at the University of Oporto in 1942 1944 under the leadership first of the refugee Austrian theoretical physicist Guido Beck (1903 1988) and then of the Romanian-French theoretical physicist Alexandre Proca (1896 1955). These efforts failed, however, owing to lack of sustained financial support from the Portuguese government and to the political repression of the Salazar regime, which dismissed Gomes and other prominent Portuguese physicists and other scientists from their university positions.

  2. Aplectana nordestina n. sp. (Nematoda: Cosmocercidae) parasitizing Leposternon polystegum (Squamata: Amphisbaenidae) from Northeastern, Brazil.

    PubMed

    Amorim, Darciane Maria DE; Silva, Lidiane Aparecida Firmino DA; Morais, Drausio Honorio; Silva, Reinaldo José DA; Ávila, Robson Waldemar

    2017-03-23

    There are currently 760 reptile species known in Brazil, from which about 70 are amphisbaenians with 25 species recorded in the Brazilian northeast (Vanzolini 2002; Gomes & Maciel 2012; Costa & Bérnils, 2014; Roberto et al., 2014). Leposternon polystegum Duméril, is a widespread species distributed in the Amazon, Atlantic Forest, Cerrado, and Caatinga biomes (Porto et al., 2000; Ribeiro et al., 2011). The diet is composed mainly by ants, termites, and coleopteran larvae (Barros-Filho & Valverde, 1996; Gomes et al., 2009).

  3. Improvement of OMI Ozone Profile Retrievals in the Troposphere and Lower Troposphere by the Use of the Tropopause-Based Ozone Profile Climatology

    NASA Technical Reports Server (NTRS)

    Bak, Juseon; Liu, X.; Wei, J.; Kim, J. H.; Chance, K.; Barnet, C.

    2011-01-01

    An advance algorithm based on the optimal estimation technique has beeen developed to derive ozone profile from GOME UV radiances and have adapted it to OMI UV radiances. OMI vertical resolution : 7-11 km in the troposphere and 10-14 km in the stratosphere. Satellite ultraviolet measurements (GOME, OMI) contain little vertical information for the small scale of ozone, especially in the upper troposphere (UT) and lower stratosphere (LS) where the sharp O3 gradient across the tropopause and large ozone variability are observed. Therefore, retrievals depend greatly on the a-priori knowledge in the UTLS

  4. Tropospheric Chemistry from Space

    NASA Technical Reports Server (NTRS)

    Gleason, James

    2000-01-01

    Measuring tropospheric chemical constituents from space has been only of the "Holy Grails" of remote sensing. Tropospheric remote sensing has been done in two phases, extracting troposheric constituent information from satellite instruments designed for other purposes and constituent measurements with instruments optimized for tropospheric detection. Examples from the first phase, tropospheric ozone and aerosols from Total Ozone Mapping Spectrometer (TOMS) and Global Ozone Monitoring Experiment (GOME) will be presented. Expected results from upcoming instruments and missions, Atmospheric Ultraviolet Radiance Analyzer (AURA), Ozone Monitoring Instrument (OMI), GOME2, and Scanning Imaging Spectrometer for Atmospheric Chartography (SCIAMACHY) will be presented.

  5. More than Just Hot Air: How Hairdryers and Role Models Inspire Girls in Engineering

    ERIC Educational Resources Information Center

    Kekelis, Linda; Larkin, Molly; Gomes, Lyn

    2014-01-01

    This article describes a reverse-engineering project where female students take a part a hair dryer--giving them an opportunity to see the many different kinds of engineering disciplines involved in making a hairdryer and that they work together. Mechanical Engineer, Lyn Gome, describes her experience leading a group of middle school girls through…

  6. Supply Support of Air Force 463L Equipment: An Analysis of the 463L equipment Spare Parts Pipeline

    DTIC Science & Technology

    1989-09-01

    Deputy for Supply, Maintenance, and Logistics Plans. Memorandum For AF/LE. Department of the Air Force, Washington DC, 13 January 1988. 13. Goldratt ... Eliyahu M. and Robert E. Fox. "The Fundamental Measurements," The Theory of Constraints Journal, 1: 1 (August/September 1988). 132 14. Gomes, Roger and

  7. Rapid Genome Analyses of Emergent Human Adenovirus 14a Causing 2006-7 Febrile Respiratory Illness (FRI) Outbreaks in the US via High Throughput "Next-Generation" Pyrosequencing Technique

    DTIC Science & Technology

    2008-12-01

    Dewell SD, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TJ, Jirage KB, Kim J-B, Knight...FEMS Immunol. Med. Microbiol. 20:103-109. 14. Nakamura, Y., M. Leppert, P. O’Connell, R. Wolff, T. Holm, M. Culver, C. Martin , E. Fujimoto, M. Hoff, E

  8. More than Just Hot Air: How Hairdryers and Role Models Inspire Girls in Engineering

    ERIC Educational Resources Information Center

    Kekelis, Linda; Larkin, Molly; Gomes, Lyn

    2014-01-01

    This article describes a reverse-engineering project where female students take a part a hair dryer--giving them an opportunity to see the many different kinds of engineering disciplines involved in making a hairdryer and that they work together. Mechanical Engineer, Lyn Gome, describes her experience leading a group of middle school girls through…

  9. Bending of Beams Subjected to Transverse Impacts,

    DTIC Science & Technology

    1983-04-01

    and rotary inertia effects have been considered by Karunes and Onat [6] Symonds [7] and Jones and Gomes de Oliveira (8]. The main aspects of the...Phys. Sol., Vol. 2, 1954, pp. 92-102. 6. Karunes , B. and Onat, E.T., "On the Effect of Shear on Plastic Deformation of Beams Under Transverse Impact

  10. Isolation of chavibetol from essential oil of Pimenta pseudocaryophyllus leaf by high-speed counter-current chromatography.

    PubMed

    dos Santos, Bruna C B; da Silva, Júlio César T; Guerrero, Palimécio G; Leitão, Gilda G; Barata, Lauro E S

    2009-05-08

    Counter-current chromatography (CCC) was used to isolate chavibetol from the essential oil of leaves of Pimenta pseudocaryophyllus (Gomes) Landrum. Chavibetol was obtained in high purity (98%) and mass recovery (94.4%). Methyleugenol was also isolated. The CCC biphasic solvent system used was composed of hexane:n-butanol:methanol:water (12:4:4:3, v/v/v/v).

  11. Interpreting satellite column observations of formaldehyde over tropical South America.

    PubMed

    Palmer, Paul I; Barkley, Michael P; Kurosu, Thomas P; Lewis, Alastair C; Saxton, Julie E; Chance, Kelly; Gatti, Luciana V

    2007-07-15

    Space-borne column measurements of formaldehyde (HCHO), a high-yield oxidation product of volatile organic compounds (VOCs), represent important constraints for quantifying net regional fluxes of VOCs. Here, we interpret observed distributions of HCHO columns from the Global Ozone Monitoring Experiment (GOME) over tropical South America during 1997-2001. We present the first comparison of year-long in situ isoprene concentrations and fire-free GOME HCHO columns over a tropical ecosystem. GOME HCHO columns and in situ isoprene concentrations are elevated in the wet and dry seasons, with the highest values in the dry season. Previous analysis of the in situ data highlighted the possible role of drought in determining the elevated concentrations during the dry season, inferring the potential of HCHO columns to provide regional-scale constraints for estimating the role of drought on isoprene emissions. The agreement between the observed annual cycles of GOME HCHO columns and Along-Track Scanning Radiometer firecount data over the Amazon basin (correlations typically greater than 0.75 for a particular year) illustrates the potential of HCHO column to provide quantitative information about biomass burning emissions.

  12. Using Personnel Distribution Models.

    DTIC Science & Technology

    1980-02-01

    Re. toninAtiOn Reorieval by Manfied Koulten, 10 P_ Mandel, Marc. "Uniform Treeatment of Fluctuationsmpreael." Oct 1977, 36 otp.. ADOA0472M Mill 78...G.. "War and Peace in the Notts am Statietica Aaeociftiornf gome Piical fimplicatioins of the Changingf Military Situation in Northern Europe." I8 pp

  13. Dormancy as exaptation to protect mimetic seeds against deterioration before dispersal

    PubMed Central

    Brancalion, Pedro H. S.; Novembre, Ana D. L. C.; Rodrigues, Ricardo R.; Marcos Filho, Júlio

    2010-01-01

    Background and Aims Mimetic seeds simulate the appearance of fleshy fruits and arilled seeds without producing nutritive tissues as a reward for seed dispersers. In this strategy of seed dispersal, seeds may remain attached to the mother plant for long periods after maturity, increasing their availability to naïve seed dispersers. The hypothesis that seed coat impermeability in many tropical Fabaceae with mimetic seeds serves as an exaptation to protect the seeds from deterioration and rotting while awaiting dispersal was investigated. Methods Seed coat impermeability was evaluated in five mimetic-seeded species of tropical Fabaceae in south-eastern Brazil (Abarema langsdorffii, Abrus precatorius, Adenanthera pavonina, Erythrina velutina and Ormosia arborea) and in Erythrina speciosa, a ‘basal’ species in its genus, which has monochromatic brown seeds and no mimetic displays. Seed hardness was evaluated as a defence against accelerated ageing (humid chamber at 41 °C for 144 h). Seed development and physiological potential of O. arborea was evaluated and the effect of holding mature seeds in pods on the mother plant in the field for a period of 1 year under humid tropical conditions was compared with seeds stored under controlled conditions (15 °C and 40 % relative air humidity). Key Results All five mimetic-seeded species, and E. speciosa, showed strong coat impermeability, which protected the seeds against deterioration in accelerated ageing. Most O. arborea seeds only became dormant 2 months after pod dehiscence. Germination of seeds after 1 year on the plant in a humid tropical climate was 56 %, compared with 80 % for seeds stored in controlled conditions (15 °C, 45 % relative humidity). Seedling shoot length after 1 year did not differ between seed sources. Conclusions Dormancy acts in mimetic-seeded species as an exaptation to reduce seed deterioration, allowing an increase in their effective dispersal period and mitigating the losses incurred by low

  14. Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama.

    PubMed

    Barrett, Craig F; Parker, Matthew A

    2005-01-01

    Sequences of 16S rRNA and partial 23S rRNA genes and PCR assays with genotype-specific primers indicated that bacteria in the genus Burkholderia were the predominant root nodule symbionts for four mimosoid legumes (Mimosa pigra, M. casta, M. pudica, and Abarema macradenia) on Barro Colorado Island, Panama. Among 51 isolates from these and a fifth mimosoid host (Pithecellobium hymenaeafolium), 44 were Burkholderia strains while the rest were placed in Rhizobium, Mesorhizobium, or Bradyrhizobium. The Burkholderia strains displayed four distinct rRNA sequence types, ranging from 89% to 97% similarity for 23S rRNA and 96.5-98.4% for 16S rRNA. The most common genotype comprised 53% of all isolates sampled and was associated with three legume host species. All Burkholderia genotypes formed nodules on Macroptilium atropurpureum or Mimosa pigra, and sequencing of rRNA genes in strains re-isolated from nodules verified identity with inoculant strains. Sequence analysis of the nitrogenase alpha-subunit gene (nifD) in two of the Burkholderia genotypes indicated that they were most similar to a partial sequence from the nodule-forming strain Burkholderia tuberum STM 678 from South Africa. In addition, a PCR screen with primers specific to Burkholderia nodB genes yielded the expected amplification product in most strains. Comparison of 16S rRNA and partial 23S rRNA phylogenies indicated that tree topologies were significantly incongruent. This implies that relationships across the rRNA region may have been altered by lateral gene transfer events in this Burkholderia population.

  15. Trends of tropical tropospheric ozone from 20 years of European satellite measurements and perspectives for the Sentinel-5 Precursor

    NASA Astrophysics Data System (ADS)

    Heue, Klaus-Peter; Coldewey-Egbers, Melanie; Delcloo, Andy; Lerot, Christophe; Loyola, Diego; Valks, Pieter; van Roozendael, Michel

    2016-10-01

    In preparation of the TROPOMI/S5P launch in early 2017, a tropospheric ozone retrieval based on the convective cloud differential method was developed. For intensive tests we applied the algorithm to the total ozone columns and cloud data of the satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B. Thereby a time series of 20 years (1995-2015) of tropospheric column ozone was generated. To have a consistent total ozone data set for all sensors, one common retrieval algorithm, namely GODFITv3, was applied and the L1 reflectances were also soft calibrated. The total ozone columns and the cloud data were input into the tropospheric ozone retrieval. However, the tropical tropospheric column ozone (TCO) for the individual instruments still showed small differences and, therefore, we harmonised the data set. For this purpose, a multilinear function was fitted to the averaged difference between SCIAMACHY's TCO and those from the other sensors. The original TCO was corrected by the fitted offset. GOME-2B data were corrected relative to the harmonised data from OMI and GOME-2A. The harmonisation leads to a better agreement between the different instruments. Also, a direct comparison of the TCO in the overlapping periods proves that GOME-2A agrees much better with SCIAMACHY after the harmonisation. The improvements for OMI were small. Based on the harmonised observations, we created a merged data product, containing the TCO from July 1995 to December 2015. A first application of this 20-year record is a trend analysis. The tropical trend is 0.7 ± 0.12 DU decade-1. Regionally the trends reach up to 1.8 DU decade-1 like on the African Atlantic coast, while over the western Pacific the tropospheric ozone declined over the last 20 years with up to 0.8 DU decade-1. The tropical tropospheric data record will be extended in the future with the TROPOMI/S5P data, where the TCO is part of the operational products.

  16. Predicting ozone profile shape from satellite UV spectra

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Loyola, Diego; Romahn, Fabian; Doicu, Adrian

    2017-04-01

    Identifying ozone profile shape is a critical yet challenging job for the accurate reconstruction of vertical distributions of atmospheric ozone that is relevant to climate change and air quality. Motivated by the need to develop an approach to reliably and efficiently estimate vertical information of ozone and inspired by the success of machine learning techniques, this work proposes a new algorithm for deriving ozone profile shapes from ultraviolet (UV) absorption spectra that are recorded by satellite instruments, e.g. GOME series and the future Sentinel missions. The proposed algorithm formulates this particular inverse problem in a classification framework rather than a conventional inversion one and places an emphasis on effectively characterizing various profile shapes based on machine learning techniques. Furthermore, a comparison of the ozone profiles from real GOME-2 data estimated by our algorithm and the classical retrieval algorithm (Optimal Estimation Method) is performed.

  17. Ultraviolet Satellite Measurements of Volcanic Ash. Chapter 12

    NASA Technical Reports Server (NTRS)

    Carn, S. A.; Krotkov, N. A.

    2016-01-01

    Ultraviolet (UV) remote sensing of volcanic ash and other absorbing aerosols from space began with the launch of the first Total Ozone Mapping Spectrometer (TOMS) instrument in 1978. Subsequent UV satellite missions (TOMS, GOME, SCIAMACHY, OMI, GOME-2, OMPS) have extended UV ash measurements to the present, generating a unique multidecadal record. A UV Aerosol Index (UVAI) based on two near-UV wavelengths, equally applicable to multispectral (TOMS, DSCOVR) or hyperspectral (GOME, SCIAMACHY, OMI, GOME-2, OMPS) instruments, has been used to derive a unique absorbing aerosol climatology across multiple UV satellite missions. Advantages of UV ash measurements relative to infrared (IR) techniques include the ability to detect ash at any altitude (assuming no clouds), above clouds, and over bright surfaces, where visible and IR techniques may fail. Disadvantages include the daytime-only restriction and nonspecificity to silicate ash, since UV measurements are sensitive to any UV-absorbing aerosol, including smoke, desert dust, and pollution. However, simultaneous retrieval of sulfur dioxide (SO2) abundance and UVAI provides robust discrimination of volcanic clouds. Although the UVAI is only semiquantitative, it has proved successful at detecting and tracking volcanic ash clouds from many volcanic eruptions since 1978. NASA A-Train measurements since 2006 (eg, CALIOP) have provided much improved constraints on volcanic ash altitude, and also permit identification of aerosol type through sensor synergy. Quantitative UV retrievals of ash optical depth, effective particle size, and ash column mass are possible and require assumptions of ash refractive index, particle size distribution, and ash layer altitude. The lack of extensive ash refractive index data in the UV-visible and the effects of ash particle shape on retrievals introduce significant uncertainty in the retrieved parameters, although limited validation against IR ash retrievals has been successful. In this

  18. The extraction of human urinary kinin (substance z) and its relation to the plasma kinins

    PubMed Central

    Gaddum, J. H.; Horton, E. W.

    1959-01-01

    Human urinary kinin (substance Z) has been extracted by modifications of the methods previously described by Gomes (1955) and Jensen (1958). The separation of two oxytocic fractions from such extracts by paper pulp chromatography (Walaszek, 1957; Jensen, 1958) could not be confirmed. Substance Z could not be distinguished from kallidin, bradykinin or glass-activated kinin by parallel quantitative assays, thus confirming that these four substances are very closely related. PMID:13651588

  19. JPRS Report, West Europe

    DTIC Science & Technology

    1988-11-02

    Saramago , Mario de Car- valho, Jose Magalhaes, Antonio Borges Coelho, Baptista- Bastos, Gomes Conotilho, Vital Moreira, Mario Vieira de Carvalho...Supports Thatcher’s European Unity Statements 35420006b Lisbon SEMANARIO in Portuguese 24 Sep 88 p 6 [Commentary by Jose Miguel Judice: "The European...Internal PCP Situation Clandestinity Seen Molding Party 35420001 Lisbon SEMANARIO in Portuguese 3Sep88pl2 [Article by Jose Pacheco Pereira

  20. Execute-Only Attacks against Execute-Only Defenses1

    DTIC Science & Technology

    2016-02-18

    Larsen†, Andrea Homescu†, Christopher Liebchen‡, Lucas Davi‡, Ahmad-Reza Sadeghi‡, Michael Franz†, William Streilein∗, Hamed Okhravi∗ ∗MIT Lincoln...Integrity. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland’15), May 2015. [17] R. Faulkner and R. Gomes. The process file system...compartmentalization. In IEEE Symposium on Security and Privacy, 2015. [51] D. Williams , W. Hu, J. W. Davidson, J. D. Hiser, J. C. Knight, and A

  1. Localization of matter and fermion resonances on double walls

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Duan, Yi-Shi

    2009-10-01

    We investigate the possibility of localizing various matter fields on the double walls. For spin 0 scalar field, massless zero mode can be normalized on the double walls. However, for spin 1 vector field, the zero mode is not localized on the double walls. In the paper [C.A.S. Almeida, M.M. Ferreira Jr., A.R. Gomes, R. Casana, arxiv:arXiv:0901.3543 [hep-th

  2. The Multi-TASTE Validation System: Tasting the Evolution of Reactive and Greenhouse Gas Data Products from Envisat and Third Party Missions

    NASA Astrophysics Data System (ADS)

    Hubert, D.; Keppens, A.; Lambert, J.-C.; Granville, J.; Hendrick, F.; Verhoelst, T.

    2015-11-01

    Over the past two decades the Multi-TASTE validation system has proven its value in the characterisation and support to the development of atmospheric composition measurements by ESA's GOME, Envisat and Third Party Missions (TPMs). We give an overview of the capabilities and the latest results of this comprehensive, versatile and semi-operational system and address its relevance regarding the recommendations voiced at ATMOS 2012.

  3. Tunable far infrared studies of molecular parameters in support of stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Chance, Kelly V.; Evenson, K. M.; Park, K.; Radostitz, J. V.; Jennings, D. A.; Nolt, I. G.; Vanek, M. D.

    1991-01-01

    Lab studies were made in support of far infrared spectroscopy of the stratosphere using the Tunable Far InfraRed (TuFIR) method of ultrahigh resolution spectroscopy and, more recently, spectroscopic and retrieval calculations performed in support of satellite-based atmospheric measurement programs: the Global Ozone Monitoring Experiment (GOME), and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY).

  4. Solar Obliquity Induced by Planet Nine: Simple Calculation

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    2016-12-01

    Bailey et al. and Gomes et al. recently suggested that the 6° misalignment between the Sun’s rotational equator and the orbital plane of the major planets may be produced by forcing from the hypothetical Planet Nine on an inclined orbit. Here, we present a simple yet accurate calculation of the effect, which provides a clear description of how the Sun’s spin orientation depends on the property of Planet Nine in this scenario.

  5. Using Online Algorithms to Solve NP-Hard Problems More Efficiently in Practice

    DTIC Science & Technology

    2007-12-01

    Example of such algorithms include the simulated annealing algorithm [50], genetic algorithms [32], and genetic programming [53, 54]. Each of these...812,∞] wildcat -skc [1795,∞] [1109,∞] [593,∞] wildcat -rnp [1795,∞] [1210,∞] [702,∞] As shown in Table 3.5, the greedy schedule significantly...Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989. 3 183 [33] Carla P. Gomes and Bart Selman

  6. Integrating Test and Evaluation into the Acquisition Process for Naval Aviation

    DTIC Science & Technology

    2009-09-01

    Air Force Instruction AFPD Air Force Policy Directive AoA Analysis of Alternatives APEO Assistant Program Executive Officer AR...Locksley Assistant Program Executive Officer ( APEO ) for Test and Evaluation, PEO(Unmanned Aviation and Strike Weapons)  Mr. Michael Gomes APEO ...for Engineering, PEO(Air ASW, Assault, and Special Mission Programs)  Mr. Gary Evans APEO for Engineering, PEO(Unmanned Aviation and Strike

  7. A Review of High Thrust, High Delta-V Options for Microsatellite Missions

    DTIC Science & Technology

    2009-06-25

    Gomes, L., Phipps, A., Ward, J ., Sun, W., and Sweeting, M ., “Low Cost Planetary Exploration: Surrey Lunar Minisatellite and Interplanetary Platform...Curiel, A., Schaffner, J ., and Sweeting, M ., “Advanced Low Cost Propulsion Concepts for Small Satellites Beyond LEO,” 55th International...Institute of Aeronautics and Astronautics, July 2004, AIAA-2004-4137. 9Nakamura, T., Sullivan, D., McClanahan, J . A., Shoji, J . M ., Partch, R., and Quinn

  8. Low Frequency Noise: A Major Risk Factor in Military Operation

    DTIC Science & Technology

    2003-02-01

    Vibroacoustic disease: some forensic aspects. Aviation, Space & Environmental Medicine 1999; 70 (3, Suppl): A 145-51. 5. Canas J, Martinho Pimenta AJF, Castelo...Gomes LMP, Rodriguez E, Castelo Branco NAA. Performance assurance computerized test - PACT. Revista Portuguesa de Medicina Militar 1993; 41 (1-4): 21-27...Revista Portuguesa de Medicina Militar 1992: 40(1-4): 41-45. 17. GIMOGMA. Epilepsia sintomidtica de etiologia vascular, manifestaqao da sindrome das

  9. Satellite Mapping of Rain-Induced Nitric Oxide Emissions from Soils

    NASA Technical Reports Server (NTRS)

    Jaegle, L.; Martin, R. V.; Chance, K.; Steinberger, L.; Kurosu, T. P.; Jacob, D. J.; Modi, A. I.; Yoboue, V.; Sigha-Nkamdjou, L.; Galy-Lacaux, C.

    2004-01-01

    We use space-based observations of NO2 columns from the Global Ozone Monitoring Experiment (GOME) to map the spatial and seasonal variations of NOx emissions over Africa during 2000. The GOME observations show not only enhanced tropospheric NO2 columns from biomass burning during the dry season but also comparable enhancements from soil emissions during the rainy season over the Sahel. These soil emissions occur in strong pulses lasting 1-3 weeks following the onset of rain, and affect 3 million sq km of semiarid sub-Saharan savanna. Surface observations of NO2 from the International Global Atmospheric Chemistry (IGAC)/Deposition of Biochemically Important Trace Species (DEBITS)/Africa (IDAF) network over West Africa provide further evidence for a strong role for microbial soil sources. By combining inverse modeling of GOME NO2 columns with space-based observations of fires, we estimate that soils contribute 3.3+/-1.8 TgN/year, similar to the biomass burning source (3.8+/-2.1 TgN/year), and thus account for 40% of surface NO(x) emissions over Africa. Extrapolating to all the tropics, we estimate a 7.3 TgN/year biogenic soil source, which is a factor of 2 larger compared to model-based inventories but agrees with observation-based inventories. These large soil NO(x) emissions are likely to significantly contribute to the ozone enhancement originating from tropical Africa.

  10. Golgi membrane-associated degradation pathway in yeast and mammals.

    PubMed

    Yamaguchi, Hirofumi; Arakawa, Satoko; Kanaseki, Toku; Miyatsuka, Takeshi; Fujitani, Yoshio; Watada, Hirotaka; Tsujimoto, Yoshihide; Shimizu, Shigeomi

    2016-09-15

    Autophagy is a cellular process that degrades subcellular constituents, and is conserved from yeast to mammals. Although autophagy is believed to be essential for living cells, cells lacking Atg5 or Atg7 are healthy, suggesting that a non-canonical degradation pathway exists to compensate for the lack of autophagy. In this study, we show that the budding yeast Saccharomyces cerevisiae, which lacks Atg5, undergoes bulk protein degradation using Golgi-mediated structures to compensate for autophagy when treated with amphotericin B1, a polyene antifungal drug. We named this mechanism Golgi membrane-associated degradation (GOMED) pathway. This process is driven by the disruption of PI(4)P-dependent anterograde trafficking from the Golgi, and it also exists in Atg5-deficient mammalian cells. Biologically, when an Atg5-deficient β-cell line and Atg7-deficient β-cells were cultured in glucose-deprived medium, a disruption in the secretion of insulin granules from the Golgi occurred, and GOMED was induced to digest these (pro)insulin granules. In conclusion, GOMED is activated by the disruption of PI(4)P-dependent anterograde trafficking in autophagy-deficient yeast and mammalian cells. © 2016 The Authors.

  11. Satellite observations of atmospheric SO 2 from volcanic eruptions during the time-period of 1996-2002

    NASA Astrophysics Data System (ADS)

    Khokhar, M. F.; Frankenberg, C.; Van Roozendael, M.; Beirle, S.; Kühl, S.; Richter, A.; Platt, U.; Wagner, T.

    In this article, we present satellite observations of atmospheric sulfur dioxide (SO 2) from volcanic eruptions. Global ozone monitoring experiment (GOME) data for the years 1996-2002 is analyzed using a DOAS based algorithm with the aim of retrieving SO 2 slant column densities (SCD). The retrieval of SO 2 SCD in the UV spectral region is difficult due to strong and interfering ozone absorptions. It is also likely affected by instrumental effects. We investigated these effects in detail to obviate systematic biases in the SO 2 retrieval. A quantitative study of about 20 volcanoes from Italy, Iceland, Congo/Zaire, Ecuador, Japan, Vanuatu Island and Mexico is presented. The focus is on both eruption and out gassing scenarios. We prepared a 7-year mean map (1996-2002) of SO 2 SCD observed by GOME and tabulated the ratios of the maximum SO 2 SCD observed to the average SO 2 SCD as seen in the 7-year mean map. The further aim of this study is to provide information about unknown volcanic eruptions, e.g., Bandai Honshu Japan, Central Islands Vanuatu, Piton de la Fournaise Réunion Island France, Kamchatka region of Russia and from Indonesia especially. The results demonstrate a high sensitivity of the GOME instrument towards SO 2 emissions during both eruption and degassing episodes.

  12. Tropospheric Ozone Profile Retrievals Combining TIR, UV And Visible Spectra

    NASA Astrophysics Data System (ADS)

    Miles, G.; Siddans, R.; Kerridge, B. J.; Latter, B.

    2014-12-01

    We present ozone profile data from the RAL ozone profile algorithm, optimised for sensitivity to tropospheric and lower tropospheric ozone. The RAL ozone profile algorithm has been selected as the prototype nadir processor to produce a climate quality dataset for community use from GOME, SCIAMACHY, OMI and GOME-2A/B as part of the ESA Climate Change Initiative. We present time-series' of data as compared to ozonesondes and extensive comparison with chemistry transport, air quality models and MACC-II. The RAL algorithm additionally combines measurements in the UV and IR, from GOME-2 and IASI aboard MetOp. The jointly retrieved product exploits the complementary vertical sensitivity of the two instruments, particularly in the troposphere. It can be shown with retrieval simulations that use of visible spectra could significantly add information about near-surface ozone to conventional UV ozone profile retrievals - particularly over land - which has implications for air quality monitoring. The information potentially obtained from the Chappuis ozone band is significant and essentially unique - no other passive technique can provide comparable information on near-surface ozone. However, it has remained a challenge to demonstrate the potential benefits with real measurements. We report our progress on a technique to combine use of UV and visible spectra from the Chappuis ozone band to enhance the sensitivity of the retrievals to near-surface ozone, and evaluate its potential with regard to both existing and future satellite instruments.

  13. MERIS albedo climatology and its effect on the FRESCO+ O2 A-band cloud retrieval from SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Popp, Christoph; Wang, Ping; Brunner, Dominik; Stammes, Piet; Zhou, Yipin

    2010-05-01

    Accurate cloud information is an important prerequisite for the retrieval of atmospheric trace gases from spaceborne UV/VIS sensors. Errors in the estimated cloud fraction and cloud height (pressure) result in an erroneous air mass factor and thus can lead to inaccuracies in the vertical column densities of the retrieved trace gas. In ESA's TEMIS (Tropospheric Emission Monitoring Internet Service) project, the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) cloud retrieval is applied to, amongst others, SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY) data to determine these quantities. Effective cloud fraction and pressure are inverted by (i) radiative transfer simulations of top-of-atmosphere reflectance based on O2 absorption, single Rayleigh scattering, surface and cloud albedo in three spectral windows covering the O2 A-band and (ii) a subsequent fitting of the simulated to the measured spectrum. However, FRESCO+ relies on a relatively coarse resolution surface albedo climatology (1° x 1°) compiled from GOME (Global Ozone Monitoring Experiment) measurements in the 1990's which introduces several artifacts, e.g. an overestimation of cloud fraction at coastlines or over some mountainous regions. Therefore, we test the substitution of the GOME climatology with a new land surface albedo climatology compiled for every month from MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data (0.05° x 0.05°) covering the period January 2003 to October 2006. The MERIS channels at 754nm and 775nm are located spectrally close to the corresponding GOME channels (758nm and 772nm) on both sides of the O2 A-band. Further, the increased spatial resolution of the MERIS product allows to better account for SCIAMACHY's pixel size of approximately 30x60km. The aim of this study is to describe and assess (i) the compilation and quality of the MERIS climatology (ii) the differences to the GOME climatology, and (iii) possible

  14. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments

    NASA Astrophysics Data System (ADS)

    Hilboll, A.; Richter, A.; Burrows, J. P.

    2013-04-01

    Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term dataset of tropospheric pollution. However, the observations differ in spatial resolution, local time of measurement, viewing geometry, and other details. All these factors can severely impact the retrieved NO2 columns. In this study, we present three ways to account for instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving the individual instruments' spatial resolutions. For combining measurements from GOME and SCIAMACHY into one consistent time series, we develop a method to explicitly account for the instruments' difference in ground pixel size (40 × 320 km2 vs. 30 × 60 km2). This is especially important when analysing NO2 changes over small, localised sources like, e.g. megacities. The method is based on spatial averaging of the measured earthshine spectra and extraction of a spatial pattern of the resolution effect. Furthermore, two empirical corrections, which summarise all instrumental differences by including instrument-dependent offsets in a fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series, and to an extended dataset comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution. Compared to previous studies, the longer study period leads to significantly reduced uncertainties. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over east-central China tripling from 1996 to 2011. All parts of the developed world, including Western

  15. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments

    NASA Astrophysics Data System (ADS)

    Hilboll, A.; Richter, A.; Burrows, J. P.

    2012-12-01

    Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term data set of tropospheric pollution. However, the measurements differ in spatial resolution, local time of measurement, and measurement geometry. All these factors can severely impact the retrieved NO2 columns, which is why they need to be taken into account when analysing time series spanning more than one instrument. In this study, we present several ways to explicitly account for the instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving their high spatial resolution. Both a physical method, based on spatial averaging of the measured earthshine spectra and extraction of a resolution pattern, and statistical methods, including instrument-dependent offsets in the fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series and to an extended data set comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution and significantly reducing the uncertainties of the retrieved trend estimates compared to previous studies. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over East Central China triplicating from 1996 to 2011. All parts of the developed world, including Western Europe, the United States, and Japan, show significantly decreasing NO2 amounts in the same time period. On a megacity level, individual trends can be as large as +27 ± 3.7% yr-1 and +20 ± 1.9% yr-1 in Dhaka and Baghdad, respectively, while Los Angeles shows a very strong decrease

  16. In-operation field-of-view retrieval (IFR) for satellite and ground-based DOAS-type instruments applying coincident high-resolution imager data

    NASA Astrophysics Data System (ADS)

    Sihler, Holger; Lübcke, Peter; Lang, Rüdiger; Beirle, Steffen; de Graaf, Martin; Hörmann, Christoph; Lampel, Johannes; Penning de Vries, Marloes; Remmers, Julia; Trollope, Ed; Wang, Yang; Wagner, Thomas

    2017-03-01

    Knowledge of the field of view (FOV) of a remote sensing instrument is particularly important when interpreting their data and merging them with other spatially referenced data. Especially for instruments in space, information on the actual FOV, which may change during operation, may be difficult to obtain. Also, the FOV of ground-based devices may change during transportation to the field site, where appropriate equipment for the FOV determination may be unavailable. This paper presents an independent, simple and robust method to retrieve the FOV of an instrument during operation, i.e. the two-dimensional sensitivity distribution, sampled on a discrete grid. The method relies on correlated measurements featuring a significantly higher spatial resolution, e.g. by an imaging instrument accompanying a spectrometer. The method was applied to two satellite instruments, GOME-2 and OMI, and a ground-based differential optical absorption spectroscopy (DOAS) instrument integrated in an SO2 camera. For GOME-2, quadrangular FOVs could be retrieved, which almost perfectly match the provided FOV edges after applying a correction for spatial aliasing inherent to GOME-type instruments. More complex sensitivity distributions were found at certain scanner angles, which are probably caused by degradation of the moving parts within the instrument. For OMI, which does not feature any moving parts, retrieved sensitivity distributions were much smoother compared to GOME-2. A 2-D super-Gaussian with six parameters was found to be an appropriate model to describe the retrieved OMI FOV. The comparison with operationally provided FOV dimensions revealed small differences, which could be mostly explained by the limitations of our IFR implementation. For the ground-based DOAS instrument, the FOV retrieved using SO2-camera data was slightly smaller than the flat-disc distribution, which is assumed by the state-of-the-art correlation technique. Differences between both methods may be

  17. Satellite-observed NO2, SO2, and HCHO Vertical Column Densities in East Asia: Recent Changes and Comparisons with Regional Model

    NASA Astrophysics Data System (ADS)

    Kim, H. C.; Lee, P.; Kim, S.; Mok, J.; Yoo, H. L.; Bae, C.; Kim, B. U.; Lim, Y. K.; Woo, J. H.; Park, R.

    2015-12-01

    This study reports the recent changes in tropospheric NO2, SO2, and HCHO vertical column densities (VCD) in East Asia observed from multiple satellites, highlighting especially the annual trend changes of NO2 and SO2 over Beijing-Tianjin-Hebei (BTH) region of China since 2010. Tropospheric VCD data from Global Ozone Monitoring Experiment (GOME), SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), Ozone Monitoring Instrument (OMI) and GOME-2, retrieved from the Royal Netherlands Meteorological Institute (KNMI) and OMI National Aeronautics and Space Administration (NASA) standard products, are utilized to investigate the annual trends of NO2, SO2, and HCHO VCDs from 2001 to 2015. They are also compared with simulations from Community Multi-scale Air Quality Model (CMAQ) based forecast system by the Integrated Multi-scale Air Quality System for Korea (IMAQS-K) of Ajou University. Until 2011, the changes in NO2 VCD over East Asian countries agree well with the findings of previous research, including the impact of the economic downturn during 2008-2009 and the subsequent quick recovery in China. After peaking in 2011, the NO2 VCD observations from active instruments (OMI and GOME-2) over China started to show a slower decreasing trend, mostly led by the rapid changes in the BTH region in northern China. On the other hand, SO2 started to decline earlier, from 2007, but inclined back from 2010 to 2012, and then back to declining trend since 2012. While satellite observations show dramatic recent changes, the model could not reproduce those changes mostly due to its use of fixed emission inventory. We conclude that rapid update of latest emission inventory is necessary for an accurate forecast of regional air quality in east Asia, especially for upcoming international sports events in PyeongChang (Korea), Tokyo (Japan) and Beijing (China) in 2018, 2020 and 2022, respectively.

  18. Revisiting satellite derived tropospheric NO2 trends

    NASA Astrophysics Data System (ADS)

    Richter, Andreas; Hilboll, Andreas; Burrows, John P.

    2015-04-01

    Nitrogen dioxide levels can be used as tracer of anthropogenic pollution as NOx, the sum of NO and NO2, is released during fossil fuel combustion. With its short atmospheric lifetime, atmospheric NO2 can be easily linked to its sources. Using its structured absorption cross section in the blue spectral region, NO2 amounts can be derived from measurements of backscattered solar radiation with the help of Differential Optical Absorption Spectroscopy measurements. Satellite retrievals of tropospheric NO2 became possible with the launch of the GOME instrument in 1995, and since then a series of instruments including SCIAMACHY, GOME-2 and OMI provide spectral data which can be used to quantify NO2 columns in the troposphere. Using these observations, spatial distributions of NO2, its sources and transport pathways as well as temporal changes have been investigated over the last years. In particular the latter have shown remarkable atmospheric developments with large reductions of NO2 levels in many industrialised countries and dramatic increases in regions with growing economies, most notably in China but also in many other countries. In this study, recent trends of satellite derived NO2 columns are evaluated using data from all available instruments with a focus on the last years. Combination of data taken from the two GOME-2 instruments and OMI improves coverage and sensitivity, and also provides important constraints on the reliability of the satellite data set. As in previous studies, large changes in NO2 columns are found in many regions, in particular over China where after two years of stagnating NO2 levels an unexpected substantial reduction is observed for 2014.

  19. Satellite retrieval of cloud properties from the O2 A-band for air quality and climate applications

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; van der A, R.

    2009-04-01

    The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar measurements of clouds shows that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. From ground-based validation (P. Wang et al., Atmos. Chem. Phys., 8, 6565-6576, 2008) it appears that the FRESCO+ cloud retrievals improve the retrieval of tropospheric NO2 as compared to FRESCO. So FRESCO+ contributes to better monitoring of air quality from space. The FRESCO+ cloud algorithm has been applied to GOME and SCIAMACHY measurements since the beginning of the missions. Monthly averaged SCIAMACHY FRESCO+ effective cloud fraction and cloud pressure maps show similar patterns as the ISCCP cloud maps, although there are some differences, due to the different meaning of the cloud products and due to the fact that photons in the O2 A-band penetrate into clouds. The 6-year averaged seasonal cloud maps from SCIAMACHY data have good agreement with the global circulation patterns. Therefore, the FRESCO+ products are not only efficient for cloud correction of trace gas retrievals but also contribute additional information for climate research.

  20. 20 Years of Total and Tropical Ozone Time Series Based on European Satellite Observations

    NASA Astrophysics Data System (ADS)

    Loyola, D. G.; Heue, K. P.; Coldewey-Egbers, M.

    2016-12-01

    Ozone is an important trace gas in the atmosphere, while the stratospheric ozone layer protects the earth surface from the incident UV radiation, the tropospheric ozone acts as green house gas and causes health damages as well as crop loss. The total ozone column is dominated by the stratospheric column, the tropospheric columns only contributes about 10% to the total column.The ozone column data from the European satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B are available within the ESA Climate Change Initiative project with a high degree of inter-sensor consistency. The tropospheric ozone columns are based on the convective cloud differential algorithm. The datasets encompass a period of more than 20 years between 1995 and 2015, for the trend analysis the data sets were harmonized relative to one of the instruments. For the tropics we found an increase in the tropospheric ozone column of 0.75 ± 0.12 DU decade^{-1} with local variations between 1.8 and -0.8. The largest trends were observed over southern Africa and the Atlantic Ocean. A seasonal trend analysis led to the assumption that the increase is caused by additional forest fires.The trend for the total column was not that certain, based on model predicted trend data and the measurement uncertainty we estimated that another 10 to 15 years of observations will be required to observe a statistical significant trend. In the mid latitudes the trends are currently hidden in the large variability and for the tropics the modelled trends are low. Also the possibility of diverging trends at different altitudes must be considered; an increase in the tropospheric ozone might be accompanied by decreasing stratospheric ozone.The European satellite data record will be extended over the next two decades with the atmospheric satellite missions Sentinel 5 Precursor (launch end of 2016), Sentinel 4 and Sentinel 5.

  1. Long-range transport of acidifying substances in East Asia—Part I. Model evaluation and sensitivity studies

    NASA Astrophysics Data System (ADS)

    Lin, Meiyun; Oki, Taikan; Holloway, Tracey; Streets, David G.; Bengtsson, Magnus; Kanae, Shinjiro

    This study has conducted a comprehensive model evaluation to help identify major uncertainties of regional air quality model in predicting long-range transport and deposition of acidifying substances in East Asia. Annual predictions of the Community Multiscale Air Quality (CMAQ) model are carried out at two horizontal scales: an 81 km domain over East Asia and a 27 km domain over Northeast Asia. The model successfully reproduces the magnitudes and diurnal variations of SO 2 mixing ratios at most sites of the Acid Deposition Monitoring Network in East Asia (EANET). Through the comparison with tropospheric NO 2 columns from the Global Ozone Monitoring Experiment (GOME), the model is shown to be able to capture major spatial and seasonal variations of NO 2 observed from space over East Asia. Regarding the magnitudes, however, CMAQ underpredicts the GOME retrieval over industrial area of eastern China in March and December, and over the remote western China in July. Primary reasons for the discrepancy over eastern China are the uncertainties both in emission inventory and in the GOME retrieval in wintertime. For the wet season the soil-biogenic NO emission estimates need to be reviewed regarding the intensity and timing of fertilizer applications, and the magnitude of rain-induced pulsing. The sensitivities of predicted NO 2 columns, NOx mixing ratios, and wet nitrate deposition to 50% increase of NOx emissions are studied. Due to the underpredictions of NOx and also to the uncertainty in modeled precipitation and nitrate formation, CMAQ has a tendency to underpredict annual wet deposition loads of nitrate observed by the EANET network.

