Sample records for abb robots form

  1. Differential Kinematics Of Contemporary Industrial Robots

    NASA Astrophysics Data System (ADS)

    Szkodny, T.

    2014-08-01

    The paper presents a simple method of avoiding singular configurations of contemporary industrial robot manipulators of such renowned companies as ABB, Fanuc, Mitsubishi, Adept, Kawasaki, COMAU and KUKA. To determine the singular configurations of these manipulators a global form of description of the end-effector kinematics was prepared, relative to the other links. On the basis of this description , the formula for the Jacobian was defined in the end-effector coordinates. Next, a closed form of the determinant of the Jacobian was derived. From the formula, singular configurations, where the determinant's value equals zero, were determined. Additionally, geometric interpretations of these configurations were given and they were illustrated. For the exemplary manipulator, small corrections of joint variables preventing the reduction of the Jacobian order were suggested. An analysis of positional errors, caused by these corrections, was presented

  2. Impact of workstations on criticality analyses at ABB combustion engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarko, L.B.; Freeman, R.S.; O'Donnell, P.F.

    1993-01-01

    During 1991, ABB Combustion Engineering (ABB C-E) made the transition from a CDC Cyber 990 mainframe for nuclear criticality safety analyses to Hewlett Packard (HP)/Apollo workstations. The primary motivation for this change was improved economics of the workstation and maintaining state-of-the-art technology. The Cyber 990 utilized the NOS operating system with a 60-bit word size. The CPU memory size was limited to 131 100 words of directly addressable memory with an extended 250000 words available. The Apollo workstation environment at ABB consists of HP/Apollo-9000/400 series desktop units used by most application engineers, networked with HP/Apollo DN10000 platforms that use 32-bitmore » word size and function as the computer servers and network administrative CPUS, providing a virtual memory system.« less

  3. AbbVie Ltd., Barceloneta, PR Amended Permit

    EPA Pesticide Factsheets

    The United States Environmental Protection Agency's Region 2 Office (EPA) received an October 11,2017 submittal from the law firm of Toro, Colon, Mullet, Rivera & Sifre, P.S.c. on behalf of AbbVieLtd.

  4. Application of External Axis in Robot-Assisted Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Deng, Sihao; Fang, Dandan; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2012-12-01

    Currently, industrial robots are widely used in the process of thermal spraying because of their high efficiency, security, and repeatability. Although robots are found suitable for use in industrial productions, they have some natural disadvantages because of their six-axis mechanical linkages. When a robot performs a series of stages of production, it could be hard to move from one to another because a few axes reach their limit value. For this reason, an external axis should be added to the robot system to extend the reachable space of the robots. This article concerns the application of external axis on ABB robots in thermal spraying and the different methods of off-line programming with external axis in the virtual environment. The developed software toolkit was applied to coat real workpiece with a complex geometry in atmospheric plasma spraying).

  5. EMERGING TECHNOLOGY BULLETIN: TWO-ZONE PCE BIOREMEDIATION SYSTEM - ABB ENVIRONMENTAL SERVICES, INC. - U.S. ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    ABB Environmental Services, Inc.'s (ABB-ES), research has demonstrated that sequential anaerobic/aerobic biodegradation of tetrachloroethylene (PCE) is feasible if the proper conditions can be established. The anaerobic process can potentially completely dechlorinate PCE. Howeve...

  6. ABB's advanced steam turbine program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chellini, R.

    Demand for industrial steam turbines for combined-cycle applications and cogeneration plants has influenced turbine manufacturers to standardize their machines to reduce delivery time and cost. ABB, also a supplier of turnkey plants, manufactures steam turbines in Finspong, Sweden, at the former ASEA Stal facilities and in Nuernberg, Germany, at the former AEG facilities. The companies have joined forces, setting up the advanced Steam Turbine Program (ATP) that, once completed, will cover a power range from two to 100 MW. The company decided to use two criteria as a starting point, the high efficiency design of the Swedish turbines and themore » high reliability of the German machines. Thus, the main task was combining the two designs in standard machines that could be assembled quickly into predefined packages to meet specific needs of combined-cycle and cogeneration plants specified by customers. In carrying out this project, emphasis was put on cost reduction as one of the main goals. The first results of the ATP program, presented by ABB Turbinen Nuernberg, is the range of 2-30 MW turbines covered by two frame sizes comprising standard components supporting the thermodynamic module. An important feature is the standardization of the speed reduction gearbox.« less

  7. Telerobotics: methodology for the development of through-the-Internet robotic teleoperated system

    NASA Astrophysics Data System (ADS)

    Alvares, Alberto J.; Caribe de Carvalho, Guilherme; Romariz, Luiz S. J.; Alfaro, Sadek C. A.

    1999-11-01

    This work presents a methodology for the development of Teleoperated Robotic System through Internet. Initially, it is presented a bibliographical review of the telerobotic systems that uses Internet as way of control. The methodology is implemented and tested through the development of two systems. The first is a manipulator with two degrees of freedom commanded remotely through Internet denominated RobWebCam. The second is a system which teleoperates an ABB (Asea Brown Boveri) Industrial Robot of six degrees of freedom denominated RobWebLink.

  8. What is the diffraction limit? From Airy to Abbe using direct numerical integration

    NASA Astrophysics Data System (ADS)

    Calm, Y. M.; Merlo, J. M.; Burns, M. J.; Kempa, K.; Naughton, M. J.

    The resolution of a conventional optical microscope is sometimes taken from Airy's point spread function (PSF), 0 . 61 λ / NA , and sometimes from Abbe, λ / 2 NA , where NA is the numerical aperture, however modern fluorescence and near-field optical microscopies achieve spatial resolution far better than either of these limits. There is a new category of 2D metamaterials called planar optical elements (POEs), which have a microscopic thickness (< λ), macroscopic transverse dimensions (> 100 λ), and are composed of an array of nanostructured light scatterers. POEs are found in a range of micro- and nano-photonic technologies, and will influence the future optical nanoscopy. With this pretext, we shed some light on the 'diffraction limit' by numerically evaluating Kirchhoff's scalar formulae (in their exact form) and identifying the features of highly non-paraxial, 3D PSFs. We show that the Airy and Abbe criteria are connected, and we comment on the design rules for a particular type of POE: the flat lens. This work is supported by the W. M. Keck Foundation.

  9. Forming Human-Robot Teams Across Time and Space

    NASA Technical Reports Server (NTRS)

    Hambuchen, Kimberly; Burridge, Robert R.; Ambrose, Robert O.; Bluethmann, William J.; Diftler, Myron A.; Radford, Nicolaus A.

    2012-01-01

    NASA pushes telerobotics to distances that span the Solar System. At this scale, time of flight for communication is limited by the speed of light, inducing long time delays, narrow bandwidth and the real risk of data disruption. NASA also supports missions where humans are in direct contact with robots during extravehicular activity (EVA), giving a range of zero to hundreds of millions of miles for NASA s definition of "tele". . Another temporal variable is mission phasing. NASA missions are now being considered that combine early robotic phases with later human arrival, then transition back to robot only operations. Robots can preposition, scout, sample or construct in advance of human teammates, transition to assistant roles when the crew are present, and then become care-takers when the crew returns to Earth. This paper will describe advances in robot safety and command interaction approaches developed to form effective human-robot teams, overcoming challenges of time delay and adapting as the team transitions from robot only to robots and crew. The work is predicated on the idea that when robots are alone in space, they are still part of a human-robot team acting as surrogates for people back on Earth or in other distant locations. Software, interaction modes and control methods will be described that can operate robots in all these conditions. A novel control mode for operating robots across time delay was developed using a graphical simulation on the human side of the communication, allowing a remote supervisor to drive and command a robot in simulation with no time delay, then monitor progress of the actual robot as data returns from the round trip to and from the robot. Since the robot must be responsible for safety out to at least the round trip time period, the authors developed a multi layer safety system able to detect and protect the robot and people in its workspace. This safety system is also running when humans are in direct contact with the robot

  10. Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming

    NASA Astrophysics Data System (ADS)

    Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.

  11. Interactive language learning by robots: the transition from babbling to word forms.

    PubMed

    Lyon, Caroline; Nehaniv, Chrystopher L; Saunders, Joe

    2012-01-01

    The advent of humanoid robots has enabled a new approach to investigating the acquisition of language, and we report on the development of robots able to acquire rudimentary linguistic skills. Our work focuses on early stages analogous to some characteristics of a human child of about 6 to 14 months, the transition from babbling to first word forms. We investigate one mechanism among many that may contribute to this process, a key factor being the sensitivity of learners to the statistical distribution of linguistic elements. As well as being necessary for learning word meanings, the acquisition of anchor word forms facilitates the segmentation of an acoustic stream through other mechanisms. In our experiments some salient one-syllable word forms are learnt by a humanoid robot in real-time interactions with naive participants. Words emerge from random syllabic babble through a learning process based on a dialogue between the robot and the human participant, whose speech is perceived by the robot as a stream of phonemes. Numerous ways of representing the speech as syllabic segments are possible. Furthermore, the pronunciation of many words in spontaneous speech is variable. However, in line with research elsewhere, we observe that salient content words are more likely than function words to have consistent canonical representations; thus their relative frequency increases, as does their influence on the learner. Variable pronunciation may contribute to early word form acquisition. The importance of contingent interaction in real-time between teacher and learner is reflected by a reinforcement process, with variable success. The examination of individual cases may be more informative than group results. Nevertheless, word forms are usually produced by the robot after a few minutes of dialogue, employing a simple, real-time, frequency dependent mechanism. This work shows the potential of human-robot interaction systems in studies of the dynamics of early language

  12. Centrifugal forming and mechanical properties of silicone-based elastomers for soft robotic actuators

    NASA Astrophysics Data System (ADS)

    Kulkarni, Parth

    This thesis describes the centrifugal forming and resulting mechanical properties of silicone-based elastomers for the manufacture of soft robotic actuators. This process is effective at removing bubbles that get entrapped within 3D-printed, enclosed molds. Conventional methods for rapid prototyping of soft robotic actuators to remove entrapped bubbles typically involve degassing under vacuum, with open-faced molds that limit the layout of formed parts to raised 2D geometries. As the functionality and complexity of soft robots increase, there is a need to mold complete 3D structures with controlled thicknesses or curvatures on multiples surfaces. In addition, characterization of the mechanical properties of common elastomers for these soft robots has lagged the development of new designs. As such, relationships between resulting material properties and processing parameters are virtually non-existent. One of the goals of this thesis is to provide guidelines and physical insights to relate the design, processing conditions, and resulting properties of soft robotic components to each other. Centrifugal forming with accelerations on the order of 100 g's is capable of forming bubble-free, true 3D components for soft robotic actuators, and resulting demonstrations in this work include an aquatic locomotor, soft gripper, and an actuator that straightens when pressurized. Finally, this work shows that the measured mechanical properties of 3D geometries fabricated within enclosed molds through centrifugal forming possess comparable mechanical properties to vacuumed materials formed from open-faced molds with raised 2D features.

  13. Calculating the Weather: Deductive Reasoning and Disciplinary "Telos" in Cleveland Abbe's Rhetorical Transformation of Meteorology

    ERIC Educational Resources Information Center

    Majdik, Zoltan P.; Platt, Carrie Anne; Meister, Mark

    2011-01-01

    This paper explores the rhetorical basis of a major paradigm change in meteorology, from a focus on inductive observation to deductive, mathematical reasoning. Analysis of Cleveland Abbe's "The Physical Basis of Long-Range Weather Forecasts" demonstrates how in his advocacy for a new paradigm, Abbe navigates the tension between piety to tradition…

  14. Inverse Abbe-method for observing small refractive index changes in liquids.

    PubMed

    Räty, Jukka; Peiponen, Kai-Erik

    2015-05-01

    This study concerns an optical method for the detection of minuscule refractive index changes in the liquid phase. The proposed method reverses the operation of the traditional Abbe refractometer and thus utilizes the light dispersion properties of materials, i.e. it involves the dependence of the refractive index on light wavelength. In practice, the method includes the detection of light reflection spectra in the visible spectral range. This inverse Abbe method is suitable for liquid quality studies e.g. for monitoring water purity. Tests have shown that the method reveals less than per mil NaCl or ethanol concentrations in water. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effect of Impact Damage on the Fatigue Response of TiAl Alloy-ABB-2

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Nazmy, M. Y.; Staubli, M.; Clemens, D. R.

    2001-01-01

    The ability of gamma-TiAl to withstand potential foreign or domestic object damage is a technical risk to the implementation of gamma-TiAl in low pressure turbine (LPT) blade applications. In the present study, the impact resistance of TiAl alloy ABB-2 was determined and compared to the impact resistance of Ti(48)Al(2)Nb(2)Cr. Specimens were impacted with four different impact conditions with impact energies ranging from 0.22 to 6.09 J. After impacting, the impact damage was characterized by crack lengths on both the front and backside of the impact. Due to the flat nature of gamma-TiAl's S-N (stress vs. cycles to failure) curve, step fatigue tests were used to determine the fatigue strength after impacting. Impact damage increased with increasing impact energy and led to a reduction in the fatigue strength of the alloy. For similar crack lengths, the fatigue strength of impacted ABB-2 was similar to the fatigue strength of impacted Ti(48)Al(2)Nb(2)Cr, even though the tensile properties of the two alloys are significantly different. Similar to Ti(48)Al(2)Nb(2)Cr, ABB-2 showed a classical mean stress dependence on fatigue strength. The fatigue strength of impacted ABB-2 could be accurately predicted using a threshold analysis.

  16. A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems

    PubMed Central

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-01-01

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597

  17. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    NASA Astrophysics Data System (ADS)

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  18. A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Horst; Laurischkat, Roman; Zhu Junhong

    One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi bodymore » system model and its included compensation method.« less

  19. Robotic Form-Finding and Construction Based on the Architectural Projection Logic

    NASA Astrophysics Data System (ADS)

    Zexin, Sun; Mei, Hongyuan

    2017-06-01

    In this article we analyze the relationship between the architectural drawings and form-finding, indicate that architects should reuse and redefine the traditional architectural drawings as a from-finding tool. Explain the projection systems and analyze how these systems affected the architectural design. Use robotic arm to do the experiment and establish a cylindrical projection form-finding system.

  20. A dragline-forming mobile robot inspired by spiders.

    PubMed

    Wang, Liyu; Culha, Utku; Iida, Fumiya

    2014-03-01

    Mobility of wheeled or legged machines can be significantly increased if they are able to move from a solid surface into a three-dimensional space. Although that may be achieved by addition of flying mechanisms, the payload fraction will be the limiting factor in such hybrid mobile machines for many applications. Inspired by spiders producing draglines to assist locomotion, the paper proposes an alternative mobile technology where a robot achieves locomotion from a solid surface into a free space. The technology resembles the dragline production pathway in spiders to a technically feasible degree and enables robots to move with thermoplastic spinning of draglines. As an implementation, a mobile robot has been prototyped with thermoplastic adhesives as source material of the draglines. Experimental results show that a dragline diameter range of 1.17-5.27 mm was achievable by the 185 g mobile robot in descending locomotion from the solid surface of a hanging structure with a power consumption of 4.8 W and an average speed of 5.13 cm min(-1). With an open-loop controller consisting of sequences of discrete events, the robot has demonstrated repeatable dragline formation with a relative deviation within -4% and a length close to the metre scale.

  1. Mergeable nervous systems for robots.

    PubMed

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  2. 75 FR 20384 - ABB, Inc., Including On-Site Leased Workers From Spherion Staffing, Dividend Staffing, Mystaff...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ...-Site Leased Workers From Spherion Staffing, Dividend Staffing, Mystaff, and Zero Chaos, Wichita Falls... from Spherion Staffing, Dividend Staffing, MyStaff, and Zero Chaos were employed on-site by the Wichita..., Dividend Staffing, MyStaff, and Zero Chaos working on-site at the Wichita Falls, Texas location of ABB, Inc...

  3. Pair and triple correlations in the A+B-->B diffusion-controlled reaction

    NASA Astrophysics Data System (ADS)

    Kuzovkov, Vladimir; Kotomin, Eugene

    1994-03-01

    An exact solution for the one-dimensional kinetics of the diffusion-controlled reaction A+B-->B is obtained by means of the three-particle correlation functions. Because of a lattice discreteness each site could be occupied by a single particle only which leads to the so-called ``bus effect'': Recombination of any particle A is defined by a spatial configuration of two nearest particles B only surrounding A from its left and right. This results in the unusual algebraic decay law, n(t)~t-1, which asymptotically (as t-->∞) does not depend on the trap B concentration.

  4. A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components

    NASA Astrophysics Data System (ADS)

    Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun

    2017-10-01

    This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.

  5. Abbe's number and Cauchy's constant of iodine and selenium doped poly (methylmethacrylate) and polystyrene composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Sheetal, E-mail: smehta-29@yahoo.com; Das, Kallol, E-mail: smehta-29@yahoo.com; Keller, Jag Mohan, E-mail: smehta-29@yahoo.com

    2014-04-24

    Poly (methyl methacrylate) / Polystyrene and iodine / selenium hybrid matrixes have been prepared and characterized. Refractive index measurements were done at 390, 535, 590, 635 nm wavelengths. Abbe's number and Cauchy's constants of the iodine / selenium doped poly (methylmethacrylate) and polystyrene samples are being reported. The results also showed that the refractive index of the composite varies non-monotonically with the doping concentration at low iodine concentration or in the region of nanoparticles formation and is also dependent on thermal annealing.

  6. Evaluation of the results of simultaneous open rhinoplasty and Abbe flap for the reconstruction of the secondary bilateral cleft and nasal deformity.

    PubMed

    Eski, Muhitdin; Aykan, Andac; Alhan, Dogan; Zor, Fatih; Isik, Selcuk

    2015-06-01

    We aimed to evaluate the results of simultaneous rhinoplasty and Abbe flap for the reconstruction of the secondary bilateral cleft and nasal deformity by means of a newly developed software-based method. A total of 16 patients with the bilateral cleft lip nasal deformity received Abbe flap and simultaneous open rhinoplasty between 2004 and 2010. The mean age of the patients was 21 years, and the average follow-up time was 2.4 years. After the open rhinoplasty procedure, the upper lip was reconstructed with the Abbe flap. Preoperative and postoperative photographs that had been taken laterally were evaluated by using Adobe Photoshop(®) CS4 and Adobe InDesign(®) software. The length of the columella and the relative changes of the most anterior point of the upper lip to the vertical plane tangent to the most anterior point of the lower lip were measured in pixels on standardized preoperative and postoperative images. The differences were calculated and compared as a percentage (%). There was no flap loss and associated problems. The measurements of columellar length revealed an average increase of 51.8 ± 11.3%, while the relative change of the most anterior point of the upper lip revealed an average increase of 68.6 ± 11.2%. The results of the treatment modality were successfully evaluated by a newly developed software-based method. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Anthropomorphic Robot Design and User Interaction Associated with Motion

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    2016-01-01

    Though in its original concept a robot was conceived to have some human-like shape, most robots now in use have specific industrial purposes and do not closely resemble humans. Nevertheless, robots that resemble human form in some way have continued to be introduced. They are called anthropomorphic robots. The fact that the user interface to all robots is now highly mediated means that the form of the user interface is not necessarily connected to the robots form, human or otherwise. Consequently, the unique way the design of anthropomorphic robots affects their user interaction is through their general appearance and the way they move. These robots human-like appearance acts as a kind of generalized predictor that gives its operators, and those with whom they may directly work, the expectation that they will behave to some extent like a human. This expectation is especially prominent for interactions with social robots, which are built to enhance it. Often interaction with them may be mainly cognitive because they are not necessarily kinematically intricate enough for complex physical interaction. Their body movement, for example, may be limited to simple wheeled locomotion. An anthropomorphic robot with human form, however, can be kinematically complex and designed, for example, to reproduce the details of human limb, torso, and head movement. Because of the mediated nature of robot control, there remains in general no necessary connection between the specific form of user interface and the anthropomorphic form of the robot. But their anthropomorphic kinematics and dynamics imply that the impact of their design shows up in the way the robot moves. The central finding of this report is that the control of this motion is a basic design element through which the anthropomorphic form can affect user interaction. In particular, designers of anthropomorphic robots can take advantage of the inherent human-like movement to 1) improve the users direct manual control over

  8. Robot Wars: US Empire and geopolitics in the robotic age

    PubMed Central

    Shaw, Ian GR

    2017-01-01

    How will the robot age transform warfare? What geopolitical futures are being imagined by the US military? This article constructs a robotic futurology to examine these crucial questions. Its central concern is how robots – driven by leaps in artificial intelligence and swarming – are rewiring the spaces and logics of US empire, warfare, and geopolitics. The article begins by building a more-than-human geopolitics to de-center the role of humans in conflict and foreground a worldly understanding of robots. The article then analyzes the idea of US empire, before speculating upon how and why robots are materializing new forms of proxy war. A three-part examination of the shifting spaces of US empire then follows: (1) Swarm Wars explores the implications of miniaturized drone swarming; (2) Roboworld investigates how robots are changing US military basing strategy and producing new topological spaces of violence; and (3) The Autogenic Battle-Site reveals how autonomous robots will produce emergent, technologically event-ful sites of security and violence – revolutionizing the battlespace. The conclusion reflects on the rise of a robotic US empire and its consequences for democracy. PMID:29081605

  9. Robot Wars: US Empire and geopolitics in the robotic age.

    PubMed

    Shaw, Ian Gr

    2017-10-01

    How will the robot age transform warfare? What geopolitical futures are being imagined by the US military? This article constructs a robotic futurology to examine these crucial questions. Its central concern is how robots - driven by leaps in artificial intelligence and swarming - are rewiring the spaces and logics of US empire, warfare, and geopolitics. The article begins by building a more-than-human geopolitics to de-center the role of humans in conflict and foreground a worldly understanding of robots. The article then analyzes the idea of US empire, before speculating upon how and why robots are materializing new forms of proxy war. A three-part examination of the shifting spaces of US empire then follows: (1) Swarm Wars explores the implications of miniaturized drone swarming; (2) Roboworld investigates how robots are changing US military basing strategy and producing new topological spaces of violence; and (3) The Autogenic Battle-Site reveals how autonomous robots will produce emergent, technologically event-ful sites of security and violence - revolutionizing the battlespace. The conclusion reflects on the rise of a robotic US empire and its consequences for democracy.

  10. Robots as Language Learning Tools

    ERIC Educational Resources Information Center

    Collado, Ericka

    2017-01-01

    Robots are machines that resemble different forms, usually those of humans or animals, that can perform preprogrammed or autonomous tasks (Robot, n.d.). With the emergence of STEM programs, there has been a rise in the use of robots in educational settings. STEM programs are those where students study science, technology, engineering and…

  11. Athermalization and achromatization of visible/SWIR optics using instantaneous Abbe number

    NASA Astrophysics Data System (ADS)

    Ramsey, J. L.

    2017-11-01

    With the move to more and more lightweight and cost-effective design, a move to multiband or multi-spectral optics is required. These systems are becoming more prevalent in the market as new detector technologies have been developed. However, the lens designs are only starting to be considered with the addition of new materials in the MWIR and the LWIR. For the VIS/SWIR region the designs have been possible, but a lack of detector technology has resulted in few designs being considered for actual manufacturing. These designs are also difficult due to changes in the Abbe number in the different wavebands. Where the glass map is robust in the visible region, there exists a lack of crown glasses in the SWIR, and one is left with mostly flint glasses. This proves challenging from a chromatic perspective. The challenge becomes even more difficult if one wants to incorporate athermalization.

  12. Robotic technology evolution and transfer

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  13. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  14. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  15. Intelligence for Human-Assistant Planetary Surface Robots

    NASA Technical Reports Server (NTRS)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  16. Dynamic Modelling Of A SCARA Robot

    NASA Astrophysics Data System (ADS)

    Turiel, J. Perez; Calleja, R. Grossi; Diez, V. Gutierrez

    1987-10-01

    This paper describes a method for modelling industrial robots that considers dynamic approach to manipulation systems motion generation, obtaining the complete dynamic model for the mechanic part of the robot and taking into account the dynamic effect of actuators acting at the joints. For a four degree of freedom SCARA robot we obtain the dynamic model for the basic (minimal) configuration, that is, the three degrees of freedom that allow us to place the robot end effector in a desired point, using the Lagrange Method to obtain the dynamic equations in matrix form. The manipulator is considered to be a set of rigid bodies inter-connected by joints in the form of simple kinematic pairs. Then, the state space model is obtained for the actuators that move the robot joints, uniting the models of the single actuators, that is, two DC permanent magnet servomotors and an electrohydraulic actuator. Finally, using a computer simulation program written in FORTRAN language, we can compute the matrices of the complete model.

  17. Collaborative Defense of Transmission and Distribution Protection and Control Devices Against Cyber Attacks (CODEF) DE-OE0000674. ABB Inc. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuqui, Reynaldo

    This report summarizes the activities conducted under the DOE-OE funded project DEOE0000674, where ABB Inc. (ABB), in collaboration with University of Illinois at Urbana-Champaign (UIUC), Bonneville Power Administration (BPA), and Ameren-Illinois (Ameren-IL) pursued the development of a system of collaborative defense of electrical substation’s intelligent electronic devices against cyber-attacks (CODEF). An electrical substation with CODEF features will be more capable of mitigating cyber-attacks especially those that seek to control switching devices. It leverages the security extensions of IEC 61850 to empower existing devices to collaborate in identifying and blocking malicious intents to trip circuit breakers, mis-coordinate devices settings, even thoughmore » the commands and the measurements comply with correct syntax. The CODEF functions utilize the physics of electromagnetic systems, electric power engineering principles, and computer science to bring more in depth cyber defense closer to the protected substation devices.« less

  18. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel.

  19. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.

    PubMed

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.

  20. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks

    PubMed Central

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building. PMID:28540284

  1. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality.

  2. A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.

    PubMed

    Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu

    2015-05-01

    This paper describes a switching formation strategy for multi-robots with velocity constraints to avoid and cross obstacles. In the strategy, a leader robot plans a safe path using the geometric obstacle avoidance control method (GOACM). By calculating new desired distances and bearing angles with the leader robot, the follower robots switch into a safe formation. With considering collision avoidance, a novel robot priority model, based on the desired distance and bearing angle between the leader and follower robots, is designed during the obstacle avoidance process. The adaptive tracking control algorithm guarantees that the trajectory and velocity tracking errors converge to zero. To demonstrate the validity of the proposed methods, simulation and experiment results present that multi-robots effectively form and switch formation avoiding obstacles without collisions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry.

    PubMed

    Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V

    2018-01-01

    Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  4. [Robotic laparoscopic cholecystectomy].

    PubMed

    Langer, D; Pudil, J; Ryska, M

    2006-09-01

    Laparoscopic approach profusely utilized in many surgical fields was enhanced by da Vinci robotic surgical system in range of surgery wards, imprimis in the United States today. There was multispecialized robotic centre program initiated in the Central Military Hospital in Prague in December 2005. Within the scope of implementing the da Vinci robotic system to clinical practice we executed robotic-assisted laparoscopic cholecystectomy. We have accomplished elective laparoscopic cholecystectomy using the da Vinci robotic surgical system. Operating working group (two doctors, two scrub nurses) had completed certificated foreign training. Both of the surgeons have many years experience of laparoscopic cholecystectomy. Operator controlled instruments from the surgeon's console, assistant placed clips on ends of cystic duct and cystic artery from auxiliary port after capnoperitoneum installation. We evacuated gallbladder in plastic bag from abdominal cavity in place of original paraumbilical port. We were exploiting three working arms in all our cases, holding surgical camera, electrocautery hook and Cadiere forceps. We had been observing procedure time, technical complications connected with robotic system, length of hospital stay and complication incidence rate. We managed to finish all operations in laparoscopic way. Group of our patients formed 11 male patients (35.5%) and 20 women (64.5%), mean aged 52.5 years in range of 27 77 years. The average operation procedure lasted 100 minutes, in the group of last 11 patients only 69 minutes. We recorded paraumbilical wound infections in 3 (9.7 %) patients. We had not experienced any technical problems with robotic surgical system. Length of hospital stay was 3 days. Considering our initial experience with robotic lasparoscopic cholecystectomy we evaluate da Vinci robotic surgical system to be safe and sophisticated operating manipulator which however does not substitute the surgeon key-role of controlling position and

  5. Human-robot skills transfer interfaces for a flexible surgical robot.

    PubMed

    Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G

    2014-09-01

    In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review.

    PubMed

    Mehrholz, J; Harvey, L A; Thomas, S; Elsner, B

    2017-08-01

    Systematic review about randomised trials comparing different training strategies to improve gait in people with spinal cord injuries (SCI). The aim of this systematic review was to compare the effectiveness of body-weight-supported treadmill training (BWSTT) and robotic-assisted gait training with overground gait training and other forms of physiotherapy in people with traumatic SCI. Systematic review conducted by researchers from Germany and Australia. An extensive search was conducted for randomised controlled trials involving people with traumatic SCI that compared either BWSTT or robotic-assisted gait training with overground gait training and other forms of physiotherapy. The two outcomes of interest were walking speed (m s -1 ) and walking distance (m). BWSTT and robotic-assisted gait training were analysed separately, and data were pooled across trials to derive mean between-group differences using a random-effects model. Thirteen randomised controlled trials involving 586 people were identified. Ten trials involving 462 participants compared BWSTT to overground gait training and other forms of physiotherapy, but only nine trials provided useable data. The pooled mean (95% confidence interval (CI)) between-group differences for walking speed and walking distance were -0.03 m s -1 (-0.10 to 0.04) and -7 m (-45 to 31), respectively, favouring overground gait training. Five trials involving 344 participants compared robotic-assisted gait training to overground gait training and other forms of physiotherapy but only three provided useable data. The pooled mean (95% CI) between-group differences for walking speed and walking distance were -0.04 m s -1 (95% CI -0.21 to 0.13) and -6 m (95% CI -86 to 74), respectively, favouring overground gait training. BWSTT and robotic-assisted gait training do not increase walking speed more than overground gait training and other forms of physiotherapy do, but their effects on walking distance are not clear.

  7. Research on Snake-Like Robot with Controllable Scales

    NASA Astrophysics Data System (ADS)

    Chen, Kailin; Zhao, Yuting; Chen, Shuping

    The purpose of this paper is to propose a new structure for a snake-like robot. This type of snake-like robot is different from the normal snake-like robot because it has lots of controllable scales which have a large role in helping moving. Besides, a new form of robot gait named as linear motion mode is developed based on theoretical analysis for the new mechanical structure. Through simulation and analysis in simmechanics of matlab, we proved the validity of theories about the motion mode of snake-like robot. The proposed machine construction and control method for the designed motion is verified experimentally by the independent developed snake robot.

  8. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    PubMed

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.

  9. Robotic Literacy Learning Companions: Exploring Student Engagement with a Humanoid Robot in an Afterschool Literacy Program

    ERIC Educational Resources Information Center

    Levchak, Sofia

    2016-01-01

    This study was an investigation of the use of a NAO humanoid robot as an effective tool for engaging readers in an afterschool program as well as to find if increasing engagement using a humanoid robot would affect students' reading comprehension when compared to traditional forms of instruction. The targeted population of this study was…

  10. Framework for robot skill learning using reinforcement learning

    NASA Astrophysics Data System (ADS)

    Wei, Yingzi; Zhao, Mingyang

    2003-09-01

    Robot acquiring skill is a process similar to human skill learning. Reinforcement learning (RL) is an on-line actor critic method for a robot to develop its skill. The reinforcement function has become the critical component for its effect of evaluating the action and guiding the learning process. We present an augmented reward function that provides a new way for RL controller to incorporate prior knowledge and experience into the RL controller. Also, the difference form of augmented reward function is considered carefully. The additional reward beyond conventional reward will provide more heuristic information for RL. In this paper, we present a strategy for the task of complex skill learning. Automatic robot shaping policy is to dissolve the complex skill into a hierarchical learning process. The new form of value function is introduced to attain smooth motion switching swiftly. We present a formal, but practical, framework for robot skill learning and also illustrate with an example the utility of method for learning skilled robot control on line.

  11. Application of alkaliphilic biofilm-forming bacteria to improve compressive strength of cement-sand mortar.

    PubMed

    Park, Sung-Jin; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-03-01

    The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.

  12. Robotics in space-age manufacturing

    NASA Technical Reports Server (NTRS)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  13. Three-Dimensional Images For Robot Vision

    NASA Astrophysics Data System (ADS)

    McFarland, William D.

    1983-12-01

    Robots are attracting increased attention in the industrial productivity crisis. As one significant approach for this nation to maintain technological leadership, the need for robot vision has become critical. The "blind" robot, while occupying an economical niche at present is severely limited and job specific, being only one step up from the numerical controlled machines. To successfully satisfy robot vision requirements a three dimensional representation of a real scene must be provided. Several image acquistion techniques are discussed with more emphasis on the laser radar type instruments. The autonomous vehicle is also discussed as a robot form, and the requirements for these applications are considered. The total computer vision system requirement is reviewed with some discussion of the major techniques in the literature for three dimensional scene analysis.

  14. Robotics as science (re)form: Exploring power, learning and gender(ed) identity formation in a "community of practice"

    NASA Astrophysics Data System (ADS)

    Hurner, Sheryl Marie

    "Robotics as Science (re)Form" utilizes qualitative research methods to examine the career trajectories and gender identity formation of female youth participating as members of an all-girl, academic team within the male-dominated environment of the FIRST Robotics competition. Following the constant comparative approach (Glaser & Strauss, 1967), my project relies upon triangulating ethnographic data drawn from extensive field notes, semi-structured interviews, and digital and video imagery compiled over two years of participant observation. Drawing upon the sociolinguistic "community of practice" (CoP) framework (Eckert & McConnell-Ginet, 1992; Lave & Wenger, 1991; Wenger, 1998), this study maps the range of gendered "identities" available to girls involved in non-traditional academic and occupational pursuits within a local context, and reveals the nature, structure and impact of power operating within this CoP, a significantly underdeveloped construct within the language and gender literature. These research findings (1) contribute to refining theories of situated or problem based learning with a focus on female youth (Lave & Wenger, 1991; Wenger, 1998); (2) reveal affordances and barriers within the local program design that enable (and preclude) women and minority youth entering the engineering pipeline; and (3) enrich our understanding of intragroup language and gendered "practices" to counter largely essentializing generalizations based upon quantitative analysis. Keywords: Robotics, gender, identity formation, science, STEM, communities of practice

  15. Use of symbolic computation in robotics education

    NASA Technical Reports Server (NTRS)

    Vira, Naren; Tunstel, Edward

    1992-01-01

    An application of symbolic computation in robotics education is described. A software package is presented which combines generality, user interaction, and user-friendliness with the systematic usage of symbolic computation and artificial intelligence techniques. The software utilizes MACSYMA, a LISP-based symbolic algebra language, to automatically generate closed-form expressions representing forward and inverse kinematics solutions, the Jacobian transformation matrices, robot pose error-compensation models equations, and Lagrange dynamics formulation for N degree-of-freedom, open chain robotic manipulators. The goal of such a package is to aid faculty and students in the robotics course by removing burdensome tasks of mathematical manipulations. The software package has been successfully tested for its accuracy using commercially available robots.

  16. Swarm robotics and minimalism

    NASA Astrophysics Data System (ADS)

    Sharkey, Amanda J. C.

    2007-09-01

    Swarm Robotics (SR) is closely related to Swarm Intelligence, and both were initially inspired by studies of social insects. Their guiding principles are based on their biological inspiration and take the form of an emphasis on decentralized local control and communication. Earlier studies went a step further in emphasizing the use of simple reactive robots that only communicate indirectly through the environment. More recently SR studies have moved beyond these constraints to explore the use of non-reactive robots that communicate directly, and that can learn and represent their environment. There is no clear agreement in the literature about how far such extensions of the original principles could go. Should there be any limitations on the individual abilities of the robots used in SR studies? Should knowledge of the capabilities of social insects lead to constraints on the capabilities of individual robots in SR studies? There is a lack of explicit discussion of such questions, and researchers have adopted a variety of constraints for a variety of reasons. A simple taxonomy of swarm robotics is presented here with the aim of addressing and clarifying these questions. The taxonomy distinguishes subareas of SR based on the emphases and justifications for minimalism and individual simplicity.

