Science.gov

Sample records for abbe diffraction limit

  1. What is the diffraction limit? From Airy to Abbe using direct numerical integration

    NASA Astrophysics Data System (ADS)

    Calm, Y. M.; Merlo, J. M.; Burns, M. J.; Kempa, K.; Naughton, M. J.

    The resolution of a conventional optical microscope is sometimes taken from Airy's point spread function (PSF), 0 . 61 λ / NA , and sometimes from Abbe, λ / 2 NA , where NA is the numerical aperture, however modern fluorescence and near-field optical microscopies achieve spatial resolution far better than either of these limits. There is a new category of 2D metamaterials called planar optical elements (POEs), which have a microscopic thickness (< λ), macroscopic transverse dimensions (> 100 λ), and are composed of an array of nanostructured light scatterers. POEs are found in a range of micro- and nano-photonic technologies, and will influence the future optical nanoscopy. With this pretext, we shed some light on the 'diffraction limit' by numerically evaluating Kirchhoff's scalar formulae (in their exact form) and identifying the features of highly non-paraxial, 3D PSFs. We show that the Airy and Abbe criteria are connected, and we comment on the design rules for a particular type of POE: the flat lens. This work is supported by the W. M. Keck Foundation.

  2. Crystallography: Resolution beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Shen, Jian-Ren

    2016-02-01

    A method has been devised that extends the resolution of X-ray crystal structures beyond the diffraction limit. This might help to improve the visualization of structures of proteins that form 'poorly diffracting' crystals. See Letter p.202

  3. Bending the rules: widefield microscopy and the Abbe limit of resolution.

    PubMed

    Verdaasdonk, Jolien S; Stephens, Andrew D; Haase, Julian; Bloom, Kerry

    2014-02-01

    One of the most fundamental concepts of microscopy is that of resolution-the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope-deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy. PMID:23893718

  4. Bending the Rules: Widefield Microscopy and the Abbe Limit of Resolution

    PubMed Central

    Verdaasdonk, Jolien S.; Stephens, Andrew D.; Haase, Julian; Bloom, Kerry

    2014-01-01

    One of the most fundamental concepts of microscopy is that of resolution–the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope–deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy. PMID:23893718

  5. Photoluminescence studies of polycrystalline Cu(In,Ga)Se2: Lateral inhomogeneities beyond Abbe's diffraction limit

    NASA Astrophysics Data System (ADS)

    Neumann, Oliver; Brüggemann, Rudolf; Hariskos, Dimitrios; Witte, Wolfram; Bauer, Gottfried H.

    2015-11-01

    We analyze Cu(In,Ga)Se2 absorbers with a scanning near-field optical microscope (SNOM) by photoluminescence (PL). Such measurements allow one to extract local fluctuations of the integral PL yield, the quasi-Fermi level splitting, and the material composition in the submicron range. However, the experimental findings depend strongly on the surface roughness of the absorber: If the surface is rough, artifact-prone correlations between surface contour and PL features measured by SNOM can be found that complicate the study of recombination effects. For smooth surfaces, such correlations no longer exist and the influence of grain boundaries on the integral PL yield and the quasi-Fermi level splitting is revealed. The method also allows a detailed determination of the local band gaps in neighboring grains and their spatial variation inside, and thus of possibly local changes in chemical composition of different grains.

  6. Scalar limitations of diffractive optical elements

    NASA Technical Reports Server (NTRS)

    Johnson, Eric G.; Hochmuth, Diane; Moharam, M. G.; Pommet, Drew

    1993-01-01

    In this paper, scalar limitations of diffractive optic components are investigated using coupled wave analyses. Results are presented for linear phase gratings and fanout devices. In addition, a parametric curve is given which correlates feature size with scalar performance.

  7. Diffraction-limited ultrabroadband terahertz spectroscopy

    PubMed Central

    Baillergeau, M.; Maussang, K.; Nirrengarten, T.; Palomo, J.; Li, L. H.; Linfield, E. H.; Davies, A. G.; Dhillon, S.; Tignon, J.; Mangeney, J.

    2016-01-01

    Diffraction is the ultimate limit at which details of objects can be resolved in conventional optical spectroscopy and imaging systems. In the THz spectral range, spectroscopy systems increasingly rely on ultra-broadband radiation (extending over more 5 octaves) making a great challenge to reach resolution limited by diffraction. Here, we propose an original easy-to-implement wavefront manipulation concept to achieve ultrabroadband THz spectroscopy system with diffraction-limited resolution. Applying this concept to a large-area photoconductive emitter, we demonstrate diffraction-limited ultra-broadband spectroscopy system up to 14.5 THz with a dynamic range of 103. The strong focusing of ultrabroadband THz radiation provided by our approach is essential for investigating single micrometer-scale objects such as graphene flakes or living cells, and besides for achieving intense ultra-broadband THz electric fields. PMID:27142959

  8. Diffraction-limited ultrabroadband terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Baillergeau, M.; Maussang, K.; Nirrengarten, T.; Palomo, J.; Li, L. H.; Linfield, E. H.; Davies, A. G.; Dhillon, S.; Tignon, J.; Mangeney, J.

    2016-05-01

    Diffraction is the ultimate limit at which details of objects can be resolved in conventional optical spectroscopy and imaging systems. In the THz spectral range, spectroscopy systems increasingly rely on ultra-broadband radiation (extending over more 5 octaves) making a great challenge to reach resolution limited by diffraction. Here, we propose an original easy-to-implement wavefront manipulation concept to achieve ultrabroadband THz spectroscopy system with diffraction-limited resolution. Applying this concept to a large-area photoconductive emitter, we demonstrate diffraction-limited ultra-broadband spectroscopy system up to 14.5 THz with a dynamic range of 103. The strong focusing of ultrabroadband THz radiation provided by our approach is essential for investigating single micrometer-scale objects such as graphene flakes or living cells, and besides for achieving intense ultra-broadband THz electric fields.

  9. Beyond the diffraction limit via optical amplification.

    PubMed

    Kellerer, Aglaé N; Ribak, Erez N

    2016-07-15

    In a previous article [Astron. Astrophys.561, A118 (2014)], we suggested a method to overcome the diffraction limit behind a telescope. We discuss and extend recent numerical simulations and test whether it is indeed possible to use photon amplification to enhance the angular resolution of a telescope or a microscope beyond the diffraction limit. An essential addition is the proposal to select events with an above-average ratio of stimulated to spontaneous photons. The analysis shows that the diffraction limit of a telescope is surpassed by a factor of 10 for an amplifier gain of 200, if the analysis is restricted to a tenth of the incoming astronomical photons. A gain of 70 is sufficient with a hundredth of the photons. More simulations must be performed to account for the bunching of spontaneous photons. PMID:27420490

  10. Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit.

    PubMed

    Yue, Liyang; Yan, Bing; Wang, Zengbo

    2016-04-01

    We designed a novel cylindrical metalens assembled by hexagonally arranged close-contact nanofibers. A near-field focusing nanojet with a full-width at half-maximum (FWHM) waist, 26.7% smaller than the Abbe diffraction limit for 532 nm wavelength light, is observed at the bottom of a 1600 nm diameter cylindrical metalens assembled by 160 nm diameter nanofibers irradiated by a plane wave from the top. Using differently sized nanofibers as building blocks to assemble the metalens, the waist size of the produced photonic nanojet in the near-field zone and the lateral resolution of the focus can be flexibly adjusted, simultaneously breaking the diffraction limit. PMID:27192230

  11. Optical microscopy beyond the diffraction limit

    PubMed Central

    Smolyaninov, Igor I.

    2008-01-01

    Over the past century the resolution of far-field optical microscopes, which rely on propagating optical modes, was widely believed to be limited because of diffraction to a value on the order of a half-wavelength λ∕2 of the light used. Although immersion microscopes had slightly improved resolution on the order of λ∕2n, the increased resolution was limited by the small range of refractive indices, n, of available transparent materials. We are experiencing quick demolition of the diffraction limit in optical microscopy. Over the past few years numerous nonlinear optical microscopy techniques based on photoswitching and saturation of fluorescence demonstrated far-field resolution of 20 to 30 nm. The latest exciting example of these techniques has been demonstrated by Huang et al. [Science 319, 810–813 (2008)]. Moreover, recent progress in metamaterials indicates that artificial optical media can be created, which do not exhibit the diffraction limit. Resolution of linear “immersion” microscopes based on such metamaterials appears limited only by losses, which can be compensated by gain media. Thus, optical microscopy is quickly moving towards the 10 nm resolution scale, which should bring about numerous revolutionary advances in biomedical imaging. PMID:19404465

  12. Printing colour at the optical diffraction limit.

    PubMed

    Kumar, Karthik; Duan, Huigao; Hegde, Ravi S; Koh, Samuel C W; Wei, Jennifer N; Yang, Joel K W

    2012-09-01

    The highest possible resolution for printed colour images is determined by the diffraction limit of visible light. To achieve this limit, individual colour elements (or pixels) with a pitch of 250 nm are required, translating into printed images at a resolution of ∼100,000 dots per inch (d.p.i.). However, methods for dispensing multiple colourants or fabricating structural colour through plasmonic structures have insufficient resolution and limited scalability. Here, we present a non-colourant method that achieves bright-field colour prints with resolutions up to the optical diffraction limit. Colour information is encoded in the dimensional parameters of metal nanostructures, so that tuning their plasmon resonance determines the colours of the individual pixels. Our colour-mapping strategy produces images with both sharp colour changes and fine tonal variations, is amenable to large-volume colour printing via nanoimprint lithography, and could be useful in making microimages for security, steganography, nanoscale optical filters and high-density spectrally encoded optical data storage. PMID:22886173

  13. Coherent imaging at the diffraction limit

    PubMed Central

    Thibault, Pierre; Guizar-Sicairos, Manuel; Menzel, Andreas

    2014-01-01

    X-ray ptychography, a scanning coherent diffractive imaging technique, holds promise for imaging with dose-limited resolution and sensitivity. If the foreseen increase of coherent flux by orders of magnitude can be matched by additional technological and analytical advances, ptychography may approach imaging speeds familiar from full-field methods while retaining its inherently quantitative nature and metrological versatility. Beyond promises of high throughput, spectroscopic applications in three dimensions become feasible, as do measurements of sample dynamics through time-resolved imaging or careful characterization of decoherence effects. PMID:25177990

  14. On the Diffraction Limit for Lensless Imaging

    PubMed Central

    Mielenz, Klaus D.

    1999-01-01

    The diffraction limit for lensless imaging, defined as the sharpest possible point image obtainable with a pinhole aperture, is analyzed and compared to the corresponding limit for imaging with lenses by means of theoretical considerations and numerical computations using the Fresnel-Lommel diffraction theory for circular apertures. The numerical result (u = π) obtained for the best configuration parameter u which defines the optical setup is consistent with the quarter-wave criterion, and is the same as the value reported in a classical paper by Petzval but smaller than the value (u = 1.8π) found by Lord Rayleigh. The smallest discernible detail (pixel) in a composite image is defined by an expression found by Rayleigh on applying the half-wave criterion and is shown to be consistent with the Sparrow criterion of resolution. The numerical values of other measures of image size are reported and compared to equivalent parameters of the Fraunhofer-Airy profile that governs imaging with lenses.

  15. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance.

    PubMed

    Song, Maowen; Wang, Changtao; Zhao, Zeyu; Pu, Mingbo; Liu, Ling; Zhang, Wei; Yu, Honglin; Luo, Xiangang

    2016-01-21

    The past decade has witnessed a great deal of optical systems designed for exceeding the Abbe's diffraction limit. Unfortunately, a deep subwavelength spot is obtained at the price of extremely short focal length, which is indeed a near-field diffraction limit that could rarely go beyond in the nanofocusing device. One method to mitigate such a problem is to set up a rapid oscillatory electromagnetic field that converges at the prescribed focus. However, abrupt modulation of phase and amplitude within a small fraction of a wavelength seems to be the main obstacle in the visible regime, aggravated by loss and plasmonic features that come into function. In this paper, we propose a periodically repeated ring-disk complementary structure to break the near-field diffraction limit via plasmonic Fano resonance, originating from the interference between the complex hybrid plasmon resonance and the continuum of propagating waves through the silver film. This plasmonic Fano resonance introduces a π phase jump in the adjacent channels and amplitude modulation to achieve radiationless electromagnetic interference. As a result, deep subwavelength spots as small as 0.0045λ(2) at 36 nm above the silver film have been numerically demonstrated. This plate holds promise for nanolithography, subdiffraction imaging and microscopy. PMID:26691553

  16. Sub-diffraction limit resolution in microscopy

    NASA Technical Reports Server (NTRS)

    Cheng, Ming (Inventor); Chen, Weinong (Inventor)

    2007-01-01

    A method and apparatus for visualizing sub-micron size particles employs a polarizing microscope wherein a focused beam of polarized light is projected onto a target, and a portion of the illuminating light is blocked from reaching the specimen, whereby to produce a shadow region, and projecting diffracted light from the target onto the shadow region.

  17. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance

    NASA Astrophysics Data System (ADS)

    Song, Maowen; Wang, Changtao; Zhao, Zeyu; Pu, Mingbo; Liu, Ling; Zhang, Wei; Yu, Honglin; Luo, Xiangang

    2016-01-01

    The past decade has witnessed a great deal of optical systems designed for exceeding the Abbe's diffraction limit. Unfortunately, a deep subwavelength spot is obtained at the price of extremely short focal length, which is indeed a near-field diffraction limit that could rarely go beyond in the nanofocusing device. One method to mitigate such a problem is to set up a rapid oscillatory electromagnetic field that converges at the prescribed focus. However, abrupt modulation of phase and amplitude within a small fraction of a wavelength seems to be the main obstacle in the visible regime, aggravated by loss and plasmonic features that come into function. In this paper, we propose a periodically repeated ring-disk complementary structure to break the near-field diffraction limit via plasmonic Fano resonance, originating from the interference between the complex hybrid plasmon resonance and the continuum of propagating waves through the silver film. This plasmonic Fano resonance introduces a π phase jump in the adjacent channels and amplitude modulation to achieve radiationless electromagnetic interference. As a result, deep subwavelength spots as small as 0.0045λ2 at 36 nm above the silver film have been numerically demonstrated. This plate holds promise for nanolithography, subdiffraction imaging and microscopy.The past decade has witnessed a great deal of optical systems designed for exceeding the Abbe's diffraction limit. Unfortunately, a deep subwavelength spot is obtained at the price of extremely short focal length, which is indeed a near-field diffraction limit that could rarely go beyond in the nanofocusing device. One method to mitigate such a problem is to set up a rapid oscillatory electromagnetic field that converges at the prescribed focus. However, abrupt modulation of phase and amplitude within a small fraction of a wavelength seems to be the main obstacle in the visible regime, aggravated by loss and plasmonic features that come into function. In this

  18. Photoluminescence studies of polycrystalline Cu(In,Ga)Se{sub 2}: Lateral inhomogeneities beyond Abbe's diffraction limit

    SciTech Connect

    Neumann, Oliver; Brüggemann, Rudolf Bauer, Gottfried H.; Hariskos, Dimitrios; Witte, Wolfram

    2015-11-14

    We analyze Cu(In,Ga)Se{sub 2} absorbers with a scanning near-field optical microscope (SNOM) by photoluminescence (PL). Such measurements allow one to extract local fluctuations of the integral PL yield, the quasi-Fermi level splitting, and the material composition in the submicron range. However, the experimental findings depend strongly on the surface roughness of the absorber: If the surface is rough, artifact-prone correlations between surface contour and PL features measured by SNOM can be found that complicate the study of recombination effects. For smooth surfaces, such correlations no longer exist and the influence of grain boundaries on the integral PL yield and the quasi-Fermi level splitting is revealed. The method also allows a detailed determination of the local band gaps in neighboring grains and their spatial variation inside, and thus of possibly local changes in chemical composition of different grains.

  19. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  20. ABB Combustion Engineering nuclear technology

    SciTech Connect

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  1. Korean order latest ABB project in Asia

    SciTech Connect

    1996-07-01

    ABB, in various incarnations, has been active in Asia from the beginning of the century. The new power plant in Korea represents a major commitment on the part of Korea Electric Power Corporation to ABB`s newest technology - the advanced sequential combustion gas turbine. For installation in Poryong, Korea, KEPCO has ordered a 2000MW combined-cycle power plant based on eight of ABB`s new GT24 gas turbines. This paper describes the project and specifications.

  2. ABB: active bandwidth broker

    NASA Astrophysics Data System (ADS)

    Wong, Kason; Law, Eddie

    2001-07-01

    In this paper, we shall discuss a novel design on the policy-based management for the Internet. This design deploys the concept of active networking. As opposed to the traditional network design, active network empowers network node with the ability to manipulate data and program code in packets, and configure the network properties according to the needs of different applications. The policy-based management can control network routers in order to realize end-to-end Quality of Service (QoS), such as differentiated and integrated services, across the Internet. For the moment, the Internet Engineering Task Force (IETF) has defined the framework of the policy-based management. It employs a simple client/server model that uses Common Open Policy Service (COPS) protocol to facilitate policy management and control. Our design of Active Bandwidth Broker (ABB) belongs to an active application. Our goals are to distribute centralized workload of the policy-based management over multiple active nodes in the active networks, introduce mobility of the bandwidth brokers, and allows load sharing to the policy-based management. This results a network-wide intelligent, highly available, and consistent QoS control that allows performance protection for voice, video and Internet business application while reducing costs for growing networks.

  3. Closing the gap to the diffraction limit: Near wavelength limited tabletop soft x-ray coherent diffractive imaging

    NASA Astrophysics Data System (ADS)

    Sandberg, Richard Lunt

    Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to around 200 nm. Using novel imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens using techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy and structured illumination microscopy [1--3]. This dissertation presents a versatile soft x-ray diffraction microscope with 50 nm resolution using tabletop coherent soft x-ray sources. This work represents the first high resolution demonstrations of coherent diffractive or lensless imaging using tabletop extreme ultraviolet and soft x-ray sources [4, 5]. This dissertation also presents the first use of field curvature correction in x-ray coherent imaging which allows high numerical aperture imaging and near-diffraction-limited resolution of 1.5lambda. The relevant theory behind high harmonic generation, the primary tabletop source used in this work, will be discussed as well as the theory behind coherent diffractive imaging. Additionally, the first demonstration of tabletop soft x-ray Fourier Transform holography is shown with important applications to shorter wavelength imaging with high harmonic generation with limited flux. A tabletop soft x-ray diffraction microscope should find broad applications in biology, nanoscience, and materials science due to its simple optical design, high resolution, large depth of field, 3D imaging capability, scalability to shorter wavelengths, and ultrafast temporal resolution.

  4. Pixel detectors for diffraction-limited storage rings

    PubMed Central

    Denes, Peter; Schmitt, Bernd

    2014-01-01

    Dramatic advances in synchrotron radiation sources produce ever-brighter beams of X-rays, but those advances can only be used if there is a corresponding improvement in X-ray detectors. With the advent of storage ring sources capable of being diffraction-limited (down to a certain wavelength), advances in detector speed, dynamic range and functionality is required. While many of these improvements in detector capabilities are being pursued now, the orders-of-magnitude increases in brightness of diffraction-limited storage ring sources will require challenging non-incremental advances in detectors. This article summarizes the current state of the art, developments underway worldwide, and challenges that diffraction-limited storage ring sources present for detectors. PMID:25177989

  5. Microscopy beyond the diffraction limit using actively controlled single molecules

    PubMed Central

    MOERNER, W.E.

    2013-01-01

    Summary In this short review, the general principles are described for obtaining microscopic images with resolution beyond the optical diffraction limit with single molecules. Although it has been known for several decades that single-molecule emitters can blink or turn on and off, in recent work the addition of on/off control of molecular emission to maintain concentrations at very low levels in each imaging frame combined with sequential imaging of sparse subsets has enabled the reconstruction of images with resolution far below the optical diffraction limit. Single-molecule active control microscopy provides a powerful window into information about nanoscale structures that was previously unavailable. PMID:22582796

  6. Accurate calculation of diffraction-limited encircled and ensquared energy.

    PubMed

    Andersen, Torben B

    2015-09-01

    Mathematical properties of the encircled and ensquared energy functions for the diffraction-limited point-spread function (PSF) are presented. These include power series and a set of linear differential equations that facilitate the accurate calculation of these functions. Asymptotic expressions are derived that provide very accurate estimates for the relative amount of energy in the diffraction PSF that fall outside a square or rectangular large detector. Tables with accurate values of the encircled and ensquared energy functions are also presented. PMID:26368873

  7. Diffraction-limited high-finesse optical cavities

    SciTech Connect

    Kleckner, Dustin; Irvine, William T. M.; Oemrawsingh, Sumant S. R.; Bouwmeester, Dirk

    2010-04-15

    High-quality optical cavities with wavelength-sized end mirrors are important to the growing field of micro-optomechanical systems. We present a versatile method for calculating the modes of diffraction limited optical cavities and show that it can be used to determine the effect of a wide variety of cavity geometries and imperfections. Additionally, we show these calculations agree remarkably well with FDTD simulations for wavelength-sized optical modes, even though our method is based on the paraxial approximation.

  8. Design examples of diffraction-limited catadioptric objectives

    NASA Astrophysics Data System (ADS)

    Gallert, Frank

    1996-08-01

    The paper relates to different inventions, comprising three diffraction-limited catadioptric designs. All the systems use only spherical shaped surfaces and are designed from one kind of optical material only. In the examples the glass BK7 from the Schott-catalogue was used. The first example gives a three element design reaching equal performance as a Schmidt camera but with only 25 percent of its length. Additionally the field is flat and conveniently located behind the system. The second example is designed to reduce the central obstruction. It's somewhat based on the principle of the Houghton-camera. For a f-number 4 system with 1000 millimeters focal length it gives outstanding image quality at a 5 degree's field--even capable for diffraction-limited visual use. For reduced f-number 5,6 the image is diffraction-limited at the whole field. In terms of color correction it outperforms every Schmidt-Cassegrain or apochromatic triplet of even arbitrarily more reduced light gathering power. The third example is the equivalent for the so-called Wynne corrector triplet that corrects the aberrations of a parabolical mirror. But the invented corrector corrects additionally the spherical aberration of a spherical mirror. The corrector is able to correct all third order aberrations without introducing longitudinal and lateral color.

  9. Sub-diffraction-limited optical imaging with superlens and hyperlens

    NASA Astrophysics Data System (ADS)

    Lee, Hyesog

    Optical microscopy has been the most widely used imaging tool in various research disciplines for the last century. However, it has fundamental resolution limit called the Diffraction Limit, which prevents it from observing objects smaller than half of the wavelength. This is caused by the inability of lenses, which are located at far field of the objects, to detect high spatial frequency information encoded in evanescent waves which decay away in the near field. Along with modern technological advancements especially in the field of nanotechnology, numerous innovative ideas sprung up in the past several decades in efforts to break the diffraction barrier and achieve nano-scale optical imaging. The most popular method up to date uses near-field scanning scheme which tends to be very slow and impractical for real-time imaging. Other methods require rather complex imaging optics and multiple measurements of the same sample. So far, true far-field and real-time sub-diffraction-limited optical imaging method is yet to be developed. Here I report new imaging schemes, Superlensing (Near and Far-field superlens) and Hyperlensing, which are capable of not only imaging beyond the Diffraction Limit in resolution but making real-time imaging possible. The Superlens enhances evanescent waves through surface plasmon (SP) resonance. The Far-field Superlens (FSL) scatters them into the far-field and the detected information is then used to numerically reconstruct high resolution image. Hyperlens concept utilizes unusual electromagnetic properties of metamaterials to deliver high spatial frequency information directly into the far-field. It magnifies nano-scale objects just enough for optical microscope to image and no post-imaging process is needed. In this dissertation, detailed experiment designs including nano-fabrication of the superlens and the hyperlens structures were proposed and the first ever imaging results were presented. The resolving power beyond the Diffraction

  10. Breaking resolution limits in ultrafast electron diffraction and microscopy

    PubMed Central

    Baum, Peter; Zewail, Ahmed H.

    2006-01-01

    Ultrafast electron microscopy and diffraction are powerful techniques for the study of the time-resolved structures of molecules, materials, and biological systems. Central to these approaches is the use of ultrafast coherent electron packets. The electron pulses typically have an energy of 30 keV for diffraction and 100–200 keV for microscopy, corresponding to speeds of 33–70% of the speed of light. Although the spatial resolution can reach the atomic scale, the temporal resolution is limited by the pulse width and by the difference in group velocities of electrons and the light used to initiate the dynamical change. In this contribution, we introduce the concept of tilted optical pulses into diffraction and imaging techniques and demonstrate the methodology experimentally. These advances allow us to reach limits of time resolution down to regimes of a few femtoseconds and, possibly, attoseconds. With tilted pulses, every part of the sample is excited at precisely the same time as when the electrons arrive at the specimen. Here, this approach is demonstrated for the most unfavorable case of ultrafast crystallography. We also present a method for measuring the duration of electron packets by autocorrelating electron pulses in free space and without streaking, and we discuss the potential of tilting the electron pulses themselves for applications in domains involving nuclear and electron motions. PMID:17056711

  11. The diffraction limit of an optical spectrum analyzer

    NASA Astrophysics Data System (ADS)

    Kolobrodov, V. G.; Tymchik, G. S.; Kolobrodov, M. S.

    2015-11-01

    This article examines a systematic error that occurs in optical spectrum analyzers and is caused by Fresnel approximation. The aim of the article is to determine acceptable errors of spatial frequency measurement in signal spectrum. The systematic error of spatial frequency measurement has been investigated on the basis of a physical and mathematical model of a coherent spectrum analyzer. It occurs as a result of the transition from light propagation in free space to Fresnel diffraction. Equations used to calculate absolute and relative measurement errors depending on a diffraction angle have been obtained. It allows us to determine the limits of the spectral range according to the given relative error of the spatial frequency measurement.

  12. Genetic algorithm for chromaticity correction in diffraction limited storage rings

    NASA Astrophysics Data System (ADS)

    Ehrlichman, M. P.

    2016-04-01

    A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime.

  13. Sub-diffraction-limit imaging using mode multiplexing

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Miyazaki, Jun; He, Jinping; Seto, Keisuke; Kobayashi, Takayoshi

    2015-05-01

    Pixel-by-pixel processed fluorescence difference microscopy is experimentally demonstrated by multiplexing excitation laser beams with Gaussian and donut spot shapes and then demultiplexing the fluorescent signals using lock-in amplifiers. With this scheme, a fixed sample of fluorescent spheres and a slice of mouse brain tissue are imaged with resolutions that exceed the diffraction limit. Compared to previously reported subtraction imaging techniques, this pixel-by-pixel scan can be applied to improve the resolution of a moving sample without introducing subtraction errors. The synchronized signal detection feature makes this method extendible to various applications.

  14. Emittance Adapter for a Diffraction Limited Synchrotron Radiation Source

    SciTech Connect

    Chao, Alexander Wu; Raimondi, Pantaleo; /Frascati

    2012-03-01

    We investigate the possibility of reaching very small horizontal and vertical emittances inside an undulator in a storage ring, by means of a local exchange of the apparent horizontal and vertical emittances, performed with a combination of skew quadrupoles and one solenoid in a dedicated insertion line in the storage ring. The insertion leaves the ring parameters and its optical properties unaffected. This scheme could greatly relax the emittance requirements for a diffraction limited synchrotron light source. The lattice derivation and design is described.

  15. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  16. Limited-angle hybrid diffraction tomography for biological samples

    NASA Astrophysics Data System (ADS)

    Kus, A.; Krauze, W.; Kujawinska, M.; Filipiak, M.

    2014-05-01

    In the paper the case of diffraction tomography with limited angle of projections is discussed from the experimental and algorithmic point of views. To reconstruct a 3D distribution of refractive index of an object under study, we use the hybrid approach, which enables to apply the standard Computer Tomography algorithms for phase data obtained by digital holography. We present the results of applying Simultaneous Algebraic Reconstruction Technique together with Anisotropic Total Variation minimization (SART+ATV) on both a phantom object and real data acquired from an experimental setup based on a Mach-Zehnder interferometer configuration. Also, the analysis of the influence of the limited number of projections within a limited angular range is presented. We prove that in the case of simulated data, the limited number of projections captured in a limited angular range can be compensated by higher number of iterations of the algorithm. We also show that SART+ATV method applied for experimental data gives better results than the popular Data Replenishment algorithm.

  17. Diffraction-limited step-zoom telescope by image restoration.

    PubMed

    Araiza-Durán, José A; Luna, Esteban; Cornejo-Rodríguez, Alejandro; Sohn, Erika

    2015-11-10

    The design of a step-zoom telescope and its ability to achieve a diffraction-limited performance is explored. The basic idea is to include digital postprocessing to compensate for changes in the modulation transfer function of the system, assuming the knowledge of the range to the object. The instrument is conformed of a two-mirror telescope, two lenses, and a detector. High-quality images and a zoom telescope that ranges from 22 to 61 f-number is achieved by moving the primary mirror and two lenses. The preliminary calculations for the design process and a simulation that shows the performance of the step-zoom telescope are described. PMID:26560774

  18. Shaping the spatial and spectral emissivity at the diffraction limit

    NASA Astrophysics Data System (ADS)

    Makhsiyan, Mathilde; Bouchon, Patrick; Jaeck, Julien; Pelouard, Jean-Luc; Haïdar, Riad

    2015-12-01

    Metasurfaces have attracted a growing interest for their ability to artificially tailor an electromagnetic response on various spectral ranges. In particular, thermal sources with unprecedented abilities, such as directionality or monochromaticity, have been achieved. However, these metasurfaces exhibit homogeneous optical properties whereas the spatial modulation of the emissivity up to the wavelength scale is at the crux of the design of original emitters. In this letter, we study an inhomogeneous metasurface made of a nonperiodic set of optical nano-antennas that spatially and spectrally control the emitted light up to the diffraction limit. Each antenna acts as an independent deep subwavelength emitter for given polarization and wavelength. Their juxtaposition at the subwavelength scale encodes far field multispectral and polarized images. This opens up promising breakthroughs for applications such as optical storage, anti-counterfeit devices, and multispectral emitters for biochemical sensing.

  19. LINC-NIRVANA: cryogenic optics for diffraction limited beam combination

    NASA Astrophysics Data System (ADS)

    Bizenberger, Peter; Baumeister, Harald; Herbst, Tom; Zhang, Xianyu

    2012-09-01

    LINC-NIRVANA is an interferometric imaging camera, which combines the two 8.4 m telescopes of the Large Binocular Telescope (LBT). The instrument operates in the wavelength range from 1.1 μm to 2.4 μm, covering the J, H and K-band, respectively. The beam combining camera (NIRCS) offers the possibility to achieve diffraction limited images with the special resolution of a 23 m telescope. The optics are designed to deliver a 10 arcsec × 10 arcsec field of view with 5 mas resolution. In this paper we describe the evolution of the cryogenic optics, from design and manufacturing to verification. Including the argumentation for decisions we made in order to present a sort of guideline for large cryo-optics. We also present the alignment and testing strategies at a detailed level.

  20. Shaping the spatial and spectral emissivity at the diffraction limit

    SciTech Connect

    Makhsiyan, Mathilde; Bouchon, Patrick Jaeck, Julien; Pelouard, Jean-Luc; Haïdar, Riad

    2015-12-21

    Metasurfaces have attracted a growing interest for their ability to artificially tailor an electromagnetic response on various spectral ranges. In particular, thermal sources with unprecedented abilities, such as directionality or monochromaticity, have been achieved. However, these metasurfaces exhibit homogeneous optical properties whereas the spatial modulation of the emissivity up to the wavelength scale is at the crux of the design of original emitters. In this letter, we study an inhomogeneous metasurface made of a nonperiodic set of optical nano-antennas that spatially and spectrally control the emitted light up to the diffraction limit. Each antenna acts as an independent deep subwavelength emitter for given polarization and wavelength. Their juxtaposition at the subwavelength scale encodes far field multispectral and polarized images. This opens up promising breakthroughs for applications such as optical storage, anti-counterfeit devices, and multispectral emitters for biochemical sensing.

  1. Diffraction-limited 10 microns imaging with 3 meter telescopes

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Townes, C. H.; Vanderwyck, A. H. B.

    1986-01-01

    An IR imaging system that achieves diffraction-limited spatial resolution (about 0.8 arcsec) at 10 microns on 3-meter ground-based telescopes. The system uses a linear array of sensitive HgCdTe photodiodes, scanned in the direction perpendicular to the array axis, to form two-dimensional images. Scans are completed rapidly enough to freeze atmospheric fluctuations. Individual detectors are small compared to the diameter of the Airy disk, and images are oversampled heavily in the scan direction. This method has a number of advantages for studying small fields with very high spatial resolution, and has been applied successfully to the problem of directly imaging faint circumstellar dust shells.

  2. The ABB transformer monitoring system

    SciTech Connect

    Claiborne, C.; Gorman, M.; Petrie, E.M.