  2. Combining in situ and Remote Measurements with Models: Picking the Right Tools

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Hains, J. C.; Burrows, J. P.

    2004-05-01

    Visibility reduction, photochemical smog, and the global climate changes these pollutants engender involve complex interactions of emissions, atmospheric transformations, and transport. In situ measurements, numerical simulations, and remotely sensed data all have strengths and weaknesses, but picking the right combination of tools can avoid the limitations of any one method to advance the science and provide policy-relevant research on the causes and nature of air pollution. The Regional Atmospheric Measurement, Modeling, and Prediction Program (RAMMPP) seeks a balanced approach to air pollution studies in the Mid Atlantic. We employ surface and airborne measurements as input and tests for air quality models of the Baltimore/Washington area. Both ozone and summertime haze tend to form in blobs covering areas hundreds of km on a side and lasting several days. Point and aircraft measurements offer high accuracy, but cannot always characterize the spatial and temporal extent of these masses. To provide the big picture, we are exploring the use of satellite data including GOME and SCIAMACHY for SO2, TOMS for tropospheric O3, and MODIS for aerosol optical depth. Comparison with direct measurements can greatly improve retrievals of atmospheric composition. For example, GOME identified a persistent hot spot in SO2 over eastern North America where many large, coal-fired power plants are located. Aircraft measurements confirmed the presence of this hotspot, but indicated an average column content of 0.65 DU (m atm cm), while the satellite instrument, indicated only 0.14 DU. GOME uses, however, an initial guess for the altitudinal distribution of the SO2, and when the retrieval algorithm is corrected with the observed profile, the result is 0.42 DU. Further improving the retrieval with more representative background values yields a mean SO2 column content of 0.52 DU, within experimental uncertainty of the aircraft value. Ozone and aerosol retrievals can be similarly

  3. Total Ozone from the Ozone Monitoring System (OMI) using TOMS and DOAS Methods

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Bhartia, P. K.; Gleason, J.; deHaan, J. F.; Wellemeyer, C.; Levelt, P. F.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to NASA's EOS-Aura satellite scheduled for launch in January 2004. OMI is an imaging spectrometer that will measure the back-scattered Solar radiance in the wavelength range of 270 to 500 nm. The instrument provides near global coverage in one day with a spatial resolution of 13x24 square kilometers. OMI is a new instrument, with a heritage from TOMS, SBW, GOME, GOMOS and SCIAMACHY. OMI'S unique capabilities for measuring important trace gases and aerosols with a small footprint and daily global coverage, in conjunction with the other Aura instruments, will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI will provide data continuity with the 23-year ozone record of TOMS. There are three ozone products planned for OMI: total column ozone, ozone profile and tropospheric column ozone. We are developing two different algorithms for total column ozone: one similar to the algorithm currently being used to process the TOMS data, and the other an improved version of the differential optical absorption spectroscopy (DOAS) method, which has been applied to GOME and SCIAMACHY data. The main reasons for starting with two algorithms for total ozone have to do with heritage and past experience; our long-term goal is to combine the two to develop a more accurate and reliable total ozone product for OMI. We will compare the performance of these two algorithms by applying both of them to the GOME data. We will examine where and how the results differ, and use the extensive TOMS-Dobson comparison studies to assess the performance of the DOAS algorithm.

  4. Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy

    NASA Astrophysics Data System (ADS)

    OrdóñEz, C.; Richter, A.; Steinbacher, M.; Zellweger, C.; Nüß, H.; Burrows, J. P.; PréVôT, A. S. H.

    2006-03-01

    Tropospheric NO2 vertical column densities (VCDs) over the Lombardy region were retrieved from measurements of the Global Ozone Monitoring Experiment (GOME) spectrometer for the period 1996-2002 using a differential optical absorption method. This data set was compared with in situ measurements of NO2 at around 100 ground stations in the Lombardy region, northern Italy. The tropospheric NO2 VCDs are reasonably well correlated with the near-surface measurements under cloud-free conditions. However, the slope of the tropospheric VCDs versus ground measurements is higher in autumn-winter than in spring-summer. This effect is clearly reduced when the peroxyacetyl nitrate and nitric acid (HNO3) interferences of conventional NOx analyzers are taken into account. For a more quantitative comparison, the NO2 ground measurements were scaled to tropospheric VCDs using a seasonal NO2 vertical profile over northern Italy calculated by the Model of Ozone and Related Tracers 2 (MOZART-2). The tropospheric VCDs retrieved from satellite and those determined from ground measurements agree well, with a correlation coefficient R = 0.78 and a slope close to 1 for slightly polluted stations. GOME cannot reproduce the high NO2 amounts over the most polluted stations, mainly because of the large spatial variability in the distribution of pollution within the GOME footprint. The yearly and weekly cycles of the tropospheric NO2 VCDs are similar for both data sets, with significantly lower values in the summer months and on Sundays, respectively. Considering the pollution level and high aerosol concentrations of this region, the agreement is very good. Furthermore, uncertainties in the ground-based measurements, including the extrapolation to NO2 VCDs, might be as important as those of the NO2 satellite retrieval itself.

  5. Assessing the potential of Sun-Induced Fluorescence and the Canopy Scattering Coefficient to track large-scale vegetation dynamics in Amazon forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Guanter, L.; Kobayashi, H.; Walther, S.

    2016-12-01

    Two new remote sensing vegetation parameters derived from spaceborne spectrometers and simulated with a three dimensional radiative transfer model have been evaluated in terms of their prospects and drawbacks for the monitoring of dense vegetation canopies: (i) sun-induced chlorophyll fluorescence (SIF), a unique signal emitted by photosynthetically active vegetation and (ii) the canopy scattering coefficient (CSC), a vegetation parameter derived along with the directional area scattering factor (DASF) and expected to be particularly sensitive to leaf optical properties. Here, we present the first global data set of DASF/CSC and examine the potential of CSC and SIF for providing complementary information on the controversially discussed vegetation seasonality in the Amazon rainforest. A comparison between near-infrared SIF derived from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument and the Orbiting Carbon Observatory-2 (OCO-2) (overpass time in the morning and noon, respectively) reveals the response of SIF to instantaneous photosynthetically active radiation (PAR) and the response of SIF to changing pigment concentrations ('green-up'). The observed seasonality of SIF largely depends on the satellite overpass time which is due to changing temporal trajectories of (instantaneous) PAR with daytime. Therefore, GOME-2 SIF reaches its seasonal maximum in October and around February, while OCO-2 SIF peaks in February and November. We further examine anisotropic reflectance characteristics with the finding that the hot spot effect significantly impacts observed GOME-2 SIF values. On the contrary, our sensitivity analysis suggests that CSC is highly independent of sun-sensor geometry as well as atmospheric effects. The slight annual variability of CSC shows a seasonal cycle attributable to variations in leaf area and/or the amount of precipitation, rather supporting the 'green-up' hypothesis for periods of less intense precipitation.

  6. Development of a harmonised multi sensor retrieval scheme for HCHO within the Quality Assurance For Essential Climate Variables (QA4ECV) project

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Richter, Andreas; Beirle, Steffen; Danckaert, Thomas; Van Roozendael, Michel; Yu, Huan; Bösch, Tim; Hilboll, Andreas; Peters, Enno; Doerner, Steffen; Wagner, Thomas; Wang, Yang; Lorente, Alba; Eskes, Henk; Van Geffen, Jos; Boersma, Folkert

    2016-04-01

    One of the main goals of the QA4ECV project is to define community best-practices for the generation of multi-decadal ECV data records from satellite instruments. QA4ECV will develop retrieval algorithms for the Land ECVs surface albedo, leaf area index (LAI), and fraction of active photosynthetic radiation (fAPAR), as well as for the Atmosphere ECV ozone and aerosol precursors nitrogen dioxide (NO2), formaldehyde (HCHO), and carbon monoxide (CO). Here we assess best practices and provide recommendations for the retrieval of HCHO. Best practices are established based on (1) a detailed intercomparison exercise between the QA4ECV partner's for each specific algorithm processing steps, (2) the feasibility of implementation, and (3) the requirement to generate consistent multi-sensor multi-decadal data records. We propose a fitting window covering the 328.5-346 nm spectral interval for the morning sensors (GOME, SCIAMACHY and GOME-2) and an extension to 328.5-359 nm for OMI and GOME-2, allowed by improved quality of the recorded spectra. A high level of consistency between group algorithms is found when the retrieval settings are carefully aligned. However, the retrieval of slant columns is highly sensitive to any change in the selected settings. The use of a mean background radiance as DOAS reference spectrum allows for a stabilization of the retrievals. A background correction based on the reference sector method is recommended for implementation in the QA4ECV HCHO algorithm as it further reduces retrieval uncertainties. HCHO AMFs using different radiative transfer codes show a good overall consistency when harmonized settings are used. As for NO2, it is proposed to use a priori HCHO profiles from the TM5 model. These are provided on a 1°x1° latitude-longitude grid.

  7. Total Ozone from the Ozone Monitoring System (OMI) using TOMS and DOAS Methods

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Bhartia, P. K.; Gleason, J.; deHaan, J. F.; Wellemeyer, C.; Levelt, P. F.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to NASA's EOS-Aura satellite scheduled for launch in January 2004. OMI is an imaging spectrometer that will measure the back-scattered Solar radiance in the wavelength range of 270 to 500 nm. The instrument provides near global coverage in one day with a spatial resolution of 13x24 square kilometers. OMI is a new instrument, with a heritage from TOMS, SBW, GOME, GOMOS and SCIAMACHY. OMI'S unique capabilities for measuring important trace gases and aerosols with a small footprint and daily global coverage, in conjunction with the other Aura instruments, will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI will provide data continuity with the 23-year ozone record of TOMS. There are three ozone products planned for OMI: total column ozone, ozone profile and tropospheric column ozone. We are developing two different algorithms for total column ozone: one similar to the algorithm currently being used to process the TOMS data, and the other an improved version of the differential optical absorption spectroscopy (DOAS) method, which has been applied to GOME and SCIAMACHY data. The main reasons for starting with two algorithms for total ozone have to do with heritage and past experience; our long-term goal is to combine the two to develop a more accurate and reliable total ozone product for OMI. We will compare the performance of these two algorithms by applying both of them to the GOME data. We will examine where and how the results differ, and use the extensive TOMS-Dobson comparison studies to assess the performance of the DOAS algorithm.

  8. Multi-sensor satellite monitoring of ash and SO2 volcanic plume in support to aviation control

    NASA Astrophysics Data System (ADS)

    Brenot, Hugues; Theys, Nicolas; Clarisse, Lieven; van Geffen, Jos; van Gent, Jeroen; Van Roozendael, Michel; van der A, Ronald; Hurtmans, Daniel; Coheur, Pierre-Francois; Clerbaux, Cathy; Valks, Pieter; Hedelt, Pascal; Prata, Fred; Rasson, Olivier; Sievers, Klaus; Zehner, Claus

    2014-05-01

    The 'Support to Aviation Control Service' (SACS; http://sacs.aeronomie.be) is an ESA-funded project hosted by the Belgian Institute for Space Aeronomy since 2007. The service provides near real-time (NRT) global volcanic ash and SO2 observations, as well as notifications in case of volcanic eruptions (success rate >95% for ash and SO2). SACS is based on the combined use of UV-visible (OMI, GOME-2 MetOp-A, GOME-2 MetOp-B) and infrared (AIRS, IASI MetOp-A, IASI MetOp-B) satellite instruments. The SACS service is primarily designed to support the Volcanic Ash Advisory Centers (VAACs) in their mandate to gather information on volcanic clouds and give advice to airline and air traffic control organisations. SACS also serves other users that subscribe to the service, in particular local volcano observatories, research scientists and airliner pilots. When a volcanic eruption is detected, SACS issues a warning that takes the form of a notification sent by e-mail to users. The SACS notification points to a dedicated web page where all relevant information is available and can be visualised with user-friendly tools. Information about the volcanic plume height from GOME-2 (MetOp-A and MetOp-B) are also available. The strength of a multi-sensor approach relies in the use of satellite data with different overpasses times, minimising the time-lag for detection and enhancing the reliability of such alerts. This presentation will give an overview of the SACS service, and of the different techniques used to detect volcanic plumes (ash, SO2 and plume height). It will also highlight the strengths and limitations of the service and measurements, and some perspectives.

  9. Consistency Between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America

    NASA Technical Reports Server (NTRS)

    Zhang, Yao; Xiao, Xiangming; Jin, Cui; Dong, Jinwei; Zhou, Sha; Wagle, Pradeep; Joiner, Joanna; Guanter, Luis; Zhang, Yongguang; Zhang , Geli; Qin, Yuanwei; Wang, Jie; Moore, Berrien, III

    2016-01-01

    Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In this study,we estimate GPP in North America (NA) using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS (Moderate Resolution Imaging Spectrometer) images at 8-day temporal and 500 meter spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional Reanalysis) climate data. The simulated GPP (GPP (sub VPM)) agrees well with the flux tower derived GPP (GPPEC) at 39 AmeriFlux sites (155 site-years). The GPP (sub VPM) in 2010 is spatially aggregated to 0.5 by 0.5-degree grid cells and then compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP (sub VPM) and GOME-2 SIF show good consistency. At the biome scale, GPP (sub VPM) and SIF shows strong linear relationships (R (sup 2) is greater than 0.95) and small variations in regression slopes ((4.60-5.55 grams Carbon per square meter per day) divided by (milliwatts per square meter per nanometer per square radian)). The total annual GPP (sub VPM) in NA in 2010 is approximately 13.53 petagrams Carbon per year, which accounts for approximately 11.0 percent of the global terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven models (11.35-22.23 petagrams Carbon per year). Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models.

  10. Temporal trends of anthropogenic SO2 emitted by non-ferrous metal smelters in Peru and Russia estimated from Satellite observations

    NASA Astrophysics Data System (ADS)

    Khokhar, M. F.; Platt, U.; Wagner, T.

    2008-09-01

    We report on satellite observations of atmospheric Sulfur Dioxide (SO2) emitted from metal smelting industries in Peru, South America and Siberia, Russia. Most of the non-ferrous metal ores are sulfidic and during the smelting process the sulfur is emitted as SO2. In addition to Norilsk, Russia, Peruvian copper smelters are among the most polluting point sources in the world. We retrieve SO2 column amounts from spectra of the Global Ozone Monitoring Experiment (GOME) on the Earth Research Satellite 2 (ERS-2) for the years 1996 to 2002 using an algorithm based on differential Optical Absorption Spectroscopy (DOAS). Areas of enhanced SO2 column amounts are clearly identified on a 7-years mean map of GOME observations over the regions with La Oroya and Ilo copper smelters of Peru and Norilsk smelters of Russia. Since the instrument sensitivity is highly dependent on surface albedo, SO2 vertical profile, solar zenith angle (SZA), wavelength, clouds, and aerosol, radiative transfer modelling is used to convert the analysed slant column densities into vertical column densities. In this study, the full spherical Monte-Carlo radiative transport model TRACY-II is used for SO2 AMF calculation. GOME data is analysed in further detail by calculating time series over these regions. For the different locations, the results demonstrate both, increasing and decreasing trends in the SO2 column amounts over the time period of 1996 2002. The decreasing trend for the Ilo copper smelter is in good agreement with implemented measures for emission reductions. However, even for the cases with decreasing trends, these point sources are still a dominant source of anthropogenic SO2 emissions in their region. For the smelters in Peru, the potential influence due to SO2 emission by the nearby volcanoes is investigated and found to be negligible.

  11. Consistency Between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America

    NASA Technical Reports Server (NTRS)

    Zhang, Yao; Xiao, Xiangming; Jin, Cui; Dong, Jinwei; Zhou, Sha; Wagle, Pradeep; Joiner, Joanna; Guanter, Luis; Zhang, Yongguang; Zhang , Geli; hide

    2016-01-01

    Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In this study,we estimate GPP in North America (NA) using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS (Moderate Resolution Imaging Spectrometer) images at 8-day temporal and 500 meter spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional Reanalysis) climate data. The simulated GPP (GPP (sub VPM)) agrees well with the flux tower derived GPP (GPPEC) at 39 AmeriFlux sites (155 site-years). The GPP (sub VPM) in 2010 is spatially aggregated to 0.5 by 0.5-degree grid cells and then compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP (sub VPM) and GOME-2 SIF show good consistency. At the biome scale, GPP (sub VPM) and SIF shows strong linear relationships (R (sup 2) is greater than 0.95) and small variations in regression slopes ((4.60-5.55 grams Carbon per square meter per day) divided by (milliwatts per square meter per nanometer per square radian)). The total annual GPP (sub VPM) in NA in 2010 is approximately 13.53 petagrams Carbon per year, which accounts for approximately 11.0 percent of the global terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven models (11.35-22.23 petagrams Carbon per year). Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models.

  12. FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; van der A, R.; Pinardi, G.; van Roozendael, M.

    2008-11-01

    The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. We compared FRESCO+ and FRESCO effective cloud fractions and cloud pressures using simulated spectra and one month of GOME measured spectra. As expected, FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar/lidar measurements of clouds show that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. The effect of FRESCO+ cloud parameters on O3 and NO2 vertical column density (VCD) retrievals is studied using SCIAMACHY data and ground-based DOAS measurements. We find that the FRESCO+ algorithm has a significant effect on tropospheric NO2 retrievals but a minor effect on total O3 retrievals. The retrieved SCIAMACHY tropospheric NO2 VCDs using FRESCO+ cloud parameters (v1.1) are lower than the tropospheric NO2VCDs which used FRESCO cloud parameters (v1.04), in particular over heavily polluted areas with low clouds. The difference between SCIAMACHY tropospheric NO2 VCDs v1.1 and ground-based MAXDOAS measurements performed in Cabauw, The Netherlands, during the DANDELIONS campaign is about -2.12×1014molec cm-2.

  13. FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; van der A, R.; Pinardi, G.; van Roozendael, M.

    2008-05-01

    The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. We compared FRESCO+ and FRESCO effective cloud fractions and cloud pressures using simulated spectra and one month of GOME measured spectra. As expected, FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar/lidar measurements of clouds shows that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. The effect of FRESCO+ cloud parameters on O3 and NO2 vertical column densities (VCD) is studied using SCIAMACHY data and ground-based DOAS measurements. We find that the FRESCO+ algorithm has a significant effect on tropospheric NO2 retrievals but a minor effect on total O3 retrievals. The retrieved SCIAMACHY tropospheric NO2 VCDs using FRESCO+ cloud parameters (v1.1) are lower than the tropospheric NO2 VCDs which used FRESCO cloud parameters (v1.04), in particular over heavily polluted areas with low clouds. The difference between SCIAMACHY tropospheric NO2 VCDs v1.1 and ground-based MAXDOAS measurements performed in Cabauw, The Netherlands, during the DANDELIONS campaign is about -2.12×1014 molec cm-2.

  14. Monitoring vegetation using DOAS satellite observations

    NASA Astrophysics Data System (ADS)

    Eigemeier, E.; Beirle, S.; Marbach, T.; Platt, U.; Wagner, T.

    2009-04-01

    Vegetation-cycles are of general interest for many applications. Be it for harvest-predictions, global monitoring of climate-change or as input to atmospheric models. From novel spectrally resolving UV/vis satellite instruments (like GOME of SCIAMACHY) the spectral signatures of different types of vegetation can be identified and analysed. Although the spatial resolution of GOME and SCIAMACHY observations is much coarser than those of conventional satellite instruments for vegetation monitoring, our data sets on different vegetation types add new and useful information, not obtainable from other sources. Common Vegetation Indices use the fact that the difference between Red and Near Infrared reflection is higher than in any other material on Earth's surface. This gives a very high degree of confidence for vegetation-detection. The spectrally resolving data from GOME and SCIAMACHY provide the chance to concentrate on finer spectral features throughout the Red and Near Infrared spectrum. We look at these using a technique known as Differential Optical Absorption Spectroscopy (DOAS). Although originally developed to retrieve information on trace gases, it can also be used to gain information on vegetation. Another advantage is that this method automatically corrects for changes in the atmosphere. This renders the vegetation-information easily comparable over long time-spans. In addition, high-frequency-structures from vegetation also effect the retrieval of tropospheric trace-gases and aerosols. To optimize vegetation monitoring with DOAS we produce spectrally resolved reference spectra from different vegetation types. We investigate how well we will be able to distinguish vegetation types from space. This will also be valuable for monitoring global vegetation-cycles over long time spans. Preliminary results will be presented here.

  15. Monitoring vegetation using DOAS satellite observations

    NASA Astrophysics Data System (ADS)

    Eigemeier, E.; Beirle, S.; Marbach, T.; Platt, U.; Wagner, T.

    2009-12-01

    Vegetation-cycles are of general interest for many applications. Be it for harvest-predictions, global monitoring of climate-change or as input to atmospheric models. From novel spectrally resolving UV/vis satellite instruments (like GOME or SCIAMACHY) the spectral signatures of different types of vegetation can be identified and analysed. Although the spatial resolution of GOME and SCIAMACHY observations is much coarser than those of conventional satellite instruments for vegetation monitoring, our data sets on different vegetation types add new and useful information, not obtainable from other sources. Common vegetation indices are based on the fact that the difference between Red and Near Infrared reflection is higher than in any other material on Earth’s surface. This gives a very high degree of confidence for vegetation-detection. The spectrally resolving data from GOME and SCIAMACHY provide the chance to concentrate on finer spectral features throughout the red and near infrared spectrum. We look at these features using a technique known as Differential Optical Absorption Spectroscopy (DOAS). Although originally developed to retrieve information on trace gases, it can also be used to gain information on vegetation. Another advantage is that this method automatically corrects for atmospheric effects. This renders the vegetation-information easily comparable over long time-spans. In addition, high-frequency-structures from vegetation also effect the retrieval of tropospheric trace-gases and aerosols. To optimize vegetation monitoring with DOAS we produce spectrally resolved reference spectra from different vegetation types using our own instrumentation. We analyze the effect of different Pigments on high-frequency-structures of the DOAS Retrieval. Applying these results we investigate how well we can distinguish vegetation types from space.

  16. Monitoring vegetation using DOAS satellite observations

    NASA Astrophysics Data System (ADS)

    Eigemeier, Ellen; Beirle, Steffen; Marbach, Thierry; Platt, Ulrich; Wagner, Thomas

    2010-05-01

    Vegetation-cycles are of general interest for many applications. Be it for harvest-predictions, global monitoring of climate-change or as input to atmospheric models. From novel spectrally resolving UV/vis satellite instruments (like GOME or SCIAMACHY) the spectral signatures of different types of vegetation can be identified and analysed. Although the spatial resolution of GOME and SCIAMACHY observations is much coarser than those of conventional satellite instruments for vegetation monitoring, our data sets on different vegetation types add new and useful information, not obtainable from other sources. Common vegetation indices are based on the fact that the difference between Red and Near Infrared reflection is higher than in any other material on Earth's surface. This gives a very high degree of confidence for vegetation-detection. The spectrally resolving data from GOME and SCIAMACHY provide the chance to concentrate on finer spectral features throughout the red and near infrared spectrum. We look at these features using a technique known as Differential Optical Absorption Spectroscopy (DOAS). Although originally developed to retrieve information on trace gases, it can also be used to gain information on vegetation. Another advantage is that this method automatically corrects for atmospheric effects. This renders the vegetation-information easily comparable over long time-spans. In addition, high-frequency-structures from vegetation also effect the retrieval of tropospheric trace-gases and aerosols. To optimize vegetation monitoring with DOAS we produce spectrally resolved reference spectra from different vegetation types using our own instrumentation. We analyze the effect of different Pigments on high-frequency-structures of the DOAS Retrieval. Applying these results we investigate how well we can distinguish vegetation types from space.

  17. An improved Glyoxal retrieval from OMI satellite data

    NASA Astrophysics Data System (ADS)

    Alvarado, Leonardo; Richter, Andreas; Vrekoussis, Mihalis; Wittrock, Folkard; Burrows, John

    2013-04-01

    Glyoxal (CHOCHO) originates from natural and anthropogenic activities similar to formaldehyde (HCHO). It is the smallest of the alpha-dicarbonyls and the most predominant in the atmosphere. It is an intermediate product in the oxidation of most VOCs and an indicator of secondary aerosol formation in the atmosphere. Among others, CHOCHO is a product of the oxidation of isoprene, alkyne, and aromatic hydrocarbons. CHOCHO is not influenced directly by vehicle emissions, because direct CHOCHO emissions are believed to be small. CHOCHO has a short lifetime (few hours) in the presence of sunlight, because it is removed from the atmosphere by photolysis and reaction with OH. Also, CHOCHO is removed by dry and wet deposition. For atmospheric observations, CHOCHO is of interest as it has slightly different sources than HCHO, and can be used as indicator of the rate of photochemical VOCs processing, because in contrast to HCHO it is not produced in the oxidation of methane. Atmospheric CHOCHO columns can be determined by remote sensing using the Differential Optical Absorption Spectroscopy (DOAS) method. This sensitive technique has been used both from the ground applying active and passive DOAS and from satellite. Global fields of HCHO and CHOCHO have been retrieved from GOME, SCIAMACHY, GOME-2 and OMI measurements. Some aspects of CHOCHO retrievals still have to be improved, including possible spectral interferences over water and better correction of cloud and aerosol effects, in particular in cases of biomass burning when atmospheric aerosol levels are high. This study is focused on a new CHOCHO OMI product, including preliminary test of spectral interference with liquid water over ocean regions and comparison with CHOCHO retrievals using GOME-2 measurements over oceans and continental regions.

  18. The development of an improved long-term total ozone record through investigation into systematic and random differences between comparable satellite measurements.

    NASA Astrophysics Data System (ADS)

    Leigh, R. J.; Corlett, G. K.; Monks, P. S.

    2003-04-01

    Knowledge of stratospheric ozone trends is vital both for interpretation of the current record of surface temperature variation and for prediction of future patterns of climate evolution. Historically, data records from the TOMS satellite instruments and the Dobson ground-based networks have provided the premier standard for analysis, although recent work has invested much effort in deriving combined TOMS and GOME datasets. Despite problems of calibration and systematic uncertainties, the satellite data record has been valuable in demonstrating trends in total ozone as a function of latitude and month. Perhaps most critically, the trend analyses are complex, with disruption to the TOMS record due to the Mt. Pinatubo eruption (1991-93), and also a data gap (1994-96). Previous investigation in our department has shown systematic differences between comparable satellite measurements between 1996 and 1998. This poster presents results from an extended investigation into differences between total ozone measurements from TOVS, TOMS and GOME from 1996 to 2001. Such differences need to be quantified and understood in order to produce a reliable long-term record, and to provide a firm foundation that can be extended with data from new instruments such as SCIAMACHY, OMI and GOME-2, which so far will be the only instruments operating in the post-TOMS era. The new analyses over the 1996 2001 time period provide further evidence of regular systematic discrepancies of up to 30DU between co-located and concurrent measurements of total ozone from the three instruments. The increased time-series has permitted a more detailed study of the temporal periodicity and geographic patterns evident in the residuals. Specifically, effects due to clouds, topography, and albedo have been investigated, with initial results indicating a clear correlation between albedo and differences between measurements from all three instruments. Moreover, the effects instrument-specific problems encountered

  19. Treatment of Chronic Atrial Fibrillation During Surgery for Rheumatic Mitral Valve Disease

    PubMed Central

    Gonçalves, Flavio Donizete; Leite, Valdir Gonçalves; Leite, Vanusa Gonçalves; Maia, Marcelo Alves; Gomes, Otoni Moreira; Lima, Melchior Luiz; Osterne, Evandro César Vidal; Kallás, Elias

    2016-01-01

    Introduction The result of surgical ablation of atrial fibrillation remains controversial, although prospective and randomized studies have shown significant differences in the return to sinus rhythm in patients treated with ablation versus control group. Surgery of the Labyrinth, proposed by Cox and colleagues, is complex and increases the morbidity rate. Therefore, studies are needed to confirm the impact on clinical outcomes and quality of life of these patients. Objective To analyze the results obtained in the treatment of atrial fibrillation by surgical approach, by Gomes procedure, for mitral valve surgery in patients with rheumatic heart disease associated with chronic atrial fibrillation. Methods We studied 20 patients with mitral valve dysfunction of rheumatic etiology, evolving with chronic atrial fibrillation, submitted to surgical treatment of valvular dysfunction and atrial fibrillation by Gomes procedure. Results The mean duration of infusion ranged from 65.8±11.22 and aortic clamping of 40.8±7.87 minutes. Of 20 patients operated, 19 (95%) patients were discharged with normal atrial heart rhythm. One (5%) patient required permanent endocardial pacing. In the postoperative follow-up of six months, 18 (90%) patients continued with regular atrial rhythm, one (5%) patient returned to atrial fibrillation and one (5%) patient continued to require endocardial pacemaker to maintain regular rhythm. Conclusion Gomes procedure associated with surgical correction of mitral dysfunction simplified the surgical ablation of atrial fibrillation in patients with rheumatic mitral valve disease and persistent atrial fibrillation. The results showed that it is a safe and effective procedure. PMID:27849305

  20. Improved mapping of tropospheric air quality gases based on the Copernicus Sentinel 5 Precursor/TROPOMI mission

    NASA Astrophysics Data System (ADS)

    Van Roozendael, Michel; De Smedt, Isabelle; Theys, Nicolas; Danckaert, Thomas; Yu, Huan; Lerot, Christophe; van Gent, Jeroen; Vlietinck, Jonas

    2017-04-01

    Scheduled for launch in summer 2017, the Sentinel 5 Precursor (S5P) mission having onboard the TROPOMI payload will fly on a sun-synchronous polar orbit and provide daily global early-afternoon observations of a number of key atmospheric trace gases at the unprecedented spatial resolution of 7x3.5 km2. By the early 2020's, S5P will be complemented by geostationary observations from the Sentinel 4 UVN instrument to be delivered at hourly resolution over Europe, and by mid-morning global observations from the low-earth orbiting Sentinel 5 mission. Altogether these missions will form a constellation serving the needs of the Copernicus Atmospheric Monitoring Services (CAMS). Owing to their unprecedented spatial resolution and spectral performance, TROPOMI/S5P and the subsequent Sentinel 4 and 5 missions will significantly push forward monitoring capabilities addressing anthropogenic and natural emissions of air quality-related trace gases. They will also extend the long-term datasets from past and existing UV-Vis sensors (GOME, SCIAMACHY, OMI, GOME-2, OMPS). In this presentation, we explore the potential of S5P to improve on several aspects of the monitoring of tropospheric pollutants, with a focus on the short-lived species NO2, SO2 and HCHO. Based on algorithms designed at BIRA as part of TROPOMI/S5P and S4/S5 level-2 development projects, and their application to the current OMI and GOME-2 sensors, we illustrate and discuss the expected ability of the new sensors to detect smaller scale point sources with better accuracy and selectivity. The retrieval challenges associated with higher resolution measurements are also addressed.

  1. The Seasonal Cycle of Satellite Chlorophyll Fluorescence Observations and its Relationship to Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y; Garrity, S.; Middleton, E. M.; Huemmrich, K. F.; hide

    2014-01-01

    Mapping of terrestrial chlorophyll uorescence from space has shown potentialfor providing global measurements related to gross primary productivity(GPP). In particular, space-based fluorescence may provide information onthe length of the carbon uptake period that can be of use for global carboncycle modeling. Here, we examine the seasonal cycle of photosynthesis asestimated from satellite fluorescence retrievals at wavelengths surroundingthe 740nm emission feature. These retrievals are from the Global OzoneMonitoring Experiment 2 (GOME-2) flying on the MetOp A satellite. Wecompare the fluorescence seasonal cycle with that of GPP as estimated froma diverse set of North American tower gas exchange measurements. Because the GOME-2 has a large ground footprint (40 x 80km2) as compared with that of the flux towers and requires averaging to reduce random errors, we additionally compare with seasonal cycles of upscaled GPP in the satellite averaging area surrounding the tower locations estimated from the Max Planck Institute for Biogeochemistry (MPI-BGC) machine learning algorithm. We also examine the seasonality of absorbed photosynthetically-active radiation(APAR) derived with reflectances from the MODerate-resolution Imaging Spectroradiometer (MODIS). Finally, we examine seasonal cycles of GPP as produced from an ensemble of vegetation models. Several of the data-driven models rely on satellite reflectance-based vegetation parameters to derive estimates of APAR that are used to compute GPP. For forested sites(particularly deciduous broadleaf and mixed forests), the GOME-2 fluorescence captures the spring onset and autumn shutoff of photosynthesis as delineated by the tower-based GPP estimates. In contrast, the reflectance-based indicators and many of the models tend to overestimate the length of the photosynthetically-active period for these and other biomes as has been noted previously in the literature. Satellite fluorescence measurements therefore show potential for

  2. Trend analysis of satellite-observed tropospheric NO2 vertical column densities over East Asia for 2005-2014

    NASA Astrophysics Data System (ADS)

    Muto, T.; Irie, H.; Itahashi, S.

    2015-12-01

    Nitrogen dioxide (NO2) plays a central role in the troposphere as a toxic substance for the respiratory system and a precursor for ozone and aerosols. Furthermore, the OH concentration is dependent on the NO2 concentration. While trend analysis for tropospheric NO2 concentrations in several specific regions all over the world was made in literature for period until 2011, the latest trends after 2011 have not been reported yet. The time period after 2011 is of interest, because it corresponds to the 12th 5-year-plan regulating NOx emissions in China and the period with the power substitution of thermal power generation for the nuclear power generation in Japan. In this study, we first compared satellite-observed tropospheric NO2 VCDs (Vertical Column Densities) with those observed by ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments installed at Chiba University in order to clarify whether or not there is degradation in OMI and GOME-2 NO2 VCDs data after 2011. We concluded that there is no significant degradation in OMI and GOME-2 data, since the comparison results are similar to those reported by previous validation studies. Based on the results, tropospheric NO2 VCD trends over Central Eastern China (CEC; 30-40°N, 110.0-123.0°E) and Japan (JPN; 33.5-37.0°N, 133.0-141.0°E) regions were estimated using the regression analysis for annual mean values. Although an increase in NO2 VCDs occurred at a rate of 6%(8%) per year in OMI (GOME-2) data from 2005(2007) to 2011 over CEC, we found a decrease at a rate of 10%(11%) per year from 2011 to 2014. This reduction may be a result from the regulation of NOx emissions from coal fired power generation, iron foundry, cement plant, etc., and installation of the denitrification units during the period of 12th 5-year-plan. For JPN, both OMI and GOME-2 data sets showed that the NO2 VCDs decreased at a rate of 4% per year before 2011. The decreasing trends continued until 2014, with a

  3. Solar spectral irradiance variability in cycle 24: observations and models

    NASA Astrophysics Data System (ADS)

    Marchenko, Sergey V.; DeLand, Matthew T.; Lean, Judith L.

    2016-12-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2) and Solar Radiation and Climate Experiment (SORCE) instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models.

  4. Potential of the multispectral synergism for observing ozone pollution combining measurements of IASI-NG and UVNS onboard EPS-SG

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2016-04-01

    Current and future satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors offer a limited capacity to probe surface concentrations of gaseous pollutants such as tropospheric ozone. Using single-band approaches based on IASI spaceborne thermal infrared measurements, only ozone down to the lower troposphere (3-4 km of altitude at lowest) may be observed (Eremenko et al., 2008). A recent multispectral method combining IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the IR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere, but with maximum sensitivity around 2 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years, such as EPS-SG, carrying new generation sensors like IASI-NG and UVNS that will enhance the capacity to observe ozone pollution, and particularly when combining them through a multispectral synergism. This work presents an analysis of the potential of the multispectral synergism of IASI-NG and UVNS future spaceborne measurements for observing ozone pollution, performed in the framework of SURVEYOZON project (funded by the French Space Agency, CNES). For this, we develop a simulator of synthetic multispectral retrievals or pseudo-observations (referred as OSSE, Observing System Simulation Experiment) derived from IASI-NG+UVNS that will be compared to those from IASI+GOME2. In the first step of the OSSE, we create a pseudo-reality with simulations from the chemical-transport model MOCAGE (provided by CERFACS laboratory), where real O3 data from IASI and surface network stations have been assimilated for a realistic representation of ozone variability at the surface and the free troposphere. We focus on the high pollution event occurred in Europe on 10 July 2010. We use the coupled algorithms KOPRA+VLIDORT to simulate the spectra emitted, scattered and

  5. Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons

    NASA Astrophysics Data System (ADS)

    Verhoelst, T.; Granville, J.; Hendrick, F.; Köhler, U.; Lerot, C.; Pommereau, J.-P.; Redondas, A.; Van Roozendael, M.; Lambert, J.-C.

    2015-12-01

    Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement errors but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs), named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently, also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC) comparisons between GOME-type direct fitting (GODFITv3) satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and ground-based direct-sun and zenith-sky reference measurements such as those from Dobsons, Brewers, and zenith-scattered light (ZSL-)DOAS instruments, respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC). The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing difference errors only play a role in the

  6. Intracellular Assessment of ATP Levels in Caenorhabditis elegans

    PubMed Central

    Palikaras, Konstantinos; Tavernarakis, Nektarios

    2017-01-01

    Eukaryotic cells heavily depend on adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS) within mitochondria. ATP is the major energy currency molecule, which fuels cell to carry out numerous processes, including growth, differentiation, transportation and cell death among others (Khakh and Burnstock, 2009). Therefore, ATP levels can serve as a metabolic gauge for cellular homeostasis and survival (Artal-Sanz and Tavernarakis, 2009; Gomes et al., 2011; Palikaras et al., 2015). In this protocol, we describe a method for the determination of intracellular ATP levels using a bioluminescence approach in the nematode Caenorhabditis elegans. PMID:28194429

  7. Remote sensing of tropospheric constituents by OMI on the EOS Aura satellite

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) was launched on NASA's EOS Aura satellite in July 2004. This instrument was built in the Netherlands with collaboration with Finland. The science data products are being developed jointly by scientists from the three countries. OMI is the first instrument to combine the high spatial resolution daily global mapping capability of TOMS with high spectral resolution measurements necessary for retrieving a number of trace gases of relevance to atmospheric chemistry, using techniques pioneered by GOME. In this talk I will show what our planet looks like at UV wavelengths and what these data can tell us about the effects of human activities on global air quality and climate.

  8. The Contribution of TOMS and UARS Data to Our Understanding of Ozone Change

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Both TOMS (Total Ozone Mapping Spectrometer) and UARS (Upper Atmosphere Research Satellite) have operated over an extended period, and generated data sets of sufficient accuracy to be of use in determining ozone change (TOMS) and some of the underlying causes (UARS). The basic scientific products have been used for model validation and assimilation to extend our understanding of stratospheric processes. TOMS on Nimbus-7, Earth-Probe, and QuikTOMS, and UARS have led to the next generation of instruments onboard the EOS platforms. Algorithms used for TOMS and UARS are being applied to the new data sets and extended to analysis of European satellite data (e.g., GOME)

  9. Satellite observations of OClO from 1995 to 2010 in comparison to ECMWF data and EMAC simulations

    NASA Astrophysics Data System (ADS)

    Kühl, Sven; Pukite, Janis; Dörner, Steffen; Jöckel, Patrick; Sörensen, Rüdiger; Wagner, Thomas

    2010-05-01

    Satellite instruments like GOME, GOME-2 and SCIAMACHY measure the spectral intensity of the sunlight, scattered back from Earths atmosphere, on an almost global and daily scale. By applying the DOAS method to the spectral measurements, the integrated concentration of several trace gases along the light path, the so called Slant Column Densitiy (SCD), can be derived. Chlorine dioxide (OClO) is an important indicator for stratospheric chlorine activation, the basis for massive ozone depletion in polar spring. Due to the daily coverage of the polar regions, the OClO measurements give a good overview of the intensity and the extension of the chlorine activation. While the observations in nadir geometry (i.e. perpendicular to Earths surface) provide a (indirect) measurement of the total column, the limb observations (i.e. tangential view) can be inverted to vertical profiles. We investigated GOME, GOME-2 and SCIAMACHY data from 1995 to 2010, covering Arctic and Antarctic winters with very different meteorological situations (very cold and very warm winters; early and major warmings). The derived OClO columns are compared to ECMWF analysis data, studying the dependence of the OClO enhancements on meteorological parameters like stratospheric temperatures and potential vorticity. Also, the interaction of stratospheric OClO with NO2 and BrO is investigated for selected meteorological situations as well as for long term correlations for different seasons and latitudes, considering in particular the impact on the ozone chemistry. In addition the OClO SCDs are compared to model results calculated (in a nudged setup) with the ECHAM5/MESSy Atmospheric Chemistry (EMAC) general circulation model for the time of the satellite observations. We investigate the inter-hemispheric differences in the observed and simulated OClO profile (e.g. regarding the magnitude, the altitude of the profile peak and their evolution throughout the winter). For the Arctic, we study the inter

  10. Reply to 'Comment on 'Quantum time-of-flight distribution for cold trapped atoms''

    SciTech Connect

    Ali, Md. Manirul; Home, Dipankar; Pan, Alok K.; Majumdar, A. S.

    2008-02-15

    In their comment Gomes et al. [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali et al., Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.

  11. The colors of cometary nuclei—Comparison with other primitive bodies of the Solar System and implications for their origin

    NASA Astrophysics Data System (ADS)

    Lamy, P.; Toth, I.