  17. Positive position control of robotic manipulators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Gumusel, L.

    1989-01-01

    The present, simple and accurate position-control algorithm, which is applicable to fast-moving and lightly damped robot arms, is based on the positive position feedback (PPF) strategy and relies solely on position sensors to monitor joint angles of robotic arms to furnish stable position control. The optimized tuned filters, in the form of a set of difference equations, manipulate position signals for robotic system performance. Attention is given to comparisons between this PPF-algorithm controller's experimentally ascertained performance characteristics and those of a conventional proportional controller.

  18. Human-Robot Interaction: Status and Challenges.

    PubMed

    Sheridan, Thomas B

    2016-06-01

    The current status of human-robot interaction (HRI) is reviewed, and key current research challenges for the human factors community are described. Robots have evolved from continuous human-controlled master-slave servomechanisms for handling nuclear waste to a broad range of robots incorporating artificial intelligence for many applications and under human supervisory control. This mini-review describes HRI developments in four application areas and what are the challenges for human factors research. In addition to a plethora of research papers, evidence of success is manifest in live demonstrations of robot capability under various forms of human control. HRI is a rapidly evolving field. Specialized robots under human teleoperation have proven successful in hazardous environments and medical application, as have specialized telerobots under human supervisory control for space and repetitive industrial tasks. Research in areas of self-driving cars, intimate collaboration with humans in manipulation tasks, human control of humanoid robots for hazardous environments, and social interaction with robots is at initial stages. The efficacy of humanoid general-purpose robots has yet to be proven. HRI is now applied in almost all robot tasks, including manufacturing, space, aviation, undersea, surgery, rehabilitation, agriculture, education, package fetch and delivery, policing, and military operations. © 2016, Human Factors and Ergonomics Society.

  19. Robotics

    NASA Astrophysics Data System (ADS)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  20. Knowledge based systems for intelligent robotics

    NASA Technical Reports Server (NTRS)

    Rajaram, N. S.

    1982-01-01

    It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.

  1. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots

    PubMed Central

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-01-01

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed. PMID:29186843

  2. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.

    PubMed

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-11-25

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.

  3. An Advice Mechanism for Heterogeneous Robot Teams

    NASA Astrophysics Data System (ADS)

    Daniluk, Steven

    The use of reinforcement learning for robot teams has enabled complex tasks to be performed, but at the cost of requiring a large amount of exploration. Exchanging information between robots in the form of advice is one method to accelerate performance improvements. This thesis presents an advice mechanism for robot teams that utilizes advice from heterogeneous advisers via a method guaranteeing convergence to an optimal policy. The presented mechanism has the capability to use multiple advisers at each time step, and decide when advice should be requested and accepted, such that the use of advice decreases over time. Additionally, collective collaborative, and cooperative behavioural algorithms are integrated into a robot team architecture, to create a new framework that provides fault tolerance and modularity for robot teams.

  4. Task-oriented rehabilitation robotics.

    PubMed

    Schweighofer, Nicolas; Choi, Younggeun; Winstein, Carolee; Gordon, James

    2012-11-01

    Task-oriented training is emerging as the dominant and most effective approach to motor rehabilitation of upper extremity function after stroke. Here, the authors propose that the task-oriented training framework provides an evidence-based blueprint for the design of task-oriented robots for the rehabilitation of upper extremity function in the form of three design principles: skill acquisition of functional tasks, active participation training, and individualized adaptive training. The previous robotic systems that incorporate elements of task-oriented trainings are then reviewed. Finally, the authors critically analyze their own attempt to design and test the feasibility of a TOR robot, ADAPT (Adaptive and Automatic Presentation of Tasks), which incorporates the three design principles. Because of its task-oriented training-based design, ADAPT departs from most other current rehabilitation robotic systems: it presents realistic functional tasks in which the task goal is constantly adapted, so that the individual actively performs doable but challenging tasks without physical assistance. To maximize efficacy for a large clinical population, the authors propose that future task-oriented robots need to incorporate yet-to-be developed adaptive task presentation algorithms that emphasize acquisition of fine motor coordination skills while minimizing compensatory movements.

  5. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction

    PubMed Central

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children’s social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a “mental model” of the robot, tailoring the tutoring to the robot’s performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot’s bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance. PMID:26422143

  6. Open innovation at the Abbe School of Photonics

    NASA Astrophysics Data System (ADS)

    Helgert, Christian; Geiss, Reinhard; Nolte, Stefan; Eilenberger, Falk; Zakoth, David; Mauroner, Oliver; Pertsch, Thomas

    2017-08-01

    The Abbe School of Photonics (ASP) provides and coordinates the optics and photonics education of graduate and doctoral students at the Friedrich Schiller University in Jena, Germany. The internationalized Master's degree program is the key activity in training students in the optical sciences. The program is designed to provide them with the skills necessary to fill challenging positions in industry and academia. Here, an essential factor is ASP's close collaboration with more than 20 German photonics companies. To sustain these partners' future economic development, the availability of highly qualified employees is constantly required. Accordingly, these industrial partners, the European Union, the local state and the federal German government are strongly involved in the sustainable development of ASP's curriculum by both conceptual and financial engagements. The main goal is to promote the students' academic careers and job experience in the photonics industry as well as in academia. To open up the program to students from all over the world, all ASP lectures and courses are taught in English. ASP's qualification strategy is fully research-oriented and based on the principles of academic freedom, competitive research conditions and internationalization at all levels. The education program is complemented by a structured doctoral student support and a prestigious guest professorship program. Recently, ASP and partners have started a project to build an open photonics laboratory in order to foster innovative and co-creative processes. The idea follows well-established open innovation schemes e.g. in electronics. This Photon Garage (German: "Lichtwerkstatt") will bring together professionals and interested laymen from different backgrounds to approach pertinent challenges in photonics. Here, we will share our latest insights into the potentials and opportunities offered by this novel educative approach.

  7. The Uranus Mobile Robot

    DTIC Science & Technology

    1990-09-01

    maneuver in a cluttered indoor environment . Since Pluto could position itself in any orientation, it would also allow us to mount a robot arm on top of...reasons. First, it gives the payload a smoother ride: although the robot operates in an indoor environment , there are still cables and door thresholds to...form a self-holding circuit. A small DPDT relay powers the proper indicator light and is also 9 Batery en main Inlet O60A 24VDC Off Board On Board(NO

  8. Mobile robot sense net

    NASA Astrophysics Data System (ADS)

    Konolige, Kurt G.; Gutmann, Steffen; Guzzoni, Didier; Ficklin, Robert W.; Nicewarner, Keith E.

    1999-08-01

    Mobile robot hardware and software is developing to the point where interesting applications for groups of such robots can be contemplated. We envision a set of mobots acting to map and perform surveillance or other task within an indoor environment (the Sense Net). A typical application of the Sense Net would be to detect survivors in buildings damaged by earthquake or other disaster, where human searchers would be put a risk. As a team, the Sense Net could reconnoiter a set of buildings faster, more reliably, and more comprehensibly than an individual mobot. The team, for example, could dynamically form subteams to perform task that cannot be done by individual robots, such as measuring the range to a distant object by forming a long baseline stereo sensor form a pari of mobots. In addition, the team could automatically reconfigure itself to handle contingencies such as disabled mobots. This paper is a report of our current progress in developing the Sense Net, after the first year of a two-year project. In our approach, each mobot has sufficient autonomy to perform several tasks, such as mapping unknown areas, navigating to specific positions, and detecting, tracking, characterizing, and classifying human and vehicular activity. We detail how some of these tasks are accomplished, and how the mobot group is tasked.

  9. Systematic review of robotic surgery in gynecology: robotic techniques compared with laparoscopy and laparotomy.

    PubMed

    Gala, Rajiv B; Margulies, Rebecca; Steinberg, Adam; Murphy, Miles; Lukban, James; Jeppson, Peter; Aschkenazi, Sarit; Olivera, Cedric; South, Mary; Lowenstein, Lior; Schaffer, Joseph; Balk, Ethan M; Sung, Vivian

    2014-01-01

    The Society of Gynecologic Surgeons Systematic Review Group performed a systematic review of both randomized and observational studies to compare robotic vs nonrobotic surgical approaches (laparoscopic, abdominal, and vaginal) for treatment of both benign and malignant gynecologic indications to compare surgical and patient-centered outcomes, costs, and adverse events associated with the various surgical approaches. MEDLINE and the Cochrane Central Register of Controlled Trials were searched from inception to May 15, 2012, for English-language studies with terms related to robotic surgery and gynecology. Studies of any design that included at least 30 women who had undergone robotic-assisted laparoscopic gynecologic surgery were included for review. The literature yielded 1213 citations, of which 97 full-text articles were reviewed. Forty-four studies (30 comparative and 14 noncomparative) met eligibility criteria. Study data were extracted into structured electronic forms and reconciled by a second, independent reviewer. Our analysis revealed that, compared with open surgery, robotic surgery consistently confers shorter hospital stay. The proficiency plateau seems to be lower for robotic surgery than for conventional laparoscopy. Of the various gynecologic applications, there seems to be evidence that renders robotic techniques advantageous over traditional open surgery for management of endometrial cancer. However, insofar as superiority, conflicting data are obtained when comparing robotics vs laparoscopic techniques. Therefore, the specific method of minimally invasive surgery, whether conventional laparoscopy or robotic surgery, should be tailored to patient selection, surgeon ability, and equipment availability. Copyright © 2014 AAGL. Published by Elsevier Inc. All rights reserved.

  10. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  11. The effect of collision avoidance for autonomous robot team formation

    NASA Astrophysics Data System (ADS)

    Seidman, Mark H.; Yang, Shanchieh J.

    2007-04-01

    As technology and research advance to the era of cooperative robots, many autonomous robot team algorithms have emerged. Shape formation is a common and critical task in many cooperative robot applications. While theoretical studies of robot team formation have shown success, it is unclear whether such algorithms will perform well in a real-world environment. This work examines the effect of collision avoidance schemes on an ideal circle formation algorithm, but behaves similarly if robot-to-robot communications are in place. Our findings reveal that robots with basic collision avoidance capabilities are still able to form into a circle, under most conditions. Moreover, the robot sizes, sensing ranges, and other critical physical parameters are examined to determine their effects on algorithm's performance.

  12. Using Multi-Robot Systems for Engineering Education: Teaching and Outreach with Large Numbers of an Advanced, Low-Cost Robot

    ERIC Educational Resources Information Center

    McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.

    2013-01-01

    This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…

  13. Robotics Team Lights Up New Year's Eve

    ERIC Educational Resources Information Center

    LeBlanc, Cheryl

    2011-01-01

    A robotics team from Muncie, Indiana--the PhyXTGears--is made up of high school students from throughout Delaware County. The group formed as part of the FIRST Robotics program (For Inspiration and Recognition of Science and Technology), an international program founded by inventor Dean Kamen in which students work with professional engineers and…

  14. The debate over robotics in benign gynecology.

    PubMed

    Rardin, Charles R

    2014-05-01

    The debate over the role of the da Vinci surgical robotic platform in benign gynecology is raging with increasing fervor and, as product liability issues arise, greater financial stakes. Although the best currently available science suggests that, in the hands of experts, robotics offers little in surgical advantage over laparoscopy, at increased expense, the observed decrease in laparotomy for hysterectomy is almost certainly, at least in part, attributable to the availability of the robot. In this author's opinion, the issue is not whether the robot has any role but rather to define the role in an institutional environment that also supports the safe use of vaginal and laparoscopic approaches in an integrated minimally invasive surgery program. Programs engaging robotic surgery should have a clear and self-determined regulatory process and should resist pressures in place that may preferentially support robotics over other forms of minimally invasive surgery. Copyright © 2014 Mosby, Inc. All rights reserved.

  15. Implementation of robotic force control with position accommodation

    NASA Technical Reports Server (NTRS)

    Ryan, Michael J.

    1992-01-01

    As the need for robotic manipulation in fields such as manufacturing and telerobotics increases, so does the need for effective methods of controlling the interaction forces between the manipulators and their environment. Position Accommodation (PA) is a form of robotic force control where the nominal path of the manipulator is modified in response to forces and torques sensed at the tool-tip of the manipulator. The response is tailored such that the manipulator emulates a mechanical impedance to its environment. PA falls under the category of position-based robotic force control, and may be viewed as a form of Impedance Control. The practical implementations are explored of PA into an 18 degree-of-freedom robotic testbed consisting of two PUMA 560 arms mounted on two 3 DOF positioning platforms. Single and dual-arm architectures for PA are presented along with some experimental results. Characteristics of position-based force control are discussed, along with some of the limitations of PA.

  16. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  17. Robotics in Arthroplasty: A Comprehensive Review.

    PubMed

    Jacofsky, David J; Allen, Mark

    2016-10-01

    Robotic-assisted orthopedic surgery has been available clinically in some form for over 2 decades, claiming to improve total joint arthroplasty by enhancing the surgeon's ability to reproduce alignment and therefore better restore normal kinematics. Various current systems include a robotic arm, robotic-guided cutting jigs, and robotic milling systems with a diversity of different navigation strategies using active, semiactive, or passive control systems. Semiactive systems have become dominant, providing a haptic window through which the surgeon is able to consistently prepare an arthroplasty based on preoperative planning. A review of previous designs and clinical studies demonstrate that these robotic systems decrease variability and increase precision, primarily focusing on component positioning and alignment. Some early clinical results indicate decreased revision rates and improved patient satisfaction with robotic-assisted arthroplasty. The future design objectives include precise planning and even further improved consistent intraoperative execution. Despite this cautious optimism, many still wonder whether robotics will ultimately increase cost and operative time without objectively improving outcomes. Over the long term, every industry that has seen robotic technology be introduced, ultimately has shown an increase in production capacity, improved accuracy and precision, and lower cost. A new generation of robotic systems is now being introduced into the arthroplasty arena, and early results with unicompartmental knee arthroplasty and total hip arthroplasty have demonstrated improved accuracy of placement, improved satisfaction, and reduced complications. Further studies are needed to confirm the cost effectiveness of these technologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Robotics and medicine: A scientific rainbow in hospital.

    PubMed

    Jeelani, S; Dany, A; Anand, B; Vandana, S; Maheswaran, T; Rajkumar, E

    2015-08-01

    The journey of robotics is a real wonder and astonishingly can be considered as a scientific rainbow showering surprising priceless power in the era of future technologies. The astonishing seven technologies discussed in this paper are da Vinci Robotic surgical system and sperm sorters for infertility, Veebot for blood investigation, Hanako the robotic dental patient for simulating the dental patient and helping a trainee dentist, RP-7 robot who is around-the-clock physician connecting the physician and patient, Robot for Interactive Body Assistance (RIBA) who is a RIBA serving as a nurse, Bushbot serving as a brilliant surgeon, and Virtibot helping in virtual autopsy. Thus, robotics in medicine is a budding field contributing a great lot to human life from before birth to afterlife in seven forms thus gracefully portraying a scientific rainbow in hospital environment.

  19. Robotics and medicine: A scientific rainbow in hospital

    PubMed Central

    Jeelani, S.; Dany, A.; Anand, B.; Vandana, S.; Maheswaran, T.; Rajkumar, E.

    2015-01-01

    The journey of robotics is a real wonder and astonishingly can be considered as a scientific rainbow showering surprising priceless power in the era of future technologies. The astonishing seven technologies discussed in this paper are da Vinci Robotic surgical system and sperm sorters for infertility, Veebot for blood investigation, Hanako the robotic dental patient for simulating the dental patient and helping a trainee dentist, RP-7 robot who is around-the-clock physician connecting the physician and patient, Robot for Interactive Body Assistance (RIBA) who is a RIBA serving as a nurse, Bushbot serving as a brilliant surgeon, and Virtibot helping in virtual autopsy. Thus, robotics in medicine is a budding field contributing a great lot to human life from before birth to afterlife in seven forms thus gracefully portraying a scientific rainbow in hospital environment. PMID:26538882

  20. Electroactive Polymer (EAP) Actuators for Future Humanlike Robots

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  1. Electroactive polymer (EAP) actuators for future humanlike robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2009-03-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  2. Internationalized and research-oriented photonics education: Abbe School of Photonics

    NASA Astrophysics Data System (ADS)

    Helgert, Christian; Nolte, Stefan; Pertsch, Thomas

    2015-10-01

    The Abbe School of Photonics (ASP) provides and coordinates the optics and photonics education of graduate and doctoral students at the Friedrich Schiller University in Jena, Germany. The internationalized Master's degree program is the key activity in training students in the optical sciences. The program is designed to provide them with the skills necessary to fill challenging positions in industry and academia. Here, an essential factor is ASP's close collaboration with more than 20 German photonics companies. To sustain these partners' future economic development, the availability of highly qualified employees is constantly required. Accordingly, these industrial partners, the European Union, the local state and the federal German government are strongly involved in the sustainable development of ASP's curriculum by both conceptual and financial engagements. The main goal is to promote the students' academic careers and job experience in the photonics industry as well as in academia. To open up the program to students from all over the world, all ASP lectures and courses are taught in English. Since 2009, more than 250 graduate students from more than 40 different countries have been enrolled at the School. Almost 90% of them of non-German nationality, fulfilling the essential ASP philosophy to locally establish an international education program. ASP's qualification strategy is fully research-oriented and based on the principles of academic freedom, competitive research conditions and internationalization at all levels. The education program is complemented by a structured doctoral student support and a prestigious guest professorship program.

  3. USAR Robot Communication Using ZigBee Technology

    NASA Astrophysics Data System (ADS)

    Tsui, Charles; Carnegie, Dale; Pan, Qing Wei

    This paper reports the successful development of an automatic routing wireless network for USAR (urban search and rescue) robots in an artificial rubble environment. The wireless network was formed using ZigBee modules and each module was attached to a micro-controller in order to model a wireless USAR robot. Proof of concept experiments were carried out by deploying the networked robots into artificial rubble. The rubble was simulated by connecting holes and trenches that were dug in 50 cm deep soil. The simulated robots were placed in the bottom of the holes. The holes and trenches were then covered up by various building materials and soil to simulate a real rubble environment. Experiments demonstrated that a monitoring computer placed 10 meters outside the rubble can establish proper communication with all robots inside the artificial rubble environment.

  4. Evolving mobile robots able to display collective behaviors.

    PubMed

    Baldassarre, Gianluca; Nolfi, Stefano; Parisi, Domenico

    2003-01-01

    We present a set of experiments in which simulated robots are evolved for the ability to aggregate and move together toward a light target. By developing and using quantitative indexes that capture the structural properties of the emerged formations, we show that evolved individuals display interesting behavioral patterns in which groups of robots act as a single unit. Moreover, evolved groups of robots with identical controllers display primitive forms of situated specialization and play different behavioral functions within the group according to the circumstances. Overall, the results presented in the article demonstrate that evolutionary techniques, by exploiting the self-organizing behavioral properties that emerge from the interactions between the robots and between the robots and the environment, are a powerful method for synthesizing collective behavior.

  5. Learning to Explain: The Role of Educational Robots in Science Education

    ERIC Educational Resources Information Center

    Datteri, Edoardo; Zecca, Luisa; Laudisa, Federico; Castiglioni, Marco

    2013-01-01

    Educational robotics laboratories typically involve building and programming robotic systems to perform particular tasks or solve problems. In this paper we explore the potential educational value of a form of robot-supported educational activity that has been little discussed in the literature. During these activities, primary school children are…

  6. Large robotized turning centers described

    NASA Astrophysics Data System (ADS)

    Kirsanov, V. V.; Tsarenko, V. I.

    1985-09-01

    The introduction of numerical control (NC) machine tools has made it possible to automate machining in series and small series production. The organization of automated production sections merged NC machine tools with automated transport systems. However, both the one and the other require the presence of an operative at the machine for low skilled operations. Industrial robots perform a number of auxiliary operations, such as equipment loading-unloading and control, changing cutting and auxiliary tools, controlling workpieces and parts, and cleaning of location surfaces. When used with a group of equipment they perform transfer operations between the machine tools. Industrial robots eliminate the need for workers to form auxiliary operations. This underscores the importance of developing robotized manufacturing centers providing for minimal human participation in production and creating conditions for two and three shift operation of equipment. Work carried out at several robotized manufacturing centers for series and small series production is described.

  7. Motion coordination and programmable teleoperation between two industrial robots

    NASA Technical Reports Server (NTRS)

    Luh, J. Y. S.; Zheng, Y. F.

    1987-01-01

    Tasks for two coordinated industrial robots always bring the robots in contact with a same object. The motion coordination among the robots and the object must be maintained all the time. To plan the coordinated tasks, only one robot's motion is planned according to the required motion of the object. The motion of the second robot is to follow the first one as specified by a set of holonomic equality constraints at every time instant. If any modification of the object's motion is needed in real-time, only the first robot's motion has to be modified accordingly in real-time. The modification for the second robot is done implicitly through the constraint conditions. Thus the operation is simplified. If the object is physically removed, the second robot still continually follows the first one through the constraint conditions. If the first robot is maneuvered through either the teach pendant or the keyboard, the second one moves accordingly to form the teleoperation which is linked through the software programming. Obviously, the second robot does not need to duplicate the first robot's motion. The programming of the constraints specifies their relative motions.

  8. Controlling Tensegrity Robots Through Evolution

    NASA Technical Reports Server (NTRS)

    Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan

    2013-01-01

    Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.

  9. Two-legged walking robot prescribed motion on a rough cylinder

    NASA Astrophysics Data System (ADS)

    Golubev, Yury; Melkumova, Elena

    2018-05-01

    The motion of a walking robot with n legs, that ensure the desired motion of the robot body, is described using general dynamics theoretical framework. When each of the robot legs contacts the surface in a single foothold, the momentum and angular momentum theorems yield a system of six differential equations that form a complete description of the robot motion. In the case of two-leg robot (n = 2) the problem of the existence of the solution can be reduced to a system of algebraic inequalities. Using numerical analysis, the classification of footholds positions for different values of the friction coefficient is obtained.

  10. Overview and fundamentals of urologic robot-integrated systems.

    PubMed

    Allaf, Mohamad; Patriciu, Alexandru; Mazilu, Dumitru; Kavoussi, Louis; Stoianovici, Dan

    2004-11-01

    Advances in technology have revolutionized urology. Minimally invasive tools now form the core of the urologist's armamentarium. Laparoscopic surgery has become the favored approach for treating many complicated urologic ailments. Surgical robots represent the next evolutionary step in the fruitful man-machine partnership. The introduction of robotic technology in urology changes how urologists learn, teach, plan, and operate. As technology evolves, robots not only will improve performance in minimally invasive procedures, but also enhance other procedures or enable new kinds of operations.

  11. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... computer station and directs the movements of a robot. Small surgical tools are attached to the robot's ...

  12. Ethorobotics: A New Approach to Human-Robot Relationship

    PubMed Central

    Miklósi, Ádám; Korondi, Péter; Matellán, Vicente; Gácsi, Márta

    2017-01-01

    Here we aim to lay the theoretical foundations of human-robot relationship drawing upon insights from disciplines that govern relevant human behaviors: ecology and ethology. We show how the paradox of the so called “uncanny valley hypothesis” can be solved by applying the “niche” concept to social robots, and relying on the natural behavior of humans. Instead of striving to build human-like social robots, engineers should construct robots that are able to maximize their performance in their niche (being optimal for some specific functions), and if they are endowed with appropriate form of social competence then humans will eventually interact with them independent of their embodiment. This new discipline, which we call ethorobotics, could change social robotics, giving a boost to new technical approaches and applications. PMID:28649213

  13. Biologically inspired intelligent robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  14. RoMPS concept review automatic control of space robot, volume 2

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form and include: (1) system concept; (2) Hitchhiker Interface Requirements; (3) robot axis control concepts; (4) Autonomous Experiment Management System; (5) Zymate Robot Controller; (6) Southwest SC-4 Computer; (7) oven control housekeeping data; and (8) power distribution.

  15. Socially intelligent robots: dimensions of human-robot interaction.

    PubMed

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  16. Robotic vehicle with multiple tracked mobility platforms

    DOEpatents

    Salton, Jonathan R [Albuquerque, NM; Buttz, James H [Albuquerque, NM; Garretson, Justin [Albuquerque, NM; Hayward, David R [Wetmore, CO; Hobart, Clinton G [Albuquerque, NM; Deuel, Jr., Jamieson K.

    2012-07-24

    A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

  17. Robots with AI: A retrospective on the AAAI robot competitions and exhibitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonasso, P.; Dean, T.

    1996-12-31

    There have been five years of robot competitions and exhibitions since the inception of this annual event in 1992. Since that first show we have seen 30 different teams compete and almost that many more exhibit their robots. These teams ranged from universities to industry and government research labs to one or two inventors working out of garages. Their composition ranged from seasoned AI researchers to eager undergraduates, and they hailed from the United States, Canada, Europe and the Far East. Despite the concerns of some about the relevance and even the appropriateness of such an event, the robots havemore » become a key attraction of the national and international conferences. In this talk, we look back on the form and function of the five years of exhibitions and competitions and attempt to draw some lessons in retrospect as well as future implications for the AI community and our society at large.« less

  18. Biofeedback for robotic gait rehabilitation.

    PubMed

    Lünenburger, Lars; Colombo, Gery; Riener, Robert

    2007-01-23

    Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback values to the patients and therapists. The therapists can adapt the

  19. Biofeedback for robotic gait rehabilitation

    PubMed Central

    Lünenburger, Lars; Colombo, Gery; Riener, Robert

    2007-01-01

    Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback values to the patients and

  20. Validity and reliability of the robotic objective structured assessment of technical skills

    PubMed Central

    Siddiqui, Nazema Y.; Galloway, Michael L.; Geller, Elizabeth J.; Green, Isabel C.; Hur, Hye-Chun; Langston, Kyle; Pitter, Michael C.; Tarr, Megan E.; Martino, Martin A.

    2015-01-01

    Objective Objective structured assessments of technical skills (OSATS) have been developed to measure the skill of surgical trainees. Our aim was to develop an OSATS specifically for trainees learning robotic surgery. Study Design This is a multi-institutional study in eight academic training programs. We created an assessment form to evaluate robotic surgical skill through five inanimate exercises. Obstetrics/gynecology, general surgery, and urology residents, fellows, and faculty completed five robotic exercises on a standard training model. Study sessions were recorded and randomly assigned to three blinded judges who scored performance using the assessment form. Construct validity was evaluated by comparing scores between participants with different levels of surgical experience; inter- and intra-rater reliability were also assessed. Results We evaluated 83 residents, 9 fellows, and 13 faculty, totaling 105 participants; 88 (84%) were from obstetrics/gynecology. Our assessment form demonstrated construct validity, with faculty and fellows performing significantly better than residents (mean scores: 89 ± 8 faculty; 74 ± 17 fellows; 59 ± 22 residents, p<0.01). In addition, participants with more robotic console experience scored significantly higher than those with fewer prior console surgeries (p<0.01). R-OSATS demonstrated good inter-rater reliability across all five drills (mean Cronbach's α: 0.79 ± 0.02). Intra-rater reliability was also high (mean Spearman's correlation: 0.91 ± 0.11). Conclusions We developed an assessment form for robotic surgical skill that demonstrates construct validity, inter- and intra-rater reliability. When paired with standardized robotic skill drills this form may be useful to distinguish between levels of trainee performance. PMID:24807319

  1. A Demonstrator Intelligent Scheduler For Sensor-Based Robots

    NASA Astrophysics Data System (ADS)

    Perrotta, Gabriella; Allen, Charles R.; Shepherd, Andrew J.

    1987-10-01

    The development of an execution module capable of functioning as as on-line supervisor for a robot equipped with a vision sensor and tactile sensing gripper system is described. The on-line module is supported by two off-line software modules which provide a procedural based assembly constraints language to allow the assembly task to be defined. This input is then converted into a normalised and minimised form. The host Robot programming language permits high level motions to be issued at the to level, hence allowing a low programming overhead to the designer, who must describe the assembly sequence. Components are selected for pick and place robot movement, based on information derived from two cameras, one static and the other mounted on the end effector of the robot. The approach taken is multi-path scheduling as described by Fox pi. The system is seen to permit robot assembly in a less constrained parts presentation environment making full use of the sensory detail available on the robot.

  2. Analysis of a closed-kinematic chain robot manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.

    1988-01-01

    Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.

  3. Low Reynolds Number Bacterial Robots

    NASA Astrophysics Data System (ADS)

    Giesbrecht, Grant; Ni, Katha; Vock, Isaac; Rodenborn, Bruce

    The dynamics of prokaryotic motility in a fluid is important in a wide range of fields. Our experiment models the locomotion of bacteria with a robotic swimmer made using a computer controlled DC motor that drives a helical flagellum formed from welding wire. Because of its small size, a bacterium swimming in water is like our robot swimming in corn syrup. We compensate for the size difference by placing the robot in highly viscous silicone oil. Previous research measured helical propulsion of a swimmer far from a boundary. However proximity to a boundary strongly affects bacterial swimming. We have designed a system to precisely control the distance from the flagellum to the tank wall, and have made some of the first macroscopic measurements of boundary effects on helical propulsion.

  4. Turning assistive machines into assistive robots

    NASA Astrophysics Data System (ADS)

    Argall, Brenna D.

    2015-01-01

    For decades, the potential for automation in particular, in the form of smart wheelchairs to aid those with motor, or cognitive, impairments has been recognized. It is a paradox that often the more severe a person's motor impairment, the more challenging it is for them to operate the very assistive machines which might enhance their quality of life. A primary aim of my lab is to address this confound by incorporating robotics autonomy and intelligence into assistive machines turning the machine into a kind of robot, and offloading some of the control burden from the user. Robots already synthetically sense, act in and reason about the world, and these technologies can be leveraged to help bridge the gap left by sensory, motor or cognitive impairments in the users of assistive machines. This paper overviews some of the ongoing projects in my lab, which strives to advance human ability through robotics autonomy.

  5. Real-World Evolution of Robot Morphologies: A Proof of Concept.

    PubMed

    Jelisavcic, Milan; de Carlo, Matteo; Hupkes, Elte; Eustratiadis, Panagiotis; Orlowski, Jakub; Haasdijk, Evert; Auerbach, Joshua E; Eiben, A E

    2017-01-01

    Evolutionary robotics using real hardware has been almost exclusively restricted to evolving robot controllers, but the technology for evolvable morphologies is advancing quickly. We discuss a proof-of-concept study to demonstrate real robots that can reproduce. Following a general system plan, we implement a robotic habitat that contains all system components in the simplest possible form. We create an initial population of two robots and run a complete life cycle, resulting in a new robot, parented by the first two. Even though the individual steps are simplified to the maximum, the whole system validates the underlying concepts and provides a generic workflow for the creation of more complex incarnations. This hands-on experience provides insights and helps us elaborate on interesting research directions for future development.

  6. Vision Guided Intelligent Robot Design And Experiments

    NASA Astrophysics Data System (ADS)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  7. Learning for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.

    2003-10-01

    Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A

  8. Robotic Lobectomy Utilizing the Robotic Stapler.

    PubMed

    Pearlstein, Daryl Phillip

    2016-12-01

    A drawback of robotic lobectomy is the inability of the operating surgeon to perform stapler division of the pulmonary vessels and bronchi. With the advent of the robotic stapler, the surgeon is able to control this instrument from the console. The robotic stapler presents certain challenges. This article outlines techniques to use the robotic stapler for the safe and predictable performance of lobectomies. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development.

    PubMed

    Smith, Roger; Patel, Vipul; Satava, Richard

    2014-09-01

    There is a need for a standardized curriculum for training and assessment of robotic surgeons to proficiency, followed by high-stakes testing (HST) for certification. To standardize the curriculum and certification of robotic surgeons, a series of consensus conferences attended by 14 leading international surgical societies have been used to compile the outcomes measures and curriculum that should form the basis for a Fundamentals of Robotic Surgery (FRS) programme. A set of 25 outcomes measures and a curriculum for teaching the skills needed to safely use current generation surgical robotic systems has been developed and accepted by a committee of experienced robotic surgeons across 14 specialties. A standardized process for certifying the skills of a robotic surgeon has begun to emerge. The work described here documents both the processes used for developing educational material and the educational content of a robotic curriculum. Copyright © 2013 John Wiley & Sons, Ltd.

  10. A Reconfigurable Omnidirectional Soft Robot Based on Caterpillar Locomotion.

    PubMed

    Zou, Jun; Lin, Yangqiao; Ji, Chen; Yang, Huayong

    2018-04-01

    A pneumatically powered, reconfigurable omnidirectional soft robot based on caterpillar locomotion is described. The robot is composed of nine modules arranged as a three by three matrix and the length of this matrix is 154 mm. The robot propagates a traveling wave inspired by caterpillar locomotion, and it has all three degrees of freedom on a plane (X, Y, and rotation). The speed of the robot is about 18.5 m/h (two body lengths per minute) and it can rotate at a speed of 1.63°/s. The modules have neodymium-iron-boron (NdFeB) magnets embedded and can be easily replaced or combined into other configurations. Two different configurations are presented to demonstrate the possibilities of the modular structure: (1) by removing some modules, the omnidirectional robot can be reassembled into a form that can crawl in a pipe and (2) two omnidirectional robots can crawl close to each other and be assembled automatically into a bigger omnidirectional robot. Omnidirectional motion is important for soft robots to explore unstructured environments. The modular structure gives the soft robot the ability to cope with the challenges of different environments and tasks.

  11. Long-term knowledge acquisition using contextual information in a memory-inspired robot architecture

    NASA Astrophysics Data System (ADS)

    Pratama, Ferdian; Mastrogiovanni, Fulvio; Lee, Soon Geul; Chong, Nak Young

    2017-03-01

    In this paper, we present a novel cognitive framework allowing a robot to form memories of relevant traits of its perceptions and to recall them when necessary. The framework is based on two main principles: on the one hand, we propose an architecture inspired by current knowledge in human memory organisation; on the other hand, we integrate such an architecture with the notion of context, which is used to modulate the knowledge acquisition process when consolidating memories and forming new ones, as well as with the notion of familiarity, which is employed to retrieve proper memories given relevant cues. Although much research has been carried out, which exploits Machine Learning approaches to provide robots with internal models of their environment (including objects and occurring events therein), we argue that such approaches may not be the right direction to follow if a long-term, continuous knowledge acquisition is to be achieved. As a case study scenario, we focus on both robot-environment and human-robot interaction processes. In case of robot-environment interaction, a robot performs pick and place movements using the objects in the workspace, at the same time observing their displacement on a table in front of it, and progressively forms memories defined as relevant cues (e.g. colour, shape or relative position) in a context-aware fashion. As far as human-robot interaction is concerned, the robot can recall specific snapshots representing past events using both sensory information and contextual cues upon request by humans.

  12. Acquisition of Robotic Giant-swing Motion Using Reinforcement Learning and Its Consideration of Motion Forms

    NASA Astrophysics Data System (ADS)

    Sakai, Naoki; Kawabe, Naoto; Hara, Masayuki; Toyoda, Nozomi; Yabuta, Tetsuro

    This paper argues how a compact humanoid robot can acquire a giant-swing motion without any robotic models by using Q-Learning method. Generally, it is widely said that Q-Learning is not appropriated for learning dynamic motions because Markov property is not necessarily guaranteed during the dynamic task. However, we tried to solve this problem by embedding the angular velocity state into state definition and averaging Q-Learning method to reduce dynamic effects, although there remain non-Markov effects in the learning results. The result shows how the robot can acquire a giant-swing motion by using Q-Learning algorithm. The successful acquired motions are analyzed in the view point of dynamics in order to realize a functionally giant-swing motion. Finally, the result shows how this method can avoid the stagnant action loop at around the bottom of the horizontal bar during the early stage of giant-swing motion.

  13. Robot and Human Surface Operations on Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  14. Generic robot architecture

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  15. Molecular Robots Obeying Asimov's Three Laws of Robotics.

    PubMed

    Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido

    2017-01-01

    Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.

  16. A Stigmergic Cooperative Multi-Robot Control Architecture

    NASA Technical Reports Server (NTRS)

    Howsman, Thomas G.; O'Neil, Daniel; Craft, Michael A.

    2004-01-01

    In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. A prototype cooperative multi-robot control architecture which may be suitable for the eventual construction of large space structures has been developed which emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically, i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  17. Toward controlling perturbations in robotic sensor networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Ashis G.; Majumder, Saikat R.