    1996-03-01

    ABB is currently developing a transformer monitoring system that will continuously perform multiple gas-in-oil and partial discharge analyses. The new monitoring system is designed to be simple and reliable. It can be applied to new units or easily retrofitted to existing transformers. The parameters that are monitored are those that are most commonly evaluated when diagnosing the condition of a power transformer. A multiple gas monitor can selectively detect and measure hydrogen, carbon monoxide, and the combination of methane and ethane. The partial discharge monitor employs an electrical method to detect partial discharges that originate from sources only within the transformer. Prototype systems will be field tested in 1995.

  3. Collective Effects in a Diffraction Limited Storage Ring

    DOE PAGESBeta

    Nagaoka, Ryutaro; Bane, Karl L.F.

    2015-10-20

    Our paper gives an overview of collective effects that are likely to appear and possibly limit the performance in a diffraction-limited storage ring (DLSR) that stores a high-intensity ultra-low-emittance beam. Beam instabilities and other intensity-dependent effects that may significantly impact the machine performance are covered. The latter include beam-induced machine heating, Touschek scattering, intra-beam scattering, as well as incoherent tune shifts. The general trend that the efforts to achieve ultra-low emittance result in increasing the machine coupling impedance and the beam sensitivity to instability is reviewed. The nature of coupling impedance in a DLSR is described, followed by a seriesmore » of potentially dangerous beam instabilities driven by the former, such as resistive-wall, TMCI (transverse mode coupling instability), head-tail and microwave instabilities. Additionally, beam-ion and CSR (coherent synchrotron radiation) instabilities are also treated. Means to fight against collective effects such as lengthening of the bunch with passive harmonic cavities and bunch-by-bunch transverse feedback are introduced. Numerical codes developed and used to evaluate the machine coupling impedance, as well as to simulate beam instability using the former as inputs are described.« less

  4. Collective Effects in a Diffraction Limited Storage Ring

    SciTech Connect

    Nagaoka, Ryutaro; Bane, Karl L.F.

    2015-10-20

    Our paper gives an overview of collective effects that are likely to appear and possibly limit the performance in a diffraction-limited storage ring (DLSR) that stores a high-intensity ultra-low-emittance beam. Beam instabilities and other intensity-dependent effects that may significantly impact the machine performance are covered. The latter include beam-induced machine heating, Touschek scattering, intra-beam scattering, as well as incoherent tune shifts. The general trend that the efforts to achieve ultra-low emittance result in increasing the machine coupling impedance and the beam sensitivity to instability is reviewed. The nature of coupling impedance in a DLSR is described, followed by a series of potentially dangerous beam instabilities driven by the former, such as resistive-wall, TMCI (transverse mode coupling instability), head-tail and microwave instabilities. Additionally, beam-ion and CSR (coherent synchrotron radiation) instabilities are also treated. Means to fight against collective effects such as lengthening of the bunch with passive harmonic cavities and bunch-by-bunch transverse feedback are introduced. Numerical codes developed and used to evaluate the machine coupling impedance, as well as to simulate beam instability using the former as inputs are described.

  5. Diffraction-limited lucky imaging with a 12" commercial telescope

    NASA Astrophysics Data System (ADS)

    Baptista, Brian J.

    2014-08-01

    Here we demonstrate a novel lucky imaging camera which is designed to produce diffraction-limited imaging using small telescopes similar to ones used by many academic institutions for outreach and/or student training. We present a design that uses a Meade 12" SCT paired with an Andor iXon fast readout EMCCD. The PSF of the telescope is matched to the pixel size of the EMCCD by adding a simple, custom-fabricated, intervening optical system. We demonstrate performance of the system by observing both astronomical and terrestrial targets. The astronomical application requires simpler data reconstruction techniques as compared to the terrestrial case. We compare different lucky imaging registration and reconstruction algorithms for use with this imager for both astronomical and terrestrial targets. We also demonstrate how this type of instrument would be useful for both undergraduate and graduate student training. As an instructional aide, the instrument can provide a hands-on approach for teaching instrument design, standard data reduction techniques, lucky imaging data processing, and high resolution imaging concepts.

  6. LINC-NIRVANA: Diffraction limited optics in cryogenic environment

    NASA Astrophysics Data System (ADS)

    Bizenberger, Peter; Baumeister, Harald; Fopp, Patrick; Herbst, Tom; Laun, Werner; Mohr, Lars; Moreno-Ventas, Javier

    2014-07-01

    LINC-NIRVANA is an instrument combining the two 8.4 m telescopes of the Large Binocular Telescope (LBT) coherently, in order to achieve the optical resolution of the 23 meter baseline. For this interferometric instrument concept, the common beam combination requires diffraction limited optical performance. The optics, realized as a Cassegrain telescope design, consists of aluminum mirrors, designed and manufactured to fulfill the challenging specifications required for interferometric imaging. Due to the science wavelength range from 1 μm to 2.4 μm, covering the J, H and K band of the atmosphere, the complete beam combiner including the optics is operated in cryogenic environment at 60 Kelvin. Here, we demonstrate the verification of the optical performance at this temperature for classical in-coherent and coherent illumination. We outline the test setup and present the achieved results of wavefront error for the individual beams and fringe contrast for the interferometric point spread function. This paper continues the already presented integration of the interferometric camera with the focus on the performance of the cryogenic optics.

  7. Matter-wave diffraction at the natural limit

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Sclafani, Michele; Knobloch, Christian; Lilach, Yigal; Juffmann, Thomas; Kotakoski, Jani; Mangler, Clemens; Winter, Andreas; Turchanin, Andrey; Meyer, Jannik; Cheshnovsky, Ori; Arndt, Markus

    2016-05-01

    The high sensitivity of matter-wave interferometry experiments to forces and perturbations makes them an essential tool for precision measurements and tests of quantum physics. While mostly grating made of laser-light are used, material gratings have the advantage that they are independent of the particle's internal properties. This makes them universally applicable. However, the molecules will experience substantial van der Waals shifts while passing the grating slits, which suggests limiting this perturbation by reducing the material thickness. In a comprehensive study we compared the van der Waals interactions for free-standing gratings made from single and double layer graphene to masks commonly used in atom interferometry. From the population of high fringe orders we deduce a surprisingly strong electrical interaction between the polarizable molecules and the nanomasks. As even for these thinnest diffraction elements which-path information is not shared with the environment, we interpret this as an experimental affirmation of Bohr's arguments in his famous debate with Einstein.

  8. Ultraviolet diffraction limited nanosurgery of live biological tissues

    NASA Astrophysics Data System (ADS)

    Colombelli, Julien; Grill, Stephan W.; Stelzer, Ernst H. K.

    2004-02-01

    A laser nanodissection system for in vivo and in situ biological tissues is presented. A pulsed laser beam operating at a wavelength of 355 nm enables diffraction limited dissection, providing an optimal tool for intracellular nanosurgery. Coupled into a conventional inverted microscope and scanned across a field of up to 100×100 μm2, this optical nanoscalpel performs in vivo photoablation and plasma-induced ablation inside organisms ranging from intracellular organelles to embryos. The system allows the use of conventional microscopy contrasts and methods, fast dissection with up to 1000 shots per second, and simultaneous dissection and imaging. This article outlines an efficient implementation with a small number of components and reports an improvement of this state of the art of plasma-induced ablation technique over previous studies, with a ratio of plasma volume to beam focal volume of 5.2. This offers, e.g., the possibility of writing information directly at the sample location by plasma glass nanopatterning.

  9. Volume Bragg semiconductor lasers with near diffraction limited divergence

    NASA Astrophysics Data System (ADS)

    Venus, George; Glebov, Leonid; Rotar, Vasile; Smirnov, Vadim; Crump, Paul; Farmer, Jason

    2006-05-01

    The problem of high-brightness, narrow line semiconductor lasers sources is important for different kinds of applications. The proposed solution of the problem is the use of an external cavity with volume Bragg grating for effective angular and spectral selection. High-efficient volume Bragg gratings provide complete selection directly in space of wave vectors and serve as a diaphragm in angular space. The condition of effective selection is the provision of a substantial difference in losses for a selected mode by matching angular selectivity of a Bragg grating with divergence of the selected mode. It was proposed off-axis construction of an external cavity with a transmitting volume Bragg grating as an angular selective element and a reflecting volume Bragg grating as a spectral selective feedback. In such external cavity broad area laser diodes have shown stable near-diffraction limited generation in the wide range of pumping current. For LD with 0.5% AR-coated mirror and 150 μm stripe it was achieved 1.7 W output power with divergence of 0.62° at current exceeding six thresholds. Total LD slope efficiency in the considered external cavity is less then slope efficiency of free running diodes by 3-5% only. Spectral width of such locked LD emission was narrowed down to 250 pm in the whole range of pumping current.

  10. Diffraction-limited imaging on the 200-inch telescope

    NASA Astrophysics Data System (ADS)

    Nakajima, Tadashi

    The technique of non-redundant masking at the Palomar 200-inch telescope and radio VLBI imaging software was used to make optical aperture synthesis maps of two binary stars, Beta Corona Borealis and Sigma Herculis. The dynamic range of the map of Beta CrB, a binary star with a separation of 230 milliarcseconds is 50:1. For Sigma Her, a separation of 70 milliarcseconds was found and the dynamic range of the image is 30:1. These demonstrate the potential of the non-redundant masking technique for diffraction limited imaging of astronomical objects with high dynamic range. It was found that the optimal integration time for measuring the closure phase is longer than that for measuring the fringe amplitude. There is not a close relationship between amplitude errors and phase errors, as is found in radio interferometry. Amplitude self calibration is less effective at optical wavelengths than at radio wavelengths. Primary beam sensitivity correction made in radio aperture is not necessary in optical aperture synthesis. Effects of atmospheric disturbances on optical aperture synthesis were studied by Monte Carlo simulations based on the Kolmogorov theory of refractive-index fluctuations. For the non-redundant masking technique with rc-sized apertures, the simulated fringe amplitude gives an upper bound of the observed fringe amplitude. Monte Carlo simulations are also made to study the sensitivity and resolution of the bispectral analysis of speckle interferometry. The bispectral modulation transfer function and its signal-to-noise ratio at high light levels is presented. The signal-to-noise ratio of the bispectrum at arbitrary light levels is derived in the mid-spatial-frequency range.

  11. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    NASA Astrophysics Data System (ADS)

    Sanders, Nicolai; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2014-02-01

    Mid-infrared microscopy and spectroscopy is interesting due to its medical, biological and chemical applications. Spectromicroscopy can be used for histopathology, sample analysis and diagnosis. The ability to do spectromicroscopy in the 2.5 to 4.5 μm wavelength range where many organic molecules have their fundamental vibrations, with the addition of sufficient spectroscopic resolution to resolve these bands, can e.g. potentially allow for diagnostics without the need for staining of the sample. On a longer timeframe, mid-IR spectromicroscopy has the potential for in-vivo diagnostics, combining morphological and spectral imaging. Recent developments in nonlinear frequency upconversion, have demonstrated the potential to perform both imaging and spectroscopy in the mid-IR range at unparalleled low levels of illumination, the low upconversion detector noise being orders of magnitude below competing technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion process. Multispectral images for a region of interest can be obtained by XY-scanning this region of interest within the field of view of the mid-IR upconversion system. Thus, the whole region of interest can be imaged with all available converter wavelengths, and the spectral representation becomes equal for all points in the image. In addition, the range of converted/imaged wavelengths can be tuned continuously by changing the temperature of the crystal, or discretely by using a different poling channel in the PPLN crystal.

  12. Development of integrated mode reformatting components for diffraction-limited spectroscopy.

    PubMed

    MacLachlan, David G; Harris, Robert J; Choudhury, Debaditya; Simmonds, Richard D; Salter, Patrick S; Booth, Martin J; Allington-Smith, Jeremy R; Thomson, Robert R

    2016-01-01

    We present the results of our work on developing fully integrated devices (photonic dicers) for reformatting multimode light to a diffraction limited pseudo-slit. These devices can be used to couple a seeing limited telescope point spread function to a spectrograph operating at the diffraction limit, thus potentially enabling compact, high-resolution spectrographs that are free of modal noise. PMID:26696162

  13. 76 FR 8785 - ABB Inc.; License Amendment Request for Decommissioning of the ABB Inc., Combustion Engineering...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit... COMMISSION ABB Inc.; License Amendment Request for Decommissioning of the ABB Inc., Combustion Engineering... concentration guideline levels at its Combustion Engineering site located in Windsor, Connecticut. DATES:...

  14. Phase errors in diffraction-limited imaging: contrast limits for sparse aperture masking

    NASA Astrophysics Data System (ADS)

    Ireland, M. J.

    2013-08-01

    Bispectrum phase, closure phase and their generalization to kernel phase are all independent of pupil-plane phase errors to first order. This property, when used with sparse aperture masking behind adaptive optics, has been used recently in high-contrast observations at or inside the formal diffraction limit of large telescopes. Finding the limitations to these techniques requires an understanding of spatial and temporal third-order phase effects, as well as effects such as time-variable dispersion when coupled with the non-zero bandwidths in real observations. In this paper, formulae describing many of these errors are developed, so that a comparison can be made to fundamental noise processes of photon noise and background noise. I show that the current generation of aperture-masking observations of young solar-type stars, taken carefully in excellent observing conditions, are consistent with being limited by temporal phase noise and photon noise. This has relevance for plans to combine pupil remapping with spatial filtering. Finally, I describe calibration strategies for kernel phase, including the optimized calibrator weighting as used for LkCa15, and the restricted kernel phase POISE (phase observationally independent of systematic errors) technique that avoids explicit dependence on calibrators.

  15. In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams.

    PubMed

    Lu, J Y; Song, T K; Kinnick, R R; Greenleaf, J F

    1993-01-01

    Recently, there has been great interest in a new class of solutions to the isotropic/homogeneous scaler wave equation which represents localized waves or limited diffraction beams in electromagnetics, optics, and acoustics. Applications of these solutions to ultrasonic medical imaging, tissue characterization, and nondestructive evaluation of materials have also been reported. The authors report a real-time medical imager which uses limited diffraction Bessel beams, X-waves, Axicons, or conventional beams. Results (in vitro and in vivo) show that the images obtained with limited diffraction beams have higher resolution and good contrast over larger depth of field compared to images obtained with conventional focused beams. These results suggest the potential clinical usefulness of limited diffraction beams. PMID:18218478

  16. Breaking the acoustic diffraction limit in photoacoustic imaging with multiple speckle illumination

    NASA Astrophysics Data System (ADS)

    Chaigne, Thomas; Gateau, Jérôme; Allain, Marc; Katz, Ori; Gigan, Sylvain; Sentenac, Anne; Bossy, Emmanuel

    2016-03-01

    In deep photoacoustic imaging, resolution is inherently limited by acoustic diffraction, and ultrasonic frequencies cannot be arbitrarily increased because of attenuation in tissue. Here we report on the use of multiple speckle illumination to perform super resolution photoacoustic imaging. We show that the analysis of speckle-induced second-order fluctuations of the photoacoustic signal combined with deconvolution enables to resolve optically absorbing structures below the acoustic diffraction limit.

  17. Probing local order in glasses from limited-volume electron and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Liu, A. C. Y.; Tabor, R. F.; Bourgeois, L.; de Jonge, M. D.; Mudie, S. T.; Petersen, T. C.

    2016-05-01

    It has long been recognised that spatial fluctuations in local order in disordered assemblies of particles can be probed using limited-volume diffraction measurements. These measurements have unique advantages over broad-beam diffraction experiments that isotropically average over many structural configurations and result in one-dimensional intensity curves, requiring modelling to interpret. Despite the advantages of limiting illumination to a low number of particle configurations, obtaining quantitative measurements of local order from such experiments remains a challenge. The effects on the diffraction pattern of changing the beam energy, lateral size, aberrations and coherence and the specimen thickness have only recently been clarified. We review theoretical and experimental efforts in this direction in the fields of both electron and x-ray diffraction and identify promising areas of future development.

  18. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  19. Reconstruction algorithm for limited-angle diffraction tomography for microwave NDE

    SciTech Connect

    Paladhi, P. Roy; Klaser, J.; Tayebi, A.; Udpa, L.; Udpa, S.

    2014-02-18

    Microwave tomography is becoming a popular imaging modality in nondestructive evaluation and medicine. A commonly encountered challenge in tomography in general is that in many practical situations a full 360° angular access is not possible and with limited access, the quality of reconstructed image is compromised. This paper presents an approach for reconstruction with limited angular access in diffraction tomography. The algorithm takes advantage of redundancies in image Fourier space data obtained from diffracted field measurements and couples it to an error minimization technique using a constrained total variation (CTV) minimization. Initial results from simulated data have been presented here to validate the approach.

  20. Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium

    PubMed Central

    Choi, Youngwoon; Yang, Taeseok Daniel; Fang-Yen, Christopher; Kang, Pilsung; Lee, Kyoung Jin; Dasari, Ramachandra R.; Feld, Michael S.; Choi, Wonshik

    2012-01-01

    We report that disordered media made of randomly distributed nanoparticles can be used to overcome the diffraction limit of a conventional imaging system. By developing a method to extract the original image information from the multiple scattering induced by the turbid media, we dramatically increase a numerical aperture of the imaging system. As a result, the the resolution is enhanced by more than five times over the diffraction limit and a field of view is extended over the physical area of the camera. Our technique lays the foundation to use a turbid medium as a far-field superlens. PMID:21797607

  1. Two step process for the fabrication of diffraction limited concave microlens arrays.

    PubMed

    Ruffieux, Patrick; Scharf, Toralf; Philipoussis, Irène; Herzig, Hans Peter; Voelkel, Reinhard; Weible, Kenneth J

    2008-11-24

    A two step process has been developed for the fabrication of diffraction limited concave microlens arrays. The process is based on the photoresist filling of melted holes obtained by a preliminary photolithography step. The quality of these microlenses has been tested in a Mach-Zehnder interferometer. The method allows the fabrication of concave microlens arrays with diffraction limited optical performance. Concave microlenses with diameters ranging between 30 microm to 230 microm and numerical apertures up to 0.25 have been demonstrated. As an example, we present the realization of diffusers obtained with random sizes and locations of concave shapes. PMID:19030040

  2. Band-limited double-step Fresnel diffraction and its application to computer-generated holograms.

    PubMed

    Okada, Naohisa; Shimobaba, Tomoyoshi; Ichihashi, Yasuyuki; Oi, Ryutaro; Yamamoto, Kenji; Oikawa, Minoru; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2013-04-01

    Double-step Fresnel diffraction (DSF) is an efficient diffraction calculation in terms of the amount of usage memory and calculation time. This paper describes band-limited DSF, which will be useful for large computer-generated holograms (CGHs) and gigapixel digital holography, mitigating the aliasing noise of the DSF. As the application, we demonstrate a CGH generation with nearly 8K × 4K pixels from texture and depth maps of a three-dimensional scene captured by a depth camera. PMID:23572007

  3. Mode-converters for rectangular-core fiber amplifiers to achieve diffraction-limited power scaling.

    PubMed

    Sridharan, Arun Kumar; Pax, Paul H; Heebner, John E; Drachenberg, Derrek R; Armstrong, J Paul; Dawson, Jay W

    2012-12-17

    A rectangular-core (ribbon) fiber that guides and amplifies a single higher-order-mode (HOM) can potentially scale to much higher average powers than what is possible in traditional circular-core large-mode-area fibers. Such an amplifier would require mode-conversion at the input to enable interfacing with seed sources that typically output TEM(00) mode radiation and at the output to generate diffraction-limited radiation for end-user applications. We present the first simulation and experimental results of a mode conversion technique that uses two diffractive-optic-elements in conjugate Fourier planes to convert a diffraction limited TEM(00) mode to the HOM of a ribbon fiber. Mode-conversion-efficiency is approximately 84% and can theoretically approach 100%. We also demonstrate a mode-converter system that converts a single HOM of a ribbon fiber back to a diffraction-limited TEM(00) mode. Conversion efficiency is a record 80.5%. PMID:23263119

  4. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles.

    PubMed

    Diao, Jinshuai; Yuan, Weizheng; Yu, Yiting; Zhu, Yechuan; Wu, Yan

    2016-02-01

    Sub-diffraction-limit optical needle can be created by a binary amplitude mask through tailoring the interference of diffraction beams. In this paper, a controllable design of super-oscillatory planar lenses to create sub-diffraction-limit optical needles with the tunable focal length and depth of focus (DOF) is presented. As a high-quality optical needle is influenced by various factors, we first propose a multi-objective and multi-constraint optimization model compromising all the main factors to achieve a needle with the prescribed characteristics. The optimizing procedure is self-designed using the Matlab programming language based on the genetic algorithm (GA) and fast Hankel transform algorithm. Numerical simulations show that the optical needles' properties can be controlled accurately. The optimized results are further validated by the theoretical calculation with the Rayleigh-Sommerfeld integral. The sub-diffraction-limit optical needles can be used in wide fields such as optical nanofabrication, super-resolution imaging, particle acceleration and high-density optical data storage. PMID:26906769

  5. Mesoscopic quantum superposition of the generalized cat state: A diffraction limit

    NASA Astrophysics Data System (ADS)

    Ghosh, Suranjana; Sharma, Raman; Roy, Utpal; Panigrahi, Prasanta K.

    2015-11-01

    The orthogonality of cat and displaced cat states, underlying Heisenberg limited measurement in quantum metrology, is studied in the limit of a large number of states. The mesoscopic superposition of the generalized cat state is correlated with the corresponding state overlap function, controlled by the sub-Planck structures arising from phase-space interference. The asymptotic expression of this overlap function is evaluated, and the validity of large phase-space support and distinguishability of the constituent states, in which context the asymptotic limit is achieved, are discussed in detail. For a large number of coherent states, uniformly located on a circle, the overlap function significantly matches the diffraction pattern for a circular ring source with uniform angular strength. This is in accordance with the van Cittert-Zernike theorem, where the overlap function, similar to the mutual coherence function, matches a diffraction pattern. The physical situation under consideration is delineated in phase space by utilizing the Husimi Q function.

  6. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT

    PubMed Central

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.; Hufnagel, Lars

    2016-01-01

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5–12-fold compared with their conventional diffraction-limited LS analogs. PMID:26984498

  7. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT

    NASA Astrophysics Data System (ADS)

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.; Hufnagel, Lars

    2016-03-01

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5-12-fold compared with their conventional diffraction-limited LS analogs.

  8. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT.

    PubMed

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J; Hell, Stefan W; Hufnagel, Lars

    2016-03-29

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5-12-fold compared with their conventional diffraction-limited LS analogs. PMID:26984498

  9. Limit of Detection in X-ray Diffraction Measurements of Tissue Equivalent Samples

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Vassiljev, N.; Konstantinidis, A.; Griffiths, J.; Speller, R.

    2015-09-01

    There is a suggestion of a new approach to mammography whereby following a conventional mammogram, the radiologist could interrogate suspicious regions using X-ray diffraction whilst the patient is still present and to establish the true extent of disease. A starting point for this work is to quantify the minimum detectable amount of breast cancer within a realistic thickness phantom. Perspex has a similar diffraction pattern to healthy breast tissue whilst water is similar to breast tumour, hence these two materials are used as tissue equivalent test objects for X-ray diffraction measurements. The preliminary results show linear agreement between the ratio of Perspex to water and the ratio of the diffraction peak intensities at 0.7 nm-1 and 1.5 nm-1. The minimum detectable limit for a component of the two ‘tissue’ mix was found to be 4.1%. This suggests that X-ray diffraction can be used to quantify tissue like mixtures down to the 4.1% / 95.9% mix level and hence has a strong potential for delineating the extent of infiltration disease.

  10. An off-axis, wide-field, diffraction-limited, reflective Schmidt Telescope

    NASA Astrophysics Data System (ADS)

    Saunders, Will

    2010-07-01

    Off-axis telescopes with unobstructed pupils offer great advantages in terms of emissivity, throughput, and diffractionlimited energy concentration. For most telescope designs, implementation of an off-axis configuration imposes enormous penalties in terms of cost, optical difficulty and performance, and for this reason off-axis telescopes are rarely constructed. However, for the reflective Schmidt design, implementation of an off-axis configuration is very straightforward, and involves only a modest optical penalty. Moreover, the reflective Schmidt gets particular benefits, avoiding the obstruction of its large focal plane and support column, and gaining a highly accessible, gravity-invariant prime focus, capable of accommodating very large instrumentation. We present an off-axis f/8 reflective Schmidt design for the proposed 'KDUST' Chinese infrared telescope at Dome A on the Antarctic plateau, which offers simultaneous diffraction-limited NIR imaging over 1°, and close to diffraction-limited imaging out to 2° for fibre-fed NIR spectroscopy.

  11. Dynamic microscale temperature gradient in a gold nanorod solution measured by diffraction-limited nanothermometry

    SciTech Connect

    Li, Chengmingyue; Gan, Xiaosong; Li, Xiangping; Gu, Min

    2015-09-21

    We quantify the dynamic microscale temperature gradient in a gold nanorod solution using quantum-dot-based microscopic fluorescence nanothermometry. By incorporating CdSe quantum dots into the solution as a nanothermometer, precise temperature mapping with diffraction-limited spatial resolution and sub-degree temperature resolution is achieved. The acquired data on heat generation and dissipation show an excellent agreement with theoretical simulations. This work reveals an effective approach for noninvasive temperature regulation with localized nanoheaters in microfluidic environment.

  12. Sub-diffraction limited structuring of solid targets with femtosecond laser pulses.

    PubMed

    Korte, F; Adams, S; Egbert, A; Fallnich, C; Ostendorf, A; Nolte, S; Will, M; Ruske, J P; Chichkov, B; Tuennermann, A

    2000-07-17

    Possibilities to produce sub-diffraction limited structures in thin metal films and bulk dielectric materials using femtosecond laser pulses are investigated. The physics of ultrashort pulse laser ablation of solids is outlined. Results on the fabrication of sub-micrometer structures in 100-200 nm chrome-coated surfaces by direct ablative writing are reported. Polarization maintaining optical waveguides produced by femtosecond laser pulses inside crystalline quartz are demonstrated. PMID:19404368

  13. Cryogenic, high power, near diffraction limited, Yb:YAG slab laser.

    PubMed

    Ganija, Miftar; Ottaway, David; Veitch, Peter; Munch, Jesper

    2013-03-25

    A cryogenic slab laser that is suitable for scaling to high power, while taking full advantage of the improved thermo-optical and thermo-mechanical properties of Yb:YAG at cryogenic temperatures is described. The laser uses a conduction cooled, end pumped, zigzag slab geometry resulting in a near diffraction limited, robust, power scalable design. The design and the initial characterization of the laser up to 200W are presented. PMID:23546080

  14. Simulations for diffraction limited near-infrared adaptive optics systems on the AOF

    NASA Astrophysics Data System (ADS)

    Le Louarn, Miska; Glindemann, A.; Hubin, N.; Marchetti, E.; Madec, P.-Y.

    2010-07-01

    In this paper, we simulate different possibilities to upgrade the Adaptive Optics Facility (AOF) of the VLT, to reach the diffraction limit in the near infrared. We present simulations of Ground Layer AO, Laser Tomography AO, Multi-Conjugate AO, Dual AO and a hybrid system which is a simplified version of MCAO. We describe the strengths and weaknesses of each approach and summarize the studies to be still carried out.

  15. Dynamic microscale temperature gradient in a gold nanorod solution measured by diffraction-limited nanothermometry

    NASA Astrophysics Data System (ADS)

    Li, Chengmingyue; Gan, Xiaosong; Li, Xiangping; Gu, Min

    2015-09-01

    We quantify the dynamic microscale temperature gradient in a gold nanorod solution using quantum-dot-based microscopic fluorescence nanothermometry. By incorporating CdSe quantum dots into the solution as a nanothermometer, precise temperature mapping with diffraction-limited spatial resolution and sub-degree temperature resolution is achieved. The acquired data on heat generation and dissipation show an excellent agreement with theoretical simulations. This work reveals an effective approach for noninvasive temperature regulation with localized nanoheaters in microfluidic environment.

  16. Diffraction limited focal spot in the interaction chamber using phase retrieval adaptive optics

    NASA Astrophysics Data System (ADS)

    Lefaudeux, Nicolas; Lavergne, Emeric; Monchoce, Sylvain; Levecq, Xavier

    2014-03-01

    In order to provide the end user with a diffraction limited collimated beam, adaptive optics phase correction systems are now a standard feature of ultra intense laser facilities. Generally speaking, these systems are based on a deformable mirror controlled in closed loop configuration in order to correct the aberrations of the beam measured by the wavefront sensor. Such implementation corrects for most of the aberrations of the laser. However, the aberrations of the optical elements located downstream of the wavefront sensor are not measured and therefore not corrected by the adaptive optics loop while they are degrading the final focal spot. We present an improved correction strategy and results based on a combination of both usual closed loop and phase retrieval in order to reach the diffraction limit at the focal spot inside the interaction chamber. The off axis parabola alignment camera located at the focal spot is used in combination of the deformable mirror and wavefront sensor to get images of the focal spot. The residual aberrations of the focal spot are measured by a Phase Retrieval algorithm using the acquired focal spot images. Then the adaptive optics loop is run in order to precompensate for these aberrations, which leads to diffraction limited focal spot in the interaction chamber.

  17. Beat the diffraction limit in 3D direct laser writing in photosensitive glass.

    PubMed

    Bellec, Matthieu; Royon, Arnaud; Bousquet, Bruno; Bourhis, Kevin; Treguer, Mona; Cardinal, Thierry; Richardson, Martin; Canioni, Lionel

    2009-06-01

    Three-dimensional (3D) femtosecond laser direct structuring in transparent materials is widely used for photonic applications. However, the structure size is limited by the optical diffraction. Here we report on a direct laser writing technique that produces subwavelength nanostructures independently of the experimental limiting factors. We demonstrate 3D nanostructures of arbitrary patterns with feature sizes down to 80 nm, less than one tenth of the laser processing wavelength. Its ease of implementation for novel nanostructuring, with its accompanying high precision will open new opportunities for the fabrication of nanostructures for plasmonic and photonic devices and for applications in metamaterials. PMID:19506684

  18. Wavelength dependence of maximal diffraction-limited output power of fiber lasers

    NASA Astrophysics Data System (ADS)

    Otto, Hans-Jürgen; Modsching, Norbert; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2015-03-01

    The threshold-like onset of mode instabilities is currently the main limitation for the scaling of the average output power of fiber-laser systems with diffraction limited beam quality. In this contribution wavelength shifting of the seed signal has been experimentally investigated in order to mitigate mode instabilities. Against the expectations, it is experimentally shown that the highest mode instabilities threshold is reached around 1030 nm and not for the smallest wavelength separation between pump and signal wavelength. This finding implies that the quantum defect is not the sole significant source for thermal heating in the fiber.

  19. Diffraction-limited ultrasensitive molecular nano-arrays with singular nano-cone scattering.

    PubMed

    Wang, Yunshan; Chang, Ting-Chou; Stoddart, Paul R; Chang, Hsueh-Chia

    2014-03-01

    Large-library fluorescent molecular arrays remain limited in sensitivity (1 × 10(6) molecules) and dynamic range due to background auto-fluorescence and scattering noise within a large (20-100 μm) fluorescent spot. We report an easily fabricated silica nano-cone array platform, with a detection limit of 100 molecules and a dynamic range that spans 6 decades, due to point (10 nm to 1 μm) illumination of preferentially absorbed tagged targets by singular scattering off wedged cones. Its fluorescent spot reaches diffraction-limited submicron dimensions, which are 10(4) times smaller in area than conventional microarrays, with comparable reduction in detection limit and amplification of dynamic range. PMID:24738011

  20. How diffraction limits ultrasonic screening in phononic plate composed of a periodic array of resonant slits

    NASA Astrophysics Data System (ADS)

    Elayouch, Aliyasin; Addouche, Mahmoud; Lasaygues, Philippe; Achaoui, Younes; Ouisse, Morvan; Khelif, Abdelkrim

    2016-05-01

    We explore experimentally the role played by diffraction in the phenomenon of acoustic shielding provided by a plate that is periodically perforated with subwavelength slits and immersed in water. We carried out ultrasonic transmission measurements for all directions of propagation in order to check the omnidirectionality of acoustic shielding. While a single slit acts as a Fabry-Perot resonator in the frequency range of interest, the coupling between adjacent slits provides an attenuation frequency band centered around the resonant frequency that is mostly independent of the angle of incidence. Beyond the incident angle of 45 degrees, however, we observe the appearance of scattered radiation that limits the attenuation of ultrasound. This spurious scattering is shown to arise from diffraction by the grating of slits. xml:lang="fr"

  1. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays

    NASA Astrophysics Data System (ADS)

    Zhang, Shuyan; Kim, Myoung-Hwan; Aieta, Francesco; She, Alan; Mansuripur, Tobias; Gabay, Ilan; Khorasaninejad, Mohammadreza; Rousso, David; Wang, Xiaojun; Troccoli, Mariano; Yu, Nanfang; Capasso, Federico

    2016-08-01

    A limiting factor in the development of mid-infrared optics is the lack of abundant materials that are transparent, low cost, lightweight, and easy to machine. In this paper, we demonstrate a metasurface device that circumvents these limitations. A flat lens based on antenna reflectarrays was designed to achieve near diffraction-limited focusing with a high efficiency (experiment: 80%, simulation: 83%) at 45(o) incidence angle at {\\lambda} = 4.6 {\\mu}m. This geometry considerably simplifies the experimental arrangement compared to the common geometry of normal incidence which requires beam splitters. Simulations show that the effect of comatic aberrations is small compared to parabolic mirrors. The use of single-step photolithography allows large scale fabrication.