    2009-06-01

    We present new color results of cometary nuclei obtained with the Hubble Space Telescope (HST) whose superior resolution enables us to accurately isolate the nucleus signals from the surrounding comae. By combining with scrutinized available data obtained with ground-based telescopes, we accumulated a sample of 51 cometary nuclei, 44 ecliptic comets (ECs) and 7 nearly-isotropic comets (NICs) using the nomenclature of Levison [Levison, H.F., 1996. In: Rettig, T.W., Hahn, J.M. (Eds.), Completing the Inventory of the Solar System. In: ASP Conf. Ser., vol. 107, pp. 173-192]. We analyze color distributions and color-color correlations as well as correlations with other physical parameters. We present our compilation of colors of 232 outer Solar System objects—separately considering the different dynamical populations, classical KBOs in low and high-inclination orbits (respectively CKBO-LI and CKBO-HI), resonant KBOs (practically Plutinos), scattered-disk objects (SDOs) and Centaurs—of 12 candidate dead comets, and of 85 Trojans. We perform a systematic analysis of all color distributions, and conclude by synthesizing the implications of the dynamical evolution and of the colors for the origin of the minor bodies of the Solar System. We find that the color distributions are remarkably consistent with the scenarios of the formation of TNOs by Gomes [Gomes, R.S., 2003. Icarus 161, 404-418] generalized by the "Nice" model [Levison, H.F., Morbidelli, A., VanLaerhoven, Ch., Gomes, R., Tsiganis, L., 2008. Icarus 196, 258-273], and of the Trojans by Morbidelli et al. [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. The color distributions of the Centaurs are globally similar to those of the CKBO-HI, the Plutinos and the SDOs. However the potential bimodality of their distributions allows to possibly distinguish two groups based on their (B-R) index: Centaur I with (B-R)>1.7 and Centaurs II with (B-R)<1.4. Centaurs I could be composed of

  12. Enhanced monitoring of sulfur dioxide sources with hyperspectral UV sensors

    NASA Astrophysics Data System (ADS)

    Krueger, Arlin; Yang, Kai; Krotkov, Nickolay

    2009-09-01

    Sulfur dioxide, a short-lived atmospheric constituent, is oxidized to sulfate aerosols, a climate agent. Main sources are volcanoes, smelters, and fossil fuel combustion. Satellite monitoring of SO2 began with TOMS data in 1978 that detected volcanic eruption clouds. Hyperspectral instruments, like OMI and GOME, have a twenty-fold improvement in sensitivity. Degassing volcanoes, smelters, and large power plants are now monitored for a database of SO2 emission to the atmosphere. SO2 is a distinctive marker for volcanic ash clouds, a hazard to aircraft.

  13. [Alcaloids discovery, markers for the history of organic chemistry].

    PubMed

    Fournier, J

    2001-01-01

    The development of organic chemistry is well fitted by the history of dyes. Are alkaloids as good markers? In 1876, Chevreul distinguished two steps in the history of these organic alkalis. The first began with Derosne who analyzed opium in 1803, followed by Seguin and mainly Sertuerner. It was closed about 1820 with Pelletier and Caventou researches, including works of Robiquet and Gomes from Lisbon. Next years, chemists investigated properties and chemical structures. With Pasteur, alkaloids participated to the emergence of stereochemistry, and with Claude Bernard, to the birth of a new science, physiology. Chevreul could not anticipate success of organic synthesis which blooms during the XXth century.

  14. A multi-site intercomparison of integrated water vapour observations for climate change analysis

    NASA Astrophysics Data System (ADS)

    Van Malderen, R.; Brenot, H.; Pottiaux, E.; Beirle, S.; Hermans, C.; De Mazière, M.; Wagner, T.; De Backer, H.; Bruyninx, C.

    2014-08-01

    Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. On one hand, networks of ground-based instruments able to retrieve homogeneous integrated water vapour (IWV) data sets are being set up. Typical examples are Global Navigation Satellite System (GNSS) observation networks such as the International GNSS Service (IGS), with continuous GPS (Global Positioning System) observations spanning over the last 15+ years, and the AErosol RObotic NETwork (AERONET), providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 years (e.g. AIRS) or are being merged to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2). This study performs an intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS), in situ measurements (radiosondes) and ground-based instruments (GPS, sun photometer), to assess their use in water vapour trends analysis. To this end, we selected 28 sites world-wide for which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. The mean biases of the different techniques compared to the GPS estimates vary only between -0.3 to 0.5 mm of IWV. Nevertheless these small biases are accompanied by large standard deviations (SD), especially for the satellite instruments. In particular, we analysed the impact of clouds on the IWV agreement. The influence of specific issues for each instrument on the intercomparison is also investigated (e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the satellite scan angle, daytime/nighttime differences). Furthermore, we checked if the properties of

  15. A multi-site techniques intercomparison of integrated water vapour observations for climate change analysis

    NASA Astrophysics Data System (ADS)

    Van Malderen, R.; Brenot, H.; Pottiaux, E.; Beirle, S.; Hermans, C.; De Mazière, M.; Wagner, T.; De Backer, H.; Bruyninx, C.

    2014-02-01

    Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. At one hand, networks of ground-based instruments allowing to retrieve homogeneous Integrated Water Vapour (IWV) datasets are being set up. Typical examples are Global Navigation Satellite System (GNSS) observation networks such as the International GNSS Service (IGS), with continuous GPS (Global Positioning System) observations spanning over the last 15+ yr, and the AErosol RObotic NETwork (AERONET), providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 yr (e.g. AIRS) or are being merged in order to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2). The present study aims at setting up a techniques intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS), in-situ measurements (radiosondes) and ground-based instruments (GPS, sun photometer), to assess the applicability of either dataset for water vapour trends analysis. To this end, we selected 28 sites worldwide at which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. We found that the mean biases of the different techniques w.r.t. the GPS estimates vary only between -0.3 to 0.5 mm of IWV, but the small bias is accompanied by large Root Mean Square (RMS) values, especially for the satellite instruments. In particular, we analysed the impact of the presence of clouds on the techniques IWV agreement. Also, the influence of specific issues for each instrument on the intercomparison is investigated, e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the satellite scan

  16. Elevated Glyoxal Concentrations over the Eastern Equatorial Pacific: A Direct Biogenic Source?

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Wang, Y.; Lerot, C.

    2014-12-01

    Elevated atmospheric glyoxal (CHOCHO) was observed over the eastern equatorial Pacific by satellite and ship measurements. We investigated the source contributions through inverse modeling using GOME-2 observations (2007-2012) and the GEOS-Chem model. The observed high glyoxal to HCHO column ratio over the region indicates the potential presence of a direct source of glyoxal rather than secondary production. A bimodal seasonal cycle of glyoxal concentrations was found, providing further evidence for a biogenic origin of glyoxal emission. The estimate of the primary glyoxal emission over the eastern equatorial Pacific is 20-40Tg/yr, which is comparable to the previous estimate of the global continential glyoxal emission.

  17. Solar Spectral Irradiance Variability in Cycle 24: Model Predictions and OMI Observations

    NASA Technical Reports Server (NTRS)

    Marchenko, S.; DeLand, M.; Lean, J.

    2016-01-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265-500 nanometers during the ongoing Cycle 24. We supplement the OMI data with concurrent observations from the GOME-2 (Global Ozone Monitoring Experiment - 2) and SORCE (Solar Radiation and Climate Experiment) instruments and find fair-to-excellent agreement between the observations and predictions of the NRLSSI2 (Naval Research Laboratory Solar Spectral Irradiance - post SORCE) and SATIRE-S (the Naval Research Laboratory's Spectral And Total Irradiance REconstruction for the Satellite era) models.

  18. Remote sensing of tropospheric constituents by OMI on the EOS Aura satellite

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) was launched on NASA's EOS Aura satellite in July 2004. This instrument was built in the Netherlands with collaboration with Finland. The science data products are being developed jointly by scientists from the three countries. OMI is the first instrument to combine the high spatial resolution daily global mapping capability of TOMS with high spectral resolution measurements necessary for retrieving a number of trace gases of relevance to atmospheric chemistry, using techniques pioneered by GOME. In this talk I will show what our planet looks like at UV wavelengths and what these data can tell us about the effects of human activities on global air quality and climate.

  19. Acylated Glycosidic Acid Methyl Esters Generated from the Convolvulin Fraction of Rhizoma Jalapae Braziliensis by Treatment with Indium(III) Chloride in Methanol.

    PubMed

    Ono, Masateru; Oda, Satoko; Yasuda, Shin; Mineno, Tomoko; Okawa, Masafumi; Kinjo, Junei; Miyashita, Hiroyuki; Yoshimitsu, Hitoshi; Nohara, Toshihiro; Miyahara, Kazumoto

    2017-01-01

    Four hexaglycosides of methyl 3S,12S-dihydroxyhexadecanoate (1-4) were provided after treatment of the crude convolvulin fraction from Rhizoma Jalapae Braziliensis (the root of Ipomoea operculata (GOMES) MART., Convolvulaceae) with indium(III) chloride in methanol. The structures of 1-4 were elucidated on the basis of spectroscopic and chemical methods. Their sugar moieties were partially acylated with organic acids including (3S,9R)-3,6:6,9-diepoxydecanoic (exogonic) acid, (E)-2-methylbut-2-enoic (tiglic) acid, and isovaleric acid.

  20. The impact of the ozone effective temperature on satellite validation using the Dobson spectrophotometer network

    NASA Astrophysics Data System (ADS)

    Elissavet Koukouli, Maria; Zara, Marina; Lerot, Christophe; Fragkos, Konstantinos; Balis, Dimitris; van Roozendael, Michel; Antonius Franciscus Allart, Marcus; van der A, Ronald Johannes

    2016-05-01

    The main aim of the paper is to demonstrate an approach for post-processing of the Dobson spectrophotometers' total ozone columns (TOCs) in order to compensate for their known stratospheric effective temperature (Teff) dependency and its resulting effect on the usage of the Dobson TOCs for satellite TOCs' validation. The Dobson observations employed are those routinely submitted to the World Ozone and Ultraviolet Data Centre (WOUDC) of the World Meteorological Organization, whereas the effective temperatures have been extracted from two sources: the European Space Agency, ESA, Ozone Climate Change Initiative, Ozone-CCI, GODFIT version 3 (GOME-type Direct FITting) algorithm applied to the GOME2/MetopA, GOME2A, observations as well as the one derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) outputs. Both temperature sources are evaluated utilizing co-located ozonesonde measurements also retrieved from the WOUDC database. Both GODFIT_v3 and ECMWF Teffs are found to be unbiased against the ozonesonde observations and to agree with high correlation coefficients, especially for latitudes characterized by high seasonal variability in Teff. The validation analysis shows that, when applying the GODFIT_v3 effective temperatures in order to post-process the Dobson TOC, the mean difference between Dobson and GOME2A GODFIT_v3 TOCs moves from 0.63 ± 0.66 to 0.26 ± 0.46 % in the Northern Hemisphere and from 1.25 ± 1.20 to 0.80 ± 0.71 % in the Southern Hemisphere. The existing solar zenith angle dependency of the differences has been smoothed out, with near-zero dependency up to the 60-65° bin and the highest deviation decreasing from 2.38 ± 6.6 to 1.37 ± 6.4 % for the 80-85° bin. We conclude that the global-scale validation of satellite TOCs against collocated Dobson measurements benefits from a post-correction using suitably estimated Teffs.

  1. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Aben, I.; Tol, P.; Krijger, J. M.; Hollstein, A.; Köhler, P.; Damm, A.; Joiner, J.; Frankenberg, C.; Landgraf, J.

    2015-03-01

    Global monitoring of sun-induced chlorophyll fluorescence (SIF) is improving our knowledge about the photosynthetic functioning of terrestrial ecosystems. The feasibility of SIF retrievals from spaceborne atmospheric spectrometers has been demonstrated by a number of studies in the last years. In this work, we investigate the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite mission for SIF retrieval. TROPOMI will sample the 675-775 nm spectral window with a spectral resolution of 0.5 nm and a pixel size of 7 km × 7 km. We use an extensive set of simulated TROPOMI data in order to assess the uncertainty of single SIF retrievals and subsequent spatio-temporal composites. Our results illustrate the enormous improvement in SIF monitoring achievable with TROPOMI with respect to comparable spectrometers currently in-flight, such as the Global Ozone Monitoring Experiment-2 (GOME-2) instrument. We find that TROPOMI can reduce global uncertainties in SIF mapping by more than a factor of 2 with respect to GOME-2, which comes together with an approximately 5-fold improvement in spatial sampling. Finally, we discuss the potential of TROPOMI to map other important vegetation parameters at a global scale with moderate spatial resolution and short revisit time. Those include leaf photosynthetic pigments and proxies for canopy structure, which will complement SIF retrievals for a self-contained description of vegetation condition and functioning.

  2. Increase in NOx emissions from Indian thermal power plants during 1996-2010: unit-based inventories and multisatellite observations.

    PubMed

    Lu, Zifeng; Streets, David G

    2012-07-17

    Driven by rapid economic development and growing electricity demand, NO(x) emissions (E) from the power sector in India have increased dramatically since the mid-1990s. In this study, we present the NO(x) emissions from Indian public thermal power plants for the period 1996-2010 using a unit-based methodology and compare the emission estimates with the satellite observations of NO(2) tropospheric vertical column densities (TVCDs) from four spaceborne instruments: GOME, SCIAMACHY, OMI, and GOME-2. Results show that NO(x) emissions from Indian power plants increased by at least 70% during 1996-2010. Coal-fired power plants, NO(x) emissions from which are not regulated in India, contribute ∼96% to the total power sector emissions, followed by gas-fired (∼4%) and oil-fired (<1%) ones. A number of isolated NO(2) hot spots are observed over the power plant areas, and good agreement between NO(2) TVCDs and NO(x) emissions is found for areas dominated by power plant emissions. Average NO(2) TVCDs over power plant areas were continuously increasing during the study period. We find that the ratio of ΔE/E to ΔTVCD/TVCD changed from greater than one to less than one around 2005-2008, implying that a transition of the overall NO(x) chemistry occurred over the power plant areas, which may cause significant impact on the atmospheric environment.

  3. Assimilated total ozone record from 30 year of UV-VIS satellite observations

    NASA Astrophysics Data System (ADS)

    van der A, Ronald; Allaart, Marc; Eskes, Henk

    2010-05-01

    For the period 1978-2008 an ozone record is created by assimilating all available total ozone observations from 11 different UV/VIS satellite instruments (TOMS-Nimbus, TOMS-EP, SBUV-7, -9a, -9d, -11, -16, GOME, SCIAMACHY, OMI and GOME-2). These ozone observations are based on the latest and most accurate versions of the retrieval algorithms for these instruments. Using all available ground measurements from WOUDC in the period 1978-2008, the satellite observations are corrected for biases as function of solar zenith angle, viewing angle, time(trend), and stratospheric temperature. Subsequently the corrected satellite data is assimilated within the chemistry-transport model TM driven by state-of-the-art meteorological analyses. This resulted in a multi-sensor re-analysis (MSR) of global ozone for the period 1978-2008 in time steps of 6 hours. The MSR data set is checked by monitoring observation-minus-forecast differences from the data assimilation and by comparisons with ground-based data sets.

  4. A climatology of visible surface reflectance spectra

    NASA Astrophysics Data System (ADS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-09-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.

  5. Inverse modelling of NOx emissions over eastern China: uncertainties due to chemical non-linearity

    NASA Astrophysics Data System (ADS)

    Gu, Dasa; Wang, Yuhang; Yin, Ran; Zhang, Yuzhong; Smeltzer, Charles

    2016-10-01

    Satellite observations of nitrogen dioxide (NO2) have often been used to derive nitrogen oxides (NOx = NO + NO2) emissions. A widely used inversion method was developed by Martin et al. (2003). Refinements of this method were subsequently developed. In the context of this inversion method, we show that the local derivative (of a first-order Taylor expansion) is more appropriate than the "bulk ratio" (ratio of emission to column) used in the original formulation for polluted regions. Using the bulk ratio can lead to biases in regions of high NOx emissions such as eastern China due to chemical non-linearity. Inverse modelling using the local derivative method is applied to both GOME-2 and OMI satellite measurements to estimate anthropogenic NOx emissions over eastern China. Compared with the traditional method using bulk ratio, the local derivative method produces more consistent NOx emission estimates between the inversion results using GOME-2 and OMI measurements. The results also show significant changes in the spatial distribution of NOx emissions, especially over high emission regions of eastern China. We further discuss a potential pitfall of using the difference of two satellite measurements to derive NOx emissions. Our analysis suggests that chemical non-linearity needs to be accounted for and that a careful bias analysis is required in order to use the satellite differential method in inverse modelling of NOx emissions.

  6. Satellites and SAOZ total ozone comparison in the tropics

    NASA Astrophysics Data System (ADS)

    Frihi, Aymen; Pommereau, Jean-Pierre; Pazmino, Andrea; Goutail, Florence; Bekki, Slimane

    2016-04-01

    All satellites total ozone measurements available from SBUV, OMI-T, OMI-D, OMI-CCI, GOME-CCI, GOME2-CCI, SCIAMACHY-CCI, NPP and IASI, since 2004 until 2015 now are compared to those provided by the UV-Vis SAOZ/NDACC spectrometer at two tropical stations of Reunion Island in the Indian Ocean and Bauru in Southern Brazil. The differences between satellites and SAOZ show systematic seasonal variations of 2-3% (6-9 DU) amplitude and sharp negative peaks in Jan-Mar in the austral summer. The largest low peaks seen on IASI, OMI-T, NPP and OMI-CCI at Reunion are shown to be due to hurricanes. In turn, those seen in Brazil correlate with high altitude overshooting convective clouds. The origin of the seasonality of the Sat-SAOZ difference is still unknown. Surprisingly and though there has been no change in either SAOZ instruments or data analysis processes, the amplitude of the seasonal cycle of the Sat-SAOZ difference reduces in 2012 and drops to less than ± 0.5% (1.5 DU) after 2013 in Reunion Island and less than ±1% in Bauru, reduction for which there is no clear explanation. Shown in the presentation will be the demonstration of the impact of hurricanes and high altitude clouds on satellites ozone retrievals, followed by a discussion of possible causes of seasonality of Sat-SAOZ difference and the its amplitude drop after 2012.

  7. Validation of SCIAMACHY and TOMS UV Radiances Using Ground and Space Observations

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Bhartia, P. K.; Bojkov, B. R.; Kowalewski, M.; Labow, G.; Ahmad, Z.

    2004-01-01

    Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of satellite radiances from space and from the ground can be a very effective means for correcting long term drifts of backscatter type satellite measurements and can be used to cross calibrate all B W instruments in orbit (TOMS, SBW/2, GOME, SCIAMACHY, OM, GOME-2, OMPS). This method bypasses the retrieval algorithms used for both satellite and ground based measurements that are normally used to validate and correct the satellite data. Radiance comparisons employ forward models and are inherently more accurate than inverse (retrieval) algorithms. This approach however requires well calibrated instruments and an accurate radiative transfer model that accounts for aerosols. TOMS and SCIAMACHY calibrations are checked to demonstrate this method and to demonstrate applicability for long term trends.

  8. Observation of Pollution from Space

    NASA Astrophysics Data System (ADS)

    Burrows, J. P.; Richter, A.; Bovensmann, H.; Buchwitz, M.; Andrés Hernández, M. D.; Hilboll, A.; Schoenhardt, A.; Blechschmidt, A.; Alvarado, L.; Wittrock, F.

    2016-12-01

    The rapid growth of population since the industrial revolution has led to large changes in surface emissions and land use change. It is now over 30 years since the SCIAMACHY project was initiated. This project has led to the GOME (ESA ERS-2 1995-2011), SCIAMACHY (ESA Envisat 2002 to 2011) GOME-2 (EUMETSAT/ESA Metop A, 2006 to present, Metop B 2012 to present, Metop C planned launch 2018) and the spin offs OMI (NASA AURA 2004-present) . This presentation addresses observations of tropospheric trace gas pollutants retrieved these instruments with a focus on recent studies of the ozone precursors NO2, HCHO and CHO.CHO, the halogen oxides BrO, IO and CH4 and CO2. It will discuss the objectives of the DLR HALO EMeRGe mission. The latter is research mission combining satelltie and aircraft observations, whihc aims to study pollution from major pollution centers in Europe and Asia, and is planned to take palce in 2017 and 2018.

  9. Space-based observation of volcanic iodine monoxide

    NASA Astrophysics Data System (ADS)

    Schönhardt, Anja; Richter, Andreas; Theys, Nicolas; Burrows, John P.

    2017-04-01

    Volcanic eruptions inject substantial amounts of halogens into the atmosphere. Chlorine and bromine oxides have frequently been observed in volcanic plumes from different instrumental platforms such as from ground, aircraft and satellites. The present study is the first observational evidence that iodine oxides are also emitted into the atmosphere during volcanic eruptions. Large column amounts of iodine monoxide, IO, are observed in satellite measurements following the major eruption of the Kasatochi volcano, Alaska, in 2008. The IO signal is detected in measurements made both by SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY) on ENVISAT (Environmental Satellite) and GOME-2 (Global Ozone Monitoring Experiment-2) on MetOp-A (Meteorological Operational Satellite A). Following the eruption on 7 August 2008, strongly elevated levels of IO slant columns of more than 4 × 1013 molec cm-2 are retrieved along the volcanic plume trajectories for several days. The retrieved IO columns from the different instruments are consistent, and the spatial distribution of the IO plume is similar to that of bromine monoxide, BrO. Details in the spatial distribution, however, differ between IO, BrO and sulfur dioxide, SO2. The column amounts of IO are approximately 1 order of magnitude smaller than those of BrO. Using the GOME-2A observations, the total mass of IO in the volcanic plume injected into the atmosphere from the eruption of Kasatochi on 7 August 2008, is determined to be on the order of 10 Mg.

  10. Retrieval of aerosol optical properties over land using PMAp

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Munro, Rosemary; Lang, Ruediger; Poli, Gabriele; Holdak, Andriy

    2015-04-01

    The retrieval of aerosol optical properties is an important task for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolutions for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) is delivered as operational GOME product to our customers. The algorithms retrieve aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The next releases of PMAp will provide an extended set of aerosol and cloud properties which include AOD over land and an improved volcanic ash retrieval combining AVHRR and IASI. This presentation gives an overview on the existing product and the prototypes in development. The major focus is the discussion of the AOD retrieval over land implemented in the upcoming PMAp2 release. In addition, the results of our current validation studies (e.g. comparisons to AERONET, other satellite platforms and model data) are shown.

  11. Satellite Observations of Atmospheric SO2 from Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Khokhar, M. F.; Platt, U.; Wagner, T.

    Volcanoes are an important source of various atmospheric trace gases. Volcanic eruptions and their emissions are sporadic and intermittent and often occur in uninhabited regions. Therefore assessing the amount and size of the gaseous and particulate emission from volcanoes is difficult. Satellite remote sensing measurements provide one well suited opportunity to overcome this difficulty. Onboard ERS-2, GOME's moderate spectral resolution enables us to apply the Differential Optical Absorption Spectroscopy (DOAS) algorithm to retrieve SO2 column densities from radiance/irradiance measurements in UV spectral region. Volcanic emissions can cause significant variations of climate on a variety of time scales; just one very large eruption can cause a measurable change in the Earth's climate with a time scale of a few years. Stratospheric aerosols produced by volcanic eruptions can influence stratospheric chemistry both through chemical reactions that take place on the surface of the aerosols and through temperature changes induced by their presence in the stratosphere. In this work we give a comprehensive overview on several volcanoes and the retrieval of SO2 column densities from GOME data for the years 1996 - 2002. The focus is on both eruption and out gassing scenarios from different volcanic eruptions in Italy, Iceland, Congo/ Zaire, Ecuador and Mexico.

  12. Global Monitoring of Atmospheric Trace Gases, Clouds and Aerosols from UV/vis/NIR Satellite Instruments: Currents Status and Near Future Perspectives

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Deutschmann, T.; Frankenberg, C.; Grzegorski, M.; Khokhar, M. F.; Kühl, S.; Marbach, T.; Mies, K.; de Vries, M. Penning; Platt, U.; Pukite, J.; Sanghavi, S.

    2008-04-01

    A new generation of UV/vis/near-IR satellite instruments like GOME (since 1995), SCIAMACHY (since 2002), OMI (since 2004), and GOME-2 (since 2006) allows to measure several important stratospheric and tropospheric trace gases like O3, NO2, OClO, HCHO, SO2, BrO, and H2O as well as clouds and aerosols from space. Because of its extended spectral range, the SCIAMACHY instrument also allows the retrieval of Greenhouse gases (CO2, CH4) and CO in the near IR. Almost all of the tropospheric trace gases are observed by these instruments for the first time. From satellite data it is possible to investigate the temporal and spatial variation. Also different sources can be characterised and quantified. The derived global distributions can serve as input and for the validation of atmospheric models. Here we give an overview on the current status of these new instruments and data products and their recent applications to various atmospheric and oceanic phenomena.

  13. Influence of the Vegetation Type on CH2O and NO2 Tropospheric Emissions during Biomass Burning: Synergistic use of Satellite Observations

    NASA Astrophysics Data System (ADS)

    Marbach, T.; Beirle, S.; Hollwedel, J.; Khokhar, F.; Platt, U.; Wagner, T.

    Satellite observations are a helpful tool for the identification of the sources for tropospheric emissions by providing global observations of the different trace gases. We present case studies for the combined observations of CH2O and NO2 derived from observations made by the Global Ozone Monitoring Experiment (GOME). Launched on the ERS-2 satellite in April, 1995, GOME has already performed continuous operations over 8 years. The satellite CH2O observations provide information concerning the localization of biomass burning (intense source of CH2O). The principal biomass burning areas can be observed in the amazonian forest and in central Africa. Other high CH2O emissions can be correlated with climatic events like El Nino in 1997, which induced dry conditions in Indonesia causing many forest fires. Tree isoprene emissions contribute also for high CH2O concentrations especially in southwest United States. Biomass burning are also an important tropospheric source for NO2 emissions and can be compared with the CH2O emissions to discriminate the influence of the vegetation type on the tropospheric emissions of both trace gases during biomass burning: the change in the vegetation type can be followed with the change in the intensity of CH2O and NO2 emissions.

  14. Towards a NNORSY Ozone Profile ECV from European Nadir UV/VIS Measurements

    NASA Astrophysics Data System (ADS)

    Felder, Martin; Kaifel, Anton; Huckle, Roger

    2010-12-01

    The Neural Network Ozone Retrieval System (NNORSY) has been adapted and applied to several different satellite instruments, including the backscatter UV/VIS instruments ERS2-GOME, SCIAMACHY and METOP-GOME-2. The retrieved long term ozone field hence spans the years 1995 till now. To provide target data for training the neural networks, the lower parts of the atmosphere are sampled by ozone sondes from the WOUDC and SHADOZ data archives. Higher altitudes are covered by a variety of limb-sounding instruments, including the SAGE and POAM series, HALOE, ACE-FTS and AURA-MLS. In this paper, we show ozone profile time series over the entire time range to demonstrate the "out-of-the-box" consistency and homogeneity of our data across the three different nadir sounders, i.e. without any kind of tuning applied. These features of Essential Climate Variable (ECV) datasets [1] also lie at the heart of the recently announced ESA Climate Change Initiative, to which we hope to contribute in the near future.

  15. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China from space

    NASA Astrophysics Data System (ADS)

    Hao, N.; Ding, A.; Valks, P.; Safieddine, S.; Clerbaux, C.; Trautmann, T.

    2013-12-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. Due to huge consumption of fossil fuels and rapid increase of traffic emissions in the past decades, many regions in China have been experiencing heavy air pollution. In China, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Publicly available in situ observations cannot provide sufficient spatial coverage and high consistence in data quality for a long-term period. Therefore, knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. Satellite retrievals with high spatial coverage and high consistence for a long period can well document the change of air pollution with monsoon. We apply multi-platform satellite observations by the GOME, SCIAMACHY, GOME-2, IASI, GOMOS, MIPAS and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NOx, HCHO and CH4) and other related trace gases over China. The potential of using the current generation of satellite instruments to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  16. Craniofacial features of subjects with adenoid, tonsillar, or adenotonsillar hypertrophy.

    PubMed

    Baroni, Michela; Ballanti, Fabiana; Franchi, Lorenzo; Cozza, Paola

    2011-01-01

    To analyze the craniofacial features in children with adenoid hypertrophy, tonsillar hypertrophy, and adenotonsillar hypertrophy. 20 patients with adenoid hypertrophy (AG), 20 subjects with tonsillar hypertrophy (TG) and 20 patients with adenotonsillar hypertrophy (ATG) were selected. A control group (CG) of 20 children with non-obstructive adenoids or tonsils was also obtained. Kruskal-Wallis test and Tukey's post hoc tests were used to compare the angular and linear measurements obtained from the lateral cephalograms. No significant differences were observed between AG and CG. Conversely TG exhibited smaller ANB and OVJ values and a larger SNB value when compared to both CG and AG, larger Go-Me, Ar-Gn and Ar-Go measures and a smaller NSGn angle with respect to AG. ATG showed a smaller ANB angle in comparison with CG and AG, larger Ar-Gn and Go-Me values when compared to AG, a smaller SNB angle and a larger NSGn angle with respect to TG. Subjects with tonsillar hypertrophy showed an increased length of the mandibular ramus, a more horizontal growth direction, an increased length of the mandibular body, a more anterior mandibular position and a smaller sagittal discrepancy between the maxilla and the mandible than subjects with adenoid hypertrophy. Copyright © 2010 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.

  17. Rapid economic growth leads to boost in NO2 pollution over India, as seen from space

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Burrows, John P.

    2016-04-01

    Over the past decades, the Indian economy has been growing at an exceptional pace. This growth was induced and accompanied by a strong increase of the Indian population. Consequently, traffic, electricity consumption, and industrial production have soared over the past decades, leading to a strong increase in fuel consumption and thus pollutant emissions. Nitrogen oxides (NO+NO2) are a major component of anthropogenic air pollution, playing key part in reaction cycles leading to the formation of tropospheric ozone. They are mainly emitted by the combustion of fossil fuels; other sources include production by lightning, biomass burning, and microbial activity in soils. Since the mid-1990s, space-borne measurements of tropospheric nitrogen dioxide (NO2) have been conducted by the GOME, SCIAMACHY, GOME-2, and OMI instruments. These instruments perform hyperspectral measurements of scattered and reflected sunlight. Their measurements are then analyzed using differential optical absorption spectroscopy (DOAS) to yield vertically integrated columnar trace gas abundances. Here, we will present the results of 20 years of NO2 measurements over the Indian subcontinent. After showing the spatial distribution of NO2 pollution over India, we will present time series for individual states and urban agglomerations. These time series will then be related to various indicators of economic development. Finally, we will highlight several instances where single industrial pollution sources and their development can clearly be identified from the NO2 maps and estimate their NO2 emissions.

  18. A new operational EUMETSAT product for the retrieval of aerosol optical properties over land (PMAp v2)

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Munro, Rosemary; Poli, Gabriele; Holdak, Andriy; Lang, Ruediger

    2016-04-01

    The retrieval of aerosol optical properties is an important task to provide data for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolution for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) has been delivered as an operational GOME product to our customers. The algorithm retrieves aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The product is now extended to pixels over land using a new release of the operational PMAp processor (PMAp v2). The pre-operational data dissemination of the new PMAp v2 data to our users is scheduled for March 2016. This presentation gives an overview on the new operational product PMAp v2 with a focus on the validation of the PMAp aerosol optical depth over land. The impact of different error sources on the results (e.g. surface contribution to the TOA reflectance) is discussed. We also show first results of upcoming extensions of our PMAp processor, in particular the improvement of the cloud/aerosol discrimination of thick aerosol events (e.g. volcanic ash plumes, desert dust outbreaks).

  19. Tropospheric Composition Change observed from Space (Invited)

    NASA Astrophysics Data System (ADS)

    Richter, A.; Hilboll, A.; Leitao, J.; Vrekoussis, M.; Wittrock, F.; Burrows, J. P.

    2010-12-01

    The composition of the troposphere is largely influenced by surface emissions of both natural and anthropogenic origins. These emissions change over time as result of human activities and natural variability, leading to varying atmospheric levels of primary and secondary pollutants. Satellite observations of sun light scattered back by the surface and the atmosphere can be used to retrieve information on atmospheric trace gases by application of optical absorption spectroscopy. In the UV and visible part of the spectrum, these measurements have good sensitivity to the lower troposphere providing information on relevant species such as O3, NO2, SO2, HCHO or glyoxal. Here, we report on recent results on tropospheric composition changes obtained from the GOME, SCIAMACHY and GOME-2 instruments which have a combined data record of nearly 15 years. The focus is on NO2 which shows an increasing trend over Asia and many large cities in countries with growing economies. At the same time, significant reductions are observed over the US and Europe, probably as result of changes in environmental legislation. SO2 signals have been decreasing over the US since 1996 while a strong upward trend was evident over China until recently when desulphurisation of power plant emissions came into effect. There also is evidence for increases in VOC levels over China which could be either of anthropogenic origin or from biogenic emissions.

  20. An improved glyoxal retrieval from OMI measurements

    NASA Astrophysics Data System (ADS)

    Alvarado, L. M. A.; Richter, A.; Vrekoussis, M.; Wittrock, F.; Hilboll, A.; Schreier, S. F.; Burrows, J. P.

    2014-06-01

    Satellite observations from the SCIAMACHY, GOME-2, and OMI spectrometers have been used to retrieve atmospheric columns of glyoxal (CHOCHO) with the DOAS method. High CHOCHO levels are found over regions with large biogenic and pyrogenic emissions, and hot-spots have been identified over areas of anthropogenic activities. This study focuses on the development of an improved retrieval for CHOCHO from measurements by the OMI instrument. From sensitivity tests, an optimal fitting window and polynomial degree are determined. Two different approaches to reduce the interference of liquid water absorption over oceanic regions are evaluated, achieving significant reduction of negative columns over clear water regions. Moreover, a high temperature absorption cross-section of nitrogen dioxide (NO2) is introduced in the DOAS retrieval to account for potential interferences of NO2 over regions with large anthropogenic emissions, leading to improved fit quality over these areas. A comparison with vertical CHOCHO columns retrieved from measurements of the GOME-2 and SCIAMACHY instruments over continental regions is performed, showing overall good consistency. Using the new OMI CHOCHO data set, the link between fires and glyoxal columns is investigated for two selected regions in Africa. In addition, mapped averages are computed for a fire event in the east of Moscow between mid-July and mid-August 2010. In both cases, enhanced CHOCHO levels are found in close spatial and temporal proximity to MODIS fire radiative power, demonstrating that pyrogenic emissions can be clearly identified in the OMI CHOCHO product.

  1. Mini MAX-DOAS Measurements of Air Pollutants over China

    NASA Astrophysics Data System (ADS)

    Staadt, Steffen; Hao, Nan; Trautmann, Thomas

    2016-08-01

    This study continues the work of Clémer et al., (2010) and is aimed to improve trace gas retrievals with mini MAX-DOAS measurements in Nanjing. Based on that work, aerosol extinction vertical profiles are retrieved using the bePRO inversion algorithm developed by the Royal Belgian Institute for Space Aeronomy (BIRA- IASB). Afterwards, the tropospheric trace gas vertical profiles and vertical column densities (VCDs) are retrieved by applying the optimal estimation method to the O4 MAX-DOAS measurements. The Profiles for N O2 , S O2 , glyoxal, formaldehyde and nitrous acid are obtained with different results and different settings for the DOAS measurement. The AODs show small positive correlation against the AERONET values. For NO2, the retrieval shows reasonable concentrations in winter as opposed to summer and has small positive correlations with GOME-2 data. The SO2 VCDs are not correlated with the GOME-2 data, due to high uncertainties from MAX-DOAS and satellite retrievals, while the vertical mixing ratios (VMR) show good agreement with in-situ data (SORPES) at Nanjing. Nitrous acid shows a maximum in winter and a minimum in summer, while glyoxal has its maximum in August and September.

  2. TORMS: Total Ozone Retrieval from MERIS in View of Application to Sentinel-3

    NASA Astrophysics Data System (ADS)

    Jolivet, Dominique; Bouvet, Marc; Lerot, Christophe; van Roozendael, Michel; Ramon, Didier

    2016-08-01

    An algorithm has been developed to retrieve total column of ozone (TCO) using MERIS TOA reflectances, which include the ozone Chappuis bands. The method assumes that the TOA reflectance spectrum in the absence of gaseous absorption can be modelled by a third order polynomial. TCO is then retrieved by making use of the difference between this polynomial calculated from bands number 1, 2, 10, 12 and 13, and the measured reflectance in band number 3, 4, 5, 6, 7 and 8 where ozone absorbs.This method has been applied to the full MERIS archive and MERIS TCOs have been compared to those retrieved more classically from the UV nadir sensor GOME-2A. The method is valid over bright and spectrally white surface such as snow/ice surfaces and optically thick clouds. The TCOs from MERIS and GOME-2A agree generally well over Antarctica, while MERIS tends to underestimate TCOs elsewhere. MERIS TCOs have also been compared to ground measurements and show a good correlation (bias and root mean square error of about 4 and 20 DU, respectively).

  3. Spectral classification of plants for satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Mahr, T.; Peper, E.; Pöhler, D.; Platt, U.; Wagner, T.

    2012-04-01

    DOAS (Differential Optical Absorbtion Spectroscopy) allows to determine the concentration of trace gases based on their specific absorptions cross-sections along a light path. Since 1995, this principle is employed successfully on satellite-based instruments like GOME, GOME-2 and SCIAMACHY for the global measurement of stratospheric and tropospheric trace gases like ozone and nitrogen oxides. Usually, spectral signatures from the ground, where a big part of the sunlight is reflected, are neglected in the evaluation. This can lead to errors in the trace gas determination. However, these structures offer the opportunity to identify surfaces of the earth and different types of vegetation. To analyse this influence, high resolved reflection spectra (FWHM 0.29 nm) from plants and other materials were measured between 350 and 1050 nm. A classification was performed according to the biological systematics (subdivision, class, order, genus, unranked classification), distribution (continent, climate zone), photosynthesis mechanism (C3, C4, CAM) and environmental conditions. Results of these measurements and first applications are presented.

  4. NILU-UV multi-filter radiometer total ozone columns: Comparison with satellite observations over Thessaloniki, Greece.

    PubMed

    Zempila, Melina Maria; Taylor, Michael; Koukouli, Maria Elissavet; Lerot, Christophe; Fragkos, Konstantinos; Fountoulakis, Ilias; Bais, Alkiviadis; Balis, Dimitrios; van Roozendael, Michel

    2017-07-15

    This study aims to construct and validate a neural network (NN) model for the production of high frequency (~1min) ground-based estimates of total ozone column (TOC) at a mid-latitude UV and ozone monitoring station in the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki (LAP/AUTh) for the years 2005-2014. In the first stage of model development, ~30,000 records of coincident solar UV spectral irradiance measurements from a Norsk Institutt for Luftforskning (NILU)-UV multi-filter radiometer and TOC measurements from a co-located Brewer spectroradiometer are used to train a NN to learn the nonlinear functional relation between the irradiances and TOC. The model is then subjected to sensitivity analysis and validation. Close agreement is obtained (R(2)=0.94, RMSE=8.21 DU and bias=-0.15 DU relative to the Brewer) for the training data in the correlation of NN estimates on Brewer derived TOC with 95% of the coincident data differing by less than 13 DU. In the second stage of development, a long time series (≥1 million records) of high frequency (~1min) NILU-UV ground-based measurements are presented as inputs to the NN model to generate high frequency TOC estimates. The advantage of the NN model is that it is not site dependent and is applicable to any NILU input data lying within the range of the training data. GOME/ERS-2, SCIAMACHY/Envisat, OMI/Aura and GOME2/MetOp-A TOC records are then used to perform a precise cross-validation analysis and comparison with the NILU TOC estimates over Thessaloniki. All 4 satellite TOC dataset are retrieved using the GOME Direct Fitting algorithm, version 3 (GODFIT_v3), for reasons of consistency. The NILU TOC estimates within ±30min of the overpass times agree well with the satellite TOC retrievals with coefficient of determination in the range 0.88≤R(2)≤0.90 for all sky conditions and 0.95≤R(2)≤0.96 for clear sky conditions. The mean fractional differences are found to be -0.67%±2.15%, -1

  5. Potential of multispectral synergism for observing ozone pollution by combining IASI-NG and UVNS measurements from the EPS-SG satellite

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Coman, Adriana; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2017-04-01

    Present and future satellite observations offer great potential for monitoring air quality on a daily and global basis. However, measurements from currently orbiting satellites do not allow a single sensor to accurately probe surface concentrations of gaseous pollutants such as tropospheric ozone. Combining information from IASI (Infrared Atmospheric Sounding Interferometer) and GOME-2 (Global Ozone Monitoring Experiment-2) respectively in the TIR and UV spectra, a recent multispectral method (referred to as IASI+GOME-2) has shown enhanced sensitivity for probing ozone in the lowermost troposphere (LMT, below 3 km altitude) with maximum sensitivity down to 2.20 km a.s.l. over land, while sensitivity for IASI or GOME-2 alone only peaks at 3 to 4 km at the lowest.In this work we develop a pseudo-observation simulator and evaluate the potential of future EPS-SG (EUMETSAT Polar System - Second Generation) satellite observations, from new-generation sensors IASI-NG (Infrared Atmospheric Sounding Interferometer - New Generation) and UVNS (Ultraviolet Visible Near-infrared Shortwave-infrared), to observe near-surface O3 through the IASI-NG+UVNS multispectral method. The pseudo-real state of the atmosphere is provided by the MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle) chemical transport model. We perform full and accurate forward and inverse radiative transfer calculations for a period of 4 days (8-11 July 2010) over Europe.In the LMT, there is a remarkable agreement in the geographical distribution of O3 partial columns between IASI-NG+UVNS pseudo-observations and the corresponding MOCAGE pseudo-reality. With respect to synthetic IASI+GOME-2 products, IASI-NG+UVNS shows a higher correlation between pseudo-observations and pseudo-reality, which is enhanced by about 12 %. The bias on high ozone retrieval is reduced and the average accuracy increases by 22 %. The sensitivity to LMT ozone is also enhanced. On average, the degree of freedom for signal is

  6. Assessing potential changes of chestnut productivity in Europe under future climate conditions

    NASA Astrophysics Data System (ADS)

    Calheiros, T.; Pereira, M. G.; Pinto, J. G.; Caramelo, L.; Gomes-Laranjo, J.; Dacamara, C. C.