    2014-06-01

    Robotic sensor networks (RSNs), which consist of networks of sensors placed on mobile robots, are being increasingly used for environment monitoring applications. In particular, a lot of work has been done on simultaneous localization and mapping of the robots, and optimal sensor placement for environment state estimation1. The deployment of RSNs, however, remains challenging in harsh environments where the RSNs have to deal with significant perturbations in the forms of wind gusts, turbulent water flows, sand storms, or blizzards that disrupt inter-robot communication and individual robot stability. Hence, there is a need to be able to control such perturbations and bring the networks to desirable states with stable nodes (robots) and minimal operational performance (environment sensing). Recent work has demonstrated the feasibility of controlling the non-linear dynamics in other communication networks like emergency management systems and power grids by introducing compensatory perturbations to restore network stability and operation2. In this paper, we develop a computational framework to investigate the usefulness of this approach for RSNs in marine environments. Preliminary analysis shows promising performance and identifies bounds on the original perturbations within which it is possible to control the networks.

  18. General visual robot controller networks via artificial evolution

    NASA Astrophysics Data System (ADS)

    Cliff, David; Harvey, Inman; Husbands, Philip

    1993-08-01

    We discuss recent results from our ongoing research concerning the application of artificial evolution techniques (i.e., an extended form of genetic algorithm) to the problem of developing `neural' network controllers for visually guided robots. The robot is a small autonomous vehicle with extremely low-resolution vision, employing visual sensors which could readily be constructed from discrete analog components. In addition to visual sensing, the robot is equipped with a small number of mechanical tactile sensors. Activity from the sensors is fed to a recurrent dynamical artificial `neural' network, which acts as the robot controller, providing signals to motors governing the robot's motion. Prior to presentation of new results, this paper summarizes our rationale and past work, which has demonstrated that visually guided control networks can arise without any explicit specification that visual processing should be employed: the evolutionary process opportunistically makes use of visual information if it is available.

  19. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  20. Simulation tools for robotics research and assessment

    NASA Astrophysics Data System (ADS)

    Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.

    2016-05-01

    The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component

  1. Design of 3-D Printed Concentric Tube Robots.

    PubMed

    Morimoto, Tania K; Okamura, Allison M

    2016-12-01

    Concentric tube surgical robots are minimally invasive devices with the advantages of snake-like reconfigurability, long and thin form factor, and placement of actuation outside the patient's body. These robots can also be designed and manufactured to acquire targets in specific patients for treating specific diseases in a manner that minimizes invasiveness. We propose that concentric tube robots can be manufactured using 3-D printing technology on a patient- and procedure-specific basis. In this paper, we define the design requirements and manufacturing constraints for 3-D printed concentric tube robots and experimentally demonstrate the capabilities of these robots. While numerous 3-D printing technologies and materials can be used to create such robots, one successful example uses selective laser sintering to make an outer tube with a polyether block amide and uses stereolithography to make an inner tube with a polypropylene-like material. This enables a tube pair with precurvatures of 0.0775 and 0.0455 mm -1 , which can withstand strains of 20% and 5.5% for the outer and inner tubes, respectively.

  2. Design of 3-D Printed Concentric Tube Robots

    PubMed Central

    Morimoto, Tania K.; Okamura, Allison M.

    2017-01-01

    Concentric tube surgical robots are minimally invasive devices with the advantages of snake-like reconfigurability, long and thin form factor, and placement of actuation outside the patient’s body. These robots can also be designed and manufactured to acquire targets in specific patients for treating specific diseases in a manner that minimizes invasiveness. We propose that concentric tube robots can be manufactured using 3-D printing technology on a patient- and procedure-specific basis. In this paper, we define the design requirements and manufacturing constraints for 3-D printed concentric tube robots and experimentally demonstrate the capabilities of these robots. While numerous 3-D printing technologies and materials can be used to create such robots, one successful example uses selective laser sintering to make an outer tube with a polyether block amide and uses stereolithography to make an inner tube with a polypropylene-like material. This enables a tube pair with precurvatures of 0.0775 and 0.0455 mm−1, which can withstand strains of 20% and 5.5% for the outer and inner tubes, respectively. PMID:28713227

  3. Using sensor habituation in mobile robots to reduce oscillatory movements in narrow corridors.

    PubMed

    Chang, Carolina

    2005-11-01

    Habituation is a form of nonassociative learning observed in a variety of species of animals. Arguably, it is the simplest form of learning. Nonetheless, the ability to habituate to certain stimuli implies plastic neural systems and adaptive behaviors. This paper describes how computational models of habituation can be applied to real robots. In particular, we discuss the problem of the oscillatory movements observed when a Khepera robot navigates through narrow hallways using a biologically inspired neurocontroller. Results show that habituation to the proximity of the walls can lead to smoother navigation. Habituation to sensory stimulation to the sides of the robot does not interfere with the robot's ability to turn at dead ends and to avoid obstacles outside the hallway. This paper shows that simple biological mechanisms of learning can be adapted to achieve better performance in real mobile robots.

  4. Control Architecture for Robotic Agent Command and Sensing

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Aghazarian, Hrand; Estlin, Tara; Gaines, Daniel

    2008-01-01

    Control Architecture for Robotic Agent Command and Sensing (CARACaS) is a recent product of a continuing effort to develop architectures for controlling either a single autonomous robotic vehicle or multiple cooperating but otherwise autonomous robotic vehicles. CARACaS is potentially applicable to diverse robotic systems that could include aircraft, spacecraft, ground vehicles, surface water vessels, and/or underwater vessels. CARACaS incudes an integral combination of three coupled agents: a dynamic planning engine, a behavior engine, and a perception engine. The perception and dynamic planning en - gines are also coupled with a memory in the form of a world model. CARACaS is intended to satisfy the need for two major capabilities essential for proper functioning of an autonomous robotic system: a capability for deterministic reaction to unanticipated occurrences and a capability for re-planning in the face of changing goals, conditions, or resources. The behavior engine incorporates the multi-agent control architecture, called CAMPOUT, described in An Architecture for Controlling Multiple Robots (NPO-30345), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 65. CAMPOUT is used to develop behavior-composition and -coordination mechanisms. Real-time process algebra operators are used to compose a behavior network for any given mission scenario. These operators afford a capability for producing a formally correct kernel of behaviors that guarantee predictable performance. By use of a method based on multi-objective decision theory (MODT), recommendations from multiple behaviors are combined to form a set of control actions that represents their consensus. In this approach, all behaviors contribute simultaneously to the control of the robotic system in a cooperative rather than a competitive manner. This approach guarantees a solution that is good enough with respect to resolution of complex, possibly conflicting goals within the constraints of the mission to

  5. New diagnostic tool for robotic psychology and robotherapy studies.

    PubMed

    Libin, Elena; Libin, Alexander

    2003-08-01

    Robotic psychology and robotherapy as a new research area employs a systematic approach in studying psycho-physiological, psychological, and social aspects of person-robot communication. An analysis of the mechanisms underlying different forms of computer-mediated behavior requires both an adequate methodology and research tools. In the proposed article we discuss the concept, basic principles, structure, and contents of the newly designed Person-Robot Complex Interactive Scale (PRCIS), proposed for the purpose of investigating psychological specifics and therapeutic potentials of multilevel person-robot interactions. Assuming that human-robot communication has symbolic meaning, each interactive pattern evaluated via the newly developed scale is assigned certain psychological value associated with the person's past life experiences, likes and dislikes, emotional, cognitive, and behavioral traits or states. PRCIS includes (1) assessment of a person's individual style of communication with the robotic creature based on direct observations; (2) the participant's evaluation of his/her new experiences with an interactive robot and evaluation of its features, advantages and disadvantages, as well as past experiences with modern technology; and (3) the instructor's overall evaluation of the session.

  6. Robotics: An Introduction to Today’s Robot and Future Trends.

    DTIC Science & Technology

    1983-07-01

    trial applications." What qualities define a machine as a robot? The Robot Institute of Amer- ica defines a robot as follows: "A robot is a reprogrammable ...manufactures a robot with a spin- ning wrist. Second, and this is the key feature, robots are reprogrammable and hence versatile. An automatic lathe is not...robot spot-welds an automobile frame. In Figure 8, a single robot transferring a transmission case is shown, but a total of eight robots are

  7. Modelling of industrial robot in LabView Robotics

    NASA Astrophysics Data System (ADS)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.

  8. Soft Robotics: New Perspectives for Robot Bodyware and Control

    PubMed Central

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259

  9. Soft Robotics.

    PubMed

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Control of complex physically simulated robot groups

    NASA Astrophysics Data System (ADS)

    Brogan, David C.

    2001-10-01

    Actuated systems such as robots take many forms and sizes but each requires solving the difficult task of utilizing available control inputs to accomplish desired system performance. Coordinated groups of robots provide the opportunity to accomplish more complex tasks, to adapt to changing environmental conditions, and to survive individual failures. Similarly, groups of simulated robots, represented as graphical characters, can test the design of experimental scenarios and provide autonomous interactive counterparts for video games. The complexity of writing control algorithms for these groups currently hinders their use. A combination of biologically inspired heuristics, search strategies, and optimization techniques serve to reduce the complexity of controlling these real and simulated characters and to provide computationally feasible solutions.

  11. The Dominant Robot: Threatening Robots Cause Psychological Reactance, Especially When They Have Incongruent Goals

    NASA Astrophysics Data System (ADS)

    Roubroeks, M. A. J.; Ham, J. R. C.; Midden, C. J. H.

    Persuasive technology can take the form of a social agent that persuades people to change behavior or attitudes. However, like any persuasive technology, persuasive social agents might trigger psychological reactance, which can lead to restoration behavior. The current study investigated whether interacting with a persuasive robot can cause psychological reactance. Additionally, we investigated whether goal congruency plays a role in psychological reactance. Participants programmed a washing machine while a robot gave threatening advice. Confirming expectations, participants experienced more psychological reactance when receiving high-threatening advice compared to low-threatening advice. Moreover, when the robot gave high-threatening advice and expressed an incongruent goal, participants reported the highest level of psychological reactance (on an anger measure). Finally, high-threatening advice led to more restoration, and this relationship was partially mediated by psychological reactance. Overall, results imply that under certain circumstances persuasive technology can trigger opposite effects, especially when people have incongruent goal intentions.

  12. Robotic surgery.

    PubMed

    Stoianovici, D

    2000-09-01

    The industrial revolution demonstrated the capability of robotic systems to facilitate and improve manufacturing. As a result, robotics extended to various other domains, including the delivery of health care. Hence, robots have been developed to assist hospital staff, to facilitate laboratory analyses, to augment patient rehabilitation, and even to advance surgical performance. As robotics lead usefulness and gain wider acceptance among the surgical community, the urologist should become familiar with this new interdisciplinary field and its "URobotics" subset: robotics applied to urology. This article reviews the current applications and experience, issues and debates in surgical robotics, and highlights future directions in the field.

  13. 75 FR 41524 - Notice of Determinations Regarding Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... in the Federal Register under section 202(f)(3); or (B) Notice of an affirmative determination... certifications have been issued. The requirements of Section 222(a)(2)(B) (shift in production or services) of... Industries, Inc., d/ Los Angeles, CA....... December 2, 2008. b/a/Jonathan Martin. 73,075 ABB, Inc., Robotics...

  14. Maladie thromboembolique veineuse dans la région de Sidi Bel Abbes, Algérie: fréquence et facteurs de risque

    PubMed Central

    Chalal, Nourelhouda; Demmouche, Abbassia

    2013-01-01

    Introduction La maladie thromboembolique veineuse (MTEV) présente par ses deux entités cliniques: thrombose veineuse profonde (TVP) et embolie pulmonaire (EP), est une pathologie fréquente ayant une forte morbi-mortalité. En Algérie, cette pathologie prend de plus en plus de l'ampleur, en l'absence de toute publication révélant sa fréquence et le pouvoir thrombogène des facteurs de risque qui lui sont corrélés. Notre étude a pour objectif de déterminer la fréquence et les facteurs de risque de ce type d'affection dans la région de Sidi Bel Abbes, Algérie. Méthodes Il s'agit d'une étude rétrospective allant du 1er janvier 2006 au 10 juin 2012 ciblant les patients hospitalisés pour TVP et /ou EP au sein du service de cardiologie du CHU de Sidi Bel Abbes. Résultats 183 patients atteints de la MTEV dont 112 femmes (61.2%) d’âge moyen 46.4 ± 17.9 et 71 hommes (38.7%) d’âge moyen 51.5 ± 17.7 ont été notés. 146 cas parmi eux (79.7%) présentaient une TVP isolée, alors que 37 autres (20.2%) étaient atteints d'EP, dont 16 cas de TVP associée. Les facteurs de risque les plus fréquents enregistrés en cas de TVP sont surtout: l'immobilité, l'hypertension, la chirurgie, et la contraception orale, tandis que: l'immobilité, la chirurgie, l'hypertension et les fractures sont les facteurs de risques les plus incriminés en cas d'EP. 24.7% des patients présentaient plusieurs facteurs de risque. L'antécédent personnel de la MTEV, était présent dans 12.02% des cas. 97.5% des TVP ont touché les membres inférieurs mais seulement 2.5% des TVP étaient localisés au niveau des membres supérieurs. Conclusion Au terme de notre étude, et en dépit de sa fréquence non alarmante, il serait indispensable d'envisager l'adoption d'une stratégie prophylactique adéquate afin de lutter contre le développement redoutable de ce genre d'affection dans la région de Sidi Bel Abbes. PMID:24648858

  15. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    NASA Technical Reports Server (NTRS)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  16. Robotic Surgery

    PubMed Central

    Lanfranco, Anthony R.; Castellanos, Andres E.; Desai, Jaydev P.; Meyers, William C.

    2004-01-01

    Objective: To review the history, development, and current applications of robotics in surgery. Background: Surgical robotics is a new technology that holds significant promise. Robotic surgery is often heralded as the new revolution, and it is one of the most talked about subjects in surgery today. Up to this point in time, however, the drive to develop and obtain robotic devices has been largely driven by the market. There is no doubt that they will become an important tool in the surgical armamentarium, but the extent of their use is still evolving. Methods: A review of the literature was undertaken using Medline. Articles describing the history and development of surgical robots were identified as were articles reporting data on applications. Results: Several centers are currently using surgical robots and publishing data. Most of these early studies report that robotic surgery is feasible. There is, however, a paucity of data regarding costs and benefits of robotics versus conventional techniques. Conclusions: Robotic surgery is still in its infancy and its niche has not yet been well defined. Its current practical uses are mostly confined to smaller surgical procedures. PMID:14685095

  17. Miniature in vivo robotics and novel robotic surgical platforms.

    PubMed

    Shah, Bhavin C; Buettner, Shelby L; Lehman, Amy C; Farritor, Shane M; Oleynikov, Dmitry

    2009-05-01

    Robotic surgical systems, such as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, California), have revolutionized laparoscopic surgery but are limited by large size, increased costs, and limitations in imaging. Miniature in vivo robots are being developed that are inserted entirely into the peritoneal cavity for laparoscopic and natural orifice transluminal endoscopic surgical (NOTES) procedures. In the future, miniature camera robots and microrobots should be able to provide a mobile viewing platform. This article discusses the current state of miniature robotics and novel robotic surgical platforms and the development of future robotic technology for general surgery and urology.

  18. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  19. Dragons, Ladybugs, and Softballs: Girls' STEM Engagement with Human-Centered Robotics

    NASA Astrophysics Data System (ADS)

    Gomoll, Andrea; Hmelo-Silver, Cindy E.; Šabanović, Selma; Francisco, Matthew

    2016-12-01

    Early experiences in science, technology, engineering, and math (STEM) are important for getting youth interested in STEM fields, particularly for girls. Here, we explore how an after-school robotics club can provide informal STEM experiences that inspire students to engage with STEM in the future. Human-centered robotics, with its emphasis on the social aspects of science and technology, may be especially important for bringing girls into the STEM pipeline. Using a problem-based approach, we designed two robotics challenges. We focus here on the more extended second challenge, in which participants were asked to imagine and build a telepresence robot that would allow others to explore their space from a distance. This research follows four girls as they engage with human-centered telepresence robotics design. We constructed case studies of these target participants to explore their different forms of engagement and phases of interest development—considering facets of behavioral, social, cognitive, and conceptual-to-consequential engagement as well as stages of interest ranging from triggered interest to well-developed individual interest. The results demonstrated that opportunities to personalize their robots and feedback from peers and facilitators were important motivators. We found both explicit and vicarious engagement and varied interest phases in our group of four focus participants. This first iteration of our project demonstrated that human-centered robotics is a promising approach to getting girls interested and engaged in STEM practices. As we design future iterations of our robotics club environment, we must consider how to harness multiple forms of leadership and engagement without marginalizing students with different working preferences.

  20. Supervised space robots are needed in space exploration

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    High level systems engineering models were developed to simulate and analyze the types, numbers, and roles of intelligent systems, including supervised autonomous robots, which will be required to support human space exploration. Conventional and intelligent systems were compared for two missions: (1) a 20-year option 5A space exploration; and (2) the First Lunar Outpost (FLO). These studies indicate that use of supervised intelligent systems on planet surfaces will 'enable' human space exploration. The author points out that space robotics can be considered a form of the emerging technology of field robotics and solutions to many space applications will apply to problems relative to operating in Earth-based hazardous environments.

  1. Design and Evolution of a Modular Tensegrity Robot Platform

    NASA Technical Reports Server (NTRS)

    Bruce, Jonathan; Caluwaerts, Ken; Iscen, Atil; Sabelhaus, Andrew P.; SunSpiral, Vytas

    2014-01-01

    NASA Ames Research Center is developing a compliant modular tensegrity robotic platform for planetary exploration. In this paper we present the design and evolution of the platform's main hardware component, an untethered, robust tensegrity strut, with rich sensor feedback and cable actuation. Each strut is a complete robot, and multiple struts can be combined together to form a wide range of complex tensegrity robots. Our current goal for the tensegrity robotic platform is the development of SUPERball, a 6-strut icosahedron underactuated tensegrity robot aimed at dynamic locomotion for planetary exploration rovers and landers, but the aim is for the modular strut to enable a wide range of tensegrity morphologies. SUPERball is a second generation prototype, evolving from the tensegrity robot ReCTeR, which is also a modular, lightweight, highly compliant 6-strut tensegrity robot that was used to validate our physics based NASA Tensegrity Robot Toolkit (NTRT) simulator. Many hardware design parameters of the SUPERball were driven by locomotion results obtained in our validated simulator. These evolutionary explorations helped constrain motor torque and speed parameters, along with strut and string stress. As construction of the hardware has finalized, we have also used the same evolutionary framework to evolve controllers that respect the built hardware parameters.

  2. A Biologically Inspired Cooperative Multi-Robot Control Architecture

    NASA Technical Reports Server (NTRS)

    Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)

    2002-01-01

    A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  3. Prediction of Path Deviation in Robot Based Incremental Sheet Metal Forming by Means of a New Solid-Shell Finite Element Technology and a Finite Elastoplastic Model with Combined Hardening

    NASA Astrophysics Data System (ADS)

    Kiliclar, Yalin; Laurischkat, Roman; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-08-01

    The presented project deals with a robot based incremental sheet metal forming process, which is called roboforming and has been developed at the Chair of Production Systems. It is characterized by flexible shaping using a freely programmable path-synchronous movement of two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the part contour in lateral direction. However, the resulting geometries formed in roboforming deviate several millimeters from the reference geometry. This results from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robots's compliance and the springback effects of the sheet metal. The forming process is simulated by means of a finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM). It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity and combines nonlinear kinematic and isotropic hardening. Low-order finite elements used to simulate thin sheet structures, such as used for the experiments, have the major problem of locking, a nonphysical stiffening effect. For an efficient finite element analysis a special solid-shell finite element formulation based on reduced integration with hourglass stabilization has been developed. To circumvent different locking effects, the enhanced assumed strain (EAS) and the assumed natural strain (ANS) concepts are included in this formulation. Having such powerful tools available we obtain more accurate geometries.

  4. [Robotics].

    PubMed

    Bier, J

    2000-05-01

    Content of this paper is the current state of the art of robots in surgery and the ongoing work on the field of surgical robotics at the Clinic for Maxillofacial Surgery at the Charité. Robots in surgery allows the surgeon to transform the accuracy of the imaging systems directly during the intervention and to plan an intervention beforehand. In this paper firstly the state of the art is described. Subsequently the scientific work at the clinic is described in detail. The paper closes with a outlook for future applications of robotics systems in maxillofacial surgery.

  5. Robot-Aided Neurorehabilitation: A Robot for Wrist Rehabilitation

    PubMed Central

    Krebs, Hermano Igo; Volpe, Bruce T.; Williams, Dustin; Celestino, James; Charles, Steven K.; Lynch, Daniel; Hogan, Neville

    2009-01-01

    In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This successful proof of principle as to additional targeted and intensive movement treatment prompted a test of robot training examining other limb segments. This paper focuses on a robot for wrist rehabilitation designed to provide three rotational degrees-of-freedom. The first clinical trial of the device will enroll 200 stroke survivors. Ultimately 160 stroke survivors will train with both the proximal shoulder and elbow MIT-MANUS robot, as well as with the novel distal wrist robot, in addition to 40 stroke survivor controls. So far 52 stroke patients have completed the robot training (ongoing protocol). Here, we report on the initial results on 36 of these volunteers. These results demonstrate that further improvement should be expected by adding additional training to other limb segments. PMID:17894265

  6. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.

    PubMed

    Krebs, Hermano Igo; Volpe, Bruce T; Williams, Dustin; Celestino, James; Charles, Steven K; Lynch, Daniel; Hogan, Neville

    2007-09-01

    In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This successful proof of principle as to additional targeted and intensive movement treatment prompted a test of robot training examining other limb segments. This paper focuses on a robot for wrist rehabilitation designed to provide three rotational degrees-of-freedom. The first clinical trial of the device will enroll 200 stroke survivors. Ultimately 160 stroke survivors will train with both the proximal shoulder and elbow MIT-MANUS robot, as well as with the novel distal wrist robot, in addition to 40 stroke survivor controls. So far 52 stroke patients have completed the robot training (ongoing protocol). Here, we report on the initial results on 36 of these volunteers. These results demonstrate that further improvement should be expected by adding additional training to other limb segments.

  7. An Intelligent Agent-Controlled and Robot-Based Disassembly Assistant

    NASA Astrophysics Data System (ADS)

    Jungbluth, Jan; Gerke, Wolfgang; Plapper, Peter

    2017-09-01

    One key for successful and fluent human-robot-collaboration in disassembly processes is equipping the robot system with higher autonomy and intelligence. In this paper, we present an informed software agent that controls the robot behavior to form an intelligent robot assistant for disassembly purposes. While the disassembly process first depends on the product structure, we inform the agent using a generic approach through product models. The product model is then transformed to a directed graph and used to build, share and define a coarse disassembly plan. To refine the workflow, we formulate “the problem of loosening a connection and the distribution of the work” as a search problem. The created detailed plan consists of a sequence of actions that are used to call, parametrize and execute robot programs for the fulfillment of the assistance. The aim of this research is to equip robot systems with knowledge and skills to allow them to be autonomous in the performance of their assistance to finally improve the ergonomics of disassembly workstations.

  8. Actuation control of a PiezoMEMS biomimetic robotic jellyfish

    NASA Astrophysics Data System (ADS)

    Alejandre, Alvaro; Olszewski, Oskar; Jackson, Nathan

    2017-06-01

    Biomimetic micro-robots try to mimic the motion of a living system in the form of a synthetically developed microfabricated device. Dynamic motion of living systems have evolved through the years, but trying to mimic these motions is challenging. Micro-robotics are particular challenging as the fabrication of devices and controlling the motion in 3 dimensions is difficult. However, micro-scale robotics have potential to be used in a wide range of applications. MEMS based robots that can move and function in a liquid environment is of particular interest. This paper describes the development of a piezoMEMS based device that mimics the movement of a jellyfish. The paper focuses on the development of a finite element model that investigates a method of controlling the individual piezoelectric beams in order to create a jet propulsion motion, consisting of a quick excitation pulse followed by a slow recovery pulse in order to maximize thrust and velocity. By controlling the individual beams or legs of the jellyfish robot the authors can control the robot to move precisely in 3 dimensions.

  9. Packaging Of Control Circuits In A Robot Arm

    NASA Technical Reports Server (NTRS)

    Kast, William

    1994-01-01

    Packaging system houses and connects control circuitry mounted on circuit boards within shoulder, upper section, and lower section of seven-degree-of-freedom robot arm. Has modular design that incorporates surface-mount technology, multilayer circuit boards, large-scale integrated circuits, and multi-layer flat cables between sections for compactness. Three sections of robot arm contain circuit modules in form of stardardized circuit boards. Each module contains two printed-circuit cards, one of each face.

  10. Robotic intelligence kernel

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  11. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  12. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In FY 1990 Robotics Technology Development Program (RTDP) planning teams visited five DOE sites. These sites were selected by the Office of Technology Development to provide a needs basis for developing a 5-Year Plan. Visits to five DOE sites provided identification of needs for robotics technology development to support Environmental Restoration and Waste Management (ER WM) projects at those sites. Additional site visits will be conducted in the future to expand the planning basis. This volume summarizes both the results of the site visits and the needs and requirements of the priority ER WM activities at the sites, including potentialmore » needs for robotics and remote systems technology. It also discusses hazards associated with the site activities and any problems or technical uncertainties associated with dealing with the hazards in the performance of the ER WM work. Robotic or remote systems currently under development for remediation projects or waste operations are also discussed. The information in this document is organized principally by site, activity, and priority. Section 2.0, Site Needs, is based on information from the site visit reports and provides a summary which focuses on the site needs and requirements for each priority activity. Section 2.0 also records evaluations and discussions by the RTDP team following the site visit. Section 3.0, Commonality Assessment, documents similar site needs where common, or cross-cutting, robotics technology might be applied to several activities. Section 4.0 contains a summary of the site needs and requirements in tabular form. 1 tab.« less

  13. Decentralised consensus-based formation tracking of multiple differential drive robots

    NASA Astrophysics Data System (ADS)

    Chu, Xing; Peng, Zhaoxia; Wen, Guoguang; Rahmani, Ahmed

    2017-11-01

    This article investigates the control problem for formation tracking of multiple nonholonomic robots under distributed manner which means each robot only needs local information exchange. A class of general state and input transform is introduced to convert the formation-tracking issue of multi-robot systems into the consensus-like problem with time-varying reference. The distributed observer-based protocol with nonlinear dynamics is developed for each robot to achieve the consensus tracking of the new system, which namely means a group of nonholonomic mobile robots can form the desired formation configuration with its centroid moving along the predefined reference trajectory. The finite-time stability of observer and control law is analysed rigorously by using the Lyapunov direct method, algebraic graph theory and matrix analysis. Numerical examples are finally provided to illustrate the effectiveness of the theory results proposed in this paper.

  14. The climbing crawling robot (a unique cable robot for space and Earth)

    NASA Technical Reports Server (NTRS)

    Kerley, James J.; May, Edward; Eklund, Wayne

    1991-01-01

    Some of the greatest concerns in robotic designs have been the high center of gravity of the robot, the irregular or flat surface that the robot has to work on, the weight of the robot that has to handle heavy weights or use heavy forces, and the ability of the robot to climb straight up in the air. This climbing crawling robot handles these problems well with magnets, suction cups, or actuators. The cables give body to the robot and it performs very similar to a caterpillar. The computer program is simple and inexpensive as is the robot. One of the important features of this system is that the robot can work in pairs or triplets to handle jobs that would be extremely difficult for single robots. The light weight of the robot allows it to handle quite heavy weights. The number of feet give the robot many roots where a simple set of feet would give it trouble.

  15. Generative Representations for Automated Design of Robots

    NASA Technical Reports Server (NTRS)

    Homby, Gregory S.; Lipson, Hod; Pollack, Jordan B.

    2007-01-01

    A method of automated design of complex, modular robots involves an evolutionary process in which generative representations of designs are used. The term generative representations as used here signifies, loosely, representations that consist of or include algorithms, computer programs, and the like, wherein encoded designs can reuse elements of their encoding and thereby evolve toward greater complexity. Automated design of robots through synthetic evolutionary processes has already been demonstrated, but it is not clear whether genetically inspired search algorithms can yield designs that are sufficiently complex for practical engineering. The ultimate success of such algorithms as tools for automation of design depends on the scaling properties of representations of designs. A nongenerative representation (one in which each element of the encoded design is used at most once in translating to the design) scales linearly with the number of elements. Search algorithms that use nongenerative representations quickly become intractable (search times vary approximately exponentially with numbers of design elements), and thus are not amenable to scaling to complex designs. Generative representations are compact representations and were devised as means to circumvent the above-mentioned fundamental restriction on scalability. In the present method, a robot is defined by a compact programmatic form (its generative representation) and the evolutionary variation takes place on this form. The evolutionary process is an iterative one, wherein each cycle consists of the following steps: 1. Generative representations are generated in an evolutionary subprocess. 2. Each generative representation is a program that, when compiled, produces an assembly procedure. 3. In a computational simulation, a constructor executes an assembly procedure to generate a robot. 4. A physical-simulation program tests the performance of a simulated constructed robot, evaluating the performance

  16. Robotic surgery: new robots and finally some real competition!

    PubMed

    Rao, Pradeep P

    2018-04-01

    For the last 20 years, the predominant robot used in laparoscopic surgery has been Da Vinci by Intuitive Surgical. This monopoly situation has led to rising costs and relatively slow innovation. This article aims to discuss the two new robotic devices for laparoscopic surgery which have received regulatory approval for human use in different parts of the world. A short description of the Senhance Surgical Robotic System and the REVO-I Robot Platform and their pros and cons compared to the Da Vinci system is presented. A discussion about the differences between the three robotic systems now in the market is presented, as well as a short review of the present state of robotic assistance in surgery and where we are headed.

  17. Case studies in configuration control for redundant robots

    NASA Technical Reports Server (NTRS)

    Seraji, H.; Lee, T.; Colbaugh, R.; Glass, K.

    1989-01-01

    A simple approach to configuration control of redundant robots is presented. The redundancy is utilized to control the robot configuration directly in task space, where the task will be performed. A number of task-related kinematic functions are defined and combined with the end-effector coordinates to form a set of configuration variables. An adaptive control scheme is then utilized to ensure that the configuration variables track the desired reference trajectories as closely as possible. Simulation results are presented to illustrate the control scheme. The scheme has also been implemented for direct online control of a PUMA industrial robot, and experimental results are presented. The simulation and experimental results validate the configuration control scheme for performing various realistic tasks.

  18. Expedient range enhanced 3-D robot colour vision

    NASA Astrophysics Data System (ADS)

    Jarvis, R. A.

    1983-01-01

    Computer vision has been chosen, in many cases, as offering the richest form of sensory information which can be utilized for guiding robotic manipulation. The present investigation is concerned with the problem of three-dimensional (3D) visual interpretation of colored objects in support of robotic manipulation of those objects with a minimum of semantic guidance. The scene 'interpretations' are aimed at providing basic parameters to guide robotic manipulation rather than to provide humans with a detailed description of what the scene 'means'. Attention is given to overall system configuration, hue transforms, a connectivity analysis, plan/elevation segmentations, range scanners, elevation/range segmentation, higher level structure, eye in hand research, and aspects of array and video stream processing.

  19. Acceptance of an assistive robot in older adults: a mixed-method study of human-robot interaction over a 1-month period in the Living Lab setting.

    PubMed

    Wu, Ya-Huei; Wrobel, Jérémy; Cornuet, Mélanie; Kerhervé, Hélène; Damnée, Souad; Rigaud, Anne-Sophie

    2014-01-01

    There is growing interest in investigating acceptance of robots, which are increasingly being proposed as one form of assistive technology to support older adults, maintain their independence, and enhance their well-being. In the present study, we aimed to observe robot-acceptance in older adults, particularly subsequent to a 1-month direct experience with a robot. Six older adults with mild cognitive impairment (MCI) and five cognitively intact healthy (CIH) older adults were recruited. Participants interacted with an assistive robot in the Living Lab once a week for 4 weeks. After being shown how to use the robot, participants performed tasks to simulate robot use in everyday life. Mixed methods, comprising a robot-acceptance questionnaire, semistructured interviews, usability-performance measures, and a focus group, were used. Both CIH and MCI subjects were able to learn how to use the robot. However, MCI subjects needed more time to perform tasks after a 1-week period of not using the robot. Both groups rated similarly on the robot-acceptance questionnaire. They showed low intention to use the robot, as well as negative attitudes toward and negative images of this device. They did not perceive it as useful in their daily life. However, they found it easy to use, amusing, and not threatening. In addition, social influence was perceived as powerful on robot adoption. Direct experience with the robot did not change the way the participants rated robots in their acceptance questionnaire. We identified several barriers to robot-acceptance, including older adults' uneasiness with technology, feeling of stigmatization, and ethical/societal issues associated with robot use. It is important to destigmatize images of assistive robots to facilitate their acceptance. Universal design aiming to increase the market for and production of products that are usable by everyone (to the greatest extent possible) might help to destigmatize assistive devices.

  20. Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots.

    PubMed

    Chikhaoui, Mohamed Taha; Benouhiba, Amine; Rougeot, Patrick; Rabenorosoa, Kanty; Ouisse, Morvan; Andreff, Nicolas

    2018-04-30

    Dexterity of robots is highly required when it comes to integration for medical applications. Major efforts have been conducted to increase the dexterity at the distal parts of medical robots. This paper reports on developments toward integrating biocompatible conducting polymers (CP) into inherently dexterous concentric tube robot paradigm. In the form of tri-layer thin structures, CP micro-actuators produce high strains while requiring less than 1 V for actuation. Fabrication, characterization, and first integrations of such micro-actuators are presented. The integration is validated in a preliminary telescopic soft robot prototype with qualitative and quantitative performance assessment of accurate position control for trajectory tracking scenarios. Further, CP micro-actuators are integrated to a laser steering system in a closed-loop control scheme with displacements up to 5 mm. Our first developments aim toward intracorporeal medical robotics, with miniaturized actuators to be embedded into continuum robots.

  1. Flexible robotic actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, Stephen A.; Shepherd, Robert F.; Stokes, Adam

    Systems and methods for providing flexible robotic actuators are disclosed. Some embodiments of the disclosed subject matter include a soft robot capable of providing a radial deflection motions; a soft tentacle actuator capable of providing a variety of motions and providing transportation means for various types of materials; and a hybrid robotic system that retains desirable characteristics of both soft robots and hard robots. Some embodiments of the disclosed subject matter also include methods for operating the disclosed robotic systems.

  2. Efficient three-dimensional resist profile-driven source mask optimization optical proximity correction based on Abbe-principal component analysis and Sylvester equation

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Chun; Yu, Chun-Chang; Chen, Charlie Chung-Ping

    2015-01-01

    As one of the critical stages of a very large scale integration fabrication process, postexposure bake (PEB) plays a crucial role in determining the final three-dimensional (3-D) profiles and lessening the standing wave effects. However, the full 3-D chemically amplified resist simulation is not widely adopted during the postlayout optimization due to the long run-time and huge memory usage. An efficient simulation method is proposed to simulate the PEB while considering standing wave effects and resolution enhancement techniques, such as source mask optimization and subresolution assist features based on the Sylvester equation and Abbe-principal component analysis method. Simulation results show that our algorithm is 20× faster than the conventional Gaussian convolution method.

  3. Design and Control of Concentric-Tube Robots

    PubMed Central

    Dupont, Pierre E.; Lock, Jesse; Itkowitz, Brandon; Butler, Evan

    2010-01-01

    A novel approach toward construction of robots is based on a concentric combination of precurved elastic tubes. By rotation and extension of the tubes with respect to each other, their curvatures interact elastically to position and orient the robot’s tip, as well as to control the robot’s shape along its length. In this approach, the flexible tubes comprise both the links and the joints of the robot. Since the actuators attach to the tubes at their proximal ends, the robot itself forms a slender curve that is well suited for minimally invasive medical procedures. This paper demonstrates the potential of this technology. Design principles are presented and a general kinematic model incorporating tube bending and torsion is derived. Experimental demonstration of real-time position control using this model is also described. PMID:21258648

  4. Evolving and Controlling Perimeter, Rendezvous, and Foraging Behaviors in a Computation-Free Robot Swarm

    DTIC Science & Technology

    2016-04-01

    cheap, disposable swarms of robots that can accomplish these tasks quickly and with- out much human supervision. While there has been a lot of work...have shown that swarms of robots so dumb that they have no computational power–they can’t even add or subtract, and have no memory can still collec...behaviors can be achieved using swarms of computation-free robots . Our work starts with the simple robot model proposed in [6] and adds a form of

  5. Dynamic electronic institutions in agent oriented cloud robotic systems.

    PubMed

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  6. A Quadruped Micro-Robot Based on Piezoelectric Driving

    PubMed Central

    Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng

    2018-01-01

    Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s. PMID:29518964

  7. A Quadruped Micro-Robot Based on Piezoelectric Driving.

    PubMed

    Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng

    2018-03-07

    Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.