  2. Long-baseline optical intensity interferometry. Laboratory demonstration of diffraction-limited imaging

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-08-01

    Context. A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Aims: Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. Methods: In a large optics laboratory, artificial stars (single and double, round and elliptic) were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. Results: These interferometric measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the

  3. Aplanatic beam shaping for diffraction limited beam circularization of tapered laser diodes

    NASA Astrophysics Data System (ADS)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2014-03-01

    Many laser applications require a circular, astigmatism-free, diffraction limited, high power beam. A tapered laser diode can generate up to 6 W output power in a diffraction limited beam. However the beam is elliptical and highly astigmatic rendering the design of beam shaping challenging. We present a diffraction limited beam shaping design, especially suitable to circularize and collimate highly astigmatic beams. The setup consists of a simple plano-convex cylindrical lens in the aplanatic condition and an asphere. The first lens matches the divergence of the fast- to the slow axis at the point where the beam is circular while the following asphere collimates the beam. The aplanatic condition is fulfilled by choosing a glass with a specific refractive index depending on the ratio between fast- and slow axis divergence. This cylindrical lens introduces neither spherical error nor primary coma, which makes it insensitive to misalignment. The setup has been tested with a high power laser diode at 980 nm with a 6 mm long taper (angle 6°) and a facet width of 425 μm. The optics have a transmission of about 90% and the resulting beam has a M2 < 1.5. As a proof of principle 3.2 W were coupled into a 15 μm (NA 0.06) LMA fiber with 55% efficiency corresponding to a brightness B = 140 MW/(cm2 sr). Furthermore the presented beam shaping can easily be extended to bars or multiple emitters to reach power levels that are to date only achievable with complex wavelength combination techniques.

  4. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  5. Effective properties of superstructured hyperbolic metamaterials: How to beat the diffraction limit at large focal distance

    NASA Astrophysics Data System (ADS)

    Centeno, Emmanuel; Moreau, Antoine

    2015-07-01

    Superstructured hyperbolic metamaterials (HMs) have been recently introduced to realize media with effective index -1 with the ultimate goal of designing flat lenses of super-resolution power for optical imaging applications. In this work, we analyze the impact on their effective optical properties of defect metallic layers periodically added in HMs. The effective index and losses are systematically calculated in both homogenization and diffractive regimes and with respect to the ratio of dielectric and metallic layers. Although the superstructuring can dramatically decrease the effective losses, we demonstrate that the extent of the hyperbolic dispersion curve in k space plays an even more fundamental role for breaking the diffraction limit. Optimized superstructured HMs working in a regime between the homogenization and diffractive regimes are shown to present simultaneously low effective losses and a high optical resolution for visible light. These superstructured HMs present an effective index of -5 and extend the subwavelength focalization distance up to 2 λ , which is twice as large as for regular HMs.

  6. Interferometric backward third harmonic generation microscopy for axial imaging with accuracy beyond the diffraction limit.

    PubMed

    Sandkuijl, Daaf; Kontenis, Lukas; Coelho, Nuno M; McCulloch, Christopher; Barzda, Virginijus

    2014-01-01

    A new nonlinear microscopy technique based on interference of backward-reflected third harmonic generation (I-THG) from multiple interfaces is presented. The technique is used to measure height variations or changes of a layer thickness with an accuracy of up to 5 nm. Height variations of a patterned glass surface and thickness variations of fibroblasts are visualized with the interferometric epi-THG microscope with an accuracy at least two orders of magnitude better than diffraction limit. The microscopy technique can be broadly applied for measuring distance variations between membranes or multilayer structures inside biological tissue and for surface height variation imaging. PMID:24710103

  7. Near-diffraction-limited laser focusing with a near-critical density plasma lens.

    PubMed

    Shou, Yinren; Lu, Haiyang; Hu, Ronghao; Lin, Chen; Wang, Hongyong; Zhou, Meilin; He, Xiantu; Chen, Jia Erh; Yan, Xueqing

    2016-01-01

    In this Letter, we investigate the feasibility of focusing relativistic laser pulses toward diffraction limit by near-critical density plasma lenses. A theoretical model is developed to estimate the focal length of the plasma lens. Particle-in-cell simulations with various pulse parameters, such as pulse duration, beam waist, and intensity, are performed to show the robustness of plasma lenses. The results prove that the near-critical density plasma lenses can be deployed to obtain higher laser peak intensities with sub-wavelength focal spots in experiments. PMID:26696178

  8. PIMMS échelle: the next generation of compact diffraction limited spectrographs for arbitrary input beams

    NASA Astrophysics Data System (ADS)

    Betters, Christopher H.; Leon-Saval, Sergio G.; Bland-Hawthorn, Joss; Richards, Samuel N.; Birks, Tim A.; Gris-Sánchez, Itandehui

    2014-07-01

    PIMMS échelle is an extension of previous PIMMS (photonic integrated multimode spectrograph) designs, enhanced by using an échelle diffraction grating as the primary dispersing element for increased spectral band- width. The spectrograph operates at visible wavelengths (550 to 780nm), and is capable of capturing ~100 nm of R > 60, 000 (λ/(triangle)λ) spectra in a single exposure. PIMMS échelle uses a photonic lantern to convert an arbitrary (e.g. incoherent) input beam into N diffraction-limited outputs (i.e. N single-mode fibres). This allows a truly diffraction limited spectral resolution, while also decoupling the spectrograph design from the input source. Here both the photonic lantern and the spectrograph slit are formed using a single length of multi-core fibre. A 1x19 (1 multi-mode fiber to 19 single-mode fibres) photonic lantern is formed by tapering one end of the multi-core fibre, while the other end is used to form a TIGER mode slit (i.e. for a hexagonal grid with sufficient spacing and the correct orientations, the cores of the multi-core fibre can be dispersed such that they do not overlap without additional reformatting). The result is an exceptionally compact, shoebox sized, spectrograph that is constructed primarily from commercial off the shelf components. Here we present a brief overview of the échelle spectrograph design, followed by results from on-sky testing of the breadboard mounted version of the spectrograph at the `UK Schmidt Telescope'.

  9. FRIDA, the diffraction limited NIR imager and IFS for the GTC

    NASA Astrophysics Data System (ADS)

    López, J. A.; Acosta, J.; Álvarez, L. C.; Bringas, V.; Cardiel, N.; Clark, D. M.; Corrales, A.; Cuevas, S.; Chapa, O.; Díaz, J. J., Eikenberry, S. S.; Eliche, C.; Espejo, C.; Flores, R.; Fuentes, J.; Gallego, J.; Garcés, L.; Garzón, F.; Hammersley, P.; Keiman, C.; Lara, G.; López, P.; Lucero, D.; Moreno, H.; Pascual, S.; Patrón, J.; Prieto, A.; Rodríguez, A.; Rodríguez, B.; Sánchez, B.; Torres, D.; Uribe, J.; Watson, A.

    2015-05-01

    FRIDA (InFRared Imager and Dissector for the Adaptive optics system of GTC) is a near infrared, diffraction limited imager and integral field spectrograph that has been designed and is being built as a collaborative project between GTC partner institutions from México, Spain and the USA. FRIDA will operate with the adaptive optics system of GTC. Three different scales are provided in imaging mode, 0.010, 0.020 and 0.040 arcsec pixel^{-1}. The integral field unit is based on a monolithic image slicer that will slice up the field of view into 30 slices. The IFS spaxels have a 2:1 pixels aspect ratio (2 along the spectral axis an 1 along the spatial axis) and it will offer three different spectral resolutions, R ˜ 1000, 5000 and 30,000, the latter over selectable regions in the H & K bands. Thus FRIDA will exploit the diffraction limit of a 10.4 m telescope with superb image quality and spectral resolutions suitable to tackle a large range of topical astrophysical problems. FRIDA has started systems integration and is scheduled to be ready for fully integrated system tests by the end of 2015 and be delivered to GTC shortly after. Here we present an overview of its design, current status and potential scientific applications.

  10. Diffraction limited observations of flux concentrations and sunspot finestructure using adaptive optics

    NASA Astrophysics Data System (ADS)

    Rimmele, T. R.

    2003-05-01

    We present diffraction limited observations of magnetic flux concentrations and penumbral and umbral fine structure within an active region observed at disk center. We recorded g-band images, magnetograms, dopplergrams and narrow-band filtergrams using the Universal Birefringened Filter (UBF) at the Dunn Solar Telescope (DST). The adaptive optics system at the DST was used to achieve diffraction limited long exposure imaging with high signal-to-noise. The main results can be summarized as follows: Strong and spatially narrow downflows are observed at the edge of magnetic structures such as flux tubes, pores and the sunspot umbra. Flux concentrations observed as bright points in intensity expand by about 30-40% from a height close to where the continuum is formed and the height of formation for the g-band. For the particular sunspot observed and at a low altitude in the photosphere we find strong evidence for what appears to be vigorous, small-scale convection patterns in parts of the umbra and a light bridge. We observe extremely narrow (<0.2") channels or sheets of downflowing plasma. We are able to identify individual penumbral fibrils in our data and find a small bright (hot) upflow and a more vertical field structure at the filament "head" near the umbral boundary. The field and flow turn to a nearly horizontal, dark structure within only about 0.2 arcsec. We compare our results with theoretical model predictions.

  11. Space infrared telescope facility wide field and diffraction limited array camera (IRAC)

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1988-01-01

    The wide-field and diffraction limited array camera (IRAC) is capable of two-dimensional photometry in either a wide-field or diffraction-limited mode over the wavelength range from 2 to 30 microns with a possible extension to 120 microns. A low-doped indium antimonide detector was developed for 1.8 to 5.0 microns, detectors were tested and optimized for the entire 1.8 to 30 micron range, beamsplitters were developed and tested for the 1.8 to 30 micron range, and tradeoff studies of the camera's optical system performed. Data are presented on the performance of InSb, Si:In, Si:Ga, and Si:Sb array detectors bumpbonded to a multiplexed CMOS readout chip of the source-follower type at SIRTF operating backgrounds (equal to or less than 1 x 10 to the 8th ph/sq cm/sec) and temperature (4 to 12 K). Some results at higher temperatures are also presented for comparison to SIRTF temperature results. Data are also presented on the performance of IRAC beamsplitters at room temperature at both 0 and 45 deg angle of incidence and on the performance of the all-reflecting optical system baselined for the camera.

  12. 100-watt fiber-based green laser with near diffraction-limited beam quality

    NASA Astrophysics Data System (ADS)

    Hu, Dan; Eisenberg, Eric; Brar, Khush; Yilmaz, Tolga; Honea, Eric

    2010-02-01

    An air-cooled, light-weight, fiber-based, high power green laser has been prototyped. The system consists of an all-fibercoupled IR pump laser at 1064 nm and a frequency-conversion module in a compact and flexible configuration. The IR laser operates in QCW mode, with 10 MHz pulse repetition frequency and 3-5 ns pulse width, to generate sufficient peak power for frequency doubling in the converter module. The IR laser can produce more than 200 W in a linearlypolarized diffraction-limited output beam with high spectral brightness for frequency conversion. The converter module has an input telescope and an oven with a nonlinear crystal to efficiently convert the 1064-nm IR fiber laser output to 532-nm green output. The IR laser and conversion module are connected via a stainless-steel protected delivery fiber for optical beam delivery and an electrical cable harness for electrical power delivery and system control. The beam quality of the 532 nm output remains near diffraction-limited, with M2<1.4. Up to 101 W of 532 nm output was demonstrated and multi-hour runs were characterized at 75 W output. The weights of the IR laser package and doubler are 69 lbs and 14 lbs respectively. An overview of the system and full characterization results will be presented. Such compact, highbrightness green laser sources are expected to enable various scientific, defense and industrial applications.

  13. 70-Watt green laser with near diffraction-limited beam quality

    NASA Astrophysics Data System (ADS)

    Hu, Dan; Eisenberg, Eric; Madasamy, Pratheepan; Mead, Roy; Honea, Eric

    2009-02-01

    A 70-Watt green laser with M2<1.4 has been demonstrated. This green laser consists of an all-fiber-based IR pump laser at 1064 nm and a frequency-conversion module in a compact and flexible configuration. The IR laser produces up to 150 Watts in a polarized diffraction-limited output beam with high spectral brightness for frequency conversion. The IR laser is operating under QCW mode, e.g. 10 MHz with 3~5 ns pulse width or 700 MHz with 50 ps pulse width, to generate sufficient peak power for frequency doubling in the converter module. The IR laser and conversion module are connected via a 5-mm stainless-steel protected delivery fiber for optical beam delivery and an electrical cable harness for electrical power delivery and system control. Both the IR laser and converter module are run through embedded software that controls laser operations such as warm up and shut down. System overview and full characterization results will be presented. Such a high power green laser with near diffraction-limited output in a compact configuration will enable various scientific as well as industrial applications.

  14. High Quantum Efficiency Nanopillar Photodiodes Overcoming the Diffraction Limit of Light.

    PubMed

    Lee, Wook-Jae; Senanayake, Pradeep; Farrell, Alan C; Lin, Andrew; Hung, Chung-Hong; Huffaker, Diana L

    2016-01-13

    InAs1-xSbx nanowires have recently attracted interest for infrared sensing applications due to the small bandgap and high thermal conductivity. However, previous reports on nanowire-based infrared sensors required low operating temperatures in order to mitigate the high dark current and have shown poor sensitivities resulting from reduced light coupling efficiency beyond the diffraction limit. Here, InAsSb nanopillar photodiodes with high quantum efficiency are achieved by partially coating the nanopillar with metal that excites localized surface plasmon resonances, leading to quantum efficiencies of ∼29% at 2390 nm. These high quantum efficiency nanopillar photodiodes, with 180 nm diameters and 1000 nm heights, allow operation at temperatures as high as 220 K and exhibit a detection wavelength up to 3000 nm, well beyond the diffraction limit. The InAsSb nanopillars are grown on low cost GaAs (111)B substrates using an InAs buffer layer, making our device architecture a promising path toward low-cost infrared focal plane arrays with high operating temperature. PMID:26682745

  15. FRIDA diffraction limited NIR instrument: the challenges of its verification processes

    NASA Astrophysics Data System (ADS)

    Sánchez, Be.; Keiman, C.; Espejo, C.; Cuevas, S.; Álvarez, L. C.; Chapa, O.; Flores-Meza, R.; Fuentes, J.; Garcés, L.; Lara, G.; López, J. A.; Rodríguez, R.; Watson, A.; Bringas, V.; Corrales, A.; Lucero, D.; Rodríguez, A.; Rodríguez, B.; Torres, D.; Uribe, J.

    2014-08-01

    FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias (GTC)) is designed as a diffraction limited instrument that will offer broad and narrow band imaging and integral field spectroscopy capabilities with low, intermediate and high (R ~ 30,000) spectral resolutions, to operate in the wavelength range 0.9 - 2.5 μm. The integral field unit is based on a monolithic image slicer and the imaging and IFS observing modes will use the same Teledyne 2Kx2K detector. FRIDA will be based on a Nasmyth B of GTC, behind the adaptive optics (AO) system. The key scientific objectives of the instrument include studies of solar system bodies, low mass objects, circumstellar outflow phenomena in advanced stages of stellar evolution, active galactic nuclei high redshift galaxies, including resolved stellar populations, semidetached binary systems, young stellar objects and star forming environments. FRIDA subsystems are presently being manufactured and tested. In this paper we present the challenges to perform the verification of some critical specifications of a cryogenic and diffraction limited NIR instrument as FRIDA. FRIDA is a collaborative project between the main GTC partners, namely, Spain, México and Florida.

  16. Conventional transmission electron microscopy imaging beyond the diffraction and information limits.

    PubMed

    Rosenauer, Andreas; Krause, Florian F; Müller, Knut; Schowalter, Marco; Mehrtens, Thorsten

    2014-08-29

    There are mainly two complementary imaging modes in transmission electron microscopy (TEM): Conventional TEM (CTEM) and scanning TEM (STEM). In the CTEM mode the specimen is illuminated with a plane electron wave, and the direct image formed by the objective lens is recorded in the image plane. STEM is based on scanning the specimen surface with a focused electron beam and collecting scattered electrons with an extended disk or ring-shaped detector. Here we show that combination of CTEM imaging with STEM illumination generally allows extending the point resolution of CTEM imaging beyond the diffraction limit. This new imaging mode improves imaging characteristics, is more robust against chromatic aberration, exhibits direct structural imaging with superior precision, visualizes light elements with excellent contrast, and even allows us to overcome the conventional information limit of a microscope. PMID:25215995

  17. Overcoming of the Diffraction Limit for the Discrete Case in Time Reversed Acoustics

    NASA Astrophysics Data System (ADS)

    Velázquez-Arcos, J. M.; Vargas, C. A.; Fernández-Chapou, L.; Granados-Samaniego, J.

    2008-04-01

    The time reversal phenomenon in sound waves for the discrete case is revisited. Our purpose is to improve a previous explanation of this problem in which there was a more limited scope. We develop a formulation which includes sink terms in the time reversed process, which allow going beyond the diffraction limit. By employing a reversed signal it is possible to reach a definition of a fourteenth of the wavelength. In the present work we discuss a matrix formulation for the discrete case in terms of the Fourier transforms of the input and output signals and the Green function. With this function it is possible to characterize the propagation of signals emitted by an array of devices. We are able to express the time reversed signal and precisely select the destination site, among other useful objectives. Finally we show an experimental arrangement using a Michelson interferometer in order to observe this phenomenon. Time Reversal originates from the second order time derivative in the wave equation. This is different from the case of nonlinear behavior in media known as acoustic or electromagnetic inverse scattering. Some of the fields which Time Reversal opens for investigation are the time reversal of a signal by a sound mirror (Time Reversal Mirror or TRM) or by a Time Reversal Cavity (TRC), and the possibility of sending a message to a precise physical location. Recently a new and powerful application has been reported in the literature, namely the abovementioned overcoming of the diffraction limit in wave physics. Although our experimental proposal is based on reports from others authors, the experimental arrangement used here, the specific way of operation and the image construction are original.

  18. Diffraction-limited upgrade to ARGOS: the LBT's ground-layer adaptive optics system

    NASA Astrophysics Data System (ADS)

    Hart, Michael; Busoni, Lorenzo; Durney, Olivier; Esposito, Simone; Gässler, Wolfgang; Gasho, Victor; Rabien, Sebastian; Rademacher, Matt

    2010-07-01

    The Large Binocular Telescope (LBT) is now operating with the first of two permanently installed adaptive secondary mirrors, and the first of two complementary near-IR instruments called LUCIFER is operational as well. The ARGOS laser-guided ground-layer adaptive optics (GLAO) system, described elsewhere at this conference1, will build on this foundation to deliver the highest resolution over the 4 arc min wide-field imaging and multi-object spectroscopic modes of LUCIFER. In this paper, we describe a planned upgrade to ARGOS which will supplement the Rayleigh-based GLAO system with sodium laser guide stars (LGS) to fulfill the telescope's diffraction-limited potential. In its narrow-field mode of 30 arc sec, LUCIFER will deliver imaging at the Nyquist limit of the individual 8.4 m apertures down to J band and long-slit spectroscopy with resolution up to 40,000. In addition, the LBT Interferometer2 (LBTI) will cophase the two apertures, offering imaging at the diffraction limit of the 22.8 m baseline at wavelengths from 1.2 to 20 μm. In the first phase of the upgrade, a 10 W sodium LGS will be added to each half of the LBT, using the same launch telescopes mounted behind the two secondary mirrors as the Rayleigh LGS. The upgrade will rely on other components of the ARGOS infrastructure such as acquisition and guiding, and fast tip-tilt cameras. New wavefront sensors will be added to LUCIFER and LBTI. In the upgrade's second phase, the sodium and Rayleigh LGS will be used together in a hybrid tomographic sensing system. This configuration will offer the advantage that a single tip-tilt star will continue to be sufficient even for MCAO operation3, which is planned with LBT's LINC-NIRVANA instrument4,5.

  19. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  20. First results from IRENI - Rapid diffraction-limited high resolution imaging across the mid-infrared bandwidth

    SciTech Connect

    Nasse, Michael J.; Mattson, Eric; Hirschmugl, Carol

    2010-02-03

    First results from IRENI, a new beamline at the Synchrotron Radiation Center, demonstrate that synchrotron chemical imaging, which combines the characteristics of bright, stable, broadband synchrotron source with a multi-element detector, produces diffraction-limited images at all wavelengths simultaneously. A single cell of Micrasterias maintained in a flow cell has been measured, and results show high quality spectra and images demonstrating diffraction limited, and therefore wavelength-dependent, spatial resolution.

  1. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging.

    PubMed

    Khorasaninejad, Mohammadreza; Chen, Wei Ting; Devlin, Robert C; Oh, Jaewon; Zhu, Alexander Y; Capasso, Federico

    2016-06-01

    Subwavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as metalenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405, 532, and 660 nm with corresponding efficiencies of 86, 73, and 66%. The metalenses can resolve nanoscale features separated by subwavelength distances and provide magnification as high as 170×, with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy. PMID:27257251

  2. Tolerancing of diffraction-limited Kirkpatrick-Baez synchrotron beamline optics for extreme-ultraviolet metrology.

    PubMed

    Naulleau, P P; Goldberg, K A; Batson, P J; Jeong, S; Underwood, J H

    2001-08-01

    The recent interest in extreme-ultraviolet (EUV) lithography has led to the development of an array of at-wavelength metrologies implemented on synchrotron beamlines. These beamlines commonly use Kirkpatrick-Baez (K-B) systems consisting of two perpendicular, elliptically bent mirrors in series. To achieve high-efficiency focusing into a small spot, unprecedented fabrication and assembly tolerance is required of these systems. Here we present a detailed error-budget analysis and develop a set of specifications for diffraction-limited performance for the K-B optic operating on the EUV interferometry beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. The specifications are based on code v modeling tools developed explicitly for these optical systems. Although developed for one particular system, the alignment sensitivities presented here are relevant to K-B system designs in general. PMID:18360402

  3. Optical Imaging of Nonuniform Ferroelectricity and Strain at the Diffraction Limit.

    PubMed

    Vlasin, Ondrej; Casals, Blai; Dix, Nico; Gutiérrez, Diego; Sánchez, Florencio; Herranz, Gervasi

    2015-01-01

    We have imaged optically the spatial distributions of ferroelectricity and piezoelectricity at the diffraction limit. Contributions to the birefringence from electro-optics--linked to ferroelectricity--as well as strain--arising from converse piezoelectric effects--have been recorded simultaneously in a BaTiO3 thin film. The concurrent recording of electro-optic and piezo-optic mappings revealed that, far from the ideal uniformity, the ferroelectric and piezoelectric responses were strikingly inhomogeneous, exhibiting significant fluctuations over the scale of the micrometer. The optical methods here described are appropriate to study the variations of these properties simultaneously, which are of great relevance when ferroelectrics are downscaled to small sizes for applications in data storage and processing. PMID:26522345

  4. Optical Imaging of Nonuniform Ferroelectricity and Strain at the Diffraction Limit

    PubMed Central

    Vlasin, Ondrej; Casals, Blai; Dix, Nico; Gutiérrez, Diego; Sánchez, Florencio; Herranz, Gervasi

    2015-01-01

    We have imaged optically the spatial distributions of ferroelectricity and piezoelectricity at the diffraction limit. Contributions to the birefringence from electro-optics –linked to ferroelectricity– as well as strain –arising from converse piezoelectric effects– have been recorded simultaneously in a BaTiO3 thin film. The concurrent recording of electro-optic and piezo-optic mappings revealed that, far from the ideal uniformity, the ferroelectric and piezoelectric responses were strikingly inhomogeneous, exhibiting significant fluctuations over the scale of the micrometer. The optical methods here described are appropriate to study the variations of these properties simultaneously, which are of great relevance when ferroelectrics are downscaled to small sizes for applications in data storage and processing. PMID:26522345

  5. Inexpensive Demonstration of Diffraction-Limited Telescope from NASA Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Young, Elliot

    NASA s Balloon Program often flies payloads to altitudes of 120,000 ft or higher, above 99.5% of the atmosphere. At those altitudes, the imaging degradation due to atmospheric- induced wavefront errors is virtually zero. In 2009, the SUNRISE balloon mission quantified the wavefront errors with a Shack-Hartmann array and found no evidence of wavefront errors. This means that a large telescope on a balloon should be able to achieve diffraction-limited performance, provided it can be stabilized at a level that is finer than the diffraction limit. At visible wavelengths, the diffraction limit of a 1 or 2 m telescope is 0.1 arcsec or 0.05 arcsec, respectively. NASA recently demonstrated WASP (the Wallops Arc-Second Pointing system) on a balloon flight in October 2011, a coarse pointing system that kept a dummy telescope (24 ft long, 1500 lbs) stabilized at the 0.25 arcsec level. We propose to use an orthogonal transfer CCD (OTCCD) from MIT Lincoln Laboratory to improve the pointing to 0.05 arcsec, an order of magnitude better than the coarse pointing alone and sufficient to provide long integrations at the diffraction limit of a 2-m telescope. Imaging in visible wavelengths is an important new capability. Ground-based adaptive optics (AO) systems on 8-m and 10-m class telescope cannot effectively correct for atmospheric turbulence at wavelengths shorter than 1 μm; the atmospheric wavefront errors are larger at these wavelengths than in the infrared J-H-K bands. At present, only the Hubble Space Telescope can achieve 0.05 arcsec resolution images in visible wavelengths, a capability that is dramatically oversubscribed. With a camera based on an MIT/LL OTCCD, a 2-m balloon-borne telescope could match the spatial resolution of HST. Under this project (and in conjunction with a SWRI Internal Research proposal), we will perform ground tests of a motion-compensation camera based on an MIT/LL Orthogonal Transfer CCD (OTCCD). This device can shift charge in four directions

  6. Three-dimensional array diffraction-limited foci from Greek ladders to generalized Fibonacci sequences.

    PubMed

    Zhang, Junyong

    2015-11-16

    Greek ladder is a technique for approximating Cn by rational numbers where n is a positive integer and C is a positive real number. For the classical Greek ladder, the value isC. Based on the continued fraction theory and algebraic equation, the classical Greek ladder in a special case can be reduced to the generalized Fibonacci sequence. By means of proper switching and binary, ternary or quaternary phase modulation, here we have successfully designed the various kinds of nano-photonic devices to produce three-dimensional array foci whose focusing properties satisfy the above mathematical characteristics. With this technology, the diffraction-limited array foci are freely designed or distributed under the requirement at the desired multiple focal planes. PMID:26698510

  7. High efficiency single-mode-multimode-single-mode fiber laser with diffraction-limited beam output.

    PubMed

    Zhou, Jiaqi; He, Bing; Feng, Yan; Gu, Xijia

    2014-08-20

    We designed and tested an all-fiber, high efficiency Yb-doped laser operating at 1088 nm with a single-mode-multimode-single-mode (SMS) structure. A larger-mode-area gain fiber of 1.5 m length, with 20/130 μm core/cladding diameters was used to increase the absorption, and a diffraction-limited Gaussian output beam was obtained from the single-mode output fiber. Using a 976 nm laser diode as the pump source, the laser generated an output power up to 38.5 W with a slope efficiency of 70%. The output beam qualities, with and without SMS structure, were compared and showed that the fiber laser with the SMS structure can achieve high gain, short fiber length, and excellent beam quality. PMID:25321133

  8. Detailed optical characterization of a near diffraction limited xenon fluoride laser

    SciTech Connect

    Londono, C. ); Smith, M.J.; Trainor, D.W.; Itzkan, I. ); Berggren, R. ); Fulghum, S.F. )

    1988-12-01

    A 1 m gain length, electron beam pumped xenon fluoride laser (lambda = 353, 351 nm) utilizing two laser mixtures of lean and rich NF/sub 3/, with Xe and balance Ne, was operated with a confocal unstable resonator with magnification of 2.24. The resultant beam quality was diagnosed with both shearing interferometry to measure near-field phase and far-field focal spot evaluation techniques. These measurements resulted in a beam quality of <1.15 times the diffraction limit with no evidence of the wide angle energy loss. This laser device was fully characterized with regard to electron beam deposition uniformity, transient refractive index effects, and optical quality of the resonator and diagnostic components.

  9. Noninvasive Imaging of 3D Dynamics in Thickly Fluorescent Specimens Beyond the Diffraction Limit

    PubMed Central

    Gao, Liang; Shao, Lin; Higgins, Christopher D.; Poulton, John S.; Peifer, Mark; Davidson, Michael W.; Wu, Xufeng; Goldstein, Bob; Betzig, Eric

    2013-01-01

    SUMMARY Optical imaging of the dynamics of living specimens involves tradeoffs between spatial resolution, temporal resolution, and phototoxicity, made more difficult in three-dimensions. Here, however, we report that rapid 3D dynamics can be studied beyond the diffraction limit in thick or densely fluorescent living specimens over many time points by combining ultra-thin planar illumination produced by scanned Bessel beams with superresolution structured illumination microscopy. We demonstrate in vivo karyotyping of chromosomes during mitosis and identify different dynamics for the actin cytoskeleton at the dorsal and ventral surfaces of fibroblasts. Compared to spinning disk confocal microscopy, we demonstrate substantially reduced photodamage when imaging rapid morphological changes in D. discoideum cells, as well as improved contrast and resolution at depth within developing C. elegans embryos. Bessel beam structured plane illumination thus promises new insights into complex biological phenomena that require 4D subcellular spatiotemporal detail in either a single or multicellular context. PMID:23217717

  10. Far-field imaging beyond diffraction limit using single sensor in combination with a resonant aperture.

    PubMed

    Li, Lianlin; Li, Fang; Cui, Tie Jun; Yao, Kan

    2015-01-12

    Far-field imaging beyond the diffraction limit is a long sought-after goal in various imaging applications, which requires usually mechanical scanning or an array of antennas. Here, we propose to solve this challenging problem using a single sensor in combination with a spatio-temporal resonant aperture antenna. We theoretically and numerically demonstrate that such resonant aperture antenna is capable of converting part evanescent waves into propagating waves and delivering them to far fields. The proposed imaging concept provides the unique ability to achieve super resolution for real-time data when illuminated by broadband electromagnetic waves, without the harsh requirements such as near- field scanning, mechanical scanning, or antenna arrays. We expect the imaging methodology to make breakthroughs in super-resolution imaging in microwave, terahertz, optical, and ultrasound regimes. PMID:25835685

  11. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays.

    PubMed

    Zhang, Shuyan; Kim, Myoung-Hwan; Aieta, Francesco; She, Alan; Mansuripur, Tobias; Gabay, Ilan; Khorasaninejad, Mohammadreza; Rousso, David; Wang, Xiaojun; Troccoli, Mariano; Yu, Nanfang; Capasso, Federico

    2016-08-01

    We report the first demonstration of a mid-IR reflection-based flat lens with high efficiency and near diffraction-limited focusing. Focusing efficiency as high as 80%, in good agreement with simulations (83%), has been achieved at 45° incidence angle at λ = 4.6 μm. The off-axis geometry considerably simplifies the optical arrangement compared to the common geometry of normal incidence in reflection mode which requires beam splitters. Simulations show that the effects of incidence angle are small compared to parabolic mirrors with the same NA. The use of single-step photolithography allows large scale fabrication. Such a device is important in the development of compact telescopes, microscopes, and spectroscopic designs. PMID:27505769

  12. FRIDA, the diffraction limited NIR imager and IFS for the Gran Telescopio Canarias: status report

    NASA Astrophysics Data System (ADS)

    López, J. A.; Acosta, J.; Alvarez, L. C.; Bringas, V.; Cardiel, N.; Clark, D. M.; Corrales, A.; Cuevas, S.; Chapa, O.; Díaz Garcia, J. J.; Eikenberry, S. S.; Eliche, C.; Espejo, C.; Flores, R.; Fuentes, J.; Gallego, J.; Garcés, J.; Garzón, F.; Hammersley, P.; Keiman, C.; Lara, G.; López, P.; Lucero, D.; Moreno, H.; Pascual, S.; Patrón, J.; Prieto, A.; Rodríguez, A.; Rodríguez, B.; Sánchez, B.; Torres, D.; Uribe, J.; Watson, A.

    2014-07-01

    FRIDA is a diffraction limited imager and integral field spectrometer that is being built for the Gran Telescopio Canarias. FRIDA has been designed and is being built as a collaborative project between institutions from México, Spain and the USA. In imaging mode FRIDA will provide scales of 0.010, 0.020 and 0.040 arcsec/pixel and in IFS mode spectral resolutions R ~ 1000, 4,500 and 30,000. FRIDA is starting systems integration and is scheduled to complete fully integrated system tests at the laboratory by the end of 2015 and be delivered to GTC shortly after. In this contribution we present a summary of its design, fabrication, current status and potential scientific applications.