    2012-04-01

    The European chestnut is cultivated for its nuts and wood. Several studies point to the dependency of chestnut productivity on specific soil and climate characteristics. For instance, this species dislikes chalky and poorly drained soils, appreciates sedimentary, siliceous and acidic to neutral soils. Chestnut trees also seems to appreciate annual mean values of sunlight spanning between 2400 and 2600 h, rainfall ranging between 600 and 1500 mm, mean annual temperature between 9 and 13°C, 27°C being the mean of the maximum temperature (Heiniger and Conedera, 1992; Gomes-Laranjo et al.,2008). The amount of heat between May and October must range between 1800°D and 2400°D (Dinis et al., 2011) . In Poland, the growing season is defined as the period of time when the mean 24-h temperature is greater than 5°C (Wilczynski and Podalski, 2007). In Portugal, maximum photosynthetic activity occurs at 24-28°C for adult trees, but exhibits more than 50% of termoinhibition when the air temperature is above 32°C, which is frequent during summer (Gomes- Laranjo et al., 2006, 2008). Recently Pereira et al (2011) identified a set of meteorological variables/parameters with high impact on chestnut productivity. The main purpose of this work is to assess the potential impacts of future climate change on chestnut productivity in Portugal as well as on European chestnut orchards. First, observed data from the European Climate assessment (ECA) and simulations with the Regional Circulation Model (RCM) COSMO-CLM for recent climate conditions are used to assess the ability of the RCM to model the actual meteorological conditions. Then, ensemble projections from the ECHAM5/COSMO-CLM model chain for two climate scenarios (A1B and B1) are used to estimate the values of relevant meteorological variables and parameters und future climate conditions. Simulated values are then compared with those obtained for present climate. Results point to changes in the spatial and temporal

  7. Observing the Impact of the Anthropocene from Space: the Evolution of Atmospheric Observation

    NASA Astrophysics Data System (ADS)

    Burrows, John P.

    2016-04-01

    From the Neolithic revolution to the industrial revolution over ~ 10 000 years, the earth's population rose from several millions to 1 Billion powered by energy from a mixture of biofuels, water and solar power and a limited amount of the combustion of coal. The industrial revolution began in the UK in the late 18th century, and has been fuelled by the combustion of fossil fuels, initially coal but then oil and gas. This has led to a dramatic rise in both the human population, now comprising over 7 Billion with more than 50% living in urban areas, and its standard of living. The expectation is that by 2050 population will be of the order of 10 Billion with 75% dwelling in urban areas. Anthropogenic activity has resulted in pollution from the local to the global scale, changes in land use, the destruction of stratospheric ozone, the modification of biogeochemical cycling, the destruction of species, ecosystems and ecosystem services and climate change. The earth has entered a new geological epoch the anthropocene. The observation of atmospheric composition provides a unique early warning of the natural and anthropogenic origins of change. Consistent and consolidated measurements from the local to the global scale are required to test our knowledge of the biogeochemical cycles, which determine atmospheric composition, and to assess and attribute accurately their modification by anthropogenic activity. To achieve global measurements of atmospheric constituents (trace gases, aerosol and cloud parameters) the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY), Project was initiated in the early 1980s. This was the first passive remote sensing space based instrumentation, designed to make simultaneous contiguous measurements of the solar upwelling radiation at the top of the atmosphere from the ultraviolet to the shortwave infrared. The SCIAMACHY project resulted in measurements of the instruments GOME, originally called SCIA-mini, on ESA

  8. Potential of multispectral synergism for observing tropospheric ozone by combining IR and UV measurements from incoming LEO (EPS-SG) and GEO (MTG) satellite sensors

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Coman, Adriana; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2017-04-01

    Satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors do not allow to probe surface concentrations of gaseous pollutants such as tropospheric ozone (Liu et al., 2010). Using single-band approaches based on spaceborne measurements of either thermal infrared radiance (TIR, Eremenko et al., 2008) or ultraviolet reflectance (UV, Liu et al., 2010) only ozone down to the lower troposphere (3 km) may be observed. A recent multispectral method (referred to as IASI+GOME-2) combining the information of IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the TIR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere (LMT, below 3 km of altitude) with maximum sensitivity down to 2.20 km a.s.l. over land, while sensitivity for IASI or GOME-2 only peaks at 3 to 4 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years on both low and geostationary orbits, such as EPS-SG (EUMETSAT Polar System Second Generation) and MTG (Meteosat Third Generation), carrying respectively IASI-NG (for IR) and UVNS (for UV), and IRS (for IR) and UVN (Sentinel 4, for UV). This new-generation sensors will enhance the capacity to observe ozone pollution and particularly by synergism of multispectral measurements. In this work we develop a pseudo-observation simulator and evaluate the potential of future EPS-SG and MTG satellite observations, through IASI-NG+UVNS and IRS+UVN multispectral methods to observe near-surface O3. The pseudo-real state of atmosphere (nature run) is provided by MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle) chemical transport model. Simulations are calibrated by careful comparisons with real data, to ensure the best coherence between pseudo-reality and reality, as well as between the pseudo-observation simulator and existing satellite products. We perform full and

  9. Rain-induced emission pulses of NOx and HCHO from soils in African regions after dry spells as viewed by satellite sensors

    NASA Astrophysics Data System (ADS)

    Zörner, Jan; Penning de Vries, Marloes; Beirle, Steffen; Veres, Patrick; Williams, Jonathan; Wagner, Thomas

    2014-05-01

    Outside industrial areas, soil emissions of NOx (stemming from bacterial emissions of NO) represent a considerable fraction of total NOx emissions, and may even dominate in remote tropical and agricultural areas. NOx fluxes from soils are controlled by abiotic and microbiological processes which depend on ambient environmental conditions. Rain-induced spikes in NOx have been observed by in-situ measurements and also satellite observations. However, the estimation of soil emissions over broad geographic regions remains uncertain using bottom-up approaches. Independent, global satellite measurements can help constrain emissions used in chemical models. Laboratory experiments on soil fluxes suggest that significant HCHO emissions from soil can occur. However, it has not been previously attempted to detect HCHO emissions from wetted soils by using satellite observations. This study investigates the evolution of tropospheric NO2 (as a proxy for NOx) and HCHO column densities before and after the first rain fall event following a prolonged dry period in semi-arid regions, deserts as well as tropical regions in Africa. Tropospheric NO2 and HCHO columns retrieved from OMI aboard the AURA satellite, GOME-2 aboard METOP and SCIAMACHY aboard ENVISAT are used to study and inter-compare the observed responses of the trace gases with multiple space-based instruments. The observed responses are prone to be affected by other sources like lightning, fire, influx from polluted air masses, as well measurement errors in the satellite retrieval caused by manifold reasons such as an increased cloud contamination. Thus, much care is taken verify that the observed spikes reflect enhancements in soil emissions. Total column measurements of H2O from GOME-2 give further insight into the atmospheric state and help to explain the increase in humidity before the first precipitation event. The analysis is not only conducted for averages of distinct geographic regions, i.e. the Sahel, but also

  10. Measurements of Tropospheric NO2 in Romania Using a Zenith-Sky Mobile DOAS System and Comparisons with Satellite Observations

    PubMed Central

    Constantin, Daniel-Eduard; Merlaud, Alexis; Van Roozendael, Michel; Voiculescu, Mirela; Fayt, Caroline; Hendrick, François; Pinardi, Gaia; Georgescu, Lucian

    2013-01-01

    In this paper we present a new method for retrieving tropospheric NO2 Vertical Column Density (VCD) from zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements using mobile observations. This method was used during three days in the summer of 2011 in Romania, being to our knowledge the first mobile DOAS measurements peformed in this country. The measurements were carried out over large and different areas using a mobile DOAS system installed in a car. We present here a step-by-step retrieval of tropospheric VCD using complementary observations from ground and space which take into account the stratospheric contribution, which is a step forward compared to other similar studies. The detailed error budget indicates that the typical uncertainty on the retrieved NO2tropospheric VCD is less than 25%. The resulting ground-based data set is compared to satellite measurements from the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2). For instance, on 18 July 2011, in an industrial area located at 47.03°N, 22.45°E, GOME-2 observes a tropospheric VCD value of (3.4 ± 1.9) × 1015 molec./cm2, while average mobile measurements in the same area give a value of (3.4 ± 0.7) × 1015 molec./cm2. On 22 August 2011, around Ploiesti city (44.99°N, 26.1°E), the tropospheric VCD observed by satellites is (3.3 ± 1.9) × 1015 molec./cm2 (GOME-2) and (3.2 ± 3.2) × 1015 molec./cm2 (OMI), while average mobile measurements give (3.8 ± 0.8) × 1015 molec./cm2. Average ground measurements over “clean areas”, on 18 July 2011, give (2.5 ± 0.6) × 1015 molec./cm2 while the satellite observes a value of (1.8 ± 1.3) × 1015 molec./cm2. PMID:23519349

  11. Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Morbidelli, Alessandro; Van Laerhoven, Christa; Gomes, Rodney; Tsiganis, Kleomenis

    2008-07-01

    We explore the origin and orbital evolution of the Kuiper belt in the framework of a recent model of the dynamical evolution of the giant planets, sometimes known as the Nice model. This model is characterized by a short, but violent, instability phase, during which the planets were on large eccentricity orbits. It successfully explains, for the first time, the current orbital architecture of the giant planets [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461], the existence of the Trojans populations of Jupiter and Neptune [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465], and the origin of the late heavy bombardment of the terrestrial planets [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469]. One characteristic of this model is that the proto-planetary disk must have been truncated at roughly 30 to 35 AU so that Neptune would stop migrating at its currently observed location. As a result, the Kuiper belt would have initially been empty. In this paper we present a new dynamical mechanism which can deliver objects from the region interior to ˜35 AU to the Kuiper belt without excessive inclination excitation. In particular, we show that during the phase when Neptune's eccentricity is large, the region interior to its 1:2 mean motion resonance becomes unstable and disk particles can diffuse into this area. In addition, we perform numerical simulations where the planets are forced to evolve using fictitious analytic forces, in a way consistent with the direct N-body simulations of the Nice model. Assuming that the last encounter with Uranus delivered Neptune onto a low-inclination orbit with a semi-major axis of ˜27 AU and an eccentricity of ˜0.3, and that subsequently Neptune's eccentricity damped in ˜1 My, our simulations reproduce the main observed properties of the Kuiper belt at an unprecedented level. In particular, our results explain, at least qualitatively

  12. New Developments in the SCIAMACHY Level 2 Ground Processor Towards Version 7

    NASA Astrophysics Data System (ADS)

    Meringer, Markus; Noël, Stefan; Lichtenberg, Günter; Lerot, Christophe; Theys, Nicolas; Fehr, Thorsten; Dehn, Angelika; Liebing, Patricia; Gretschany, Sergei

    2016-07-01

    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY) aboard ESA's environmental satellite ENVISAT observed the Earth's atmosphere in limb, nadir, and solar/lunar occultation geometries covering the UV-Visible to NIR spectral range. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002. SCIAMACHY doubled its originally planned in-orbit lifetime of five years before the communication to ENVISAT was severed in April 2012, and the mission entered its post-operational phase. In order to preserve the best quality of the outstanding data recorded by SCIAMACHY, data processors are still being updated. This presentation will highlight three new developments that are currently being incorporated into the forthcoming version 7 of ESA's operational level 2 processor: 1. Tropospheric BrO, a new retrieval based on the scientific algorithm of (Theys et al., 2011). This algorithm had originally been developed for the GOME-2 sensor and was later adapted for SCIAMACHY. The main principle of the new algorithm is to split BrO total columns, which are already an operational product, into stratospheric VCD_{strat} and tropospheric VCD_{trop} fractions. BrO VCD_{strat} is determined from a climatological approach, driven by SCIAMACHY O_3 and NO_2 observations. Tropospheric vertical column densities are then determined as difference VCD_{trop}=VCD_{total}-VCD_{strat}. 2. Improved cloud flagging using limb measurements (Liebing, 2015). Limb cloud flags are already part of the SCIAMACHY L2 product. They are currently calculated employing the scientific algorithm developed by (Eichmann et al., 2015). Clouds are categorized into four types: water, ice, polar stratospheric and noctilucent clouds. High atmospheric aerosol loadings, however, often lead to spurious cloud flags, when aerosols had been misidentified as clouds. The new algorithm will better discriminate between aerosol and clouds. It will also have a higher

  13. Potentials of satellite derived SIF products to constrain GPP simulated by the new ORCHIDEE-FluOR terrestrial model at the global scale

    NASA Astrophysics Data System (ADS)

    Bacour, C.; Maignan, F.; Porcar-Castell, A.; MacBean, N.; Goulas, Y.; Flexas, J.; Guanter, L.; Joiner, J.; Peylin, P.

    2016-12-01

    A new era for improving our knowledge of the terrestrial carbon cycle at the global scale has begun with recent studies on the relationships between remotely sensed Sun Induce Fluorescence (SIF) and plant photosynthetic activity (GPP), and the availability of such satellite-derived products now "routinely" produced from GOSAT, GOME-2, or OCO-2 observations. Assimilating SIF data into terrestrial ecosystem models (TEMs) represents a novel opportunity to reduce the uncertainty of their prediction with respect to carbon-climate feedbacks, in particular the uncertainties resulting from inaccurate parameter values. A prerequisite is a correct representation in TEMs of the several drivers of plant fluorescence from the leaf to the canopy scale, and in particular the competing processes of photochemistry and non photochemical quenching (NPQ).In this study, we present the first results of a global scale assimilation of GOME-2 SIF products within a new version of the ORCHIDEE land surface model including a physical module of plant fluorescence. At the leaf level, the regulation of fluorescence yield is simulated both by the photosynthesis module of ORCHIDEE to calculate the photochemical yield and by a parametric model to estimate NPQ. The latter has been calibrated on leaf fluorescence measurements performed for boreal coniferous and Mediterranean vegetation species. A parametric representation of the SCOPE radiative transfer model is used to model the plant fluorescence fluxes for PSI and PSII and the scaling up to the canopy level. The ORCHIDEE-FluOR model is firstly evaluated with respect to in situ measurements of plant fluorescence flux and photochemical yield for scots pine and wheat. The potentials of SIF data to constrain the modelled GPP are evaluated by assimilating one year of GOME-2-SIF products within ORCHIDEE-FluOR. We investigate in particular the changes in the spatial patterns of GPP following the optimization of the photosynthesis and phenology parameters

  14. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Takele Kenea, S.; Mengistu Tsidu, G.; Blumenstock, T.; Hase, F.; von Clarmann, T.; Stiller, G. P.

    2013-02-01

    Since May 2009, high-resolution Fourier Transform Infrared (FTIR) solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level), Ethiopia. The vertical profiles and total column amounts of ozone (O3) are deduced from the spectra by using the retrieval code PROFFIT (V9.5) and regularly determined instrumental line shape (ILS). A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR) profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS), Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Tropospheric Emission Spectrometer (TES), Ozone Monitoring Instrument (OMI), Atmospheric Infrared Sounding (AIRS) and Global Ozone Monitoring Experiment (GOME-2) instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and -0.9 to -9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  15. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming

  16. Comparisons of ground-based tropospheric NO2 MAX-DOAS measurements to satellite observations with the aid of an air quality model over the Thessaloniki area, Greece

    NASA Astrophysics Data System (ADS)

    Drosoglou, Theano; Bais, Alkiviadis F.; Zyrichidou, Irene; Kouremeti, Natalia; Poupkou, Anastasia; Liora, Natalia; Giannaros, Christos; Elissavet Koukouli, Maria; Balis, Dimitris; Melas, Dimitrios

    2017-05-01

    One of the main issues arising from the comparison of ground-based and satellite measurements is the difference in spatial representativeness, which for locations with inhomogeneous spatial distribution of pollutants may lead to significant differences between the two data sets. In order to investigate the spatial variability of tropospheric NO2 within a sub-satellite pixel, a campaign which lasted for about 6 months was held in the greater area of Thessaloniki, Greece. Three multi-axial differential optical absorption spectroscopy (MAX-DOAS) systems performed measurements of tropospheric NO2 columns at different sites representative of urban, suburban and rural conditions. The direct comparison of these ground-based measurements with corresponding products from the Ozone Monitoring Instrument onboard NASA's Aura satellite (OMI/Aura) showed good agreement over the rural and suburban areas, while the comparison with the Global Ozone Monitoring Experiment-2 (GOME-2) onboard EUMETSAT's Meteorological Operational satellites' (MetOp-A and MetOp-B) observations is good only over the rural area. GOME-2A and GOME-2B sensors show an average underestimation of tropospheric NO2 over the urban area of about 10.51 ± 8.32 × 1015 and 10.21 ± 8.87 × 1015 molecules cm-2, respectively. The mean difference between ground-based and OMI observations is significantly lower (6.60 ± 5.71 × 1015 molecules cm-2). The differences found in the comparisons of MAX-DOAS data with the different satellite sensors can be attributed to the higher spatial resolution of OMI, as well as the different overpass times and NO2 retrieval algorithms of the satellites. OMI data were adjusted using factors calculated by an air quality modeling tool, consisting of the Weather Research and Forecasting (WRF) mesoscale meteorological model and the Comprehensive Air Quality Model with Extensions (CAMx) multiscale photochemical transport model. This approach resulted in significant improvement of the

  17. The Impact Rate on Solar System Satellites During the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Dones, Henry C. Luke; Levison, H. F.

    2012-10-01

    Nimmo and Korycansky (2012; henceforth NK12) found that if the outer Solar System underwent a Late Heavy Bombardment (LHB) in the Nice model, the mass striking the icy satellites at speeds up to tens of km/s would have vaporized so much ice that moons such as Mimas, Enceladus, and Miranda would have been devolatilized. NK12's possible explanations of this apparent discrepancy with observations include (1) the mass influx was a factor of 10 less than that in the Nice model; (2) the mass distribution of the impactors was top-heavy, so that luck might have saved some of the moons from suffering large, vapor-removing impacts; or (3) the inner moons formed after the LHB. NK12 calculated the mass influx onto the satellites from the lunar impact rate estimated by Gomes et al. (2005) and scaling factors calculated by Zahnle et al. (1998, 2003; also see Barr and Canup 2010). Production of vapor in hypervelocity impacts was calculated from Kraus et al. (2011). We are calculating impact rates onto the giant planets and their moons in the context of the "Nice II" model (Levison et al. 2011). We find that NK12's assumed influx is an overestimate, by an amount we are quantifying. We will discuss implications for the origin of icy satellites. We thank the NASA Lunar Science Institute (http://lunarscience.nasa.gov/) for support. Barr, A.C., Canup, R.M., Nature Geoscience 3, 164-167 (2010). Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., Nature 435, 466-469 (2005). Kraus, R.G., Senft, L.E., Stewart, S.T., Icarus 214, 724-738 (2011). Levison, H.F., Morbidelli, A., Tsiganis, K., Nesvorný, D., Gomes, R., Astron. J. 142, article id. 152 (2011). Nimmo, F., Korycansky, D.G., Icarus 219, 508-510 (2012). Zahnle, K., Dones, L., Levison, H.F., Icarus 136, 202-222 (1998). Zahnle, K., Schenk, P., Levison, H.F., Dones, L., Icarus 163, 263-289 (2003).

  18. A comparative analysis of UV nadir-backscatter and infrared limb-emission ozone data assimilation

    NASA Astrophysics Data System (ADS)

    Dragani, Rossana

    2016-07-01

    This paper presents a comparative assessment of ultraviolet nadir-backscatter and infrared limb-emission ozone profile assimilation. The Meteorological Operational Satellite A (MetOp-A) Global Ozone Monitoring Experiment 2 (GOME-2) nadir and the ENVISAT Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) limb profiles, generated by the ozone consortium of the European Space Agency Climate Change Initiative (ESA O3-CCI), were individually added to a reference set of ozone observations and assimilated in the European Centre for Medium-Range Weather Forecasts (ECMWF) data assimilation system (DAS). The two sets of resulting analyses were compared with that from a control experiment, only constrained by the reference dataset, and independent, unassimilated observations. Comparisons with independent observations show that both datasets improve the stratospheric ozone distribution. The changes inferred by the limb-based observations are more localized and, in places, more important than those implied by the nadir profiles, albeit they have a much lower number of observations. A small degradation (up to 0.25 mg kg-1 for GOME-2 and 0.5 mg kg-1 for MIPAS in the mass mixing ratio) is found in the tropics between 20 and 30 hPa. In the lowermost troposphere below its vertical coverage, the limb data are found to be able to modify the ozone distribution with changes as large as 60 %. Comparisons of the ozone analyses with sonde data show that at those levels the assimilation of GOME-2 leads to about 1 Dobson Unit (DU) smaller root mean square error (RMSE) than that of MIPAS. However, the assimilation of MIPAS can still improve the quality of the ozone analyses and - with a reduction in the RMSE of up to about 2 DU - outperform the control experiment thanks to its synergistic assimilation with total-column ozone data within the DAS. High vertical resolution ozone profile observations are essential to accurately monitor and forecast ozone concentrations in a DAS

  19. The CEOS Atmospheric Composition Constellation (ACC), an Integrated Observing System

    NASA Astrophysics Data System (ADS)

    Hilsenrath, E.; Langen, J.; Zehner, C.

    2008-05-01

    participating space agencies. These include 1) Time of day changes in NO2 using Aura/OMI and Metop/GOME-2. 2) Near-real-time fire detection and smoke forecasts using multiple satellites (A-Train, GOES, GOME-2, MSG, etc) and trajectory model, and 3) Improved volcanic ash alerts for aviation hazard avoidance from satellite SO2 and ash data from SCIAMACHY, OMI, GOME-2, AIRS and SEVIRI. Each of the three projects will address the GEO SBAs with consideration to discovery and interoperability of their data products. The status of the ACC studies will be reviewed with a progress report on the above three projects.

  20. Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns

    NASA Astrophysics Data System (ADS)

    Martin, Randall V.; Jacob, Daniel J.; Chance, Kelly; Kurosu, Thomas P.; Palmer, Paul I.; Evans, Mathew J.

    2003-09-01

    We use tropospheric NO2 columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument to derive top-down constraints on emissions of nitrogen oxides (NOx ≡ NO + NO2), and combine these with a priori information from a bottom-up emission inventory (with error weighting) to achieve an optimized a posteriori estimate of the global distribution of surface NOx emissions. Our GOME NO2 retrieval improves on previous work by accounting for scattering and absorption of radiation by aerosols; the effect on the air mass factor (AMF) ranges from +10 to -40% depending on the region. Our AMF also includes local information on relative vertical profiles (shape factors) of NO2 from a global 3-D chemical transport model (GEOS-CHEM); assumption of a globally uniform shape factor, as in most previous retrievals, would introduce regional biases of up to 40% over industrial regions and a factor of 2 over remote regions. We derive a top-down NOx emission inventory from the GOME data by using the local GEOS-CHEM relationship between NO2 columns and NOx emissions. The resulting NOx emissions for industrial regions are aseasonal, despite large seasonal variation in NO2 columns, providing confidence in the method. Top-down errors in monthly NOx emissions are comparable with bottom-up errors over source regions. Annual global a posteriori errors are half of a priori errors. Our global a posteriori estimate for annual land surface NOx emissions (37.7 Tg N yr-1) agrees closely with the GEIA-based a priori (36.4) and with the EDGAR 3.0 bottom-up inventory (36.6), but there are significant regional differences. A posteriori NOx emissions are higher by 50-100% in the Po Valley, Tehran, and Riyadh urban areas, and by 25-35% in Japan and South Africa. Biomass burning emissions from India, central Africa, and Brazil are lower by up to 50%; soil NOx emissions are appreciably higher in the western United States, the Sahel, and southern Europe.

  1. Total ozone trends and variability during 1979-2012 from merged datasets of various satellites

    NASA Astrophysics Data System (ADS)

    Chehade, W.; Burrows, J. P.; Weber, M.

    2013-11-01

    The study presents a~long term statistical trend analysis of total ozone datasets obtained from various satellites. A multi-variate linear regression was applied to annual mean zonal mean data using various natural and anthropogenic explanatory variables that represent dynamical and chemical processes which modify global ozone distributions in a changing climate. The study investigated the magnitude and zonal distribution of the different atmospheric chemical and dynamical factors to long-term total ozone changes. The regression model included the equivalent effective stratospheric chlorine (EESC), the 11 yr solar cycle, the Quasi-Biennial Oscillation (QBO), stratospheric aerosol loading describing the effects from major volcanic eruptions, the El Niño/Southern Oscillation (ENSO), the Arctic and Antarctic Oscillation (AO/AAO), and accumulated eddy heat flux (EHF), the latter representing changes due to the Brewer-Dobson circulation. The total ozone column dataset used here comprises the SBUV/TOMS/OMI merged data (1979-2012) MOD V8.0, the SBUV/SBUV-2 merged V8.6 and the merged GOME/SCIAMACHY/GOME-2 (GSG) WFDOAS merged data (1995-2012). The trend analysis was performed for twenty six 5° wide latitude bands from 65° S to 65° N, the analysis explained most of the ozone variability. The results show that QBO dominates the ozone variability in the tropics (±7 DU) while at higher latitudes, the dynamical indices, AO/AAO and eddy heat flux, have substantial influence on total ozone variations by up to ±10 DU. Volcanic aerosols are only prominent during the eruption periods and these together with the ENSO signal are more evident in the Northern Hemisphere. The signature of the solar cycle is evident over all latitudes and contributes about 10 DU from solar maximum to solar minimum. EESC is found to be a main contributor to the long-term ozone decline and the trend changes after the end of 1990s. A positive significant trend in total ozone columns is found after 1997

  2. CIE, Vitamin D and DNA Damage: A Synergetic Study in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Zempila, Melina Maria; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria Elissavet; Bais, Alkiviadis; Arola, Antii; van Geffen, Jos; van Weele, Michiel; van der A, Ronald; Kouremeti, Natalia; Kazadzis, Stelios; Meleti, Chariklia; Balis, Dimitrios

    2016-08-01

    The present study aims to validate different approaches for the estimation of three photobiological effective doses: the erythemal UV, the vitamin D and that for DNA damage, using high temporal resolution surface- based measurements of solar UV from 2005-2015. Data from a UV spectrophotometer, a multi-filter radiometer, and a UV radiation pyranometer that are located in Thessaloniki, Greece are used together with empirical relations, algorithms and models in order to calculate the desired quantities. In addition to the surface-based dose retrievals, OMI/Aura and the combined SCIAMACHY/Envisat and GOME/MetopA satellite products are also used in order to assess the accuracy of each method for deriving the photobiological doses.

  3. PREFACE: High Performance Computing Symposium 2013 (HPCS 2013)

    NASA Astrophysics Data System (ADS)

    Dursi, Jonathan; Mohieddin Abukhdeir, Nasser; Daley, Mark; Jurisica, Igor; Mewhort, Doug; Meyer, Ralf; Slater, Gary

    2014-10-01

    The Program committee of HPCS2013 would like to thank those who contributed to HPCS2013, through the technical program, the Birds of Feather sessions, the vendor overviews, the networking sessions, or for attending and grilling the speakers in all of theses sessions with great questions and contributing to fantastic discussions. We'd particularly like to highlight the best paper award presented at the conference, going to ''The Making of Big Brain'', presented by Marc-Étienne Rousseau for the Big Brain team; the best student paper for ''Towards a Resource Reservation Approach for an Opportunistic Computing Environment'', presented by Eliza Gomes; and the best visualization, to a movie of an amazing globe-to-individual-building level simulation of the evolution of a toxic plume over a city, presented by Bertrand Denis of the Canadian Meteorological Centre. It was a great conference, and we look forward to seeing you in Halifax for HPCS2014!

  4. Patient-specific instrumentation for total shoulder arthroplasty.

    PubMed

    Gomes, Nuno Sampaio

    2016-05-01

    Shoulder arthroplasty is a demanding procedure with a known complication rate. Most complications are associated with the glenoid component, a fact that has stimulated investigation into that specific component of the implant. Avoiding glenoid component malposition is very important and is a key reason for recent developments in pre-operative planning and instrumentation to minimise risk.Patient-specific instrumentation (PSI) was developed as an alternative to navigation systems, originally for total knee arthroplasty, and is a valid option for shoulder replacements today. It offers increased accuracy in the placement of the glenoid component, which improves the likelihood of an optimal outcome.A description of the method of pre-operative planning and surgical technique is presented, based on the author's experience and a review of the current literature. Cite this article: Gomes N. Patient-specific instrumentation for total shoulder arthroplasty. EFORT Open Rev 2016;1:177-182. DOI: 10.1302/2058-5241.1.000033.

  5. Applications of Solar Induced Fluorescence (SIF) to Constrain Global Photosynthesis

    NASA Astrophysics Data System (ADS)

    Parazoo, N.; Frankenberg, C.; Bowman, K. W.

    2015-12-01

    Chlorophyll fluorescence has been a major tool for basic research in photosynthesis for nearly a century. Recently, it was discovered that solar induced fluorescence (SIF) can be accurately retrieved from space using high spectral resolution radiances from the Japanese GOSAT and European GOME-2 instruments. Over the last five years, global SIF measurements have provided key new insights into the global distribution and functioning of plant photosynthesis, providing a new way to quantify global gross primary production (GPP), detect regional-scale changes in plant productivity in relation to light use efficiency and water stress, disentangle biological contributions to atmospheric CO2 mole fractions, and refine process understanding in terrestrial biosphere models. OCO-2, launched in July 2014, promises to drive further scientific advances through unprecedented sampling density and smaller ground pixel sizes. We highlight some of the key recent research applications of satellite SIF, discuss future research directions, and present first results from OCO-2.

  6. Estimating the volcanic emission rate and atmospheric lifetime of SO2 from space: a case study for Kīlauea volcano, Hawai'i

    USGS Publications Warehouse

    Beirle, Steffen; Hörmann, Christoph; Penning de Vries, Malouse; Dörner, Stefan; Kern, Christoph; Wagner, Thomas

    2014-01-01

    We present an analysis of SO2 column densities derived from GOME-2 satellite measurements for the Kīlauea volcano (Hawai`i) for 2007–2012. During a period of enhanced degassing activity in March–November 2008, monthly mean SO2 emission rates and effective SO2 lifetimes are determined simultaneously from the observed downwind plume evolution and meteorological wind fields, without further model input. Kīlauea is particularly suited for quantitative investigations from satellite observations owing to the absence of interfering sources, the clearly defined downwind plumes caused by steady trade winds, and generally low cloud fractions. For March–November 2008, the effective SO2 lifetime is 1–2 days, and Kīlauea SO2 emission rates are 9–21 kt day−1, which is about 3 times higher than initially reported from ground-based monitoring systems.

  7. Global 3-D Modeling Studies Of Tropospheric Ozone And Related Gases

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Logan, Jennifer A.

    2003-01-01

    Our research was targeted at three issues: (1) the factors controlling ozone in the tropical troposphere, (2) the Asian outflow of ozone and its precursors, and (3) the causes of decadal trends observed in ozone and CO. We have also used support from this ACMAP grant to (1) work with Kelly Chance on the retrieval and interpretation of HCHO and NO2 observations from GOME, and (2) develop GEOS-CHEM into a versatile model supporting the work of a large number of users including outside Harvard. ACMAP has provided the core support for GEOS-CHEM development. Applications of the GEOS-CHEM model with primary support from ACMAP are discussed below. A list of publications resulting from this grant is given at the end of the report.

  8. Use of terrestrial laser scanning for engineering geological applications on volcanic rock slopes - an example from Madeira island (Portugal)

    NASA Astrophysics Data System (ADS)

    Nguyen, H. T.; Fernandez-Steeger, T. M.; Wiatr, T.; Rodrigues, D.; Azzam, R.

    2011-03-01

    This study focuses on the adoption of a modern, widely-used Terrestrial Laser Scanner (TLS) application to investigate volcanic rock slopes in Ribeira de João Gomes valley (Funchal, Madeira island). The TLS data acquisition in May and December 2008 provided information for a characterization of the volcanic environment, detailed structural analysis and detection of potentially unstable rock masses on a slope. Using this information, it was possible to determine specific parameters for numerical rockfall simulations such as average block size, shape or potential sources. By including additional data, such as surface roughness, the results from numerical rockfall simulations allowed us to classify different hazardous areas based on run-out distances, frequency of impacts and related kinetic energy. Afterwards, a monitoring of hazardous areas can be performed in order to establish a rockfall inventory.

  9. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    NASA Astrophysics Data System (ADS)

    Popp, C.; Wang, P.; Brunner, D.; Stammes, P.; Zhou, Y.; Grzegorski, M.

    2011-03-01

    A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm. To date, a relatively coarse resolution (1° × 1°) surface reflectance dataset from GOME (Global Ozone Monitoring Experiment) Lambert-equivalent reflectivity (LER) is used in FRESCO+. The GOME LER climatology does not account for the usually higher spatial resolution of UV/VIS instruments designed for trace gas remote sensing which introduces several artefacts, e.g. in regions with sharp spectral contrasts like coastlines or over bright surface targets. Therefore, MERIS black-sky albedo (BSA) data from the period October 2002 to October 2006 were aggregated to a grid of 0.25° × 0.25° for each month of the year and for different spectral channels. In contrary to other available surface reflectivity datasets, MERIS includes channels at 754 nm and 775 nm which are located close to the spectral windows required for O2 A-band cloud retrievals. The MERIS BSA in the near-infrared compares well to Moderate Resolution Imaging Spectroradiometer (MODIS) derived BSA with an average difference lower than 1% and a correlation coefficient of 0.98. However, when relating MERIS BSA to GOME LER a distinctly lower correlation (0.80) and enhanced scatter is found. Effective cloud fractions from two exemplary months (January and July 2006) of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) data were subsequently derived with FRESCO+ and compared to those from the Heidelberg Iterative Cloud Retrieval Utilities (HICRU) algorithm. The MERIS climatology generally improves FRESCO+ effective cloud fractions. In particular small cloud fractions are in better agreement with HICRU. This is of importance for atmospheric trace gas

  10. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    NASA Astrophysics Data System (ADS)

    Popp, C.; Wang, P.; Brunner, D.; Stammes, P.; Zhou, Y.; Grzegorski, M.

    2010-10-01

    A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm. To date, a relatively coarse resolution (1° × 1°) surface reflectance dataset from GOME (Global Ozone Monitoring Experiment) Lambert-equivalent reflectivity (LER) is used in FRESCO+. The GOME LER climatology does not account for the usually higher spatial resolution of UV/VIS instruments designed for trace gas remote sensing which introduces several artefacts, e.g. in regions with sharp spectral contrasts like coastlines or over bright surface targets. Therefore, MERIS black-sky albedo (BSA) data from the period October 2002 to October 2006 were aggregated to a grid of 0.25° × 0.25° for each month of the year and for different spectral channels. In contrary to other available surface reflectivity datasets, MERIS includes channels at 754 nm and 775 nm which are located close to the spectral windows required for O2 A-band cloud retrievals. The MERIS BSA in the near infrared compares well to Moderate Resolution Imaging Spectroradiometer (MODIS) derived BSA with an average difference lower than 1% and a correlation coefficient of 0.98. However, when relating MERIS BSA to GOME LER a distinctly lower correlation (0.80) and enhanced scatter is found. Effective cloud fractions from two exemplary months (January and July 2006) of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) data were subsequently derived with FRESCO+ and compared to those from the Heidelberg Iterative Cloud Retrieval Utilities (HICRU) algorithm. The MERIS climatology generally improves FRESCO+ effective cloud fractions. In particular small cloud fractions are in better agreement with HICRU. This is of importance for atmospheric trace gas

  11. Flux Calculation Using CARIBIC DOAS Aircraft Measurements: SO2 Emission of Norilsk

    NASA Technical Reports Server (NTRS)

    Walter, D.; Heue, K.-P.; Rauthe-Schoech, A.; Brenninkmeijer, C. A. M.; Lamsal, L. N.; Krotkov, N. A.; Platt, U.

    2012-01-01

    Based on a case-study of the nickel smelter in Norilsk (Siberia), the retrieval of trace gas fluxes using airborne remote sensing is discussed. A DOAS system onboard an Airbus 340 detected large amounts of SO2 and NO2 near Norilsk during a regular passenger flight within the CARIBIC project. The remote sensing data were combined with ECMWF wind data to estimate the SO2 output of the Norilsk industrial complex to be around 1 Mt per year, which is in agreement with independent estimates. This value is compared to results using data from satellite remote sensing (GOME, OMI). The validity of the assumptions underlying our estimate is discussed, including the adaptation of this method to other gases and sources like the NO2 emissions of large industries or cities.

  12. Gastric Cancer in the Excluded Stomach 10 Years after Gastric Bypass.

    PubMed

    Tinoco, Augusto; Gottardi, Lorena F; Boechat, Eduardo D

    2015-01-01

    According to the Brazilian health authorities, around 2,000 new cases of gastric cancer emerge in Brazil per year (Instituto Nacional de Câncer José Alencar Gomes da Silva, 2014). Indeed, gastric cancer constitutes the second most common cause of cancer-related mortality worldwide and 95% of such malignancies are adenocarcinomas (De Roover et al., 2006, and Clark et al., 2006). Roux-en-Y gastric bypass (RYGB) is a procedure frequently employed in bariatric surgery but restricted access to the excluded stomach means that discovery of gastric lesions is difficult, and diagnosis and treatment may be delayed. We report herein a case of gastric adenocarcinoma in the excluded stomach of a patient submitted to RYGB with the purpose of illustrating the difficulty of diagnosing and treating this rare condition.

  13. Tropospheric Emission Monitoring Internet Service

    NASA Astrophysics Data System (ADS)

    van der A, R.; Temis Team

    The Tropospheric Emission Monitoring Internet Service (TEMIS) will produce and deliver global concentrations of tropospheric trace gases. The resulting data base of trace gas concentrations will be important input for subsequent emission estimates of NOx, CH4, CO, aerosols, BrO and hydrocarbons. Potential users and user require- ments have been identified for the trace gas products O3, NO2, HCHO, BrO, SO2, H2O, CO and CH4, and for the UV index, clouds and aerosols. Based on the re- quirements of these users, the trace gas products to be delivered are selected and de- fined. The Service will be based on data from the UV-visible instruments GOME and SCIAMACHY, which have the unique ability to monitor these trace gases in the tro- posphere. The retrieval of tropospheric products will be based on several techniques, such as DOAS and Optimal Estimation, in combination with data assimilation tech- niques.

  14. Bioactive Compounds Found in Brazilian Cerrado Fruits

    PubMed Central

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-01-01

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here. PMID:26473827

  15. What's that smell? Hydrogen sulphide transport from Bardarbunga to Scandinavia

    NASA Astrophysics Data System (ADS)

    Grahn, Håkan; von Schoenberg, Pontus; Brännström, Niklas

    2015-09-01

    On Sep 9 2014 several incidences of foul smell (rotten eggs) were reported on the coast of Norway (in particular in the vicinity of Molde) and then on Sep 10 in the interior parts of county Västerbotten, Sweden. One of the theories that were put forward was that the foul smell was due to degassing of the Bardarbunga volcano on Iceland. Using satellite images (GOME-1,-2) of the sulphur dioxide, SO2, contents in the atmosphere surrounding Iceland to estimate flux of SO2 from the volcano and an atmospheric transport model, PELLO, we vindicate this theory: we argue that the cause for the foul smell was hydrogen sulphide originating from Bardarbunga. The model concentrations are also compared to SO2 concentration measurements from Muonio, Finland.

  16. Axisymmetric turbulent wakes with new non-equilibrium similarity scalings

    NASA Astrophysics Data System (ADS)

    Vassilicos, John Christos; Nedic, Jovan; Ganapathisubramani, Bharathram; TMFC, Imperial College London Team

    2013-11-01

    The recently discovered non-equilibrium turbulence dissipation law (Seoud & Vassilicos PoF 19, 2007, Mazellier & Vassilicos PoF 22, 2010, Valente & Vassilicos JFM 687, 2011, Valente & Vassilicos PRL 108, 2012, Gomes-Fernandes et al. JFM 711, 2012) implies the existence of axisymmetric turbulent wake regions where the mean flow velocity deficit decays as the inverse of the distance from the wake-generating body and the wake width grows as the square root of that distance. This behaviour is different from any documented boundary-free turbulent shear flow to date. Its existence is confirmed in wind tunnel experiments of wakes generated by plates with irregular fractal-like edges placed normal to an incoming free stream. EPSRC.

  17. Retrieval Studies with LIDORT

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K. (Technical Monitor); Spurr, Robert J. D.; Chance, K. V.

    2003-01-01

    This short program of LIDORT-based research in atmospheric trace gas retrieval was conducted over the 1 year period 01 July 2002 to 30 June 2003. After consultation with the NASA reporting officer, the first of the two original proposal activities (development of a direct-fitting total O3 column retrieval algorithm with operational capability for GOME data) was replaced by other tasks. The three activities addressed were: (1) Sensitivity studies for column and profile retrieval of NO2 distributions from a new generation of multi-axis ground-based spectrometers; (2) use of the LIDORT-RRS model to determine the effect of inelastic rotational Raman scattering at SBUV wavelengths; (3) an examination of ozone profile weighting functions in the presence of optically thick tropospheric clouds.

  18. [Satisfaction and motivation in nursing].

    PubMed

    Antunes, A V; Sant Anna, L R

    1996-01-01

    Something which affects the internal balance of a hospital system is its workers satisfaction/motivation rate. According to observed and discussed facts regarding our professional environment and also according to some authors assessments (Alcântara and Ribas Gomes), it seems that there is an insatisfaction among those people in relation to their chores. Therefore, based on Herzberg et all. two factors theory and more specifically on Maximiano interpretation of that theory, we made a research aiming at verifying the satisfaction and motivation in nurse work; on how satisfied/insatisfied nurses feel in their work, and if there is a relationship between job conditions (hygienic factors) with satisfaction, and between job features (motivation factors) with motivation.

  19. Undersampling Correction for Array Detector-Based Satellite Spectrometers

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas P.; Sioris, Christopher E.

    2004-01-01

    Array detector-based instruments are now fundamental to measurements of ozone and other atmospheric trace gases from space in the ultraviolet, visible, and infrared. The present generation of such instruments suffers, to a greater or lesser degree, from undersampling of the spectra, leading to difficulties in the analysis of atmospheric radiances. We provide extended analysis of the undersampling suffered by modem satellite spectrometers, which include Global Ozone Monitoring Experiment (GOME), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), Ozone Monitoring Instrument (OMI), and Ozone Mapping and Profiler Suite (OMPS). The analysis includes basic undersampling, the effects of binning into separate detector pixels, and the application of high-resolution Fraunhofer spectral data to correct for undersampling in many useful cases.

  20. [Care of women under chemotherapy treatment. Comprehensive analysis of care].