  8. Multi-robot control interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, David J; Walton, Miles C

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes amore » multi-robot common window comprised of information received from each of the plurality of robots.« less

  9. Robot Serviced Space Facility

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R. (Inventor)

    1992-01-01

    A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.

  10. Mobile robot trajectory tracking using noisy RSS measurements: an RFID approach.

    PubMed

    Miah, M Suruz; Gueaieb, Wail

    2014-03-01

    Most RF beacons-based mobile robot navigation techniques rely on approximating line-of-sight (LOS) distances between the beacons and the robot. This is mostly performed using the robot's received signal strength (RSS) measurements from the beacons. However, accurate mapping between the RSS measurements and the LOS distance is almost impossible to achieve in reverberant environments. This paper presents a partially-observed feedback controller for a wheeled mobile robot where the feedback signal is in the form of noisy RSS measurements emitted from radio frequency identification (RFID) tags. The proposed controller requires neither an accurate mapping between the LOS distance and the RSS measurements, nor the linearization of the robot model. The controller performance is demonstrated through numerical simulations and real-time experiments. ©2013 Published by ISA. All rights reserved.

  11. Robot-assisted Ivor-Lewis esophagectomy with intrathoracic robot-sewn anastomosis.

    PubMed

    Jin, Runsen; Xiang, Jie; Han, Dingpei; Zhang, Yajie; Li, Hecheng

    2017-11-01

    This video clip demonstrated a performance of robot-assisted Ivor-Lewis esophagectomy with intrathoracic robot-sewn anastomosis. The patient had an esophageal mass located approximately 33 cm away from incisor, and robot-assisted Ivor-Lewis esophagectomy was applied for him. Importantly, a double-layer esophago-gastric anastomosis was made by robotic hand-sewn suture. Our early experience demonstrated that the robot-sewn intrathoracic anastomosis is feasible and safe with a lower complication rate and the absence of anastomotic leakage.

  12. [Robotics and improvement of the quality of geriatric care].

    PubMed

    Ettore, Éric; Wyckaert, Emeline; David, Renaud; Robert, Philippe; Guérin, Olivier; Prate, Frédéric

    2016-01-01

    New technologies offer innovations to improve the care of the elderly with Alzheimer's or and other forms of dementia. Robots, endowed with features such as monitoring of physiological parameters, cognitive training or occupational therapy, have appeared. They are not, however, intended to replace humans. Still underutilized, these robots are in development, much like the digital literacy of the elderly. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  14. Robot Teleoperation and Perception Assistance with a Virtual Holographic Display

    NASA Technical Reports Server (NTRS)

    Goddard, Charles O.

    2012-01-01

    Teleoperation of robots in space from Earth has historically been dfficult. Speed of light delays make direct joystick-type control infeasible, so it is desirable to command a robot in a very high-level fashion. However, in order to provide such an interface, knowledge of what objects are in the robot's environment and how they can be interacted with is required. In addition, many tasks that would be desirable to perform are highly spatial, requiring some form of six degree of freedom input. These two issues can be combined, allowing the user to assist the robot's perception by identifying the locations of objects in the scene. The zSpace system, a virtual holographic environment, provides a virtual three-dimensional space superimposed over real space and a stylus tracking position and rotation inside of it. Using this system, a possible interface for this sort of robot control is proposed.

  15. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students from Hagerty High School in Oviedo, Fla., participants in FIRST Robotics, show off their robots' capabilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  16. Dealing with the time-varying parameter problem of robot manipulators performing path tracking tasks

    NASA Technical Reports Server (NTRS)

    Song, Y. D.; Middleton, R. H.

    1992-01-01

    Many robotic applications involve time-varying payloads during the operation of the robot. It is therefore of interest to consider control schemes that deal with time-varying parameters. Using the properties of the element by element (or Hadarmad) product of matrices, we obtain the robot dynamics in parameter-isolated form, from which a new control scheme is developed. The controller proposed yields zero asymptotic tracking errors when applied to robotic systems with time-varying parameters by using a switching type control law. The results obtained are global in the initial state of the robot, and can be applied to rapidly varying systems.

  17. Studies on Automated Manufacturing of High Performance Composites

    NASA Technical Reports Server (NTRS)

    Cano, R. J.; Belvin, H. L.; Hulcher, A. B.; Grenoble, R. W.

    2001-01-01

    The NASA Langley Research Center fiber placement facility has proven to be a valuable asset for obtaining data, experience, and insights into the automated fabrication of high performance composites. The facility consists of two automated devices: an Asea Brown Boveri (ABB) robotic arm with a modified heated head capable of hot gas and focused infrared heating and a 7' x 17' gantry containing a feeder head, rotating platform, focused infrared lamp and e-beam gun. While uncured thermoset tow and tape, e.g., epoxy and cyanate prepreg, can be placed with a robot, the placement facility s most powerful attribute is the ability to place thermoplastic and e-beam curable material to net shape. In recent years, ribbonizing techniques have been developed to make high quality thermoplastic and thermoset dry material forms to the standards required for robotic placement. A variety of composites have been fabricated from these ribbons by heated head tow and tape placement including both flat plates and cylinders. Composite mechanical property values of the former were between 85 and 100 percent of those obtained by hand lay-up/autoclave processing.

  18. Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone: a randomized controlled trial.

    PubMed

    Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James

    2013-01-01

    The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.

  19. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.

    PubMed

    Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya

    2017-01-01

    Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.

  20. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students gather to watch as a DARwin-OP miniature humanoid robot from Virginia Tech Robotics demonstrates its soccer abilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  1. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A child gets an up-close look at Charli, an autonomous walking robot developed by Virginia Tech Robotics, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  2. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.

    PubMed

    Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis

    2016-11-01

    In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Development of the first force-controlled robot for otoneurosurgery.

    PubMed

    Federspil, Philipp A; Geisthoff, Urban W; Henrich, Dominik; Plinkert, Peter K

    2003-03-01

    In some surgical specialties (eg, orthopedics), robots are already used in the operating room for bony milling work. Otological surgery and otoneurosurgery may also greatly benefit from the enhanced precision of robotics. Experimental study on robotic milling of oak wood and human temporal bone specimen. A standard industrial robot with a six-degrees-of-freedom serial kinematics was used, with force feedback to proportionally control the robot speed. Different milling modes and characteristic path parameters were evaluated to generate milling paths based on computer-aided design (CAD) geometry data of a cochlear implant and an implantable hearing system. The best-suited strategy proved to be the spiral horizontal milling mode with the burr held perpendicular to the temporal bone surface. To reduce groove height, the distance between paths should equal half the radius of the cutting burr head. Because of the vibration of the robot's own motors, a high oscillation of the SD of forces was encountered. This oscillation dropped drastically to nearly 0 Newton (N) when the burr head made contact with the dura mater, because of its damping characteristics. The cutting burr could be kept in contact with the dura mater for an extended period without damaging it, because of the burr's blunt head form. The robot moved the burr smoothly according to the encountered resistances. The study reports the first development of a functional robotic milling procedure for otoneurosurgery with force-based speed control. Future plans include implementation of ultrasound-based local navigation and performance of robotic mastoidectomy.

  4. Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood

    ERIC Educational Resources Information Center

    Kazakoff, Elizabeth R.; Bers, Marina Umaschi

    2014-01-01

    This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…

  5. Artificial pheromone for path selection by a foraging swarm of robots.

    PubMed

    Campo, Alexandre; Gutiérrez, Alvaro; Nouyan, Shervin; Pinciroli, Carlo; Longchamp, Valentin; Garnier, Simon; Dorigo, Marco

    2010-11-01

    Foraging robots involved in a search and retrieval task may create paths to navigate faster in their environment. In this context, a swarm of robots that has found several resources and created different paths may benefit strongly from path selection. Path selection enhances the foraging behavior by allowing the swarm to focus on the most profitable resource with the possibility for unused robots to stop participating in the path maintenance and to switch to another task. In order to achieve path selection, we implement virtual ants that lay artificial pheromone inside a network of robots. Virtual ants are local messages transmitted by robots; they travel along chains of robots and deposit artificial pheromone on the robots that are literally forming the chain and indicating the path. The concentration of artificial pheromone on the robots allows them to decide whether they are part of a selected path. We parameterize the mechanism with a mathematical model and provide an experimental validation using a swarm of 20 real robots. We show that our mechanism favors the selection of the closest resource is able to select a new path if a selected resource becomes unavailable and selects a newly detected and better resource when possible. As robots use very simple messages and behaviors, the system would be particularly well suited for swarms of microrobots with minimal abilities.

  6. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A miniature humanoid robot known as DARwin-OP, from Virginia Tech Robotics, plays soccer with a red tennis ball for a crowd of students at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  7. A Novel Concept for Safe, Stiffness-Controllable Robot Links.

    PubMed

    Stilli, Agostino; Wurdemann, Helge A; Althoefer, Kaspar

    2017-03-01

    The recent decade has seen an astounding increase of interest and advancement in a new field of robotics, aimed at creating structures specifically for the safe interaction with humans. Softness, flexibility, and variable stiffness in robotics have been recognized as highly desirable characteristics for many applications. A number of solutions were proposed ranging from entirely soft robots (such as those composed mainly from soft materials such as silicone), via flexible continuum and snake-like robots, to rigid-link robots enhanced by joints that exhibit an elastic behavior either implemented in hardware or achieved purely by means of intelligent control. Although these are very good solutions paving the path to safe human-robot interaction, we propose here a new approach that focuses on creating stiffness controllability for the linkages between the robot joints. This article proposes a replacement for the traditionally rigid robot link-the new link is equipped with an additional capability of stiffness controllability. With this added feature, a robot can accurately carry out manipulation tasks (high stiffness), but can virtually instantaneously reduce its stiffness when a human is nearby or in contact with the robot. The key point of the invention described here is a robot link made of an airtight chamber formed by a soft and flexible, but high-strain resistant combination of a plastic mesh and silicone wall. Inflated with air to a high pressure, the mesh silicone chamber behaves like a rigid link; reducing the air pressure, softens the link and rendering the robot structure safe. This article investigates a number of link prototypes and shows the feasibility of the new concept. Stiffness tests have been performed, showing that a significant level of stiffness can be achieved-up to 40 N reaction force along the axial direction, for a 25-mm-diameter sample at 60 kPa, at an axial deformation of 5 mm. The results confirm that this novel concept to linkages

  8. Robust tuning of robot control systems

    NASA Technical Reports Server (NTRS)

    Minis, I.; Uebel, M.

    1992-01-01

    The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller.

  9. Historical model for editor and Office of Research Integrity cooperation in handling allegations, investigation, and retraction in a contentious (Abbs) case of research misconduct.

    PubMed

    Price, Alan R; Daroff, Robert B

    2015-01-01

    Cooperation between a journal editor and the federal Office of Research Integrity (ORI) in addressing investigations of research misconduct, each performing their own responsibilities while keeping each other informed of events and evidence, can be critical to the professional and regulatory resolution of a case. This paper describes the history of one of ORI's most contentious investigations that involved falsification of research on Parkinson's disease patients by James Abbs, Professor of Neurology, University of Wisconsin, published in the journal Neurology, which was handled cooperatively by the authors, who were the chief ORI investigator and the Editor-in-Chief of Neurology, respectively.

  10. Robot-sewn ileoileal anastomosis during robot-assisted cystectomy.

    PubMed

    Loertzer, P; Siemer, S; Stöckle, M; Ohlmann, C H

    2018-07-01

    To analyze the feasibility and perioperative results of patients undergoing robot-assisted cystectomy with intracorporeal urinary diversion and robot-sewn ileoileal anastomosis. This is a mono-centric analysis of perioperative data from 48 consecutive patients undergoing robot-assisted cystectomy with intracorporeal urinary diversion and robot-sewn ileoileal anastomosis. Data include the preoperative variables, operative and postoperative course and complication rates related to bowel anastomosis. End points were time spent for anastomosis and intra- and postoperative complication rates. Median operating time was 23.0 (13-60) min for the ileoileal anastomosis. Median overall operating time was 295 (200-780) min, with a median of 282 (200-418) min and 414.0 (225-780) min for the ileum conduit (N = 35) and ileal neobladder (N = 13). Two patients developed paralytic ileus; in another patient acute peritonitis occurred, but was caused by urinary leakage and therefore unrelated to the bowel anastomosis. No anastomotic leakage was noticed. Costs for the robot-sewn anastomosis was 8€ compared to 1250€ for a stapled anastomosis which was performed in previous cases. Limitations are the non-comparative nature of the analysis and the limited number of patients. Robot-sewn ileoileal anastomosis is feasible with low complication rates. Compared to the stapled anastomosis, a robot-sewn ileoileal anastomosis may serve as an alternative and cost-saving approach.

  11. Space-time modeling using environmental constraints in a mobile robot system

    NASA Technical Reports Server (NTRS)

    Slack, Marc G.

    1990-01-01

    Grid-based models of a robot's local environment have been used by many researchers building mobile robot control systems. The attraction of grid-based models is their clear parallel between the internal model and the external world. However, the discrete nature of such representations does not match well with the continuous nature of actions and usually serves to limit the abilities of the robot. This work describes a spatial modeling system that extracts information from a grid-based representation to form a symbolic representation of the robot's local environment. The approach makes a separation between the representation provided by the sensing system and the representation used by the action system. Separation allows asynchronous operation between sensing and action in a mobile robot, as well as the generation of a more continuous representation upon which to base actions.

  12. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.

    PubMed

    Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro

    2018-01-01

    In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  13. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots

    PubMed Central

    Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro

    2018-01-01

    In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept. PMID:29593521

  14. Hopping robot

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.

    2001-01-01

    The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.

  15. Investigation of human-robot interface performance in household environments

    NASA Astrophysics Data System (ADS)

    Cremer, Sven; Mirza, Fahad; Tuladhar, Yathartha; Alonzo, Rommel; Hingeley, Anthony; Popa, Dan O.

    2016-05-01

    Today, assistive robots are being introduced into human environments at an increasing rate. Human environments are highly cluttered and dynamic, making it difficult to foresee all necessary capabilities and pre-program all desirable future skills of the robot. One approach to increase robot performance is semi-autonomous operation, allowing users to intervene and guide the robot through difficult tasks. To this end, robots need intuitive Human-Machine Interfaces (HMIs) that support fine motion control without overwhelming the operator. In this study we evaluate the performance of several interfaces that balance autonomy and teleoperation of a mobile manipulator for accomplishing several household tasks. Our proposed HMI framework includes teleoperation devices such as a tablet, as well as physical interfaces in the form of piezoresistive pressure sensor arrays. Mobile manipulation experiments were performed with a sensorized KUKA youBot, an omnidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place tasks involved navigation and manipulation of objects in household environments. Performance metrics included time for task completion and position accuracy.

  16. Controlling legs for locomotion-insights from robotics and neurobiology.

    PubMed

    Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar

    2015-06-29

    Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.

  17. Acceptance of an assistive robot in older adults: a mixed-method study of human–robot interaction over a 1-month period in the Living Lab setting

    PubMed Central

    Wu, Ya-Huei; Wrobel, Jérémy; Cornuet, Mélanie; Kerhervé, Hélène; Damnée, Souad; Rigaud, Anne-Sophie

    2014-01-01

    Background There is growing interest in investigating acceptance of robots, which are increasingly being proposed as one form of assistive technology to support older adults, maintain their independence, and enhance their well-being. In the present study, we aimed to observe robot-acceptance in older adults, particularly subsequent to a 1-month direct experience with a robot. Subjects and methods Six older adults with mild cognitive impairment (MCI) and five cognitively intact healthy (CIH) older adults were recruited. Participants interacted with an assistive robot in the Living Lab once a week for 4 weeks. After being shown how to use the robot, participants performed tasks to simulate robot use in everyday life. Mixed methods, comprising a robot-acceptance questionnaire, semistructured interviews, usability-performance measures, and a focus group, were used. Results Both CIH and MCI subjects were able to learn how to use the robot. However, MCI subjects needed more time to perform tasks after a 1-week period of not using the robot. Both groups rated similarly on the robot-acceptance questionnaire. They showed low intention to use the robot, as well as negative attitudes toward and negative images of this device. They did not perceive it as useful in their daily life. However, they found it easy to use, amusing, and not threatening. In addition, social influence was perceived as powerful on robot adoption. Direct experience with the robot did not change the way the participants rated robots in their acceptance questionnaire. We identified several barriers to robot-acceptance, including older adults’ uneasiness with technology, feeling of stigmatization, and ethical/societal issues associated with robot use. Conclusion It is important to destigmatize images of assistive robots to facilitate their acceptance. Universal design aiming to increase the market for and production of products that are usable by everyone (to the greatest extent possible) might help to

  18. Emotion attribution to a non-humanoid robot in different social situations.

    PubMed

    Lakatos, Gabriella; Gácsi, Márta; Konok, Veronika; Brúder, Ildikó; Bereczky, Boróka; Korondi, Péter; Miklósi, Ádám

    2014-01-01

    In the last few years there was an increasing interest in building companion robots that interact in a socially acceptable way with humans. In order to interact in a meaningful way a robot has to convey intentionality and emotions of some sort in order to increase believability. We suggest that human-robot interaction should be considered as a specific form of inter-specific interaction and that human-animal interaction can provide a useful biological model for designing social robots. Dogs can provide a promising biological model since during the domestication process dogs were able to adapt to the human environment and to participate in complex social interactions. In this observational study we propose to design emotionally expressive behaviour of robots using the behaviour of dogs as inspiration and to test these dog-inspired robots with humans in inter-specific context. In two experiments (wizard-of-oz scenarios) we examined humans' ability to recognize two basic and a secondary emotion expressed by a robot. In Experiment 1 we provided our companion robot with two kinds of emotional behaviour ("happiness" and "fear"), and studied whether people attribute the appropriate emotion to the robot, and interact with it accordingly. In Experiment 2 we investigated whether participants tend to attribute guilty behaviour to a robot in a relevant context by examining whether relying on the robot's greeting behaviour human participants can detect if the robot transgressed a predetermined rule. Results of Experiment 1 showed that people readily attribute emotions to a social robot and interact with it in accordance with the expressed emotional behaviour. Results of Experiment 2 showed that people are able to recognize if the robot transgressed on the basis of its greeting behaviour. In summary, our findings showed that dog-inspired behaviour is a suitable medium for making people attribute emotional states to a non-humanoid robot.

  19. Emotion Attribution to a Non-Humanoid Robot in Different Social Situations

    PubMed Central

    Lakatos, Gabriella; Gácsi, Márta; Konok, Veronika; Brúder, Ildikó; Bereczky, Boróka; Korondi, Péter; Miklósi, Ádám

    2014-01-01

    In the last few years there was an increasing interest in building companion robots that interact in a socially acceptable way with humans. In order to interact in a meaningful way a robot has to convey intentionality and emotions of some sort in order to increase believability. We suggest that human-robot interaction should be considered as a specific form of inter-specific interaction and that human–animal interaction can provide a useful biological model for designing social robots. Dogs can provide a promising biological model since during the domestication process dogs were able to adapt to the human environment and to participate in complex social interactions. In this observational study we propose to design emotionally expressive behaviour of robots using the behaviour of dogs as inspiration and to test these dog-inspired robots with humans in inter-specific context. In two experiments (wizard-of-oz scenarios) we examined humans' ability to recognize two basic and a secondary emotion expressed by a robot. In Experiment 1 we provided our companion robot with two kinds of emotional behaviour (“happiness” and “fear”), and studied whether people attribute the appropriate emotion to the robot, and interact with it accordingly. In Experiment 2 we investigated whether participants tend to attribute guilty behaviour to a robot in a relevant context by examining whether relying on the robot's greeting behaviour human participants can detect if the robot transgressed a predetermined rule. Results of Experiment 1 showed that people readily attribute emotions to a social robot and interact with it in accordance with the expressed emotional behaviour. Results of Experiment 2 showed that people are able to recognize if the robot transgressed on the basis of its greeting behaviour. In summary, our findings showed that dog-inspired behaviour is a suitable medium for making people attribute emotional states to a non-humanoid robot. PMID:25551218

  20. Architectural setup for online monitoring and control of process parameters in robot-based ISF

    NASA Astrophysics Data System (ADS)

    Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.

  1. Summary of astronaut inputs on automation and robotics for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1990-01-01

    Astronauts and payload specialists present specific recommendations in the form of an overview that relate to the use of automation and robotics on the Space Station Freedom. The inputs are based on on-orbit operations experience, time requirements for crews, and similar crew-specific knowledge that address the impacts of automation and robotics on productivity. Interview techniques and specific questionnaire results are listed, and the majority of the responses indicate that incorporating automation and robotics to some extent and with human backup can improve productivity. Specific support is found for the use of advanced automation and EVA robotics on the Space Station Freedom and for the use of advanced automation on ground-based stations. Ground-based control of in-flight robotics is required, and Space Station activities and crew tasks should be analyzed to assess the systems engineering approach for incorporating automation and robotics.

  2. Movement Anticipation and EEG: Implications for BCI-Contingent Robot Therapy

    PubMed Central

    Norman, Sumner L.; Dennison, Mark; Wolbrecht, Eric; Cramer, Steven C.; Srinivasan, Ramesh; Reinkensmeyer, David J.

    2017-01-01

    Brain-computer interfacing is a technology that has the potential to improve patient engagement in robot-assisted rehabilitation therapy. For example, movement intention reduces mu (8-13 Hz) oscillation amplitude over the sensorimotor cortex, a phenomenon referred to as event-related desynchronization (ERD). In an ERD-contingent assistance paradigm, initial BCI-enhanced robotic therapy studies have used ERD to provide robotic assistance for movement. Here we investigated how ERD changed as a function of audio-visual stimuli, overt movement from the participant, and robotic assistance. Twelve unimpaired subjects played a computer game designed for rehabilitation therapy with their fingers using the FINGER robotic exoskeleton. In the game, the participant and robot matched movement timing to audio-visual stimuli in the form of notes approaching a target on the screen set to the consistent beat of popular music. The audio-visual stimulation of the game alone did not cause ERD, before or after training. In contrast, overt movement by the subject caused ERD, whether or not the robot assisted the finger movement. Notably, ERD was also present when the subjects remained passive and the robot moved their fingers to play the game. This ERD occurred in anticipation of the passive finger movement with similar onset timing as for the overt movement conditions. These results demonstrate that ERD can be contingent on expectation of robotic assistance; that is, the brain generates an anticipatory ERD in expectation of a robot-imposed but predictable movement. This is a caveat that should be considered in designing BCIs for enhancing patient effort in roboticallyassisted therapy. PMID:26891487

  3. Compliant Robot Wrist

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1992-01-01

    Compliant element for robot wrist accepts small displacements in one direction only (to first approximation). Three such elements combined to obtain translational compliance along three orthogonal directions, without rotational compliance along any of them. Element is double-blade flexure joint in which two sheets of spring steel attached between opposing blocks, forming rectangle. Blocks moved parallel to each other in one direction only. Sheets act as double cantilever beams deforming in S-shape, keeping blocks parallel.

  4. INL Multi-Robot Control Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  5. An overview of the program to place advanced automation and robotics on the Space Station

    NASA Technical Reports Server (NTRS)

    Heydorn, Richard P.

    1987-01-01

    The preliminary design phase of the Space Station has uncovered a large number of potential uses of automation and robotics, most of which deal with the assembly and operation of the Station. If NASA were to vigorously push automation and robotics concepts in the design, the Station crew would probably be free to spend a substantial portion of time on payload activities. However, at this point NASA has taken a conservative attitude toward automation and robotics. For example, the belief is that robotics should evolve through telerobotics and that uses of artificial intelligence should be initially used in an advisory capacity. This conservativeness is in part due to the new and untested nature of automation and robotics; but, it is also due to emphases plased on designing the Station to the so-called upfront cost without thoroughly understanding the life cycle cost. Presumably automation and robotics has a tendency to increase the initial cost of the Space Station but could substantially reduce the life cycle cost. To insure that NASA will include some form of robotic capability, Congress directed to set aside funding. While this stimulates the development of robotics, it does not necessarily stimulate uses of artificial intelligence. However, since the initial development costs of some forms of artificial intelligence, such as expert systems, are in general lower than they are for robotics one is likely to see several expert systems being used on the Station.

  6. Basic Robotics.

    ERIC Educational Resources Information Center

    Mullen, Frank

    This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…

  7. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  8. Mobile robot knowledge base

    NASA Astrophysics Data System (ADS)

    Heath Pastore, Tracy; Barnes, Mitchell; Hallman, Rory

    2005-05-01

    Robot technology is developing at a rapid rate for both commercial and Department of Defense (DOD) applications. As a result, the task of managing both technology and experience information is growing. In the not-to-distant past, tracking development efforts of robot platforms, subsystems and components was not too difficult, expensive, or time consuming. To do the same today is a significant undertaking. The Mobile Robot Knowledge Base (MRKB) provides the robotics community with a web-accessible, centralized resource for sharing information, experience, and technology to more efficiently and effectively meet the needs of the robot system user. The resource includes searchable information on robot components, subsystems, mission payloads, platforms, and DOD robotics programs. In addition, the MRKB website provides a forum for technology and information transfer within the DOD robotics community and an interface for the Robotic Systems Pool (RSP). The RSP manages a collection of small teleoperated and semi-autonomous robotic platforms, available for loan to DOD and other qualified entities. The objective is to put robots in the hands of users and use the test data and fielding experience to improve robot systems.

  9. Do robots need to sleep?

    PubMed

    Fouks, J D; Besnard, S; Signac, L; Meurice, J C; Neau, J P; Paquereau, J

    2004-04-01

    The present paper exposes algorithmic results providing a vision about sleep functions which complements biological theory and experiments. Derived from the algorithmic theory of information, the theory of adaptation aims at quantifying how an inherited or acquired piece of knowledge helps individuals to survive. It gives a scale of complexity for survival problems and proves that some of them can only be solved by a dynamical management of memory associating continuous learning and forgetting methods. In this paper we explain how a virtual robot "Picota" has been designed to simulate the behavior of a living hen. In order to survive in its synthetical environment, our robot must recognize good seeds from bad ones, and should take rest during night periods. Within this frame, and facing the rapid evolution of to-be-recognized forms, the best way to equilibrate the energetic needs of the robot and ensure survival is to use the nightly rest to reorganize the pieces of data acquired during the daily learning, and to trash the less useful ones. Thanks to this time sharing, the same circuits can be used for both daily learning and nightly forgetting and thus costs are lower; however, this also forces the system to "paralyse" the virtual robot, and therefore the night algorithm is reminiscent of paradoxical (REM) sleep. The algorithm of the robot takes advantage of the alternation between wakefulness or activity and the rest period. This diagram quite accurately recalls the REM period. In the future, the convergence between the neurophysiology of sleep and the theory of complexity may give us a new line of research in order to elucidate sleep functions.

  10. Value of Robotically Assisted Surgery for Mitral Valve Disease

    PubMed Central

    Mihaljevic, Tomislav; Koprivanac, Marijan; Kelava, Marta; Goodman, Avi; Jarrett, Craig; Williams, Sarah J.; Gillinov, A. Marc; Bajwa, Gurjyot; Mick, Stephanie L.; Bonatti, Johannes; Blackstone, Eugene H.

    2014-01-01

    Importance The value of robotically assisted surgery for mitral valve disease is questioned because the high cost of care associated with robotic technology may outweigh its clinical benefits. Objective To investigate conditions under which benefits of robotic surgery mitigate high technology costs. Design Clinical cohort study comparing costs of robotic vs. three contemporaneous conventional surgical approaches for degenerative mitral disease. Surgery was performed from 2006–2011, and comparisons were based on intent-to-treat, with propensity-matching used to reduce selection bias. Setting Large multi-specialty academic medical center. Participants 1,290 patients aged 57±11 years, 27% women, underwent mitral repair for regurgitation from posterior leaflet prolapse. Robotic surgery was used in 473, complete sternotomy in 227, partial sternotomy in 349, and anterolateral thoracotomy in 241. Three propensity-matched groups were formed based on demographics, symptoms, cardiac and noncardiac comorbidities, valve pathophysiology, and echocardiographic measurements: robotic vs. sternotomy (n=198 pairs) vs. partial sternotomy (n=293 pairs) vs. thoracotomy (n=224 pairs). Interventions Mitral valve repair. Main Outcome Measures Cost of care, expressed as robotic capital investment, maintenance, and direct technical hospital cost, and benefit of care, based on differences in recovery time. Results Median cost of care for robotically assisted surgery exceeded the cost of alternative approaches by 27% (−5%, 68%), 32% (−6%, 70%), and 21% (−2%, 54%) (median [15th, 85th percentiles]) for complete sternotomy, partial sternotomy, and anterolateral thoracotomy, respectively. Higher operative costs were partially offset by lower postoperative costs and earlier return to work: median 35 days for robotic surgery, 49 for complete sternotomy, 56 for partial sternotomy, and 42 for anterolateral thoracotomy. Resulting net differences in cost of robotic surgery vs. the three

  11. Self-Reconfigurable Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HENSINGER, DAVID M.; JOHNSTON, GABRIEL A.; HINMAN-SWEENEY, ELAINE M.

    2002-10-01

    A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighborsmore » using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.« less

  12. Robot geometry calibration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Tso, Kam; Roston, Gerald

    1988-01-01

    Autonomous robot task execution requires that the end effector of the robot be positioned accurately relative to a reference world-coordinate frame. The authors present a complete formulation to identify the actual robot geometric parameters. The method applies to any serial link manipulator with arbitrary order and combination of revolute and prismatic joints. A method is also presented to solve the inverse kinematic of the actual robot model which usually is not a so-called simple robot. Experimental results performed by utilizing a PUMA 560 with simple measurement hardware are presented. As a result of this calibration a precision move command is designed and integrated into a robot language, RCCL, and used in the NASA Telerobot Testbed.

  13. An overview of artificial intelligence and robotics. Volume 2: Robotics

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    This report provides an overview of the rapidly changing field of robotics. The report incorporates definitions of the various types of robots, a summary of the basic concepts, utilized in each of the many technical areas, review of the state of the art and statistics of robot manufacture and usage. Particular attention is paid to the status of robot development, the organizations involved, their activities, and their funding.

  14. Cooperative crossing of traffic intersections in a distributed robot system

    NASA Astrophysics Data System (ADS)

    Rausch, Alexander; Oswald, Norbert; Levi, Paul

    1995-09-01

    In traffic scenarios a distributed robot system has to cope with problems like resource sharing, distributed planning, distributed job scheduling, etc. While travelling along a street segment can be done autonomously by each robot, crossing of an intersection as a shared resource forces the robot to coordinate its actions with those of other robots e.g. by means of negotiations. We discuss the issue of cooperation on the design of a robot control architecture. Task and sensor specific cooperation between robots requires the robots' architectures to be interlinked at different hierarchical levels. Inside each level control cycles are running in parallel and provide fast reaction on events. Internal cooperation may occur between cycles of the same level. Altogether the architecture is matrix-shaped and contains abstract control cycles with a certain degree of autonomy. Based upon the internal structure of a cycle we consider the horizontal and vertical interconnection of cycles to form an individual architecture. Thereafter we examine the linkage of several agents and its influence on an interacting architecture. A prototypical implementation of a scenario, which combines aspects of active vision and cooperation, illustrates our approach. Two vision-guided vehicles are faced with line following, intersection recognition and negotiation.

  15. Robot Rescue

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.

  16. Robotic-assisted surgery in gynecologic oncology.

    PubMed

    Sinno, Abdulrahman K; Fader, Amanda N

    2014-10-01

    The quest for improved patient outcomes has been a driving force for adoption of novel surgical innovations across surgical subspecialties. Gynecologic oncology is one such surgical discipline in which minimally invasive surgery has had a robust and evolving role in defining standards of care. Robotic-assisted surgery has developed during the past two decades as a more technologically advanced form of minimally invasive surgery in an effort to mitigate the limitations of conventional laparoscopy and improved patient outcomes. Robotically assisted technology offers potential advantages that include improved three-dimensional stereoscopic vision, wristed instruments that improve surgeon dexterity, and tremor canceling software that improves surgical precision. These technological advances may allow the gynecologic oncology surgeon to perform increasingly radical oncologic surgeries in complex patients. However, the platform is not without limitations, including high cost, lack of haptic feedback, and the requirement for additional training to achieve competence. This review describes the role of robotic-assisted surgery in the management of endometrial, cervical, and ovarian cancer, with an emphasis on comparison with laparotomy and conventional laparoscopy. The literature on novel robotic innovations, special patient populations, cost effectiveness, and fellowship training is also appraised critically in this regard. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Advanced robot locomotion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics naturalmore » human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.« less

  18. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics.

    PubMed

    Pourghodrat, Abolfazl; Nelson, Carl A

    2017-03-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

  19. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics

    PubMed Central

    Pourghodrat, Abolfazl; Nelson, Carl A.

    2017-01-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications. PMID:28070227

  20. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  1. Flowrate behavior and clustering of self-driven robots in a channel

    NASA Astrophysics Data System (ADS)

    Tian, Bo; Sun, Wang-Ping; Li, Ming; Jiang, Rui; Hu, Mao-Bin

    2018-03-01

    In this paper, the collective motion of self-driven robots is studied experimentally and theoretically. In the channel, the flowrate of robots increases with the density linearly, even if the density of the robots tends to 1.0. There is no abrupt drop in the flowrate, similar to the collective motion of ants. We find that the robots will adjust their velocities by a serial of tiny collisions. The speed-adjustment will affect both robots involved in the collision, and will help to maintain a nearly uniform velocity for the robots. As a result, the flowrate drop will disappear. In the motion, the robots neither gather together nor scatter completely. Instead, they form some clusters to move together. These clusters are not stable during the moving process, but their sizes follow a power-law-alike distribution. We propose a theoretical model to simulate this collective motion process, which can reproduce these behaviors well. Analytic results about the flowrate behavior are also consistent with experiments. Project supported by the Key Research and Development Program, China (Grant No. 2016YFC0802508) and the National Natural Science Foundation of China (Grant Nos. 11672289 and 11422221).

  2. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    PubMed Central

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning. PMID:26485148

  3. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    PubMed

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  4. A history of robots: from science fiction to surgical robotics.

    PubMed

    Hockstein, N G; Gourin, C G; Faust, R A; Terris, D J

    2007-01-01

    Surgical robotics is an evolving field with great advances having been made over the last decade. The origin of robotics was in the science-fiction literature and from there industrial applications, and more recently commercially available, surgical robotic devices have been realized. In this review, we examine the field of robotics from its roots in literature to its development for clinical surgical use. Surgical mills and telerobotic devices are discussed, as are potential future developments.

  5. Robot Deception and Squirrel Behavior: A Case Study in Bio-inspired Robotics

    DTIC Science & Technology

    2014-08-01

    employed by doctors/ nurses among others. It is important to focus on this aspect when we consider a robot’s deceptive capabilities in human- robot ... Robot Deception and Squirrel Behavior: A Case Study in Bio-inspired Robotics Jaeeun Shim and Ronald C. Arkin Mobile Robot ...Abstract A common behavior in animals and human beings is deception. Deceptive behavior in robotics is potentially beneficial in several domains

  6. Robotic Surgery

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.

  7. Brain computer interface for operating a robot

    NASA Astrophysics Data System (ADS)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  8. Multigait soft robot

    PubMed Central

    Shepherd, Robert F.; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A.; Stokes, Adam A.; Mazzeo, Aaron D.; Chen, Xin; Wang, Michael; Whitesides, George M.

    2011-01-01

    This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion. PMID:22123978

  9. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators.

    PubMed

    Marchese, Andrew D; Onal, Cagdas D; Rus, Daniela

    2014-03-01

    In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input-output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion.