  13. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging

    NASA Astrophysics Data System (ADS)

    Khorasaninejad, Mohammadreza; Chen, Wei Ting; Devlin, Robert C.; Oh, Jaewon; Zhu, Alexander Y.; Capasso, Federico

    2016-06-01

    Subwavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as metalenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405, 532, and 660 nm with corresponding efficiencies of 86, 73, and 66%. The metalenses can resolve nanoscale features separated by subwavelength distances and provide magnification as high as 170×, with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

  14. At-wavelength interferometry of high-NA diffraction-limited EUV optics

    SciTech Connect

    Goldberg, Kenneth A.; Naulleau, Patrick; Rekawa, Senajith; Denham, Paul; Liddle, J. Alexander; Anderson, Erik; Jackson, Keith; Bokor, Jeffrey; Attwood, David

    2003-08-01

    Recent advances in all-reflective diffraction-limited optical systems designed for extreme ultraviolet (EUV) lithography have pushed numerical aperture (NA) values from 0.1 to 0.3, providing Rayleigh resolutions of 27-nm. Worldwide, several high-NA EUV optics are being deployed to serve in the development of advanced lithographic techniques required for EUV lithography, including the creation and testing of new, high-resolution photoresists. One such system is installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. Sub{angstrom}-accuracy optical testing and alignment techniques, developed for use with the previous generations of EUV lithographic optical systems, are being extended for use at high NA. Considerations for interferometer design and use are discussed.

  15. 400-W near diffraction-limited single-frequency all-solid photonic bandgap fiber amplifier.

    PubMed

    Pulford, Benjamin; Ehrenreich, Thomas; Holten, Roger; Kong, Fanting; Hawkins, Thomas W; Dong, Liang; Dajani, Iyad

    2015-05-15

    An ytterbium-doped large-mode area photonic bandgap fiber is used to demonstrate 400 W of single-frequency output at 1064 nm with excellent beam quality and minimal stimulated Brillouin scattering. The fiber possesses all-solid microstructures embedded in the cladding and a core composed of phosphosilicate with a diameter of ∼50  μm. As the signal power is pushed beyond 450 W, there is degradation in the beam quality due to the modal instability. We briefly discuss techniques to alleviate this problem in future designs. To the best of our knowledge, the 400-W single-frequency near diffraction-limited output far exceeds the current state-of-the-art from such type of fiber amplifier. PMID:26393723

  16. Limited-angle hybrid optical diffraction tomography system with total-variation-minimization-based reconstruction

    NASA Astrophysics Data System (ADS)

    Krauze, Wojciech; Kuś, Arkadiusz; Kujawinska, Malgorzata

    2015-05-01

    The case of diffraction tomography with limited angle of projections is discussed from the algorithmic and experimental points of view. To reconstruct a three-dimensional distribution of refractive index of a micro-object under study, we use a hybrid approach based on the simultaneous algebraic reconstruction technique (SART) enhanced by a compressed sensing reconstruction technique. It enables us to apply the standard computed tomography algorithms (which assume that the rays are traveling in straight lines through the object) for phase data obtained by means of digital holography. We present the results of analysis of a phantom and real objects obtained by applying SART with anisotropic total variation (ATV) minimization. The real data are acquired from an experimental setup based on a Mach-Zehnder interferometer configuration. Also, it is proven that in the case of simulated data, the limited number of projections captured in a limited angular range can be compensated by a higher number of iterations of the algorithm. We also show that the SART + ATV method applied for experimental data gives better results than the data replenishment algorithm.

  17. A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Yu, Jiun-Yann; Liao, Chien-Sheng; Zhuo, Zong-Yan; Huang, Chen-Han; Chui, Hsiang-Chen; Chu, Shi-Wei

    2009-11-01

    Diversified research interests in scanning laser microscopy nowadays require broadband capability of the optical system. Although an all-mirror-based optical design with a suitable metallic coating is appropriate for broad-spectrum applications from ultraviolet to terahertz, most researchers prefer lens-based scanning systems despite the drawbacks of a limited spectral range, ghost reflection, and chromatic aberration. One of the main concerns is that the geometrical aberration induced by off-axis incidence on spherical mirrors significantly deteriorates image resolution. Here, we demonstrate a novel geometrical design of a spherical-mirror-based scanning system in which off-axis aberrations, both astigmatism and coma, are compensated to reach diffraction-limited performance. We have numerically simulated and experimentally verified that this scanning system meets the Marechà l condition and provides high Strehl ratio within a 3°×3° scanning area. Moreover, we demonstrate second-harmonic-generation imaging from starch with our new design. A greatly improved resolution compared to the conventional mirror-based system is confirmed. This scanning system will be ideal for high-resolution linear/nonlinear laser scanning microscopy, ophthalmoscopic applications, and precision fabrications.

  18. Characterization of Differential Toll-Like Receptor Responses below the Optical Diffraction Limit**

    PubMed Central

    Aaron, Jesse S.; Carson, Bryan D.; Timlin, Jerilyn A.

    2013-01-01

    Many membrane receptors are recruited to specific cell surface domains to form nanoscale clusters upon ligand activation. This step appears to be necessary to initiate signaling, including pathways in innate immune system activation. However, virulent pathogens such as Yersinia pestis (the causative agent of plague) are known to evade innate immune detection, in contrast to similar microbes (such as E. coli) that elicit a robust response. This disparity has been partly attributed to the structure of lipopolysaccharides (LPS) on the bacterial cell wall, which are recognized by the innate immune receptor TLR4. As such, we hypothesized that nanoscale differences would exist between the spatial clustering of TLR4 upon binding of LPS derived from Y. pestis and E. coli. Although optical imaging can provide exquisite details of the spatial organization of biomolecules, there is a mismatch between the scale at which receptor clustering occurs (<300 nm) and the optical diffraction limit (>400 nm). The last decade has seen the emergence of super-resolution imaging methods that effectively break the optical diffraction barrier to yield truly nanoscale information in intact biological samples. This study reports the first visualizations of TLR4 distributions on intact cells at image resolutions of <30 nm using a novel, dual-color stochastic optical reconstruction microscopy (STORM) technique. This methodology permits distinction between receptors containing bound LPS from those without at the nanoscale. Importantly, we also show that LPS derived from immuno-stimulatory bacteria resulted in significantly higher LPS-TLR4 cluster sizes and a nearly two-fold greater ligand/receptor colocalization as compared to immuno-evading LPS. PMID:22807232

  19. High-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused x-ray beam

    SciTech Connect

    Takahashi, Yukio; Nishino, Yoshinori; Ishikawa, Tetsuya; Tsutsumi, Ryosuke; Kubo, Hideto; Furukawa, Hayato; Mimura, Hidekazu; Matsuyama, Satoshi; Zettsu, Nobuyuki; Matsubara, Eiichiro; Yamauchi, Kazuto

    2009-08-01

    X-ray waves in the center of the beam waist of nearly diffraction limited focused x-ray beams can be considered to have amplitude and phase that are both almost uniform, i.e., they are x-ray plane waves. Here we report the results of an experimental demonstration of high-resolution diffraction microscopy using the x-ray plane wave of the synchrotron x-ray beam focused using Kirkpatrik-Baez mirrors. A silver nanocube with an edge length of {approx}100 nm is illuminated with the x-ray beam focused to a {approx}1 {mu}m spot at 12 keV. A high-contrast symmetric diffraction pattern of the nanocube is observed in the forward far field. An image of the nanocube is successfully reconstructed by an iterative phasing method and its half-period resolution is 3.0 nm. This method does not only dramatically improve the spatial resolution of x-ray microscopy but also is a key technology for realizing single-pulse diffractive imaging using x-ray free-electron lasers.

  20. An optical super-microscope for far-field, real-time imaging beyond the diffraction limit.

    PubMed

    Wong, Alex M H; Eleftheriades, George V

    2013-01-01

    Optical microscopy suffers from a fundamental resolution limitation arising from the diffractive nature of light. While current solutions to sub-diffraction optical microscopy involve combinations of near-field, non-linear and fine scanning operations, we hereby propose and demonstrate the optical super-microscope (OSM) - a superoscillation-based linear imaging system with far-field working and observation distances - which can image an object in real-time and with sub-diffraction resolution. With our proof-of-principle prototype we report a point spread function with a spot size clearly reduced from the diffraction limit, and demonstrate corresponding improvements in two-point resolution experiments. Harnessing a new understanding of superoscillations, based on antenna array theory, our OSM achieves far-field, sub-diffraction optical imaging of an object without the need for fine scanning, data post-processing or object pre-treatment. Hence the OSM can be used in a wide variety of imaging applications beyond the diffraction limit, including real-time imaging of moving objects. PMID:23612684

  1. An Optical Super-Microscope for Far-field, Real-time Imaging Beyond the Diffraction Limit

    PubMed Central

    Wong, Alex M. H.; Eleftheriades, George V.

    2013-01-01

    Optical microscopy suffers from a fundamental resolution limitation arising from the diffractive nature of light. While current solutions to sub-diffraction optical microscopy involve combinations of near-field, non-linear and fine scanning operations, we hereby propose and demonstrate the optical super-microscope (OSM) – a superoscillation-based linear imaging system with far-field working and observation distances – which can image an object in real-time and with sub-diffraction resolution. With our proof-of-principle prototype we report a point spread function with a spot size clearly reduced from the diffraction limit, and demonstrate corresponding improvements in two-point resolution experiments. Harnessing a new understanding of superoscillations, based on antenna array theory, our OSM achieves far-field, sub-diffraction optical imaging of an object without the need for fine scanning, data post-processing or object pre-treatment. Hence the OSM can be used in a wide variety of imaging applications beyond the diffraction limit, including real-time imaging of moving objects. PMID:23612684

  2. Novel techniques for detection and imaging of spin related phenomena: Towards sub-diffraction limited resolution

    NASA Astrophysics Data System (ADS)

    Wolfe, Christopher Stuart

    The idea that the spin degree of freedom of particles can be used to store and transport information has revolutionized the data storage industry and inspired a huge amount of research activity. Spin electronics, or spintronics, provides a plethora of potential improvements to conventional charge electronics that include increased functionality and energy efficiency. Scientists studying spintronics will need a multitude of characterization tools to sensitively detect spins in new materials and devices. There are already a handful of powerful techniques to image spin-related phenomena, but each has limitations. Magnetic resonance force microscopy, for example, offers sensitive detection of spin moments that are localized or nearly so but requires a high vacuum, cryogenic environment. Magnetometry based on nitrogen vacancy centers in diamond is a powerful approach, but requires the nitrogen vacancy center to be in very close contact to the spin system being studied to be able to measure the field generated by the system. Spin-polarized scanning tunneling microscopy provides perhaps the best demonstrated spatial resolution, but typically requires ultrahigh vacuum conditions and is limited to studying the surface of a sample. Traditional optical techniques such as Faraday or Kerr microscopy are limited in spatial resolution by the optical diffraction limit. In this dissertation I will present three new techniques we have developed to address some of these issues and to provide the community with new tools to help push forward spintronics and magnetism related research. I will start by presenting the first experimental demonstration of scanned spin-precession microscopy. This technique has the potential to turn any spin-sensitive detection technique into an imaging platform by providing the groundwork for incorporating a magnetic field gradient with that technique, akin to magnetic resonance imaging, and the mathematical tools to analyze the data and extract the local

  3. Electromagnetic energy transport below the diffraction limit in periodic metal nanostructures

    NASA Astrophysics Data System (ADS)

    Maier, Stefan A.; Kik, Pieter G.; Brongersma, Mark L.; Atwater, Harry A.

    2001-12-01

    We investigate the possibility of using arrays of closely spaced metal nanoparticles as waveguides for electromagnetic energy below the diffraction limit of visible light. Coupling between adjacent particles sets up coupled plasmon modes that give rise to coherent propagation of energy along the array. A point dipole analysis predicts group velocities of energy transport that exceed 0.1c along straight arrays and shows that energy transmission through chain networks such as corners and tee structures is possible at high efficiencies. Although radiation losses into the far field are negligible due to the near-field nature of the coupling, resistive heating leads to transmission losses of about 3 dB/500 nm for gold and silver particles. We confirmed the predictions of this analytical model using numeric finite difference time domain (FDTD) simulations. Also, we have fabricated gold nanoparticle arrays using electron beam lithography to study this type of electromagnetic energy transport. A modified illumination near field scanning optical microscope (NSOM) was used as a local excitation source of a nanoparticle in these arrays. Transport is studied by imaging the fluorescence of dye-filled latex beads positioned next to the nanoparticle arrays. We report on initial experiments of this kind.

  4. Advances in design and testing of limited angle optical diffraction tomographysystem for biological applications

    NASA Astrophysics Data System (ADS)

    Kuś, A.; Makowski, P.; Kujawińska, M.

    2016-03-01

    Optical diffraction tomography has been steadily proving its potential to study one of the hot topics in modern cell biology -- 3D dynamic changes in cells' morphology represented with refractive index values. In this technique digital holography is combined with tomographic reconstruction and thus it is necessary to provide projections acquired at different viewing directions. Usually the Mach-Zehnder interferometer configuration is used and while the object beam performs scanning, the reference beam is in most cases stationary. This approach either limits possible scanning strategies or requires additional mechanical movement to be introduced in the reference beam. On the other hand, spiral or grid scanning is possible in alternative common-path or Michelson configurations. However, in this case there is no guarantee that a specimen is sparse enough for the object to interfere with an object-free part of the beam. In this paper we present a modified version of Mach-Zehnder interferometer-based tomographic microscope, in which both object and reference beam are subject to scanning using one scanning device only thus making any scanning scenario possible. This concept is realized with a custom-built optical system in the reference beam and is appropriate for mechanical as well as optical scanning. Usually, the tomographic reconstruction setups and algorithms are verified using a microsphere phantom, which is not enough to test the influence of the distribution of the projections. In this work we propose a more complex calibration object created using two-photon polymerization.

  5. The First Diffraction-Limited Images from the W. M. Keck Telescope

    NASA Technical Reports Server (NTRS)

    Matthews, K.; Ghez, A. M.; Weinberger, A. J.; Neugebauer, G.

    1996-01-01

    The first diffraction limited, 0.05s resolution, images on the W. M. Keck Telescope have been obtained at a wavelength of 2.2 micrometers. These images were part of an experiment to test the suitability of the Keck Telescope for speckle imaging. In order to conduct this test, it was necessary to modify the pixel scale of the Keck facility Near Infrared Camera (NIRC) to optimally sample the spatial frequencies made available by the Keck telescope. The design and implementation of the external reimaging optics, which convert the standard fl25 beam from the secondary mirror to fl182, are described here. Techniques for reducing speckle data with field rotation on an alt-az telescope are also described. Three binary stars were observed in this experiment with separations as small as 0.05s. With only 100 frames of data on each, a dynamic range of at least 3.5 mag was achieved in all cases. These observations imply that a companion as faint as 14.5 mag at 2.2 micrometers could be detected around an 11th magnitude point source.

  6. Photonic spatial reformatting of stellar light for diffraction-limited spectroscopy

    NASA Astrophysics Data System (ADS)

    Harris, R. J.; MacLachlan, D. G.; Choudhury, D.; Morris, T. J.; Gendron, E.; Basden, A. G.; Brown, G.; Allington-Smith, J. R.; Thomson, R. R.

    2015-06-01

    The spectral resolution of a dispersive spectrograph is dependent on the width of the entrance slit. This means that astronomical spectrographs trade-off throughput with spectral resolving power. Recently, optical guided-wave transitions known as photonic lanterns have been proposed to circumvent this trade-off, by enabling the efficient reformatting of multimode light into a pseudo-slit which is highly multimode in one axis, but diffraction-limited in the other. Here, we demonstrate the successful reformatting of a telescope point spread function into such a slit using a three-dimensional integrated optical waveguide device, which we name the photonic dicer. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and light centred at 1530 nm with a 160 nm full width at half-maximum, the device shows a transmission of between 10 and 20 per cent depending upon the type of AO correction applied. Most of the loss is due to the overfilling of the input aperture in poor and moderate seeing. Taking this into account, the photonic device itself has a transmission of 57 ± 4 per cent. We show how a fully-optimized device can be used with AO to provide efficient spectroscopy at high spectral resolution.

  7. Searching for Extra-solar Planets with a Diffraction-Limited Balloon Borne Telescope

    NASA Astrophysics Data System (ADS)

    Ford, H. C.; Petro, L. D.; Allen, R.; Bely, P.; Burrows, C. J.; Krist, J.; Rafal, M.; White, R. L.; Jaffe, W.; Le Poole, R.; Crocker, J.; Dopita, M. A.; Grindlay, J. E.

    1998-12-01

    Our goal is to fly a diffraction limited 2.5-m optical telescope and coronagraph on long duration balloon flights at an altitudes of 35 km above 99.99% of the Earth's atmosphere to search for Jupiter-like planets around nearby stars. Analysis of radiosonde data from Mauna Kea and the South Pole suggests that at optical wavelengths and altitudes above 20 km r0 will be much greater than 6 meters anywhere in the world. A telescope equipped with an ultra smooth mirror and/or adaptive optics and coronagraph would provide three orders of magnitude improvement over the coronagraph in the Advanced Camera for Surveys (to be installed in Hubble in May 2000), four orders of magnitude improvement over the HST WFPC-2 camera, and five orders of magnitude improvement over ground based telescopes. A 2.5-m telescope could detect Jupiters and Saturns around the brightest stars within 10 parsecs of the Earth. No present or planned HST instruments will have this capability. Before we can design, build, and fly high resolution telescopes, we must first understand the high altitude balloon environment in detail. We need to know the spatial and temporal spectrum of wavefront errors, and the differential wind forces that will act on the telescope. We must understand the balloon environment sufficiently well to be able to discharge waste heat without spoiling the local thermal environment. We will discuss the major issues for high altitude "site testing" and subsequent high-resolution observations.

  8. Printable Nanoscopic Metamaterial Absorbers and Images with Diffraction-Limited Resolution.

    PubMed

    Richner, Patrizia; Eghlidi, Hadi; Kress, Stephan J P; Schmid, Martin; Norris, David J; Poulikakos, Dimos

    2016-05-11

    The fabrication of functional metamaterials with extreme feature resolution finds a host of applications such as the broad area of surface/light interaction. Nonplanar features of such structures can significantly enhance their performance and tunability, but their facile generation remains a challenge. Here, we show that carefully designed out-of-plane nanopillars made of metal-dielectric composites integrated in a metal-dielectric-nanocomposite configuration can absorb broadband light very effectively. We further demonstrate that electrohydrodynamic printing in a rapid nanodripping mode is able to generate precise out-of-plane forests of such composite nanopillars with deposition resolutions at the diffraction limit on flat and nonflat substrates. The nanocomposite nature of the printed material allows the fine-tuning of the overall visible light absorption from complete absorption to complete reflection by simply tuning the pillar height. Almost perfect absorption (∼95%) over the entire visible spectrum is achieved by a nanopillar forest covering only 6% of the printed area. Adjusting the height of individual pillar groups by design, we demonstrate on-demand control of the gray scale of a micrograph with a spatial resolution of 400 nm. These results constitute a significant step forward in ultrahigh resolution facile fabrication of out-of-plane nanostructures, important to a broad palette of light design applications. PMID:27100105

  9. Structuring of photosensitive material below diffraction limit using far field irradiation

    NASA Astrophysics Data System (ADS)

    Yadavalli, Nataraja Sekhar; Saphiannikova, Marina; Lomadze, Nino; Goldenberg, Leonid M.; Santer, Svetlana

    2013-11-01

    In this paper, we report on in-situ atomic force microscopy (AFM) studies of topographical changes in azobenzene-containing photosensitive polymer films that are irradiated with light interference patterns. We have developed an experimental setup consisting of an AFM combined with two-beam interferometry that permits us to switch between different polarization states of the two interfering beams while scanning the illuminated area of the polymer film, acquiring corresponding changes in topography in-situ. This way, we are able to analyze how the change in topography is related to the variation of the electrical field vector within the interference pattern. It is for the first time that with a rather simple experimental approach a rigorous assignment can be achieved. By performing in-situ measurements we found that for a certain polarization combination of two interfering beams [namely for the SP (↕, ↔) polarization pattern] the topography forms surface relief grating with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We believe that this relatively simple method could be extremely valuable to, for instance, produce structural features below the diffraction limit at high-throughput, and this could significantly contribute to the search of new fabrication strategies in electronics and photonics industry.

  10. Diffraction limited gamma-ray optics using Fresnel lenses for micro-arc second angular resolution

    NASA Astrophysics Data System (ADS)

    Skinner, G.; von Ballmoos, P.; Gehrels, N.; Krzmanic, J.

    2003-03-01

    Refractive indices at gamma-ray wavelengths are such that material thicknesses of the order of millimeters allow the phase of a wavefront to be changed by up to 2π . Thus a phase Fresnel lens can be made from a simple profiled thin disk of, for example, aluminium or plastic. Such a lens can easily have a collecting area of several square meters and an efficiency >90%. Ordinary engineering tolerances allow the manufacture of a lens which can be diffraction limited in the pico-meter wavelength band (up to ˜MeV) and thus provides a simple optical system with angular resolution better than a micro arc second i.e. the resolution necessary to resolve structures on the scale of the event horizon of super-massive black holes in AGN. However the focal length of such a lens is very long - up to a million km. Nevertheless studies have shown that a mission `Fresnel' using a detector and a phase Fresnel lens on two station-keeping spacecraft separated by such a distance is feasible. Results from these studies and work on other proof of concept studies are presented.

  11. An experimental apparatus for diffraction-limites soft x-ray nanofocusing

    SciTech Connect

    Merthe, Daniel; Goldberg, Kenneth; Yashchuk, Valeriy; Yuan, Sheng; McKinney, Wayne; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory; Rakawa, Senajith; Anderson, Erik; Smith, Brian; Domning, Edward; Warwick, Tony; Padmore, Howard

    2011-10-21

    Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing.The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

  12. Near-diffraction-limited tunable liquid crystal lens with simplified design

    NASA Astrophysics Data System (ADS)

    Li, Liwei; Bryant, Doug; Van Heugten, Tony; Duston, Dwight; Bos, Philip J.

    2013-03-01

    A high-efficiency tunable refractive lens based on liquid crystals with concentric electrode rings and a simple unique design of a resistor network is reported, and used to assess the performance of an optimized electrically tunable lens. It has a large number of phase control points to be able to accurately control the phase profile and produce high efficiency. The lens design uses resistors between neighboring electrodes to minimize external connections. The lens optical path difference is measured as a near perfect parabolic shape and the Strehl ratio of about 80% is obtained (comparing to a high-quality glass lens). Image evaluations show a good image quality with diffraction limited resolution, but the contrast is lowered by a large-area haze. The lens design also shows a good switching speed, and adjustable power, allowing it to be used in many applications. An example lens with a diameter of 2.4 mm and a 5 diopter tunable range is used in the evaluations.

  13. Current status of FRIDA: diffraction limited NIR instrument for the GTC

    NASA Astrophysics Data System (ADS)

    Sánchez, Beatriz; Acosta, José A.; Álvarez, Luis C.; Bringas, Vicente; Cardiel, Nicolás.; Corrales, Adi; Cuevas, Salvador; Chapa, Oscar; Díaz, José Javier; Eikenberry, Stephen S.; Eliche, Carmen; Espejo, Carlos; Flores, Rubén.; Garzón, Francisco; Hammersley, Peter; Keiman, Carolina; Lara, Gerardo; López, José A.; López, Pablo; Lucero, Diana; Montoya, Jose Manuel; Moreno, Heidy; Pascual, Sergio; Patrón, Jesús; Prieto, Almudena; Raines, N.; Rodríguez, Alberto; Uribe, Jorge; Watson, Alan

    2012-09-01

    FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias) is designed as a diffraction limited instrument that will offer broad and narrow band imaging and integral field spectroscopy capabilities with low (R ~ 1,500), intermediate (R ~ 4,500) and high (R ~ 30,000) spectral resolutions to operate in the wavelength range 0.9 - 2.5 μm. The integral field unit is based on a monolithic image slicer. The imaging and IFS observing modes will use the same Teledyne 2K x 2K detector. FRIDA will be based at the Nasmyth B platform of GTC, behind the AO system. The key scientific objectives of the instrument include studies of solar system bodies, low mass objects, circumstellar outflow phenomena in advanced stages of stellar evolution, active galactic nuclei, high redshift galaxies, resolved stellar populations, semi-detached binary systems, young stellar objects and star forming environments. FRIDA is a collaborative project between the main GTC partners, namely, Spain, México and Florida. In this paper, we present the status of the instrument design as it is currently being prepared for its manufacture, after an intensive prototypes' phase and design optimization. The CDR was held in September 2011.

  14. The LBT experience of adaptive secondary mirror operations for routine seeing- and diffraction-limited science operations

    NASA Astrophysics Data System (ADS)

    Guerra, J. C.; Brusa, G.; Christou, J.; Miller, D.; Ricardi, A.; Xompero, M.; Briguglio, R.; Wagner, M.; Lefebvre, M.; Sosa, R.

    2013-09-01

    The Large Binocular Telescope (LBT) is unique in that it is currently the only large telescope (2 x 8.4m primary mirrors) with permanently mounted adaptive secondary mirrors (ASMs). These ASMs have been used for regular observing since early 2010 on the right side and since late 2011 on the left side. They are currently regularly used for seeing-limited observing as well as for selective diffraction-limited observing and are required to be fully operational every observing night. By comparison the other telescopes using ASMs, the Multi Mirrot Telescope (MMT) and more recently Magellan, use fixed secondaries of seeing-limited observing and switch in the ASMs for diffraction-limited observing. We will discuss the night-to-night operational requirements for ASMs specifically for seeing-limited but also for diffraction-limited observations based on the LBT experience. These will include preparation procedures for observing (mirror flattening and resting as examples); hardware failure statistics and how to deal with them such as for the actuators; observing protocols for; and current limitations of use due to the ASM technology such as the minimum elevation limit (25 degrees) and the hysteresis of the gravity-vector induced astigmatism. We will also discuss the impact of ASM maintenance and preparation

  15. ABB Combustion Engineering`s nuclear experience and technologies

    SciTech Connect

    Matzie, R.A.

    1994-12-31

    ABB Combustion Engineering`s nuclear experience and technologies are outlined. The following topics are discussed: evolutionary approach using proven technology, substantial improvement to plant safety, utility perspective up front in developing design, integrated design, competitive plant cost, operability and maintainability, standardization, and completion of US NRC technical review.

  16. Diffraction-limited Polarimetry from the Infrared Imaging Magnetograph at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Cao, Wenda; Jing, Ju; Ma, Jun; Xu, Yan; Wang, Haimin; Goode, Philip R.

    2006-06-01

    The Infrared Imaging Magnetograph (IRIM) system developed by Big Bear Solar Observatory (BBSO) has been put into preliminary operation. It is one of the first imaging spectropolarimeters working at 1565 nm and is used for the observations of the Sun at its opacity minimum, exposing the deepest photospheric layers. The tandem system, which includes a 4.2 nm interference filter, a unique 0.25 nm birefringent Lyot filter, and a Fabry-Pérot etalon, is capable of providing a bandpass as low as 0.01 nm in a telecentric configuration. A fixed quarter-wave plate and a nematic liquid crystal variable retarder are employed for analyzing the circular polarization of the Zeeman components. The longitudinal magnetic field is measured for the highly Zeeman-sensitive Fe I line at 1564.85 nm (Landé factor g=3). The polarimetric data were taken through a field of view of ~145''×145'' and were recorded by a 1024×1024 pixel, 14 bit HgCdTe CMOS focal plane array camera. Benefiting from the correlation tracking system and a newly developed adaptive optics system, the first imaging polarimetric observations at 1565 nm were made at the diffraction limit on 2005 July 1 using BBSO's 65 cm telescope. After comparing the magnetograms from IRIM with those taken by the Michelson Doppler Imager on board SOHO, it was found that all the magnetic features matched very well in both sets of magnetograms. In addition, Stokes V profiles obtained from the Fabry-Pérot etalon scan data provide access to both the true magnetic field strength and the filling factor of the small-scale magnetic flux elements. In this paper, we present the design, fabrication, and calibration of IRIM, as well as the results of the first scientific observations.

  17. Data reduction pipeline for OSIRIS, the new NIR diffraction-limited imaging field spectrograph for the Keck adaptive optics system

    NASA Astrophysics Data System (ADS)

    Krabbe, Alfred; Gasaway, Tom; Song, Inseok; Iserlohe, Christof; Weiss, Jason; Larkin, James E.; Barczys, Matthew; Lafreniere, David

    2004-09-01

    OSIRIS is a near infrared diffraction limited imaging field spectrograph under development for the Keck observatory adaptive optics system and scheduled for commissioning in fall 2004. Based upon lenslet pupil imaging, diffraction grating, and a 2Kx2K Hawaii2 HgCdTe array, OSIRIS is a highly efficient instrument at the forefront of today's technology. OSIRIS will deliver per readout up to 4096 diffraction limited spectra in a complex interleaved format, requiring new challenges to be met regarding user interaction and data reduction. A data reduction software package is under development, aiming to provide the observer with a facility instrument allowing him to concentrate on science rather than dealing with instrumental as well as telescope and atmosphere related effects. Together with OSIRIS, a pipeline for basic data reduction will be provided for a new Keck instrument for the first time. A status report is presented here together with some aspects of the data reduction pipeline.

  18. Tapered lasers emitting at 650 nm with 1 W output power with nearly diffraction-limited beam quality.

    PubMed

    Adamiec, Pawel; Sumpf, Bernd; Rüdiger, Ingo; Fricke, Jörg; Hasler, Karl-Heinz; Ressel, Peter; Wenzel, Hans; Zorn, Martin; Erbert, Götz; Tränkle, Günther

    2009-08-15

    High-brightness tapered lasers emitting around 650 nm were developed. Devices 2 mm long with a200-microm-long straight section, 1800-microm-long tapered section, and 4 degrees taper angle reached 1 W output power in CW operation with a nearly diffraction-limited beam quality. PMID:19684814

  19. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  20. ABB`s LEBS technologies: Practical solutions for controlling air emissions and increasing efficiency

    SciTech Connect

    Regan, J.W.; Hein, R.J. von; Wesnor, J.D.

    1997-07-01

    When evaluating candidate technologies for controlling air emissions and increasing thermal efficiency the main criteria used by most utility and industrial decision makers are: (1) total installed cost of the system and (2) the impact the system may have on O&M costs, on unit forced outage rate/availability and on unit efficiency. Generally speaking, simpler is better. Designs which have fewer and simpler process steps and components will almost always have lower first cost, reduced maintenance cost, reduced operating labor cost, and fewer forced outages/higher availability. This paper describes technologies developed for the control of NO{sub x}, SO{sub 2} and particulate emissions and for increased efficiency in the designs prepared by the ABB team for the U.S. Department of Energy (DOE) project titled {open_quote}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quote} (LEBS). The primary objectives of the LEBS project are to reduce emissions to approximately one-fifth of current new source performance standards and to increase efficiency, all without increasing the cost of electricity. The project encompasses the use of Pulverized coal combustion and development of near-term technologies. The team selected an advanced low-NO{sub x} firing system and an advanced dry scrubber system to meet the emissions objectives and a Kalina cycle to achieve the efficiency and cost of electricity objectives. The development and design of these technologies, witch are suited to new or retrofit applications, are described in the paper.

  1. Cleft Rhinoplasty- Columellar lengthening prolabial reconstruction with Abbe flap

    PubMed Central

    Balaji, S. M.

    2016-01-01

    Introduction: A single center's experience of correction of cleft lip/palate associated rhinoplasty using Abbe flap is relatively rare in literature. The outcome and perception of the Abbe flap for cleft rhinoplasty at patient, surgeons, and patient's caregiver level have not been found in literature. This manuscript aims to address this lacuna through the use of rhinoplasty outcomes evaluation questionnaire (ROEQ). Materials and Methods: A retrospective analysis of preoperative satisfaction and prospective analysis of postoperative satisfaction of patients who underwent cleft rhinoplasty were carried out using ROEQ. This was used twice measuring the pre- and post-operative periods. Results: Twenty-one cases of bilateral cleft lip and palate who had earlier undergone (0.5–3 years back) cleft rhinoplasty and lip revision with Abbe's flap formed the study group. The mean age of the 21 subjects was 22.87 ± 4.23 years. There were 13 males and 8 females forming the study group. The mean presurgical ROEQ score was 19.8 ± 11.2, while the postsurgical score was 78.5 ± 21.2. This difference was statistically significant (P = 0.001). The difference in score between the time period was 58.7%. Discussion: From the ROEQ and other qualitative parameters, it is possible to demonstrate the impact of Abbe flap for cleft rhinoplasty and its impact on the quality of life of patients. Most of the patients and caregivers believed that this approach achieved a good or excellent postoperative result. The biological and operators factors behind such a success are discussed in light of previously published literature.

  2. Super-resolving quantum radar: Coherent-state sources with homodyne detection suffice to beat the diffraction limit

    SciTech Connect

    Jiang, Kebei; Lee, Hwang; Gerry, Christopher C.; Dowling, Jonathan P.