    PubMed

    Camargo, T C; Souza, I E

    1998-01-01

    This study was developed upon my reflections as a nurse working at the Antineoplastic Chemotherapy Center at Luiza Gomes de Lemos Hospital of the National Cancer Institute (Inca), and as a Master course student at Anna Nery Nursing School. Developing my Master thesis on Martin Heidegger's philosophical thinking it has enabled me to reflect about the nursing care, considering this philosopher's thinking. In this study, I have registered some situations that occurred on my working days, in the scenery mentioned above, and reflected about them, seeking to analyze their proximity and distance from Heidegger's philosophical thinking. This study was also a reflection about questions emerging from the research process and care practice which leaded me to another understanding of nursing care to women who are submitted to chemotherapy treatment. Then, I was able to see nursing care in another way, that one of comprehension as a possibility of professional action.

  1. Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Tucker, Compton

    2016-04-01

    I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.

  2. Disruption and reaccretion of midsized moons during an outer solar system Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Nimmo, F.; Korycansky, D. G.; Asphaug, E.; Owen, J. M.

    2015-01-01

    We investigate the problem of satellite survival during a hypothetical Late Heavy Bombardment in the outer solar system, as predicted by the Nice model (Tsiganis, Gomes, Morbidelli, and Levison 2005, Nature 435). Using a Monte Carlo approach we calculate, for satellites of Jupiter, Saturn, and Uranus, the probability of experiencing a catastrophic collision during the Late Heavy Bombardment (LHB). We find that Mimas, Enceladus, Tethys, and Miranda experience at least one catastrophic impact in every simulation. Because reaccretion is expected to be rapid, these bodies will have emerged as scrambled mixtures of rock and ice. Tidal heating may have subsequently modified the latter three, but in the nominal LHB model Mimas should be a largely undifferentiated, homogeneous body. A differentiated Mimas would imply either that this body formed late or that the Nice model requires significant modification.

  3. The evolution of a Pluto-like system during the migration of the ice giants

    NASA Astrophysics Data System (ADS)

    Pires, Pryscilla; Giuliatti Winter, Silvia M.; Gomes, Rodney S.

    2015-01-01

    The planetary migration of the Solar System giant planets in the framework of the Nice model (Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435,459-461; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R. [2005]. Nature 435, 462-465; Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A. [2005]. Nature 435, 466-469) creates a dynamical mechanism which can be used to explain the distribution of objects currently observed in the Kuiper belt (e.g., Levison, H.F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., Tsiganis, K. [2008]. Icarus 196, 258-273). Through this mechanism the planetesimals within the disk, heliocentric distance ranging from beyond Neptune's orbit to approximately 34 AU, are delivered to the belt after a temporary eccentric phase of Uranus and Neptune's orbits. We reproduced the mechanism proposed by Levison et al. to implant bodies into the Kuiper belt. The capture of Pluto into the external 3:2 mean motion resonance with Neptune is associated with this gravitational scattering model. We verified the existence of several close encounters between the ice giants and the planetesimals during their outward radial migration, then we believe that the analysis of the dynamical history of the plutonian satellites during this kind of migration is important, and would provide some constrains about their place of formation - within the primordial planetesimal disk or in situ. We performed N-body simulations and recorded the trajectories of the planetesimals during close approaches with Uranus and Neptune. Close encounters with Neptune are the most common, reaching approximately 1200 in total. A Pluto similarly sized body assumed the hyperbolic trajectories of the former primordial planetesimal with respect to those giant planets. We assumed the current mutual orbital configuration and sizes for Pluto's satellites, then we found that the rate of destruction of systems similar to that of Pluto with closest approaches to Uranus or Neptune

  4. Arctic tropospheric ozone depletion during spring 2008 : Source regions and transport

    NASA Astrophysics Data System (ADS)

    Koo, J.; Wang, Y.; Choi, S.; Kurosu, T. P.; Chance, K.; Weinheimer, A. J.; Ryerson, T. B.; Oltmans, S. J.; Hair, J. W.

    2009-12-01

    Ozone depletion events (ODEs) during the ARCTAS and ARCPAC experiments in spring 2008 are analyzed using backtrajectory analysis with meteorological fields simulated by the polar version of MM5. Satellite observations of BrO by OMI and GOME2 instruments are also used. We identify two common ODE source regions in the Canadian archipelagoes and north of Alaska and Siberia. The vertical distribution of backtrajectories indicates that ODEs occur mainly in the lower atmosphere. Correlation analysis suggests that ODEs at Barrow are more transport-driven than those at Alert. The combination of NASA DC-8 and NOAA WP-3D in situ observations implies a large gradient of BrO within a relatively small spatial scale; this feature was not apparent in satellite BrO measurements. The backtrajectory analysis also identifies a region with a high probability of enhanced BrO concentrations, contrary to satellite observations.

  5. The 1997 El Niño impact on clouds, water vapour, aerosols and reactive trace gases in the troposphere, as measured by the Global Ozone Monitoring Experiment

    NASA Astrophysics Data System (ADS)

    Loyola, D.; Valks, P.; Ruppert, T.; Richter, A.; Wagner, T.; Thomas, W.; van der A, R.; Meisner, R.

    2006-03-01

    The El Niño event of 1997/1998 caused dry conditions over the Indonesian area that were followed by large scale forest and savannah fires over Kalimantan, Sumatra, Java, and parts of Irian Jaya. Biomass burning was most intense between August and October 1997, and large amounts of ozone precursors, such as nitrogen oxides, carbon monoxide and hydrocarbons were emitted into the atmosphere. In this work, we use satellite measurements from the Global Ozone Monitoring Experiment (GOME) sensor to study the teleconnections between the El Niño event of 1997 and the Indonesian fires, clouds, water vapour, aerosols and reactive trace gases (nitrogen dioxide, formaldehyde and ozone) in the troposphere.

  6. Marine fluorescence from high spectrally resolved satellite measurements

    NASA Astrophysics Data System (ADS)

    Wolanin, Aleksandra; Dinter, Tilman; Rozanov, Vladimir; Noël, Stefan; Vountas, Marco; Burrows, John P.; Bracher, Astrid

    2014-05-01

    When chlorophyll molecules absorb light, most of this energy is transformed into chemical energy in a process of photosynthesis. However, a fraction of the energy absorbed is reemitted as fluorescence. As a result of its relationship to photosynthetic e?ciency, information about chlorophyll fluorescence can be used to assess the physiological state of phytoplankton (Falkowski and Kolber,1995). In-situ measurements of chlorophyll fluorescence are widespread in physiological and ecophysiological studies. When retrieved from space, chlorophyll fluorescence can improve our knowledge of global biogeochemical cycles and phytoplankton productivity (Behrenfeld et al., 2009; Huot et al., 2013) by providing high coverage and periodicity. So far, the only satellite retrieval of sun-induced marine fluorescence, Fluorescence Line Height (FLH), was designed for MODIS (Abbott and Letelier, 1999), and later also applied to the similar sensor MERIS (Gower et al., 2004). However, it could so far not be evaluated on global scale. Here, we present a different approach to observe marine chlorophyll fluorescence, based on the Differential Optical Absorption Spectroscopy (DOAS) technique (Perner and Platt, 1979) applied to the hyperspectral data from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and Global Ozone Monitoring Experiment-2 (GOME-2). Since fluorescence, as a trans-spectral process, leads to the shift of the wavelength of the radiation, it can be observed in the filling-in of Fraunhofer lines. In our retrieval, we evaluate the filling-in of the Zeeman triplet Fraunhofer line FeI at 684.3 nm, which is located very close to the emission peak of marine fluorescence (~685 nm). In order to conduct the chlorophyll fluorescence retrieval with the DOAS method, we calculated the reference spectra for chlorophyll fluorescence, based on simulations performed with the coupled ocean-atmosphere radiative transfer model SCIATRAN (Rozanov et al., 2014

  7. O2 A Band Studies for Cloud Detection and Algorithm Improvement

    NASA Technical Reports Server (NTRS)

    Chance, K. V.

    1996-01-01

    Detection of cloud parameters from space-based spectrometers can employ the vibrational bands of O2 in the (sup b1)Sigma(sub +)(sub g) yields X(sub 3) Sigma(sup -)(sub g) spin-forbidden electronic transition manifold, particularly the Delta nu = 0 A band. The GOME instrument uses the A band in the Initial Cloud Fitting Algorithm (ICFA). The work reported here consists of making substantial improvements in the line-by-line spectral database for the A band, testing whether an additional correction to the line shape function is necessary in order to correctly model the atmospheric transmission in this band, and calculating prototype cloud and ground template spectra for comparison with satellite measurements.

  8. Assessing potential changes of weather-related risk on chestnut productivity

    NASA Astrophysics Data System (ADS)

    Pereira, Mário; Calheiros, Tomas; Pinto, Joaquim; Caramelo, Liliana

    2013-04-01

    Weather conditions play an important role during different phases of the vegetative cycle of the chestnut trees and, consequently, several meteorological parameters seem to be associated chestnut productivity (Heiniger and Conedera, 1992, Cesaraccio et al., 2001, Wilczynski and Podalski, 2007, Gomes-Laranjo et al., 2008, Dinis et al., 2011, Pereira et al., 2011). Observed data from European Climate Assessment and simulated data by COSMO-CLM model for the actual (C20) and future (A1B and B1) climate scenarios were used in this study to: (i) assess the model ability to reproduce weather parameters distribution; and, (ii) to assess future changes in the distribution of meteorological parameters which play an important role in the productivity of chestnut for different future periods. Results points to statistical significant changes in the mean and in variance in the future, more prominent in temperature than in precipitation based parameters. Changes in precipitation will be more significant in Northwestern Iberian Peninsula and France in the end of the 21st century for A1B scenario conditions. As expected, more significant changes will be expected to occur during spring and summer, in the Mediterranean areas and in the later period. The number of days with Tmax<28°C will generally decrease in both scenarios, while the changes in the number of days with 24°C

  9. Cosmological signatures of time-asymmetric gravity

    NASA Astrophysics Data System (ADS)

    Cortês, Marina; Liddle, Andrew R.; Smolin, Lee

    2016-12-01

    We develop the model proposed by Cortês, Gomes and Smolin [1] to predict cosmological signatures of time-asymmetric extensions of general relativity. Within this class of models the equation of motion of chiral fermions is modified by a torsion term. This term leads to a dispersion law for neutrinos that associates a new time-varying energy with each particle. We find a new neutrino contribution to the Friedmann equation resulting from the torsion term in the Ashtekar connection. In this paper we explore the phenomenology of this term and observational consequences for cosmological evolution. We show that constraints on the critical energy density will ordinarily render this term unobservably small, a maximum of order 10-25 of the neutrino energy density today. However, if the time-asymmetric dark energy is tuned to cancel the cosmological constant, the torsion effect may be a dark matter candidate.

  10. Model-based monitoring and diagnosis of a satellite-based instrument

    NASA Technical Reports Server (NTRS)

    Bos, Andre; Callies, Jorg; Lefebvre, Alain

    1995-01-01

    For about a decade model-based reasoning has been propounded by a number of researchers. Maybe one of the most convincing arguments in favor of this kind of reasoning has been given by Davis in his paper on diagnosis from first principles (Davis 1984). Following their guidelines we have developed a system to verify the behavior of a satellite-based instrument GOME (which will be measuring Ozone concentrations in the near future (1995)). We start by giving a description of model-based monitoring. Besides recognizing that something is wrong, we also like to find the cause for misbehaving automatically. Therefore, we show how the monitoring technique can be extended to model-based diagnosis.

  11. Will modeling demographic differences in xylem vulnerability and stomatal closure in tropical trees improve drought response predictions of tropical forests?

    NASA Astrophysics Data System (ADS)

    Powell, T.; da Costa, A. C. L.; Meir, P.; Saleska, S. R.; Moorcroft, P. R.

    2014-12-01

    Chlorophyll fluorescence has been a major tool for basic research in photosynthesis for nearly a century. Recently, it was discovered that solar induced fluorescence (SIF) can be accurately retrieved from space using high spectral resolution radiances from the Japanese GOSAT and European GOME-2 instruments. Over the last five years, global SIF measurements have provided key new insights into the global distribution and functioning of plant photosynthesis, providing a new way to quantify global gross primary production (GPP), detect regional-scale changes in plant productivity in relation to light use efficiency and water stress, disentangle biological contributions to atmospheric CO2 mole fractions, and refine process understanding in terrestrial biosphere models. OCO-2, launched in July 2014, promises to drive further scientific advances through unprecedented sampling density and smaller ground pixel sizes. We highlight some of the key recent research applications of satellite SIF, discuss future research directions, and present first results from OCO-2.

  12. The analyses of satellite-derived HCHO measurements with statistical approaches

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Kim, S.; Park, S. J.; Newchurch, M.

    2009-12-01

    By comparing temporal and spatial patterns of formaldehyde (HCHO) along with our understanding of atmospheric chemistry, we analyzed satellite data to assess the impact of global temperature changes on the biosphere using satellite observations (OMI, GOME, CIMACHY, MOPITT, ATSR) of trace gases (HCHO, CO, NO2, O3) and fire counts along with model calculations. We have observed an increasing trend of HCHO over the tropics where the trend of biomass burning varies with regions and over the USA where some anthropogenic activity appears to be decreasing as deduced from NO2 changes. The inventory of HCHO depends strongly on isoprene from biogenic activity and on the background level of CH4 oxidation. Various models suggest surface temperature is responsible for the increasing HCHO over the USA. We will discuss to use novel EOF/SVD analyses techniques to investigate whether the increasing trend of HCHO can be used to identify and estimate the impact of global temperature changes on HCHO.

  13. Assessment of weather risk on chestnut production

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Gomes-Laranjo, J.; Caramelo, L.

    2009-04-01

    Meteorological conditions play a fundamental role during entire chestnut tree vegetative cycle. Chestnut trees are well adapted to mean year temperatures of 8-15°C, requires monthly mean temperatures greater than 10°C during 6 months (Gomes-Laranjo et al. 2008) and its pollen only germinates at relatively high temperatures of 27-30°C (Bounous, 2002). Photosynthesis of an adult tree is highly dependent of temperature. Photosynthesis is maximal at 24-28°C but it is inhibited for temperatures greater than 32°C (Gomes-Laranjo et al., 2005, 2006). Furthermore, there are significant differences between chestnut trees cultivated in northfaced orchads in relation to those cultivated in the southfaced and between leaves from different sides of the chestnut canopy because they receive different amounts of radiant energy and consequently they grow under different mean daily air temperature. The objective of this work was to assess the role of weather on chestnut production variability. This study was performed for the 28 years period defined between 1980 and 2007 and it was based on annual values of chestnut production and total area of production, at national level, provided by INE, the National Institute of Statistics of Portugal. The meteorological data used was provided by Meteored (http://www.meteored.com/) and includes daily values of precipitation, wind speed, and mean, maximum and minimum air temperature. All meteorological variables were tested as potential predictors by means of a simple correlation analysis. Multiple time intervals were considered in this the analysis, which consist in moving intervals of constant length and forward and backward evolutionary intervals. Results show that some meteorological variables present significant correlation with chestnut productivity particularly in the most relevant periods of the chestnut tree cycle, like the previous winter, the flushing phase and the maturation period. A regression model based on the winter (January

  14. AMAXDOAS measurements and first results for the EUPLEX campaign

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Richter, Andreas; Bruns, Marco; Burrows, John P.; Heue, Klaus-Peter; Pundt, Irene; Wagner, Thomas; Platt, Ulrich

    2003-08-01

    The AMAXDOAS instrument on the DLR Falcon participated in the EUPLEX campaign in January and February 2003. The AMAXDOAS instrument is a UV/visible spectrometer observing scattered light in four different directions: zenith, nadir, off-axis above and off-axis below. From the spectra, vertical columns can be retrieved for several trace gases including OClO, NO2, and O3 using the well known DOAS (Differential Optical Absorption Spectroscopy) method. In this paper, instrument and data analysis are described. Slant columns for OClO are presented as first results and discussed in view to chlorine activation in the polar vortex. The results are also compared with data from the satellite instruments GOME and SCIAMACHY.

  15. Daily Emission Estimates in China Constrained by Satellite Observations

    NASA Astrophysics Data System (ADS)

    Mijling, B.; van der A, R.

    2013-01-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. We present a new algorithm specifically designed to use daily satellite observations of column concentrations for fast updates of emission estimates of short-lived atmospheric constituents on a mesoscopic scale (~25Å~25 km2). The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates of East China, using the CHIMERE model on a 0.25 degree resolution together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments.

  16. Evolution of NO₂ levels in Spain from 1996 to 2012.

    PubMed

    Cuevas, Carlos A; Notario, Alberto; Adame, José Antonio; Hilboll, Andreas; Richter, Andreas; Burrows, John P; Saiz-Lopez, Alfonso

    2014-07-30

    We report on the evolution of tropospheric nitrogen dioxide (NO2) over Spain, focusing on the densely populated cities of Barcelona, Bilbao, Madrid, Sevilla and Valencia, during 17 years, from 1996 to 2012. This data series combines observations from in-situ air quality monitoring networks and the satellite-based instruments GOME and SCIAMACHY. The results in these five cities show a smooth decrease in the NO2 concentrations of ~2% per year in the period 1996-2008, due to the implementation of emissions control environmental legislation, and a more abrupt descend of ~7% per year from 2008 to 2012 as a consequence of the economic recession. In the whole Spanish territory the NO2 levels have decreased by ~22% from 1996 to 2012. Statistical analysis of several economic indicators is used to investigate the different factors driving the NO2 concentration trends over Spain during the last two decades.

  17. Evolution of NO2 levels in Spain from 1996 to 2012

    PubMed Central

    Cuevas, Carlos A.; Notario, Alberto; Adame, José Antonio; Hilboll, Andreas; Richter, Andreas; Burrows, John P.; Saiz-Lopez, Alfonso

    2014-01-01

    We report on the evolution of tropospheric nitrogen dioxide (NO2) over Spain, focusing on the densely populated cities of Barcelona, Bilbao, Madrid, Sevilla and Valencia, during 17 years, from 1996 to 2012. This data series combines observations from in-situ air quality monitoring networks and the satellite-based instruments GOME and SCIAMACHY. The results in these five cities show a smooth decrease in the NO2 concentrations of ~2% per year in the period 1996–2008, due to the implementation of emissions control environmental legislation, and a more abrupt descend of ~7% per year from 2008 to 2012 as a consequence of the economic recession. In the whole Spanish territory the NO2 levels have decreased by ~22% from 1996 to 2012. Statistical analysis of several economic indicators is used to investigate the different factors driving the NO2 concentration trends over Spain during the last two decades. PMID:25074028

  18. Vers une meilleure représentation de la distribution et de la variabilité de l'ozone atmosphérique par l'assimilation des données satellitaires

    NASA Astrophysics Data System (ADS)

    Massart, Sébastien; Cariolle, Daniel; Peuch, Vincent-Henri

    2005-11-01

    Data assimilation plays an important role in the analysis of atmospheric data, in particular for numerical weather prediction and the detection of climate variations. In the field of atmospheric chemistry, assimilation techniques have been recently developed to study the distribution of tracer species, with emphasis on the ozone content. The present work reports on assimilation experiments of vertical ozone profiles from the GOME instrument performed with MOCAGE, a chemical-transport model and a 3D-FGAT variational technique. It is shown that this technique is very well adapted for ozone assimilation and can be extended to various sensors or other trace species. To cite this article: S. Massart et al., C. R. Geoscience 337 (2005).

  19. Comparison of Spectral Radiance Calibration Techniques Used for Backscatter Ultraviolet Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Kowalewski, Matthew G.; Janz, Scott

    2014-01-01

    Methods for determining the absolute radiometric calibration sensitivities of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration errors. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV (SSBUV), Total Ozone Mapping Spectrometer (TOMS), Ozone Mapping Instrument (OMI), and Global Ozone Monitoring Experiment 2 (GOME-2) using standardized procedures traceable to national standards. These sphere-based sensitivities agree to within three percent [k equals 2] relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary radiance calibration method for BUV instruments. The uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Centers Radiometric Calibration and Development Laboratory is shown to be 4 percent at 250nm [k equals 2] when using a single traceable calibration standard. Significant reduction in the uncertainty of nearly 1 percent is demonstrated when multiple calibration standards are used.

  20. Flux Calculation Using CARIBIC DOAS Aircraft Measurements: SO2 Emission of Norilsk

    NASA Technical Reports Server (NTRS)

    Walter, D.; Heue, K.-P.; Rauthe-Schoech, A.; Brenninkmeijer, C. A. M.; Lamsal, L. N.; Krotkov, N. A.; Platt, U.

    2012-01-01

    Based on a case-study of the nickel smelter in Norilsk (Siberia), the retrieval of trace gas fluxes using airborne remote sensing is discussed. A DOAS system onboard an Airbus 340 detected large amounts of SO2 and NO2 near Norilsk during a regular passenger flight within the CARIBIC project. The remote sensing data were combined with ECMWF wind data to estimate the SO2 output of the Norilsk industrial complex to be around 1 Mt per year, which is in agreement with independent estimates. This value is compared to results using data from satellite remote sensing (GOME, OMI). The validity of the assumptions underlying our estimate is discussed, including the adaptation of this method to other gases and sources like the NO2 emissions of large industries or cities.

  1. Integrating Satellite Observations, Chemical Transport Modeling, and Population Data to Estimate Decadal Trends in Ground-Level NO2 Exposure Worldwide.

    NASA Astrophysics Data System (ADS)

    Geddes, J.; Martin, R.; Boys, B.

    2014-12-01

    Nitrogen dioxide (NO2) is a common component of air pollution and can act as a tracer for other constituents associated with combustion emissions. An approach to unify observations of NO2 tropospheric vertical column densities from three separate satellite instruments (GOME, SCIAMACHY, GOME-2) was used in combination with chemical transport modeling (GEOS-Chem) to produce a global 17-year record of ground-level NO2 at 0.1° x 0.1° resolution. This data set was combined with maps of population density at the same temporal and spatial resolution, allowing a novel exploration of changing human exposure to air pollution worldwide. Population-weighted mean concentrations (PWMC) were calculated by region, and cumulative distribution plots were used to illustrate the changing spatial allocation of NO2 extremes. The most significant decrease in PWMC occurred in North America, with a decline of 60% between 1996 and 2012. This is 1.5 times greater than the rate of decrease in reported total anthropogenic NOx emissions. PWMC have also decreased by 32% in Western Europe, but have increased by 128% in East Asia. Historically, the highest PWMC occurred in Asia Pacific, although levels have decreased by 36% since 1996. However, exposure to the most extreme concentrations has varied by region over time, moving from North America in 1996 to East Asia in 2012. This unique merging of satellite observations, modeled vertical profiles, and population data offers an innovative approach to investigating pollution trends globally and by region that could relate more directly to health cost expectations over other observational datasets alone.

  2. Total ozone column, aerosol optical depth and precipitable water effects on solar erythemal ultraviolet radiation recorded in Malta.

    NASA Astrophysics Data System (ADS)

    Bilbao, Julia; Román, Roberto; Yousif, Charles; Mateos, David; Miguel, Argimiro

    2013-04-01

    The Universities of Malta and Valladolid (Spain) developed a measurement campaign, which took place in the Institute for Energy Technology in Marsaxlokk (Southern Malta) between May and October 2012, and it was supported by the Spanish government through the Project titled "Measurement campaign about Solar Radiation, Ozone, and Aerosol in the Mediterranean area" (with reference CGL2010-12140-E). This campaign provided the first ground-based measurements in Malta of erythemal radiation and UV index, which indicate the effectiveness of the sun exposure to produce sunburn on human skin. A wide variety of instruments was involved in the campaign, providing a complete atmospheric characterization. Data of erythemal radiation and UV index (from UVB-1 pyranometer), total shortwave radiaton (global and diffuse components from CM-6B pyranometers), and total ozone column, aerosol optical thickness, and precitable water column (from a Microtops-II sunphotometer) were available in the campaign. Ground-based and satellite instruments were used in the analysis, and several intercomparisons were carried out to validate remote sensing data. OMI, GOME, GOME-2, and MODIS instruments, which provide data of ozone, aerosol load and optical properties, were used to this end. The effects on solar radiation, ultraviolet and total shortwave ranges, of total ozone column, aerosol optical thickness and precipitable water column were obtained using radiation measurements at different fixed solar zenith angles. The empirical results shown a determinant role of the solar position, a negligible effect of ozone on total shortwave radiation, and a stronger attenuation provided by aerosol particles in the erythemal radiation. A variety of aerosol types from different sources (desert dust, biomass burning, continental, and maritime) reach Malta, in this campaign several dust events from the Sahara desert occurred and were analyzed establishing the air mass back-trajectories ending at Malta at

  3. Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2

    NASA Technical Reports Server (NTRS)

    Frankenberg, Christian; Odell, Chris; Berry, Joseph; Guanter, Luis; Joiner, Joanna; Kohler, Philipp; Pollock, Randy; Taylor, Thomas E.

    2014-01-01

    The Orbiting Carbon Observatory-2 (OCO-2), scheduled to launch in July 2014, is a NASA mission designed to measure atmospheric CO2. Its main purpose is to allow inversions of net flux estimates of CO2 on regional to continental scales using the total column CO2 retrieved using high-resolution spectra in the 0.76, 1.6, and 2.0 nm ranges. Recently, it was shown that solar-induced chlorophyll fluorescence (SIF), a proxy for gross primary production (GPP, carbon uptake through photosynthesis), can be accurately retrieved from space using high spectral resolution radiances in the 750 nm range from the Japanese GOSAT and European GOME-2 instruments. Here, we use real OCO-2 thermal vacuum test data as well as a full repeat cycle (16 days) of simulated OCO-2 spectra under realistic conditions to evaluate the potential of OCO-2 for retrievals of chlorophyll fluorescence and also its dependence on clouds and aerosols. We find that the single-measurement precision is 0.3-0.5 Wm(exp -2)sr(exp -1) nm(exp -1) (15-25% of typical peak values), better than current measurements from space but still difficult to interpret on a single-sounding basis. The most significant advancement will come from smaller ground-pixel sizes and increased measurement frequency, with a 100-fold increase compared to GOSAT (and about 8 times higher than GOME-2). This will largely decrease the need for coarse spatial and temporal averaging in data analysis and pave the way to accurate local studies.We also find that the lack of full global mapping from the OCO-2 only incurs small representativeness errors on regional averages. Eventually, the combination of net ecosystem exchange (NEE) derived from CO2 source/sink inversions and SIF as proxy for GPP from the same satellite will provide a more process-based understanding of the global carbon cycle.

  4. Identification of tropospheric emissions sources from satellite observations: Synergistic use of HCHO, NO2, and SO2 trace gas measurements

    NASA Astrophysics Data System (ADS)

    Marbach, T.; Beirle, S.; Khokhar, F.; Platt, U.

    2005-12-01

    We present case studies for combined HCHO, NO2, and SO2 satellite observations, derived from GOME measurements. Launched on the ERS-2 satellite in April 1995, GOME has already performed continuous operations over 8 years providing global observations of the different trace gases. In this way, satellite observations provide unique opportunities for the identifications of trace gas sources. The satellite HCHO observations provide information concerning the localization of biomass burning (intense source of HCHO). The principal biomass burning areas can be observed in the Amazon basin region and in central Africa Weaker HCHO sources (south east of the United States, northern part of the Amazon basin, and over the African tropical forest), not correlated with biomass burning, could be due to biogenic isoprene emissions. The HCHO data can be compared with NO2 and SO2 results to identify more precisely the tropospheric sources (biomass burning events, human activities, additional sources like volcanic emissions). Biomass burning are important tropospheric sources for both HCHO and NO2. Nevertheless HCHO reflects more precisely the biomass burning as it appears in all biomass burning events. NO2 correlate with HCHO over Africa (grassland fires) but not over Indonesia (forest fires). In south America, an augmentation of the NO2 concentrations can be observed with the fire shift from the forest to grassland vegetation. So there seems to be a dependence between the NO2 emissions during biomass burning and the vegetation type. Other high HCHO, SO2, and NO2 emissions can be correlated with climatic events like the El Nino in 1997, which induced dry conditions in Indonesia causing many forest fires.

  5. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events

    DOE PAGES

    Sun, Ying; Fu, Rong; Dickinson, Robert; ...

    2015-11-01

    This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Experiment 2 (GOME-2) closely resembled drought intensity maps from the U.S. Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root zone soil moisture caused by yearlong below-normal precipitation. Inmore » contrast, for the central Great Plains drought, warmer temperatures and relatively normal precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation fPAR and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. We conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring.« less

  6. Clustering of gene ontology terms in genomes.

    PubMed

    Tiirikka, Timo; Siermala, Markku; Vihinen, Mauno

    2014-10-25

    Although protein coding genes occupy only a small fraction of genomes in higher species, they are not randomly distributed within or between chromosomes. Clustering of genes with related function(s) and/or characteristics has been evident at several different levels. To study how common the clustering of functionally related genes is and what kind of functions the end products of these genes are involved, we collected gene ontology (GO) terms for complete genomes and developed a method to detect previously undefined gene clustering. Exhaustive analysis was performed for seven widely studied species ranging from human to Escherichia coli. To overcome problems related to varying gene lengths and densities, a novel method was developed and a fixed number of genes were analyzed irrespective of the genome span covered. Statistically very significant GO term clustering was apparent in all the investigated genomes. The analysis window, which ranged from 5 to 50 consecutive genes, revealed extensive GO term clusters for genes with widely varying functions. Here, the most interesting and significant results are discussed and the complete dataset for each analyzed species is available at the GOme database at http://bioinf.uta.fi/GOme. The results indicated that clusters of genes with related functions are very common, not only in bacteria, in which operons are frequent, but also in all the studied species irrespective of how complex they are. There are some differences between species but in all of them GO term clusters are common and of widely differing sizes. The presented method can be applied to analyze any genome or part of a genome for which descriptive features are available, and thus is not restricted to ontology terms. This method can also be applied to investigate gene and protein expression patterns. The results pave a way for further studies of mechanisms that shape genome structure and evolutionary forces related to them. Copyright © 2014 Elsevier B.V. All

  7. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Newchurch, M.; Kuang, S.; McGee, T. J.; Langford, A. O.; Senff, C. J.; Leblanc, T.; Berkoff, T.; Gronoff, G.; Chen, G.; Strawbridge, K. B.

    2016-12-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  8. Observing the Anthropocene from Space

    NASA Astrophysics Data System (ADS)

    Burrows, John

    The industrial revolution, which began in the UK in the late 18th century, has been fuelled by the use of cheap energy from fossil fuel combustion. It has facilitated a dramatic rise in both the human population, now above 7 Billion with 50% now living in urban agglomerations, and its standard of living. It is anticipated that by 2050 there will be of the order of 8.3 to 10 billion people, 75% living in cities. Anthropogenic activity has resulted in pollution from the local to the global scale changes in land use, the destruction of stratospheric ozone, the modification of biogeochemical cycling, acid deposition, impacted on ecosystems and ecosystem services, destruction of biodiversity and climate change. The impact of man has moved the earth from the Holocene to the new geological epoch of the Anthropocene. To improve our understanding of the earth atmosphere system and the accuracy of the prediction of its future changes, knowledge of the amounts and distributions of trace atmospheric constituents are essential -“One cannot manage what is not measured”. An integrated observing system, comprising ground and space based segments is required to improve our science and to provide an evidence base needed for environmental policymakers. Passive remote sensing measurements made of the up-welling radiation at the top of the atmosphere from instrumentation on space borne platforms provide a unique opportunity to retrieve globally atmospheric composition. This presentation describes results from the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY on ESA Envsiat 2002 to 2012) and its spin offs GOME (Global Ozone Monitoring Experiment ESA ERS-2 1995 to 2011) and GOME-2 (ESA/EUMETSAT Metop series). The potential of the SCIAMACHY successors Sentinel 5, CarbonSat, and SCIA-ISS will also be addressed.

  9. Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe

    NASA Astrophysics Data System (ADS)

    Thum, Tea; Zaehle, Sönke; Köhler, Philipp; Aalto, Tuula; Aurela, Mika; Guanter, Luis; Kolari, Pasi; Laurila, Tuomas; Lohila, Annalea; Magnani, Federico; Van Der Tol, Christiaan; Markkanen, Tiina

    2017-04-01

    Recent satellite observations of sun-induced chlorophyll fluorescence (SIF) are thought to provide a large-scale proxy for gross primary production (GPP), thus providing a new way to assess the performance of land surface models (LSMs). In this study, we assessed how well SIF is able to predict GPP in the Fenno-Scandinavian region and what potential limitations for its application exist. We implemented a SIF model into the JSBACH LSM and used active leaf-level chlorophyll fluorescence measurements (Chl F) to evaluate the performance of the SIF module at a coniferous forest at Hyytiälä, Finland. We also compared simulated GPP and SIF at four Finnish micrometeorological flux measurement sites to observed GPP as well as to satellite-observed SIF. Finally, we conducted a regional model simulation for the Fenno-Scandinavian region with JSBACH and compared the results to SIF retrievals from the GOME-2 (Global Ozone Monitoring Experiment-2) space-borne spectrometer and to observation-based regional GPP estimates. Both observations and simulations revealed that SIF can be used to estimate GPP at both site and regional scales. At regional scale the model was able to simulate observed SIF averaged over 5 years with r2 of 0.86. The GOME-2-based SIF was a better proxy for GPP than the remotely sensed fAPAR (fraction of absorbed photosynthetic active radiation by vegetation). The observed SIF captured the seasonality of the photosynthesis at site scale and showed feasibility for use in improving of model seasonality at site and regional scale.

  10. Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yang, W.; Ichii, K.

    2015-12-01

    Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.

  11. Comparison of linear and angular measurements using two-dimensional conventional methods and three-dimensional cone beam CT images reconstructed from a volumetric rendering program in vivo

    PubMed Central

    Oz, U; Orhan, K; Abe, N

    2011-01-01

    Objective The aim of this study was to compare the linear and angular measurements made on two-dimensional (2D) conventional cephalometric images and three-dimensional (3D) cone beam CT (CBCT) generated cephalograms derived from a 3D volumetric rendering program. Methods Pre-treatment cephalometric digital radiographs of 11 patients and their corresponding CBCT images were randomly selected. The digital cephalometric radiographs were traced using Vista Dent OC (GAC International, Inc Bohemia, NY) and by hand. CBCT and Maxilim® (Medicim, Sint-Niklass, Belgium) software were used to generate cephalograms from the CBCT data set that were then linked to the 3D hard-tissue surface representations. In total, 16 cephalometric landmarks were identified and 18 widely used measurements (11 linear and 7 angular) were performed by 2 independent observers. Intraobserver reliability was assessed by calculating intraclass correlation coefficients (ICC), interobserver reliability was assessed with Student t-test and analysis of variance (ANOVA). Mann–Whitney U-tests and Kruskal–Wallis H tests were also used to compare the three methods (P < 0.05). Results The results demonstrated no statistically significant difference between interobserver analyses for CBCT-generated cephalograms (P < 0.05), except for Gonion-Menton (Go-Me) and Condylion-Gnathion (Co-Gn). Intraobserver examinations showed low ICCs, which was an indication of poor reproducibility for Go-Me and Sella-Nasion (S-N) in CBCT-generated cephalograms and poor reproducibility for Articulare-Gonion (Ar-Go) in the 2D hand tracing method (P < 0.05). No statistical significance was found for Vista Dent OC measurements (P > 0.05). Conclusions Measurements from in vivo CBCT-generated cephalograms from Maxilim® software were found to be similar to conventional images. Thus, owing to higher radiation exposure, CBCT examinations should only be used when the inherent 3D information could improve the outcome of treatment. PMID

  12. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.; Sullivan, John T.; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas J.; Langford, Andrew O'Neil; Senff, Christoph J.; Leblanc, Thierry; Berkoff, Timothy; Gronoff, Guillaume; Chen, Gao; Strawbridge, Kevin B.

    2016-01-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  13. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space: Status and Potential for Carbon Cycle Research

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Koehler, P.; Walther, S.; Zhang, Y.; Joiner, J.; Frankenberg, C.

    2015-12-01

    Gross primary production (GPP), or the amount of atmospheric CO2 fixed by vegetation through photosynthesis, represents the largest carbon flux between terrestrial ecosystems and the atmosphere. Despite its importance, large-scale estimates of GPP remain highly uncertain for some terrestrial ecosystems. In this context, measurements of sun-induced chlorophyll fluorescence (SIF), which is emitted in the 650-850nm spectral range by the photosynthetic apparatus of green plants, have the potential to provide a new view on vegetation photosynthesis. Global monitoring of SIF from space have been achieved in the last years by means of a number of atmospheric spectrometers, which have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission. This breakthorugh was followed by retrievals from the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B, which enable a continuous spatial sampling, and lately from ENVISAT/SCIAMACHY. This observational scenario is completed by the first SIF data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming Copernicus' Sentinel 5-Precursor to be launched by early 2016. OCO-2 and TROPOMI offer the possibility of monitoring SIF globally with a 100-fold improvement in spatial and temporal resolution with respect to GOSAT, GOME-2 and SCIAMACHY.In this contribution, we will provide an overview of global SIF monitoring and will illustrate the potential of SIF data to improve our knowledge of vegetation photosynthesis and GPP at the synoptic scale. We will show examples of ongoing research exploiting SIF data for an improved monitoring of photosynthetic activity at different ecosystems, highlighting the usefulness of SIF to constrain estimates of CO2 uptake by vegetation through photosynthesis.

  14. Multi sensor reanalysis of total ozone

    NASA Astrophysics Data System (ADS)

    van der A, R. J.; Allaart, M. A. F.; Eskes, H. J.

    2010-11-01

    A single coherent total ozone dataset, called the Multi Sensor Reanalysis (MSR), has been created from all available ozone column data measured by polar orbiting satellites in the near-ultraviolet Huggins band in the last thirty years. Fourteen total ozone satellite retrieval datasets from the instruments TOMS (on the satellites Nimbus-7 and Earth Probe), SBUV (Nimbus-7, NOAA-9, NOAA-11 and NOAA-16), GOME (ERS-2), SCIAMACHY (Envisat), OMI (EOS-Aura), and GOME-2 (Metop-A) have been used in the MSR. As first step a bias correction scheme is applied to all satellite observations, based on independent ground-based total ozone data from the World Ozone and Ultraviolet Data Center. The correction is a function of solar zenith angle, viewing angle, time (trend), and effective ozone temperature. As second step data assimilation was applied to create a global dataset of total ozone analyses. The data assimilation method is a sub-optimal implementation of the Kalman filter technique, and is based on a chemical transport model driven by ECMWF meteorological fields. The chemical transport model provides a detailed description of (stratospheric) transport and uses parameterisations for gas-phase and ozone hole chemistry. The MSR dataset results from a 30-year data assimilation run with the 14 corrected satellite datasets as input, and is available on a grid of 1× 1 1/2° with a sample frequency of 6 h for the complete time period (1978-2008). The Observation-minus-Analysis (OmA) statistics show that the bias of the MSR analyses is less than 1% with an RMS standard deviation of about 2% as compared to the corrected satellite observations used.

  15. Stratospheric nitrogen dioxide in Antarctic regions from ground based and satellite observations during 2001

    NASA Astrophysics Data System (ADS)

    Bortoli, Daniele; Giovanelli, Giorgio; Ravegnani, Fabrizio; Kostadinov, Ivan K.; Petritoli, Andrea; Calzolari, Francescopiero; Costa, Maria J.; Silva, Ana M.

    2003-04-01

    The application of Differential Optical Absorption Spectroscopy (DOAS) methodology to the zenith scattered light data collected with the GASCOD spectrometer developed at the ISAC Institute allow for the detection of stratospheric trace gases involved in the ozone cycle such as NO2, OClO, BrO. The instrument was installed in December 1995 in the Italian Antarctic station at Terra Nova Bay (74°26'S, 164°03E', Ross Sea), after several tests both in laboratory and in Antarctic region, for unattended and continuous measurement in extreme high-latitude environment. The GASCOD is still working and producing very interesting data for the study of the denitrification processes during the formation of the so-called ozone hole over the Antarctic region. For the continuous NO2 monitoring for whole the year, also during winter when the station is unmanned, the [407 - 460] nm spectral region is investigated. The results for Nitrogen Dioxide, obtained by application of DOAS algorithms to the data recorded during the year 2001, are presented. ERS-2 was launched in April 1995 into a near-polar sun-synchronous orbit at a mean altitude of 795 km. The descending node crosses the equator at 10:30 local time. GOME is a nadir-scanning double monochromator covering the 237 nm to 794 nm wavelength range with a spectral resolution of 0.17-0.33 nm. The spectrum is split into four spectral channels, each recorded quasi-simultaneously by a 1024-pixel photodiode array. The global spatial coverage is obtained within 3 days at the equator by a 960 km across-track swath (4.5 s forward scan, 1.5 s back scan). The ground pixel size of the measurements is 320 X 40 km2. A comparison of GASCOD and GOME results for NO2 total column is performed.

  16. Analysis of Satellite-Derived Arctic Tropospheric BrO Columns in Conjunction with Aircraft Measurements During ARCTAS and ARCPAC

    NASA Technical Reports Server (NTRS)

    Choi, S.; Wang, Y.; Salawitch, R. J.; Canty, T.; Joiner, J.; Zeng, T.; Kurosu, T. P.; Chance, K.; Richter, A.; Huey, L. G.; Liao, J.; Neuman, J. A.; Nowak, J. B.; Dibb, J. E.; Weinheimer, A. J.; Diskin, G.; Ryerson, T. B.; da Silva, A.; Curry, J.; Kinnison, D.; Tilmes, S.; Levelt, P. F.

    2012-01-01

    We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations ofBrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo> 0.7), for solar zenith angle < 80 and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.

  17. Calibration of TOMS Radiances From Ground Observations

    NASA Technical Reports Server (NTRS)

    Bojkov, B. R.; Kowalewski, M.; Wellemeyer, C.; Labow, G.; Hilsenrath, E.; Bhartia, P. K.; Ahmad, Z.