  10. Robotics in endoscopy.

    PubMed

    Klibansky, David; Rothstein, Richard I

    2012-09-01

    The increasing complexity of intralumenal and emerging translumenal endoscopic procedures has created an opportunity to apply robotics in endoscopy. Computer-assisted or direct-drive robotic technology allows the triangulation of flexible tools through telemanipulation. The creation of new flexible operative platforms, along with other emerging technology such as nanobots and steerable capsules, can be transformational for endoscopic procedures. In this review, we cover some background information on the use of robotics in surgery and endoscopy, and review the emerging literature on platforms, capsules, and mini-robotic units. The development of techniques in advanced intralumenal endoscopy (endoscopic mucosal resection and endoscopic submucosal dissection) and translumenal endoscopic procedures (NOTES) has generated a number of novel platforms, flexible tools, and devices that can apply robotic principles to endoscopy. The development of a fully flexible endoscopic surgical toolkit will enable increasingly advanced procedures to be performed through natural orifices. The application of platforms and new flexible tools to the areas of advanced endoscopy and NOTES heralds the opportunity to employ useful robotic technology. Following the examples of the utility of robotics from the field of laparoscopic surgery, we can anticipate the emerging role of robotic technology in endoscopy.

  11. Educational robotics as an Innovative teaching practice using technology: minimization of risks

    NASA Astrophysics Data System (ADS)

    Kvesko, S. B.; Kvesko, N. G.; Korniyenko, A. A.; Kabanova, N. N.

    2018-05-01

    This research is focused on studying educational robotics, specifically robots which provide functions of educational activity. We have considered the questions of intelligent agents’ behavior and have studied their educational opportunities. Educational robotics is a powerful tool of developing person’s skills and abilities in various fields of technical creativity and professional activity. The evolutionary development of robotics is connected with development of artificial intelligence, where emotions play a great role in operations. Nowadays the main thing is to form the ability and skills of optimum interaction with social environment when a person, based on gained knowledge, is capable to put goals of the activity in strict accordance with laws and society conditions and using current technology.

  12. TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots

    NASA Technical Reports Server (NTRS)

    Su, Renjeng

    1990-01-01

    In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.

  13. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Andrew Nick of Kennedy Space Center's Swamp Works shows off RASSOR, a robotic miner, at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  14. Stingray-inspired robot with simply actuated intermediate motion

    NASA Astrophysics Data System (ADS)

    Neely, Lincoln; Gaiennie, Jack; Noble, Nick; Erickson, Jonathan C.

    2016-04-01

    Batoids, or rays, utilize unique forms of locomotion that may offer more efficient techniques of motorized propulsion in various marine environments. We present a novel biomimetic engineering design and assembly of a stingray-inspired robot swimmer. The robots locomotion mimics the Dasyatis americana, or southern stingray, whose distinction among rays is its intermediate motion, characterized by sweeping strokes that propagate between 1/2-1 wavelength of the fin profile in the posterior direction. Though oscillatory (<1/2 wavelength) and undulatory (> wavelengths) ray-based robots have been created, this project demonstrates new engineering possibilities in what is, to the best of our knowledge, the first intermediately propelled batoid-based robot. The robots fins were made of silicone rubber, cast in a 3-D printed mold, with wingspan of 42 cm (1/2 - 1/5 scale for males and females, respectively, scale of model organism). Two anteriorly placed servomotors per fin were used, all controlled by one wirelessly enabled Arduino microcontroller. Each servomotor oscillated a flexible rod with cylindrical joint, whose frequency, speed, and front-back phase delay were user-programmed over wireless connection. During free-swimming tests, the fin profile developed about 0.8 wavelength, qualifying for successful mimicry of its biological inspiration. The robot satisfactorily maintained straight-line motion, reaching average peak velocity of 9.4+/-1.0 cm/s (0.27-0.03 body lengths/second) at its optimum flapping frequency of 1.4 Hz. This is in the same order of magnitude of speed normalized to body length achieved by others in two recent batoid-based projects. In summary, our robot performed intermediate stingray locomotion with relatively fewer components, which reveals robust potential for innovation of the simple intermediate batoid-based robot swimmer.

  15. Integrating robotic partial nephrectomy to an existing robotic surgery program.

    PubMed

    Yuh, Bertram; Muldrew, Shantel; Menchaca, Anita; Yip, Wesley; Lau, Clayton; Wilson, Timothy; Josephson, David

    2012-04-01

    As more centers develop robotic proficiency, progressing to a successful robot-assisted partial nephrectomy (RAPN) program depends on a number of factors. We describe our technique, results, and analysis of program setup for RAPN. Between 2005 and 2011, 92 RAPNs were performed following maturation of a robotic prostatectomy program. Operating rooms and supply rooms were outfitted for efficient robotic throughput. Tilepro and intraoperative ultrasound were used for all cases. Training and experiential learning for surgeons, anesthesia and nursing staff was a high priority. An onsite robotic technician helped troubleshoot, prepare the room and staff prior to starting surgery, and provide assistance with different robotic models. Average operative time decreased over time from 235 min to 199 min (p = .03). Warm ischemia time decreased from 26 minutes to 23 minutes (p = .02) despite an increased complexity of tumors and operations on multiple tumors. Median estimated blood loss was 150 mL. Average length of hospital stay was 3 days (range 1-9). Average size of lesions was 2.7 cm (range 0.7-8.6). Final pathology demonstrated 71 (77%) malignant lesions and 21 (23%) benign lesions. The addition of a robot-assisted partial nephrectomy program to an institutional robotic program can be coordinated with several key steps. Outcomes from an operational, oncologic, and renal functional standpoint are acceptable. Despite increased complexity of tumors and treatment of multiple lesions, operative and warm ischemia times showed a decrease over time. An organizational model that involves the surgeons, anesthesia, nursing staff, and possibly a robotic technical specialist helps to overcome the learning curve.

  16. Promoting Diversity in Undergraduate Research in Robotics-Based Seismic

    NASA Astrophysics Data System (ADS)

    Gifford, C. M.; Arthur, C. L.; Carmichael, B. L.; Webber, G. K.; Agah, A.

    2006-12-01

    The motivation for this research was to investigate forming evenly-spaced grid patterns with a team of mobile robots for future use in seismic imaging in polar environments. A team of robots was incrementally designed and simulated by incorporating sensors and altering each robot's controller. Challenges, design issues, and efficiency were also addressed. This research project incorporated the efforts of two undergraduate REU students from Elizabeth City State University (ECSU) in North Carolina, and the research staff at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. ECSU is a historically black university. Mentoring these two minority students in scientific research, seismic, robotics, and simulation will hopefully encourage them to pursue graduate degrees in science-related or engineering fields. The goals for this 10-week internship during summer 2006 were to educate the students in the fields of seismology, robotics, and virtual prototyping and simulation. Incrementally designing a robot platform for future enhancement and evaluation was central to this research, and involved simulation of several robots working together to change seismic grid shape and spacing. This process gave these undergraduate students experience and knowledge in an actual research project for a real-world application. The two undergraduate students gained valuable research experience and advanced their knowledge of seismic imaging, robotics, sensors, and simulation. They learned that seismic sensors can be used in an array to gather 2D and 3D images of the subsurface. They also learned that robotics can support dangerous or difficult human activities, such as those in a harsh polar environment, by increasing automation, robustness, and precision. Simulating robot designs also gave them experience in programming behaviors for mobile robots. Thus far, one academic paper has resulted from their research. This paper received third place at the 2006

  17. A natural-language interface to a mobile robot

    NASA Technical Reports Server (NTRS)

    Michalowski, S.; Crangle, C.; Liang, L.

    1987-01-01

    The present work on robot instructability is based on an ongoing effort to apply modern manipulation technology to serve the needs of the handicapped. The Stanford/VA Robotic Aid is a mobile manipulation system that is being developed to assist severely disabled persons (quadriplegics) in performing simple activities of everyday living in a homelike, unstructured environment. It consists of two major components: a nine degree-of-freedom manipulator and a stationary control console. In the work presented here, only the motions of the Robotic Aid's omnidirectional motion base have been considered, i.e., the six degrees of freedom of the arm and gripper have been ignored. The goal has been to develop some basic software tools for commanding the robot's motions in an enclosed room containing a few objects such as tables, chairs, and rugs. In the present work, the environmental model takes the form of a two-dimensional map with objects represented by polygons. Admittedly, such a highly simplified scheme bears little resemblance to the elaborate cognitive models of reality that are used in normal human discourse. In particular, the polygonal model is given a priori and does not contain any perceptual elements: there is no polygon sensor on board the mobile robot.

  18. Robotic equipment malfunction during robotic prostatectomy: a multi-institutional study.

    PubMed

    Lavery, Hugh J; Thaly, Rahul; Albala, David; Ahlering, Thomas; Shalhav, Arieh; Lee, David; Fagin, Randy; Wiklund, Peter; Dasgupta, Prokar; Costello, Anthony J; Tewari, Ashutosh; Coughlin, Geoff; Patel, Vipul R

    2008-09-01

    Robotic-assisted laparoscopic prostatectomy (RALP) is growing in popularity as a treatment option for prostate cancer. As a new technology, little is known regarding the reliability of the da Vinci robotic system. Intraoperative robotic equipment malfunction may force the surgeon to convert the procedure to an open or pure laparoscopic procedure, or possibly even abort the procedure. We report the first large-scale, multi-institutional review of robotic equipment malfunction. A questionnaire was designed to evaluate the rate of perioperative robotic malfunction during RALP. High-volume, experienced surgeons were asked to complete this evaluation based on the analysis of their data. Questions included the overall number of RALPs performed, the number of equipment malfunctions, the number of procedures that had to be converted or aborted, and the part of the robotic system that malfunctioned. Eleven institutions participated in the study with a median surgeon volume of 700 cases, accounting for a total case volume of 8240. Critical failure occurred in 34 cases (0.4%) leading to the cancellation of 24 cases prior to the procedure, and the conversion to two laparoscopic and eight open procedures. The most common components of the robot to malfunction were the arms and optical system. Critical robotic equipment malfunction is extremely rare in institutions that perform high volumes of RALPs, with a nonrecoverable malfunction rate of only 0.4%.

  19. Robotic surgery update.

    PubMed

    Jacobsen, G; Elli, F; Horgan, S

    2004-08-01

    Minimally invasive surgical techniques have revolutionized the field of surgery. Telesurgical manipulators (robots) and new information technologies strive to improve upon currently available minimally invasive techniques and create new possibilities. A retrospective review of all robotic cases at a single academic medical center from August 2000 until November 2002 was conducted. A comprehensive literature evaluation on robotic surgical technology was also performed. Robotic technology is safely and effectively being applied at our institution. Robotic and information technologies have improved upon minimally invasive surgical techniques and created new opportunities not attainable in open surgery. Robotic technology offers many benefits over traditional minimal access techniques and has been proven safe and effective. Further research is needed to better define the optimal application of this technology. Credentialing and educational requirements also need to be delineated.

  20. Intelligent, self-contained robotic hand

    DOEpatents

    Krutik, Vitaliy; Doo, Burt; Townsend, William T.; Hauptman, Traveler; Crowell, Adam; Zenowich, Brian; Lawson, John

    2007-01-30

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  1. [Robots and intellectual property].

    PubMed

    Larrieu, Jacques

    2013-12-01

    This topic is part of the global issue concerning the necessity to adapt intellectual property law to constant changes in technology. The relationship between robots and IP is dual. On one hand, the robots may be regarded as objects of intellectual property. A robot, like any new machine, could qualify for a protection by a patent. A copyright may protect its appearance if it is original. Its memory, like a database, could be covered by a sui generis right. On the other hand, the question of the protection of the outputs of the robot must be raised. The robots, as the physical embodiment of artificial intelligence, are becoming more and more autonomous. Robot-generated works include less and less human inputs. Are these objects created or invented by a robot copyrightable or patentable? To whom the ownership of these IP rights will be allocated? To the person who manufactured the machine ? To the user of the robot? To the robot itself? All these questions are worth discussing.

  2. Child-Robot Interactions for Second Language Tutoring to Preschool Children

    PubMed Central

    Vogt, Paul; de Haas, Mirjam; de Jong, Chiara; Baxter, Peta; Krahmer, Emiel

    2017-01-01

    In this digital age social robots will increasingly be used for educational purposes, such as second language tutoring. In this perspective article, we propose a number of design features to develop a child-friendly social robot that can effectively support children in second language learning, and we discuss some technical challenges for developing these. The features we propose include choices to develop the robot such that it can act as a peer to motivate the child during second language learning and build trust at the same time, while still being more knowledgeable than the child and scaffolding that knowledge in adult-like manner. We also believe that the first impressions children have about robots are crucial for them to build trust and common ground, which would support child-robot interactions in the long term. We therefore propose a strategy to introduce the robot in a safe way to toddlers. Other features relate to the ability to adapt to individual children’s language proficiency, respond contingently, both temporally and semantically, establish joint attention, use meaningful gestures, provide effective feedback and monitor children’s learning progress. Technical challenges we observe include automatic speech recognition (ASR) for children, reliable object recognition to facilitate semantic contingency and establishing joint attention, and developing human-like gestures with a robot that does not have the same morphology humans have. We briefly discuss an experiment in which we investigate how children respond to different forms of feedback the robot can give. PMID:28303094

  3. Child-Robot Interactions for Second Language Tutoring to Preschool Children.

    PubMed

    Vogt, Paul; de Haas, Mirjam; de Jong, Chiara; Baxter, Peta; Krahmer, Emiel

    2017-01-01

    In this digital age social robots will increasingly be used for educational purposes, such as second language tutoring. In this perspective article, we propose a number of design features to develop a child-friendly social robot that can effectively support children in second language learning, and we discuss some technical challenges for developing these. The features we propose include choices to develop the robot such that it can act as a peer to motivate the child during second language learning and build trust at the same time, while still being more knowledgeable than the child and scaffolding that knowledge in adult-like manner. We also believe that the first impressions children have about robots are crucial for them to build trust and common ground, which would support child-robot interactions in the long term. We therefore propose a strategy to introduce the robot in a safe way to toddlers. Other features relate to the ability to adapt to individual children's language proficiency, respond contingently, both temporally and semantically, establish joint attention, use meaningful gestures, provide effective feedback and monitor children's learning progress. Technical challenges we observe include automatic speech recognition (ASR) for children, reliable object recognition to facilitate semantic contingency and establishing joint attention, and developing human-like gestures with a robot that does not have the same morphology humans have. We briefly discuss an experiment in which we investigate how children respond to different forms of feedback the robot can give.

  4. Evolution of robotic arms.

    PubMed

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  5. [History of robotics: from archytas of tarentum until Da Vinci robot. (Part II)].

    PubMed

    Sánchez-Martín, F M; Jiménez Schlegl, P; Millán Rodríguez, F; Salvador-Bayarri, J; Monllau Font, V; Palou Redorta, J; Villavicencio Mavrich, H

    2007-03-01

    Robotic surgery is a reality. In order to to understand how new robots work is interesting to know the history of ancient (see part i) and modern robotics. The desire to design automatic machines imitating humans continued for more than 4000 years. Archytas of Tarentum (at around 400 a.C.), Heron of Alexandria, Hsieh-Fec, Al-Jazari, Bacon, Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors. At 1942 Asimov published the three robotics laws. Mechanics, electronics and informatics advances at XXth century developed robots to be able to do very complex self governing works. At 1985 the robot PUMA 560 was employed to introduce a needle inside the brain. Later on, they were designed surgical robots like World First, Robodoc, Gaspar o Acrobot, Zeus, AESOP, Probot o PAKI-RCP. At 2000 the FDA approved the da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons. Currently urological procedures like prostatectomy, cystectomy and nephrectomy are performed with the da Vinci, so urology has become a very suitable speciality to robotic surgery.

  6. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally takes an up-close look at RASSOR, a robotic miner developed by NASA Kennedy Space Center's Swamp Works. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  7. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students observe as Otherlab shows off a life-size, inflatable robot from its "" program. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  8. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots.

    PubMed

    Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan

    2015-11-24

    Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled.

  9. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots

    PubMed Central

    Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan

    2015-01-01

    Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled. PMID:26650051

  10. Robotics for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  11. The Adam and Eve Robot Scientists for the Automated Discovery of Scientific Knowledge

    NASA Astrophysics Data System (ADS)

    King, Ross

    A Robot Scientist is a physically implemented robotic system that applies techniques from artificial intelligence to execute cycles of automated scientific experimentation. A Robot Scientist can automatically execute cycles of hypothesis formation, selection of efficient experiments to discriminate between hypotheses, execution of experiments using laboratory automation equipment, and analysis of results. The motivation for developing Robot Scientists is to better understand science, and to make scientific research more efficient. The Robot Scientist `Adam' was the first machine to autonomously discover scientific knowledge: both form and experimentally confirm novel hypotheses. Adam worked in the domain of yeast functional genomics. The Robot Scientist `Eve' was originally developed to automate early-stage drug development, with specific application to neglected tropical disease such as malaria, African sleeping sickness, etc. We are now adapting Eve to work with on cancer. We are also teaching Eve to autonomously extract information from the scientific literature.

  12. The Tactile Ethics of Soft Robotics: Designing Wisely for Human-Robot Interaction.

    PubMed

    Arnold, Thomas; Scheutz, Matthias

    2017-06-01

    Soft robots promise an exciting design trajectory in the field of robotics and human-robot interaction (HRI), promising more adaptive, resilient movement within environments as well as a safer, more sensitive interface for the objects or agents the robot encounters. In particular, tactile HRI is a critical dimension for designers to consider, especially given the onrush of assistive and companion robots into our society. In this article, we propose to surface an important set of ethical challenges for the field of soft robotics to meet. Tactile HRI strongly suggests that soft-bodied robots balance tactile engagement against emotional manipulation, model intimacy on the bonding with a tool not with a person, and deflect users from personally and socially destructive behavior the soft bodies and surfaces could normally entice.

  13. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  14. Mapping of unknown industrial plant using ROS-based navigation mobile robot

    NASA Astrophysics Data System (ADS)

    Priyandoko, G.; Ming, T. Y.; Achmad, M. S. H.

    2017-10-01

    This research examines how humans work with teleoperated unmanned mobile robot inspection in industrial plant area resulting 2D/3D map for further critical evaluation. This experiment focuses on two parts, the way human-robot doing remote interactions using robust method and the way robot perceives the environment surround as a 2D/3D perspective map. ROS (robot operating system) as a tool was utilized in the development and implementation during the research which comes up with robust data communication method in the form of messages and topics. RGBD SLAM performs the visual mapping function to construct 2D/3D map using Kinect sensor. The results showed that the mobile robot-based teleoperated system are successful to extend human perspective in term of remote surveillance in large area of industrial plant. It was concluded that the proposed work is robust solution for large mapping within an unknown construction building.

  15. Robot-assisted general surgery.

    PubMed

    Hazey, Jeffrey W; Melvin, W Scott

    2004-06-01

    With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.

  16. Adaptive artificial neural network for autonomous robot control

    NASA Technical Reports Server (NTRS)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  17. Instrumented Compliant Wrist with Proximity and Contact Sensing for Close Robot Interaction Control.

    PubMed

    Laferrière, Pascal; Payeur, Pierre

    2017-06-14

    Compliance has been exploited in various forms in robotic systems to allow rigid mechanisms to come into contact with fragile objects, or with complex shapes that cannot be accurately modeled. Force feedback control has been the classical approach for providing compliance in robotic systems. However, by integrating other forms of instrumentation with compliance into a single device, it is possible to extend close monitoring of nearby objects before and after contact occurs. As a result, safer and smoother robot control can be achieved both while approaching and while touching surfaces. This paper presents the design and extensive experimental evaluation of a versatile, lightweight, and low-cost instrumented compliant wrist mechanism which can be mounted on any rigid robotic manipulator in order to introduce a layer of compliance while providing the controller with extra sensing signals during close interaction with an object's surface. Arrays of embedded range sensors provide real-time measurements on the position and orientation of surfaces, either located in proximity or in contact with the robot's end-effector, which permits close guidance of its operation. Calibration procedures are formulated to overcome inter-sensor variability and achieve the highest available resolution. A versatile solution is created by embedding all signal processing, while wireless transmission connects the device to any industrial robot's controller to support path control. Experimental work demonstrates the device's physical compliance as well as the stability and accuracy of the device outputs. Primary applications of the proposed instrumented compliant wrist include smooth surface following in manufacturing, inspection, and safe human-robot interaction.

  18. Robot Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.

  19. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally tries his hand at virtual reality in a demonstration of the Oculus Rift technology, provided by the Open Source Robotics Foundation. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  20. Principles of robotics: regulating robots in the real world

    NASA Astrophysics Data System (ADS)

    Boden, Margaret; Bryson, Joanna; Caldwell, Darwin; Dautenhahn, Kerstin; Edwards, Lilian; Kember, Sarah; Newman, Paul; Parry, Vivienne; Pegman, Geoff; Rodden, Tom; Sorrell, Tom; Wallis, Mick; Whitby, Blay; Winfield, Alan

    2017-04-01

    This paper proposes a set of five ethical principles, together with seven high-level messages, as a basis for responsible robotics. The Principles of Robotics were drafted in 2010 and published online in 2011. Since then the principles have influenced, and continue to influence, a number of initiatives in robot ethics but have not, to date, been formally published. This paper remedies that omission.

  1. Architecture for reactive planning of robot actions

    NASA Astrophysics Data System (ADS)

    Riekki, Jukka P.; Roening, Juha

    1995-01-01

    In this article, a reactive system for planning robot actions is described. The described hierarchical control system architecture consists of planning-executing-monitoring-modelling elements (PEMM elements). A PEMM element is a goal-oriented, combined processing and data element. It includes a planner, an executor, a monitor, a modeler, and a local model. The elements form a tree-like structure. An element receives tasks from its ancestor and sends subtasks to its descendants. The model knowledge is distributed into the local models, which are connected to each other. The elements can be synchronized. The PEMM architecture is strictly hierarchical. It integrated planning, sensing, and modelling into a single framework. A PEMM-based control system is reactive, as it can cope with asynchronous events and operate under time constraints. The control system is intended to be used primarily to control mobile robots and robot manipulators in dynamic and partially unknown environments. It is suitable especially for applications consisting of physically separated devices and computing resources.

  2. Design and implementation air quality monitoring robot

    NASA Astrophysics Data System (ADS)

    Chen, Yuanhua; Li, Jie; Qi, Chunxue

    2017-01-01

    Robot applied in environmental protection can break through the limitations in working environment, scope and mode of the existing environmental monitoring and pollution abatement equipments, which undertake the innovation and improvement in the basin, atmosphere, emergency and pollution treatment facilities. Actually, the relevant technology is backward with limited research and investment. Though the device companies have achieved some results in the study on the water quality monitoring, pipeline monitoring and sewage disposal, this technological progress on the whole is still much slow, and the mature product has not been formed. As a result, the market urges a demand of a new type of device which is more suitable for environmental protection on the basis of robot successfully applied in other fields. This paper designs and realizes a tracked mobile robot of air quality monitoring, which can be used to monitor air quality for the pollution accident in industrial parks and regular management.

  3. Supersmart Robots: The Next Generation of Robots Has Evolutionary Capabilities

    ERIC Educational Resources Information Center

    Simkins, Michael

    2008-01-01

    Robots that can learn new behaviors. Robots that can reproduce themselves. Science fiction? Not anymore. Roboticists at Cornell's Computational Synthesis Lab have developed just such engineered creatures that offer interesting implications for education. The team, headed by Hod Lipson, was intrigued by the question, "How can you get robots to be…

  4. Fundamentals of soft robot locomotion

    PubMed Central

    2017-01-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human–robot interaction and locomotion. Although field applications have emerged for soft manipulation and human–robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. PMID:28539483

  5. Fundamentals of soft robot locomotion.

    PubMed

    Calisti, M; Picardi, G; Laschi, C

    2017-05-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).

  6. Simulation of robotic courier deliveries in hospital distribution services.

    PubMed

    Rossetti, M D; Felder, R A; Kumar, A

    2000-06-01

    Flexible automation in the form of robotic couriers holds the potential for decreasing operating costs while improving delivery performance in hospital delivery systems. This paper discusses the use of simulation modeling to analyze the costs, benefits, and performance tradeoffs related to the installation and use of a fleet of robotic couriers within hospital facilities. The results of this study enable a better understanding of the delivery and transportation requirements of hospitals. Specifically, we examine how a fleet of robotic couriers can meet the performance requirements of the system while maintaining cost efficiency. We show that for clinical laboratory and pharmaceutical deliveries a fleet of six robotic couriers can achieve significant performance gains in terms of turn-around time and delivery variability over the current system of three human couriers per shift or 13 FTEs. Specifically, the simulation results indicate that using robotic couriers to perform both clinical laboratory and pharmaceutical deliveries would result in a 34% decrease in turn-around time, and a 38% decrease in delivery variability. In addition, a break-even analysis indicated that a positive net present value occurs if nine or more FTEs are eliminated with a resulting ROI of 12%. This analysis demonstrates that simulation can be a valuable tool for examining health care distribution services and indicates that a robotic courier system may yield significant benefits over a traditional courier system in this application.

  7. Application requirements for Robotic Nursing Assistants in hospital environments

    NASA Astrophysics Data System (ADS)

    Cremer, Sven; Doelling, Kris; Lundberg, Cody L.; McNair, Mike; Shin, Jeongsik; Popa, Dan

    2016-05-01

    In this paper we report on analysis toward identifying design requirements for an Adaptive Robotic Nursing Assistant (ARNA). Specifically, the paper focuses on application requirements for ARNA, envisioned as a mobile assistive robot that can navigate hospital environments to perform chores in roles such as patient sitter and patient walker. The role of a sitter is primarily related to patient observation from a distance, and fetching objects at the patient's request, while a walker provides physical assistance for ambulation and rehabilitation. The robot will be expected to not only understand nurse and patient intent but also close the decision loop by automating several routine tasks. As a result, the robot will be equipped with sensors such as distributed pressure sensitive skins, 3D range sensors, and so on. Modular sensor and actuator hardware configured in the form of several multi-degree-of-freedom manipulators, and a mobile base are expected to be deployed in reconfigurable platforms for physical assistance tasks. Furthermore, adaptive human-machine interfaces are expected to play a key role, as they directly impact the ability of robots to assist nurses in a dynamic and unstructured environment. This paper discusses required tasks for the ARNA robot, as well as sensors and software infrastructure to carry out those tasks in the aspects of technical resource availability, gaps, and needed experimental studies.

  8. Exploring TeleRobotics: A Radio-Controlled Robot

    ERIC Educational Resources Information Center

    Deal, Walter F., III; Hsiung, Steve C.

    2007-01-01

    Robotics is a rich and exciting multidisciplinary area to study and learn about electronics and control technology. The interest in robotic devices and systems provides the technology teacher with an excellent opportunity to make many concrete connections between electronics, control technology, and computers and science, engineering, and…

  9. Advancing the Strategic Messages Affecting Robot Trust Effect: The Dynamic of User- and Robot-Generated Content on Human-Robot Trust and Interaction Outcomes.

    PubMed

    Liang, Yuhua Jake; Lee, Seungcheol Austin

    2016-09-01

    Human-robot interaction (HRI) will soon transform and shift the communication landscape such that people exchange messages with robots. However, successful HRI requires people to trust robots, and, in turn, the trust affects the interaction. Although prior research has examined the determinants of human-robot trust (HRT) during HRI, no research has examined the messages that people received before interacting with robots and their effect on HRT. We conceptualize these messages as SMART (Strategic Messages Affecting Robot Trust). Moreover, we posit that SMART can ultimately affect actual HRI outcomes (i.e., robot evaluations, robot credibility, participant mood) by affording the persuasive influences from user-generated content (UGC) on participatory Web sites. In Study 1, participants were assigned to one of two conditions (UGC/control) in an original experiment of HRT. Compared with the control (descriptive information only), results showed that UGC moderated the correlation between HRT and interaction outcomes in a positive direction (average Δr = +0.39) for robots as media and robots as tools. In Study 2, we explored the effect of robot-generated content but did not find similar moderation effects. These findings point to an important empirical potential to employ SMART in future robot deployment.

  10. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.

    PubMed

    Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto

    2015-02-01

    At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.

  11. Humanlike robots: the upcoming revolution in robotics

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2009-08-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  12. Humanlike Robots - The Upcoming Revolution in Robotics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  13. Flex Robotic System in transoral robotic surgery: The first 40 patients.

    PubMed

    Mattheis, Stefan; Hasskamp, Pia; Holtmann, Laura; Schäfer, Christina; Geisthoff, Urban; Dominas, Nina; Lang, Stephan

    2017-03-01

    The Flex Robotic System is a new robotic device specifically developed for transoral robotic surgery (TORS). We performed a prospective clinical study, assessing the safety and efficacy of the Medrobotics Flex Robotic System. A total of 40 patients required a surgical procedure for benign lesions (n = 30) or T1 and T2 carcinomas (n = 10). Access and visualization of different anatomic subsites were individually graded by the surgeon. Setup times, access and visualization times, surgical results, as well as adverse events were documented intraoperatively. The lesions could be exposed and visualized properly in 38 patients (95%) who went on to have a surgical procedure performed with the Flex Robotic System, which were intraoperatively evaluated as successful. No serious adverse events occurred. Lesions in the oropharynx, hypopharynx, or supraglottic larynx could be successfully resected using the Flex Robotic System, thus making the system a safe and effective tool in transoral robotic surgery. © 2016 Wiley Periodicals, Inc. Head Neck 39: 471-475, 2017. © 2016 Wiley Periodicals, Inc.

  14. Inverse kinematic solution for near-simple robots and its application to robot calibration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A.; Roston, Gerald P.

    1986-01-01

    This paper provides an inverse kinematic solution for a class of robot manipulators called near-simple manipulators. The kinematics of these manipulators differ from those of simple-robots by small parameter variations. Although most robots are by design simple, in practice, due to manufacturing tolerances, every robot is near-simple. The method in this paper gives an approximate inverse kinematics solution for real time applications based on the nominal solution for these robots. The validity of the results are tested both by a simulation study and by applying the algorithm to a PUMA robot.

  15. Competencies Identification for Robotics Training.

    ERIC Educational Resources Information Center

    Tang, Le D.

    A study focused on the task of identifying competencies for robotics training. The level of robotics training was limited to that of robot technicians. Study objectives were to obtain a list of occupational competencies; to rank their order of importance; and to compare opinions from robot manufacturers, robot users, and robotics educators…

  16. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.

    PubMed

    Marras, Stefano; Porfiri, Maurizio

    2012-08-07

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.

  17. Promoting Interactions Between Humans and Robots Using Robotic Emotional Behavior.

    PubMed

    Ficocelli, Maurizio; Terao, Junichi; Nejat, Goldie

    2016-12-01

    The objective of a socially assistive robot is to create a close and effective interaction with a human user for the purpose of giving assistance. In particular, the social interaction, guidance, and support that a socially assistive robot can provide a person can be very beneficial to patient-centered care. However, there are a number of research issues that need to be addressed in order to design such robots. This paper focuses on developing effective emotion-based assistive behavior for a socially assistive robot intended for natural human-robot interaction (HRI) scenarios with explicit social and assistive task functionalities. In particular, in this paper, a unique emotional behavior module is presented and implemented in a learning-based control architecture for assistive HRI. The module is utilized to determine the appropriate emotions of the robot to display, as motivated by the well-being of the person, during assistive task-driven interactions in order to elicit suitable actions from users to accomplish a given person-centered assistive task. A novel online updating technique is used in order to allow the emotional model to adapt to new people and scenarios. Experiments presented show the effectiveness of utilizing robotic emotional assistive behavior during HRI scenarios.

  18. Evolution of robots throughout history from Hephaestus to Da Vinci Robot.

    PubMed

    Iavazzo, Christos; Gkegke, Xanthi-Ekaterini D; Iavazzo, Paraskevi-Evangelia; Gkegkes, Ioannis D

    2014-01-01

    Da Vinci robot is increasingly used for operations adding the advantages of robots to the favor of medicine. This is a historical article with the aim to present the evolution of robots in the medical area from the time of ancient myths to Renaissance and finally to the current revolutionary applications. We endeavored to collect several elegant narratives on the topic. The use of imagination could help the reader to find similarities. A trip from the Greek myths of Hephaestus through Aristotle and Leonardo Da Vinci to the robots of Karel Capek and Isaac Asimov and finally the invention of the medical robots is presented.

  19. Proximity Operations in Microgravity, a Robotic Solution for Maneuvering about an Asteroid Surface

    NASA Astrophysics Data System (ADS)

    Indyk, Stephen; Scheidt, David; Moses, Kenneth; Perry, Justin; Mike, Krystal

    Asteroids remain some of the most under investigated bodies in the solar system. Addition-ally, there is a distinct lack of directly collected information. This is in part due to complex sampling and motion problems that must be overcome before more detailed missions can be formulated. The chief caveat lies in formulating a technique for precision operation in mi-crogravity. Locomotion, in addition to sample collection, involve forces significantly greater than the gravitational force keeping a robot on the surface. The design of a system that can successfully maneuver over unfamiliar surfaces void of natural anchor points is an incredible challenge. This problem was investigated at Johns Hopkins University Applied Physics Laboratory as part of the 2009 NASA Lunar and Planetary Academy. Examining the problem through a two-dimensional robotic simulation, a swarm robotics approach was applied. In simplest form, this was comprised of three grappling robots and one sampling robot. Connected by tethers, the grappling robots traverse a plane and reposition the sampling robot through tensioning the tethers. This presentation provides information on the design of the robotic system, as well as gait analysis and future considerations for a three dimensional system.

  20. [Rehabilitation and nursing-care robots].

    PubMed

    Hachisuka, Kenji

    2016-04-01

    In the extremely aged society, rehabilitation staff will be required to provide ample rehabilitation training for more stroke patients and more aged people with disabilities despite limitations in human resources. A nursing-care robot is one potential solution from the standpoint of rehabilitation. The nursing-care robot is defined as a robot which assists aged people and persons with disabilities in daily life and social life activities. The nursing-care robot consists of an independent support robot, caregiver support robot, and life support robot. Although many nursing-care robots have been developed, the most appropriate robot must be selected according to its features and the needs of patients and caregivers in the field of nursing-care.

  1. Evidence for robots.

    PubMed

    Shenoy, Ravikiran; Nathwani, Dinesh

    2017-01-01

    Robots have been successfully used in commercial industry and have enabled humans to perform tasks which are repetitive, dangerous and requiring extreme force. Their role has evolved and now includes many aspects of surgery to improve safety and precision. Orthopaedic surgery is largely performed on bones which are rigid immobile structures which can easily be performed by robots with great precision. Robots have been designed for use in orthopaedic surgery including joint arthroplasty and spine surgery. Experimental studies have been published evaluating the role of robots in arthroscopy and trauma surgery. In this article, we will review the incorporation of robots in orthopaedic surgery looking into the evidence in their use. © The Authors, published by EDP Sciences, 2017.

  2. Evidence for robots

    PubMed Central

    Shenoy, Ravikiran; Nathwani, Dinesh

    2017-01-01

    Robots have been successfully used in commercial industry and have enabled humans to perform tasks which are repetitive, dangerous and requiring extreme force. Their role has evolved and now includes many aspects of surgery to improve safety and precision. Orthopaedic surgery is largely performed on bones which are rigid immobile structures which can easily be performed by robots with great precision. Robots have been designed for use in orthopaedic surgery including joint arthroplasty and spine surgery. Experimental studies have been published evaluating the role of robots in arthroscopy and trauma surgery. In this article, we will review the incorporation of robots in orthopaedic surgery looking into the evidence in their use. PMID:28534472

  3. Hitchhiking Robots: A Collaborative Approach for Efficient Multi-Robot Navigation in Indoor Environments.

    PubMed

    Ravankar, Abhijeet; Ravankar, Ankit A; Kobayashi, Yukinori; Emaru, Takanori

    2017-08-15

    Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from `driver-lost' scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results.

  4. Synthetic Bursae for Robots

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.

    2005-01-01

    Synthetic bursae are under development for incorporation into robot joints that are actuated by motor-driven cables in a manner similar to that of arthropod joints actuated by muscle-driven tendons. Like natural bursae, the synthetic bursae would serve as cushions and friction reducers. A natural bursa is a thin bladder filled with synovial fluid, which serves to reduce friction and provide a cushion between a bone and a muscle or a tendon. A synthetic bursa would be similar in form and function: It would be, essentially, a compact, soft roller consisting of a bladder filled with a non-Newtonian fluid. The bladder would be constrained to approximately constant volume. The synthetic bursa would cushion an actuator cable against one of the members of a robot joint and would reduce the friction between the cable and the member. Under load, the pressure in the bladder would hold the opposite walls of the bladder apart, making it possible for them to move freely past each other without rubbing.