    2013-11-21

    There has been much recent interest in quantum metrology for applications to sub-Raleigh ranging and remote sensing such as in quantum radar. For quantum radar, atmospheric absorption and diffraction rapidly degrades any actively transmitted quantum states of light, such as N00N states, so that for this high-loss regime the optimal strategy is to transmit coherent states of light, which suffer no worse loss than the linear Beer's law for classical radar attenuation, and which provide sensitivity at the shot-noise limit in the returned power. We show that coherent radar radiation sources, coupled with a quantum homodyne detection scheme, provide both longitudinal and angular super-resolution much below the Rayleigh diffraction limit, with sensitivity at shot-noise in terms of the detected photon power. Our approach provides a template for the development of a complete super-resolving quantum radar system with currently available technology.

  3. CLASSICAL AREAS OF PHENOMENOLOGY: Below-diffract ion-limited hybrid recording using silicon thin film super-resolution structure

    NASA Astrophysics Data System (ADS)

    Jiao, Xin-Bing; Wei, Jing-Song; Gan, Fu-Xi

    2009-12-01

    We report on new experimental results for below-diffraction-limited hybrid recording. In our experiments, by means of focused laser assisted magnetic recording, the magnetic domains within TbFeCo thin films are obtained under an external perpendicular direct magnetic field. For a single magnetic medium, the domain size is mainly determined by the focused spot, which is about 620 nm for the laser wavelength λ = 406 nm, and a numerical aperture of the lens of 0.80. However, when a silicon thin film structure is inserted between the substrate and the magnetic medium, the recording domains can be reduced obviously. By optimizing the experimental condition, even the size can be reduced to about 100 nm, which is below the diffraction limit, i.e. about 1/6 of the spot size. This is very useful for improving the hybrid recording density in practical applications.

  4. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  5. Sub-diffraction-limited multilayer coatings for the 0.3-NA Micro-Exposure Tool for extreme ultraviolet lithography

    SciTech Connect

    Soufli, R; Hudyma, R M; Spiller, E; Gullikson, E M; Schmidt, M A; Robinson, J C; Baker, S L; Walton, C C; Taylor, J S

    2007-01-03

    This manuscript discusses the multilayer coating results for the primary and secondary mirrors of the Micro Exposure Tool (MET): a 0.30-numerical aperture (NA) lithographic imaging system with 200 x 600 {micro}m{sup 2} field of view at the wafer plane, operating in the extreme ultraviolet (EUV) wavelength region. Mo/Si multilayers were deposited by DC-magnetron sputtering on large-area, curved MET camera substrates, and a velocity modulation technique was implemented to consistently achieve multilayer thickness profiles with added figure errors below 0.1 nm rms to achieve sub-diffraction-limited performance. This work represents the first experimental demonstration of sub-diffraction-limited multilayer coatings for high-NA EUV imaging systems.

  6. Throughput of diffraction-limited field optics systems for infrared and millimetric telscopes

    SciTech Connect

    Hildebrand, R.H.; Winston, R.

    1982-05-15

    Telescopes for submillimeter wavelengths have point spread functions some millimeters or centimeters in diameter, but the detectors may be only fractions of a millimeter in size. Thus a field aperture and collecting optics are needed. We show how to optimize the aperture by a calculation of the effects of diffraction on signal and resolution as a function of size of the collecting aperture. Our calculations are compared to experimental results from observations of Mars at submillimeter wavelengths.

  7. Fraunhofer Diffraction Patterns from Apertures Illuminated with Nonparallel Light.

    ERIC Educational Resources Information Center

    Klingsporn, Paul E.

    1979-01-01

    Discusses several aspects of Fraunhofer diffraction patterns from apertures illuminated by diverging light. Develops a generalization to apertures of arbitrary shape which shows that the sizes of the pattern are related by a simple scale factor. Uses the Abbe theory of image formation by diffraction to discuss the intensity of illumination of the…

  8. Conventional fluorescence microscopy below the diffraction limit with simultaneous capture of two fluorophores in DNA origami

    NASA Astrophysics Data System (ADS)

    Glasgow, Ben J.

    2016-02-01

    A conventional fluorescence microscope was previously constructed for simultaneous imaging of two colors to gain sub-diffraction localization. The system is predicated on color separation of overlapping Airy discs, construction of matrices of Cartesian coordinates to determine locations as well as centers of the point spread functions of fluorophores. Quantum dots that are separated by as little as 10 nm were resolved in the x-y coordinates. Inter-fluorophore distances that vary by 10 nm could also be distinguished. Quantum dots are bright point light source emitters that excite with a single laser and can serve as a label for many biomolecules. Here, alterations in the method are described to test the ability to resolve Atto 488 and Atto 647 dyes attached to DNA origami at ~40 nm spacing intervals. Dual laser excitation is used in tandem with multi-wavelength bandpass filters. Notwithstanding challenges from reduced intensity in Atto labeled DNA origami helical bundles compared to quantum dots, preliminary data show a mean inter-fluorophore distance of 56 nm with a range (14-148 nm). The range closely matches published results with DNA origami with other methods of subdiffraction microscopy. Sub-diffraction simultaneous two-color imaging fluorescence microscopy acronymically christened (SSTIFM) is a simple, readily accessible, technique for measurement of inter-fluorophore distances in compartments less than 40 nm. Preliminary results with so called nanorulers are encouraging for use with other biomolecules.

  9. Data Reduction Pipeline for OSIRIS, the new NIR Diffraction Limited Imaging Field Spectrometer for the Keck Adaptive Optics System

    NASA Astrophysics Data System (ADS)

    Krabbe, Alfred; Gasaway, Thomas M.; Weiss, Jason; Larkin, James E.; Barczys, Matthew; Quirrenbach, Andreas; LaFreniere, David

    2002-12-01

    OSIRIS is a near infrared diffraction limited imaging field spectrometer under development for the Keck observatory adaptive optics system. Based upon lenslet pupil imaging, diffraction grating, and a 2K×2K Hawaii2 HgCdTe array, OSIRIS is a highly efficient instrument at the forefront of today"s technology. OSIRIS will deliver per readout up to 4096 diffraction limited spectra in a complex interleaved format, requiring new challenges to be met regarding user interaction and data reduction. A data reduction software package is under development, aiming to provide the observer with a facility instrument allowing him to concentrate on science rather than dealing with instrumental as well as telescope and atmosphere related effects. Together with OSIRIS, a pipeline for basic data reduction will be provided for a new Keck instrument for the first time. Some aspects of the data reduction pipeline will be presented here. The OSIRIS instrument as such, the astronomical background as well as other software tools were presented elsewhere on this conference.

  10. Optically confined polarized resonance Raman studies in identifying crystalline orientation of sub-diffraction limited AlGaN nanostructure

    SciTech Connect

    Sivadasan, A. K. Patsha, Avinash; Dhara, Sandip

    2015-04-27

    An optical characterization tool of Raman spectroscopy with extremely weak scattering cross section tool is not popular to analyze scattered signal from a single nanostructure in the sub-diffraction regime. In this regard, plasmonic assisted characterization tools are only relevant in spectroscopic studies of nanoscale object in the sub-diffraction limit. We have reported polarized resonance Raman spectroscopic (RRS) studies with strong electron-phonon coupling to understand the crystalline orientation of a single AlGaN nanowire of diameter ∼100 nm. AlGaN nanowire is grown by chemical vapor deposition technique using the catalyst assisted vapor-liquid-solid process. The results are compared with the high resolution transmission electron microscopic analysis. As a matter of fact, optical confinement effect due to the dielectric contrast of nanowire with respect to that of surrounding media assisted with electron-phonon coupling of RRS is useful for the spectroscopic analysis in the sub-diffraction limit of 325 nm (λ/2N.A.) using an excitation wavelength (λ) of 325 nm and near ultraviolet 40× far field objective with a numerical aperture (N.A.) value of 0.50.

  11. Toward the optical "magic carpet": reducing the divergence of a light sheet below the diffraction limit.

    PubMed

    Golub, Ilya; Chebbi, Brahim; Golub, Jonathan

    2015-11-01

    In 3D, diffraction-free or Bessel beams are well known and have found applications in diverse fields. An analog in 2D, or pseudonondiffracting (PND) beams, is a nontrivial problem, and existing methods suffer from deficiencies. For example, Airy beams are not highly localized, some PND beams have significant side lobes, and a cosine beam has to be truncated by a very narrow aperture thus discarding most of the energy. We show, both theoretically and experimentally, that it is possible to generate a quasi-nondiffracting 2D light beam in a simple and efficient fashion. This is achieved by placing a mask consisting of a pair of double slits on a cylindrical lens. The applications include light sheet microscopy/optical sectioning and particle manipulation. PMID:26512534

  12. Diffracted and pseudo-physical waves from spatially limited arrays using source-receiver interferometry (SRI)

    NASA Astrophysics Data System (ADS)

    Löer, Katrin; Meles, Giovanni Angelo; Curtis, Andrew; Vasconcelos, Ivan

    2014-02-01

    Source-receiver interferometry (SRI) refers to a technique to construct the Green's function between a source and a receiver using only energy that has travelled from and to surrounding boundaries of sources and receivers. If a background medium is perturbed, the corresponding interferometric equation can be expressed as the sum of eight terms, which result from the separation of the total wavefield into an unperturbed background field and the perturbed scattered field. Here, the contribution of each individual term is identified for singly diffracted waves using the methods of stationary phase analysis and waveform modelling. When the data acquisition boundary requirements for seismic interferometry are violated, non-physical energy is introduced into Green's function estimates. Our results show that four terms produce purely non-physical, non-stationary energy and that these can be suppressed, and that a combination of only two terms can be used to estimate diffracted wavefields robustly. One of the two terms is precisely that used in geophysical imaging schemes. A key result is that this term also produces non-physical energy, except when the integration boundaries are truncated to span only part of the medium's free surface: we thus show that in this sense, partial boundaries can be seen as a positive advantage for migration or imaging methods. The other term produces non-physical energy which nevertheless emulates physical energy; such energy is therefore called pseudo-physical. We present for the first time a complete mathematical derivation of this new category of energy complemented with illustrative examples. Overall, this work significantly enhances our understanding of how scattered wave SRI works.

  13. High resolution imaging beyond the acoustic diffraction limit in deep tissue via ultrasound-switchable NIR fluorescence

    NASA Astrophysics Data System (ADS)

    Pei, Yanbo; Wei, Ming-Yuan; Cheng, Bingbing; Liu, Yuan; Xie, Zhiwei; Nguyen, Kytai; Yuan, Baohong

    2014-04-01

    Fluorescence imaging in deep tissue with high spatial resolution is highly desirable because it can provide details about tissue's structural, functional, and molecular information. Unfortunately, current fluorescence imaging techniques are limited either in penetration depth (microscopy) or spatial resolution (diffuse light based imaging) as a result of strong light scattering in deep tissue. To overcome this limitation, we developed an ultrasound-switchable fluorescence (USF) imaging technique whereby ultrasound was used to switch on/off the emission of near infrared (NIR) fluorophores. We synthesized and characterized unique NIR USF contrast agents. The excellent switching properties of these agents, combined with the sensitive USF imaging system developed in this study, enabled us to image fluorescent targets in deep tissue with spatial resolution beyond the acoustic diffraction limit.

  14. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. III. MEASURES BELOW THE DIFFRACTION LIMIT OF THE WIYN TELESCOPE

    SciTech Connect

    Horch, Elliott P.; Van Altena, William F.; Howell, Steve B.; Sherry, William H.; Ciardi, David R. E-mail: william.vanaltena@yale.edu E-mail: wsherry@noao.edu

    2011-06-15

    In this paper, we study the ability of CCD- and electron-multiplying-CCD-based speckle imaging to obtain reliable astrometry and photometry of binary stars below the diffraction limit of the WIYN 3.5 m Telescope. We present a total of 120 measures of binary stars, 75 of which are below the diffraction limit. The measures are divided into two groups that have different measurement accuracy and precision. The first group is composed of standard speckle observations, that is, a sequence of speckle images taken in a single filter, while the second group consists of paired observations where the two observations are taken on the same observing run and in different filters. The more recent paired observations were taken simultaneously with the Differential Speckle Survey Instrument, which is a two-channel speckle imaging system. In comparing our results to the ephemeris positions of binaries with known orbits, we find that paired observations provide the opportunity to identify cases of systematic error in separation below the diffraction limit and after removing these from consideration, we obtain a linear measurement uncertainty of 3-4 mas. However, if observations are unpaired or if two observations taken in the same filter are paired, it becomes harder to identify cases of systematic error, presumably because the largest source of this error is residual atmospheric dispersion, which is color dependent. When observations are unpaired, we find that it is unwise to report separations below approximately 20 mas, as these are most susceptible to this effect. Using the final results obtained, we are able to update two older orbits in the literature and present preliminary orbits for three systems that were discovered by Hipparcos.

  15. The Magellan Adaptive Secondary VisAO Camera: diffraction-limited broadband visible imaging and 20mas fiber array IFU

    NASA Astrophysics Data System (ADS)

    Kopon, Derek; Close, Laird M.; Males, Jared; Gasho, Victor; Follette, Katherine

    2010-07-01

    The Magellan Adaptive Secondary AO system, scheduled for first light in the fall of 2011, will be able to simultaneously perform diffraction limited AO science in both the mid-IR, using the BLINC/MIRAC4 10μm camera, and in the visible using our novel VisAO camera. The VisAO camera will be able to operate as either an imager, using a CCD47 with 8.5 mas pixels, or as an IFS, using a custom fiber array at the focal plane with 20 mas elements in its highest resolution mode. In imaging mode, the VisAO camera will have a full suite of filters, coronagraphic focal plane occulting spots, and SDI prism/filters. The imaging mode should provide ~20% mean Strehl diffraction-limited images over the band 0.5-1.0 μm. In IFS mode, the VisAO instrument will provide R~1,800 spectra over the band 0.6-1.05 μm. Our unprecedented 20 mas spatially resolved visible spectra would be the highest spatial resolution achieved to date, either from the ground or in space. We also present lab results from our recently fabricated advanced triplet Atmospheric Dispersion Corrector (ADC) and the design of our novel wide-field acquisition and active optics lens. The advanced ADC is designed to perform 58% better than conventional doublet ADCs and is one of the enabling technologies that will allow us to achieve broadband (0.5-1.0μm) diffraction limited imaging and wavefront sensing in the visible.

  16. Conventional fluorescence microscopy below the diffraction limit with simultaneous capture of two fluorophores in DNA origami

    PubMed Central

    2016-01-01

    A conventional fluorescence microscope was previously constructed for simultaneous imaging of two colors to gain subdiffraction localization. The system is predicated on color separation of overlapping Airy discs, construction of matrices of Cartesian coordinates to determine locations as well as centers of the point spread functions of fluorophores. Quantum dots that are separated by as little as 10 nm were resolved in the x-y coordinates. Inter-fluorophore distances that vary by 10 nm could also be distinguished. Quantum dots are bright point light source emitters that excite with a single laser and can serve as a label for many biomolecules. Here, alterations in the method are described to test the ability to resolve Atto 488 and Atto 647 dyes attached to DNA origami at ~40 nm spacing intervals. Dual laser excitation is used in tandem with multi-wavelength bandpass filters. Notwithstanding challenges from reduced intensity in Atto labeled DNA origami helical bundles compared to quantum dots, preliminary data show a mean inter-fluorophore distance of 56 nm with a range (14-148 nm). The range closely matches published results with DNA origami with other methods of subdiffraction microscopy. Sub-diffraction simultaneous two-color imaging fluorescence microscopy acronymically christened (SSTIFM) is a simple, readily accessible, technique for measurement of inter-fluorophore distances in compartments less than 40 nm. Preliminary results with so called nanorulers are encouraging for use with other biomolecules. PMID:27307653

  17. Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy

    SciTech Connect

    Beeker, Willem P.; Lee, Chris J.; Boller, Klaus-Jochen; Gross, Petra; Cleff, Carsten; Fallnich, Carsten; Offerhaus, Herman L.; Herek, Jennifer L.

    2010-01-15

    We present a theoretical investigation of coherent anti-Stokes Raman scattering (CARS) that is modulated by periodically depleting the ground-state population through Rabi oscillations driven by an additional control laser. We find that such a process generates optical sidebands in the CARS spectrum and that the frequency of the sidebands depends on the intensity of the control laser light field. We show that analyzing the sideband frequency upon scanning the beams across the sample allows one to spatially resolve emitter positions where a spatial resolution of 65 nm, which is well below the diffraction limit, can be obtained.

  18. Breaking the acoustic diffraction limit via nonlinear effect and thermal confinement for potential deep-tissue high-resolution imaging

    PubMed Central

    Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth

    2013-01-01

    Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498

  19. Geometrical configurations of unphased diffraction-limited antennas in passive millimetre-wave imaging systems for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Serenelli, Roberto

    2004-12-01

    This paper analyzes simple imaging configurations to scan a human body, suitable as passive or active millimetre-wave imaging systems for concealed weapon detection (CWD). The first cylindrical configuration allows a 360 degrees scan: N unphased diffraction-limited antennas each of size L are placed on a circular support surrounding the subject (allowing scanning in the horizontal plane with N non-overlapping independent beams), and this circle is mechanically displaced over the whole body height. An analytical formula gives the maximum obtainable spatial resolution for different dimensions of the circular scanning device and operating frequencies, and the number of receivers achieving this optimal resolution. Constraints to be taken into account are diffraction, the usable total length of the circle, and the full coverage by the N beams over the subject, which is modelled as a cylinder with variable radius, coaxial with the scanning circle. Numerical calculations of system resolution are shown for different operating microwave (MW) and millimetre-wave (MMW) frequencies; in order to study off-axis performances, situations where the subject is not coaxial with the scanning device are also considered. For the case of a parallelepiped to be imaged instead of a cylinder, a linear array configuration is analyzed similarly to the circular one. A theoretical study is carried out to design other curved arrays, filled with unphased diffraction-limited antennas, for the imaging of linear subjects with finer resolution. Finally, the application of such configurations is considered for the design of active imaging systems, and different system architectures are discussed.

  20. Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit.

    PubMed

    Chen, Jianjun; Sun, Chengwei; Li, Hongyun; Gong, Qihuang

    2014-11-21

    Surface-plasmon-polariton (SPP) launchers, which can couple the free space light to the SPPs on the metal surface, are among the key elements for the plasmonic devices and nano-photonic systems. Downscaling the SPP launchers below the diffraction limit and directly delivering the SPPs to the desired subwavelength plasmonic waveguides are of importance for high-integration plasmonic circuits. By designing a submicron double-slit structure with different slit widths, an ultra-broadband (>330 nm) unidirectional SPP launcher is realized theoretically and experimentally based on the different phase delays of SPPs propagating along the metal surface and the near-field interfering effect. More importantly, the broadband and unidirectional properties of the SPP launcher are still maintained when the slit length is reduced to a subwavelength scale. This can make the launcher occupy only a very small area of <λ(2)/10 on the metal surface. Such a robust unidirectional SPP launcher beyond the diffraction limit can be directly coupled to a subwavelength plasmonic waveguide efficiently, leading to an ultra-tight SPP source, especially as a subwavelength localized guided SPP source. PMID:25204379

  1. Diffraction limit of the theory of multiple small-angle neutron scattering by a dense system of scatterers

    NASA Astrophysics Data System (ADS)

    Dzheparov, F. S.; Lvov, D. V.

    2016-02-01

    Multiple small-angle neutron scattering by a high-density system of inhomogeneities has been considered. A combined approach to the analysis of multiple small-angle neutron scattering has been proposed on the basis of the synthesis of the Zernike-Prince and Moliére formulas. This approach has been compared to the existing multiple small-angle neutron scattering theory based on the eikonal approximation. This comparison has shown that the results in the diffraction limit coincide, whereas differences exist in the refraction limit because the latter theory includes correlations between successive scattering events. It has been shown analytically that the existence of correlations in the spatial position of scatterers results in an increase in the number of unscattered neutrons. Thus, the narrowing of spectra of multiple small-angle neutron scattering observed experimentally and in numerical simulation has been explained.

  2. Calculating the Weather: Deductive Reasoning and Disciplinary "Telos" in Cleveland Abbe's Rhetorical Transformation of Meteorology

    ERIC Educational Resources Information Center

    Majdik, Zoltan P.; Platt, Carrie Anne; Meister, Mark

    2011-01-01

    This paper explores the rhetorical basis of a major paradigm change in meteorology, from a focus on inductive observation to deductive, mathematical reasoning. Analysis of Cleveland Abbe's "The Physical Basis of Long-Range Weather Forecasts" demonstrates how in his advocacy for a new paradigm, Abbe navigates the tension between piety to tradition…

  3. Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers.

    PubMed

    Allen, Kenneth W; Farahi, Navid; Li, Yangcheng; Limberopoulos, Nicholaos I; Walker, Dennis E; Urbas, Augustine M; Astratov, Vasily N

    2015-09-21

    Super-resolution microscopy by microspheres emerged as a simple and broadband imaging technique; however, the mechanisms of imaging are debated in the literature. Furthermore, the resolution values were estimated based on semi-quantitative criteria. The primary goals of this work are threefold: i) to quantify the spatial resolution provided by this method, ii) to compare the resolution of nanoplasmonic structures formed by different metals, and iii) to understand the imaging provided by microfibers. To this end, arrays of Au and Al nanoplasmonic dimers with very similar geometry were imaged using confocal laser scanning microscopy at λ = 405 nm through high-index (n~1.9-2.2) liquid-immersed BaTiO3 microspheres and through etched silica microfibers. We developed a treatment of super-resolved images in label-free microscopy based on using point-spread functions with subdiffraction-limited widths. It is applicable to objects with arbitrary shapes and can be viewed as an integral form of the super-resolution quantification widely accepted in fluorescent microscopy. In the case of imaging through microspheres, the resolution ~λ/6-λ/7 is demonstrated for Au and Al nanoplasmonic arrays. In the case of imaging through microfibers, the resolution ~λ/6 with magnification M~2.1 is demonstrated in the direction perpendicular to the fiber with hundreds of times larger field-of-view in comparison to microspheres. PMID:26406653

  4. Plasmonics: Electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit

    NASA Astrophysics Data System (ADS)

    Brongersma, Mark; Hartman, John; Atwater, Harry

    2000-03-01

    Integrated optics faces the fundamental limitation that, for the guiding, modulation, and amplification of light, structures are needed that have dimensions comparable to the wavelength of light. Recently, it was theoretically shown that this problem can be circumvented by transporting electromagnetic energy along linear chains of closely spaced metal nanoparticles. This transport relies on the near-field electrodynamic interaction between metal particles that sets up coupled plasmon modes. We have modeled the transport properties of corners, T's, and switches that consist of chains of metal nanoparticles. It is shown that propagation is coherent and the group velocities can exceed saturated velocities of electrons in semiconductors ( ~ 105 m/s). High efficiency transmission of energy around sharp corners (bending radius << wavelength of visible light) is possible. The transmission is a strong function of the frequency and polarization direction of the plasmon mode. Finally, the operation of a plasmon switch is modeled in which plasmon waves can be switched. Suggestions are given for the choice of metal particle and host material. These "plasmonic devices" potentially are among the smallest structures with optical functionality.

  5. Taking X-ray Diffraction to the Limit: Macromolecular Structures from Femtosecond X-ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation

    SciTech Connect

    Chapman, H N; Miao, J; Kirz, J; Sayre, D; Hodgson, K O

    2003-10-01

    The methodology of X-ray crystallography has recently been successfully extended to the structure determination of non-crystalline specimens. The phase problem was solved by using the oversampling method, which takes advantage of ''continuous'' diffraction pattern from non-crystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging non-periodic objects, like cells and cellular structures using coherent and bright X-rays from the 3rd generation synchrotron radiation. In the longer run, the technique may be applied to image single biomolecules by using the anticipated X-ray free electron lasers. Computer simulations have so far demonstrated two important steps: (1) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself, and (2) the phase information can be ab initio retrieved from a set of calculated noisy diffraction patterns of single protein molecules.

  6. The Adaptive Optics Lucky Imager: Diffraction limited imaging at visible wavelengths with large ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro

    2015-01-01

    One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides

  7. Formation of crownlike and related nanostructures on thin supported gold films irradiated by single diffraction-limited nanosecond laser pulses.

    PubMed

    Kulchin, Yu N; Vitrik, O B; Kuchmizhak, A A; Emel'yanov, V I; Ionin, A A; Kudryashov, S I; Makarov, S V

    2014-08-01

    A type of laser-induced surface relief nanostructure-the nanocrown-on thin metallic films was studied both experimentally and theoretically. The nanocrowns, representing a thin corrugated rim of resolidified melt and resembling well-known impact-induced water-crown splashes, were produced by single diffraction-limited nanosecond laser pulses on thin gold films of variable thickness on low-melting copper and high-melting tungsten substrates, providing different transient melting and adhesion conditions for these films. The proposed model of the nanocrown formation, based on a hydrodynamical (thermocapillary Marangoni) surface instability and described by a Kuramoto-Sivashinsky equation, envisions key steps of the nanocrown appearance and gives qualitative predictions of the acquired nanocrown parameters. PMID:25215830

  8. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy.

    PubMed

    Rieger, Steffen; Fischedick, Markus; Boller, Klaus-Jochen; Fallnich, Carsten

    2016-09-01

    We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression when imaging a sample with a combination of Gaussian- and donut-shaped beams and reconstructing a resolution-enhanced image from this data. Using a nanosecond pulsed laser source with an emission wavelength of 355 nm, the ground state of tris(bipyridine)ruthenium(II) molecules solved in acetonitrile was depleted and the spontaneous Raman scattering at 355 nm suppressed by nearly 50 %. Based on spectroscopic data retrieved from our experiment, we modeled the Raman image of a scattering center in order to demonstrate the applicability of this effect for superresolution Raman microscopy. PMID:27607677

  9. Experimental Verification of Overcoming the Diffraction Limit with a Volumetric Veselago-Pendry Transmission-Line Lens

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Eleftheriades, George V.

    2008-07-01

    A fully printed Veselago-Pendry lens (isotropic n=-1, ɛr=-1, μr=-1) is presented which is based on transmission-line metamaterials. The lens is constructed in a parallel-plate environment at 1.569 GHz and without any embedded sources and achieves a resolution better than the diffraction limit (full width half power of 0.235λ). Because the lens is low loss (<0.3dB per unit cell), the focused fields are dominated by the evanescent components which dictates that subwavelength tightening of the beam is achieved only in the transverse and not the longitudinal direction. The demonstrated lens is quarter-wavelength thick thus allowing ample “working distance” between the subject/image and the lens.

  10. Wavefront correction for near diffraction-limited focal spot on a 6×100 J/1-ns laser facility

    NASA Astrophysics Data System (ADS)

    Fuchs, Julien; Wattellier, Benoit F.; Zou, Ji P.; Chanteloup, Jean-Christophe; Bandulet, H.; Michel, P.; Labaune, C.; Depierreux, S.; Kudryashov, Alexis V.; Aleksandrov, Alexander G.

    2003-10-01

    We have implemented on one beam of the LULI six-beam high-energy (6×100 J, 1 ns) Nd:glass laser facility a closed-loop Adaptive Optics (AO) system to compensate for thermal distortions onto the wave front. Using the AO system composed of a dielectric coated deformable mirror and of a wave front sensor, we are able to improve the wave front quality in order to obtain a focal spot close to the diffraction limit. This allows not only to improve the reproducibility of the experiments but also to increase by at least two orders of magnitude the peak intensity as compared with what usual laser smoothing techniques can achieve.

  11. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    PubMed

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power. PMID:27176966

  12. Microstructure analysis of complex CuO/ZnO@carbon adsorbers: what are the limits of powder diffraction methods?

    PubMed

    Tseng, J C; Schmidt, W; Sager, U; Däuber, E; Pommerin, A; Weidenthaler, C

    2015-05-14

    Activate carbon impregnated with a mixture of copper oxide and zinc oxide performs well as active adsorber for NO2 removal in automotive cabin air filters. The oxide-loaded activated carbon exhibits superior long-term stability in comparison to pure activated carbon as has been shown in previous studies. The carbon material was loaded only with 2.5 wt% of each metal oxide. Characterization of the oxide nanoparticles within the pores of the activated carbon is difficult because of the rather low concentration of the oxides. Therefore, a systematic study was performed to evaluate the limits of line profile analysis of X-ray powder diffraction patterns. The method allows evaluation of crystalline domain size distributions, crystal defect concentrations and twinning probabilities of nanoscopic materials. Here, the analysis is hampered by the presence of several phases including more or less amorphous carbon. By using physical mixtures of defined copper oxide and zinc oxide particles with activated carbon, potential errors and limits could be identified. The contribution of the activated carbon to the scattering curve was modeled with a convolution of an exponential decay curve, a Chebyshev polynomial, and two Lorentzian peaks. With this approach, domain size distributions can be calculated that are shifted only by about 0.5-1.0 nm for very low loadings (≤4 wt%). Oxide loadings of 4 wt% and 5 wt% allow very reliable analyses from diffraction patterns measured in Bragg-Brentano and Debye-Scherrer geometry, respectively. For the real adsorber material, mean domain sizes have been calculated to be 2.8 nm and 2.4 nm before and after the NO2 removal tests. PMID:25892653

  13. The Surprising Outburst Behavior of Z Canis Majoris, and Resolving the Alpha Oph Companion Near the Diffraction limit

    NASA Astrophysics Data System (ADS)

    Hinkley, Sasha; Pope, Benjamin; Martinache, Frantz; Hillenbrand, Lynne; Kraus, Adam L.; Ireland, Michael; Oppenheimer, Ben R.; Rice, Emily L.; Monnier, John D.; Tuthill, Peter; Latyshev, Alexey

    2015-01-01

    We present recent high resolution Palomar and Keck observations on two intriguing binary star systems: Z Canis Majoris and Alpha Ophiuchus. We have obtained near-infrared Keck and Palomar photometry and spectra for each component of the Z Canis Majoris system, a very young binary composed of an FU Ori object and a Herbig Ae/Be object. Our high angular resolution photometry of this very young (~1 Myr) binary conclusively determines that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works. Further, our high-resolution K-band spectra during a quiescent phase definitively demonstrate that the 2.294 micron CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings greatly clarify previous analyses of the origin of the CO emission in this complex system. In a different study, we detected the faint companion to the star Alpha Ophiuchus using the Palomar 5m Hale Telescope Adaptive Optics system combined with kernel phase interferometry, a recently-developed post-processing technique for high contrast imaging. The technique of kernel phase interferometry has never before been used to detect faint companions to nearby stars using ground-based observations. Our Palomar observations detect the Alpha Oph companion passing near its periastron point with separation of only ~130 miliarcseconds, close to the Palomar infrared diffraction limit. Alpha Oph is a particularly important binary system with the primary star rotating close to its breakup velocity. Thus, establishing the host star mass with high precision through dynamical orbital analysis is extremely valuable. This technique holds great promise for detecting high contrast objects at, or just inside, the formal

  14. Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

    NASA Astrophysics Data System (ADS)

    Maier, Stefan A.; Kik, Pieter G.; Atwater, Harry A.; Meltzer, Sheffer; Requicha, Aristides A. G.; Koel, Bruce E.

    2002-10-01

    We investigate the possibility of using arrays of closely spaced metal nanoparticles as plasmon waveguides for electromagnetic energy below the diffraction limit of light. Far-field spectroscopy on arrays of closely spaced 50 nm Au particles fabricated using electron beam lithography reveals the presence of near-field optical particle interactions that lead to shifts in the plasmon resonance frequencies for longitudinal and transverse excitations. We link this observation to a point-dipole model for energy transfer in plasmon waveguides and give an estimate of the expected group velocities and energy decay lengths for the fabricated structures. A near-field optical excitation and detection scheme for energy transport is proposed and demonstrated. The fabricated structures show a high propagation loss of about 3 dB / 15 nm which renders a direct experimental observation of energy transfer impossible. The nature of the loss and ways to decrease it by an order of magnitude are discussed. We also present finite-difference time-domain simulations on the energy transfer properties of plasmon waveguides.

  15. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser.

    PubMed

    Xu, Yang; Fang, Qiang; Qin, Yuguo; Meng, Xiangjie; Shi, Wei

    2015-11-10

    We demonstrate a monolithic continuous wave (CW) fiber laser source at 1070 nm, producing 2 kW laser power with a very narrow spectral width (∼75  GHz) and near-diffraction-limited beam quality (M2<1.4). The laser consists of a CW fiber laser oscillator and two double cladding fiber amplifiers in the master oscillator-power amplifier configuration. The master oscillator is a distributed Bragg reflected fiber laser, producing ∼6  W laser power with ∼25  GHz spectral width. The two double cladding fiber amplifiers were developed to enhance the laser power up to ∼200 and ∼2050  W, respectively. The slope efficiency of the main amplifier reaches 84.8%. Under the full power output, the 3 dB spectral width and 20 dB spectral width of the laser emission spectrum was ∼75  GHz and 1.2 nm, respectively. PMID:26560767

  16. Localized tip enhanced Raman spectroscopic study of impurity incorporated single GaN nanowire in the sub-diffraction limit

    SciTech Connect

    Patsha, Avinash E-mail: dhara@igcar.gov.in; Dhara, Sandip; Tyagi, A. K.