    2003-01-01

    Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of radiances from the ground can be a very effective means for correcting long term drifts of backscatter type satellite measurements and can be used to cross calibrate all BUV instruments in orbit (TOMS, SBUV/2, GOME, SCIAMACHY, OMI, GOME-2, OMPS). This method bypasses the retrieval algorithms used to derive ozone products from both satellite and ground based measurements that are normally used to validate the satellite data. Radiance comparisons employ forward models, but they are inherently more accurate than the retrieval This method employs very accurate comparisons between ground based zenith sicy radiances and satellite nadir radiances and employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. The zenith sky observations are made by the SSBUV where its calibration is maintained to a high degree of accuracy and precision. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. Initial ground observations taken from Goddard Space Flight Center compared with radiative transfer calculations has indicated the feasibility of this method. The effect of aerosols and varying ozone amounts are considered in the model simulations and the theoretical comparisons. The radiative transfer simulations show that the ground and satellite radiance comparisons can be made with an uncertainty of less than l

  18. Monitoring of nitrogen dioxide, ozone and halogens radicals in Antarctica

    NASA Astrophysics Data System (ADS)

    Bortoli, Daniele; Ravegnani, Fabrizio; Costa, Maria J.; Genco, Silvia; Kulkarni, Pavan K.; Mendes, Rui; Domingues, Ana Filipa; Anton, Manuel; Giovanelli, Giorgio; Silva, Ana Maria

    2013-10-01

    Monitoring of atmospheric compounds at high latitudes is a key factor for a better understanding of the processes driving the chemical cycles of ozone and related chemical species. In this frame, the GASCOD (Gas Analizer Spectrometer Correlating Optical Differences) equipment is installed at the Mario Zucchelli Station (MZS - 74.69S, 164.12E) since December 1995, carrying out observations of nitrogen dioxide (NO2) and ozone (O3). The recent advances in sensor technologies and processor capabilities, suggested the setup of a new equipment, based on the same optical layout of the 'old' GASCOD , with enhanced performances and improved capabilities for the measurements of solar radiation in the UV-visible spectral range (300-700nm). The efforts accomplished, allowed for the increase of the investigated tracers. Actually, mainly due to the enlargement of the covered spectral range and to the adoption of a CCD sensor, in addition to the NO2 and O3 compounds, others species can be monitored with the new instrumental setup such as bromine, chlorine and iodine oxides (BrO, OClO and IO). The innovative equipment called GASCODNG (GASCOD New Generation) was installed at MZS during the 2012/2013 Italian Antarctic expedition, in the framework of the research projects SAMOA (Automatic Station Monitoring Antarctic Ozonosphere) and MATAGRO (Monitoring Atmospheric Tracers in Antarctica with Ground Based Observations) funded by the Italian and Portuguese Antarctic programs respectively. In this paper a brief description of the new equipment is provided, highlighting the main improvements with regard to the 'old' one. Furthermore the full dataset (1996 - 2012) of NO2 total columns, obtained with the GASCOD installed at MZS, is compared with the data obtained with satellite borne equipments (GOME, SCIAMACHY, OMI and GOME2) and the main statistical parameters are analyzed and discussed in detail.

  19. Remote sensing and inverse transport modeling of the Kasatochi eruption sulfur dioxide cloud

    NASA Astrophysics Data System (ADS)

    Kristiansen, N. I.; Stohl, A.; Prata, A. J.; Richter, A.; Eckhardt, S.; Seibert, P.; Hoffmann, A.; Ritter, C.; Bitar, L.; Duck, T. J.; Stebel, K.

    2010-01-01

    An analytical inversion method is used to estimate the vertical profile of sulfur dioxide (SO2) emissions from the major 2008 eruption of Kasatochi Volcano, located on the Aleutian Arc, Alaska. The method uses satellite-observed total SO2 columns from the Global Ozone Monitoring Experiment-2 (GOME-2), Ozone Monitoring Instrument (OMI), and Atmospheric InfraRed Sounder (AIRS) during the first 2 days after the eruption, and an atmospheric transport model, FLEXPART, to calculate the vertical emission profile. The inversion yields an emission profile with two large emission maxima near 7 km above sea level (asl) and around 12 km asl, with smaller emissions up to 20 km. The total mass of SO2 injected into the atmosphere by the eruption is estimated to 1.7 Tg, with ˜1 Tg reaching the stratosphere (above 10 km asl). The estimated vertical emission profile is robust against changes of the assumed eruption time, meteorological input data, and satellite data used. Using the vertical emission profile, a simulation of the transport extending for 1 month after the eruption is performed. The simulated cloud agrees very well with SO2 columns observed by GOME-2, OMI, and AIRS until 6 days after the eruption, and the altitudes agree with both Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation measurements and ground-based lidar observations to within 1 km. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic emissions for air traffic.

  20. Seasonal variation of tropospheric bromine monoxide over the Rann of Kutch salt marsh seen from space

    NASA Astrophysics Data System (ADS)

    Hörmann, Christoph; Sihler, Holger; Beirle, Steffen; Penning de Vries, Marloes; Platt, Ulrich; Wagner, Thomas

    2016-10-01

    The Rann of Kutch (India and Pakistan) is one of the largest salt deserts in the world. Being a so-called "seasonal salt marsh", it is regularly flooded during the Indian summer monsoon. We present 10 years of bromine monoxide (BrO) satellite observations by the Ozone Monitoring Instrument (OMI) over the Great and Little Rann of Kutch. OMI spectra were analysed using Differential Optical Absorption Spectroscopy (DOAS) and revealed recurring high BrO vertical column densities (VCDs) of up to 1.4 × 1014 molec cm-2 during April/May, but no significantly enhanced column densities during the monsoon season (June-September). In the following winter months, the BrO VCDs are again slightly enhanced while the salty surface dries up. We investigate a possible correlation of enhanced reactive bromine concentrations with different meteorological parameters and find a strong relationship between incident UV radiation and the total BrO abundance. In contrast, the second Global Ozone Monitoring Instrument (GOME-2) shows about 4 times lower BrO VCDs over the Rann of Kutch than found by OMI and no clear seasonal cycle is observed. One reason for this finding might be the earlier local overpass time of GOME-2 compared to OMI (around 09:30 vs. 13:30 LT), as the ambient conditions significantly differ for both satellite instruments at the time of the measurements. Further possible reasons are discussed and mainly attributed to instrumental issues. OMI additionally confirms the presence of enhanced BrO concentrations over the Dead Sea valley (Israel/Jordan), as suggested by former ground-based observations. The measurements indicate that the Rann of Kutch salt marsh is probably one of the strongest natural point sources of reactive bromine compounds outside the polar regions and is therefore supposed to have a significant impact on local and regional ozone chemistry.

  1. Seasonal controls of aragonite saturation states in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui Aleck; Lawson, Gareth L.; Pilskaln, Cynthia H.; Maas, Amy E.

    2017-01-01

    The Gulf of Maine (GoME) is a shelf region especially vulnerable to ocean acidification (OA) due to natural conditions of low pH and aragonite saturation states (Ω-Ar). This study is the first to assess the major oceanic processes controlling seasonal variability of the carbonate system and its linkages with pteropod abundance in Wilkinson Basin in the GoME. Two years of seasonal sampling cruises suggest that water-column carbonate chemistry in the region undergoes a seasonal cycle, wherein the annual cycle of stratification-overturn, primary production, respiration-remineralization and mixing all play important roles, at distinct spatiotemporal scales. Surface production was tightly coupled with remineralization in the benthic nepheloid layer during high production seasons, which results in occasional aragonite undersaturation. From spring to summer, carbonate chemistry in the surface across Wilkinson Basin reflects a transition from a production-respiration balanced system to a net autotropic system. Mean water-column Ω-Ar and abundance of large thecosomatous pteropods show some correlation, although patchiness and discrete cohort reproductive success likely also influence their abundance. Overall, photosynthesis-respiration is the primary driving force controlling Ω-Ar variability during the spring-to-summer transition as well as over the seasonal cycle. However, calcium carbonate (CaCO3) dissolution appears to occur near bottom in fall and winter when bottom water Ω-Ar is generally low but slightly above 1. This is accompanied by a decrease in pteropod abundance that is consistent with previous CaCO3 flux trap measurements. The region might experience persistent subsurface aragonite undersaturation in 30-40 years under continued ocean acidification.

  2. An exemplary case of a bromine explosion event linked to cyclone development in the Arctic

    NASA Astrophysics Data System (ADS)

    Blechschmidt, A.-M.; Richter, A.; Burrows, J. P.; Kaleschke, L.; Strong, K.; Theys, N.; Weber, M.; Zhao, X.; Zien, A.

    2016-02-01

    Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO) are regularly observed by GOME-2 on board the MetOp-A satellite over Arctic sea ice in polar spring. These plumes are often transported by high-latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. However, only few studies have focused on the role of polar weather systems in the development, duration and transport of tropospheric BrO plumes during bromine explosion events. The latter are caused by an autocatalytic chemical chain reaction associated with tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. In this manuscript, a case study investigating a comma-shaped BrO plume which developed over the Beaufort Sea and was observed by GOME-2 for several days is presented. By making combined use of satellite data and numerical models, it is shown that the occurrence of the plume was closely linked to frontal lifting in a polar cyclone and that it most likely resided in the lowest 3 km of the troposphere. In contrast to previous case studies, we demonstrate that the dry conveyor belt, a potentially bromine-rich stratospheric air stream which can complicate interpretation of satellite retrieved tropospheric BrO, is spatially separated from the observed BrO plume. It is concluded that weather conditions associated with the polar cyclone favoured the bromine activation cycle and blowing snow production, which may have acted as a bromine source during the bromine explosion event.

  3. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events [Satellite solar-induced chlorophyll fluorescence reveals drought onset mechanisms: Insights from two contrasting extreme events

    DOE PAGES

    Sun, Ying; Fu, Rong; Dickinson, Robert; ...

    2015-11-01

    This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Experiment 2 (GOME-2) closely resembled drought intensity maps from the U.S. Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root zone soil moisture caused by yearlong below-normal precipitation. Inmore » contrast, for the central Great Plains drought, warmer temperatures and relatively normal precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation fPAR and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. We conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring.« less

  4. Global fire emission estimates (2007-2012) derived from inversion of formaldehyde columns

    NASA Astrophysics Data System (ADS)

    Bauwens, Maite; Stavrakou, Trissevgeni; Müller, Jean-Francois; De Smedt, Isabelle; Van Roozendael, Michel

    2014-05-01

    Wildfires have a strong impact on the chemistry and composition of the atmosphere and the radiative forcing. The fire emission estimates bear, however, important uncertainties due to the limited amount of field measurements, uncertainties in satellite burned area products, as well as empirical relations used for fuel type allocations. Atmospheric inversions are an alternative approach that provides new independent constraints on the fire estimates. This method involves measurements of trace gases combined with atmospheric models, where optimization algorithms are used to minimize the discrepancy between the model and the observations by adjusting the emission estimates. In this communication, we present global emission estimates of non-methane volatile organic compounds (NMVOCs), inferred from inversion of formaldehyde (HCHO) columns retrieved from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument (De Smedt et al., 2012). The IMAGESv2 global CTM provides the relationship between the emissions and the vertical columns. The Global Fire Emissions Database version 3 (GFEDv3, van der Werf et al., 2010) is used as a priori bottom-up inventory in the model. The agreement between formaldehyde columns calculated by the IMAGESv2 model and the formaldehyde columns from GOME-2 is optimized using the adjoint modelling technique (Stavrakou et al., 2009). The obtained top-down fire emission estimates between 2007 and 2012 are available at the GlobEmission data portal (http://www.globemission.eu) on a monthly basis and at 0.5°x0.5° spatial resolution. The emission estimates are evaluated against three independent emission inventories: GFEDv3 (van der Werf et al., 2010), GFAS (Kaiser et al., 2012) and FINN (Wiedinmyer et al., 2011). Furthermore, simulated CO columns over the fire-affected regions will be compared with CO columns retrieved from the IASI sensor (George et al., 2009).

  5. Algebraic construction of twinlike models

    NASA Astrophysics Data System (ADS)

    Adam, C.; Queiruga, J. M.

    2011-11-01

    If the generalized dynamics of K field theories (i.e., field theories with a nonstandard kinetic term) is taken into account, then the possibility of so-called twinlike models opens up, that is, of different field theories which share the same topological defect solution with the same energy density. These twinlike models were first introduced in [M. Andrews, M. Lewandowski, M. Trodden, and D. Wesley, Phys. Rev. DPRVDAQ1550-7998 82, 105006 (2010)10.1103/PhysRevD.82.105006], where the authors also considered possible cosmological implications and gave a geometric characterization of twinlike models. A further analysis of the twinlike models was accomplished in [D. Bazeia, J. D. Dantas, A. R. Gomes, L. Losano, and R. Menezes, Phys. Rev. DPRVDAQ1550-7998 84, 045010 (2011)10.1103/PhysRevD.84.045010], with the help of the first order formalism, where also the case with gravitational self-interaction was considered. Here we show that by combining the geometric conditions of [M. Andrews, M. Lewandowski, M. Trodden, and D. Wesley, Phys. Rev. DPRVDAQ1550-7998 82, 105006 (2010)10.1103/PhysRevD.82.105006], with the first order formalism of [D. Bazeia, J. D. Dantas, A. R. Gomes, L. Losano, and R. Menezes, Phys. Rev. DPRVDAQ1550-7998 84, 045010 (2011)10.1103/PhysRevD.84.045010], one may easily derive a purely algebraic method to explicitly calculate an infinite number of twin field theories for a given theory. We determine this algebraic construction for the cases of scalar field theories, supersymmetric scalar field theories, and self-gravitating scalar fields. Further, we give several examples for each of these cases.

  6. Nursing workload for cancer patients under palliative care.

    PubMed

    Fuly, Patrícia Dos Santos Claro; Pires, Livia Márcia Vidal; Souza, Claudia Quinto Santos de; Oliveira, Beatriz Guitton Renaud Baptista de; Padilha, Katia Grillo

    2016-01-01

    To verify the nursing workload required by cancer patients undergoing palliative care and possible associations between the demographic and clinical characteristics of the patients and the nursing workload. This is a quantitative, cross-sectional, prospective study developed in the Connective Bone Tissue (TOC) clinics of Unit II of the Brazilian National Cancer Institute José Alencar Gomes da Silva with patients undergoing palliative care. Analysis of 197 measures of the Nursing Activities Score (NAS) revealed a mean score of 43.09% and an association between the performance status of patients undergoing palliative care and the mean NAS scores. The results of the study point to the need to resize the team of the unit. The NAS has proven to be a useful tool in oncologic clinical units for patients undergoing palliative care. Verificar a carga de trabalho de enfermagem requerida por pacientes com câncer sob cuidados paliativos e possíveis associações entre as características demográficas e clínicas dos pacientes e a carga de trabalho de enfermagem. Trata-se de um estudo de abordagem quantitativa, transversal, prospectivo, desenvolvido na clínica de Tecido Ósseo Conectivo (TOC) da Unidade II do Instituto Nacional de Câncer José Alencar Gomes da Silva, com pacientes em cuidados paliativos. A análise de 197 medidas do Nursing Activities Score (NAS) revelou um escore médio de 43,09% e uma associação entre a performance status de pacientes em cuidados paliativos com os valores médios do NAS. Os resultados do estudo apontam para a necessidade de redimensionamento da equipe da Unidade. O NAS mostrou-se um instrumento passível de utilização em unidades clínicas oncológicas, com pacientes em cuidados paliativos.

  7. Intercomparison among tropospheric ozone and nitrogen dioxide data obtained by satellite- and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Urita, N.; Ohta, E.; Hayashida, S.; Richter, A.; Burrows, J. P.; Liu, X.; Chance, K.; Ziemke, J. R.

    2005-12-01

    Rapid economical growth and industrial development in East Asian regions are causing serious air pollution. The influence of such air pollution is not limited to a local scale but reaches an intercontinental or hemispheric scale. Satellite-borne observations can monitor the behaviors of air pollutants in a global scale for long periods with a single instrument. In particular, ozone and nitrogen dioxide in the troposphere have a crucial role in air pollution, and many studies have tried to derive those species. Recently, instrumentations and retrieval techniques have made a lot of progress in measurements of tropospheric constituents. However, tropospheric observations from space need careful validation because of difficulties in detecting signals from the lower atmosphere through the middle atmosphere. In the present study, we intercompare the tropospheric ozone and nitrogen dioxide data obtained by satellite- and ground-based measurements in order to validate the satellite measurements. For the validation of tropospheric ozone, we utilize ozonesonde data provided by WOUDC, and three satellite-borne data (Tropospheric Ozone Residual (TOR), Cloud Slicing, and GOME) are intercompared. For nitrogen dioxide, we compare GOME observations with ground-based air monitoring measurements in Japan which are operationally conducted by the Ministry of the Environment Japan. This study demonstrates the validity and potential of those satellite datasets to apply for quantitative analysis of dispersion of air pollutants and their chemical lifetime. Acknowledgments. TOR data is provided by J. Fishman via http://asd-www.larc.nasa.gov/TOR/data.html. The ground observation data of nitrogen dioxide over Japan is provided by National Institute for Environmental Studies (NIES) under the collaboration study with NIES and Nara Women's University.

  8. Observing atmospheric formaldehyde (HCHO) from space: validation, intercomparison, trend analysis and public health implications

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Jacob, D.; Kim, P. S.; Fisher, J. A.; Yu, K.; Travis, K.; Mickley, L. J.; Yantosca, R.; Payer Sulprizio, M.; De Smedt, I.; Gonzalez Abad, G.; Chance, K.; Li, C.; Ferrare, R. A.; Fried, A.; Hair, J. W.; Hanisco, T. F.; Richter, D.; Scarino, A. J.; Walega, J.; Weibring, P.; Wolfe, G. M.

    2016-12-01

    Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs), but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS campaign over the Southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform to indirectly validate the satellite retrievals with in situ observations. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and GEOS-Chem, and reflecting high emissions of biogenic isoprene. The retrievals are also broadly consistent in their spatial variability over the Southeast US (r=0.4-0.8 on a 0.5o×0.5o grid) as well as their day-to-day variability (r=0.5-0.8). Validation results show that HCHO column data provide a reliable proxy for isoprene emission variability but with a low mean bias (20-51%) due both to the spectral fitting and the scattering weights used in the retrievals. We then apply the corrected OMI data to conduct the two following studies. (1) We examine trend in HCHO columns from 2005 to 2014 over the North America. OMI clearly captures trends associated with anthropogenic emission control near Houston, oil/gas production increase over Oil Sands as well as land cover changes over the Southeast US. (2) We drive a fine surface ambient HCHO concentration map (0.2o×0.2o) based on oversampled HCHO columns, localized HCHO vertical profiles sampled from GEOS-Chem, and diurnal variations in surface HCHO measured at various sites. We estimate a total number of 7000 lifelong cancer risks due to exposure of ambient HCHO.

  9. Tropospheric NO2 and HCHO columns derived from ground-based MAX-DOAS system in Guangzhou, China and comparison with satellite observations: First results within the EU FP7 project MarcoPolo

    NASA Astrophysics Data System (ADS)

    Drosoglou, Theano; Kouremeti, Natalia; Bais, Alkis; Zyrichidou, Irene; Li, Shu; Balis, Dimitris; Huang, Zhonghui

    2016-04-01

    A miniature MAX-DOAS system, Phaethon, has been developed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece, for ground-based monitoring of column densities of atmospheric gases. Simultaneous measurements with two Phaethon systems at the city centre of Thessaloniki and at a rural location about 30 km away have shown that Phaethon provides NO2 and HCHO tropospheric column measurements of acceptable accuracy under both low and high air-pollution levels. Currently three systems have been deployed in areas with different pollution patterns to support air quality and satellite validation studies. In the framework of the EU FP7 Monitoring and Assessment of Regional air quality in China using space Observations, Project Of Long-term sino-european co-Operation, MarcoPolo project, one of the Phaethon systems has been installed since April 2015 in the Guangzhou region in China. Tropospheric NO2 and HCHO columns derived at Guangzhou during the first 10 months of operation are compared with corresponding retrievals from OMI/Aura and GOME-2/Metop-A and /Metop-B satellite sensors. The area is characterized by humid subtropical monsoon climate and cloud-free conditions are rather rare from early March to mid-October. Despite this limitation and the short period of operation of Phaethon in Guangzhou, the agreement between ground-based and satellite observations is generally good for both NO2 and HCHO. It appears that GOME-2 sensors seem to underestimate the tropospheric NO2, possibly due to their large pixel size, whereas the comparison with OMI data is better, especially when a small cloud fraction (< 0.2) is used for cloud screening.

  10. All satellites total ozone evaluation in the tropics by comparison with SAOZ-NDACC ground-based measurements

    NASA Astrophysics Data System (ADS)

    Pommereau, Jean-Pierre; Lerot, Christophe; Van Roozendael, Michel; Goutail, Florence; Pazmino, Andrea; Frihi, Aymen; Bekki, Slimane; Clerbaux, Cathy

    2016-07-01

    All satellites total ozone measurements available from SBUV, OMI-T, OMI-D, OMI-CCI, GOME-CCI, GOME2-CCI, SCIAMACHY-CCI, NPP and IASI, since 2001 until 2015 are compared to those provided by the UV-Vis SAOZ/NDACC spectrometer at the two tropical stations of Reunion Island in the Indian Ocean and Bauru in Southern Brazil. The differences between satellites and SAOZ except IASI do show systematic seasonal variations of 0-3% (0-9 DU) amplitude and sharp negative peaks in Jan-Mar in Reunion Is in the austral summer. Whereas the summer negative peaks seen particularly on IASI, OMI-T, NPP and OMI-CCI at Reunion are shown to correlate with hurricanes and those seen in Brazil with high altitude overshooting convective clouds both not properly removed, ozone minima outside these events are shown to correlate with high altitude volcanic plumes impacting all satellites as well as ground-based total ozone measurements The seasonality of the Sat-SAOZ difference of varying amplitude from 0 to 3% with the satellite is attributed to the satellite retrieval. Surprisingly and though there has been no change in either SAOZ instruments or data analysis processes, the amplitude of the seasonal cycle of the Sat-SAOZ difference reduces in 2012 and drops to less than ± 0.5% (1.5 DU) after 2013 in Reunion Island and less than ±1% in Bauru, reduction for which there is no clear explanation yet. Shown in the presentation will be the demonstration of the impact of hurricanes, high altitude convective clouds and volcanic plumes on satellites total ozone retrievals, followed by a discussion of possible causes of seasonality of Sat-SAOZ amplitude drop after 2012.

  11. Satellite Solar-induced Chlorophyll Fluorescence Reveals Drought Onset Mechanisms: Insights from Two Contrasting Extreme Events

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Fu, R.; Dickinson, R. E.; Joiner, J.; Frankenberg, C.; Gu, L.; Xia, Y.; Fernando, N.

    2015-12-01

    This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Instrument 2 (GOME-2) closely resembled drought intensity maps from the US Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root-zone soil moisture caused by year-long below-normal precipitation. In contrast, for the central Great Plains drought, warmer temperatures and ample precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root-zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation (fPAR) and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. We conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring.

  12. Surface Reflectance in the Visible for Improved Satellite Measurements of Near-surface Ozone

    NASA Astrophysics Data System (ADS)

    Zoogman, P.; Liu, X.; Chance, K.; Sun, Q.; Schaaf, C.; Mahr, T.; Wagner, T.

    2014-12-01

    We present high spectral resolution calculations of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone using the Chappuis band (400-650 nm) and evaluate the impacts of using this reflectance data in two methods on GOME-2 (Global Ozone Monitoring Experiment-2) ultraviolet + visible ozone profile retrievals. The TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands for increased sensitivity to near-surface ozone. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a spectral resolution comparable to than that of TEMPO (0.6 nm). Using MODIS (Moderate-resolution Imaging Spectroradiometer) BRDF (Bidirection Reflectance Distribution Function)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. In the ozone profile retrieval from visible measurements, we can model the surface reflectance by either fitting a combination of primary modes or using the derived high spatial resolution spectral reflectance. We evaluate the improvement using this new reflectance data in multispectral ultraviolet + visible ozone retrievals from the GOME-2 instrument and compare the retrieval performance of using these two approaches.

  13. Guanine-06 methylation reduces the reactivity of d(GpG) towards platinum complexes.

    PubMed

    Struik, A F; Zuiderwijk, C T; van Boom, J H; Elding, L I; Reedijk, J

    1991-12-01

    6-methylated guanine dinucleotides were used to study the influence of hydrogen bonding on the specific binding of the antitumor drug cDDP, cis-PtCl2(NH3)2, to DNA. In this interaction, the guanine-06 site appears to be important in explaining the preference for a pGpG-N7(1),N7(2) chelate, which results from H-bridge formation with the ammine ligand of cDDP. Guanine-06 methylated dinucleotides and the nonmodified dinucleotides were reacted with [Pt(dien)Cl]+, cis-PtCl2(NH3)2, and cis-[Pt(NH3)2(H2O)2]2+ and the reaction products were characterized by 1H NMR using pH titrations. Methylation at guanine-06 clearly reduces the preference for the guanine. In competition experiments monitored by NMR and experiments using UV spectrophotometry a decreasing reactivity towards [Pt(dien)(H2O)]2+ and cis-[Pt(NH3)2(H2O)2]2+ was found, in the order of d(GpG) greater than d(GomepG) greater than d(GpGome) greater than d(GomepGome). The difference in reactivity between 5' guanine methylation and 3' guanine methylation is ascribed to differences in the H-bond formation with the backbone phosphate. The resulting reduced stacking of the bases in both modified dinucleotides, compared to the bases in d(GpG), results in a preference for the 3' guanine over 5'.

  14. Abrolhos bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data.

    PubMed

    Bruce, Thiago; Meirelles, Pedro M; Garcia, Gizele; Paranhos, Rodolfo; Rezende, Carlos E; de Moura, Rodrigo L; Filho, Ronaldo-Francini; Coni, Ericka O C; Vasconcelos, Ana Tereza; Amado Filho, Gilberto; Hatay, Mark; Schmieder, Robert; Edwards, Robert; Dinsdale, Elizabeth; Thompson, Fabiano L

    2012-01-01

    The health of the coral reefs of the Abrolhos Bank (Southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the "paper park" of Timbebas Reef). The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes) showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic microbial pathogens.

  15. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events

    SciTech Connect

    Sun, Ying; Fu, Rong; Dickinson, Robert; Joiner, Joanna; Frankenberg, Christian; Gu, Lianhong; Xia, Youlong; Fernando, Nelun

    2015-11-01

    This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Experiment 2 (GOME-2) closely resembled drought intensity maps from the U.S. Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root zone soil moisture caused by yearlong below-normal precipitation. In contrast, for the central Great Plains drought, warmer temperatures and relatively normal precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation fPAR and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. We conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring.

  16. An exemplary case of a bromine explosion event linked to cyclone development in the Arctic

    NASA Astrophysics Data System (ADS)

    Blechschmidt, A.-M.; Richter, A.; Burrows, J. P.; Kaleschke, L.; Strong, K.; Theys, N.; Weber, M.; Zhao, X.; Zien, A.

    2015-09-01

    Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO) are regularly observed by GOME-2 on board the MetOp-A satellite over Arctic sea ice in polar spring. These plumes are often transported by high latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. However, only few studies have focused on the role of polar weather systems in the development, duration and transport of tropospheric BrO plumes during bromine explosion events. The latter are caused by an autocatalytic chemical chain reaction associated with tropospheric ozone depletion and initiated by the release of bromine from cold brine covered ice or snow to the atmosphere. In this manuscript, a case study investigating a comma-shaped BrO plume which developed over the Beaufort Sea and was observed by GOME-2 for several days is presented. By making combined use of satellite data and numerical models, it is shown that the occurrence of the plume was closely linked to frontal lifting in a polar cyclone and that it most likely resided in the lowest 3 km of the troposphere. In contrast to previous case studies, we demonstrate that the dry conveyor belt, a potentially bromine-rich stratospheric air stream which can complicate interpretation of satellite retrieved tropospheric BrO, is spatially separated from the observed BrO plume. It is concluded that weather conditions associated with the polar cyclone favored the bromine activation cycle and blowing snow production, which may have acted as a bromine source during the bromine explosion event.

  17. Observing BVOC emissions from Space

    NASA Astrophysics Data System (ADS)

    Oetjen, Hilke; Hewson, William; Comyn-Platt, Edward M.; Barkley, Michael P.; Bösch, Hartmut

    2016-04-01

    Formaldehyde (HCHO) is formed in the atmosphere as an intermediate from the oxidation of methane and other hydrocarbons such as isoprene, but also from combustion processes. Further, global and accurate measurements of HCHO from space are important since they can be used to infer global isoprene emission (e.g. Barkley et al., 2013), the primary biogenic volatile organic compound (BVOC) that cannot be monitored from space directly. However, isoprene is an important source of ozone and secondary organic aerosol, and a sink for the hydroxyl radical. HCHO absorbs in the ultraviolet wavelengths range and can therefore be detected by scattered sunlight absorption spectroscopy. Here we present measurements with the GOME-2 instrument. The first of the 3 GOME-2 instruments has been flying on MetOp-A since 2006 and MetOp-B has been launched in 2012. MetOp-C is expected to be launched in 2018. The University of Leicester retrieval (Hewson et al., 2015) is a well characterised state-of-the-art algorithm which has been used to infer HCHO vertical columns from MetOp-A, and more recently from MetOp-B. The results have been employed for creating a global, multi-year time series. This dataset has been exploited to analyse regional year-to-year variations in HCHO abundances and also to test emission models via comparisons to GEOS-Chem simulations. Barkley, M. P., et al. (2013), J. Geophys. Res. Atmos., 118, 6849-6868, doi:10.1002/jgrd.50552 Hewson, W., et al. (2015), Atmos. Meas. Tech., 8, 4055-4074, doi:10.5194/amt-8-4055-2015

  18. An improved glyoxal retrieval from OMI measurements

    NASA Astrophysics Data System (ADS)

    Alvarado, L. M. A.; Richter, A.; Vrekoussis, M.; Wittrock, F.; Hilboll, A.; Schreier, S. F.; Burrows, J. P.

    2014-12-01

    Satellite observations from the SCIAMACHY, GOME-2 and OMI spectrometers have been used to retrieve atmospheric columns of glyoxal (CHOCHO) with the DOAS method. High CHOCHO levels were found over regions with large biogenic and pyrogenic emissions, and hot-spots have been identified over areas of anthropogenic activities. This study focuses on the development of an improved retrieval for CHOCHO from measurements by the OMI instrument. From sensitivity tests, a fitting window and a polynomial degree are determined. Two different approaches to reduce the interference of liquid water absorption over oceanic regions are evaluated, achieving significant reduction of the number of negative columns over clear water regions. The impact of using different absorption cross-sections for water vapour is evaluated and only small differences are found. Finally, a high-temperature (boundary layer ambient: 294 K) absorption cross-section of nitrogen dioxide (NO2) is introduced in the DOAS retrieval to account for potential interferences of NO2 over regions with large anthropogenic emissions, leading to improved fit quality over these areas. A comparison with vertical CHOCHO columns retrieved from GOME-2 and SCIAMACHY measurements over continental regions is performed, showing overall good consistency. However, SCIAMACHY CHOCHO columns are systematically higher than those obtained from the other instruments. Using the new OMI CHOCHO data set, the link between fires and glyoxal columns is investigated for two selected regions in Africa. In addition, mapped averages are computed for a fire event in Russia between mid-July and mid-August 2010. In both cases, enhanced CHOCHO levels are found in close spatial and temporal proximity to elevated levels of MODIS fire radiative power, demonstrating that pyrogenic emissions can be clearly identified in the new OMI CHOCHO product.

  19. Widespread persistent near-surface ozone depletion at northern high latitudes in spring

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Wang, Yuhang; Chance, Kelly; Browell, Edward V.; Ridley, Brian A.; Atlas, Elliot L.

    2003-12-01

    Springtime near-surface ozone depletion has been observed at northern high latitudes. Due to limited observations, the spatial and temporal extent of low O3 concentrations near the surface is still unknown. A regional 3-D chemistry and transport model is applied to simulate surface O3 depletion catalyzed by bromine radicals at northern high latitudes in March and April 2000. Satellite observations of BrO column by the ESA Global Ozone Monitoring Experiment (GOME) were processed to specify the BrO concentrations in the lower troposphere. In view of the GOME measurement and model uncertainties, the model results show an adequate agreement with the O3 depletion events observed at two surface sites, Alert, Canada (82.5°N, 62.3°W) and Barrow, Alaska (71.3°N, 156.6°W), and by airborne in situ and DIAL instrument during the TOPSE experiments at northern high latitudes. Low O3 events at Alert appear to be mostly driven by transport of O3-poor air from high BrO regions. Model results indicate that low O3 concentrations (<20 ppbv) near the surface cover ~60% of the northern high latitudes and that the depleted O3 concentrations (<10 ppbv) cover ~20% of the region in April. The high BrO events tend to be large-scale and persistent (1-2 weeks). We find that they are correlated with low temperature, a condition conducive for heterogeneous reactions on frozen snow or aerosol surfaces.

  20. Observing the Anthropocene from Space: Selected Megacities

    NASA Astrophysics Data System (ADS)

    Burrows, John P.; Hilboll, Andreas; Richter, Andreas

    2014-05-01

    From the beginning of the Neolithic revolution around 10000 BC and 1800 A.D., the earth's human population is estimated to have risen from several million nomadic hunter gathers to 1 Billion rural settlement and city dwellers. This population increase and its related raising of the standard of living increase and life expectancy were fuelled by energy from the exploitation of biofuel and some use of coal. This rapid development is dwarfed by the impact of the industrial revolution over the past two centuries. There are no over 7 Billion people on earth with over half living in cities and urban areas, e.g. there are ~ 3 billion more citizens than when the author was born and 2 million more than when the project SCIAMACHY (SCanning Imaging and Absorption spectroMeter for Atmospheric ChartographY) was proposed! This industrialisation and urbanisation has been fuelled by the use of cheap energy from fossil fuel combustion. It has resulted in large scale changes in land use, air pollution, and the destruction of stratospheric ozone, the anthropogenic modification of biogeochemical cycling, the destruction of species, ecosystems and ecosystem services. In order to test our knowledge and understanding of the Earth system, accurate long term global measurements of atmospheric constituents and surface parameters are essential. The remote sounding of the atmosphere from instrumentation on satellite platforms provides a unique opportunity to retrieve regional and global observations of key trace atmospheric constituents (gases, aerosol and clouds) and surface parameters (ocean colour, ice extent, flora etc.). This talk describes results from the SCIAMACHY project and its spin offs, GOME (originally SCIA-mini - Global Ozone Monitoring Experiment), GOME-2, and their successors ESA Sentinel 4 (originally GeoSCIA), Sentinel 5, CarbonSat and SCIA-ISS. The interpretation of the data from these instruments has provided a paradigm shift in our understanding of global atmospheric

  1. Combined Ozone Retrieval From METOP Sensors Using META-Training Of Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Felder, Martin; Sehnke, Frank; Kaifel, Anton

    2013-12-01

    The newest installment of our well-proven Neural Net- work Ozone Retrieval System (NNORSY) combines the METOP sensors GOME-2 and IASI with cloud information from AVHRR. Through the use of advanced meta- learning techniques like automatic feature selection and automatic architecture search applied to a set of deep neural networks, having at least two or three hidden layers, we have been able to avoid many technical issues normally encountered during the construction of such a joint retrieval system. This has been made possible by harnessing the processing power of modern consumer graphics cards with high performance graphic processors (GPU), which decreases training times by about two orders of magnitude. The system was trained on data from 2009 and 2010, including target ozone profiles from ozone sondes, ACE- FTS and MLS-AURA. To make maximum use of tropospheric information in the spectra, the data were partitioned into several sets of different cloud fraction ranges with the GOME-2 FOV, on which specialized retrieval networks are being trained. For the final ozone retrieval processing the different specialized networks are combined. The resulting retrieval system is very stable and does not show any systematic dependence on solar zenith angle, scan angle or sensor degradation. We present several sensitivity studies with regard to cloud fraction and target sensor type, as well as the performance in several latitude bands and with respect to independent validation stations. A visual cross-comparison against high-resolution ozone profiles from the KNMI EUMETSAT Ozone SAF product has also been performed and shows some distinctive features which we will briefly discuss. Overall, we demonstrate that a complex retrieval system can now be constructed with a minimum of ma- chine learning knowledge, using automated algorithms for many design decisions previously requiring expert knowledge. Provided sufficient training data and computation power of GPUs is available, the

  2. Comparison of seasonal variation between anthropogenic and natural emission inventory and Satellite observation in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Kurata, G.; Lalitaporn, P.

    2012-12-01

    Since the economic growth of the countries in Southeast Asia is significantly rapid, the emission of air pollutant from the anthropogenic activity, such as industry, power generation and transportation is rapidly increasing. Moreover, biomass burning due to unsuitable agricultural management, deforestation and expansion of farmland are discharging large amount of pollutants, such as Carbon monoxide, volatile organic compound and particulate matter. Especially, the particulate matter from biomass burning causes the serious haze pollution in surrounding area in Southeast Asia. Furthermore, the biomass fuel used for cooking at residential sector discharges harmful pollutants including a particulate matter, and causes the adverse health impact to people on indoor and outdoor. In this study, we evaluated the spatial distribution and the seasonal variation of emission inventory for Southeast Asia region by comparing with satellite observation data in order to improve the accuracy of the impact assessment of air pollution by regional atmospheric chemistry transport model (WRF and CMAQ). As an emission inventory data, we used our original regional emission inventory for Southeast Asia region developed from detail transportation and industry data sets as well as a several existing emission inventories. As satellite observation data, the vertical column density of NO2, Particulate matter and Carbon monoxide obtained by various satellite, such as GOME, GOME2, SCIAMACY, OMI and so on. As a result of comparisons between satellite observation and emission inventories from 1996 to 2011, in the case of anthropogenic emission, seasonal variation was comparatively well in agreement with the seasonal variation of satellite data. However, the uncertainty of the seasonal variation was large on several large cities. In the case of emission from biomass burning, the seasonal variation was clear, but inter-annual variation was also large due to large scale climate condition.

  3. Distributions and Controls of Carbonate Chemistry on the Northeastern U.S. Shelf

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Hoering, K.; Chu, S.; Lawson, G. L.

    2013-12-01

    Recent work on coastal carbon has shown that waters of the northeastern U.S. shelf including Gulf of Maine (GoME) and the Mid-Atlantic Bight (MAB), have lower pH, aragonite saturation states (ΩA) and less buffer capacity than the southern U.S. shelves. This suggests that the region may be more susceptible to acidification pressures than previously thought. Further studies on carbonate chemistry in this region are warranted to understand its variability and various controlling mechanisms, which in turn are important to understand potential ocean acidification effects on ecosystems and fisheries. Both legacy and newly-collected data are used in the present study to examine seasonal and spatial variability of relevant carbonate parameters, including dissolved inorganic carbon (DIC), total alkalinity (TA), pH, and ΩA, in the region. In general, TA shows a conservative behavior in both GoME and MAB, although the exact end-members differ and are determined by both local inputs and external sources. ΩA is generally low (<2) for most seasons in the region. In the MAB, the Labrador Coast Current was found to exert a significant control on the spatial distribution of the carbonate system in summer; alongshore mixing tended to increase DIC concentrations southward, but this effect was largely offset by the opposing effects of biogeochemical processing. This result also suggests that the MAB may be net autotrophic in summer, where there is a net uptake of DIC by biological processes. The distributions of pH and ΩA in the MAB are also consistent with such a conclusion. A strong cross-shelf gradient in TA is consistent with the prominent shelf-break front in the MAB, suggesting the potential importance of cross-shelf exchange of carbon. The seasonal progression of biological processes and circulation is also important in determining the distribution of carbonate chemistry in the MAB. In the GoME, the bottom water of the Wilkinson Basin has the lowest pH, ΩA, and buffer

  4. Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

    NASA Astrophysics Data System (ADS)

    Livingston, J. M.; Schmid, B.; Russell, P. B.; Eilers, J. A.; Kolyer, R. W.; Redemann, J.; Ramirez, S. R.; Yee, J.-H.; Swartz, W. H.; Trepte, C. R.; Thomason, L. W.; Pitts, M. C.; Avery, M. A.; Randall, C. E.; Lumpe, J. D.; Bevilacqua, R. M.; Bittner, M.; Erbertseder, T.; McPeters, R. D.; Shetter, R. E.; Browell, E. V.; Kerr, J. B.; Lamb, K.

    2005-08-01

    During the 2003 SAGE (Stratospheric Aerosol and Gas Experiment) III Ozone Loss and Validation Experiment (SOLVE) II, the fourteen-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was mounted on the NASA DC-8 aircraft and measured spectra of total and aerosol optical depth (TOD and AOD) during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 measurements by using a linear least squares method that exploits the differential ozone absorption in the seven AATS-14 channels located within the Chappuis band. We compare AATS-14 columnar ozone retrievals with temporally and spatially near-coincident measurements acquired by the SAGE III and the Polar Ozone and Aerosol Measurement (POAM) III satellite sensors during four solar occultation events observed by each satellite. RMS differences are 19 DU (7% of the AATS value) for AATS-SAGE and 10 DU (3% of the AATS value) for AATS-POAM. In these checks of consistency between AATS-14 and SAGE III or POAM III ozone results, the AATS-14 analyses use airmass factors derived from the relative vertical profiles of ozone and aerosol extinction obtained by SAGE III or POAM III.