  5. The Effects of Using Microsoft Power Point on EFL Learners' Attitude and Anxiety: Case Study of Two Master Students of Didactics of English as a Foreign Language, Djillali Liabes University, Sidi Bel Abbes, Algeria

    ERIC Educational Resources Information Center

    Benghalem, Boualem

    2015-01-01

    This study aims to investigate the effects of using ICT tools such as Microsoft PowerPoint on EFL students' attitude and anxiety. The participants in this study were 40 Master 2 students of Didactics of English as a Foreign Language, Djillali Liabes University, Sidi Bel Abbes Algeria. In order to find out the effects of Microsoft PowerPoint on EFL…

  6. Review of control strategies for robotic movement training after neurologic injury.

    PubMed

    Marchal-Crespo, Laura; Reinkensmeyer, David J

    2009-06-16

    There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies.

  7. Dynamic multisensor fusion for mobile robot navigation in an indoor environment

    NASA Astrophysics Data System (ADS)

    Jin, Taeseok; Lee, Jang-Myung; Luk, Bing L.; Tso, Shiu K.

    2001-10-01

    In this study, as the preliminary step for developing a multi-purpose Autonomous robust carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as sonar, CCD camera dn IR sensor for map-building mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within both indoor and outdoor environments. Smart sensory systems are crucial for successful autonomous systems. We will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. Instead we will focus on the main results with relevance to the intelligent service robot project at the Centre of Intelligent Design, Automation & Manufacturing (CIDAM). We will conclude by discussing some possible future extensions of the project. It is first dealt with the general principle of the navigation and guidance architecture, then the detailed functions recognizing environments updated, obstacle detection and motion assessment, with the first results form the simulations run.

  8. Review of control strategies for robotic movement training after neurologic injury

    PubMed Central

    Marchal-Crespo, Laura; Reinkensmeyer, David J

    2009-01-01

    There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies. PMID:19531254

  9. Modelling of cooperating robotized systems with the use of object-based approach

    NASA Astrophysics Data System (ADS)

    Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.

    2015-11-01

    Today's robotized manufacturing systems are characterized by high efficiency. The emphasis is placed mainly on the simultaneous work of machines. It could manifest in many ways, where the most spectacular one is the cooperation of several robots, during work on the same detail. What's more, recently a dual-arm robots are used that could mimic the manipulative skills of human hands. As a result, it is often hard to deal with the situation, when it is necessary not only to maintain sufficient precision, but also the coordination and proper sequence of movements of individual robots’ arms. The successful completion of this task depends on the individual robot control systems and their respective programmed, but also on the well-functioning communication between robot controllers. A major problem in case of cooperating robots is the possibility of collision between particular links of robots’ kinematic chains. This is not a simple case, because the manufacturers of robotic systems do not disclose the details of the control algorithms, then it is hard to determine such situation. Another problem with cooperation of robots is how to inform the other units about start or completion of part of the task, so that other robots can take further actions. This paper focuses on communication between cooperating robotic units, assuming that every robot is represented by object-based model. This problem requires developing a form of communication protocol that the objects can use for collecting the information about its environment. The approach presented in the paper is not limited to the robots and could be used in a wider range, for example during modelling of the complete workcell or production line.

  10. Educational Robotics as Mindtools

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.; Bellou, Ioanna

    2013-01-01

    Although there are many studies on the constructionist use of educational robotics, they have certain limitations. Some of them refer to robotics education, rather than educational robotics. Others follow a constructionist approach, but give emphasis only to design skills, creativity and collaboration. Some studies use robotics as an educational…

  11. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  12. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  13. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  14. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  15. Hopping Robot with Wheels

    NASA Technical Reports Server (NTRS)

    Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve

    2003-01-01

    A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.

  16. Evaluating alternative gait strategies using evolutionary robotics.

    PubMed

    Sellers, William I; Dennis, Louise A; W -J, Wang; Crompton, Robin H

    2004-05-01

    Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids.

  17. Human-robot interaction tests on a novel robot for gait assistance.

    PubMed

    Tagliamonte, Nevio Luigi; Sergi, Fabrizio; Carpino, Giorgio; Accoto, Dino; Guglielmelli, Eugenio

    2013-06-01

    This paper presents tests on a treadmill-based non-anthropomorphic wearable robot assisting hip and knee flexion/extension movements using compliant actuation. Validation experiments were performed on the actuators and on the robot, with specific focus on the evaluation of intrinsic backdrivability and of assistance capability. Tests on a young healthy subject were conducted. In the case of robot completely unpowered, maximum backdriving torques were found to be in the order of 10 Nm due to the robot design features (reduced swinging masses; low intrinsic mechanical impedance and high-efficiency reduction gears for the actuators). Assistance tests demonstrated that the robot can deliver torques attracting the subject towards a predicted kinematic status.

  18. Robot environment expert system

    NASA Technical Reports Server (NTRS)

    Potter, J. L.

    1985-01-01

    The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects.

  19. Hazardous Environment Robotics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.

  20. Robot-Aided Neurorehabilitation

    PubMed Central

    Krebs, Hermano Igo; Hogan, Neville; Aisen, Mindy L.; Volpe, Bruce T.

    2009-01-01

    Our goal is to apply robotics and automation technology to assist, enhance, quantify, and document neurorehabilitation. This paper reviews a clinical trial involving 20 stroke patients with a prototype robot-aided rehabilitation facility developed at the Massachusetts Institute of Technology, Cambridge, (MIT) and tested at Burke Rehabilitation Hospital, White Plains, NY. It also presents our approach to analyze kinematic data collected in the robot-aided assessment procedure. In particular, we present evidence 1) that robot-aided therapy does not have adverse effects, 2) that patients tolerate the procedure, and 3) that peripheral manipulation of the impaired limb may influence brain recovery. These results are based on standard clinical assessment procedures. We also present one approach using kinematic data in a robot-aided assessment procedure. PMID:9535526

  1. Coordinated Control Of Mobile Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1995-01-01

    Computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Applicable to variety of mobile robotic manipulators, including robots that move along tracks (typically, painting and welding robots), robots mounted on gantries and capable of moving in all three dimensions, wheeled robots, and compound robots (consisting of robots mounted on other robots). Theoretical basis discussed in several prior articles in NASA Tech Briefs, including "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes With Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).

  2. Developing a successful robotics program.

    PubMed

    Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M

    2012-01-01

    Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.

  3. Hitchhiking Robots: A Collaborative Approach for Efficient Multi-Robot Navigation in Indoor Environments

    PubMed Central

    Ravankar, Abhijeet; Ravankar, Ankit A.; Kobayashi, Yukinori; Emaru, Takanori

    2017-01-01

    Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from ‘driver-lost’ scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results. PMID:28809803

  4. Robotics in medicine

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  5. Evolution of robotics in surgery and implementing a perioperative robotics nurse specialist role.

    PubMed

    Francis, Paula

    2006-03-01

    Use of robotics is expanding rapidly in the medical arena. Not only are a growing number of facilities purchasing robotic systems, but the number of surgeons using them also is increasing, which creates many challenges (eg, cost, training, safety). The evolution of robotics in surgery is presented within the context of virtual reality, telepresence, telemanipulation, and passive (ie, master-slave) robotic surgical systems. A new perioperative nursing role, the robotics nurse specialist, was developed and implemented at one facility. The need for a robotics nurse specialist and how this role can help the entire surgical team promote positive patient and facility outcomes also is discussed.

  6. Robot Handcontroller

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The PER-Force robotic handcontroller provides a sense of touch or "feel" to an operator manipulating robots. The force simulation and wide range of motion greatly enhances the efficiency of robotic and computer operations. The handcontroller was developed for the Space Station by Cybernet Systems Corporation under a Small Business Innovation Research (SBIR) contract. Commercial applications include underwater use, underground excavations, research laboratories, hazardous waste handling and in manufacturing operations in which it is unsafe or impractical for humans to work.

  7. Inventing Japan's 'robotics culture': the repeated assembly of science, technology, and culture in social robotics.

    PubMed

    Sabanović, Selma

    2014-06-01

    Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science.

  8. Profil épidémiologique des fibromes utérins dans la région de Sidi Bel Abbes, Algérie

    PubMed Central

    Chalal, Nourelhouda; Demmouche, Abbassia

    2013-01-01

    Introduction Les léiomyomes ou fibromyomes plus communément dénommés fibromes, sont les tumeurs les plus répandues du tractus génital féminin. Ils affectent 20 à 25% des femmes en activité génitale. Notre étude vise à élucider la réalité de ce type de pathologie dans la région de sidi bel Abbes, nord-ouest d'Algérie. Méthodes A travers une étude rétrospective allant du 1er janvier 2008 au 1 mai 2011 portant sur les patientes opérées pour fibrome au sein de la maternité de Sidi Bel Abbes, nous avons relevé les particularités épidémiologiques et cliniques de cette pathologie. Résultats Au total 323 cas de fibromes ont été recensés. La tranche d'âge la plus touchée varie de 40 à 44 ans dans une fourchette d'âge comprise entre 20 et 74 ans. 37.83% des patientes étaient nullipares. Une prédominance des patientes dont l'âge de la ménarche est précoce, a été retenue (60.3%). 3% des femmes ont présenté un terrain familial prédisposant. La symptomatologie était dominée par les hémorragies génitales (35%). La majorité des patientes (51.70%) présentaient un utérus polymyomateux dont la localisation des fibromes était principalement corporéale (96%), sous séreuse (43%). Le traitement était conservateur dans 71.82% des cas. Conclusion Sur la base des résultats obtenus, la mise au point d'un programme national de sensibilisation et de dépistage précoce, s'impose PMID:23847704

  9. Sandia National Laboratories proof-of-concept robotic security vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, J.J.; Jones, D.P.; Klarer, P.R.

    1989-01-01

    Several years ago Sandia National Laboratories developed a prototype interior robot that could navigate autonomously inside a large complex building to air and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modified andmore » integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities. 2 refs., 3 figs.« less

  10. Augmented reality and haptic interfaces for robot-assisted surgery.

    PubMed

    Yamamoto, Tomonori; Abolhassani, Niki; Jung, Sung; Okamura, Allison M; Judkins, Timothy N

    2012-03-01

    Current teleoperated robot-assisted minimally invasive surgical systems do not take full advantage of the potential performance enhancements offered by various forms of haptic feedback to the surgeon. Direct and graphical haptic feedback systems can be integrated with vision and robot control systems in order to provide haptic feedback to improve safety and tissue mechanical property identification. An interoperable interface for teleoperated robot-assisted minimally invasive surgery was developed to provide haptic feedback and augmented visual feedback using three-dimensional (3D) graphical overlays. The software framework consists of control and command software, robot plug-ins, image processing plug-ins and 3D surface reconstructions. The feasibility of the interface was demonstrated in two tasks performed with artificial tissue: palpation to detect hard lumps and surface tracing, using vision-based forbidden-region virtual fixtures to prevent the patient-side manipulator from entering unwanted regions of the workspace. The interoperable interface enables fast development and successful implementation of effective haptic feedback methods in teleoperation. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Soft mobile robots driven by foldable dielectric elastomer actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achievedmore » between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.« less

  12. Study on the intelligent decision making of soccer robot side-wall behavior

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochuan; Shao, Guifang; Tan, Zhi; Li, Zushu

    2007-12-01

    Side-wall is the static obstacle in soccer robot game, reasonably making use of the Side-wall can improve soccer robot competitive ability. As a kind of artificial life, the Side-wall processing strategy of soccer robot is influenced by many factors, such as game state, field region, attacking and defending situation and so on, each factor also has different influence degree, so, the Side-wall behavior selection is an intelligent selecting process. From the view point of human simulated, based on the idea of Side-wall processing priority[1], this paper builds the priority function for Side-wall processing, constructs the action predicative model for Side-wall obstacle, puts forward the Side-wall processing strategy, and forms the Side-wall behavior selection mechanism. Through the contrasting experiment between the strategy applied and none, proves that this strategy can improve the soccer robot capacity, it is feasible and effective, and has positive meaning for soccer robot stepped study.

  13. ROBOTIC SURGERY: BIOETHICAL ASPECTS

    PubMed Central

    SIQUEIRA-BATISTA, Rodrigo; SOUZA, Camila Ribeiro; MAIA, Polyana Mendes; SIQUEIRA, Sávio Lana

    2016-01-01

    ABSTRACT Introduction: The use of robots in surgery has been increasingly common today, allowing the emergence of numerous bioethical issues in this area. Objective: To present review of the ethical aspects of robot use in surgery. Method: Search in Pubmed, SciELO and Lilacs crossing the headings "bioethics", "surgery", "ethics", "laparoscopy" and "robotic". Results: Of the citations obtained, were selected 17 articles, which were used for the preparation of the article. It contains brief presentation on robotics, its inclusion in health and bioethical aspects, and the use of robots in surgery. Conclusion: Robotic surgery is a reality today in many hospitals, which makes essential bioethical reflection on the relationship between health professionals, automata and patients. PMID:28076489

  14. Robotic arm

    DOEpatents

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  15. Toward cognitive robotics

    NASA Astrophysics Data System (ADS)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  16. Robotic Follow Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.

  17. [Robotic surgery in gynecology].

    PubMed

    Csorba, Roland

    2012-06-24

    Minimally invasive surgery has revolutionized gynecological interventions over the past 30 years. The introduction of the da Vinci robotic surgery in 2005 has resulted in large changes in surgical management. The robotic platform allows less experienced laparoscopic surgeons to perform more complex procedures. It can be utilized mainly in general gynecology and reproductive gynecology. The robot is being increasingly used for procedures such as hysterectomy, myomectomy, adnexal surgery, and tubal anastomosis. In urogynecology, the robot is being utilized for sacrocolopexy as well. In the field of gynecologic oncology, the robot is being increasingly used for hysterectomy and lymphadenectomy in oncologic diseases. Despite the rapid and widespread adaption of robotic surgery in gynecology, there are no randomized trials comparing its efficacy and safety to other traditional surgical approaches. This article presents the development, technical aspects and indications of robotic surgery in gynecology, based on the previously published reviews. Robotic surgery can be highly advantageous with the right amount of training, along with appropriate patient selection. Patients will have less blood loss, less post-operative pain, faster recovery, and fewer complications compared to open surgery and laparoscopy. However, until larger randomized control trials are completed which report long-term outcomes, robotic surgery cannot be stated to have priority over other surgical methods.

  18. Continuum limbed robots for locomotion

    NASA Astrophysics Data System (ADS)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  19. Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions

    PubMed Central

    2017-01-01

    Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time. PMID:28118384

  20. Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions.

    PubMed

    Guerrero, Jose; Oliver, Gabriel; Valero, Oscar

    2017-01-01

    Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time.

  1. Local phytochemical response of Musa acuminata × balbisiana Colla cv. 'Bluggoe' (ABB) to colonization by Sternorrhyncha.

    PubMed

    Hölscher, Dirk; Vollrath, Antje; Kai, Marco; Dhakshinamoorthy, Suganthaguntalam; Menezes, Riya C; Svatoš, Aleš; Schubert, Ulrich S; Buerkert, Andreas; Schneider, Bernd

    2017-01-01

    The interaction of two Sternorrhyncha species, the banana aphid (Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae, Aphidinae)), vector of the banana bunchy top virus (BBTV), and the latania scale (Hemiberlesia lataniae Signoret (Hemiptera: Diaspididae, Diaspidinae)) with Musa acuminata × balbisiana Colla (ABB Group) 'Bluggoe' (Musaceae) was investigated by a combination of conventional and spatially resolved analytical techniques, 1 H NMR, UHPLC-MS, and matrix-free UV-laser desorption/ionization MS imaging. After infestation, the feeding sites of P. nigronervosa on the pseudostem and the exocarp of banana fruit developed a red tinge, in which tissue-specific accumulations of phenylphenalenones were discovered. Phenylphenalenones were also detected in the black mats of sooty molds growing on the banana aphid exudates and in the dorsal scales of H. lataniae. This suggests that although these secondary metabolites play a role in the reaction of banana plants towards attack by sucking insects, an aphid and an armored scale have established mechanisms to exude these metabolites before they deploy their deleterious effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-01-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  3. Comparison of Human and Humanoid Robot Control of Upright Stance

    PubMed Central

    Peterka, Robert J.

    2009-01-01

    There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to ~1 Hz) dynamic characteristics of human stance control. These subsystems are 1) a “sensory integration” mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions, and 2) an “effort control” mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions were humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on

  4. Comparison of human and humanoid robot control of upright stance.

    PubMed

    Peterka, Robert J

    2009-01-01

    There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to approximately 1Hz) dynamic characteristics of human stance control. These subsystems are (1) a "sensory integration" mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions and (2) an "effort control" mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions where humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the

  5. Attributing Agency to Automated Systems: Reflections on Human-Robot Collaborations and Responsibility-Loci.

    PubMed

    Nyholm, Sven

    2017-07-18

    Many ethicists writing about automated systems (e.g. self-driving cars and autonomous weapons systems) attribute agency to these systems. Not only that; they seemingly attribute an autonomous or independent form of agency to these machines. This leads some ethicists to worry about responsibility-gaps and retribution-gaps in cases where automated systems harm or kill human beings. In this paper, I consider what sorts of agency it makes sense to attribute to most current forms of automated systems, in particular automated cars and military robots. I argue that whereas it indeed makes sense to attribute different forms of fairly sophisticated agency to these machines, we ought not to regard them as acting on their own, independently of any human beings. Rather, the right way to understand the agency exercised by these machines is in terms of human-robot collaborations, where the humans involved initiate, supervise, and manage the agency of their robotic collaborators. This means, I argue, that there is much less room for justified worries about responsibility-gaps and retribution-gaps than many ethicists think.

  6. Towards more effective robotic gait training for stroke rehabilitation: a review

    PubMed Central

    2012-01-01

    Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. Objectives This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. Methods The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Conclusions Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated. PMID:22953989

  7. Open Issues in Evolutionary Robotics.

    PubMed

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  8. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.

    PubMed

    Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco

    2009-01-01

    This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.

  9. [Robotics in pediatric surgery].

    PubMed

    Camps, J I

    2011-10-01

    Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.

  10. Robotic Colorectal Surgery

    PubMed Central

    2008-01-01

    Robotic colorectal surgery has gradually been performed more with the help of the technological advantages of the da Vinci® system. Advanced technological advantages of the da Vinci® system compared with standard laparoscopic colorectal surgery have been reported. These are a stable camera platform, three-dimensional imaging, excellent ergonomics, tremor elimination, ambidextrous capability, motion scaling, and instruments with multiple degrees of freedom. However, despite these technological advantages, most studies did not report the clinical advantages of robotic colorectal surgery compared to standard laparoscopic colorectal surgery. Only one study recently implies the real benefits of robotic rectal cancer surgery. The purpose of this review article is to outline the early concerns of robotic colorectal surgery using the da Vinci® system, to present early clinical outcomes from the most current series, and to discuss not only the safety and the feasibility but also the real benefits of robotic colorectal surgery. Moreover, this article will comment on the possible future clinical advantages and limitations of the da Vinci® system in robotic colorectal surgery. PMID:19108010

  11. Toward a framework for levels of robot autonomy in human-robot interaction.

    PubMed

    Beer, Jenay M; Fisk, Arthur D; Rogers, Wendy A

    2014-07-01

    A critical construct related to human-robot interaction (HRI) is autonomy, which varies widely across robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully autonomous systems, influence the way in which humans and robots may interact with one another. Thus, there is a need to understand HRI by identifying variables that influence - and are influenced by - robot autonomy. Our overarching goal is to develop a framework for levels of robot autonomy in HRI. To reach this goal, the framework draws links between HRI and human-automation interaction, a field with a long history of studying and understanding human-related variables. The construct of autonomy is reviewed and redefined within the context of HRI. Additionally, the framework proposes a process for determining a robot's autonomy level, by categorizing autonomy along a 10-point taxonomy. The framework is intended to be treated as guidelines to determine autonomy, categorize the LORA along a qualitative taxonomy, and consider which HRI variables (e.g., acceptance, situation awareness, reliability) may be influenced by the LORA.

  12. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion

    PubMed Central

    Marras, Stefano; Porfiri, Maurizio

    2012-01-01

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its ‘engineered’ member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a ‘dummy’. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot–animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour. PMID:22356819

  13. [Robot-aided training in rehabilitation].

    PubMed

    Hachisuka, Kenji

    2010-02-01

    Recently, new training techniques that involve the use of robots have been used in the rehabilitation of patients with hemiplegia and paraplegia. Robots used for training the arm include the MIT-MANUS, Arm Trainer, mirror-image motion enabler (MIME) robot, and the assisted rehabilitation and measurement (ARM) Guide. Robots that are used for lower-limb training are the Rehabot, Gait Trainer, Lokomat, LOPES Exoskeleton Robot, and Gait Assist Robot. Robot-aided therapy has enabled the functional training of the arm and the lower limbs in an effective, easy, and comfortable manner. Therefore, with this type of therapy, the patients can repeatedly undergo sufficient and accurate training for a prolonged period. However, evidence of the benefits of robot-aided training has not yet been established.

  14. Current status of robotic simulators in acquisition of robotic surgical skills.

    PubMed

    Kumar, Anup; Smith, Roger; Patel, Vipul R

    2015-03-01

    This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.

  15. Robotic follow system and method

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Anderson, Matthew O [Idaho Falls, ID

    2007-05-01

    Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.

  16. Combined virtual and real robotic test-bed for single operator control of multiple robots

    NASA Astrophysics Data System (ADS)

    Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash

    2010-04-01

    Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.

  17. EPSRC Principles of Robotics: defending an obsolete human(ism)?

    NASA Astrophysics Data System (ADS)

    Szollosy, Michael

    2017-04-01

    The EPSRC Principles of Robotics (2010), whatever noble intentions, failed to create an enduring set of principles for research into and development of robotics and artificial intelligence because those participating in the workshop did not begin with an adequate understanding of what it means to be "human". Labouring under the false, outdated assumptions of humanism, the human beings that the Principles are meant to serve have never existed in such an overly-simplistic form, or are soon to be made extinct by the transformative power of new technologies, and new ways of imagining human social relations in response to technological innovation. At the heart of any principles for robotics must be a new, more flexible conception of what it means to be human, and a recognition that human beings are, and always will be, plural and contingent.

  18. Method and apparatus for calibrating multi-axis load cells in a dexterous robot

    NASA Technical Reports Server (NTRS)

    Wampler, II, Charles W. (Inventor); Platt, Jr., Robert J. (Inventor)

    2012-01-01

    A robotic system includes a dexterous robot having robotic joints, angle sensors adapted for measuring joint angles at a corresponding one of the joints, load cells for measuring a set of strain values imparted to a corresponding one of the load cells during a predetermined pose of the robot, and a host machine. The host machine is electrically connected to the load cells and angle sensors, and receives the joint angle values and strain values during the predetermined pose. The robot presses together mating pairs of load cells to form the poses. The host machine executes an algorithm to process the joint angles and strain values, and from the set of all calibration matrices that minimize error in force balance equations, selects the set of calibration matrices that is closest in a value to a pre-specified value. A method for calibrating the load cells via the algorithm is also provided.

  19. Process for anodizing a robotic device

    DOEpatents

    Townsend, William T [Weston, MA

    2011-11-08

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  20. KC-135 materials handling robotics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.

  1. A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.

    PubMed

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human-robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  2. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems robot, foreground, and the University of Waterloo (Canada) robot, take to the practice field on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Robot teams will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  3. Robotic-assisted repair of iatrogenic ureteral ligation following robotic-assisted hysterectomy.

    PubMed

    Kalisvaart, Jonathan F; Finley, David S; Ornstein, David K

    2008-01-01

    Ureteral injuries, while rare, do occur during gynecologic procedures. The expansion of laparoscopic and robotic pelvic surgical procedures increases the risk of ureteral injury from these procedures and suggests a role for minimally invasive approaches to the delayed repair of ureteral injuries. We present, to our knowledge, the first case of delayed robotic-assisted ureteral deligation and ureterolysis following iatrogenic ureteral injury occurring during a robotic abdominal hysterectomy. We present a case report and review of the literature. A 57-year-old female underwent a seemingly uncomplicated robotic-assisted laparoscopic total abdominal hysterectomy and bilateral oophorectomy for symptomatic fibroids. On postoperative day 8, she presented with persistent right flank pain. Imaging studies revealed high-grade ureteral obstruction consistent with suture ligation of the right ureter. She underwent successful robotic-assisted ureteral deligation and ureterolysis. Her postoperative course was unremarkable, and she was discharged home on postoperative day 1 from the deligation. Robotic-assisted management of complications from urologic or gynecologic surgery is technically feasible. This can potentially preserve the advantages to the patient that are being seen from the initial less-invasive surgery.

  4. A Survey of Space Robotics

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)

    2003-01-01

    In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.

  5. An assigned responsibility system for robotic teleoperation control.

    PubMed

    Small, Nicolas; Lee, Kevin; Mann, Graham

    2018-01-01

    This paper proposes an architecture that explores a gap in the spectrum of existing strategies for robot control mode switching in adjustable autonomy. In situations where the environment is reasonably known and/or predictable, pre-planning these control changes could relieve robot operators of the additional task of deciding when and how to switch. Such a strategy provides a clear division of labour between the automation and the human operator(s) before the job even begins, allowing for individual responsibilities to be known ahead of time, limiting confusion and allowing rest breaks to be planned. Assigned Responsibility is a new form of adjustable autonomy-based teleoperation that allows the selective inclusion of automated control elements at key stages of a robot operation plan's execution. Progression through these stages is controlled by automatic goal accomplishment tracking. An implementation is evaluated through engineering tests and a usability study, demonstrating the viability of this approach and offering insight into its potential applications.

  6. Haptic/graphic rehabilitation: integrating a robot into a virtual environment library and applying it to stroke therapy.

    PubMed

    Sharp, Ian; Patton, James; Listenberger, Molly; Case, Emily

    2011-08-08

    Recent research that tests interactive devices for prolonged therapy practice has revealed new prospects for robotics combined with graphical and other forms of biofeedback. Previous human-robot interactive systems have required different software commands to be implemented for each robot leading to unnecessary developmental overhead time each time a new system becomes available. For example, when a haptic/graphic virtual reality environment has been coded for one specific robot to provide haptic feedback, that specific robot would not be able to be traded for another robot without recoding the program. However, recent efforts in the open source community have proposed a wrapper class approach that can elicit nearly identical responses regardless of the robot used. The result can lead researchers across the globe to perform similar experiments using shared code. Therefore modular "switching out"of one robot for another would not affect development time. In this paper, we outline the successful creation and implementation of a wrapper class for one robot into the open-source H3DAPI, which integrates the software commands most commonly used by all robots.

  7. EPSRC Principles of Robotics: commentary on safety, robots as products, and responsibility

    NASA Astrophysics Data System (ADS)

    Boddington, Paula

    2017-04-01

    The EPSRC Principles of Robotics refer to safety. How safety is understood is relative to how tasks are characterised and identified. But the exact task(s) a robot plays within a complex system of agency may be hard to identify. If robots are seen as products, it is nonetheless vital that the safety and other implications of their use in situ must also be considered carefully, and they must be fit for purpose. The Principles identify humans as responsible, rather than robots. We must thus understand how the replacement of human agency by robotic agency may impact upon attributions of responsibility. The Principles seek to fit into existing systems of law and ethics. But these may need development, and in certain context, attention to more local regulations is also needed. A distinction between ethical issues related to the design of robotics, and to their use, may be needed in the Principles.

  8. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  9. Urologic robots and future directions.

    PubMed

    Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan

    2009-01-01

    Robot-assisted laparoscopic surgery in urology has gained immense popularity with the daVinci system, but a lot of research teams are working on new robots. The purpose of this study is to review current urologic robots and present future development directions. Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks on the basis of medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for a remote system could be augmented in reality, with haptic feedback, size reduction, and development of new tools for natural orifice translumenal endoscopic surgery. The paradigm of image-guided robots is close to clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image-guided robots have the potential to offer a paradigm shift.

  10. UROLOGIC ROBOTS AND FUTURE DIRECTIONS

    PubMed Central

    Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan

    2009-01-01

    Purpose of review Robot-assisted laparoscopic surgery in urology has gained immense popularity with the Da Vinci system but a lot of research teams are working on new robots. The purpose of this paper is to review current urologic robots and present future developments directions. Recent findings Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. Summary The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks based on medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for remote system could be augmented reality, haptic feed back, size reduction and development of new tools for NOTES surgery. The paradigm of image-guided robots is close to a clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image guided robots have the potential to offer a paradigm shift. PMID:19057227

  11. Simulation of cooperating robot manipulators on a mobile platform

    NASA Technical Reports Server (NTRS)

    Murphy, Stephen H.; Wen, John Ting-Yung; Saridis, George N.

    1991-01-01

    The dynamic equations of motion are presented for two or more cooperating manipulators on a freely moving mobile platform. The system of cooperating robot manipulators forms a closed kinematic chain where the force of interaction must be included in the formulation of robot and platform dynamics. The formulation includes the full dynamic interactions from arms to platform and arm tip to arm tip, and the possible translation and rotation of the platform. The equations of motion are shown to be identical in structure to the fixed-platform cooperative manipulator dynamics. The number of DOFs of the system is sufficiently large to make recursive dynamic calculation methods potentially more efficient than closed-form solutions. A complete simulation with two 6-DOF manipulators of a free-floating platform is presented along a with a multiple-arm controller to position the common load.

  12. ShouldeRO, an alignment-free two-DOF rehabilitation robot for the shoulder complex.

    PubMed

    Dehez, Bruno; Sapin, Julien

    2011-01-01

    This paper presents a robot aimed to assist the shoulder movements of stroke patients during their rehabilitation process. This robot has the general form of an exoskeleton, but is characterized by an action principle on the patient no longer requiring a tedious and accurate alignment of the robot and patient's joints. It is constituted of a poly-articulated structure whose actuation is deported and transmission is ensured by Bowden cables. It manages two of the three rotational degrees of freedom (DOFs) of the shoulder. Quite light and compact, its proximal end can be rigidly fixed to the patient's back on a rucksack structure. As for its distal end, it is connected to the arm through passive joints and a splint guaranteeing the robot action principle, i.e. exert a force perpendicular to the patient's arm, whatever its configuration. This paper also presents a first prototype of this robot and some experimental results such as the arm angular excursions reached with the robot in the three joint planes. © 2011 IEEE

  13. Supervisory Control of a Humanoid Robot in Microgravity for Manipulation Tasks

    NASA Technical Reports Server (NTRS)

    Farrell, Logan C.; Strawser, Phil; Hambuchen, Kimberly; Baker, Will; Badger, Julia

    2017-01-01

    Teleoperation is the dominant form of dexterous robotic tasks in the field. However, there are many use cases in which direct teleoperation is not feasible such as disaster areas with poor communication as posed in the DARPA Robotics Challenge, or robot operations on spacecraft a large distance from Earth with long communication delays. Presented is a solution that combines the Affordance Template Framework for object interaction with TaskForce for supervisory control in order to accomplish high level task objectives with basic autonomous behavior from the robot. TaskForce, is a new commanding infrastructure that allows for optimal development of task execution, clear feedback to the user to aid in off-nominal situations, and the capability to add autonomous verification and corrective actions. This framework has allowed the robot to take corrective actions before requesting assistance from the user. This framework is demonstrated with Robonaut 2 removing a Cargo Transfer Bag from a simulated logistics resupply vehicle for spaceflight using a single operator command. This was executed with 80% success with no human involvement, and 95% success with limited human interaction. This technology sets the stage to do any number of high level tasks using a similar framework, allowing the robot to accomplish tasks with minimal to no human interaction.

  14. [History of robotics: from Archytas of Tarentum until da Vinci robot. (Part I)].

    PubMed

    Sánchez Martín, F M; Millán Rodríguez, F; Salvador Bayarri, J; Palou Redorta, J; Rodríguez Escovar, F; Esquena Fernández, S; Villavicencio Mavrich, H

    2007-02-01

    Robotic surgery is the newst technologic option in urology. To understand how new robots work is interesting to know their history. The desire to design machines imitating humans continued for more than 4000 years. There are references to King-su Tse (clasic China) making up automaton at 500 a. C. Archytas of Tarentum (at around 400 a.C.) is considered the father of mechanical engineering, and one of the occidental robotics classic referents. Heron of Alexandria, Hsieh-Fec, Al-Jazari, Roger Bacon, Juanelo Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors in the middle age, renaissance and classicism. At the XIXth century, automaton production underwent a peak and all engineering branches suffered a great development. At 1942 Asimov published the three robotics laws, based on mechanics, electronics and informatics advances. At XXth century robots able to do very complex self governing works were developed, like da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons.

  15. Robotic hand with modular extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Curt Michael; Quigley, Morgan

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  16. A Robotic Platform to Study the Foreflipper of the California Sea Lion.

    PubMed

    Kulkarni, Aditya A; Patel, Rahi K; Friedman, Chen; Leftwich, Megan C

    2017-01-10

    The California sea lion (Zalophus californianus), is an agile and powerful swimmer. Unlike many successful swimmers (dolphins, tuna), they generate most of their thrust with their large foreflippers. This protocol describes a robotic platform designed to study the hydrodynamic performance of the swimming California sea lion (Zalophus californianus). The robot is a model of the animal's foreflipper that is actuated by motors to replicate the motion of its propulsive stroke (the 'clap'). The kinematics of the sea lion's propulsive stroke are extracted from video data of unmarked, non-research sea lions at the Smithsonian Zoological Park (SNZ). Those data form the basis of the actuation motion of the robotic flipper presented here. The geometry of the robotic flipper is based a on high-resolution laser scan of a foreflipper of an adult female sea lion, scaled to about 60% of the full-scale flipper. The articulated model has three joints, mimicking the elbow, wrist and knuckle joint of the sea lion foreflipper. The robotic platform matches dynamics properties-Reynolds number and tip speed-of the animal when accelerating from rest. The robotic flipper can be used to determine the performance (forces and torques) and resulting flowfields.

  17. Automation and robotics technology for intelligent mining systems

    NASA Technical Reports Server (NTRS)

    Welsh, Jeffrey H.

    1989-01-01

    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.

  18. Industrial robots on the line

    NASA Astrophysics Data System (ADS)

    Ayres, R.; Miller, S.

    1982-06-01

    The characteristics, applications, and operational capabilities of currently available robots are examined. Designed to function at tasks of a repetitive, hazardous, or uncreative nature, robot appendages are controlled by microprocessors which permit some simple decision-making on-the-job, and have served for sample gathering on the Mars Viking lander. Critical developmental areas concern active sensors at the robot grappler-object interface, where sufficient data must be gathered for the central processor to which the robot is attached to conclude the state of completion and suitability of the workpiece. Although present robots must be programmed through every step of a particular industrial process, thus limiting each robot to specialized tasks, the potential for closed cells of batch-processing robot-run units is noted to be close to realization. Finally, consideration is given to methods for retraining the human workforce that robots replace

  19. Robotics research projects report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsia, T.C.

    The research results of the Robotics Research Laboratory are summarized. Areas of research include robotic control, a stand-alone vision system for industrial robots, and sensors other than vision that would be useful for image ranging, including ultrasonic and infra-red devices. One particular project involves RHINO, a 6-axis robotic arm that can be manipulated by serial transmission of ASCII command strings to its interfaced controller. (LEW)

  20. Tool Changer For Robot

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.

    1992-01-01

    Mechanism enables robot to change tools on end of arm. Actuated by motion of robot: requires no additional electrical or pneumatic energy to make or break connection between tool and wrist at end of arm. Includes three basic subassemblies: wrist interface plate attached to robot arm at wrist, tool interface plate attached to tool, and holster. Separate tool interface plate and holster provided for each tool robot uses.

  1. Evaluating alternative gait strategies using evolutionary robotics

    PubMed Central

    Sellers, William I; Dennis, Louise A; Wang, W -J; Crompton, Robin H

    2004-01-01

    Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids. PMID:15198699

  2. Stereo optical guidance system for control of industrial robots

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W. (Inventor); Rodgers, Mike H. (Inventor)

    1992-01-01

    A device for the generation of basic electrical signals which are supplied to a computerized processing complex for the operation of industrial robots. The system includes a stereo mirror arrangement for the projection of views from opposite sides of a visible indicia formed on a workpiece. The views are projected onto independent halves of the retina of a single camera. The camera retina is of the CCD (charge-coupled-device) type and is therefore capable of providing signals in response to the image projected thereupon. These signals are then processed for control of industrial robots or similar devices.