    2015-09-21

    The localized effect of impurities in single GaN nanowires in the sub-diffraction limit is reported using the study of lattice vibrational modes in the evanescent field of Au nanoparticle assisted tip enhanced Raman spectroscopy (TERS). GaN nanowires with the O impurity and the Mg dopants were grown by the chemical vapor deposition technique in the catalyst assisted vapor-liquid-solid process. Symmetry allowed Raman modes of wurtzite GaN are observed for undoped and doped nanowires. Unusually very strong intensity of the non-zone center zone boundary mode is observed for the TERS studies of both the undoped and the Mg doped GaN single nanowires. Surface optical mode of A{sub 1} symmetry is also observed for both the undoped and the Mg doped GaN samples. A strong coupling of longitudinal optical (LO) phonons with free electrons, however, is reported only in the O rich single nanowires with the asymmetric A{sub 1}(LO) mode. Study of the local vibration mode shows the presence of Mg as dopant in the single GaN nanowires.

  17. Enhancement of low-quality reconstructed digital hologram images based on frequency extrapolation of large objects under the diffraction limit

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Li, Weiliang; Zhao, Dongxue

    2016-03-01

    During the reconstruction of a digital hologram, the reconstructed image is usually degraded by speckle noise, which makes it hard to observe the original object pattern. In this paper, a new reconstructed image enhancement method is proposed, which first reduces the speckle noise using an adaptive Gaussian filter, then calculates the high frequencies that belong to the object pattern based on a frequency extrapolation strategy. The proposed frequency extrapolation first calculates the frequency spectrum of the Fourier-filtered image, which is originally reconstructed from the +1 order of the hologram, and then gives the initial parameters for an iterative solution. The analytic iteration is implemented by continuous gradient threshold convergence to estimate the image level and vertical gradient information. The predicted spectrum is acquired through the analytical iteration of the original spectrum and gradient spectrum analysis. Finally, the reconstructed spectrum of the restoration image is acquired from the synthetic correction of the original spectrum using the predicted gradient spectrum. We conducted our experiment very close to the diffraction limit and used low-quality equipment to prove the feasibility of our method. Detailed analysis and figure demonstrations are presented in the paper.

  18. Enhancement of low-quality reconstructed digital hologram images based on frequency extrapolation of large objects under the diffraction limit

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Li, Weiliang; Zhao, Dongxue

    2016-06-01

    During the reconstruction of a digital hologram, the reconstructed image is usually degraded by speckle noise, which makes it hard to observe the original object pattern. In this paper, a new reconstructed image enhancement method is proposed, which first reduces the speckle noise using an adaptive Gaussian filter, then calculates the high frequencies that belong to the object pattern based on a frequency extrapolation strategy. The proposed frequency extrapolation first calculates the frequency spectrum of the Fourier-filtered image, which is originally reconstructed from the +1 order of the hologram, and then gives the initial parameters for an iterative solution. The analytic iteration is implemented by continuous gradient threshold convergence to estimate the image level and vertical gradient information. The predicted spectrum is acquired through the analytical iteration of the original spectrum and gradient spectrum analysis. Finally, the reconstructed spectrum of the restoration image is acquired from the synthetic correction of the original spectrum using the predicted gradient spectrum. We conducted our experiment very close to the diffraction limit and used low-quality equipment to prove the feasibility of our method. Detailed analysis and figure demonstrations are presented in the paper.

  19. Investigation of Stimulated Raman Scattering Using Short-Pulse Diffraction Limited Laser Beam near the Instability Threshold

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Montgomery, D. S.; Yin, L.; Flippo, K. A.; Albright, B. J.; Johnson, R. P.; Shimada, T.; Rose, H. A.; Rousseaux, C.; Tassin, V.; Baton, S. D.; Amiranoff, F.; Hardin, R. A.

    2008-11-01

    Short pulse laser plasma interaction experiments using diffraction limited beams provide an excellent platform to investigate the fundamental physics of Stimulated Raman (SRS) and Stimulated Brillouin (SBS) Scattering. Detailed understanding of these laser plasma instabilities impacts the current inertial confinement fusion ignition designs and could potentially impact fast ignition when higher energy lasers are used with longer pulse durations ( > 1 kJ and > 1 ps). Using short laser pulses, experiments can be modeled over the entire interaction time of the laser using PIC codes to validate our understanding. Experiments have been conducted at the Trident laser and the LULI to investigate SRS near the threshold of the instability using 527 and 1064 nm laser light respectively with 1.5 -- 3 ps pulses. In the case of both experiments, the interaction beam was focused into a pre-ionized He gasjet plasma. Measurements of the reflectivity as a function of intensity and k?D were completed at the Trident laser. At LULI, a 300 fs Thomson scattering probe is used to directly measure the density fluctuations of the driven electron plasma and ion acoustic waves. Details of the experimental results will be presented.

  20. Thermal infrared properties of classical and type II Cepheids. Diffraction limited 10 μm imaging with VLT/VISIR

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Kervella, P.; Mérand, A.

    2012-02-01

    We present new thermal infrared (IR) photometry and spectral energy distributions (SEDs) of eight classical Cepheids (type I) and three type II Cepheids, using VISIR thermal IR photometric measurements, supplemented with literature data. We used the BURST mode of the instrument to get diffraction-limited images at 8.59, 11.25, and 11.85 μm. The SEDs show a IR excess at wavelengths longer than 10 μm in ten of the eleven stars. We tentatively attribute these excesses to circumstellar emission created by mass loss from the Cepheids. On the basis of some hypotheses for the dust composition, we estimate a total mass of the envelope ranging from 10-10 to 10-8 M⊙. We also detect a spatially extended emission around AX Cir, X Sgr, W Sgr, Y Oph, and U Car, while we do not resolve the circumstellar envelope (CSE) of the other stars. The averaged circumstellar envelope brightnesses relative to the stellar photosphere are α(AX Cir) = 13.8 ± 2.5%,α(X Sgr) = 7.9 ± 1.4%,α(W Sgr) = 3.8 ± 0.6%,α(Y Oph) = 15.1 ± 1.4%, and α(U Car) = 16.3 ± 1.4% at 8.59 μm. With this study, we extend the number of classical Cepheids with detected CSEs from 9 to 14, confirming that at least a large fraction of all Cepheids are experiencing significant mass loss. The presence of these CSEs may also impact the future use of Cepheids as standard candles at near and thermal infrared wavelengths. Based on observations made with ESO telescopes at Paranal observatory under program ID 081.D-0165(A).Table 2 is only available in electronic form at http://www.aanda.org

  1. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    DOE PAGESBeta

    Howells, M. R.; Beetz, T.; Chapman, H. N.; Cui, C.; Holton, J. M.; Jacobsen, C. J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; et al

    2008-11-17

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper wemore » address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.« less

  2. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    SciTech Connect

    Howells, M. R.; Beetz, T.; Chapman, H. N.; Cui, C.; Holton, J. M.; Jacobsen, C. J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; Sayre, D.; Shapiro, D. A.; Spence, J. C.H.; Starodub, D.

    2008-11-17

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.

  3. Sub-diffraction Limit Localization of Proteins in Volumetric Space Using Bayesian Restoration of Fluorescence Images from Ultrathin Specimens

    PubMed Central

    Wang, Gordon; Smith, Stephen J.

    2012-01-01

    Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA2 (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is ∼220 nm and ∼600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50–100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes. PMID:22956902

  4. Large Break LOCA Safety Injection Sensitivity for a CE/ABB System 80+ PWR

    SciTech Connect

    Pottorf, J.; Bajorek, S.M.

    2002-07-01

    A WCOBRA/TRAC model of an evolutionary pressurized water reactor with direct vessel injection was constructed using publicly available information and a hypothetical double-ended guillotine break of a cold leg pipe was simulated. The model is an approximation of a ABB/Combustion Engineering System 80+ pressurized water reactor (PWR). WCOBRA/TRAC is the thermal-hydraulics code approved by the U.S. Nuclear Regulatory Commission for use in realistic large break LOCA analyses of Westinghouse 3- and 4-loop PWRs and the AP600 passive design. The AP600 design uses direct vessel injection, and the applicability of WCOBRA/TRAC to such designs is supported by comparisons to appropriate test data. This study extends the application of WCOBRA/TRAC to the investigation of the predicted behavior of direct vessel injection in an evolutionary design. A series of large break LOCA simulations were performed assuming a core power of 3914 MWt, and Technical Specification limits of 2.5 on total peaking factor and 1.7 on hot channel enthalpy rise factor. Two cladding temperature peaks were predicted during reflood, one following bottom of core recovery and a second caused by saturated boiling of water in the downcomer. This behavior is consistent with prior WCOBRA/TRAC calculations for some Westinghouse PWRs. The simulation results are described, and the sensitivity to failure assumptions for the safety injection system is presented. (authors)

  5. Beyond the diffraction limit of optical/IR interferometers. I. Angular diameter and rotation parameters of Achernar from differential phases

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Hadjara, M.; Vakili, F.; Bendjoya, P.; Millour, F.; Abe, L.; Carciofi, A. C.; Faes, D. M.; Kervella, P.; Lagarde, S.; Marconi, A.; Monin, J.-L.; Niccolini, G.; Petrov, R. G.; Weigelt, G.

    2012-09-01

    that differential phases allow the measurement of sizes up to ~4 times smaller than the diffraction-limited angular resolution of the interferometer. Based on observations performed at ESO, Chile under AMBER-consortium GTO programme ID 084.D-0456.Full Fig. 5 is available in electronic form at http://www.aanda.orgThe FITS tables of the reduced data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/A130

  6. FIRST, a fibered aperture masking instrument. II. Spectroscopy of the Capella binary system at the diffraction limit

    NASA Astrophysics Data System (ADS)

    Huby, E.; Duchêne, G.; Marchis, F.; Lacour, S.; Perrin, G.; Kotani, T.; Choquet, É.; Gates, E. L.; Lai, O.; Allard, F.

    2013-12-01

    Aims: FIRST is a prototype instrument built to demonstrate the capabilities of the pupil remapping technique, using single-mode fibers and working at visible wavelengths. Our immediate objective is to demonstrate the high angular resolution capability of the instrument and to show that the spectral resolution of the instrument enables characterization of stellar companions. Methods: The FIRST-18 instrument is an improved version of FIRST-9 that simultaneously recombines two sets of nine fibers instead of one, thus greatly enhancing the (u, v) plane coverage. We report on observations of the binary system Capella at three epochs over a period of 14 months (≳4 orbital periods) with FIRST-18 mounted on the 3 m Shane telescope at Lick Observatory. The binary separation during our observations ranges from 0.8 to 1.2 times the diffraction limit of the telescope at the central wavelength of the spectral band. Results: We successfully resolved the Capella binary system at all epochs, with an astrometric precision as good as 1 mas under the best observing conditions. FIRST also gives access to the spectral flux ratio between the two components directly measured with an unprecedented spectral resolution of R ~ 300 over the 600-850 nm range. In particular, our data allow detection of the well-known overall slope of the flux ratio spectrum, leading to an estimation of the "pivot" wavelength of 0.64 ± 0.01 μm, at which the cooler component becomes the brightest. Spectral features arising from the difference in effective temperature of the two components (specifically the Hα line, TiO, and CN bands) have been used to constrain the stellar parameters. The effective temperatures we derive for both components are slightly lower (5-7%) than the well-established properties for this system. This difference mainly comes from deeper molecular features than those predicted by state-of-the-art stellar atmospheric models, suggesting that molecular line lists used in the photospheric

  7. Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor.

    PubMed

    Chen, Hung-Wen; Sosnowski, Tom; Liu, Chi-Hung; Chen, Li-Jin; Birge, Jonathan R; Galvanauskas, Almantas; Kärtner, Franz X; Chang, Guoqing

    2010-11-22

    We demonstrate a high-energy femtosecond laser system that incorporates two rapidly advancing technologies: chirally-coupled-core large-mode-area Yb-fiber to ensure fundamental-mode operation and high-dispersion mirrors to enable loss-free pulse compression while preserving the diffraction-limited beam quality. Mode-locking is initiated by a saturable absorber mirror and further pulse shortening is achieved by nonlinear polarization evolution. Centered at 1045 nm with 39-MHz repetition rate, the laser emits 25-nJ, positively chirped pulses with 970-mW average power. 6 bounces from double-chirped-mirrors compress these pulses down to 80 fs, close to their transform-limited duration. The loss-free compression gives rise to a diffraction-limited optical beam (M2 = 1.05). PMID:21164816

  8. Beyond the diffraction limit of optical/IR interferometers. II. Stellar parameters of rotating stars from differential phases

    NASA Astrophysics Data System (ADS)

    Hadjara, M.; Domiciano de Souza, A.; Vakili, F.; Jankov, S.; Millour, F.; Meilland, A.; Khorrami, Z.; Chelli, A.; Baffa, C.; Hofmann, K.-H.; Lagarde, S.; Robbe-Dubois, S.

    2014-09-01

    , PArot = 65.6° ± 5°, for Fomalhaut. They were found to be compatible with previously published values from differential phase and visibility measurements, while we were able to determine, for the first time, the inclination angle i of Fomalhaut (i = 90° ± 9°) and δ Aquilae (i = 81° ± 13°), and the rotation-axis position angle PArot of δ Aquilae. Conclusions: Beyond the theoretical diffraction limit of an interferometer (ratio of the wavelength to the baseline), spatial super resolution is well suited to systematically estimating the angular diameters of rotating stars and their fundamental parameters with a few sets of baselines and the Earth-rotation synthesis provided a high enough spectral resolution. Based on observations performed at the European Southern Observatory, Chile, under ESO AMBER-consortium GTO program IDs 084.D-0456 081.D-0293 and 082.C-0376.Figure 5 is available in electronic form at http://www.aanda.org

  9. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise

    PubMed Central

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-01-01

    A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ∼0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule. PMID:22514069

  10. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030 nm

    NASA Astrophysics Data System (ADS)

    Müller, André; Fricke, Jörg; Bugge, Frank; Brox, Olaf; Erbert, Götz; Sumpf, Bernd

    2016-04-01

    A 1030 nm distributed Bragg reflector (DBR) tapered diode laser with nearly diffraction-limited emission is presented. The laser provides an optical output power of 12.7 W with an electro-optical efficiency >40 %. At 10.5 W of optical output power, a central lobe power content of 8.1 W and a nearly diffraction-limited beam propagation ratio of M 2 = 1.1 (1/ e 2) are obtained. The corresponding brightness is 700 MW cm-2 sr-1. Compared to previous approaches, intrinsic wavelength stabilization is obtained by a third-order DBR grating manufactured using more reproducible electron-beam lithography. A narrowband emission is measured over the whole power range with a spectral bandwidth of about 17 pm at 12.5 W. Based on the measured electro-optical, spectral and spatial properties, the laser is suitable for applications requiring narrowband, high-power emission with high spatial quality.

  11. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam.

    PubMed

    Gu, Min; Kang, Hong; Li, Xiangping

    2014-01-01

    Although fiber-optical two-photon endoscopy has been recognized as a potential high-resolution diagnostic and therapeutic procedure in vivo, its resolution is limited by the optical diffraction nature to a few micrometers due to the low numerical aperture of an endoscopic objective. On the other hand, stimulated emission depletion (STED) achieved by a circularly-polarized vortex beam has been used to break the diffraction-limited resolution barrier in a bulky microscope. It has been a challenge to apply the STED principle to a fiber-optical two-photon endoscope as a circular polarization state cannot be maintained due to the birefringence of a fiber. Here, we demonstrate the first fiber-optical STED two-photon endoscope using an azimuthally-polarized beam directly generated from a double-clad fiber. As such, the diffraction-limited resolution barrier of fiber-optical two-photon endoscopy can be broken by a factor of three. Our new accomplishment has paved a robust way for high-resolution in vivo biomedical studies. PMID:24406685

  12. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam

    PubMed Central

    Gu, Min; Kang, Hong; Li, Xiangping

    2014-01-01

    Although fiber-optical two-photon endoscopy has been recognized as a potential high-resolution diagnostic and therapeutic procedure in vivo, its resolution is limited by the optical diffraction nature to a few micrometers due to the low numerical aperture of an endoscopic objective. On the other hand, stimulated emission depletion (STED) achieved by a circularly-polarized vortex beam has been used to break the diffraction-limited resolution barrier in a bulky microscope. It has been a challenge to apply the STED principle to a fiber-optical two-photon endoscope as a circular polarization state cannot be maintained due to the birefringence of a fiber. Here, we demonstrate the first fiber-optical STED two-photon endoscope using an azimuthally-polarized beam directly generated from a double-clad fiber. As such, the diffraction-limited resolution barrier of fiber-optical two-photon endoscopy can be broken by a factor of three. Our new accomplishment has paved a robust way for high-resolution in vivo biomedical studies. PMID:24406685

  13. Effect of Impact Damage on the Fatigue Response of TiAl Alloy-ABB-2

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Nazmy, M. Y.; Staubli, M.; Clemens, D. R.

    2001-01-01

    The ability of gamma-TiAl to withstand potential foreign or domestic object damage is a technical risk to the implementation of gamma-TiAl in low pressure turbine (LPT) blade applications. In the present study, the impact resistance of TiAl alloy ABB-2 was determined and compared to the impact resistance of Ti(48)Al(2)Nb(2)Cr. Specimens were impacted with four different impact conditions with impact energies ranging from 0.22 to 6.09 J. After impacting, the impact damage was characterized by crack lengths on both the front and backside of the impact. Due to the flat nature of gamma-TiAl's S-N (stress vs. cycles to failure) curve, step fatigue tests were used to determine the fatigue strength after impacting. Impact damage increased with increasing impact energy and led to a reduction in the fatigue strength of the alloy. For similar crack lengths, the fatigue strength of impacted ABB-2 was similar to the fatigue strength of impacted Ti(48)Al(2)Nb(2)Cr, even though the tensile properties of the two alloys are significantly different. Similar to Ti(48)Al(2)Nb(2)Cr, ABB-2 showed a classical mean stress dependence on fatigue strength. The fatigue strength of impacted ABB-2 could be accurately predicted using a threshold analysis.

  14. Carbon storage regulator A (CsrABb) is a repressor of Borrelia burgdorferi flagellin protein FlaB

    PubMed Central

    Sze, Ching Wooen; Morado, Dustin R.; Jun, Liu; Charon, Nyles W.; Hongbin, Xu; Chunhao, Li

    2011-01-01

    SUMMARY The Lyme disease spirochete Borrelia burgdorferi lacks the transcriptional cascade control of flagellar protein synthesis common to other bacteria. Instead, it relies on a post-transcriptional mechanism to control its flagellar synthesis. The underlying mechanism of this control remains elusive. A recent study reported that the increased level of BB0184 (CsrABb; a homolog of carbon storage regulator A) substantially inhibited the accumulation of FlaB, the major flagellin protein of B. burgdorferi. In this report, we deciphered the regulatory role of CsrABb on FlaB synthesis and the mechanism involved by analyzing two mutants, csrABb− (a deletion mutant of csrABb) and csrABb+ (a mutant conditionally over-expressing csrABb). We found that FlaB accumulation was significantly inhibited in csrABb+ but was substantially increased in csrABb−. In contrast, the levels of other flagellar proteins remained unchanged. Cryo-electron tomography and immuno-fluorescence microscopic analyses revealed that the altered synthesis of CsrABb in these two mutants specifically affected flagellar filament length. The leader sequence of flaB transcript contains two conserved CsrA-binding sites, with one of these sites overlapping the Shine-Dalgarno sequence. We found that CsrABb bound to the flaB transcripts via these two binding sites, and this binding inhibited the synthesis of FlaB at the translational level. Taken together, our results indicate that CsrABb specifically regulates the periplasmic flagellar synthesis by inhibiting translation initiation of the flaB transcript. PMID:21999436

  15. High power, diffraction limited picosecond oscillator based on Nd:GdVO4 bulk crystal with σ polarized in-band pumping.

    PubMed

    Lin, Hua; Guo, Jie; Gao, Peng; Yu, Hai; Liang, Xiaoyan

    2016-06-27

    We report on a high power passively mode-locked picosecond oscillator based on Nd:GdVO4 crystal with σ polarized in-band pumping. Thermal gradient and thermal aberration was greatly decreased with proposed configuration. Maximum output power of 37 W at 81 MHz repetition rate with 19.3 ps pulse duration was achieved directly from Nd:GdVO4 oscillator, corresponding to 51% optical efficiency. The oscillator maintained diffraction limited beam quality of M2 < 1.05 at different output coupling with pulse duration between 11.2 ps to 19.3 ps. PMID:27410558

  16. 2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm

    NASA Astrophysics Data System (ADS)

    Fang, Qiang; Shi, Wei; Qin, Yuguo; Meng, Xiangjie; Zhang, Qihang

    2014-10-01

    We demonstrate a monolithic continuous wave (CW) fiber laser source at 1080 nm, producing 2.5 kW average laser power with near diffraction-limited beam quality (M2 < 1.3). The laser consists of a CW fiber laser oscillator and one double cladding (DC) fiber amplifier in the master oscillator-power amplifier (MOPA) configuration. The optical-to-optical conversion efficiency of the entire laser system with respect to the launched pump power is ~77.9%.

  17. High-power ({gt}0.9 W cw) diffraction-limited semiconductor laser based on a fiber Bragg grating external cavity

    SciTech Connect

    Cornwell, D.M. , Jr.; Thomas, H.J.

    1997-02-01

    We have developed a high-power ({gt}0.9 W cw) diffraction-limited semiconductor laser based on a tapered semiconductor optical amplifier using a fiber Bragg grating in an external cavity configuration. Frequency-selective feedback from the fiber grating is injected into the amplifier via direct butt coupling through a single mode fiber, resulting in a spectrally stable and narrow ({lt}0.3 nm) high-power laser for solid-state laser pumping, laser remote sensing, and optical communications. {copyright} {ital 1997 American Institute of Physics.}

  18. Near-diffraction-limited,35.4 W laser-diode end-pumped Nd:YVO4 slab laser operating at 1342 nm.

    PubMed

    Yan, Ying; Zhang, Hengli; Liu, Yang; Yu, Xilong; Zhang, Huaijin; He, Jingliang; Xin, Jianguo

    2009-07-15

    A diode stack end-pumped Nd:YVO4 slab laser at 1342 nm with near-diffraction-limited beam quality by using a hybrid resonator was presented. At a pump power of 139.5 W, laser power of 35.4 W was obtained with a conversion efficiency of 25.4% of the laser diode to laser output. The beam quality M2 factors were measured to be 1.2 in the unstable direction and 1.3 in the stable direction at the output power of 29 W. PMID:19823516

  19. Trade-off study for high resolution spectroscopy in the near infrared with ELT telescopes: seeing-limited vs. diffraction limited instruments

    NASA Astrophysics Data System (ADS)

    Sanna, Nicoletta; Oliva, E.; Massi, Fabrizio; Cresci, G.; Origlia, L.

    2014-08-01

    HIRES, a high resolution spectrometer, is one of the first five instruments foreseen in the ESO roadmap for the E-ELT. This spectrograph should ideally provide full spectral coverage from the UV limit to 2.5 microns, with a resolving power from R˜10,000 to R˜100,000. At visual/blue wavelengths, where the adaptive optics (AO) cannot provide an efficient light-concentration, HIRES will necessarily be a bulky, seeing-limited instrument. The fundamental question, which we address in this paper, is whether the same approach should be adopted in the near-infrared range, or HIRES should only be equipped with compact infrared module(s) with a much smaller aperture, taking advantage of an AO-correction. The main drawbacks of a seeing-limited instrument at all wavelengths are: i) Lower sensitivities at wavelengths dominated by thermal background (red part of the K-band). ii) Much higher volumes and costs for the IR spectrograph module(s). The main drawbacks of using smaller, AO-fed IR module(s) are: i) Performances rapidly degrading towards shorter wavelengths (especially J e Y bands). ii) Different spatial sampling of extended objects (the optical module see a much larger area on the sky). In this paper we perform a trade-off analysis and quantify the various effects that contribute to improve or deteriorate the signal to noise ratio. In particular, we evaluate the position of the cross-over wavelength at which AO-fed instruments starts to outperform seeing-limited instruments. This parameter is of paramount importance for the design of the part of HIRES covering the K-band.

  20. Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes

    NASA Astrophysics Data System (ADS)

    Law, N. M.; Dekany, R. G.; Mackay, C. D.; Moore, A. M.; Britton, M. C.; Velur, V.

    2008-07-01

    We have recently demonstrated diffraction-limited resolution imaging in the visible on the 5m Palomar Hale telescope. The new LAMP instrument is a Lucky Imaging backend camera for the Palomar AO system. Typical resolutions of 35-40 mas with Strehls of 10-20% were achieved at 700nm, and at 500nm the FWHM resolution was as small as 42 milliarcseconds. In this paper we discuss the capabilities and design challenges of such a system used with current and near future AO systems on a variety of telescopes. In particular, we describe the designs of two planned Lucky Imaging + AO instruments: a facility instrument for the Palomar 200" AO system and its PALM3K upgrade, and a visible-light imager for the CAMERA low-cost LGS AO system planned for the Palomar 60" telescope. We introduce a Monte Carlo simulation setup that reproduces the observed PSF variability behind an adaptive optics system, and apply it to predict the performance of 888Cam and CAMERA. CAMERA is predicted to achieve diffraction-limited resolution at wavelengths as short as 350 nm. In addition to on-axis resolution improvements we discuss the results of frame selection with the aim of improving other image parameters such as isoplanatic patch sizes, showing that useful improvements in image quality can be made by Lucky+AO even with very temporally and spatially undersampled data.

  1. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination.

    PubMed

    Zhao, Zeyu; Luo, Yunfei; Zhang, Wei; Wang, Changtao; Gao, Ping; Wang, Yanqin; Pu, Mingbo; Yao, Na; Zhao, Chengwei; Luo, Xiangang

    2015-01-01

    For near-field imaging optics, minimum resolvable feature size is highly constrained by the near-field diffraction limit associated with the illumination light wavelength and the air distance between the imaging devices and objects. In this study, a plasmonic cavity lens composed of Ag-photoresist-Ag form incorporating high spatial frequency spectrum off-axis illumination (OAI) is proposed to realize deep subwavelength imaging far beyond the near-field diffraction limit. This approach benefits from the resonance effect of the plasmonic cavity lens and the wavevector shifting behavior via OAI, which remarkably enhances the object's subwavelength information and damps negative imaging contribution from the longitudinal electric field component in imaging region. Experimental images of well resolved 60-nm half-pitch patterns under 365-nm ultra-violet light are demonstrated at air distance of 80 nm between the mask patterns and plasmonic cavity lens, approximately four-fold longer than that in the conventional near-field lithography and superlens scheme. The ultimate air distance for the 60-nm half-pitch object could be theoretically extended to 120 nm. Moreover, two-dimensional L-shape patterns and deep subwavelength patterns are illustrated via simulations and experiments. This study promises the significant potential to make plasmonic lithography as a practical, cost-effective, simple and parallel nano-fabrication approach. PMID:26477856

  2. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality.

    PubMed

    Ma, Pengfei; Tao, Rumao; Su, Rongtao; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2016-02-22

    In this manuscript, we demonstrate high power, all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality by simultaneously suppressing detrimental stimulated Brillouin scattering (SBS) and mode instability (MI) effects. Compared with strictly single frequency amplification, the SBS threshold is scaled up to 12 dB, 15.4 dB, and higher than 18 dB by subsequently using three-stage cascaded phase modulation systems. Output powers of 477 W, 1040 W, and 1890 W are achieved with full widths at half maximums (FWHMs) of within 6 GHz, ~18.5 GHz, and ~45 GHz, respectively. The MI threshold is increased from ~738 W to 1890 W by coiling the active fiber in the main amplifier. Both the polarization extinction ratio (PER) and beam quality (M2 factor) are maintained well during the power scaling process. To the best of our knowledge, this is the first demonstration of all-fiberized amplifiers with narrow linewidth, near linear polarization, and near-diffraction-limited beam quality at 2 kW power-level. PMID:26907067

  3. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    PubMed Central

    Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik

    2014-01-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned. PMID:25177995

  4. Delivery of 800 W of nearly diffraction-limited laser power through a 100 m long multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Negel, Jan-Philipp; Austerschulte, Armin; Vogel, Moritz M.; Rataj, Thomas; Voss, Andreas; Abdou Ahmed, Marwan; Graf, Thomas

    2014-05-01

    We present the efficient propagation of a nearly diffraction-limited laser beam with a continuous wave power of 800 W through a multi-mode step-index delivery fiber with a core diameter of 30 µm and a numerical aperture of 0.056. The M2-value was measured to be 1.35 after 100 m of this passive fiber. This is an important advance as the delivery fiber length for high-brightness beams in the kilowatt range is usually limited to a few meters by the onset of nonlinear effects. For this demonstration a single-mode MOPA system was set-up consisting of a fiber oscillator and two amplifier stages. This source was coupled into the delivery fiber through a 500 mm long mode field adapter.

  5. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    PubMed Central

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick–Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  6. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick–Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  7. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    PubMed

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  8. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the Gemini-N Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve di raction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, e ectively `freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the di raction limit of the telescope. These new instruments are based on the successful performance and design of the Di erential Speckle Survey Instrument (DSSI) [2, 1]. The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes [3]. Examples of DSSI data are shown in the gures below. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide- eld mode and standard SDSS lters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations, will remain around 13-14th at WIYN and 16-17th at Gemini, while wide- eld, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  9. Use of the Abbe sine condition to quantify alignment aberrations in optical imaging systems

    NASA Astrophysics Data System (ADS)

    Burge, James H.; Zhao, Chunyu; Lu, Sheng Huei

    2010-08-01

    Violation of Abbe's sine condition is well-known to cause coma in axisymmetric imaging systems, and generally any offense against the sine condition (OSC) will cause aberrations that have linear dependence on the field angle. A well-corrected imaging system must obey the Abbe sine condition. A misaligned optical system can have particular forms of the OSC which are evaluated here. The lowest order non-trivial effects of misalignment have quadratic pupil dependence which causes a combination of astigmatism and focus that have linear field dependence. Higher order terms can arise from complex systems, but the effects of misalignment are nearly always dominated by the lowest order effects which can be fully characterized by measuring images on axis and the on-axis offense against the sine condition. By understanding the form of the on-axis images and the OSC, the state of alignment can be determined.

  10. Abbe's number and Cauchy's constant of iodine and selenium doped poly (methylmethacrylate) and polystyrene composites

    SciTech Connect

    Mehta, Sheetal Das, Kallol Keller, Jag Mohan

    2014-04-24

    Poly (methyl methacrylate) / Polystyrene and iodine / selenium hybrid matrixes have been prepared and characterized. Refractive index measurements were done at 390, 535, 590, 635 nm wavelengths. Abbe's number and Cauchy's constants of the iodine / selenium doped poly (methylmethacrylate) and polystyrene samples are being reported. The results also showed that the refractive index of the composite varies non-monotonically with the doping concentration at low iodine concentration or in the region of nanoparticles formation and is also dependent on thermal annealing.

  11. Possibilities and limitations of synchrotron X-ray powder diffraction with double crystal and double multilayer monochromators for microscopic speciation studies

    NASA Astrophysics Data System (ADS)

    De Nolf, Wout; Jaroszewicz, Jakub; Terzano, Roberto; Lind, Ole Christian; Salbu, Brit; Vekemans, Bart; Janssens, Koen; Falkenberg, Gerald

    2009-08-01

    The performance of a combined microbeam X-ray fluorescence/X-ray powder diffraction (XRF/XRPD) measurement station at Hamburger Synchrotronstrahlungslabor (HASYLAB) Beamline L is discussed in comparison to that at European Synchrotron Radiation Facility (ESRF) ID18F/ID22. The angular resolution in the X-ray diffractograms is documented when different combinations of X-ray source, optics and X-ray diffraction detectors are employed. Typical angular resolution values in the range 0.3-0.5° are obtained at the bending magnet source when a 'pink' beam form of excitation is employed. A similar setup at European Synchrotron Radiation Facility beamlines ID18F and ID22 allows to reach angular resolution values of 0.1-0.15°. In order to document the possibilities and limitations for speciation of metals in environmental materials by means of Hamburger Synchrotronstrahlungslabor Beamline L X-ray fluorescence/X-ray powder diffraction setup, two case studies are discussed, one involved in the identification of the crystal phases in which heavy metals such as chromium, iron, barium and lead are present in polluted soils of an industrial site (Val Basento, Italy) and another involved in the speciation of uranium in depleted uranium particles (Ceja Mountains, Kosovo). In the former case, the angular resolution is sufficient to allow identification of most crystalline phases present while in the latter case, it is necessary to dispose of an angular resolution of ca. 0.2° to distinguish between different forms of oxidized uranium.

  12. The light-matter interaction of a single semiconducting AlGaN nanowire and noble metal Au nanoparticles in the sub-diffraction limit.