    We also compare AATS-14 ozone retrievals for measurements obtained during three DC-8 flights that included extended horizontal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS) and the Global Ozone Monitoring Experiment (GOME) satellite sensors. To enable these comparisons, the amount of ozone in the column below the aircraft is estimated either by assuming a climatological model or by combining SAGE and/or POAM data with high resolution in-situ ozone measurements acquired by the NASA Langley Research Center chemiluminescent ozone sensor, FASTOZ, during the aircraft vertical profile at the start or end of each flight. Resultant total column ozone values agree with corresponding TOMS and GOME

  5. One decade of space-based isoprene emission estimates: Interannual variations and emission trends between 2005 and 2014

    NASA Astrophysics Data System (ADS)

    Bauwens, Maite; Stavrakou, Trissevgeni; Müller, Jean-François; De Smedt, Isabelle; Van Roozendael, Michel

    2016-04-01

    Isoprene is one of the most largely emitted hydrocarbons in the atmosphere, with global annual emissions estimated at about 500 Tg, but with large uncertainties (Arneth et al., 2011). Here we use the source inversion approach to derive top-down biogenic isoprene emission estimates for the period between 2005 and 2014 constrained by formaldehyde observations, a high-yield intermediate in the oxidation of isoprene in the atmosphere. Formaldehyde columns retrieved from the Ozone Monitoring Instrument (OMI) are used to constrain the IMAGESv2 global chemistry-transport model and its adjoint code (Stavrakou et al., 2009). The MEGAN-MOHYCAN isoprene emissions (Stavrakou et al., 2014) are used as bottom-up inventory in the model. The inversions are performed separately for each year of the study period, and monthly emissions are derived for every model grid cell. The inversion results are compared to independent isoprene emissions from GUESS-ES (Arneth et al., 2007) and MEGAN-MACC (Sinderalova et al., 2014) and to top-down fluxes based on GOME-2 formaldehyde columns (Bauwens et al., 2014; Stavrakou et al., 2015). The mean global annual OMI-based isoprene flux for the period 2005-2014 is estimated to be 270 Tg, with small interannual variation. This estimate is by 20% lower with regard to the a priori inventory on average, but on the regional scale strong emission updates are inferred. The OMI-based emissions are substantially lower than the MEGAN-MACC and the GUESS-ES inventory, but agree well with the isoprene fluxes constrained by GOME-2 formaldehyde columns. Strong emission reductions are derived over tropical regions. The seasonal pattern of isoprene emissions is generally well preserved after inversion and relatively consistent with other inventories, lending confidence to the MEGAN parameterization of the a priori inventory. In boreal regions the isoprene emission trend is positive and reinforced after inversion, whereas the inversion suggests negative trends in the

  6. The formation of Uranus and Neptune in solid-rich feeding zones: Connecting chemistry and dynamics

    NASA Astrophysics Data System (ADS)

    Dodson-Robinson, Sarah E.; Bodenheimer, Peter

    2010-05-01

    The core accretion theory of planet formation has at least two fundamental problems explaining the origins of Uranus and Neptune: (1) dynamical times in the trans-saturnian solar nebula are so long that core growth can take >15 Myr and (2) the onset of runaway gas accretion that begins when cores reach ˜10 M⊕ necessitates a sudden gas accretion cutoff just as Uranus and Neptune's cores reach critical mass. Both problems may be resolved by allowing the ice giants to migrate outward after their formation in solid-rich feeding zones with planetesimal surface densities well above the minimum-mass solar nebula. We present new simulations of the formation of Uranus and Neptune in the solid-rich disk of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) using the initial semimajor axis distribution of the Nice model (Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A. [2005]. Nature 435, 466-469; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R. [2005]. Nature 435, 462-465; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435, 459-461), with one ice giant forming at 12 AU and the other at 15 AU. The innermost ice giant reaches its present mass after 3.8-4.0 Myr and the outermost after 5.3-6 Myr, a considerable time decrease from previous one-dimensional simulations (e.g. Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y. [1996]. Icarus 124, 62-85). The core masses stay subcritical, eliminating the need for a sudden gas accretion cutoff. Our calculated carbon mass fractions of 22% are in excellent agreement with the ice giant interior models of Podolak et al. (Podolak, M., Weizman, A., Marley, M. [1995]. Planet. Space Sci. 43, 1517-1522) and Marley et al. (Marley, M.S., Gómez, P., Podolak, M. [1995]. J. Geophys. Res. 100, 23349-23354). Based on the requirement that the ice giant-forming planetesimals contain >10% mass

  7. New Developments in the SCIAMACHY L2 Ground Processor

    NASA Astrophysics Data System (ADS)

    Gretschany, Sergei; Lichtenberg, Günter; Meringer, Markus; Theys, Nicolas; Lerot, Christophe; Liebing, Patricia; Noel, Stefan; Dehn, Angelika; Fehr, Thorsten

    2016-04-01

    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY) aboard ESA's environmental satellite ENVISAT observed the Earth's atmosphere in limb, nadir, and solar/lunar occultation geometries covering the UV-Visible to NIR spectral range. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002. SCIAMACHY doubled its originally planned in-orbit lifetime of five years before the communication to ENVISAT was severed in April 2012, and the mission entered its post-operational phase. In order to preserve the best quality of the outstanding data recorded by SCIAMACHY, data processors are still being updated. This presentation will highlight three new developments that are currently being incorporated into the forthcoming Version 7 of ESA's operational Level 2 processor: 1. Tropospheric BrO, a new retrieval based on the scientific algorithm of (Theys et al., 2011). This algorithm had been originally developed for the GOME-2 sensor and later adapted for SCIAMACHY. The main principle of the new algorithm is to utilize BrO total columns (already an operational product) and split them into stratospheric VCDstrat and tropospheric VCDtrop fractions. BrO VCDstrat is determined from a climatological approach, driven by SCIAMACHY O3 and NO2 observations. VCDtrop is then determined simply as a difference: VCDtrop = VCDtotal - VCDstrat. 2. Improved cloud flagging using limb measurements (Liebing, 2015). Limb cloud flags are already part of the SCIAMACHY L2 product. They are currently calculated employing the scientific algorithm developed by (Eichmann et al., 2015). Clouds are categorized into four types: water, ice, polar stratospheric and noctilucent clouds. High atmospheric aerosol loadings, however, often lead to spurious cloud flags, when aerosols had been misidentified as clouds. The new algorithm will better discriminate between aerosol and clouds. It will also have a higher sensitivity w.r.t. thin clouds. 3. A new

  8. Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time

    NASA Astrophysics Data System (ADS)

    Brogniez, Colette; Auriol, Frédérique; Deroo, Christine; Arola, Antti; Kujanpää, Jukka; Sauvage, Béatrice; Kalakoski, Niilo; Riku Aleksi Pitkänen, Mikko; Catalfamo, Maxime; Metzger, Jean-Marc; Tournois, Guy; Da Conceicao, Pierre

    2016-12-01

    Spectral solar UV radiation measurements are performed in France using three spectroradiometers located at very different sites. One is installed in Villeneuve d'Ascq, in the north of France (VDA). It is an urban site in a topographically flat region. Another instrument is installed in Observatoire de Haute-Provence, located in the southern French Alps (OHP). It is a rural mountainous site. The third instrument is installed in Saint-Denis, Réunion Island (SDR). It is a coastal urban site on a small mountainous island in the southern tropics. The three instruments are affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC) and carry out routine measurements to monitor the spectral solar UV radiation and enable derivation of UV index (UVI). The ground-based UVI values observed at solar noon are compared to similar quantities derived from the Ozone Monitoring Instrument (OMI, onboard the Aura satellite) and the second Global Ozone Monitoring Experiment (GOME-2, onboard the Metop-A satellite) measurements for validation of these satellite-based products. The present study concerns the period 2009-September 2012, date of the implementation of a new OMI processing tool. The new version (v1.3) introduces a correction for absorbing aerosols that were not considered in the old version (v1.2). Both versions of the OMI UVI products were available before September 2012 and are used to assess the improvement of the new processing tool. On average, estimates from satellite instruments always overestimate surface UVI at solar noon. Under cloudless conditions, the satellite-derived estimates of UVI compare satisfactorily with ground-based data: the median relative bias is less than 8 % at VDA and 4 % at SDR for both OMI v1.3 and GOME-2, and about 6 % for OMI v1.3 and 2 % for GOME-2 at OHP. The correlation between satellite-based and ground-based data is better at VDA and OHP (about 0.99) than at SDR (0.96) for both space-borne instruments. For all

  9. Assessment of the chestnut production weather dependence

    NASA Astrophysics Data System (ADS)

    Pereira, Mário; Caramelo, Liliana; Gouveia, Célia; Gomes-Laranjo, José

    2010-05-01

    The vegetative cycle of chestnut trees is highly dependent on weather. Photosynthesis and pollen germination are mainly conditioned by the air temperature while heavy precipitation and strong wind have significant impacts during the flushing phase period (Gomes-Laranjo et al., 2005, 2006). In Portugal, chestnut tree orchads are located in mountainous areas of the Northeast region of Trás-os-Montes, between 600 and 1000 m of altitude. Topography controls the atmospheric environment and assures adequate conditions for the chestnut production. In the above mentioned context, remote sensing plays an important role because of its ability to monitor and characterise vegetation dynamics. A number of studies, based on remote sensing, have been conducted in Europe to analyse the year-to-year variations in European vegetation greenness as a function of precipitation and temperature (Gouveia et al., 2008). A previous study focusing on the relationship between meteorological variables and chestnut productivity provides indication that simulation models may benefit from the incorporation of such kind of relationships. The aim of the present work is to provide a detailed description of recent developments, in particular of the added value that may be brought by using satellite data. We have relied on regional fields of the Normalized Difference Vegetation Index (NDVI) dataset, at 8-km resolution, provided by the Global Inventory Monitoring and Modelling System (GIMMS) group. The data are derived from the Advanced Very High Resolution Radiometers (AVHRR), and cover the period from 1982 to 2006. Additionally we have used the chestnut productivity dataset, which includes the annual values of chestnut production and area of production provided by INE, the National Institute of Statistics of Portugal and the meteorological dataset which includes values of several variables from different providers (Meteorod, NCEP/NCAR, ECA&D and national Meteorological Institute). Results show that

  10. Space-based constraints on global and Chinese non-methane volatile organic compound emissions: exploring the sources of uncertainties

    NASA Astrophysics Data System (ADS)

    Fu, T. M.; Cao, H.; Zhang, L.; Henze, D. K.; Lerot, C.; Miller, C. E.; Zhao, Y.

    2016-12-01

    We used the GEOS-Chem model and its adjoint to quantify global and Chinese non-methane volatile organic compound (NMVOC) emissions for the year 2007, constrained by the tropospheric column concentrations of formaldehyde and glyoxal observed by the Global Ozone Monitoring Experiment-2 (GOME-2) instrument and the Ozone Monitoring Instrument (OMI). The simultaneous use of both formaldehyde and glyoxal observations helped distinguish between NMVOC species. We conducted a series of inversion experiments using different combinations of a priori emissions, uncertainty assumptions, isoprene oxidation mechanisms, and satellite retrievals to represent the ranges of uncertainty for our "top-down" emission estimates. Our inverted global isoprene emission was 190-330 Tg C y-1, with large region-dependent differences compared to previous estimates. The choice of isoprene chemical mechanism had a large impact on the emission estimates of isoprene and other glyoxal precursors. Our best estimate for Chinese annual total NMVOC emission was 49 (range 43-54) Tg C y-1, including 30 (28-32) Tg C y-1 from anthropogenic sources, 17 (15-19) Tg C y-1 from biogenic sources, and 2 (1-3) Tg C y-1 from biomass burning. In comparison, the current-best "bottom-up" estimate for Chinese annual total NMVOC emission was 33 Tg C y-1, including 15.8 Tg C y-1 from anthropogenic sources, 16 Tg C y-1 from biogenic sources, and 1 Tg C y-1 from open fires. In particular, our top-down estimate for the Chinese annual emission of anthropogenic aromatics (benzene, toluene, and xylene) was 16 (14-18) Tg C y-1, 580% higher than the estimate in the RETRO inventory (2.3 Tg C y-1). Inversion of glyoxal observations were essential in constraining aromatic emissions. The sources of the additional aromatics in China were yet unclear but likely involved most anthropogenic activities. We concluded that GOME2 and OMI observations of glyoxal and formaldehyde combined provided useful constraints on the emissions and the

  11. Cross Calibration of TOMS, SBUV/2 and Sciamachy Radiances from Ground Observations

    NASA Technical Reports Server (NTRS)

    Hillsenrath, Ernest; Ahmad, Ziauddin; Bhartia, Pawan K. (Technical Monitor)

    2001-01-01

    Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify recovery. We have shown that validation of radiances is the most effective means for correcting absolute accuracy and long term drifts of backscatter type satellite measurements. This method by-passes the algorithms used for both satellite and ground based measurements which are normally used to validate and correct the satellite data. Validation of radiances will also improve all higher level data products derived from the satellite observations. Backscatter algorithms suffer from several errors such as unrepresentative a-priori data and air mass factor corrections. Radiance comparisons employ forward models but are inherently more accurate and than inverse (retrieval) algorithms. A new method for satellite validation is planned which will compliment measurements from the existing ground-based networks. This method will employ very accurate comparisons between ground based zenith sky radiances and satellite nadir radiances. These comparisons will rely heavily on the experience derived from the Shuttle SBUV (SSBUV) program which provided a reference standard of radiance measurements for SBUV/2, TOMS, and GOME. This new measurement program, called "Skyrad", employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. The Skyrad instruments (SSBUV, Brewer spectrophotometers, and

  12. Satellite-Derived NO2 as an Indicator of Urban Air Quality and Emissions

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Penn, E.; Harkey, M.

    2016-12-01

    Nitrogen dioxide (NO2) is the satellite-derived constituent with the most direct connection to fossil fuel emissions. At present the Ozone Monitoring Instrument aboard the NASA Aura satellite offers the highest resolution NO2retrievals, and new missions under development (TropOMI, TEMPO, GEMS, Sentinel-4) offer the potential for improved data in coming years. We present results applying satellite-derived NO2data to characterize air quality and emissions in U.S. cities. We highlight research findings geared toward increasing the relevance of satellite data to evaluate urban-scale air quality issues. This work reflects activities under the NASA Air Quality Applied Sciences Team (AQAST), and emerging work under the NASA Health and Air Quality Applied Sciences Team (H-AQAST). Among our results is a characterization of the diurnal cycle of nitrogen oxides using ground-based observations and satellite data. In situ monitoring from the U.S. EPA Air Quality System (AQS) shows that most locations have two daily peaks in NO2 (morning and evening) and a single daily peak in NO (morning). Spaced-based observations from the ESA Global Ozone Monitoring Experiment-2 (GOME-2), with a mid-morning overpass, and the NASA OMI, with an early afternoon overpass, support a complementary analysis for characterizing diurnal variability in NO2. Both ground-based monitors and satellite data show a reduction in the amplitude of the diurnal NO2 cycle. In the Western U.S., satellite data showed evidence of higher NO2 in urban centers in the afternoon (OMI) and higher NO2 in suburban areas in the morning (GOME-2), consistent with diurnal traffic patterns associated with commuting. Some power plants in the Western U.S. showed an increase in NO2in the afternoon, consistent with peak power demand associated with building air conditioning use. We extend this city-focused analysis satellite-derived HCHO:NO2 ratios as an indicator of ozone production regime, comparing modeled and measured ratios

  13. The Use of Meteosat Second Generation Satellite Data Within A New Type of Solar Irradiance Calculation Scheme

    NASA Astrophysics Data System (ADS)

    Mueller, R. W.; Beyer, H. G.; Cros, S.; Dagestad, K. F.; Dumortier, D.; Ineichen, P.; Hammer, A.; Heinemann, D.; Kuhlemann, R.; Olseth, J. A.; Piernavieja, G.; Reise, C.; Schroedter, M.; Skartveit, A.; Wald, L.

    1-University of Oldenburg, 2-University of Appl. Sciences Magdeburg, 3-Ecole des Mines de Paris, 4-University of Bergen, 5-Ecole Nationale des Travaux Publics de l'Etat, 6-University of Geneva, 7-Instituto Tecnologico de Canarias, 8-Fraunhofer Institute for Solar Energy Systems, 9-German Aerospace Center Geostationary satellites such as Meteosat provide cloud information with a high spatial and temporal resolution. Such satellites are therefore not only useful for weather fore- casting, but also for the estimation of solar irradiance since the knowledge of the light reflected by clouds is the basis for the calculation of the transmitted light. Additionally an the knowledge of atmospheric parameters involved in scattering and absorption of the sunlight is necessary for an accurate calculation of the solar irradiance. An accurate estimation of the downward solar irradiance is not only of particular im- portance for the assessment of the radiative forcing of the climate system, but also necessary for an efficient planning and operation of solar energy systems. Currently, most of the operational calculation schemes for solar irradiance are semi- empirical. They use cloud information from the current Meteosat satellite and clima- tologies of atmospheric parameters e.g. turbidity (aerosols and water vapor). The Me- teosat Second Generation satellites (MSG, to be launched in 2002) will provide not only a higher spatial and temporal resolution, but also the potential for the retrieval of atmospheric parameters such as ozone, water vapor and with restrictions aerosols. With this more detailed knowledge about atmospheric parameters it is evident to set up a new calculation scheme based on radiative transfer models using the retrieved atmospheric parameters as input. Unfortunately the possibility of deriving aerosol in- formation from MSG data is limited. As a cosequence the use of data from additional satellite instruments ( e.g. GOME/ATSR-2) is neeeded. Within this

  14. Cross Calibration of TOMS, SBUV/2 and Sciamachy Radiances from Ground Observations

    NASA Technical Reports Server (NTRS)

    Hillsenrath, Ernest; Ahmad, Ziauddin; Bhartia, Pawan K. (Technical Monitor)

    2001-01-01

    Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify recovery. We have shown that validation of radiances is the most effective means for correcting absolute accuracy and long term drifts of backscatter type satellite measurements. This method by-passes the algorithms used for both satellite and ground based measurements which are normally used to validate and correct the satellite data. Validation of radiances will also improve all higher level data products derived from the satellite observations. Backscatter algorithms suffer from several errors such as unrepresentative a-priori data and air mass factor corrections. Radiance comparisons employ forward models but are inherently more accurate and than inverse (retrieval) algorithms. A new method for satellite validation is planned which will compliment measurements from the existing ground-based networks. This method will employ very accurate comparisons between ground based zenith sky radiances and satellite nadir radiances. These comparisons will rely heavily on the experience derived from the Shuttle SBUV (SSBUV) program which provided a reference standard of radiance measurements for SBUV/2, TOMS, and GOME. This new measurement program, called "Skyrad", employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. The Skyrad instruments (SSBUV, Brewer spectrophotometers, and

  15. Revising the Global Budget of Glyoxal (OCHCHO) Based on OMI Vertical Columns

    NASA Astrophysics Data System (ADS)

    Muller, J. F.; Stavrakou, T.; Lerot, C.; Van Roozendael, M.

    2015-12-01

    Glyoxal is, like formaldehyde, a short-lived intermediate in the oxidation of non-methane VOCs emitted by plants, vegetation fires and anthropogenic activities. It is also a precursor of secondary organic aerosols. Both compounds absorb in the UV-visible spectral region and have been measured by the SCIAMACHY satellite sensor since 2003, and more recently, by OMI and GOME-2. Previous modelling studies using SCIAMACHY data have pointed to the existence of large additional sources, in particular over forests (Stavrakou et al. 2009), and more recently over Eastern China, most likely due to aromatic hydrocarbons (Liu et al. 2012), suggesting that glyoxal can serve as an indirect estimator of urban VOC sources. The current study is motivated by (i) recent advances in our understanding of chemical pathways leading to glyoxal formation, in particular from the oxidation of isoprene, the most largely emitted NMVOC, (ii) the existence of numerous in situ concentration measurements for the key anthropogenic glyoxal precursors (e.g. acetylene, aromatics) over industrialized areas, which can be used to narrow down the anthropogenic emission estimates in these regions, and (iii) substantial improvements in retrieval algorithms for glyoxal columns from UV-visible satellite instruments, which has led to an significant reductions of the number of unphysical negative columns over the oceans as well as to generally lower glyoxal columns over continents. In this study, the chemical mechanism and NMVOC emission inventories of the global CTM IMAGESv2 are revised based on recent investigations. The relative importance and possible uncertainties of different chemical pathways leading to glyoxal formation in the oxidation of isoprene are determined by box model simulations. Next, OMI (also possibly GOME-2) glyoxal and formaldehyde data are used to constrain the emissions of biogenic, pyrogenic and anthropogenic VOCs. To that effect, the inverse modelling technique using the adjoint model

  16. MERIS albedo data set with improved spatial resolution for SCIAMACHY NO2 retrieval over the European Alpine region

    NASA Astrophysics Data System (ADS)

    Popp, Christoph; Brunner, Dominik; Zhou, Yipin; Wang, Ping; Stammes, Piet

    Despite NOx emissions have been reduced in the past two decades in Switzerland, the NO2 concentrations today still occasionally exceed their threshold as in most other European coun-tries. In addition, the neighboring Po Valley in Northern Italy is well known for generally high levels of air pollutants which are often transported to the southern part of Switzerland. Vertical tropospheric column (VTC) densities of NO2 obtained from spaceborne UV/VIS sensors pro-vide spatially homogeneous information complementing local ground-based measurements. For instance, SCIAMACHY (Scanning Imaging Absorption SpectroMeter for Atmospheric Cartog-raphY) derived NO2-VTC are available from 2002 onward potentially enabling trend analysis as well as monitoring of air quality in our region of interest. In general, a large part of the NO2-VTC retrieval uncertainty can be assigned to the air mass factor which, in turn, depends on model parameters such as surface albedo, surface pressure, cloud fraction and cloud pres-sure. Previous studies indicated that improving the spatial resolution of these forward param-eters can lead to more accurate estimates of NO2-VTC. Herein, we concentrate on the surface albedo. In ESA's TEMIS (Tropospheric Emission Monitoring Internet Service) project, the SCIAMACHY NO2-VTC retrieval makes use of combined GOME/TOMS Lambertian equiva-lent reflectance data mapped onto a grid with a spatial resolution of 1x1. However, variations of surface albedo at the scale of individual satellite pixels (30x60km2 for SCIAMACHY) are difficult to be resolved with this grid size, especially in areas like the European Alps and ad-jacent regions characterized by heterogeneous land cover. For these reasons, we compiled a new land surface albedo climatology for each month of the year from MERIS (The Medium Resolution Imaging Spectrometer) Albedomap data covering the period October 2002 to Oc-tober 2006 with a spatial resolution of 0.25x0.25. The wavelength bands considered are

  17. Test-retest reliability of Brazilian version of Memorial Symptom Assessment Scale for assessing symptoms in cancer patients.

    PubMed

    Menezes, Josiane Roberta de; Luvisaro, Bianca Maria Oliveira; Rodrigues, Claudia Fernandes; Muzi, Camila Drumond; Guimarães, Raphael Mendonça

    2017-01-01

    To assess the test-retest reliability of the Memorial Symptom Assessment Scale translated and culturally adapted into Brazilian Portuguese. The scale was applied in an interview format for 190 patients with various cancers type hospitalized in clinical and surgical sectors of the Instituto Nacional de Câncer José de Alencar Gomes da Silva and reapplied in 58 patients. Data from the test-retest were double typed into a Microsoft Excel spreadsheet and analyzed by the weighted Kappa. The reliability of the scale was satisfactory in test-retest. The weighted Kappa values obtained for each scale item had to be adequate, the largest item was 0.96 and the lowest was 0.69. The Kappa subscale was also evaluated and values were 0.84 for high frequency physic symptoms, 0.81 for low frequency physical symptoms, 0.81 for psychological symptoms, and 0.78 for Global Distress Index. High level of reliability estimated suggests that the process of measurement of Memorial Symptom Assessment Scale aspects was adequate. Avaliar a confiabilidade teste-reteste da versão traduzida e adaptada culturalmente para o português do Brasil do Memorial Symptom Assessment Scale. A escala foi aplicada em forma de entrevista em 190 pacientes com diversos tipos de câncer internados nos setores clínicos e cirúrgicos do Instituto Nacional de Câncer José de Alencar Gomes da Silva e reaplicada em 58 pacientes. Os dados dos testes-retestes foram inseridos num banco de dados por dupla digitação independente em Excel e analisados pelo Kappa ponderado. A confiabilidade da escala mostrou-se satisfatória nos testes-retestes. Os valores do Kappa ponderado obtidos para cada item da escala apresentaram-se adequados, sendo o maior item de 0,96 e o menor de 0,69. Também se avaliou o Kappa das subescalas, sendo de 0,84 para sintomas físicos de alta frequência, de 0,81 para sintomas físicos de baixa frequência, de 0,81 também para sintomas psicológicos, e de 0,78 para Índice Geral de Sofrimento

  18. Iceless Icy Moons: Is the Nice Model In Trouble?

    NASA Astrophysics Data System (ADS)

    Dones, Henry C. Luke; Levison, H. F.

    2012-05-01

    Nimmo and Korycansky (2012; henceforth NK12) stated that if the outer Solar System underwent a Late Heavy Bombardment (LHB) in the Nice model, the mass striking the icy satellites at speeds up to tens of km/s would have vaporized so much ice that moons such as Mimas, Enceladus, and Miranda would have been devolatilized. NK12's possible explanations of this apparent discrepancy with observations include (1) the mass influx was a factor of 10 less than that in the Nice model; (2) the mass distribution of the impactors was top-heavy, so that luck might have saved some of the moons from suffering large, vapor-removing impacts; or (3) the inner moons formed after the LHB. NK12 calculated the mass influx onto the satellites from the lunar impact rate estimated by Gomes et al. (2005) and scaling factors calculated by Zahnle et al. (1998, 2003; also see Barr and Canup 2010). Production of vapor in hypervelocity impacts is calculated from Kraus et al. (2011). Our preliminary results show that there is about an order-of-magnitude uncertainty in the mass striking the satellites during the LHB, with NK12's estimate at the upper end of the range. We will discuss how the mass influx depends on the velocity and mass distributions of the impactors. The Nice model lives. We thank the NASA Lunar Science Institute (http://lunarscience.nasa.gov/) for support. Barr, A.C., Canup, R.M., Nature Geoscience 3, 164-167 (2010). Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., Nature 435, 466-469 (2005). Kraus, R.G., Senft, L.E., Stewart, S.T., Icarus 214, 724-738 (2011). Nimmo, F., Korycansky, D.G., Icarus, in press, http://www.sciencedirect.com/science/article/pii/S0019103512000310 (2012). Zahnle, K., Dones, L., Levison, H.F., Icarus 136, 202-222 (1998). Zahnle, K., Schenk, P., Levison, H.F., Dones, L., Icarus 163, 263-289 (2003).

  19. Satellite Retrieval of Aerosol Properties

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Robles Gonzalez, C.; Kusmierczyk-Michulec, J.; Decae, R.

    SATELLITE RETRIEVAL of AEROSOL PROPERTIES G. de Leeuw, C. Robles Gonzalez, J. Kusmierczyk-Michulec and R. Decae TNO Physics and Electronics Laboratory, The Hague, The Netherlands; deleeuw@fel.tno.nl Methods to retrieve aerosol properties over land and over sea were explored. The dual view offered by the ATSR-2 aboard ERS-2 was used by Veefkind et al., 1998. The retrieved AOD (aerosol optical depth) values compare favourably with collocated sun photometer measurements, with an accuracy of 0.06 +/- 0.05 in AOD. An algorithm developed for GOME on ERS-2 takes advantage of the low surface reflection in the UV (Veefkind et al., 2000). AOD values retrieved from ATSR-2 and GOME data over western Europe are consistent. The results were used to produce a map of mean AOD values over Europe for one month (Robles-Gonzalez et al., 2000). The ATSR-2 is al- gorithm is now extended with other aerosol types with the aim to apply it over the In- dian Ocean. A new algorithm is being developed for the Ozone Monitoring Instrument (OMI) to be launched in 2003 on the NASA EOS-AURA satellite. It is expected that, based on the different scattering and absorption properties of various aerosol types, five major aerosol classes can be distinguished. The experience with the retrieval of aerosol properties by using several wavelength bands is used to develop an algorithm for Sciamachy to retrieve aerosol properties both over land and over the ocean which takes advantage of the wavelengths from the UV to the IR. The variation of the AOD with wavelength is described by the Angstrom parameter. The AOD and the Angstrom parameter together yield information on the aerosol size distribution, integrated over the column. Analysis of sunphotometer data indicates a relation between the Angstrom parameter and the mass ratio of certain aerosols (black carbon, organic carbon and sea salt) to the total particulate matter. This relation has been further explored and was applied to satellite data over land to

  20. The Trend, Spatial & Temporal Distribution and Sources of Tropospheric No2 over China Based on Satellite Measurement during 1997 to 2006

    NASA Astrophysics Data System (ADS)

    Mijling, B.; van der A, R. J.; De Smedt, I.; Buchwitz, M.; Van Roozendael, M.; Schneising, O.; Khlystova, I.; Bovensmann, H.; Burrows, J. P.; Kelder, H.

    2008-04-01

    To monitor the air quality over East Asia, we use the measurements of two nadir sounding satellite instruments: GOME on ERS-2 (launched in April 1995) and SCIAMACHY on ENVISAT (launched in June 2001). From the measured spectra, concentrations of important trace gases can be retrieved.In the first section, the observed NO2 columns for 2003 are used in a top-down estimate of the anthropogenic NOx emissions for that year. The emissions in the chemical transport model are adjusted in such a way that the calculated concentrations correspond best with the satellite observations. The new emission estimates show important differences when compared with the EDGAR 3.2 database.In the second section, the data series of GOME and SCIAMACHY are combined to do retrievals of formaldehyde (CH2O) from 1996 to 2006. CH2O is one of the most abundant hydrocarbons and plays a central role in tropospheric chemistry. Its short lifetime combined with the relatively constant methane concentrations in the troposphere, make CH2O a crucial indicator of biomass burning, isoprene oxidation and other non-methane volatile organic compound oxidation over China. CH2O columns over Asia seem to increase over the years, but validation by ground measurements is strongly needed.In the last section, the near-infrared and short-wave- infrared measurements of SCIAMACHY are used to retrieve carbon monoxide (CO), methane (CH4), and carbon dioxide (CO2), which are important atmospheric constituents affecting air quality and climate. The CO columns over China correlate well with anthropogenic activity; the high CO columns in South-China at the start of 2004 can be attributed mainly to fires. On average, CH4 concentrations are highest south of Wuhan and around Chengdu and Chongqing; emissions peak in summer due to rice paddies. A seasonal cycle in CO2 is found which results from the regular release and uptake of CO2 by decaying and growing vegetation: maximum CO2 occurs around April-June, minimum around July-September.

  1. Retrieval and validation of O3 measurements from ground-based FTIR spectrometer at equatorial station: Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Takele Kenea, S.; Mengistu Tsidu, G.; Blumenstock, T.; Hase, F.; von Clarmann, T.; Stiller, G. P.

    2012-09-01

    Since May 2009 high-resolution Fourier transform infrared (FTIR) solar absorption spectra are recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude a.s.l.), Ethiopia. The vertical profiles and total column amounts of ozone (O3) are deduced from the spectra by using the retrieval code PROFFIT (V9.5) and regularly determined instrumental line shape (ILS). A detailed error analysis of the O3 retrieval is performed. Averaging kernels analysis of the target gas shows that the major contribution to the retrieved information always comes from the measurement. We obtained 2.1 degrees of freedom on average for signals in the retrieval of O3 from the observed FTIR spectra. We have compared the FTIR retrieval of ozone Volume Mixing Ratio (VMR) profiles and column amounts with the coincident satellite observations of Microwave Limb Sounding (MLS), Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and Tropospheric Emission Spectrometer (TES), Ozone Monitoring Instrument (OMI), Atmospheric Infrared Sounding (AIRS) and Global Ozone Monitoring Experiment (GOME-2) instrument. The mean relative differences are generally found below +15% in the altitude range of 27 to 36 km for comparison of VMR profiles made between MLS and MIPAS, whereas comparison with TES has shown below 9.4% relative difference. Furthermore, the mean relative difference is positive above 31 km, suggesting positive bias in the FTIR measurement of O3 VMR with respect to MLS, MIPAS and TES. The overall comparisons of column amounts of satellite measurements with the ground-based FTIR instruments show better agreement exhibiting mean relative differences of ground-based FTIR with respect to MLS and GOME-2 within +0.4% to +4.0% and corresponding standard deviations of 2.2 to 4.3% whereas, in the case of OMI, TES, AIRS, the mean relative differences are from -0.38 to -6.8%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit

  2. The new record of daily precipitation in Lisbon since 1864: diagnosis and impacts of an exceptional precipitation episode

    NASA Astrophysics Data System (ADS)

    Fragoso, M.; Trigo, R. M.; Zêzere, J. L.; Valente, M. A.

    2009-04-01

    On 18 February 2008 the city of Lisbon had its rainiest day on record, i.e. since the establishment of the D. Luís Observatory in 1853 (continuous observations of meteorological variables are only available since 1864). Fortunately a Portuguese funded project (SIGN) allowed to digitize all the data between 1864 and 1941, allowing a proper comparison with previous extreme events and also to compute more significant return periods. We can now state that a new absolute maximum of daily precipitation at this station occurred last 18 February, when 118.4 mm were registered, surpassing the previous maximum of 110.7 mm (observed on 5 December 1876). Interestingly, these record breaking characteristics were confined to the city of Lisbon, not being observed in rural and suburban neighborhoods, where the anterior maxima recorded in 26 November 1967 or 18 November 1983 were not achieved. In fact, this extreme event was relatively uncharacteristic when compared with typical extreme precipitation events in southern Portugal (Fragoso and Tildes Gomes, 2008). These extreme episodes tend to occur preferably in fall (late September until early December) and covering a wider area. In this work we present an extensive analysis of the large-scale and synoptic atmospheric circulation environment leading to this extreme rainstorm as well as the consequences, namely floods and landslides that produced relevant socio-economic impacts (including 4 casualties). This will be achieved through the characterization of the extreme precipitation episode, describing its temporal structure and the geographic incidence of the event and also assessing statistically the exceptionality of the daily rainfall. The study of the atmospheric context of the episode will be performed with Satellite and radar data, complemented by several large-scale fields obtained from the NCAR/NCEP Reanalyses dataset, including sea level pressure, 500 hPa Geopotential height, precipitation rate, CAPE index. FRAGOSO, M

  3. An upgraded version of the Eta Model applied to Antarctic case studies

    NASA Astrophysics Data System (ADS)

    Morelli, S.

    2012-04-01

    Upgrades have been implemented over a number of years in an open source version of the Eta Model, posted at its CPTEC web site (http://etamodel.cptec.inpe.br/). They were summarized in Mesinger et al. (2011) and examined in detail in Mesinger et al.( 2012). In short: within dynamics, two major upgrades are the introduction of "sloping steps" and the use of the piecewise-linear vertical advection of dynamic variables. Several refinements on the calculation of exchange coefficients, conservation in the vertical diffusion, and diagnostic calculation of 10-m winds have been made. Vapor and hydrometeor loading in the hydrostatic equation were included. Within physics, efforts in refining the two Eta convection schemes received most attention. This recent version of the Eta Model has been applied to polynya events, accompanied by katabatic wind, at Terra Nova Bay (TNB), Antarctica. The TNB polynya is an area of coupling between the components of the sea ice-ocean-atmosphere system. Locally enhanced surface exchange processes are considered to have important consequences for the atmosphere (Morelli, 2011) and ocean processes, as well as for ice formation and the associated brine release. Adjustments of the Eta pre-processor have been made to allow for the distinctive polar conditions and for the use of ECMWF data as initial and boundary conditions. It is also being developed a thermodynamic model of sea ice interaction for a more realistic treatment of the sea ice-atmosphere. The numerical simulations have a horizontal resolution of about 8 Km. The results will be compared with observational data at the surface, with soundings and satellite images. The observations, used for the comparison, are available by Antarctic Meteorological Research Center, Space Science and Engineering Center, University of Wisconsin-Madison and the Programma Nazionale di Ricerche in Antartide (P.N.R.A.), Osservatorio Meteo-Climatologico. F Mesinger, Chou S C, Gomes J, Jovic D, Lazic L, Lyra A

  4. Destruction and Re-Accretion of Mid-Size Moons During an Outer Solar System Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Nimmo, F.; Korycansky, D. G.; Asphaug, E. I.; Owen, M.

    2014-12-01

    To explain the lunar Late Heavy Bombardment the Nice Model (Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. 2005, Nature, 435, 459; Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. 2005, Nature, 435, 459) invokes a period of dynamical instability, occurring long after planet formation, that destabilizes both the main asteroid belt and a remnant exterior planetesimal disk. As a side effect of explaining the lunar LHB, this model also predicts an LHB-like period in the outer Solar System. With higher collision probabilities and impact energies due to gravitational focusing by the giant planets the inner satellites of Jupiter, Saturn, and Uranus would have experienced a bombardment much more severe than the one supposedly responsible for the lunar basins. The concern is that such bombardment should have resulted in significant, even catastrophic modification of the mid-size satellites. Here we look at the problem of satellite survival during a hypothetical outer Solar System LHB. Using a Monte-Carlo approach we calculate, for 10 satellites of Saturn and Uranus, the probability of having experienced at least one catastrophic collision during an LHB. We use a scaling law for the energy required to disrupt a target in a gravity-dominated collision derived from new SPH simulations. These simulations extend the scaling law previously obtained by Benz & Asphaug (1999, Icarus, 142, 5) to larger targets. We then simulate randomized LHB impacts by drawing from appropriate size and velocity distributions, with the total delivered mass as a controlled parameter. We find that Mimas, Enceladus, Tethys, Hyperion, and Miranda experience at least one catastrophic impact in every simulation. In most simulations, Mimas, Enceladus, and Tethys experience multiple catastrophic impacts, including impacts with energies several times that required to completely disrupt the target. The implication is that these close-in, mid-size satellites could not have survived a Late Heavy

  5. Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO2 columns

    NASA Astrophysics Data System (ADS)

    Geddes, Jeffrey A.; Martin, Randall V.

    2017-08-01

    Reactive nitrogen oxides (NOy) are a major constituent of the nitrogen deposited from the atmosphere, but observational constraints on their deposition are limited by poor or nonexistent measurement coverage in many parts of the world. Here we apply NO2 observations from multiple satellite instruments (GOME, SCIAMACHY, and GOME-2) to constrain the global deposition of NOy over the last 2 decades. We accomplish this by producing top-down estimates of NOx emissions from inverse modeling of satellite NO2 columns over 1996-2014, and including these emissions in the GEOS-Chem chemical transport model to simulate chemistry, transport, and deposition of NOy. Our estimates of long-term mean wet nitrate (NO3-) deposition are highly consistent with available measurements in North America, Europe, and East Asia combined (r = 0.83, normalized mean bias = -7 %, N = 136). Likewise, our calculated trends in wet NO3- deposition are largely consistent with the measurements, with 129 of the 136 gridded model-data pairs sharing overlapping 95 % confidence intervals. We find that global mean NOy deposition over 1996-2014 is 56.0 Tg N yr-1, with a minimum in 2006 of 50.5 Tg N and a maximum in 2012 of 60.8 Tg N. Regional trends are large, with opposing signs in different parts of the world. Over 1996 to 2014, NOy deposition decreased by up to 60 % in eastern North America, doubled in regions of East Asia, and declined by 20 % in parts of western Europe. About 40 % of the global NOy deposition occurs over oceans, with deposition to the North Atlantic Ocean declining and deposition to the northwestern Pacific Ocean increasing. Using the residual between NOx emissions and NOy deposition over specific land regions, we investigate how NOx export via atmospheric transport has changed over the last 2 decades. Net export from the continental United States decreased substantially, from 2.9 Tg N yr-1 in 1996 to 1.5 Tg N yr-1 in 2014. Export from China more than tripled between 1996 and 2011 (from

  6. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Beirle, S.; Hörmann, C.; Kaiser, J. W.; Stammes, P.; Tilstra, L. G.; Tuinder, O. N. E.; Wagner, T.

    2015-09-01

    Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broadband effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD) with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS), UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2) and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument) on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent) and absorption (UV Aerosol Index), then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate) model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal) is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated in comparison

  7. A global 2007-2015 spaceborne sun-induced vegetation fluorescence time series evaluated with Australian flux tower observations

    NASA Astrophysics Data System (ADS)

    Verstraeten, Willem W.; Sanders, Abram F. J.; Kooreman, Maurits L.; van Leth, Thomas C.; Beringer, Jason; Joiner, Joanna; Delcloo, Andy

    2017-04-01

    The Gross Primary Production (GPP) of the terrestrial biosphere is a key quantity in the understanding of the global carbon cycle. GPP is the amount of atmospheric carbon fixed through the process of plant photosynthesis and it represents the largest ecosystem gross flux of CO2 between the atmosphere and the Earth surface. To date, monitoring of GPP has not been possible at scales beyond that of a single agricultural field or natural ecosystem. At those scales, networks of eddy-covariance towers provide a platform to measure Net Ecosystem Exchange (NEE) of carbon at high temporal resolution, although with only sparse spatial coverage. Satellite observations can bridge that gap by providing the spatial distributions and changes over time of vegetation-related spectral indices. These "greenness indicators", however, tend to return the potential carbon uptake by plants rather than the actual uptake since short term environmental changes affecting plant productivity (e.g., water availability, temperature, nutrient deficiency, diseases) are not well captured. Sun-induced plant fluorescence (SiF), however, is tightly related to photosynthetic activity in the red and near-infrared wavelength range, and SiF can be retrieved from spaceborne measurements from sensors with good signal-to-noise ratios and fine spectral resolutions. We use optical data from the Global Ozone Monitoring Instrument 2 (GOME-2A) satellite sensor to infer terrestrial fluorescence from space. The spectral signatures of atmospheric absorption, surface reflectance, and fluorescence radiance are disentangled using reference hyperspectral data of non-fluorescence surfaces (desserts) to solve for the atmospheric absorption. An empirically based principal component analysis (PCA) approach was applied. Here we show a global 2007-2015 times series of sun-induced vegetation fluorescence derived from GOME-2A observations which we have compared with GPP data derived from twelve Net Ecosystem Exchange flux tower

  8. Critical Evaluation of 0-30 km Profile Information in Ground-Based Zenith-Sky and Satellite-Measured Backscattered UV Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan; Petropavlovskikh, Irina; Deluishi, John; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We now have several decades of experience in deriving vertical ozone profiles from the measurements of diffuse ultraviolet radiation by both ground and satellite-based instruments using Umkehr and BUV techniques. Continuing technological advances are pushing the state-of-the-art of these measurements to high spectral resolution and broader wavelength coverage. These modern instruments include the ground-based Brewer and satellite-based Global Ozone Monitoring Experiment (GOME) instruments, as well as advanced instruments being developed by ESA(SCIAMACHY), Netherlands(OMI) and Japan(ODUS). However, one of the issues that remains unresolved is the 0-30 km ozone profile information retrievable from these measurements. Though it is commonly believed that both the Umkehr and the satellite-based BUV techniques have very limited profile information below 30 km, there are those who argue that the data from these instruments should continue to be reported in this altitude range for they compare well with ozonesondes and hence there is useful scientific information. Others claim that the limitations of the Umkehr and BUV techniques are largely due to their low spectral resolution, and that the profile information below 30 km can be greatly improved by going to high spectral resolution instruments, such as Brewer and GOME. The purpose of this paper is to provide a critical evaluation of the 0-30 km ozone profile information in the various UV remote sensing techniques. We use a database of individual ozone profiles created using ozonesondes and SAGE and 4D ozone fields generated by data assimilation techniques to simulate radiances measured by the various techniques. We then apply a common inversion approach to all the methods to systematically examine how much profile information is available simply from the knowledge of total ozone, how much additional profile information is added by the traditional Dobson Umkehr and satellite buv techniques, and how much better one can do

  9. How much do different global GPP products agree in distribution and magnitude of GPP extremes?

    NASA Astrophysics Data System (ADS)

    Kim, S.; Ryu, Y.; Jiang, C.