  3. Situationally driven local navigation for mobile robots. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Slack, Marc Glenn

    1990-01-01

    For mobile robots to autonomously accommodate dynamically changing navigation tasks in a goal-directed fashion, they must employ navigation plans. Any such plan must provide for the robot's immediate and continuous need for guidance while remaining highly flexible in order to avoid costly computation each time the robot's perception of the world changes. Due to the world's uncertainties, creation and maintenance of navigation plans cannot involve arbitrarily complex processes, as the robot's perception of the world will be in constant flux, requiring modifications to be made quickly if they are to be of any use. This work introduces navigation templates (NaT's) which are building blocks for the construction and maintenance of rough navigation plans which capture the relationship that objects in the world have to the current navigation task. By encoding only the critical relationship between the objects in the world and the navigation task, a NaT-based navigation plan is highly flexible; allowing new constraints to be quickly incorporated into the plan and existing constraints to be updated or deleted from the plan. To satisfy the robot's need for immediate local guidance, the NaT's forming the current navigation plan are passed to a transformation function. The transformation function analyzes the plan with respect to the robot's current location to quickly determine (a few times a second) the locally preferred direction of travel. This dissertation presents NaT's and the transformation function as well as the needed support systems to demonstrate the usefulness of the technique for controlling the actions of a mobile robot operating in an uncertain world.

  4. Robot Tracer with Visual Camera

    NASA Astrophysics Data System (ADS)

    Jabbar Lubis, Abdul; Dwi Lestari, Yuyun; Dafitri, Haida; Azanuddin

    2017-12-01

    Robot is a versatile tool that can function replace human work function. The robot is a device that can be reprogrammed according to user needs. The use of wireless networks for remote monitoring needs can be utilized to build a robot that can be monitored movement and can be monitored using blueprints and he can track the path chosen robot. This process is sent using a wireless network. For visual robot using high resolution cameras to facilitate the operator to control the robot and see the surrounding circumstances.

  5. Perspectives future space on robotics

    NASA Technical Reports Server (NTRS)

    Lavery, Dave

    1994-01-01

    Last year's flight of the German ROTEX robot flight experiment heralded the start of a new era for space robotics. ROTEX is the first of at least 10 new robotic systems and experiments that will fly before 2000. These robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces. The robotic systems to be flown in the next five years fall into three categories: extravehicular robotic (EVR) servicers, science payload servicers, and planetary surface rovers. A description of the work on these systems is presented.

  6. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Intrepid Systems Team member Mark Curry, left, talks with NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck, right, about his robot named "MXR - Mark's Exploration Robot" on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  7. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems robot "MXR - Mark's Exploration Robot" takes to the practice field and tries to capture the white object in the foreground on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Intrepid Systems' robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  8. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Children visiting the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event try to catch basketballs being thrown by a robot from FIRST Robotics at Burncoat High School (Mass.) on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  9. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems Team member Mark Curry, right, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "MXR - Mark's Exploration Robot" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  10. Guarded Motion for Mobile Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The Idaho National Laboratory (INL) has created codes that ensure that a robot will come to a stop at a precise, specified distance from any obstacle regardless of the robot's initial speed, its physical characteristics, and the responsiveness of the low-level motor control schema. This Guarded Motion for Mobile Robots system iteratively adjusts the robot's action in response to information about the robot's environment.

  11. Robotic Thumb Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Goza, S. Michael (Inventor)

    2013-01-01

    An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.

  12. Robotic hair restoration.

    PubMed

    Rose, Paul T; Nusbaum, Bernard

    2014-01-01

    The latest innovation to hair restoration surgery has been the introduction of a robotic system for harvesting grafts. This system uses the follicular unit extraction/follicular isolation technique method for harvesting follicular units, which is particularly well suited to the abilities of a robotic technology. The ARTAS system analyzes images of the donor area and then a dual-chamber needle and blunt dissecting punch are used to harvest the follicular units. The robotic technology is now being used in various locations around the world. This article discusses the use of the robotic system, its capabilities, and the advantages and disadvantages of the system. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. 30 Years of Robotic Surgery.

    PubMed

    Leal Ghezzi, Tiago; Campos Corleta, Oly

    2016-10-01

    The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.

  14. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Bruce Yost of NASA's Ames Research Center discusses a small satellite, known as PhoneSat, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  15. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Ron Diftler of NASA's Johnson Space Center in Houston demonstrates the leg movements of Robonaut 2 during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  16. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction.

    PubMed

    Chemuturi, Radhika; Amirabdollahian, Farshid; Dautenhahn, Kerstin

    2013-09-28

    influence of the gravity on the direction of the movement. The GENTLE/A system was able to adapt so that the duration required to execute point-to-point movement was according to the leading or lagging performance of the user with respect to the robot. This adaptability could be useful in the clinical settings when stroke subjects interact with the system and could also serve as an assessment parameter across various interaction sessions. As the system adapts to user input, and as the task becomes easier through practice, the robot would auto-tune for more demanding and challenging interactions. The improvement in performance of the participants in an embedded environment when compared to a virtual environment also shows promise for clinical applicability, to be tested in due time. Studying the physiology of upper arm to understand the muscle groups involved, and their influence on various movements executed during this study forms a key part of our future work.

  17. Roboter in der Raumfahrt

    NASA Astrophysics Data System (ADS)

    Hirzinger, G.

    (Robots in space)—The paper emphasizes the enormous automation impact in industry caused by microelectronics, a "byproduct" of space-technology. The evolutionary stages of robotic are outlined and it is shown that there are a lot of reasons for more automation, artificial intelligence and robotic in space, too. The telemanipulator concept is compared with the industrial robot concept, both showing up an increasing degree of similarity. The state of the art in sensory systems is discussed. By hand of the typical operations needed in space as rendezvous, assembly and docking the required robot skill is indicated. As a conclusion it is stated that the basic technologies available with industrial robots today could solve a lot of space problems. What remains to do—apart of course from ongoing research—is better integration and adaption of industrial techniques to the need of space technology.

  18. Applying robotics to HAZMAT

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-01-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  19. Piezoelectric film load cell robot collision detector

    DOEpatents

    Lembke, J.R.

    1988-03-15

    A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are dowelled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector. 3 figs.

  20. Piezoelectric film load cell robot collision detector

    DOEpatents

    Lembke, John R.

    1989-04-18

    A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are dowelled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector.

  1. Piezoelectric film load cell robot collision detector

    DOEpatents

    Lembke, J.R.

    1989-04-18

    A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are doweled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector. 3 figs.

  2. Robotic technology in urology

    PubMed Central

    Murphy, D; Challacombe, B; Khan, M S; Dasgupta, P

    2006-01-01

    Urology has increasingly become a technology‐driven specialty. The advent of robotic surgical systems in the past 10 years has led to urologists becoming the world leaders in the use of such technology. In this paper, we review the history and current status of robotic technology in urology. From the earliest uses of robots for transurethral resection of the prostate, to robotic devices for manipulating laparoscopes and to the current crop of master–slave devices for robotic‐assisted laparoscopic surgery, the evolution of robotics in the urology operating theatre is presented. Future possibilities, including the prospects for nanotechnology in urology, are awaited. PMID:17099094

  3. Robotic systems in spine surgery.

    PubMed

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  4. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  5. Systematic review of operative outcomes of robotic surgical procedures performed with endoscopic linear staplers or robotic staplers.

    PubMed

    Gutierrez, Mario; Ditto, Richard; Roy, Sanjoy

    2018-05-09

    A comprehensive review of operative outcomes of robotic surgical procedures performed with the da Vinci robotic system using either endoscopic linear staplers (ELS) or robotic staplers is not available in the published literature. We conducted a literature search to identify publications of robotic surgical procedures in all specialties performed with either ELS or robotic staplers. Twenty-nine manuscripts and six abstracts with relevant information on operative outcomes published from January 2011 to September 2017 were identified. Given the relatively recent market release of robotic staplers in 2014, comparative perioperative clinical outcomes data on the performance of ELS vs. robotic staplers in robotic surgery is very sparse in the published literature. Only three comparative studies of surgeries with the da Vinci robotic system plus ELS vs. da Vinci plus robotic staplers were identified; two in robotic colorectal surgery and the other in robotic gastric bypass surgery. These comparative studies illustrate some nuances in device design and usability, which may impact outcomes and cost, and therefore may be important to consider when selecting the appropriate stapling technologies/technique for different robotic surgeries. Comparative perioperative data on the use of ELS vs. robotic staplers in robotic surgery is scarce (three studies), and current literature identifies both types of devices as safe and effective. Given the longer clinical history of ELS and its relatively more robust evidence base, there may be trade-offs to consider before switching to robotic staplers in certain robotic procedures. However, this literature review may serve as an initial reference for future research.

  6. Full autonomous microline trace robot

    NASA Astrophysics Data System (ADS)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  7. Neural network-based multiple robot simultaneous localization and mapping.

    PubMed

    Saeedi, Sajad; Paull, Liam; Trentini, Michael; Li, Howard

    2011-12-01

    In this paper, a decentralized platform for simultaneous localization and mapping (SLAM) with multiple robots is developed. Each robot performs single robot view-based SLAM using an extended Kalman filter to fuse data from two encoders and a laser ranger. To extend this approach to multiple robot SLAM, a novel occupancy grid map fusion algorithm is proposed. Map fusion is achieved through a multistep process that includes image preprocessing, map learning (clustering) using neural networks, relative orientation extraction using norm histogram cross correlation and a Radon transform, relative translation extraction using matching norm vectors, and then verification of the results. The proposed map learning method is a process based on the self-organizing map. In the learning phase, the obstacles of the map are learned by clustering the occupied cells of the map into clusters. The learning is an unsupervised process which can be done on the fly without any need to have output training patterns. The clusters represent the spatial form of the map and make further analyses of the map easier and faster. Also, clusters can be interpreted as features extracted from the occupancy grid map so the map fusion problem becomes a task of matching features. Results of the experiments from tests performed on a real environment with multiple robots prove the effectiveness of the proposed solution.

  8. Robotic comfort zones

    NASA Astrophysics Data System (ADS)

    Likhachev, Maxim; Arkin, Ronald C.

    2000-10-01

    The paper investigates how the psychological notion of comfort can be useful in the design of robotic systems. A review of the existing study of human comfort, especially regarding its presence in infants, is conducted with the goal being to determine the relevant characteristics for mapping it onto the robotics domain. Focus is place on the identification of the salient features in the environment that affect the comfort level. Factors involved include current state familiarity, working conditions, the amount and location of available resources, etc. As part of our newly developed comfort function theory, the notion of an object as a psychological attachment for a robot is also introduced, as espoused in Bowlby's theory of attachment. The output space of the comfort function and its dependency on the comfort level are analyzed. The results of the derivation of this comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function in the domain of robotics is presented with relevance for real-world operations. Also, a transformation of the theoretical discussion into a mathematical framework suitable for implementation within a behavior-based control system is presented. The paper concludes with results of simulation studies and real robot experiments using the derived comfort function.

  9. Rehabilitation robotics

    PubMed Central

    KREBS, H.I.; VOLPE, B.T.

    2015-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician’s toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual’s functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We will provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we will then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We will present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. PMID:23312648

  10. Rehabilitation robotics.

    PubMed

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Simulation of in vivo dynamics during robot assisted joint movement.

    PubMed

    Bobrowitsch, Evgenij; Lorenz, Andrea; Wülker, Nikolaus; Walter, Christian

    2014-12-16

    Robots are very useful tools in orthopedic research. They can provide force/torque controlled specimen motion with high repeatability and precision. A method to analyze dissipative energy outcome in an entire joint was developed in our group. In a previous study, a sheep knee was flexed while axial load remained constant during the measurement of dissipated energy. We intend to apply this method for the investigation of osteoarthritis. Additionally, the method should be improved by simulation of in vivo knee dynamics. Thus, a new biomechanical testing tool will be developed for analyzing in vitro joint properties after different treatments. Discretization of passive knee flexion was used to construct a complex flexion movement by a robot and simulate altering axial load similar to in vivo sheep knee dynamics described in a previous experimental study. The robot applied an in vivo like axial force profile with high reproducibility during the corresponding knee flexion (total standard deviation of 0.025 body weight (BW)). A total residual error between the in vivo and simulated axial force was 0.16 BW. Posterior-anterior and medio-lateral forces were detected by the robot as a backlash of joint structures. Their curve forms were similar to curve forms of corresponding in vivo measured forces, but in contrast to the axial force, they showed higher total standard deviation of 0.118 and 0.203 BW and higher total residual error of 0.79 and 0.21 BW for posterior-anterior and medio-lateral forces respectively. We developed and evaluated an algorithm for the robotic simulation of complex in vivo joint dynamics using a joint specimen. This should be a new biomechanical testing tool for analyzing joint properties after different treatments.

  12. Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazumdar, Anirban; Spencer, Steven James; Hobart, Clinton

    Here this paper describes the design and performance of a synthetic rope on sheave drive system. This system uses synthetic ropes instead of steel cables to achieve low weight and a compact form factor. We demonstrate how this system is capable of 28-Hz torque control bandwidth, 95% efficiency, and quiet operation, making it ideal for use on legged robots and other dynamic physically interactive systems. Component geometry and tailored maintenance procedures are used to achieve high endurance. Endurance tests based on walking data predict that the ropes will survive roughly 247,000 cycles when used on large (90 kg), fully actuatedmore » bipedal robot systems. The drive systems have been incorporated into two novel bipedal robots capable of three-dimensional unsupported walking. Robot data illustrate effective torque tracking and nearly silent operation. Finally, comparisons with alternative transmission designs illustrate the size, weight, and endurance advantages of using this type of synthetic rope drive system.« less

  13. Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications

    DOE PAGES

    Mazumdar, Anirban; Spencer, Steven James; Hobart, Clinton; ...

    2017-01-05

    Here this paper describes the design and performance of a synthetic rope on sheave drive system. This system uses synthetic ropes instead of steel cables to achieve low weight and a compact form factor. We demonstrate how this system is capable of 28-Hz torque control bandwidth, 95% efficiency, and quiet operation, making it ideal for use on legged robots and other dynamic physically interactive systems. Component geometry and tailored maintenance procedures are used to achieve high endurance. Endurance tests based on walking data predict that the ropes will survive roughly 247,000 cycles when used on large (90 kg), fully actuatedmore » bipedal robot systems. The drive systems have been incorporated into two novel bipedal robots capable of three-dimensional unsupported walking. Robot data illustrate effective torque tracking and nearly silent operation. Finally, comparisons with alternative transmission designs illustrate the size, weight, and endurance advantages of using this type of synthetic rope drive system.« less

  14. A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics

    PubMed Central

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D.; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions. PMID:28588473

  15. Design of a Two-Step Calibration Method of Kinematic Parameters for Serial Robots

    NASA Astrophysics Data System (ADS)

    WANG, Wei; WANG, Lei; YUN, Chao

    2017-03-01

    Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product-of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot's 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.

  16. Multi-Robot Assembly Strategies and Metrics.

    PubMed

    Marvel, Jeremy A; Bostelman, Roger; Falco, Joe

    2018-02-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.

  17. Multi-Robot Assembly Strategies and Metrics

    PubMed Central

    MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE

    2018-01-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234

  18. Intelligent Articulated Robot

    NASA Astrophysics Data System (ADS)

    Nyein, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    In this paper, an articulated type of industrial used robot is discussed. The robot is mainly intended to be used in pick and place operation. It will sense the object at the specified place and move it to a desired location. A peripheral interface controller (PIC16F84A) is used as the main controller of the robot. Infrared LED and IR receiver unit for object detection and 4-bit bidirectional universal shift registers (74LS194) and high current and high voltage Darlington transistors arrays (ULN2003) for driving the arms' motors are used in this robot. The amount of rotation for each arm is regulated by the limit switches. The operation of the robot is very simple but it has the ability of to overcome resetting position after power failure. It can continue its work from the last position before the power is failed without needing to come back to home position.

  19. Comparative assessment of three standardized robotic surgery training methods.

    PubMed

    Hung, Andrew J; Jayaratna, Isuru S; Teruya, Kara; Desai, Mihir M; Gill, Inderbir S; Goh, Alvin C

    2013-10-01

    To evaluate three standardized robotic surgery training methods, inanimate, virtual reality and in vivo, for their construct validity. To explore the concept of cross-method validity, where the relative performance of each method is compared. Robotic surgical skills were prospectively assessed in 49 participating surgeons who were classified as follows: 'novice/trainee': urology residents, previous experience <30 cases (n = 38) and 'experts': faculty surgeons, previous experience ≥30 cases (n = 11). Three standardized, validated training methods were used: (i) structured inanimate tasks; (ii) virtual reality exercises on the da Vinci Skills Simulator (Intuitive Surgical, Sunnyvale, CA, USA); and (iii) a standardized robotic surgical task in a live porcine model with performance graded by the Global Evaluative Assessment of Robotic Skills (GEARS) tool. A Kruskal-Wallis test was used to evaluate performance differences between novices and experts (construct validity). Spearman's correlation coefficient (ρ) was used to measure the association of performance across inanimate, simulation and in vivo methods (cross-method validity). Novice and expert surgeons had previously performed a median (range) of 0 (0-20) and 300 (30-2000) robotic cases, respectively (P < 0.001). Construct validity: experts consistently outperformed residents with all three methods (P < 0.001). Cross-method validity: overall performance of inanimate tasks significantly correlated with virtual reality robotic performance (ρ = -0.7, P < 0.001) and in vivo robotic performance based on GEARS (ρ = -0.8, P < 0.0001). Virtual reality performance and in vivo tissue performance were also found to be strongly correlated (ρ = 0.6, P < 0.001). We propose the novel concept of cross-method validity, which may provide a method of evaluating the relative value of various forms of skills education and assessment. We externally confirmed the construct validity of each featured training tool. © 2013 BJU

  20. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Two young visitors get an up-close look at an engineering model of Robonaut 2, complete with a set of legs, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  1. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Deputy Administrator Lori Garver, left, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  2. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Deputy Administrator Lori Garver, right, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  3. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    University of Waterloo (Canada) Robotics Team members test their robot on the practice field one day prior to the NASA-WPI Sample Return Robot Centennial Challenge, Friday, June 15, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  4. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-14

    A University of Waterloo Robotics Team member tests their robot on the practice field two days prior to the NASA-WPI Sample Return Robot Centennial Challenge, Thursday, June 14, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  5. Learning New Basic Movements for Robotics

    NASA Astrophysics Data System (ADS)

    Kober, Jens; Peters, Jan

    Obtaining novel skills is one of the most important problems in robotics. Machine learning techniques may be a promising approach for automatic and autonomous acquisition of movement policies. However, this requires both an appropriate policy representation and suitable learning algorithms. Employing the most recent form of the dynamical systems motor primitives originally introduced by Ijspeert et al. [1], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning, and present our current best performing learning algorithms. Finally, we show that it is possible to include a start-up phase in rhythmic primitives. We apply our approach to two elementary movements, i.e., Ball-in-a-Cup and Ball-Paddling, which can be learned on a real Barrett WAM robot arm at a pace similar to human learning.

  6. Design-Oriented Enhanced Robotics Curriculum

    ERIC Educational Resources Information Center

    Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.

    2013-01-01

    This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…

  7. A conceptual cognitive architecture for robots to learn behaviors from demonstrations in robotic aid area.

    PubMed

    Tan, Huan; Liang, Chen

    2011-01-01

    This paper proposes a conceptual hybrid cognitive architecture for cognitive robots to learn behaviors from demonstrations in robotic aid situations. Unlike the current cognitive architectures, this architecture puts concentration on the requirements of the safety, the interaction, and the non-centralized processing in robotic aid situations. Imitation learning technologies for cognitive robots have been integrated into this architecture for rapidly transferring the knowledge and skills between human teachers and robots.

  8. Robot Comedy Lab: experimenting with the social dynamics of live performance

    PubMed Central

    Katevas, Kleomenis; Healey, Patrick G. T.; Harris, Matthew Tobias

    2015-01-01

    The success of live comedy depends on a performer's ability to “work” an audience. Ethnographic studies suggest that this involves the co-ordinated use of subtle social signals such as body orientation, gesture, gaze by both performers and audience members. Robots provide a unique opportunity to test the effects of these signals experimentally. Using a life-size humanoid robot, programmed to perform a stand-up comedy routine, we manipulated the robot's patterns of gesture and gaze and examined their effects on the real-time responses of a live audience. The strength and type of responses were captured using SHORE™computer vision analytics. The results highlight the complex, reciprocal social dynamics of performer and audience behavior. People respond more positively when the robot looks at them, negatively when it looks away and performative gestures also contribute to different patterns of audience response. This demonstrates how the responses of individual audience members depend on the specific interaction they're having with the performer. This work provides insights into how to design more effective, more socially engaging forms of robot interaction that can be used in a variety of service contexts. PMID:26379585

  9. Numerical approach of collision avoidance and optimal control on robotic manipulators

    NASA Technical Reports Server (NTRS)

    Wang, Jyhshing Jack

    1990-01-01

    Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence of the optimization technique and obstacle avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. The obstacle avoidance scheme can deal with multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and can be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on assumptions, the results provide a benchmark against which any optimization techniques can be measured.

  10. Basic Operational Robotics Instructional System

    NASA Technical Reports Server (NTRS)

    Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John

    2013-01-01

    The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.

  11. The Power of Educational Robotics

    NASA Astrophysics Data System (ADS)

    Cummings, Timothy

    The purpose of this action research project was to investigate the impact a students' participation in educational robotics has on his or her performance in the STEM subjects. This study attempted to utilize educational robotics as a method for increasing student achievement and engagement in STEM subjects. Over the course of 12 weeks, an after-school robotics program was offered to students. Guided by the standards and principles of VEX IQ, a leading resource in educational robotics, students worked in collaboration on creating a design for their robot, building and testing their robot, and competing in the VEX IQ Crossover Challenge. Student data was gathered through a pre-participation survey, observations from the work they performed in robotics club, their performance in STEM subject classes, and the analysis of their end-of-the-year report card. Results suggest that the students who participate in robotics club experienced a positive impact on their performance in STEM subject classes.

  12. Pediatric robotic urologic surgery-2014

    PubMed Central

    Kearns, James T.; Gundeti, Mohan S.

    2014-01-01

    We seek to provide a background of the current state of pediatric urologic surgery including a brief history, procedural outcomes, cost considerations, future directions, and the state of robotic surgery in India. Pediatric robotic urology has been shown to be safe and effective in cases ranging from pyeloplasty to bladder augmentation with continent urinary diversion. Complication rates are in line with other methods of performing the same procedures. The cost of robotic surgery continues to decrease, but setting up pediatric robotic urology programs can be costly in terms of both monetary investment and the training of robotic surgeons. The future directions of robot surgery include instrument and system refinements, augmented reality and haptics, and telesurgery. Given the large number of children in India, there is huge potential for growth of pediatric robotic urology in India. Pediatric robotic urologic surgery has been established as safe and effective, and it will be an important tool in the future of pediatric urologic surgery worldwide. PMID:25197187

  13. When a robot is social: spatial arrangements and multimodal semiotic engagement in the practice of social robotics.

    PubMed

    Alac, Morana; Movellan, Javier; Tanaka, Fumihide

    2011-12-01

    Social roboticists design their robots to function as social agents in interaction with humans and other robots. Although we do not deny that the robot's design features are crucial for attaining this aim, we point to the relevance of spatial organization and coordination between the robot and the humans who interact with it. We recover these interactions through an observational study of a social robotics laboratory and examine them by applying a multimodal interactional analysis to two moments of robotics practice. We describe the vital role of roboticists and of the group of preverbal infants, who are involved in a robot's design activity, and we argue that the robot's social character is intrinsically related to the subtleties of human interactional moves in laboratories of social robotics. This human involvement in the robot's social agency is not simply controlled by individual will. Instead, the human-machine couplings are demanded by the situational dynamics in which the robot is lodged.

  14. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    PubMed

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  15. Singularity now: using the ventricular assist device as a model for future human-robotic physiology

    PubMed Central

    Martin, Archer K.

    2016-01-01

    In our 21st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today’s world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named “IshBot”) can best be studied in ventricular assist devices – VAD. PMID:28913480

  16. Referees check robots after qualifying match at regional robotic competition at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Referees check the robots on the floor of the playing field after a qualifying match of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow- like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.

  17. Robots: An Impact on Education.

    ERIC Educational Resources Information Center

    Blaesi, LaVon; Maness, Marion

    1984-01-01

    Provides background information on robotics and robots, considering impact of robots on the workplace and concerns of the work force. Discusses incorporating robotics into the educational system at all levels, exploring industry-education partnerships to fund introduction of new technology into the curriculum. New funding sources and funding…

  18. Jumping robots: a biomimetic solution to locomotion across rough terrain.

    PubMed

    Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard

    2007-09-01

    This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection.

  19. Robots are not just tools

    NASA Astrophysics Data System (ADS)

    Prescott, Tony J.

    2017-04-01

    The EPSRC principles of robotics make a number of commitments about the ontological status of robots such as that robots are "just tools" or can give only "an impression or real intelligence". This commentary proposes that this assumes, all too easily, that we know the boundary conditions of future robotics development, and argues that progress towards a more useful set of principles could begin by thinking carefully about the ontological status of robots. Whilst most robots are currently little more than tools, we are entering an era where there will be new kinds of entities that combine some of the properties of tools with psychological capacities that we had previously thought were reserved for complex biological organisms such as humans. The ontological status of robots might be best described as liminal - neither living nor simply mechanical. There is also evidence that people will treat robots as more than just tools regardless of the extent to which their machine nature is transparent. Ethical principles need to be developed that recognise these ontological and psychological issues around the nature of robots and how they are perceived.

  20. IntelliTable: Inclusively-Designed Furniture with Robotic Capabilities.

    PubMed

    Prescott, Tony J; Conran, Sebastian; Mitchinson, Ben; Cudd, Peter

    2017-01-01

    IntelliTable is a new proof-of-principle assistive technology system with robotic capabilities in the form of an elegant universal cantilever table able to move around by itself, or under user control. We describe the design and current capabilities of the table and the human-centered design methodology used in its development and initial evaluation. The IntelliTable study has delivered robotic platform programmed by a smartphone that can navigate around a typical home or care environment, avoiding obstacles, and positioning itself at the user's command. It can also be configured to navigate itself to pre-ordained places positions within an environment using ceiling tracking, responsive optical guidance and object-based sonar navigation.

  1. Hand-held medical robots.

    PubMed

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  2. Future of robotic surgery.

    PubMed

    Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M

    2013-01-01

    In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.

  3. Toward a framework for levels of robot autonomy in human-robot interaction

    PubMed Central

    Beer, Jenay M.; Fisk, Arthur D.; Rogers, Wendy A.

    2017-01-01

    A critical construct related to human-robot interaction (HRI) is autonomy, which varies widely across robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully autonomous systems, influence the way in which humans and robots may interact with one another. Thus, there is a need to understand HRI by identifying variables that influence – and are influenced by – robot autonomy. Our overarching goal is to develop a framework for levels of robot autonomy in HRI. To reach this goal, the framework draws links between HRI and human-automation interaction, a field with a long history of studying and understanding human-related variables. The construct of autonomy is reviewed and redefined within the context of HRI. Additionally, the framework proposes a process for determining a robot’s autonomy level, by categorizing autonomy along a 10-point taxonomy. The framework is intended to be treated as guidelines to determine autonomy, categorize the LORA along a qualitative taxonomy, and consider which HRI variables (e.g., acceptance, situation awareness, reliability) may be influenced by the LORA. PMID:29082107

  4. Human-Robot Planetary Exploration Teams

    NASA Technical Reports Server (NTRS)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  5. Dynamic photogrammetric calibration of industrial robots

    NASA Astrophysics Data System (ADS)

    Maas, Hans-Gerd

    1997-07-01

    Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot

  6. Robots As Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social.

    PubMed

    Wiese, Eva; Metta, Giorgio; Wykowska, Agnieszka

    2017-01-01

    Robots are increasingly envisaged as our future cohabitants. However, while considerable progress has been made in recent years in terms of their technological realization, the ability of robots to interact with humans in an intuitive and social way is still quite limited. An important challenge for social robotics is to determine how to design robots that can perceive the user's needs, feelings, and intentions, and adapt to users over a broad range of cognitive abilities. It is conceivable that if robots were able to adequately demonstrate these skills, humans would eventually accept them as social companions. We argue that the best way to achieve this is using a systematic experimental approach based on behavioral and physiological neuroscience methods such as motion/eye-tracking, electroencephalography, or functional near-infrared spectroscopy embedded in interactive human-robot paradigms. This approach requires understanding how humans interact with each other, how they perform tasks together and how they develop feelings of social connection over time, and using these insights to formulate design principles that make social robots attuned to the workings of the human brain. In this review, we put forward the argument that the likelihood of artificial agents being perceived as social companions can be increased by designing them in a way that they are perceived as intentional agents that activate areas in the human brain involved in social-cognitive processing. We first review literature related to social-cognitive processes and mechanisms involved in human-human interactions, and highlight the importance of perceiving others as intentional agents to activate these social brain areas. We then discuss how attribution of intentionality can positively affect human-robot interaction by (a) fostering feelings of social connection, empathy and prosociality, and by (b) enhancing performance on joint human-robot tasks. Lastly, we describe circumstances under which

  7. Robots As Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social

    PubMed Central

    Wiese, Eva; Metta, Giorgio; Wykowska, Agnieszka

    2017-01-01

    Robots are increasingly envisaged as our future cohabitants. However, while considerable progress has been made in recent years in terms of their technological realization, the ability of robots to interact with humans in an intuitive and social way is still quite limited. An important challenge for social robotics is to determine how to design robots that can perceive the user’s needs, feelings, and intentions, and adapt to users over a broad range of cognitive abilities. It is conceivable that if robots were able to adequately demonstrate these skills, humans would eventually accept them as social companions. We argue that the best way to achieve this is using a systematic experimental approach based on behavioral and physiological neuroscience methods such as motion/eye-tracking, electroencephalography, or functional near-infrared spectroscopy embedded in interactive human–robot paradigms. This approach requires understanding how humans interact with each other, how they perform tasks together and how they develop feelings of social connection over time, and using these insights to formulate design principles that make social robots attuned to the workings of the human brain. In this review, we put forward the argument that the likelihood of artificial agents being perceived as social companions can be increased by designing them in a way that they are perceived as intentional agents that activate areas in the human brain involved in social-cognitive processing. We first review literature related to social-cognitive processes and mechanisms involved in human–human interactions, and highlight the importance of perceiving others as intentional agents to activate these social brain areas. We then discuss how attribution of intentionality can positively affect human–robot interaction by (a) fostering feelings of social connection, empathy and prosociality, and by (b) enhancing performance on joint human–robot tasks. Lastly, we describe circumstances under

  8. RHOBOT: Radiation hardened robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  9. Robotic liver surgery

    PubMed Central

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  10. Vulnerable users: deceptive robotics

    NASA Astrophysics Data System (ADS)

    Collins, Emily C.

    2017-07-01

    The Principles of Robotics were outlined by the EPSRC in 2010. They are aimed at regulating robots in the real world. This paper represents a response to principle number four which reads: "Robots are manufactured artefacts. They should not be designed in a deceptive way to exploit vulnerable users; instead their machine nature should be transparent". The following critique questions the principle's validity by asking whether it is correct as a statement about the nature of robots, and the relationship between robots and people. To achieve this, the principle is broken down into the following two main component statements: (1) "Robots should not be designed in a deceptive way to exploit vulnerable users", and, (2) "Machine nature should be transparent". It is argued that both of the component statements that make up this principle are fundamentally flawed because of the undefined nature of the critical terms: "deceptive", "vulnerable", and "machine nature", and that as such the principle as a whole is misleading.

  11. Experiential Learning of Robotics Fundamentals Based on a Case Study of Robot-Assisted Stereotactic Neurosurgery

    ERIC Educational Resources Information Center

    Faria, Carlos; Vale, Carolina; Machado, Toni; Erlhagen, Wolfram; Rito, Manuel; Monteiro, Sérgio; Bicho, Estela

    2016-01-01

    Robotics has been playing an important role in modern surgery, especially in procedures that require extreme precision, such as neurosurgery. This paper addresses the challenge of teaching robotics to undergraduate engineering students, through an experiential learning project of robotics fundamentals based on a case study of robot-assisted…

  12. GPS Enabled Semi-Autonomous Robot

    DTIC Science & Technology

    2017-09-01

    equal and the goal has not yet been reached (i.e., any time the robot has reached a local minimum), and direct the robot to travel in a specific...whether the robot was turning or not. The challenge is overcome by ensuring the robot travels at its maximum speed at all times . Further research into...robot’s fixed reference frame was recalculated each time through the control loop. If the encoder data allows for the robot to appear to have travelled

  13. Medical robotics.

    PubMed

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  14. Robotics in reproductive medicine.

    PubMed

    Sroga, Julie; Patel, Sejal Dharia; Falcone, Tommaso

    2008-01-01

    In the past decade, robotic technology has been increasingly incorporated into various industries, including surgery and medicine. This chapter will review the history, development, current applications, and future of robotic technology in reproductive medicine. A literature search was performed for all publications regarding robotic technology in medicine, surgery, reproductive endocrinology, and its role in both surgical education and telepresence surgery. As robotic assisted surgery has emerged, this technology provides a feasible option for minimally invasive surgery, impacts surgical education, and plays a role in telepresence surgery.

  15. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from Case Western Reserve University pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  16. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from The University of Utah pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  17. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from The University of Alabama pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  18. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from New York University work on their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  19. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from York College CUNY are with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  20. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from the University of Arkansas pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  1. Toward understanding social cues and signals in human-robot interaction: effects of robot gaze and proxemic behavior.

    PubMed

    Fiore, Stephen M; Wiltshire, Travis J; Lobato, Emilio J C; Jentsch, Florian G; Huang, Wesley H; Axelrod, Benjamin

    2013-01-01

    As robots are increasingly deployed in settings requiring social interaction, research is needed to examine the social signals perceived by humans when robots display certain social cues. In this paper, we report a study designed to examine how humans interpret social cues exhibited by robots. We first provide a brief overview of perspectives from social cognition in humans and how these processes are applicable to human-robot interaction (HRI). We then discuss the need to examine the relationship between social cues and signals as a function of the degree to which a robot is perceived as a socially present agent. We describe an experiment in which social cues were manipulated on an iRobot Ava(TM) mobile robotics platform in a hallway navigation scenario. Cues associated with the robot's proxemic behavior were found to significantly affect participant perceptions of the robot's social presence and emotional state while cues associated with the robot's gaze behavior were not found to be significant. Further, regardless of the proxemic behavior, participants attributed more social presence and emotional states to the robot over repeated interactions than when they first interacted with it. Generally, these results indicate the importance for HRI research to consider how social cues expressed by a robot can differentially affect perceptions of the robot's mental states and intentions. The discussion focuses on implications for the design of robotic systems and future directions for research on the relationship between social cues and signals.

  2. Robotic aortic surgery.

    PubMed

    Duran, Cassidy; Kashef, Elika; El-Sayed, Hosam F; Bismuth, Jean

    2011-01-01

    Surgical robotics was first utilized to facilitate neurosurgical biopsies in 1985, and it has since found application in orthopedics, urology, gynecology, and cardiothoracic, general, and vascular surgery. Surgical assistance systems provide intelligent, versatile tools that augment the physician's ability to treat patients by eliminating hand tremor and enabling dexterous operation inside the patient's body. Surgical robotics systems have enabled surgeons to treat otherwise untreatable conditions while also reducing morbidity and error rates, shortening operative times, reducing radiation exposure, and improving overall workflow. These capabilities have begun to be realized in two important realms of aortic vascular surgery, namely, flexible robotics for exclusion of complex aortic aneurysms using branched endografts, and robot-assisted laparoscopic aortic surgery for occlusive and aneurysmal disease.

  3. Industrial robots: Handbook

    NASA Astrophysics Data System (ADS)

    Kozyrev, Iu. G.

    Topics covered include terms, definitions, and classification; operator-directed manipulators; autooperators as used in automated pressure casting; construction and application of industrial robots; and the operating bases of automated systems. Attention is given to adaptive and interactive robots; gripping mechanisms; applications to foundary production, press-forging plants, heat treatment, welding, and assembly operations. A review of design recommendations includes a determination of fundamental structural and technological indicators for industrial robots and a consideration of drive mechanisms.