    PubMed

    Sivadasan, A K; Madapu, Kishore K; Dhara, Sandip

    2016-08-24

    Near field scanning optical microscopy (NSOM) is not only a tool for imaging of sub-diffraction limited objects but also a prominent characteristic tool for understanding the intrinsic properties of nanostructures. In order to understand light-matter interactions in the near field regime using a NSOM technique with an excitation of 532 nm (2.33 eV), we selected an isolated single semiconducting AlGaN nanowire (NW) of diameter ∼120 nm grown via a vapor liquid solid (VLS) mechanism along with a metallic Au nanoparticle (NP) catalyst. The role of electronic transitions from different native defect related energy states of AlGaN is discussed in understanding the NSOM images for the semiconducting NW. The effect of strong surface plasmon resonance absorption of an excitation laser on the NSOM images for Au NPs, involved in the VLS growth mechanism of NWs, is also observed. PMID:27511614

  13. Methodology for optimal in situ alignment and setting of bendable optics for diffraction-limited focusing of soft x-rays

    NASA Astrophysics Data System (ADS)

    Merthe, Daniel J.; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Kunz, Martin; Tamura, Nobumichi; McKinney, Wayne R.; Artemiev, Nikolay A.; Celestre, Richard S.; Morrison, Gregory Y.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Rekawa, Senajith B.; Padmore, Howard A.

    2012-09-01

    We demonstrate a comprehensive and broadly applicable methodology for the optimal in situ configuration of bendable soft x-ray Kirkpatrick-Baez mirrors. The mirrors used for this application are preset at the ALS Optical Metrology Laboratory prior to beamline installation. The in situ methodology consists of a new technique for simultaneously setting the height and pitch angle of each mirror. The benders of both mirrors were then optimally tuned in order to minimize ray aberrations to a level below the diffraction-limited beam waist size of 200 nm (horizontal) × 100 nm (vertical). After applying this methodology, we measured a beam waist size of 290 nm (horizontal) × 130 nm (vertical) with 1 nm light using the Foucault knife-edge test. We also discuss the utility of using a grating-based lateral shearing interferometer with quantitative wavefront feedback for further improvement of bendable optics.

  14. Methodology for optimal in situ alignment and setting of bendable optics for nearly diffraction-limited focusing of soft x-rays

    NASA Astrophysics Data System (ADS)

    Merthe, Daniel J.; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Kunz, Martin; Tamura, Nobumichi; McKinney, Wayne R.; Artemiev, Nikolay A.; Celestre, Richard S.; Morrison, Gregory Y.; Anderson, Erik H.; Smith, Brian V.; Domning, Edward E.; Rekawa, Senajith B.; Padmore, Howard A.

    2013-03-01

    We demonstrate a comprehensive and broadly applicable methodology for the optimal in situ configuration of bendable soft x-ray Kirkpatrick-Baez mirrors. The mirrors used for this application are preset at the Advanced Light Source Optical Metrology Laboratory prior to beamline installation. The in situ methodology consists of a new technique for simultaneously setting the height and pitch angle of each mirror. The benders of both mirrors were then optimally tuned in order to minimize ray aberrations to a level below the diffraction-limited beam waist size of 200 nm (horizontal)×100 nm (vertical). After applying this methodology, we measured a beam waist size of 290 nm (horizontal)×130 nm (vertical) with 1 nm light using the Foucault knife-edge test. We also discuss the utility of using a grating-based lateral shearing interferometer with quantitative wavefront feedback for further improvement of bendable optics.

  15. DBR tapered diode laser at 1030 nm with nearly diffraction-limited narrowband emission and 12.7 W of optical output power

    NASA Astrophysics Data System (ADS)

    Müller, André; Fricke, Jörg; Bugge, Frank; Brox, Olaf; Erbert, Götz; Sumpf, Bernd

    2016-03-01

    Nearly diffraction-limited emission from a distributed Bragg reflector (DBR) tapered diode laser is presented. Intrinsic wavelength stabilization is achieved with a 3rd order DBR grating manufactured by electron beam lithography. At a heatsink temperature of 15°C an optical output power of 12.7 W with an electro-optical efficiency > 40% is obtained. The corresponding emission wavelength is 1030.57 nm and spectral bandwidths of 0.02 nm are measured over the whole power range. At 10.5 W of optical power 8.1 W are contained in the central lobe. The measured beam propagation ratio and brightness are 1.1 (1/e2) and 700 MWcm-2 sr-1, respectively. With these parameters, the laser is suitable for applications such as non-linear frequency conversion.

  16. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers.

    PubMed

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2012-09-15

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5-3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept can be expanded combining multiple diode lasers to increase the power even further. PMID:23041848

  17. Diode-side-pumped Nd:YLiF4 laser emitting at 1053 nm with 53.6% optical efficiency and diffraction-limited beam quality

    NASA Astrophysics Data System (ADS)

    Wetter, Niklaus U.; Deana, Alessandro M.

    2013-03-01

    We present a Nd:YLiF4 diode-side-pumped resonator architecture based on a gain-guided, mode-selective technique that employs a double pass of the fundamental laser mode through the crystal. The folded cavity is very compact, robust and cost efficient. With this design we demonstrate 19 W of quasi-cw, stable diffraction-limited laser emission at 1053 nm when pumping at 792 nm with 35.4 W. The slope efficiency of the laser is 65.3% and the optical-to-optical efficiency is 53.6%, which is, to the best of our knowledge, the highest efficiency reported for Nd:YLiF4 lasers pumped into the 4F5/2 band, including longitudinal pumping schemes and lasers emitting at the higher gain line of 1047 nm.

  18. Harmonic diffractive lenses

    SciTech Connect

    Sweeney, D.W.; Sommargren, G.E.

    1995-05-10

    The harmonic diffractive lens is a diffractive imaging lens for which the optical path-length transition between adjacent facets is an integer multiple {ital m} of the design wavelength {lambda}{sub 0}. The total lens thickness in air is {ital m}{lambda}{sub 0}/({ital n} {minus} 1), which is {ital m} times thicker than the so-called modulo 2{pi} diffractive lens. Lenses constructed in this way have hybrid properties of both refractive and diffractive lenses. Such a lens will have a diffraction-limited, common focus for a number of discrete wavelengths across the visible spectrum. A 34.75-diopter, 6-mm-diameter lens is diamond turned in aluminum and replicated in optical materials. The sag of the lens is 23 {mu}m. Modulation transfer function measurements in both monochromatic and white light verify the performance of the lens. The lens approaches the diffraction limit for 10 discrete wavelengths across the visible spectrum.

  19. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  20. 1 kW cw Yb-fiber-amplifier with <0.5GHz linewidth and near-diffraction limited beam-quality for coherent combining application

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Lu, Wei; Akbulut, Mehmetcan; McIntosh, Bruce; Verdun, Horacio; Gupta, Shantanu

    2011-02-01

    In this paper, we present results on a master-oscillator Yb-doped fiber amplifier with 1 kW cw output power (at 1064nm), and near-diffraction limited beam quality (M2<1.4), with internal quantum efficiency >83%. The final amplifier stage uses a very high Yb-doped 35-um core LMA fiber, using a new process recipe that virtually eliminates photo-darkening. As a result, high efficiency, SBS-free operation to 1 kW cw power level is obtained, with a phase modulation bandwidth of only 450MHz, well below other reported results. To enable single-frequency cw power scaling to kW levels, we investigate LMA fiber waveguide designs exploiting gain-discrimination, using partially Yb-doped LMA fiber cores, with various diameters up to 80-um. SBS-free, singlefrequency (few kHz) operation is demonstrated up to 0.9kW cw power. At the lower cw powers (<200W) neardiffraction limited beam-quality is obtained, but is observed to deteriorate at higher cw powers. We discuss potential causes, and present a detailed simulation model of kW large-core fiber-amplifiers, that includes all guided modes, fiber bend, transverse spatial hole burning, gain-tailoring, mode-scattering, SBS nonlinearity, and various thermal effects. This model shows good agreement with the observed single-frequency power scaling and beam-quality characteristics.

  1. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Hansen, Anders K.; Jensen, Ole B.; Sumpf, Bernd; Erbert, Götz; Unterhuber, Angelika; Drexler, Wolfgang; Andersen, Peter E.; Petersen, Paul Michael

    2014-02-01

    Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. In the low-power limit, such a cascade of two crystals has the theoretical potential for generation of four times as much power as a single crystal without adding significantly to the complexity of the system. The experimentally achieved power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications, such as optical coherence tomography or multimodal imaging devices, e.g., FTCARS-OCT, based on a strongly pumped ultrafast Ti:Sapphire laser.

  2. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  3. A DNA mimic: the structure and mechanism of action for the anti-repressor protein AbbA.

    PubMed

    Tucker, Ashley T; Bobay, Benjamin G; Banse, Allison V; Olson, Andrew L; Soderblom, Erik J; Moseley, M Arthur; Thompson, Richele J; Varney, Kristen M; Losick, Richard; Cavanagh, John

    2014-05-01

    Bacteria respond to adverse environmental conditions by switching on the expression of large numbers of genes that enable them to adapt to unfavorable circumstances. In Bacillus subtilis, many adaptive genes are under the negative control of the global transition state regulator, the repressor protein AbrB. Stressful conditions lead to the de-repression of genes under AbrB control. Contributing to this de-repression is AbbA, an anti-repressor that binds to and blocks AbrB from binding to DNA. Here, we have determined the NMR structure of the functional AbbA dimer, confirmed that it binds to the N-terminal DNA-binding domain of AbrB, and have provided an initial description for the interaction using computational docking procedures. Interestingly, we show that AbbA has structural and surface characteristics that closely mimic the DNA phosphate backbone, enabling it to readily carry out its physiological function. PMID:24534728

  4. A DNA Mimic: The Structure and Mechanism of Action for the Anti-Repressor Protein AbbA

    PubMed Central

    Tucker, Ashley T.; Bobay, Benjamin G.; Banse, Allison V.; Olson, Andrew L.; Soderblom, Erik J.; Moseley, M. Arthur; Thompson, Richele J.; Varney, Kristen M.; Losick, Richard; Cavanagh, John

    2014-01-01

    Bacteria respond to adverse environmental conditions by switching on the expression of large numbers of genes that enable them to adapt to unfavorable circumstances. In Bacillus subtilis, many adaptive genes are under the negative control of the global transition state regulator, the repressor protein AbrB. Stressful conditions lead to the de-repression of genes under AbrB control. Contributing to this de-repression is AbbA, an anti-repressor that binds to and blocks AbrB from binding to DNA. Here, we have determined the NMR structure of the functional AbbA dimer, confirmed that it binds to the N-terminal DNA-binding domain of AbrB, and have provided an initial description for the interaction using computational docking procedures. Interestingly, we show that AbbA has structural and surface characteristics that closely mimic the DNA phosphate backbone, enabling it to readily carry out its physiological function. PMID:24534728

  5. [Is Turkish bath water potable?: The baths of Sidi-Bel-Abbes].

    PubMed

    Benouis, K; Benabderrahmane, M; Harrache-Chettouh, Djamila; Benabdeli, K

    2008-01-01

    In Algeria, large numbers of people regularly go to Turkish baths or "Hammams". The cold tap water of the baths in the town of Sidi-Bel-Abbes (Algeria) comes either from wells or from a mixture of potable waterworks water and well water. Its principal use is for personal hygiene (washing). However, the steam heat generates thirst that can cause users to drink cold water during the steam bath. In addition, the wells feeding the baths are often poorly protected and especially badly treated. To ascertain whether their water quality, particularly bacteriological, meets the requirements for drinking water, we studied the characteristics of water from ten Turkish baths in Sidi-Bel-Abbes. Bacteriological analyses of cold water showed signs of contamination of fecal origin in 50% of the samples analysed. Moreover two water points from two of the baths appeared to have permanent fecal contamination. The physicochemical analysis showed that the water was very high in calcium (up to 550 mg/L) and magnesium (up to 299 mg/L). The maximum nitrate level observed was 68 mg/L. This study thus showed the existence of a health risk due to deterioration in the quality of the bath water and demonstrated the need for protection of the wells, frequent purification, and regular microbiological testing. PMID:19188127

  6. Correction of Abbe error in involute gear measurement using a laser interferometric system

    NASA Astrophysics Data System (ADS)

    Lin, Hu; Xue, Zi; Yang, Guoliang

    2015-10-01

    For correction of Abbe error in involute gear measurement, a laser interferometric measuring system is applied, in this system, the laser beam is split into two paths, one path is arranged tangent to the base circle of gear for measurement of profile, another path is arranged parallel to the gear axis for measurement of helix, two cube-corner reflectors are attached at the end of probe stylus closing to the tip, by this approach, the length offset between probe tip and reference scale is minimized , finally, the Abbe error is decreased. On another hand, the laser measuring error is caused by bending of stylus, the mathematic relationship between amount of bending and probe deflection is deduced. To determine the parameters in this mathematic relationship, two sizes of stylus are used for experiments. Experiments are carried out in a range of +/-0.8mm for probe deflection. Results show that the amount of stylus bending is linear with deflection of probe, the laser measuring error caused by stylus bending will be smaller than 0.3μm after correction.

  7. The close circumstellar environment of Betelgeuse. II. Diffraction-limited spectro-imaging from 7.76 to 19.50 μm with VLT/VISIR

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Perrin, G.; Chiavassa, A.; Ridgway, S. T.; Cami, J.; Haubois, X.; Verhoelst, T.

    2011-07-01

    Context. Mass-loss occurring in red supergiants (RSGs) is a major contributor to the enrichment of the interstellar medium in dust and molecules. The physical mechanism of this mass loss is however relatively poorly known. Betelgeuse is the nearest RSG, and as such a prime object for high angular resolution observations of its surface (by interferometry) and close circumstellar environment. Aims: The goal of our program is to understand how the material expelled from Betelgeuse is transported from its surface to the interstellar medium, and how it evolves chemically in this process. Methods: We obtained diffraction-limited images of Betelgeuse and a calibrator (Aldebaran) in six filters in the N band (7.76 to 12.81 μm) and two filters in the Q band (17.65 and 19.50 μm), using the VLT/VISIR instrument. Results: Our images show a bright, extended and complex circumstellar envelope at all wavelengths. It is particularly prominent longwards of ≈ 9-10 μm, pointing at the presence of O-rich dust, such as silicates or alumina. A partial circular shell is observed between 0.5 and 1.0″ from the star, and could correspond to the inner radius of the dust envelope. Several knots and filamentary structures are identified in the nebula. One of the knots, located at a distance of 0.9″ west of the star, is particularly bright and compact. Conclusions: The circumstellar envelope around Betelgeuse extends at least up to several tens of stellar radii. Its relatively high degree of clumpiness indicates an inhomogeneous spatial distribution of the material lost by the star. Its extension corresponds to an important intermediate scale, where most of the dust is probably formed, between the hot and compact gaseous envelope observed previously in the near infrared and the interstellar medium. Based on observations made with ESO telescopes at Paranal Observatory, under ESO DDT program 286.D-5007(A).

  8. 78 FR 52974 - Gamesa Technology Corporation, Including On-Site Leased Workers From A & A Wind Pros Inc., ABB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ...., Spherion ``The Mergis Group,'' System One, UpWind Solutions Inc., Wind Solutions LLC, and Wind Turbine... & A Wind Pros Inc., ABB Inc., Airway Services Inc., Amerisafe Consulting & Safety Services, Apex Alternative Access, Avanti Wind Systems, Inc., Broadwind Services LLC, Electric Power Systems...

  9. Searching transients in large-scale surveys. A method based on the Abbe value

    NASA Astrophysics Data System (ADS)

    Mowlavi, N.

    2014-08-01

    Aims: A new method is presented to identify transient candidates in large-scale surveys based on the variability pattern in their light curves. Methods: The method is based on the Abbe value, Ab, that estimates the smoothness of a light curve, and on a newly introduced value called the excess Abbe and denoted excessAb, that estimates the regularity of the light curve variability pattern over the duration of the observations. Results: Based on simulated light curves, transients are shown to occupy a specific region in the {diagram} diagram, distinct from sources presenting pulsating-like features in their light curves or having featureless light curves. The method is tested on real light curves taken from EROS-2 and OGLE-II surveys in a 0.50° × 0.17° field of the sky in the Large Magellanic Cloud centered at RA(J2000) = 5h25m56.5s and Dec(J2000) = -69d29m43.3s. The method identifies 43 EROS-2 transient candidates out of a total of 1300 variable stars, and 19 more OGLE-II candidates, 10 of which do not have any EROS-2 variable star matches and which would need further confirmation to assess their reliability. The efficiency of the method is further tested by comparing the list of transient candidates with known Be stars in the literature. It is shown that all Be stars known in the studied field of view with detectable bursts or outbursts are successfully extracted by the method. In addition, four new transient candidates displaying bursts and/or outbursts are found in the field, of which at least two are good new Be candidates. Conclusions: The new method proves to be a potentially powerful tool to extract transient candidates from large-scale multi-epoch surveys. The better the photometric measurement uncertainties are, the cleaner the list of detected transient candidates is. In addition, the diagram diagram is shown to be a good diagnostic tool to check the data quality of multi-epoch photometric surveys. A trend of instrumental and/or data reduction origin

  10. Real-time and Sub-wavelength Ultrafast Coherent Diffraction Imaging in the Extreme Ultraviolet

    PubMed Central

    Zürch, M.; Rothhardt, J.; Hädrich, S.; Demmler, S.; Krebs, M.; Limpert, J.; Tünnermann, A.; Guggenmos, A.; Kleineberg, U.; Spielmann, C.

    2014-01-01

    Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA = 0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2 nm enables either sub-wavelength spatial resolution close to the Abbe limit (Δr = 0.8λ) for long exposure time, or sub-70 nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences. PMID:25483626

  11. Spectral diffraction efficiency characterization of broadband diffractive optical elements.

    SciTech Connect

    Choi, Junoh; Cruz-Cabrera, Alvaro Augusto; Tanbakuchi, Anthony

    2013-03-01

    Diffractive optical elements, with their thin profile and unique dispersion properties, have been studied and utilized in a number of optical systems, often yielding smaller and lighter systems. Despite the interest in and study of diffractive elements, the application has been limited to narrow spectral bands. This is due to the etch depths, which are optimized for optical path differences of only a single wavelength, consequently leading to rapid decline in efficiency as the working wavelength shifts away from the design wavelength. Various broadband diffractive design methodologies have recently been developed that improve spectral diffraction efficiency and expand the working bandwidth of diffractive elements. We have developed diffraction efficiency models and utilized the models to design, fabricate, and test two such extended bandwidth diffractive designs.

  12. CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE ABB COMBUSTION ENGINEERING SITE IN WINDSOR, CONNECTICUT DURING THE FALL OF 2011

    SciTech Connect

    Wade C. Adams

    2011-12-09

    From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.

  13. "CONFIRMATORY SURVEY RESULTS FOR THE ABB COMBUSTION ENGINEERING SITE WINDSOR, CONNECTICUT DCN 5158-SR-02-2

    SciTech Connect

    ADAMS, WADE C

    2013-03-25

    The objectives of the confirmatory activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the NRC in evaluating the adequacy and accuracy of the contractor's procedures and FSS results. ORAU reviewed ABB CE's decommissioning plan, final status survey plan, and the applicable soil DCGLs, which were developed based on an NRC-approved radiation dose assessment. The surveys include gamma surface scans, gamma direct measurements, and soil sampling.

  14. Drop Test Results for the Combustion Engineering Model No. ABB-2901 Fuel Pellet Package

    SciTech Connect

    Hafner, R S; Mok, G C; Hagler, L G

    2004-04-23

    The U.S. Nuclear Regulatory Commission (USNRC) contracted with the Packaging Review Group (PRG) at Lawrence Livermore National Laboratory (LLNL) to conduct a single, 30-ft shallow-angle drop test on the Combustion Engineering ABB-2901 drum-type shipping package. The purpose of the test was to determine if bolted-ring drum closures could fail during shallow-angle drops. The PRG at LLNL planned the test, and Defense Technologies Engineering Division (DTED) personnel from LLNL's Site-300 Test Group executed the plan. The test was conducted in November 2001 using the drop-tower facility at LLNL's Site 300. Two representatives from Westinghouse Electric Company in Columbia, South Carolina (WEC-SC); two USNRC staff members; and three PRG members from LLNL witnessed the preliminary test runs and the final test. The single test clearly demonstrated the vulnerability of the bolted-ring drum closure to shallow-angle drops-the test package's drum closure was easily and totally separated from the drum package. The results of the preliminary test runs and the 30-ft shallow-angle drop test offer valuable qualitative understandings of the shallow-angle impact.

  15. Piping benchmark problems for the ABB/CE System 80+ Standardized Plant

    SciTech Connect

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1994-07-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for the ABB/Combustion Engineering System 80+ Standardized Plant, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the System 80+ standard design. It will be required that the combined license licensees demonstrate that their solution to these problems are in agreement with the benchmark problem set. The first System 80+ piping benchmark is a uniform support motion response spectrum solution for one section of the feedwater piping subjected to safe shutdown seismic loads. The second System 80+ piping benchmark is a time history solution for the feedwater piping subjected to the transient loading induced by a water hammer. The third System 80+ piping benchmark is a time history solution of the pressurizer surge line subjected to the accelerations induced by a main steam line pipe break. The System 80+ reactor is an advanced PWR type.

  16. Testing the limits of sensitivity in a solid-state structural investigation by combined X-ray powder diffraction, solid-state NMR, and molecular modelling.

    PubMed

    Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu

    2011-10-28

    A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. PMID:21931906

  17. Computation of highly off-axis diffracted fields using the band-limited angular spectrum method with suppressed Gibbs related artifacts.

    PubMed

    Falaggis, Konstantinos; Kozacki, Tomasz; Kujawinska, Malgorzata

    2013-05-10

    The angular spectrum (AS) method is a popular solution to the Helmholtz equation without the use of approximations. Modified band-limited AS methods are of particular interest for the cases of high-off-axis and large distance propagation problems, because conventional AS methods are impractical due to requirements regarding memory and computational effort. However, these techniques make use of rectangular-shaped filters that introduce ringing artifacts in the calculated field that are related to the Gibbs phenomenon. This work proposes AS algorithms based on a smooth band-limiting filter for accurate field computation as well as techniques that evaluate only nonzero components of the field. This enables accurate field calculations with an acceptable level of computational effort that cannot be offered by current AS methods reported in the scientific literature. PMID:23669842

  18. Diode-pumped dual-wavelength Nd:LSO laser at 1059 and 1067  nm with nearly diffraction-limited beam quality.

    PubMed

    Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun

    2016-04-10

    We report a diode-pumped continuous-wave simultaneous dual-wavelength Nd:LSO laser at 1059 and 1067 nm. By employing a specially coated output coupler with relatively high transmissions at high-gain emission lines of 1075 and 1079 nm, the two low-gain emission lines, 1059 and 1067 nm, can be achieved, for the first time to our knowledge, with maximum output power of 1.27 W and slope efficiency of about 29.2%. The output power is only limited by the available pump power. Output beam quality is also measured to be about 1.19 and 1.21 of the beam propagation factors in the x and y directions, respectively. PMID:27139868

  19. Polychromatic diffraction contrast tomography

    SciTech Connect

    King, A.; Reischig, P.; Adrien, J.; Peetermans, S.; Ludwig, W.

    2014-11-15

    This tutorial review introduces the use of polychromatic radiation for 3D grain mapping using X-ray diffraction contrast tomography. The objective is to produce a 3D map of the grain shapes and orientations within a bulk, millimeter-sized polycrystalline sample. The use of polychromatic radiation enables the standard synchrotron X-ray technique to be applied in a wider range of contexts: 1) Using laboratory X-ray sources allows a much wider application of the diffraction contrast tomography technique. 2) Neutron sources allow large samples, or samples containing high Z elements to be studied. 3) Applied to synchrotron sources, smaller samples may be treated, or faster measurements may be possible. Challenges and particularities in the data acquisition and processing, and the limitations of the different variants, are discussed. - Highlights: • We present a tutorial review of polychromatic diffraction contrast tomography techniques. • The use of polychromatic radiation allows the standard synchrotron DCT technique to be extended to a range of other sources. • The characteristics and limitations of all variants of the techniques are derived, discussed and compared. • Examples using laboratory X-ray and cold neutron radiation are presented. • Suggestions for the future development of these techniques are presented.

  20. Keyhole electron diffractive imaging (KEDI).

    PubMed

    De Caro, Liberato; Carlino, Elvio; Vittoria, Fabio Alessio; Siliqi, Dritan; Giannini, Cinzia

    2012-11-01

    Electron diffractive imaging (EDI) relies on combining information from the high-resolution transmission electron microscopy image of an isolated kinematically diffracting nano-particle with the corresponding nano-electron diffraction pattern. Phase-retrieval algorithms allow one to derive the phase, lost in the acquisition of the diffraction pattern, to visualize the actual atomic projected potential within the specimen at sub-ångström resolution, overcoming limitations due to the electron lens aberrations. Here the approach is generalized to study extended crystalline specimens. The new technique has been called keyhole electron diffractive imaging (KEDI) because it aims to investigate nano-regions of extended specimens at sub-ångström resolution by properly confining the illuminated area. Some basic issues of retrieving phase information from the EDI/KEDI measured diffracted amplitudes are discussed. By using the generalized Shannon sampling theorem it is shown that whenever suitable oversampling conditions are satisfied, EDI/KEDI diffraction patterns can contain enough information to lead to reliable phase retrieval of the unknown specimen electrostatic potential. Hence, the KEDI method has been demonstrated by simulations and experiments performed on an Si crystal cross section in the [112] zone-axis orientation, achieving a resolution of 71 pm. PMID:23075611

  1. Dichroic Coherent Diffractive Imaging

    NASA Astrophysics Data System (ADS)

    Tripathi, Ashish

    Understanding electronic structure at nanometer resolution is crucial to understanding physics such as phase separation and emergent behavior in correlated electron materials. Nondestructive probes which have the ability to see beyond surfaces on nanometer length and sub-picosecond time scales can greatly enhance our understanding of these systems and will impact development of future technologies, such as magnetic storage. Polarized x-rays are an appealing choice of probe due to their penetrating power, elemental and magnetic specificity, and high spatial resolution. The resolution of traditional x-ray microscopy is limited by the nanometer precision required to fabricate x-ray optics. In this thesis, a novel approach to lensless imaging of an extended magnetic nanostructure is presented. We demonstrate this approach by imaging ferrimagnetic "maze" domains in a Gd/Fe multilayer with perpendicular anisotropy. A series of dichroic coherent diffraction patterns, ptychographically recorded, are numerically inverted using non-convex and non-linear optimization theory, and we follow the magnetic domain configuration evolution through part of its magnetization hysteresis loop by applying an external magnetic field. Unlike holographic methods, it does not require a reference wave or precision optics, and so is a far simpler experiment. In addition, it enables the imaging of samples with arbitrarily large spatial dimensions, at a spatial resolution limited solely by the coherent x-ray flux and wavelength. It can readily be extended to other non-magnetic systems that exhibit circular or linear dichroism. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of the new generation of phenomenally brilliant x-ray sources.

  2. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  3. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  4. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  5. Calculation of the diffraction efficiency on concave gratings based on Fresnel-Kirchhoff's diffraction formula.

    PubMed

    Huang, Yuanshen; Li, Ting; Xu, Banglian; Hong, Ruijin; Tao, Chunxian; Ling, Jinzhong; Li, Baicheng; Zhang, Dawei; Ni, Zhengji; Zhuang, Songlin

    2013-02-10

    Fraunhofer diffraction formula cannot be applied to calculate the diffraction wave energy distribution of concave gratings like plane gratings because their grooves are distributed on a concave spherical surface. In this paper, a method based on the Kirchhoff diffraction theory is proposed to calculate the diffraction efficiency on concave gratings by considering the curvature of the whole concave spherical surface. According to this approach, each groove surface is divided into several limited small planes, on which the Kirchhoff diffraction field distribution is calculated, and then the diffraction field of whole concave grating can be obtained by superimposition. Formulas to calculate the diffraction efficiency of Rowland-type and flat-field concave gratings are deduced from practical applications. Experimental results showed strong agreement with theoretical computations. With the proposed method, light energy can be optimized to the expected diffraction wave range while implementing aberration-corrected design of concave gratings, particularly for the concave blazed gratings. PMID:23400074

  6. Diachronic analysis of the occupation of the steppe area of the department of Sidi Bel Abbes (Western Algeria)

    NASA Astrophysics Data System (ADS)

    Hellal, B.; Ayache, A.; Ayad, N.; Hellal, T.

    2016-06-01

    Modes of occupation of the soil of the steppe area of the department of Sidi Bel Abbes (Western Algeria) know lots of mutations during the period 1987/2013; compromising the future of pastoral activity. This dissection based on supervised classification TSAVI values (Transformed Soil Adjusted Vegetation Index) using images of remote sensing of average spatial resolution of type Landsat-TM 5 and 8. The determination of the state of occupation of the ground and validation of remote sensing map shows that the status of the halophytic/psammophytic steppes and the Matorrals are detected in 38.38 % and 55,71 % of cases, respectively. On the other hand, the steppes chamaephytic mark -9,81 % regression only, agricultural land -24,51 %, and -46,24 % dense vegetation are correctly mapped. The sensing medium resolution is therefore, in the light of these figures, a management tool of the steppe field relevant and effective, which, in addition, allows enriching the field for a proper plan for the fight against desertification.

  7. Chromatic confocal microscopy using staircase diffractive surface.

    PubMed

    Rayer, Mathieu; Mansfield, Daniel

    2014-08-10

    A chromatic confocal microscope (CCM) is a high-dynamic-range noncontact distance measurement sensor; it is based on a hyperchromatic lens. The vast majority of commercial CCMs use refractive-based chromatic dispersion to chromatically code the optical axis. This approach significantly limits the range of applications and performance of the CCM. In order to be a suitable alternative to a laser triangulation gauge and laser encoder, the performance of the CCM must be improved. In this paper, it is shown how hybrid aspheric diffractive (HAD) lenses can bring the CCM to its full potential by increasing the dynamic range by a factor of 2 and the resolution by a factor of 5 while passively athermizing and increasing the light throughput efficiency of the optical head [M. Rayer, U.S. patent 1122052.2 (2011)]. The only commercially suitable manufacturing process is single-point diamond turning. However, the optical power carried by the diffractive side of a hybrid aspheric diffractive lens is limited by the manufacturing process. A theoretical study of manufacturing losses has revealed that the HAD configuration with the highest diffraction efficiency is for a staircase diffractive surface (SDS). SDS lenses have the potential to reduce light losses associated with manufacturing limits by a factor of 5 without increasing surface roughness, allowing scalar diffraction-limited optical design with a diffractive element. PMID:25320920

  8. Detonation diffraction through different geometries

    NASA Astrophysics Data System (ADS)

    Sorin, Rémy; Zitoun, Ratiba; Khasainov, Boris; Desbordes, Daniel

    2009-04-01

    We performed the study of the diffraction of a self-sustained detonation from a cylindrical tube (of inner diameter d) through different geometric configurations in order to characterise the transmission processes and to quantify the transmission criteria to the reception chamber. For the diffraction from a tube to the open space the transmission criteria is expressed by d c = k c · λ (with λ the detonation cell size and k c depending on the mixture and on the operture configuration, classically 13 for alkane mixtures with oxygen). The studied geometries are: (a) a sharp increase of diameter ( D/ d > 1) with and without a central obstacle in the diffracting section, (b) a conical divergent with a central obstacle in the diffracting section and (c) an inversed intermediate one end closed tube insuring a double reflection before a final diffraction between the initiator tube and the reception chamber. The results for case A show that the reinitiation process depends on the ratio d/ λ. For ratios below k c the re-ignition takes place at the receptor tube wall and at a fixed distance from the step, i.e. closely after the diffracted shock reflection shows a Mach stem configuration. For ratios below a limit ratio k lim (which depends on D/ d) the re-ignition distance increases with the decrease of d/λ. For both case A and B the introduction of a central obstacle (of blockage ratio BR = 0.5) at the exit of the initiator tube decreases the critical transmission ratio k c by 50%. The results in configuration C show that the re-ignition process depends both on d/ λ and the geometric conditions. Optimal configuration is found that provides the transmission through the two successive reflections (from d = 26 mm to D ch = 200 mm) at as small d/ λ as 2.2 whatever the intermediate diameter D is. This configuration provides a significant improvement in the detonation transmission conditions.