    2016-12-01

    To evaluate uncertainty of global Gross Primary Productivity (GPP) extremes, we compare three global GPP datasets derived from different data processing methods (e.g. MPI-BGC: machine-learning, MODIS GPP (MOD17): semi-empirical, Breathing Earth System Simulator (BESS): process based). We preprocess the datasets following the method from Zscheischler et al., (2012) to detect GPP extremes which occur in less than 1% of the number of whole pixels, and to identify 3D-connected spatiotemporal GPP extremes. We firstly analyze global patterns and the magnitude of GPP extremes with MPI-BGC, MOD17, and BESS over 2001-2011. For consistent analysis in the three products, spatial and temporal resolution were set at 50 km and a monthly scale, respectively. Our results indicated that the global patterns of GPP extremes derived from MPI-BGC and BESS agreed with each other by showing hotspots in Northeastern Brazil and Eastern Texas. However, the extreme events detected from MOD17 were concentrated in tropical forests (e.g. Southeast Asia and South America). The amount of GPP reduction caused by climate extremes considerably differed across the products. For example, Russian heatwave in 2010 led to 100 Tg C uncertainty (198.7 Tg C in MPI-BGC, 305.6 Tg C in MOD17, and 237.8 Tg C in BESS). Moreover, the duration of extreme events differ among the three GPP datasets for the Russian heatwave (MPI-BGC: May-Sep, MOD17: Jun-Aug, and BESS: May-Aug). To test whether Sun induced Fluorescence (SiF), a proxy of GPP, can capture GPP extremes, we investigate global distribution of GPP extreme events in BESS, MOD17 and GOME-2 SiF between 2008 and 2014 when SiF data is available. We found that extreme GPP events in GOME-2 SiF and MOD17 appear in tropical forests whereas those in BESS emerged in Northeastern Brazil and Eastern Texas. The GPP extremes by severe 2011 US drought were detected by BESS and MODIS, but not by SiF. Our findings highlight that different GPP datasets could result in varying

  10. The drought impact on satellite solar-induced chlorophyll fluorescence in China during 2007-2015

    NASA Astrophysics Data System (ADS)

    Li, Ruitao

    2016-04-01

    Drought is one of the most damaging and complicated natural hazards in the world. China is one of the countries which are most severely affected by drought. And there is a severe drought event in China every 2-3 years. From the beginning of the 1980s, some vegetation indices have been used to monitor vegetation under water stress. With the development of remote sensing technology, satellite solar-induced chlorophyll fluorescence (SIF) has emerged as a new method to monitor vegetation in recent years. Some studies have shown that compared with vegetation indices, SIF is more sensitive for vegetation functioning. However, the related studies using the satellite SIF is relatively limited in China. The objective of this study is to investigate the impact of drought on SIF by analyzing the relationships of SIF and crucial land surface parameter under the drought condition and to assess the adaption of satellite SIF in China. The SIF data are from the Global Ozone Monitoring Experiment 2 (GOME-2). Firstly, the widely used Palmer Drought Severity Index (PDSI) was used for drought events identification from 2007 to 2015 in China. On the basis of the identification results, we chose a number of areas of interest according to different land cover types and drought intensity. Then, we analyzed the relationships of SIF and land surface variables, i.e. normalized difference vegetation index (NDVI), the fraction of absorbed photosynthetically active radiation (fPAR), root-zone soil moisture (SMC) and surface skin temperatures (Tskin). The results show that the spatial patterns of negative SIF anomalies are closely relevant to the drought intensity. The decrease of SIF is aggravated in the phase of drought occurs. Moreover we find that the GOME-2 SIF is sensitive to fPAR and fluorescence yield. And the SIF is strongly correlated with SMC, Tskin and NDVI. But the SIF decreases more rapidly during the early time of drought events than NDVI. In other words, the SIF can well capture

  11. Characterisation of Central-African emissions based on MAX-DOAS measurements, satellite observations and model simulations over Bujumbura, Burundi.

    NASA Astrophysics Data System (ADS)

    Gielen, Clio; Hendrick, Francois; Pinardi, Gaia; De Smedt, Isabelle; Stavrakou, Trissevgeni; Yu, Huan; Fayt, Caroline; Hermans, Christian; Bauwens, Maité; Ndenzako, Eugene; Nzohabonayo, Pierre; Akimana, Rachel; Niyonzima, Sébastien; Müller, Jean-Francois; Van Roozendael, Michel

    2016-04-01

    Central Africa is known for its strong biogenic, pyrogenic, and to a lesser extent anthropogenic emissions. Satellite observations of species like nitrogen dioxide (NO2) and formaldehyde (HCHO), as well as inverse modelling results have shown that there are large uncertainties associated with the emissions in this region. There is thus a need for additional measurements, especially from the ground, in order to better characterise the biomass-burning and biogenic products emitted in this area. We present MAX-DOAS measurements of NO2, HCHO, and aerosols performed in Central Africa, in the city of Bujumbura, Burundi (3°S, 29°E, 850m). A MAX-DOAS instrument has been operating at this location by BIRA-IASB since late 2013. Aerosol-extinction and trace-gases vertical profiles are retrieved by applying the optimal-estimation-based profiling tool bePRO to the measured O4, NO2 and HCHO slant-column densities. The MAX-DOAS vertical columns and profiles are used for investigating the diurnal and seasonal cycles of NO2, HCHO, and aerosols. Regarding the aerosols, the retrieved AODs are compared to co-located AERONET sun photometer measurements for verification purpose, while in the case of NO2 and HCHO, the MAX-DOAS vertical columns and profiles are used for validating GOME-2 and OMI satellite observations. To characterise the biomass-burning and biogenic emissions in the Bujumbura region, the trace gases and aerosol MAX-DOAS retrievals are used in combination to MODIS fire counts/radiative-power and GOME-2/OMI NO2 and HCHO satellite data, as well as simulations from the NOAA backward trajectory model HYSPLIT. First results show that HCHO seasonal variation around local noon is driven by the alternation of rain and dry periods, the latter being associated with intense biomass-burning agricultural activities and forest fires in the south/south-east and transport from this region to Bujumbura. In contrast, NO2 is seen to depend mainly on local emissions close to the city, due

  12. An Early Instabilities Effect on Terrestrial Planetary Formation

    NASA Astrophysics Data System (ADS)

    Clement, Matthew; Kaib, Nathan A.

    2017-06-01

    Simulations of terrestrial planet formation are highly successful at reproducing many observed qualities of the solar system, but replicating the small mass of Mars in standard planet formation models has proven difficult. A common assumption made by such studies is that the inner planets form in the presence of a system of giant planets on dynamically stable orbits. The presence of the gas giants, particularly Jupiter and Saturn, is important in shaping the orbits and masses of the terrestrial planets. However, it is widely accepted that the outer planets experienced a period of orbital instability sometime after the disappearance of the gas disk (Tsiganis et al., 2005; Gomes et al., 2005; Levison et al., 2011 and Bottke et al., 2012). Here we ask a simple question: what would happen if such an instability (commonly referred to as the Nice Model) occurred during the giant impact phase of terrestrial planetary formation? Previous works (eg: Brasser et al., 2009 and Angora & Lin, 2012) have analyzed the consequences of a Nice Model instability on the dynamics of fully formed terrestrial planets, and we now present a study of the effect of an early instability on the formation of the terrestrial planets. We show that such a scenario often significantly reduces the mass of Mars analogs. Additionally, our simulations can reproduce many other qualities of the inner solar system used as benchmarks to evaluate previous terrestrial planet formation models such as formation timescales, volatile delivery to Earth, and the depletion of the asteroid belt.

  13. PREFACE: XXXVI Symposium on Nuclear Physics (Cocoyoc 2013)

    NASA Astrophysics Data System (ADS)

    Barrón-Palos, Libertad; Morales-Agiss, Irving; Martínez-Quiroz, Enrique

    2014-03-01

    logo The XXXVI Symposium on Nuclear Physics, organized by the Division of Nuclear Physics of the Mexican Physical Society, took place from 7-10 January, 2013. As it is customary, the Symposium was held at the Hotel Hacienda Cocoyoc, in the state of Morelos, Mexico. Conference photograph This international venue with many years of tradition was attended by outstanding physicists, some of them already regulars to this meeting and others who joined us for the first time; a total of 45 attendees from different countries (Argentina, Brazil, Canada, China, Germany, Italy, Japan, Mexico and the United States). A variety of topics related to nuclear physics (nuclear reactions, radioactive beams, nuclear structure, fundamental neutron physics, sub-nuclear physics and nuclear astrophysics, among others) were presented in 26 invited talks and 10 contributed posters. Local Organizing Committee Libertad Barrón-Palos (IF-UNAM)) Enrique Martínez-Quíroz (ININ)) Irving Morales-Agiss (ICN-UNAM)) International Advisory Committee Osvaldo Civitarese (UNLP, Argentina) Jerry P Draayer (LSU, USA)) Alfredo Galindo-Uribarri (ORNL, USA)) Paulo Gomes (UFF, Brazil)) Piet Van Isacker (GANIL, France)) James J Kolata (UND, USA)) Reiner Krücken (TRIUMF, Canada)) Jorge López (UTEP, USA)) Stuart Pittel (UD, USA)) W Michael Snow (IU, USA)) Adam Szczepaniak (IU, USA)) Michael Wiescher (UND, USA)) A list of participants is available in the PDF

  14. Common Calibration Source for Monitoring Long-term Ozone Trends

    NASA Technical Reports Server (NTRS)

    Kowalewski, Matthew

    2004-01-01

    Accurate long-term satellite measurements are crucial for monitoring the recovery of the ozone layer. The slow pace of the recovery and limited lifetimes of satellite monitoring instruments demands that datasets from multiple observation systems be combined to provide the long-term accuracy needed. A fundamental component of accurately monitoring long-term trends is the calibration of these various instruments. NASA s Radiometric Calibration and Development Facility at the Goddard Space Flight Center has provided resources to minimize calibration biases between multiple instruments through the use of a common calibration source and standardized procedures traceable to national standards. The Facility s 50 cm barium sulfate integrating sphere has been used as a common calibration source for both US and international satellite instruments, including the Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet 2 (SBUV/2) instruments, Shuttle SBUV (SSBUV), Ozone Mapping Instrument (OMI), Global Ozone Monitoring Experiment (GOME) (ESA), Scanning Imaging SpectroMeter for Atmospheric ChartographY (SCIAMACHY) (ESA), and others. We will discuss the advantages of using a common calibration source and its effects on long-term ozone data sets. In addition, sphere calibration results from various instruments will be presented to demonstrate the accuracy of the long-term characterization of the source itself.

  15. Phytochemical Analysis and Antimicrobial, Antinociceptive, and Anti-Inflammatory Activities of Two Chemotypes of Pimenta pseudocaryophyllus (Myrtaceae).

    PubMed

    de Paula, Joelma Abadia Marciano; Silva, Maria do Rosário Rodrigues; Costa, Maysa P; Diniz, Danielle Guimarães Almeida; Sá, Fabyola A S; Alves, Suzana Ferreira; Costa, Elson Alves; Lino, Roberta Campos; de Paula, José Realino

    2012-01-01

    Preparations from Pimenta pseudocaryophyllus (Gomes) L.R. Landrum (Myrtaceae) have been widely used in Brazilian folk medicine. This study aims to evaluate the antimicrobial activity of the crude ethanol extracts, fractions, semipurified substances, and essential oils obtained from leaves of two chemotypes of P. pseudocaryophyllus and to perform the antinociceptive and anti-inflammatory screening. The ethanol extracts were purified by column chromatography and main compounds were spectrally characterised (1D and 2D (1)H and (13)C NMR). The essential oils constituents were identified by GC/MS. The broth microdilution method was used for testing the antimicrobial activity. The abdominal contortions induced by acetic acid and the ear oedema induced by croton oil were used for screening of antinociceptive and anti-inflammatory activities, respectively. The phytochemical analysis resulted in the isolation of pentacyclic triterpenes, flavonoids, and phenol acids. The oleanolic acid showed the best profile of antibacterial activity for Gram-positive bacteria (31.2-125 μg mL(-1)), followed by the essential oil of the citral chemotype (62.5-250 μg mL(-1)). Among the semipurified substances, Ppm5, which contained gallic acid, was the most active for Candida spp. (31.2 μg mL(-1)) and Cryptococcus spp. (3.9-15.6 μg mL(-1)). The crude ethanol extract and fractions from citral chemotype showed antinociceptive and anti-inflammatory effects.

  16. Commentary on the special issue on the adolescent brain: Adolescence, trajectories, and the importance of prevention

    PubMed Central

    2017-01-01

    Adolescence as highlighted in this special issue is a period of tremendous growth, synaptic exuberance, and plasticity, but also a period for the emergence of mental illness and addiction. This commentary aims to stimulate research on prevention science to reduce the impact of early life events that often manifest during adolescence. By promoting a better understanding of what creates a normal and abnormal trajectory, the reviews by van Duijvenvoorde et al., Kilford et al., Lichenstein et al., and Tottenham and Galvan in this special issue comprehensively describe how the adolescent brain develops under typical conditions and how this process can go awry in humans. Preclinical reviews also within this issue describe how adolescents have prolonged extinction periods to maximize learning about their environment (Baker et al.), whereas Schulz and Sisk focus on the importance of puberty and how it interacts with stress (Romeo). Caballero and Tseng then set the stage of describing the neural circuitry that is often central to these changes and psychopathology. Factors that affect the mis-wiring of the brain for illness, including prenatal exposure to anti-mitotic agents (Gomes et al.) and early life stress and inflammation (Schwarz and Brenhouse), are included as examples of how exposure to early adversity manifests. These reviews are synthesized and show how information from the maturational stages that precede or occur during adolescence is likely to hold the key towards optimizing development to produce an adolescent and adult that is resilient and well adapted to their environment. PMID:27423540

  17. Increase in tropospheric nitrogen dioxide over China observed from space.

    PubMed

    Richter, Andreas; Burrows, John P; Nüss, Hendrik; Granier, Claire; Niemeier, Ulrike

    2005-09-01

    Emissions from fossil fuel combustion and biomass burning reduce local air quality and affect global tropospheric chemistry. Nitrogen oxides are emitted by all combustion processes and play a key part in the photochemically induced catalytic production of ozone, which results in summer smog and has increased levels of tropospheric ozone globally. Release of nitrogen oxide also results in nitric acid deposition, and--at least locally--increases radiative forcing effects due to the absorption of downward propagating visible light. Nitrogen oxide concentrations in many industrialized countries are expected to decrease, but rapid economic development has the potential to increase significantly the emissions of nitrogen oxides in parts of Asia. Here we present the tropospheric column amounts of nitrogen dioxide retrieved from two satellite instruments GOME and SCIAMACHY over the years 1996-2004. We find substantial reductions in nitrogen dioxide concentrations over some areas of Europe and the USA, but a highly significant increase of about 50 per cent-with an accelerating trend in annual growth rate-over the industrial areas of China, more than recent bottom-up inventories suggest.

  18. Astronomy in Brazilian music and poetry

    NASA Astrophysics Data System (ADS)

    de Freitas Mourão, Ronaldo Rogério

    2011-06-01

    The rôle of astronomy in the Brazilian cultural diversity -though little known world- has been enormous. Thus, the different forms of popular music and erudite, find musical compositions and lyrics inspired by the stars, the eclipses in rare phenomena such as the transit of Venus in front of the sun in 1882, the appearance of Halley's Comet in 1910, in the Big Bang theory. Even in the carnival parades of the blocks at the beginning of the century astronomy was present. More recently, the parade of 1997, the samba school Unidos do Viradouro, under the direction of Joãozinho Trinta, offered a new picture of the first moments of the creation of the universe to join in the white and dark in the components of their school, the idea of matter and anti-matter that reigned in the early moments of the creation of the universe in an explosion of joy. Examples in classical music include Dawn of Carlos Gomes and Carta Celeste by Almeida Prado. Unlike The Planets by Gustav Holst -who between 1914 and 1916 composed a symphonical tribute to the solar system based on astrology- Almeida Prado composed a symphony that is not limited to the world of planets, penetrating the deep cosmos of galaxies. Using various resources of the technique for the piano on the clusters and static movements, violent conflicts between the records of super acute and serious instrument, harpejos cross, etc . . .

  19. What is the physical limit for the spatial resolution of satellite observations in the UV, vis, and NIR spectral range?

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas

    2017-04-01

    Since 1995 satellite instruments are in orbit, which observe the sun light scattered back from the Earth with moderate spectral resolution. From these observations, global maps of many important atmospheric trace gases can be derived. While the spatial resolution of the first instrument (GOME-1) was rather coarse (320 x 40 km2) it has strongly improved in recent years (e.g. OMI: 13 x 24 km2) and will be improved further in the near future (Sentinel 5P: 3.5 x 7 km2). These improvements were mainly driven by technical development of the satellite instruments and the available data rates for downlinking the measured spectra. Nevertheless, the ultimate limit for the spatial resolution results from requirements on the signal to noise ratio of the measured spectra, which depend on the wavelength range, observatiom geometry and atmospheric composition (e.g. clouds), but also on the size of the detector and the spectral resolution and coverage of the satellite instruments. In this presentation we discuss these dependencies and estimate the best achievable spatial resolution for different species measured in different spectral ranges by UV, vis, NIR satellite instruments.

  20. Gilbert damping and anisotropic magnetoresistance in iron-based alloys

    NASA Astrophysics Data System (ADS)

    Berger, L.

    2016-07-01

    We use the two-current model of Campbell and Fert to understand the compositional dependence of the Gilbert damping parameter in certain iron alloys. In that model, spin-up and spin-down carriers have different resistivities ρ↑ and ρ↓. We emphasize the part of the Gilbert parameter, called Gsf, generated by spin-flip interband processes. Both Gsf and the anisotropic magnetoresistance Δρ are proportional to the square of the spin-orbit parameter, and also proportional to ρ↑. In bcc alloys of iron with V, Cr, Mo, etc. solutes on the left of iron in the periodic table, ρ↑ is increased by a scattering resonance (Gomes and Campbell, 1966, 1968). Then ρ↑, Δρ, and Gsf all exhibit a peak at the same moderate concentration of the solute. We find the best fit between this theory and existing experimental data of Gilbert damping for Fe-V epitaxial films at room temperature (Cheng, 2006; Scheck et al., 2007). At room temperature, the predicted Gsf peak is masked by a background arising from non-flip intraband processes. At elevated temperatures, the peak is expected to become more prominent, and less hidden in the background.

  1. Origin and orbital distribution of the trans-Neptunian scattered disc

    NASA Astrophysics Data System (ADS)

    Morbidelli, A.; Emel'yanenko, V. V.; Levison, H. F.

    2004-12-01

    We revisit the scenario proposed by Duncan and Levison in the late 1990s on the origin of the trans-Neptunian scattered disc. According to this scenario, the current scattered disc population is the remnant of a much more massive population that formed at the beginning of the Solar system, presumably when Neptune grew in mass. In order to compute the expected orbital distribution of the scattered disc bodies in the framework of this model, we have integrated the evolution of several thousands of test particles over the age of the Solar system, and looked at the orbital distribution of those surviving after more than 2 × 109 yr from their first scattering event. In order to compare this model distribution with the observed distribution, we have modelled the observational biases by generalizing a method originally introduced recently by Trujillo and Brown. Once the biases are taken into account, the model distribution matches the observed distribution fairly well. The most significant discrepancy is that the observed perihelion distance distribution is somewhat skewed towards larger perihelion distances than our model predicts. This is possibly due to the effects of planet migration (which tends to raise perihelion distances as recently shown by Gomes), which is not taken into account in our simulations.

  2. Characterization of the fishes and of subsistence fishing in the Pantanal of Mato Grosso, Brazil.

    PubMed

    de Oliveira, R D; de B Nogueira, F M

    2000-08-01

    Fishing is one of the oldest human activities in the Pantanal of Mato Grosso in Central Brazil. In the of Bento Gomes River Basin (Pantanal of Poconé) the presence of fishermen is very common. The objective of this study is to describe the fishing activity in the basin in view of the elaboration of proposals for the sustainable use of this natural resource. Of the 256 fishermen that were registered most are fishing for their subsistence (92%) and the rest (8%) are occasional fishermen (locally called "de lufada" fishermen). "Traíra" (Hoplias malabaricus) and "piranhas" (Serrasalmus marginatus, Serrasalmus spilopleura and Pygocentrus nattereri) were the species most frequently captured for human consumption. The fishing is more intensive during the ebb season and at the beginning of the drought season, when the waters begin to recede for the river channel, as the catch is facilitated by the concentration of fishes at the river margin. The fishermen and their families consume fish three to four times a week, twice a day. Fish meat is one of the only means of obtaining animal protein for dozens of poor families in the area. The number of fishermen, as well as the actual number of catches do not appear to compromise the natural fish stocks, although no specific capture criteria is obeyed by the fishing activity.

  3. Trends of total water vapor column above the Arctic from satellites observations

    NASA Astrophysics Data System (ADS)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour

    2016-04-01

    Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)

  4. A satellite based study of tropospheric bromine explosion events and their linkages to polar cyclone development

    NASA Astrophysics Data System (ADS)

    Blechschmidt, Anne-Marlene; Richter, Andreas; Burrows, John P.; Kaleschke, Lars; Strong, Kimberly; Theys, Nicolas; Weber, Mark; Zhao, Xiaoyi; Zien, Achim; Hodges, Kevin I.

    2016-04-01

    Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO) are regularly observed by the UV-vis satellite instruments GOME-2/MetOp-A and SCIAMACHY/Envisat over Arctic and Antarctic sea ice in polar spring. The plumes are associated with an autocatalytic chemical chain reaction involving tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. This influences atmospheric chemistry as it affects the oxidising capacity of the troposphere through OH production and may also influence the local weather/temperature of the polar atmosphere, as ozone is a major greenhouse gas. Here, we make combined use of satellite retrievals and numerical model simulations to study individual BrO plume cases in the polar atmosphere. In agreement with previous studies, our analysis shows that the plumes are often transported by high latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. Moreover, general characteristics of bromine explosion events linked to transport by polar weather systems, such as frequency, spatial distribution and favourable weather conditions are derived based on a new detection method. Our results show that BrO cyclone transport events are by far more common in the Antarctic than in the Arctic.

  5. Toward Rotational State-Selective Photoionization of ThF+ Ions

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Ng, Kia Boon; Gresh, Dan; Cairncross, William; Grau, Matt; Ni, Yiqi; Cornell, Eric; Ye, Jun

    2016-06-01

    ThF+ has been chosen to replace HfF+ for a second-generation measurement of the electric dipole moment of the electron (eEDM). Compared to the currently running HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time [1]; (ii) its effective electric field (35 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity [2]; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states [3]. In this talk, we first present our strategy of preparing and utilizing core-nonpenetrating Rydberg states for rotational state-selective ionization. Then, we report spectroscopic data of laser-induced fluorescence of neutral ThF, which provides critical information for multi-photon ionization spectroscopy. [1] D. N. Gresh, K. C. Cossel, Y. Zhou, J. Ye, E. A. Cornell, Journal of Molecular Spectroscopy, 319 (2016), 1-9 [2] M. Denis, M. S. Nørby, H. J. A. Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, T. Fleig, New Journal of Physics, 17 (2015) 043005. [3] Z. J. Jakubek, R. W. Field, Journal of Molecular Spectroscopy 205 (2001) 197-220.

  6. MAX-DOAS measurements of nitrogen dioxide at the high altitude sites Zugspitze (2964 m) and Pico Espejo (4765 m)

    NASA Astrophysics Data System (ADS)

    Schreier, Stefan F.; Richter, Andreas; Wittrock, Folkard; Burrows, John P.

    2015-04-01

    Spectral measurements at two mountain sites were performed with a MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instrument from February to July 2003 (Zugspitze, Germany) and from March 2004 to November 2008 (Pico Espejo, Venezuela). Here, these measurements are used for the retrieval of slant column densities (SCDs) of nitrogen dioxide (NO2). While at the altitude of observations the NO2 levels are usually small, uplifting of anthropogenic emissions from the valley and in Venezuela also transport of emissions from biomass burning can lead to significant enhancements. Daily, weekly, and seasonal cycles of NO2 SCDs are shown for the two stations, linked to different meteorological conditions and compared between the two sites. In a next step, a preliminary approach to derive vertical column densities (VCDs) is presented. VCDs of NO2 from ground-based MAX-DOAS instruments provide useful information for the validation of satellite instruments such as SCIAMACHY, OMI, and GOME-2. Comparisons between ground-based and satellite-based NO2 VCDs are shown for selected periods.

  7. Designing an artificial Lieb lattice on a metal surface

    NASA Astrophysics Data System (ADS)

    Qiu, Wen-Xuan; Li, Shuai; Gao, Jin-Hua; Zhou, Yi; Zhang, Fu-Chun

    2016-12-01

    Recently, several experiments [K. K. Gomes et al., Nature (London) 483, 306 (2012), 10.1038/nature10941; S. Wang et al., Phys. Rev. Lett. 113, 196803 (2014), 10.1103/PhysRevLett.113.196803] have illustrated that metal surface electrons can be manipulated to form a two-dimensional (2D) lattice by depositing a designer molecule lattice on a metal surface. This offers a promising new technique to construct artificial 2D electron lattices. Here we theoretically propose a molecule lattice pattern to realize an artificial Lieb lattice on a metal surface, which shows a flat electronic band due to the lattice geometry. We show that the localization of electrons in the flat band may be understood from the viewpoint of electron interference, which may be probed by measuring the local density of states with scanning tunneling microscopy. Our proposal may be readily implemented in experiment and may offer an ideal solid state platform to investigate the novel flat band physics of the Lieb lattice.

  8. Global surface solar irradiance product derived from SCIAMACHY FRESCO cloud fraction

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Stammes, Piet; Müller, Richard

    The FRESCO cloud retrieval algorithm has been developed as a simple but fast and efficient algorithm for GOME and SCIAMACHY (Koelemeijer et al., 2001; Fournier et al., 2006; Wang et al., 2008). FRESCO employs the O2 A band at 760 nm to retrieve the effective cloud fraction and cloud pressure using a simple Lambertian cloud model. The effective cloud fraction is a combination of geometric cloud fraction and cloud optical thickness, which yield the same reflectance at the top of the atmosphere as the cloud in the scene. It is well-known that clouds reduce the surface solar irradiance. Therefore the all-sky irradiance can be derived from the clear-sky irradiance with a scaling factor related to the cloud index. The cloud index is very similar to the effective cloud fraction by definition. The MAGIC (Mesoscale Atmospheric Global Irradiance Code) software converts the cloud index to the surface solar irradiance using the Heliosat method (Mueller et al. 2009). The MAGIC algorithm is also used by the CM-SAF surface solar irradiance product for clear sky cases. We applied the MAGIC software to FRESCO effective cloud fraction with slight modifications. In this presentation we will show the FRESCO-SSI monthly mean product and the comparison with the BSRN global irradiance data at Cabauw, the Netherlands and surface solar irradiance measurement at Tibetan plateau in China.

  9. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; de Graaf, M.; Stammes, P.

    2012-10-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressure contains information on aerosol layer pressure. For cloud free scenes, the derived FRESCO cloud pressure is close to the aerosol layer pressure, especially for optically thick aerosol layers. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressure may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO and AAI data, an estimate for the aerosol layer pressure can be given.

  10. On the origin of SO2 above northern Greece

    NASA Astrophysics Data System (ADS)

    Zerefos, C.; Ganev, K.; Kourtidis, K.; Tzortziou, M.; Vasaras, A.; Syrakov, E.

    2000-02-01

    This paper describes the sources contributing to two seasonal peaks in columnar SO2 amounts measured with a Brewer spectrophotometer at Thessaloniki, Northern Greece since 1982. The SO2 Brewer measurements combined with those at ground level, meteorological analysis and numerical simulations provide estimates on the contribution of local and remote sources to the SO2 column. It is shown that more than 50% of the observed SO2 column can be attributed to lignite-burning sources in Bulgaria, Romania and former Yugoslavia, this percentage rising to 70% at periods with NE flow at 850 hPa. Winds from the NW-N-NE contribute around 60% to the observed mean SO2 column during winter and 75% during the summer. When including all wind directions at 850 hPa, the Greek sources, including the lignite-burning power plant complexes to the WSW of the city, contribute around 40% to the SO2 column. These results are in qualitative agreement with independent observations from inversion of GOME measurements.

  11. Determination of glutathione in single HepG2 cells by capillary electrophoresis with reduced graphene oxide modified microelectrode.

    PubMed

    Wang, Xiaolei; Wang, Jun; Fu, Hongyan; Liu, Dongju; Chen, Zhenzhen

    2014-12-01

    Determination of intracellular bioactive species will afford beneficial information related to cell metabolism, signal transduction, cell function, and disease treatment. In this study, the electrochemically reduced graphene oxide modified carbon fiber microdisk electrode (ER-GOME) was used as a detector of CZE-electrochemical detection and developed to detect glutathione (GSH). The electrocatalytic activity of the modified microelectrode was characterized by cyclic voltammetry. Under optimized experimental conditions, the concentration linear range of GSH was from 1 to 60 μM. When the S/N ratio was 3, the concentration detection limit was 1 μM. Compared with the unmodified carbon fiber microdisk electrode, the sensitivity was enhanced more than five times. With the use of this method, the average contents of GSH in single HepG2 cells were found to be 7.13 ± 1.11 fmol (n = 10). Compared with gold/mercury amalgam microelectrode, which was usually used in determining GSH, the electrochemically reduced graphene oxide modified carbon fiber microdisk electrode was friendly to environment for free mercury. Furthermore, there were several merits of the novel electrochemical detector coupled with CE, such as comparative repeatability, easy fabrication, and high sensitivity, hold great potential for the single-cell assay.

  12. Evaluation of cytotoxicity and genotoxicity of Hancornia speciosa latex in Allium cepa root model.

    PubMed

    Ribeiro, T P; Sousa, T R; Arruda, A S; Peixoto, N; Gonçalves, P J; Almeida, L M

    2016-02-01

    The latex obtained from Hancornia speciosa Gomes (Mangabeira tree) is widely used in traditional medicine to treat a variety of diseases, including diarrhea, ulcer, gastritis, tuberculosis, acne and warts. In this study, the cytotoxicity and genotoxicity effects of H. speciosa latex on the root meristem cells of Allium cepa were examined. Onion bulbs were exposed to different concentrations of latex and then submitted to microscopic analysis using Giemsa stain. Water was used as a negative control and sodium azide as a positive control. The results showed that, under the testing conditions, the mitotic index (MI) of the onion roots submitted to latex treatment did not differ significantly from the negative control, which suggests that the latex is not cytotoxic. Low incidence of chromosome aberrations in the cells treated with H. speciosa latex was also observed, indicating that the latex does not have genotoxic effect either. The MI and the chromosome aberration frequency responded to the latex concentration, requiring more studies to evaluate the dosage effect on genotoxicity. The results indicate that in tested concentrations H. speciosa latex is probably not harmful to human health and may be potentially used in medicine.

  13. The use of microsatellites for germplasm management in a Portuguese grapevine collection.

    PubMed

    Lopes, M S; Sefc, K M; Eiras Dias, E; Steinkellner, H; Laimer Câmara Machado, M; Câmara Machado, A

    1999-08-01

    To initiate the characterization of the Portuguese grapevine genepool, we have genotyped 49 Portuguese grapevine cultivars at 11 microsatellite loci. The markers proved to be informative in the Portuguese cultivars, with expected heterozygosity ranging from 0.67 to 0.84. At most loci, an excess of heterozygous individuals was observed, while the deficiency of heterozygotes at 1 locus (VVMD6) indicated the presence of null alleles. On the basis of the microsatellite allele data several previously assumed synonyms were verified: (1) 'Fernão Pires'='Maria Gomes', (2) 'Moscatel de Setúbal'='Muscat of Alexandria', (3) 'Boal Cachudo'='Boal da Madeira'='Malvasia Fina', (4) 'Síria'='Crato Branco'= 'Roupeiro' and (5) 'Periquita'='Castelão Francês'='João de Santarém'='Trincadeira'. Although the three varieties 'Verdelho da Madeira', 'Verdelho dos Açores', and 'Verdelho roxo' are regarded by the Lista Nacional de Sinónimos as distinct cultivars, they displayed identical SSR profiles at 17 loci and appear to represent types of 1 single cultivar. The genetic profiles of all 49 cultivars were searched for possible parent-offspring groups. The data obtained revealed the descendence of 'Boal Ratinho' from 'Malvasia Fina' and 'Síria'.

  14. Estimation of the SO2 source term for the Holuhraun event and its influence on central Europe air quality

    NASA Astrophysics Data System (ADS)

    Arnold, Delia; Iren Kristiansen, Nina; Theys, Nicolas; Brenot, Hugues; Maurer, Christian; Wotawa, Gerhard; Stebel, Kerstin; Holla, Robert; Gilge, Stefan; Flemming, Johannes; Stohl, Andreas; Hirtl, Marcus

    2015-04-01

    On 29 August 2014 a fissure eruption began in Holuhraun, Northeastern Iceland, associated with increased volcanic activity in the Bárdarbunga system. For more than 150 days, the eruption released large quantities of SO2 into the atmosphere affecting not only the local Icelandic air quality, but also leading to periods of increased ambient SO2 concentrations in parts of mainland Europe. During the second half of September, significant amounts of SO2 were rapidly transported southward by favourable meteorological conditions and several countries in Central Europe experienced high ground-level SO2 concentrations. The measured concentrations reached and even exceeded the EC directive health thresholds. In this work, we evaluate the air quality effects in Europe during this targeted period using both ground-based and satellite observations (GOME2B and OMI) as well as dispersion modelling with the Lagrangian particle model FLEXPART. We estimate the volcanic SO2 source emissions by comparing the satellite observations with atmospheric transport model simulations in an inverse modelling approach. The estimated source term is evaluated against independent ground-based observational data (e.g. MAX-DOAS, Brewer) and used as emission term in dispersion model forecasts for evaluating the air quality effects in Europe. In addition, the potential use of air quality data to perform the source term estimation by inversion with ground-based data will also be investigated.

  15. Information On Tropospheric Ozone From Space Borne Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, O. P.; Landgraf, J.

    Tropospheric ozone retrieval from reflectance spectra is an important issue for many current and future satellite instruments.However, it is difficult to distinguish between stratospheric and tropospheric ozone on the basis of reflectance spectra only, because the reflectance is a quantity that is more sensitive to stratospheric ozone than to tro- pospheric ozone. In this paper we show that satellite measurements of the state of polarization of backscattered light contain valuable additional information on tropo- spheric ozone. The reason for this is the high sensitivity of the state of polarization to tropospheric ozone. This is because the state of polarization is most sensitive to ozone at that altitude where most scattering takes place, which is in the troposphere for wavelengths >300 nm. Retrievals performed on synthetic GOME-2 data show that the vertical resolution of the tropospheric ozone profile is significantly improved if a polarization measurement is used in addition to the reflectance spectrum. Prob- lems that are currently encountered in tropospheric ozone retrieval from reflectance spectra may be solved by using additional polarization measurements.

  16. Internal Gravity Wave Activity Hotspot and Implications for the Middle Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Sacha, Petr; Pisoft, Petr; Lilienthal, Friederike; Jacobi, Christoph

    2015-11-01

    Internal gravity waves are widely recognized to contribute significantly to the energy and angular momentum transport. They play a significant role in affecting many of the middle atmospheric phenomena (like the QBO or Brewer-Dobson circulation). Using GPS RO density profiles, we have discovered a localized area of enhanced IGW activity and breaking in the lower stratosphere of Eastern Asia/North-western Pacific region. With a 3D primitive equation model of the middle atmosphere we studied the effects of such a localized breaking region on large-scale dynamics and transport. Possible forcing and propagation directions of planetary waves caused by such a localized IGW forcing were investigated and consequences for the polar vortex stability and stratosphere-troposphere exchange in the tropical region were discussed. Finally, applying 3D EP flux and 3D residual circulation diagnostics, we investigated the possible role of this area in the longitudinal variability of the Brewer- Dobson circulation with a hypothesis of its enhanced downwelling branch in this region. In the proces, model results were compared with the ozone and tracer distribution data from GOME, GOMOS, MIPAS and SCIAMACHY further confirming the importance of the Eastern Asia/North-western Pacific region for middle atmospheric dynamics.

  17. OMI Tropospheric NO2 from Lightning in Observed Convective Events

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth; Bucsela, Eric; Gleason, James; Levelt, Pieternel

    2007-01-01

    Lightning is responsible for an estimated 10-20% of NO(x) emissions in the troposphere. In this study, we present evidence of lightning-generated NO2 (LNO2) using data from the Ozone Monitoring Instrument (OMI), which has observed tropospheric NO2 since its launch in 2004. Although LNO2 has been also reported in previous satellite studies from the Global Ozone Monitoring Experiment (GOME) and SCIAMACHY, OMI is better suited for such measurements by virtue of its higher resolution and daily global coverage. The LNO2 signal is clearly seen in OMI data on two days over and downwind of convective systems in the US Midwest in 2006. We also present an analysis of OMI data over northern Australia during the SCOUT-O3/ACTIVE field campaigns in November and December 2005. Both single- and multi-day averages are presented to examine possible LNO2 signals from individual diurnally recurrent convective events. In these events we compare the OMI signals with aircraft observations from the storm anvils.

  18. Exploitation of the UV Aerosol Index scattering angle dependence: Properties of Siberian smoke plumes

    NASA Astrophysics Data System (ADS)

    Penning de Vries, Marloes; Beirle, Steffen; Sihler, Holger; Wagner, Thomas

    2017-04-01

    The UV Aerosol Index (UVAI) is a simple measure of aerosols from satellite that is particularly sensitive to elevated layers of absorbing particles. It has been determined from a range of instruments including TOMS, GOME-2, and OMI, for almost four decades and will be continued in the upcoming Sentinel missions S5-precursor, S4, and S5. Despite its apparent simplicity, the interpretation of UVAI is not straightforward, as it depends on aerosol abundance, absorption, and altitude in a non-linear way. In addition, UVAI depends on the geometry of the measurement (viewing angle, solar zenith and relative azimuth angles), particularly if viewing angles exceed 45 degrees, as is the case for OMI and TROPOMI (on S5-precursor). The dependence on scattering angle complicates the interpretation and further processing (e.g., averaging) of UVAI. In certain favorable cases, however, independent information on aerosol altitude and absorption may become available. We present a detailed study of the scatter angle dependence using SCIATRAN radiative transfer calculations. The model results were compared to observations of an extensive Siberian smoke plume, of which parts reached 10-12 km altitude. Due to its large extent and the high latitude, OMI observed the complete plume in five consecutive orbits under a wide range of scattering angles. This allowed us to deduce aerosol characteristics (absorption and layer height) that were compared with collocated CALIOP lidar measurements.

  19. Isoprene emissions over Asia 1979-2012 : impact of climate and land use changes

    NASA Astrophysics Data System (ADS)

    Stavrakou, Trissevgeni; Müller, Jean-Francois; Bauwens, Maite; Guenther, Alex; De Smedt, Isabelle; Van Roozendael, Michel

    2014-05-01

    Due to the scarcity of observational contraints and the rapidly changing environment in East and Southeast Asia, isoprene emissions predicted by models are expected to bear substantial uncertainties. This study aims at improving upon current bottom-up estimates, and investigate the temporal evolution of isoprene fluxes in Asia over 1979-2012. For that, we use the MEGAN model and incorporate (i) changes in land use, including the rapid expansion of oil palms, (ii) meteorological variability, (iii) long-term changes in solar radiation constrained by surface network measurements, and (iv) recent experimental evidence that South Asian forests are much weaker isoprene emitters than previously assumed. These effects lead to a significant reduction of the total isoprene fluxes over the studied domain compared to the standard simulation. The bottom-up emissions are evaluated using satellite-based emission estimates derived from inverse modelling constrained by GOME-2/MetOp-A formaldehyde columns through 2007-2012. The top-down estimates support our assumptions and confirm the lower isoprene emission rate in tropical forests of Indonesia and Malaysia.

  20. Evaluation of the cytotoxic activity of some Brazilian medicinal plants.

    PubMed

    Ribeiro, Sandra S; de Jesus, Aline M; dos Anjos, Charlene S; da Silva, Thanany B; Santos, Alan D C; de Jesus, Jemmyson R; Andrade, Moacir S; Sampaio, Tais S; Gomes, Wesley F; Alves, Péricles B; Carvalho, Adriana A; Pessoa, Claudia; de Moraes, Manoel O; Pinheiro, Maria L B; Prata, Ana Paula N; Blank, Arie F; Silva-Mann, Renata; Moraes, Valeria R S; Costa, Emmanoel V; Nogueira, Paulo Cesar L; Bezerra, Daniel P

    2012-09-01

    Plants are promising sources of new bioactive compounds. The aim of this study was to investigate the cytotoxic potential of nine plants found in Brazil. The species studied were: Annona pickelii Diels (Annonaceae), Annona salzmannii A. DC. (Annonaceae), Guatteria blepharophylla Mart. (Annonaceae), Guatteria hispida (R. E. Fr.) Erkens & Maas (Annonaceae), Hancornia speciosa Gomes (Apocynaceae), Jatropha curcas L. (Euphorbiaceae), Kielmeyera rugosa Choisy (Clusiaceae), Lippia gracilis Schauer (Verbenaceae), and Hyptis calida Mart. Ex Benth (Lamiaceae). Different types of extractions from several parts of plants resulted in 43 extracts. Their cytotoxicity was tested against HCT-8 (colon carcinoma), MDA-MB-435 (melanoma), SF-295 (glioblastoma), and HL-60 (promielocitic leukemia) human tumor cell lines, using the thiazolyl blue test (MTT) assay. The active extracts were those obtained from G. blepharophylla, G. hispida, J. curcas, K. rugosa, and L. gracilis. In addition, seven compounds isolated from the active extracts were tested; among them, β-pinene found in G. hispida and one coumarin isolated from K. rugora showed weak cytotoxic activity. In summary, this manuscript contributes to the understanding of the potentialities of Brazilian plants as sources of new anticancer drugs.