  4. A multi-perspective evaluation of a service robot for seniors: the voice of different stakeholders.

    PubMed

    Bedaf, Sandra; Marti, Patrizia; Amirabdollahian, Farshid; de Witte, Luc

    2017-07-31

    The potential of service robots for seniors is given increasing attention as the ageing population in Western countries will continue to grow as well as the demand for home care. In order to capture the experience of living with a robot at home, a multi-perspective evaluation was conducted. Older adults (n = 10) were invited to execute an actual interaction scenario with the Care-O-bot ® robot in a home-like environment and were questioned about their experiences. Additionally, interviews were conducted with the elderly participants, informal carers (n = 7) and professional caregivers (n = 11). Seniors showed to be more keen to accept the robot than their caregivers and relatives. However, the robot in its current form was found to be too limited and participants wished the robot could perform more complex tasks. In order to be acceptable a future robot should execute these complex tasks based on the personal preferences of the user which would require the robot to be flexible and extremely smart, comparable to the care that is delivered by a human carer. Developing the functional features to perform activities is not the only challenge in robot development that deserves the attention of robot developers. The development of social behaviour and skills should be addressed as well. This is possible adopting a person-centred design approach, which relies on validation activities with actual users in realistic environments, similar to those described in this paper. Implications for rehabilitation Attitude of older adults towards service robots Potential of service robots for older adults.

  5. The Summer Robotic Autonomy Course

    NASA Technical Reports Server (NTRS)

    Nourbakhsh, Illah R.

    2002-01-01

    We offered a first Robotic Autonomy course this summer, located at NASA/Ames' new NASA Research Park, for approximately 30 high school students. In this 7-week course, students worked in ten teams to build then program advanced autonomous robots capable of visual processing and high-speed wireless communication. The course made use of challenge-based curricula, culminating each week with a Wednesday Challenge Day and a Friday Exhibition and Contest Day. Robotic Autonomy provided a comprehensive grounding in elementary robotics, including basic electronics, electronics evaluation, microprocessor programming, real-time control, and robot mechanics and kinematics. Our course then continued the educational process by introducing higher-level perception, action and autonomy topics, including teleoperation, visual servoing, intelligent scheduling and planning and cooperative problem-solving. We were able to deliver such a comprehensive, high-level education in robotic autonomy for two reasons. First, the content resulted from close collaboration between the CMU Robotics Institute and researchers in the Information Sciences and Technology Directorate and various education program/project managers at NASA/Ames. This collaboration produced not only educational content, but will also be focal to the conduct of formative and summative evaluations of the course for further refinement. Second, CMU rapid prototyping skills as well as the PI's low-overhead perception and locomotion research projects enabled design and delivery of affordable robot kits with unprecedented sensory- locomotory capability. Each Trikebot robot was capable of both indoor locomotion and high-speed outdoor motion and was equipped with a high-speed vision system coupled to a low-cost pan/tilt head. As planned, follow the completion of Robotic Autonomy, each student took home an autonomous, competent robot. This robot is the student's to keep, as she explores robotics with an extremely capable tool in the

  6. Enabling Interoperable Space Robots With the Joint Technical Architecture for Robotic Systems (JTARS)

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur; Dubowsky, Steven; Quinn, Roger; Marzwell, Neville

    2005-01-01

    Robots that operate independently of one another will not be adequate to accomplish the future exploration tasks of long-distance autonomous navigation, habitat construction, resource discovery, and material handling. Such activities will require that systems widely share information, plan and divide complex tasks, share common resources, and physically cooperate to manipulate objects. Recognizing the need for interoperable robots to accomplish the new exploration initiative, NASA s Office of Exploration Systems Research & Technology recently funded the development of the Joint Technical Architecture for Robotic Systems (JTARS). JTARS charter is to identify the interface standards necessary to achieve interoperability among space robots. A JTARS working group (JTARS-WG) has been established comprising recognized leaders in the field of space robotics including representatives from seven NASA centers along with academia and private industry. The working group s early accomplishments include addressing key issues required for interoperability, defining which systems are within the project s scope, and framing the JTARS manuals around classes of robotic systems.

  7. Laboratory systems integration: robotics and automation.

    PubMed

    Felder, R A

    1991-01-01

    Robotic technology is going to have a profound impact on the clinical laboratory of the future. Faced with increased pressure to reduce health care spending yet increase services to patients, many laboratories are looking for alternatives to the inflexible or "fixed" automation found in many clinical analyzers. Robots are being examined by many clinical pathologists as an attractive technology which can adapt to the constant changes in laboratory testing. Already, laboratory designs are being altered to accommodate robotics and automated specimen processors. However, the use of robotics and computer intelligence in the clinical laboratory is still in its infancy. Successful examples of robotic automation exist in several laboratories. Investigators have used robots to automate endocrine testing, high performance liquid chromatography, and specimen transportation. Large commercial laboratories are investigating the use of specimen processors which combine the use of fixed automation and robotics. Robotics have also reduced the exposure of medical technologists to specimens infected with viral pathogens. The successful examples of clinical robotics applications were a result of the cooperation of clinical chemists, engineers, and medical technologists. At the University of Virginia we have designed and implemented a robotic critical care laboratory. Initial clinical experience suggests that robotic performance is reliable, however, staff acceptance and utilization requires continuing education. We are also developing a robotic cyclosporine which promises to greatly reduce the labor costs of this analysis. The future will bring lab wide automation that will fully integrate computer artificial intelligence and robotics. Specimens will be transported by mobile robots. Specimen processing, aliquotting, and scheduling will be automated.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts's-Law-Inspired Approach

    PubMed Central

    Lin, Hsien-I; George Lee, C. S.

    2013-01-01

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly. PMID:23820745

  9. Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.

    PubMed

    Lin, Hsien-I; Lee, C S George

    2013-07-02

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.

  10. Robotics-inspired biology.

    PubMed

    Gravish, Nick; Lauder, George V

    2018-03-29

    For centuries, designers and engineers have looked to biology for inspiration. Biologically inspired robots are just one example of the application of knowledge of the natural world to engineering problems. However, recent work by biologists and interdisciplinary teams have flipped this approach, using robots and physical models to set the course for experiments on biological systems and to generate new hypotheses for biological research. We call this approach robotics-inspired biology; it involves performing experiments on robotic systems aimed at the discovery of new biological phenomena or generation of new hypotheses about how organisms function that can then be tested on living organisms. This new and exciting direction has emerged from the extensive use of physical models by biologists and is already making significant advances in the areas of biomechanics, locomotion, neuromechanics and sensorimotor control. Here, we provide an introduction and overview of robotics-inspired biology, describe two case studies and suggest several directions for the future of this exciting new research area. © 2018. Published by The Company of Biologists Ltd.

  11. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    A judge for the NASA-WPI Sample Return Robot Centennial Challenge follows a robot on the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  12. DARPA Robotics Challenge (DRC) Using Human-Machine Teamwork to Perform Disaster Response with a Humanoid Robot

    DTIC Science & Technology

    2017-02-01

    DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT FLORIDA INSTITUTE FOR HUMAN AND...AND SUBTITLE DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT 5a. CONTRACT NUMBER...Human and Machine Cognition (IHMC) from 2012-2016 through three phases of the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge

  13. Integration of Haptics in Agricultural Robotics

    NASA Astrophysics Data System (ADS)

    Kannan Megalingam, Rajesh; Sreekanth, M. M.; Sivanantham, Vinu; Sai Kumar, K.; Ghanta, Sriharsha; Surya Teja, P.; Reddy, Rajesh G.

    2017-08-01

    Robots can differentiate with open loop system and closed loop system robots. We face many problems when we do not have a feedback from robots. In this research paper, we are discussing all possibilities to achieve complete closed loop system for Multiple-DOF Robotic Arm, which is used in a coconut tree climbing and cutting robot by introducing a Haptic device. We are working on various sensors like tactile, vibration, force and proximity sensors for getting feedback. For monitoring the robotic arm achieved by graphical user interference software which simulates the working of the robotic arm, send the feedback of all the real time analog values which are produced by various sensors and provide real-time graphs for estimate the efficiency of the Robot.

  14. Kinematic path planning for space-based robotics

    NASA Astrophysics Data System (ADS)

    Seereeram, Sanjeev; Wen, John T.

    1998-01-01

    Future space robotics tasks require manipulators of significant dexterity, achievable through kinematic redundancy and modular reconfigurability, but with a corresponding complexity of motion planning. Existing research aims for full autonomy and completeness, at the expense of efficiency, generality or even user friendliness. Commercial simulators require user-taught joint paths-a significant burden for assembly tasks subject to collision avoidance, kinematic and dynamic constraints. Our research has developed a Kinematic Path Planning (KPP) algorithm which bridges the gap between research and industry to produce a powerful and useful product. KPP consists of three key components: path-space iterative search, probabilistic refinement, and an operator guidance interface. The KPP algorithm has been successfully applied to the SSRMS for PMA relocation and dual-arm truss assembly tasks. Other KPP capabilities include Cartesian path following, hybrid Cartesian endpoint/intermediate via-point planning, redundancy resolution and path optimization. KPP incorporates supervisory (operator) input at any detail to influence the solution, yielding desirable/predictable paths for multi-jointed arms, avoiding obstacles and obeying manipulator limits. This software will eventually form a marketable robotic planner suitable for commercialization in conjunction with existing robotic CAD/CAM packages.

  15. Concepts for multi-IFU robotic positioning systems

    NASA Astrophysics Data System (ADS)

    Miziarski, Stan; Brzeski, Jurek; Bland Hawthorn, Joss; Gilbert, James; Goodwin, Michael; Heijmans, Jeroen; Horton, Anthony; Lawrence, Jon; Saunders, Will; Smith, Greg A.; Staszak, Nicholas

    2012-09-01

    Following the successful commissioning of SAMI (Sydney-AAO Multi-object IFU) the AAO has undertaken concept studies leading to a design of a new instrument for the AAT (Hector). It will use an automated robotic system for the deployment of fibre hexabundles to the focal plane. We have analysed several concepts, which could be applied in the design of new instruments or as a retrofit to existing positioning systems. We look at derivatives of Starbugs that could handle a large fibre bundle as well as modifications to pick and place robots like 2dF or OzPoz. One concept uses large magnetic buttons that adhere to a steel field plate with substantial force. To move them we replace the gripper with a pneumatic device, which engages with the button and injects it with compressed air, thus forming a magnet preloaded air bearing allowing virtually friction-less repositioning of the button by a gantry or an R-Theta robot. New fibre protection, guiding and retraction systems are also described. These developments could open a practical avenue for the upgrade to a number of instruments.

  16. Real-time augmented feedback benefits robotic laparoscopic training.

    PubMed

    Judkins, Timothy N; Oleynikov, Dmitry; Stergiou, Nick

    2006-01-01

    Robotic laparoscopic surgery has revolutionized minimally invasive surgery for treatment of abdominal pathologies. However, current training techniques rely on subjective evaluation. There is a lack of research on the type of tasks that should be used for training. Robotic surgical systems also do not currently have the ability to provide feedback to the surgeon regarding success of performing tasks. We trained medical students on three laparoscopic tasks and provided real-time feedback of performance during training. We found that real-time feedback can benefit training if the feedback provides information that is not available through other means (grip force). Subjects that received grip force feedback applied less force when the feedback was removed. Other forms of feedback (speed and relative phase) did not aid or impede training. Secondly, a relatively short training period (10 trials for each task) significantly improved most objective measures of performance. We also showed that robotic surgical performance can be quantitatively measured and evaluated. Providing grip force feedback can make the surgeon more aware of the forces being applied to delicate tissue during surgery.

  17. Robust Software Architecture for Robots

    NASA Technical Reports Server (NTRS)

    Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael

    2009-01-01

    Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.

  18. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Wunderkammer Laboratory Team leader Jim Rothrock, left, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "Cerberus" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Rothrock's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  19. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    SpacePRIDE Team members Chris Williamson, right, and Rob Moore, second from right, answer questions from 8th grade Sullivan Middle School (Mass.) students about their robot on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. SpacePRIDE's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  20. Robot navigation research using the HERMIES mobile robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, D.L.

    1989-01-01

    In recent years robot navigation has attracted much attention from researchers around the world. Not only are theoretical studies being simulated on sophisticated computers, but many mobile robots are now used as test vehicles for these theoretical studies. Various algorithms have been perfected for navigation in a known static environment; but navigation in an unknown and dynamic environment poses a much more challenging problem for researchers. Many different methodologies have been developed for autonomous robot navigation, but each methodology is usually restricted to a particular type of environment. One important research focus of the Center for Engineering Systems Advanced researchmore » (CESAR) at Oak Ridge National Laboratory, is autonomous navigation in unknown and dynamic environments using the series of HERMIES mobile robots. The research uses an expert system for high-level planning interfaced with C-coded routines for implementing the plans, and for quick processing of data requested by the expert system. In using this approach, the navigation is not restricted to one methodology since the expert system can activate a rule module for the methodology best suited for the current situation. Rule modules can be added the rule base as they are developed and tested. Modules are being developed or enhanced for navigating from a map, searching for a target, exploring, artificial potential-field navigation, navigation using edge-detection, etc. This paper will report on the various rule modules and methods of navigation in use, or under development at CESAR, using the HERMIES-IIB robot as a testbed. 13 refs., 5 figs., 1 tab.« less

  1. Social humanoid robot SARA: development of the wrist mechanism

    NASA Astrophysics Data System (ADS)

    Penčić, M.; Rackov, M.; Čavić, M.; Kiss, I.; Cioată, V. G.

    2018-01-01

    This paper presents the development of a wrist mechanism for humanoid robots. The research was conducted within the project which develops social humanoid robot Sara - a mobile anthropomorphic platform for researching the social behaviour of robots. There are two basic ways for the realization of humanoid wrist. The first one is based on biologically inspired structures that have variable stiffness, and the second one on low backlash mechanisms that have high stiffness. Our solution is low backlash differential mechanism that requires small actuators. Based on the kinematic-dynamic requirements, a dynamic model of the robot wrist is formed. A dynamic simulation for several hand positions was performed and the driving torques of the wrist mechanism were determined. The realized wrist has 2 DOFs and enables movements in the direction of flexion/extension 115°, ulnar/radial deviation ±45° and the combination of these two movements. It consists of a differential mechanism with three spur bevel gears, two of which are driving and identical, while the last one is the driven gear to which the robot hand is attached. Power transmission and motion from the actuator to the input links of the differential mechanism is realized with two parallel placed identical gear mechanisms. The wrist mechanism has high carrying capacity and reliability, high efficiency, a compact design and low backlash that provides high positioning accuracy and repeatability of movements, which is essential for motion control.

  2. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This plan covers robotics Research, Development, Demonstration, Testing and Evaluation activities in the Program for the next five years. These activities range from bench-scale R D to full-scale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development Program (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management (ER WM) operations at DOE sites to be safer,more » faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. In July 1990 a forum was held announcing the robotics program. Over 60 organizations (industrial, university, and federal laboratory) made presentations on their robotics capabilities. To stimulate early interactions with the ER WM activities at DOE sites, as well as with the robotics community, the RTDP sponsored four technology demonstrations related to ER WM needs. These demonstrations integrated commercial technology with robotics technology developed by DOE in support of areas such as nuclear reactor maintenance and the civilian reactor waste program. 2 figs.« less

  3. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    First-time participants from Saginaw Valley State University pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  4. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from York College CUNY make adjustments to their robot miner for its turn in the mining arena on the fourth day of NASA's 9th Robotic Mining Competition, May 17, inside the RobotPits at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  5. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from the South Dakota School of Mines & Technology pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  6. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, college team members work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  7. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from Temple University work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  8. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from the University of Colorado Boulder work on their robot miner in the RobotPits in the Educator Resource Center on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  9. The Robotic Decathlon: Project-Based Learning Labs and Curriculum Design for an Introductory Robotics Course

    ERIC Educational Resources Information Center

    Cappelleri, D. J.; Vitoroulis, N.

    2013-01-01

    This paper presents a series of novel project-based learning labs for an introductory robotics course that are developed into a semester-long Robotic Decathlon. The last three events of the Robotic Decathlon are used as three final one-week-long project tasks; these replace a previous course project that was a semester-long robotics competition.…

  10. Robots in Space -Psychological Aspects

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.

    2006-01-01

    A viewgraph presentation on the psychological aspects of developing robots to perform routine operations associated with monitoring, inspection, maintenance and repair in space is shown. The topics include: 1) Purpose; 2) Vision; 3) Current Robots in Space; 4) Ground Based Robots; 5) AERCam; 6) Rotating Bladder Robot (ROBLR); 7) DART; 8) Robonaut; 9) Full Immersion Telepresence Testbed; 10) ERA; and 11) Psychological Aspects

  11. Cooperative Autonomous Robots for Reconnaissance

    DTIC Science & Technology

    2009-03-06

    REPORT Cooperative Autonomous Robots for Reconnaissance 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Collaborating mobile robots equipped with WiFi ...Cooperative Autonomous Robots for Reconnaissance Report Title ABSTRACT Collaborating mobile robots equipped with WiFi transceivers are configured as a mobile...equipped with WiFi transceivers are configured as a mobile ad-hoc network. Algorithms are developed to take advantage of the distributed processing

  12. Review of emerging surgical robotic technology.

    PubMed

    Peters, Brian S; Armijo, Priscila R; Krause, Crystal; Choudhury, Songita A; Oleynikov, Dmitry

    2018-04-01

    The use of laparoscopic and robotic procedures has increased in general surgery. Minimally invasive robotic surgery has made tremendous progress in a relatively short period of time, realizing improvements for both the patient and surgeon. This has led to an increase in the use and development of robotic devices and platforms for general surgery. The purpose of this review is to explore current and emerging surgical robotic technologies in a growing and dynamic environment of research and development. This review explores medical and surgical robotic endoscopic surgery and peripheral technologies currently available or in development. The devices discussed here are specific to general surgery, including laparoscopy, colonoscopy, esophagogastroduodenoscopy, and thoracoscopy. Benefits and limitations of each technology were identified and applicable future directions were described. A number of FDA-approved devices and platforms for robotic surgery were reviewed, including the da Vinci Surgical System, Sensei X Robotic Catheter System, FreeHand 1.2, invendoscopy E200 system, Flex® Robotic System, Senhance, ARES, the Single-Port Instrument Delivery Extended Research (SPIDER), and the NeoGuide Colonoscope. Additionally, platforms were reviewed which have not yet obtained FDA approval including MiroSurge, ViaCath System, SPORT™ Surgical System, SurgiBot, Versius Robotic System, Master and Slave Transluminal Endoscopic Robot, Verb Surgical, Miniature In Vivo Robot, and the Einstein Surgical Robot. The use and demand for robotic medical and surgical platforms is increasing and new technologies are continually being developed. New technologies are increasingly implemented to improve on the capabilities of previously established systems. Future studies are needed to further evaluate the strengths and weaknesses of each robotic surgical device and platform in the operating suite.

  13. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Merriam, E. W.; Becker, J. D.

    1973-01-01

    A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.

  14. Walking Robot Locomotion System Conception

    NASA Astrophysics Data System (ADS)

    Ignatova, D.; Abadjieva, E.; Abadjiev, V.; Vatzkitchev, Al.

    2014-09-01

    This work is a brief analysis on the application and perspective of using the walking robots in different areas in practice. The most common characteristics of walking four legs robots are presented here. The specific features of the applied actuators in walking mechanisms are also shown in the article. The experience of Institute of Mechanics - BAS is illustrated in creation of Spiroid and Helicon1 gears and their assembly in actuation of studied robots. Loading on joints reductors of robot legs is modelled, when the geometrical and the walking parameters of the studied robot are preliminary defined. The obtained results are purposed for designing the control of the loading of reductor type Helicon in the legs of the robot, when it is experimentally tested.

  15. The use of automation and robotic systems to establish and maintain lunar base operations

    NASA Technical Reports Server (NTRS)

    Petrosky, Lyman J.

    1992-01-01

    Robotic systems provide a means of performing many of the operations required to establish and maintain a lunar base. They form a synergistic system when properly used in concert with human activities. This paper discusses the various areas where robotics and automation may be used to enhance lunar base operations. Robots are particularly well suited for surface operations (exterior to the base habitat modules) because they can be designed to operate in the extreme temperatures and vacuum conditions of the Moon (or Mars). In this environment, the capabilities of semi-autonomous robots would surpass that of humans in all but the most complex tasks. Robotic surface operations include such activities as long range geological and mineralogical surveys with sample return, materials movement in and around the base, construction of radiation barriers around habitats, transfer of materials over large distances, and construction of outposts. Most of the above operations could be performed with minor modifications to a single basic robotic rover. Within the lunar base habitats there are a few areas where robotic operations would be preferable to human operations. Such areas include routine inspections for leakage in the habitat and its systems, underground transfer of materials between habitats, and replacement of consumables. In these and many other activities, robotic systems will greatly enhance lunar base operations. The robotic systems described in this paper are based on what is realistically achievable with relatively near term technology. A lunar base can be built and maintained if we are willing.

  16. NASA's Intelligent Robotics Group

    NASA Image and Video Library

    2017-01-06

    Shareable video highlighting the Intelligent Robotics Group's 25 years of experience developing tools to allow humans and robots to work as teammates. Highlights the VERVE software, which allows researchers to see a 3D representation of the robot's world and mentions how Nissan is using a version of VERVE in the autonomous vehicle research.

  17. Robotics--The New Silent Majority: Engineering Robot Applications and Education.

    ERIC Educational Resources Information Center

    Kimbler, D. L.

    1984-01-01

    The impact of robotics in education is discussed in terms of academic assistance to industry in robotics as well as academic problems in handling the demands put upon it. Some potential solutions that can have lasting impact on educational systems are proposed. (JN)

  18. Vision servo of industrial robot: A review

    NASA Astrophysics Data System (ADS)

    Zhang, Yujin

    2018-04-01

    Robot technology has been implemented to various areas of production and life. With the continuous development of robot applications, requirements of the robot are also getting higher and higher. In order to get better perception of the robots, vision sensors have been widely used in industrial robots. In this paper, application directions of industrial robots are reviewed. The development, classification and application of robot vision servo technology are discussed, and the development prospect of industrial robot vision servo technology is proposed.

  19. [Mobile autonomous robots-Possibilities and limits].

    PubMed

    Maehle, E; Brockmann, W; Walthelm, A

    2002-02-01

    Besides industrial robots, which today are firmly established in production processes, service robots are becoming more and more important. They shall provide services for humans in different areas of their professional and everyday environment including medicine. Most of these service robots are mobile which requires an intelligent autonomous behaviour. After characterising the different kinds of robots the relevant paradigms of intelligent autonomous behaviour for mobile robots are critically discussed in this paper and illustrated by three concrete examples of robots realized in Lübeck. In addition a short survey of actual kinds of surgical robots as well as an outlook to future developments is given.

  20. Robotic assisted andrological surgery

    PubMed Central

    Parekattil, Sijo J; Gudeloglu, Ahmet

    2013-01-01

    The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637

  1. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  2. Robotics FAQ Index

    Science.gov Websites

    faqs.org Robotics FAQ Index faqs.org faqs.org - Internet FAQ Archives Robotics FAQ Index [By Updates | Archive Stats | Search | Help] Internet RFC Index Usenet FAQ Index Other FAQs Documents Tools

  3. Training in urological robotic surgery. Future perspectives.

    PubMed

    El Sherbiny, Ahmed; Eissa, Ahmed; Ghaith, Ahmed; Morini, Elena; Marzotta, Lucilla; Sighinolfi, Maria Chiara; Micali, Salvatore; Bianchi, Giampaolo; Rocco, Bernardo

    2018-01-01

    As robotics are becoming more integrated into the medical field, robotic training is becoming more crucial in order to overcome the lack of experienced robotic surgeons. However, there are several obstacles facing the development of robotic training programs like the high cost of training and the increased operative time during the initial period of the learning curve, which, in turn increase the operative cost. Robotic-assisted laparoscopic prostatectomy is the most commonly performed robotic surgery. Moreover, robotic surgery is becoming more popular among urologic oncologists and pediatric urologists. The need for a standardized and validated robotic training curriculum was growing along with the increased number of urologic centers and institutes adopting the robotic technology. Robotic training includes proctorship, mentorship or fellowship, telementoring, simulators and video training. In this chapter, we are going to discuss the different training methods, how to evaluate robotic skills, the available robotic training curriculum, and the future perspectives.

  4. Robotic Precursor Missions for Mars Habitats

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay

    2000-01-01

    Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.

  5. Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control.

    PubMed

    Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu

    2016-01-01

    In this paper, the problem of object caging and transporting is considered for multiple mobile robots. With the consideration of minimizing the number of robots and decreasing the rotation of the object, the proper points are calculated and assigned to the multiple mobile robots to allow them to form a symmetric caging formation. The caging formation guarantees that all of the Euclidean distances between any two adjacent robots are smaller than the minimal width of the polygonal object so that the object cannot escape. In order to avoid collision among robots, the parameter of the robots radius is utilized to design the caging formation, and the A⁎ algorithm is used so that mobile robots can move to the proper points. In order to avoid obstacles, the robots and the object are regarded as a rigid body to apply artificial potential field method. The fuzzy sliding mode control method is applied for tracking control of the nonholonomic mobile robots. Finally, the simulation and experimental results show that multiple mobile robots are able to cage and transport the polygonal object to the goal position, avoiding obstacles. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Robotics in percutaneous cardiovascular interventions.

    PubMed

    Pourdjabbar, Ali; Ang, Lawrence; Behnamfar, Omid; Patel, Mitul P; Reeves, Ryan R; Campbell, Paul T; Madder, Ryan D; Mahmud, Ehtisham

    2017-11-01

    The fundamental technique of performing percutaneous cardiovascular (CV) interventions has remained unchanged and requires operators to wear heavy lead aprons to minimize exposure to ionizing radiation. Robotic technology is now being utilized in interventional cardiology partially as a direct result of the increasing appreciation of the long-term occupational hazards of the field. This review was undertaken to report the clinical outcomes of percutaneous robotic coronary and peripheral vascular interventions. Areas covered: A systematic literature review of percutaneous robotic CV interventions was undertaken. The safety and feasibility of percutaneous robotically-assisted CV interventions has been validated in simple to complex coronary disease, and iliofemoral disease. Studies have shown that robotically-assisted PCI significantly reduces operator exposure to harmful ionizing radiation without compromising procedural success or clinical efficacy. In addition to the operator benefits, robotically-assisted intervention has the potential for patient advantages by allowing more accurate lesion length measurement, precise stent placement and lower patient radiation exposure. However, further investigation is required to fully elucidate these potential benefits. Expert commentary: Incremental improvement in robotic technology and telecommunications would enable treatment of an even broader patient population, and potentially provide remote robotic PCI.

  7. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.

    PubMed

    Ando, Noriyasu; Kanzaki, Ryohei

    2017-09-01

    The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Transoral robotic supraglottic partial laryngectomy.

    PubMed

    Kayhan, Fatma Tülin; Kaya, Kamil Hakan; Altintas, Ahmet; Sayin, Ibrahim

    2014-07-01

    Transoral robotic supraglottic laryngectomy is a new surgical way to perform endolaryngeal resection of supraglottic laryngeal carcinoma. The aim of this report was to present our initial experience about transoral robotic supraglottic laryngectomy for early supraglottic cancer. Subjects with early squamous cell carcinoma (T1-T2) of supraglottic region who managed using transoral robotic surgery in a tertiary referral center were included in the study. The technique of robot-assisted resection, intraoperative blood loss, mean robotic operating time, pathologic margin status, postoperative extubation, need for a tracheotomy, and length of hospitalization, complications, duration of oral nutrition, and neck dissection and radiotherapy needs were evaluated. Thirteen subjects (12 men, 1 woman) with T1-T2 supraglottic carcinoma were successfully operated on with transoral robotic surgery. In all subjects, negative margins were obtained. The mean total robotic surgery time was 31.6 (SD, 16.2) minutes (range, 20-80 minutes). Mean total blood loss was less than 40 mL. Subjects started oral nutrition with a mean of 10.8 (SD, 8.9) days (range, 4-30 days) postoperatively. The mean hospitalization was 15.4 (SD, 10.4) days (range, 7-42 days). Transoral robotic supraglottic laryngectomy with the da Vinci robotic system can be regarded as a feasible, safe, and effective technique. Although short-term results seem discouraging, long-term results are needed to evaluate the oncologic safety.

  9. Student teams maneuver robots in qualifying match at regional robotic competition at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    All four robots, maneuvered by student teams behind protective walls, converge on a corner of the playing field during qualifying matches of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow- like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.

  10. Insect-controlled Robot: A Mobile Robot Platform to Evaluate the Odor-tracking Capability of an Insect.

    PubMed

    Ando, Noriyasu; Emoto, Shuhei; Kanzaki, Ryohei

    2016-12-19

    Robotic odor source localization has been a challenging area and one to which biological knowledge has been expected to contribute, as finding odor sources is an essential task for organism survival. Insects are well-studied organisms with regard to odor tracking, and their behavioral strategies have been applied to mobile robots for evaluation. This "bottom-up" approach is a fundamental way to develop biomimetic robots; however, the biological analyses and the modeling of behavioral mechanisms are still ongoing. Therefore, it is still unknown how such a biological system actually works as the controller of a robotic platform. To answer this question, we have developed an insect-controlled robot in which a male adult silkmoth (Bombyx mori) drives a robot car in response to odor stimuli; this can be regarded as a prototype of a future insect-mimetic robot. In the cockpit of the robot, a tethered silkmoth walked on an air-supported ball and an optical sensor measured the ball rotations. These rotations were translated into the movement of the two-wheeled robot. The advantage of this "hybrid" approach is that experimenters can manipulate any parameter of the robot, which enables the evaluation of the odor-tracking capability of insects and provides useful suggestions for robotic odor-tracking. Furthermore, these manipulations are non-invasive ways to alter the sensory-motor relationship of a pilot insect and will be a useful technique for understanding adaptive behaviors.

  11. A review of medical robotics for minimally invasive soft tissue surgery.

    PubMed

    Dogangil, G; Davies, B L; Rodriguez y Baena, F

    2010-01-01

    This paper provides an overview of recent trends and developments in medical robotics for minimally invasive soft tissue surgery, with a view to highlight some of the issues posed and solutions proposed in the literature. The paper includes a thorough review of the literature, which focuses on soft tissue surgical robots developed and published in the last five years (between 2004 and 2008) in indexed journals and conference proceedings. Only surgical systems were considered; imaging and diagnostic devices were excluded from the review. The systems included in this paper are classified according to the following surgical specialties: neurosurgery; eye surgery and ear, nose, and throat (ENT); general, thoracic, and cardiac surgery; gastrointestinal and colorectal surgery; and urologic surgery. The systems are also cross-classified according to their engineering design and robotics technology, which is included in tabular form at the end of the paper. The review concludes with an overview of the field, along with some statistical considerations about the size, geographical spread, and impact of medical robotics for soft tissue surgery today.

  12. Experiments in autonomous robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, W.R.

    1987-01-01

    The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.

  13. Model of a Soft Robotic Actuator with Embedded Fluidic Network

    NASA Astrophysics Data System (ADS)

    Gamus, Benny; Or, Yizhar; Gat, Amir

    2017-11-01

    Soft robotics is an emerging bio-inspired concept of actuation, with promising applications for robotic locomotion and manipulation. Focusing on actuation by pressurized embedded fluidic networks, we present analytic formulation and closed-form solutions of an elastic actuator with pressurized fluidic networks. In this work we account for the effects of solid inertia and elasticity, as well as fluid viscosity, which allows modelling the system's step-response and frequency response as well as suggesting mode elimination and isolation techniques. We also present and model the application of viscous-peeling as an actuation mechanism, simplifying the fabrication process by eliminating the need for internal cavities. The theoretical results describing the viscous-elastic-inertial dynamics of the actuator are illustrated by experiments. The approach presented in this work may pave the way for the design and implementation of soft robotic legged locomotion that exploits dynamic effects.

  14. Concentric Tube Robots as Steerable Needles: Achieving Follow-the-Leader Deployment

    PubMed Central

    Gilbert, Hunter B.; Neimat, Joseph; Webster, Robert J.

    2015-01-01

    Concentric tube robots can enable new clinical interventions if they are able to pass through soft tissue, deploy along desired paths through open cavities, or travel along winding lumens. These behaviors require the robot to deploy in such a way that the curved shape of its shaft remains unchanged as the tip progresses forward (i.e., “follow-the-leader” deployment). Follow-the-leader deployment is challenging for concentric tube robots due to elastic (and particularly torsional) coupling between the tubes that form the robot. However, as we show in this paper, follow-the-leader deployment is possible, provided that tube precurvatures and deployment sequences are appropriately selected. We begin by defining follow-the-leader deployment and providing conditions that must be satisfied for a concentric tube robot to achieve it. We then examine several useful special cases of follow-the-leader deployment, showing that both circular and helical precurvatures can be employed, and provide an experimental illustration of the helical case. We also explore approximate follow-the-leader behavior and provide a metric for the similarity of a general deployment to a follow-the-leader deployment. Finally, we consider access to the hippocampus in the brain to treat epilepsy, as a motivating clinical example for follow-the-leader deployment. PMID:26622208

  15. Concentric Tube Robots as Steerable Needles: Achieving Follow-the-Leader Deployment.

    PubMed

    Gilbert, Hunter B; Neimat, Joseph; Webster, Robert J

    2015-04-01

    Concentric tube robots can enable new clinical interventions if they are able to pass through soft tissue, deploy along desired paths through open cavities, or travel along winding lumens. These behaviors require the robot to deploy in such a way that the curved shape of its shaft remains unchanged as the tip progresses forward (i.e., "follow-the-leader" deployment). Follow-the-leader deployment is challenging for concentric tube robots due to elastic (and particularly torsional) coupling between the tubes that form the robot. However, as we show in this paper, follow-the-leader deployment is possible, provided that tube precurvatures and deployment sequences are appropriately selected. We begin by defining follow-the-leader deployment and providing conditions that must be satisfied for a concentric tube robot to achieve it. We then examine several useful special cases of follow-the-leader deployment, showing that both circular and helical precurvatures can be employed, and provide an experimental illustration of the helical case. We also explore approximate follow-the-leader behavior and provide a metric for the similarity of a general deployment to a follow-the-leader deployment. Finally, we consider access to the hippocampus in the brain to treat epilepsy, as a motivating clinical example for follow-the-leader deployment.

  16. Three laws of robotics and surgery.

    PubMed

    Moran, Michael

    2008-08-01

    In 1939, Isaac Asimov solidified the modern science fiction genre of robotics in his short story "Strange Playfellow" but altered our thinking about robots in Runaround in 1942 by formulating the Three Laws. He took an engineer's perspective on advanced robotic technologies. Surgical robots by definition violate the first law, yet his discussions are poignant for our understanding of future potential of robotic urologic surgery. We sought to better understand Asimov's visions by reading his fiction and autobiography. We then sought to place his perceptions of science fact next to the Three Laws (he later added a fourth law, the zeroth). Asimov's Three Laws are often quoted in medical journals during discussions about robotic surgery. His First Law states: "A robot may not injure a human being, or, through inaction, allow a human being to come to harm. " This philosophy would directly conflict with the application in surgery. In fact, most of his robotic stories deal with robots that come into conflicts with the laws. Robots in his cleverly orchestrated works evolve unique solutions to complex hierarchical conflicts with these laws. Asimov anticipated the coming maelstrom of intelligent robotic technologies with prescient unease. Despite his scholarly intuitions, he was able to fathom medical/surgical applications in many of his works. These fictional robotic physicians were able to overcome the first law and aid in the care and management of the sick/injured. Isaac Asimov published over 500 books on topics ranging from Shakespeare to science. Despite his widespread influence, he refused to visit the MIT robotics laboratory to see current, state-of-the-art systems. He managed to lay the foundation of modern robotic control systems with a human-oriented safety mechanism in his laws. "If knowledge can create problems, it is not through ignorance that we can solve them " (I Asimov).

  17. Small Body Exploration Technologies as Precursors for Interstellar Robotics

    NASA Astrophysics Data System (ADS)

    Noble, R. J.; Sykes, M. V.

    The scientific activities undertaken to explore our Solar System will be very similar to those required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution, as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.

  18. Honda humanoid robots development.

    PubMed

    Hirose, Masato; Ogawa, Kenichi

    2007-01-15

    Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's 'challenging spirit'.

  19. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the University of Minnesota-Twin Cities work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  20. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the South Dakota School of Mines & Technology work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.