  9. Drop Test Results for the Combustion Engineering Model No. ABB-2901 Fuel Pellet Shipping Package

    SciTech Connect

    Mok, G; Hagler, L

    2002-06-01

    Steel cylindrical drums have been used for many years to transport radioactive materials. The radioactive material inserted into the drum cavity for shipping is usually restrained within its own container or containment vessel. For additional protection, the container is surrounded or supported by components made of impact-absorbent and/or thermal-insulation materials. The components are expected to protect the container and its radioactive contents under severe transportation conditions like free drops and fires. Due to its simplicity and convenience, bolted-ring drum closures are commonly used to close many drum packages. Because the structural integrity of the drum and drum closure often play a significant role in determining the package's ability to maintain sub-criticality, shielding, and containment of the radioactive contents, regulations require that the complete drum package be tested for safety performance. The structural integrity of the drum body is relatively simple to understand and analyze, whereas analyzing the integrity of the drum closure is not so simple. In summary, the drop test accomplished its mission. Because the lid and closure device separated from the drum body in the 30-ft 17.5{sup o} shallow-angle drop, the drop test confirmed that the common drum closure with a bolted ring is vulnerable to damage by a shallow-angle drop, even though the closure has been shown to survive much steeper-angle drops. The test program also demonstrated one of the mechanisms by which the shallow-angle drop opens the common bolted-ring drum closure. The separation of the drum lid and closure device from the drum body was initiated by a large outward buckling deformation of the lid and completed with minimal assistance by the round plywood boards behind the lid. The energy spent to complete the separation appeared to be only a small fraction of the total impact energy. Limited to only one test, the present test program could not explore all possible mechanisms

  10. Diffraction by cold atoms

    NASA Astrophysics Data System (ADS)

    Strauch, F.; Gomer, V.; Schadwinkel, H.; Ueberholz, B.; Haubrich, D.; Meschede, D.

    1998-01-01

    We have observed diffraction of a laser probe beam by a trapped sample of cold atoms. The effect is only visible in the vicinity of a resonance line. The observed diffraction pattern arises from interference of the incident and scattered light wave, allowing reconstruction of geometric properties of the trapped sample from the holographic record.

  11. Diffraction Results from CDF

    SciTech Connect

    Goulianos, Konstantin

    2012-04-01

    We present final results by the CDF II collaboration on diffractive W and Z production, report on the status of ongoing analyses on diffractive dijet production and on rapidity gaps between jets, and briefly summarize results obtained on exclusive production pointing to their relevance to calibrating theoretical models used to predict exclusive Higgs-boson production at the LHC.

  12. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  13. Subdiffraction-limited focusing lens.

    PubMed

    Davis, J A; Cottrell, D M; Maley, C A; Crivello, M R

    1994-07-01

    We describe techniques for making a diffractive optical element that produces a subdiffraction-limited spot size. We provide experimental verification, using a diffraction optical element that is constructed on a magneto-optic spatial light modulator. PMID:20935762

  14. Stretchable diffraction gratings for spectrometry

    NASA Astrophysics Data System (ADS)

    Simonov, Aleksey N.; Grabarnik, Semen; Vdovin, Gleb

    2007-07-01

    We have investigated the possibility of using transparent stretchable diffraction gratings for spectrometric applications. The gratings were fabricated by replication of a triangular-groove master into a transparent viscoelastic. The sample length, and hence the spatial period, can be reversibly changed by mechanical stretching. When used in a monochromator with two slits, the stretchable grating permits scanning the spectral components over the output slit, converting the monochromator into a scanning spectrometer. The spectral resolution of such a spectrometer was found to be limited mainly by the wave-front aberrations due to the grating deformation. A model relating the deformation-induced aberrations in different diffraction orders is presented. In the experiments, a 12-mm long viscoelastic grating with a spatial frequency of 600 line pairs/mm provided a full-width at half-maximum resolution of up to ~1.2 nm in the 580-680 nm spectral range when slowly stretched by a micrometer screw and ~3 nm when repeatedly stretched by a voice coil at 15 Hz. Comparison of aberrations in transmitted and diffracted beams measured by a Shack- Hartmann wave-front sensor showed that astigmatisms caused by stretch-dependent wedge deformation are the main factors limiting the resolution of the viscoelastic-grating-based spectrometer.

  15. Historical model for editor and Office of Research Integrity cooperation in handling allegations, investigation, and retraction in a contentious (Abbs) case of research misconduct.

    PubMed

    Price, Alan R; Daroff, Robert B

    2015-01-01

    Cooperation between a journal editor and the federal Office of Research Integrity (ORI) in addressing investigations of research misconduct, each performing their own responsibilities while keeping each other informed of events and evidence, can be critical to the professional and regulatory resolution of a case. This paper describes the history of one of ORI's most contentious investigations that involved falsification of research on Parkinson's disease patients by James Abbs, Professor of Neurology, University of Wisconsin, published in the journal Neurology, which was handled cooperatively by the authors, who were the chief ORI investigator and the Editor-in-Chief of Neurology, respectively. PMID:25397599

  16. dxtbx: the diffraction experiment toolbox.

    PubMed

    Parkhurst, James M; Brewster, Aaron S; Fuentes-Montero, Luis; Waterman, David G; Hattne, Johan; Ashton, Alun W; Echols, Nathaniel; Evans, Gwyndaf; Sauter, Nicholas K; Winter, Graeme

    2014-08-01

    Data formats for recording X-ray diffraction data continue to evolve rapidly to accommodate new detector technologies developed in response to more intense light sources. Processing the data from single-crystal X-ray diffraction experiments therefore requires the ability to read, and correctly interpret, image data and metadata from a variety of instruments employing different experimental representations. Tools that have previously been developed to address this problem have been limited either by a lack of extensibility or by inconsistent treatment of image metadata. The dxtbx software package provides a consistent interface to both image data and experimental models, while supporting a completely generic user-extensible approach to reading the data files. The library is written in a mixture of C++ and Python and is distributed as part of the cctbx under an open-source licence at http://cctbx.sourceforge.net. PMID:25242914

  17. Calculating incoherent diffraction MTF

    NASA Astrophysics Data System (ADS)

    Friedman, Melvin; Vizgaitis, Jay

    2008-04-01

    The incoherent diffraction MTF plays an increasingly important role in the range performance of imaging systems as the wavelength increases and the optical aperture decreases. Accordingly, all NVESD imager models have equations that describe the incoherent diffraction MTF of a circular entrance pupil. NVThermIP, a program which models thermal imager range performance, has built in equations which analytically model the incoherent diffraction MTF of a circular entrance pupil and has a capability to input a table that describes the MTF of other apertures. These can be calculated using CODE V, which can numerically calculate the incoherent diffraction MTF in the vertical or horizontal direction for an arbitrary aperture. However, we are not aware of any program that takes as input a description of the entrance pupil and analytically outputs equations that describe the incoherent diffraction MTF. This work explores the effectiveness of Mathematica to analytically and numerically calculate the incoherent diffraction MTF for an arbitrary aperture. In this work, Mathematica is used to analytically and numerically calculate the incoherent diffraction MTF for a variety of apertures and the results are compared with CODE V calculations.

  18. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  19. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  20. New diffractive results from the Tevatron

    SciTech Connect

    Gallinaro, Michele; /Rockefeller U.

    2005-05-01

    Experimental results in diffractive processes are summarized and a few notable characteristics described in terms of Quantum Chromodynamics. Exclusive dijet production is used to establish a benchmark for future experiments in the quest for diffractive Higgs production at the Large Hadron Collider. Using new data from the Tevatron and dedicated diffractive triggers, no excess over a smooth falling distribution for exclusive dijet events could be found. Stringent upper limits on the exclusive dijet production cross section are presented. The quark/gluon composition of dijet final states is used to provide additional hints on exclusive dijet production.

  1. Diffraction pattern of gratings with erosion

    NASA Astrophysics Data System (ADS)

    Olivares-Pérez, Arturo; Fuentes-Tapia, Israel

    2015-03-01

    We present a theoretical study of amplitude diffraction gratings using computer simulating, which consists of a random sampling of points on the image grating to determine the points to be plotted and the points to remove, to simulate erosion in amplitude on the grating. We show their behavior in the diffraction patterns and the induced noise by limiting the number of points that representing the image of the eroded gratings and their symmetry.

  2. Hard diffraction at CDF

    SciTech Connect

    Melese, P.L.; CDF Collaboration

    1996-07-01

    We present new evidence for events with a rapidity gap between jets in {bar p}-p collisions at {radical}s = 1.8 TeV based on data collected by triggering the Collider Detector at Fermilab on two high transverse momentum forward jets and results of a search for diffractive W{+-} and dijet production where diffraction is tagged by the rapidity gap technique. We also present the results of a search for diffractive dijets using data collected by triggering on a very forward particle in the recently installed roman-pot detectors. The dijet events exhibit additional diffractive characteristics such as rapidity gaps and boosted center of mass system, however the recoil antiproton measured in the roman-pots is in a regime in which the non- pomeron contribution is significant.

  3. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  4. Powder Diffraction: By Decades

    NASA Astrophysics Data System (ADS)

    David, William I. F.

    This introductory chapter reviews the first 100 years of powder diffraction, decade by decade, from the earliest X-ray powder diffraction measurements of the crystal structure of graphite through to the diversity and complexity of twenty-first century powder diffraction. Carbon features as an illustrative example throughout the discussion of these ten decades from graphite and the disorder of carbon black through to lonsdaleite, the elusive hexagonal polymorph of diamond, and C60, the most symmetrical of molecules. Electronics and computing have played a leading role in the development of powder diffraction, particularly over the past 60 years, and the Moore's Law decade-by-decade rise in computing power is clear in the increasing complexity of powder diffraction experiments and material systems that can be studied. The chapter concludes with a final discussion of decades - the four decades of length-scale from the ångstrom to the micron that not only represent the domain of powder diffraction but are also the distances that will dominate twenty-first century science and technology.

  5. A Diffraction-limited Survey for Direct Detection of Halpha Emitting/Accreting ExtraSolar Planets with the 6.5m Magellan Telescope and the MagAO Visible AO system

    NASA Astrophysics Data System (ADS)

    Close, Laird

    steady diet of hydrogen gas. Such planets should then be quite bright in Halpha accretion emission. The key point is that: instead of a steep drop off in the luminosity of the planet’s atmosphere, the accretion luminosity of these planets will just linearly decrease with decreasing mass. At an accretion rate=6e-10 Msun/yr we find low mass (~1 Mjup) accreting gap planets are much (50-1000x) brighter (for 0-3.4 mag of Halpha extinction) in Halpha than at H band. PROOF-OF_CONCEPT: A 3 hour MagAO observation at Halpha of a transitional disk in April 2013 was made. The resulting deep diffraction-limited images discovered (at 10.5 sigma) an Halpha source that was 295% above the continuum just 0.083” from the star (edge of the inner 10 AU disk gap). We also detected (at 5 sigma) an excellent (though much fainter) ~1 Mjup mass Halpha planet candidate located auspiciously at the outer edge (145 AU) of the gap. If confirmed by our “second epoch” follow-up as common proper motion then this would be the lowest mass (~1 Mjup) planet ever imaged. SURVEY: Scaling off of this exciting success we propose to deeply image (120 min) all 14 nearby (D<250pc), bright (R<11 mag) , not edge-on (i<80 deg) , young (~5 Myr) transitional disks with MagAO simultaneously at Halpha and L’. In addition, we will use BrGamma instead of Halpha for 8 additional fainter (111 Mjup in mass, we integrate across our target list and find that, in the worst case of minimal masses (1+/-0.5 Mjup), and 3.4 mag extinction, at least seven ~1 Mjup planets should be discovered by this survey --meeting all three of our science goals above.

  6. Multipath analysis diffraction calculations

    NASA Technical Reports Server (NTRS)

    Statham, Richard B.

    1996-01-01

    This report describes extensions of the Kirchhoff diffraction equation to higher edge terms and discusses their suitability to model diffraction multipath effects of a small satellite structure. When receiving signals, at a satellite, from the Global Positioning System (GPS), reflected signals from the satellite structure result in multipath errors in the determination of the satellite position. Multipath error can be caused by diffraction of the reflected signals and a method of calculating this diffraction is required when using a facet model of the satellite. Several aspects of the Kirchhoff equation are discussed and numerical examples, in the near and far fields, are shown. The vector form of the extended Kirchhoff equation, by adding the Larmor-Tedone and Kottler edge terms, is given as a mathematical model in an appendix. The Kirchhoff equation was investigated as being easily implemented and of good accuracy in the basic form, especially in phase determination. The basic Kirchhoff can be extended for higher accuracy if desired. A brief discussion of the method of moments and the geometric theory of diffraction is included, but seems to offer no clear advantage in implementation over the Kirchhoff for facet models.

  7. Diffraction radiation generators

    NASA Astrophysics Data System (ADS)

    Shestopalov, Viktor P.; Vertii, Aleksei A.; Ermak, Gennadii P.; Skrynnik, Boris K.; Khlopov, Grigorii I.; Tsvyk, Aleksei I.

    Research in the field of diffraction radiation generators (DRG) conducted at the Radio Physics and electronics Institute of the Ukranian Academy of Sciences over the past 25 years is reviewed. The effect of diffraction radiation is analyzed in detail, and various operating regimes of DRGs are discussed. The discussion then focuses on the principal requirements for the design of packaged DRGs and their principal parameters. Finally, applications of DRGs in various fields of science and technology are reviewed, including such applications as DRG spectroscopy, diagnostics of plasma, biological specimens, and vibration, and DRG radar systems.

  8. Eyeglass. 1. Very large aperture diffractive telescopes.

    PubMed

    Hyde, R A

    1999-07-01

    The Eyeglass is a very large aperture (25-100-m) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope s large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently launchable (lightweight, packagable, and deployable) it and virtually eliminates the traditional, very tight surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope s eyepiece; the Eyeglass can provide diffraction-limited imaging with either single-band (Deltalambda/lambda approximately 0.1), multiband, or continuous spectral coverage. PMID:18323902

  9. DIFFRACTION FROM MODEL CRYSTALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  10. Calculating cellulose diffraction patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  11. Diffractive hard scattering

    SciTech Connect

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-03-01

    I discuss events in high energy hadron collisions that contain a hard scattering, in the sense that very heavy quarks or high P/sub T/ jets are produced, yet are diffractive, in the sense that one of the incident hadrons is scattered with only a small energy loss. 8 refs.

  12. Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements.

    PubMed

    Yang, Hongfang; Xue, Changxi; Li, Chuang; Wang, Ju; Zhang, Ran

    2016-09-01

    The relationship between diffraction efficiency of multilayer diffractive optical elements (MLDOEs) and arbitrary incident angle was numerically analyzed with the effective area method. The method is based on the shield effect between two elements of MLDOEs; a generalized diffraction efficiency formulation was obtained in a wide range of tilt angles, which overcame the limitations of scalar diffraction theory when the period width of MLDOEs is taken into account. A detailed comparison of the proposed effective area method with the scalar diffraction theory is numerically presented for MLDOEs. The validity of the proposed method is verified by comparison with the rigorous electromagnetic analysis method, especially the finite-difference time-domain method. The analysis results show that the shield effect augments with the increase of the incident angles; the effect of incident angles on MLDOEs with finite period widths is more noticeable than that with large period widths. PMID:27607291

  13. Macromolecular diffractive imaging using imperfect crystals.

    PubMed

    Ayyer, Kartik; Yefanov, Oleksandr M; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Xavier, Paulraj Lourdu; Beyerlein, Kenneth R; Schmidt, Marius; Sarrou, Iosifina; Spence, John C H; Weierstall, Uwe; White, Thomas A; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S; Robinson, Joseph S; Koglin, Jason E; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N

    2016-02-11

    The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing. PMID

  14. Macromolecular diffractive imaging using imperfect crystals

    PubMed Central

    Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Lourdu Xavier, Paulraj; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.

    2016-01-01

    The three-dimensional structures of macromolecules and their complexes are predominantly elucidated by X-ray protein crystallography. A major limitation is access to high-quality crystals, to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields sufficiently high-resolution information that the crystal structure can be solved. The observation that crystals with shrunken unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks1,2 hints that crystallographic resolution for some macromolecules may be limited not by their heterogeneity but rather by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern, equal to the incoherent sum of diffraction from rigid single molecular complexes aligned along several discrete crystallographic orientations and hence with an increased information content3. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins4 —they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5 Å limit of measurable Bragg peaks, which allows us to directly phase5 the pattern. With the molecular envelope conventionally determined at 4.5 Å as a constraint, we then obtain a static image of the photosystem II dimer at 3.5 Å resolution. This result shows that continuous diffraction can be used to overcome long-supposed resolution limits of macromolecular crystallography, with a method that puts great value in commonly encountered imperfect crystals and opens up the possibility for model-free phasing6,7. PMID:26863980

  15. Macromolecular diffractive imaging using imperfect crystals

    NASA Astrophysics Data System (ADS)

    Ayyer, Kartik; Yefanov, Oleksandr M.; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Xavier, Paulraj Lourdu; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.

    2016-02-01

    The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins—they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.

  16. Colored Diffraction Catastrophes

    NASA Astrophysics Data System (ADS)

    Berry, M. V.; Klein, S.

    1996-03-01

    On fine scales, caustics produced with white light show vividly colored diffraction fringes. For caustics described by the elementary catastrophes of singularity theory, the colors are characteristic of the type of singularity. We study the diffraction colors of the fold and cusp catastrophes. The colors can be simulated computationally as the superposition of monochromatic patterns for different wavelengths. Far from the caustic, where the luminosity contrast is negligible, the fringe colors persist; an asymptotic theory explains why. Experiments with caustics produced by refraction through irregular bathroom-window glass show good agreement with theory. Colored fringes near the cusp reveal fine lines that are not present in any of the monochromatic components; these lines are explained in terms of partial decoherence between rays with widely differing path differences.

  17. Central diffraction at ALICE

    NASA Astrophysics Data System (ADS)

    Lämsä, J. W.; Orava, R.

    2011-02-01

    The ALICE experiment is shown to be well suited for studies of exclusive final states from central diffractive reactions. The gluon-rich environment of the central system allows detailed QCD studies and searches for exotic meson states, such as glueballs, hybrids and new charmonium-like states. It would also provide a good testing ground for detailed studies of heavy quarkonia. Due to its central barrel performance, ALICE can accurately measure the low-mass central systems with good purity. The efficiency of the Forward Multiplicity Detector (FMD) and the Forward Shower Counter (FSC) system for detecting rapidity gaps is shown to be adequate for the proposed studies. With this detector arrangement, valuable new data can be obtained by tagging central diffractive processes.

  18. Colored diffraction catastrophes.

    PubMed Central

    Berry, M V; Klein, S

    1996-01-01

    On fine scales, caustics produced with white light show vividly colored diffraction fringes. For caustics described by the elementary catastrophes of singularity theory, the colors are characteristic of the type of singularity. We study the diffraction colors of the fold and cusp catastrophes. The colors can be simulated computationally as the superposition of monochromatic patterns for different wavelengths. Far from the caustic, where the luminosity contrast is negligible, the fringe colors persist; an asymptotic theory explains why. Experiments with caustics produced by refraction through irregular bathroom-window glass show good agreement with theory. Colored fringes near the cusp reveal fine lines that are not present in any of the monochromatic components; these lines are explained in terms of partial decoherence between rays with widely differing path differences. Images Fig. 1 Fig. 2 Fig. 3 Fig. 6 Fig. 8 Fig. 9 Fig. 10 PMID:11607642

  19. Diffraction before destruction

    PubMed Central

    Chapman, Henry N.; Caleman, Carl; Timneanu, Nicusor

    2014-01-01

    X-ray free-electron lasers have opened up the possibility of structure determination of protein crystals at room temperature, free of radiation damage. The femtosecond-duration pulses of these sources enable diffraction signals to be collected from samples at doses of 1000 MGy or higher. The sample is vaporized by the intense pulse, but not before the scattering that gives rise to the diffraction pattern takes place. Consequently, only a single flash diffraction pattern can be recorded from a crystal, giving rise to the method of serial crystallography where tens of thousands of patterns are collected from individual crystals that flow across the beam and the patterns are indexed and aggregated into a set of structure factors. The high-dose tolerance and the many-crystal averaging approach allow data to be collected from much smaller crystals than have been examined at synchrotron radiation facilities, even from radiation-sensitive samples. Here, we review the interaction of intense femtosecond X-ray pulses with materials and discuss the implications for structure determination. We identify various dose regimes and conclude that the strongest achievable signals for a given sample are attained at the highest possible dose rates, from highest possible pulse intensities. PMID:24914146

  20. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  1. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, R; Dixit, S; Weisberg, A; Rushford, M

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.

  2. Diffraction of a Laser Beam.

    ERIC Educational Resources Information Center

    Jodoin, Ronald E.

    1979-01-01

    Investigates the effect of the nonuniform irradiance across a laser beam on diffraction of the beam, specifically the Fraunhofer diffraction of a laser beam with a Gaussian irradiance profile as it passes through a circular aperture. (GA)

  3. Aberrations of diffracted wave fields. II. Diffraction gratings.

    PubMed

    Mahajan, V N

    2000-12-01

    The Rayleigh-Sommerfeld theory is applied to diffraction of a spherical wave by a grating. The grating equation is obtained from the aberration-free diffraction pattern, and its aberrations are shown to be the same as the conventional aberrations obtained by using Fermat's principle. These aberrations are shown to be not associated with the diffraction process. Moreover, it is shown that the irradiance distribution of a certain diffraction order is the Fraunhofer diffraction pattern of the grating aperture as a whole aberrated by the aberration of that order. PMID:11140481

  4. Refractive-index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns

    SciTech Connect

    Meichner, Christoph Kador, Lothar; Schedl, Andreas E.; Neuber, Christian; Kreger, Klaus; Schmidt, Hans-Werner

    2015-08-15

    We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard{sup ®} 184) and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidth of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025{sup ∘} results in an error of the refractive index of typically ±5 ⋅ 10{sup −4}. Information on the sample thickness is not required.

  5. Recent diffractive results from HERA

    NASA Astrophysics Data System (ADS)

    Valkárová, Alice

    2016-07-01

    The diffractive dijet cross sections for photoproduction and deep inelastic scattering were studied and compared with theoretical NLO QCD predictions. The results of exclusive dijet production were compared to predictions from models which are based on different assumptions about the nature of diffractive exchange. Isolated prompt photons in diffractive photoproduction produced inclusively or together with a jet were studied for the first time.

  6. Hard diffractive results and prospects at the Tevatron

    SciTech Connect

    Peters, Krisztian; /Manchester U.

    2006-01-01

    We review hard diffractive results and prospects at the Tevatron with an emphasis on factorization breaking in diffractive processes. Upper limits on the exclusive di-jet and {chi}{sub c}{sup 0} production cross sections at CDF and the status of the D0 Forward Proton Detectors are discussed.

  7. Maladie thromboembolique veineuse dans la région de Sidi Bel Abbes, Algérie: fréquence et facteurs de risque

    PubMed Central

    Chalal, Nourelhouda; Demmouche, Abbassia

    2013-01-01

    Introduction La maladie thromboembolique veineuse (MTEV) présente par ses deux entités cliniques: thrombose veineuse profonde (TVP) et embolie pulmonaire (EP), est une pathologie fréquente ayant une forte morbi-mortalité. En Algérie, cette pathologie prend de plus en plus de l'ampleur, en l'absence de toute publication révélant sa fréquence et le pouvoir thrombogène des facteurs de risque qui lui sont corrélés. Notre étude a pour objectif de déterminer la fréquence et les facteurs de risque de ce type d'affection dans la région de Sidi Bel Abbes, Algérie. Méthodes Il s'agit d'une étude rétrospective allant du 1er janvier 2006 au 10 juin 2012 ciblant les patients hospitalisés pour TVP et /ou EP au sein du service de cardiologie du CHU de Sidi Bel Abbes. Résultats 183 patients atteints de la MTEV dont 112 femmes (61.2%) d’âge moyen 46.4 ± 17.9 et 71 hommes (38.7%) d’âge moyen 51.5 ± 17.7 ont été notés. 146 cas parmi eux (79.7%) présentaient une TVP isolée, alors que 37 autres (20.2%) étaient atteints d'EP, dont 16 cas de TVP associée. Les facteurs de risque les plus fréquents enregistrés en cas de TVP sont surtout: l'immobilité, l'hypertension, la chirurgie, et la contraception orale, tandis que: l'immobilité, la chirurgie, l'hypertension et les fractures sont les facteurs de risques les plus incriminés en cas d'EP. 24.7% des patients présentaient plusieurs facteurs de risque. L'antécédent personnel de la MTEV, était présent dans 12.02% des cas. 97.5% des TVP ont touché les membres inférieurs mais seulement 2.5% des TVP étaient localisés au niveau des membres supérieurs. Conclusion Au terme de notre étude, et en dépit de sa fréquence non alarmante, il serait indispensable d'envisager l'adoption d'une stratégie prophylactique adéquate afin de lutter contre le développement redoutable de ce genre d'affection dans la région de Sidi Bel Abbes. PMID:24648858

  8. Hard diffraction in Pythia 8

    NASA Astrophysics Data System (ADS)

    Overgaard Rasmussen, Christine

    2016-07-01

    We present an overview of the options for diffraction implemented in the general-purpose event generator Pythia 8 [1]. We review the existing model for soft diffraction and present a new model for hard diffraction. Both models use the Pomeron approach pioneered by Ingelman and Schlein, factorising the diffractive cross section into a Pomeron flux and a Pomeron PDF, with several choices for both implemented in Pythia 8. The model of hard diffraction is implemented as a part of the multiparton interactions (MPI) framework, thus introducing a dynamical gap survival probability that explicitly breaks factorisation.

  9. Profil épidémiologique des fibromes utérins dans la région de Sidi Bel Abbes, Algérie

    PubMed Central

    Chalal, Nourelhouda; Demmouche, Abbassia

    2013-01-01

    Introduction Les léiomyomes ou fibromyomes plus communément dénommés fibromes, sont les tumeurs les plus répandues du tractus génital féminin. Ils affectent 20 à 25% des femmes en activité génitale. Notre étude vise à élucider la réalité de ce type de pathologie dans la région de sidi bel Abbes, nord-ouest d'Algérie. Méthodes A travers une étude rétrospective allant du 1er janvier 2008 au 1 mai 2011 portant sur les patientes opérées pour fibrome au sein de la maternité de Sidi Bel Abbes, nous avons relevé les particularités épidémiologiques et cliniques de cette pathologie. Résultats Au total 323 cas de fibromes ont été recensés. La tranche d'âge la plus touchée varie de 40 à 44 ans dans une fourchette d'âge comprise entre 20 et 74 ans. 37.83% des patientes étaient nullipares. Une prédominance des patientes dont l'âge de la ménarche est précoce, a été retenue (60.3%). 3% des femmes ont présenté un terrain familial prédisposant. La symptomatologie était dominée par les hémorragies génitales (35%). La majorité des patientes (51.70%) présentaient un utérus polymyomateux dont la localisation des fibromes était principalement corporéale (96%), sous séreuse (43%). Le traitement était conservateur dans 71.82% des cas. Conclusion Sur la base des résultats obtenus, la mise au point d'un programme national de sensibilisation et de dépistage précoce, s'impose PMID:23847704

  10. Structured beam diffraction.

    PubMed

    Castagna, R; Di Donato, A; Nucara, L; Xu, J H; Lucchetta, D E; Simoni, F

    2016-04-01

    We report on the observation of a modulated pattern induced by a single laser beam in a polymeric film. In spite of the simple geometrical configuration, the analysis of the far field diffraction pattern allows a sensitive retrieving of the wavelength of the recording beam and of its incidence angle, pointing out the high information content of the recorded spot. A theoretical model is presented which satisfactorily explains the observed behavior. It takes into account the interaction of structured light with structured matter with the same symmetries and spatial modulation frequencies close to each other. This result shows a feature of the interaction between structured light and structured matter which has not been explored yet. PMID:27192262

  11. Multilayer diffraction grating

    DOEpatents

    Barbee, Jr., Troy W.

    1990-01-01

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages.

  12. Multilayer diffraction grating

    DOEpatents

    Barbee, T.W. Jr.

    1990-04-10

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages. 2 figs.

  13. Single Hit Energy-resolved Laue Diffraction

    SciTech Connect

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew; Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H.; Comley, Andrew J.; Foster, John M.

    2015-05-15

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.

  14. Every Good Virtue You Ever Wanted in a Q-switched Solid-state Laser and More: Monolithic, Diode-pumped, Self-q-switched, Highly Reproducible, Diffraction-limited Nd:yag Laser

    NASA Technical Reports Server (NTRS)

    Chen, Y. C.; Lee, K. K.

    1993-01-01

    The applications of Q-switched lasers are well known, for example, laser radar, laser remote sensing, satellite orbit determination, Moon orbit and 'moon quake' determination, satellite laser communication, and many nonlinear optics applications. Most of the applications require additional properties of the Q-switched lasers, such as single-axial and/or single-transverse mode, high repetition rate, stable pulse shape and pulse width, or ultra compact and rugged oscillators. Furthermore, space based and airborne lasers for lidar and laser communication applications require efficient, compact, lightweight, long-lived, and stable-pulsed laser sources. Diode-pumped solid-state lasers (DPSSL) have recently shown the potential for satisfying all of these requirements. We will report on the operating characteristics of a diode-pumped, monolithic, self-Q-switched Cr,Nd:YAG laser where the chromium ions act as a saturable absorber for the laser emission at 1064 nm. The pulse duration is 3.5 ns and the output is highly polarized with an extinction ratio of 700:1. It is further shown that the output is single-longitudinal-mode with transform-limited spectral line width without pulse-to-pulse mode competition. Consequently, the pulse-to-pulse intensity fluctuation is less than the instrument resolution of 0.25 percent. This self-stabilization mechanism is because the lasing mode bleaches the distributed absorber and establishes a gain-loss grating similar to that used in the distributed feedback semiconductor lasers. A repetition rate above 5 KHz has also been demonstrated. For higher power, this laser can be used for injection seeding an amplifier (or amplifier chain) or injection locking of a power oscillator pumped by diode lasers. We will discuss some research directions on the master oscillator for higher output energy per pulse as well as how to scale the output power of the diode-pumped amplifier(s) to multi-kilowatt average power.

  15. Imaging outside the box: Resolution enhancement in X-ray coherent diffraction imaging by extrapolation of diffraction patterns

    SciTech Connect

    Latychevskaia, Tatiana Fink, Hans-Werner; Chushkin, Yuriy; Zontone, Federico

    2015-11-02

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  16. Final Report-Confirmatory Survey Results for the ABB Combustion Engineering Site, Windsor, Connecticut; Revision 1 (DCN 5158-SR-02-1) (Docket No. 030-03754; RFTA No. 12-003)

    SciTech Connect

    ADAMS, WADE C

    2013-01-28

    The objectives of the confirmatory activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the NRC in evaluating the adequacy and accuracy of the contractor's procedures and FSS results. ORAU reviewed ABB CE's decommissioning plan, final status survey plan, and the applicable soil DCGLs, which were developed based on an NRC-approved radiation dose assessment. The surveys included gamma surface scans, gamma direct measurements, and soil sampling.

  17. Chromatic confocal microscope using hybrid aspheric diffractive lenses

    NASA Astrophysics Data System (ADS)

    Rayer, Mathieu; Mansfield, Daniel

    2014-05-01

    A chromatic confocal microscope is a single point non-contact distance measurement sensor. For three decades the vast majority of the chromatic confocal microscope use refractive-based lenses to code the measurement axis chromatically. However, such an approach is limiting the range of applications. In this paper the performance of refractive, diffractive and Hybrid aspheric diffractive are compared. Hybrid aspheric diffractive lenses combine the low geometric aberration of a diffractive lens with the high optical power of an aspheric lens. Hybrid aspheric diffractive lenses can reduce the number of elements in an imaging system significantly or create large hyper- chromatic lenses for sensing applications. In addition, diffractive lenses can improve the resolution and the dynamic range of a chromatic confocal microscope. However, to be suitable for commercial applications, the diffractive optical power must be significant. Therefore, manufacturing such lenses is a challenge. We show in this paper how a theoretical manufacturing model can demonstrate that the hybrid aspheric diffractive configuration with the best performances is achieved by step diffractive surface. The high optical quality of step diffractive surface is then demonstrated experimentally. Publisher's Note: This paper, originally published on 5/10/14, was replaced with a corrected/revised version on 5/19/14. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  18. Diffraction-based optical correlator

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan M. (Inventor); Fuhr, Peter L. (Inventor); Schipper, John F. (Inventor)

    2005-01-01

    Method and system for wavelength-based processing of a light beam. A light beam, produced at a chemical or physical reaction site and having at least first and second wavelengths, ?1 and ?2, is received and diffracted at a first diffraction grating to provide first and second diffracted beams, which are received and analyzed in terms of wavelength and/or time at two spaced apart light detectors. In a second embodiment, light from first and second sources is diffracted and compared in terms of wavelength and/or time to determine if the two beams arise from the same source. In a third embodiment, a light beam is split and diffracted and passed through first and second environments to study differential effects. In a fourth embodiment, diffracted light beam components, having first and second wavelengths, are received sequentially at a reaction site to determine whether a specified reaction is promoted, based on order of receipt of the beams. In a fifth embodiment, a cylindrically shaped diffraction grating (uniform or chirped) is rotated and translated to provide a sequence of diffracted beams with different wavelengths. In a sixth embodiment, incident light, representing one or more symbols, is successively diffracted from first and second diffraction gratings and is received at different light detectors, depending upon the wavelengths present in the incident light.

  19. Metagratings for Diffraction Based, Compact, Holographic Imaging

    NASA Astrophysics Data System (ADS)

    Inampudi, Sandeep; Podolskiy, Viktor; Multiscale Electromagnetics Group Team

    2013-03-01

    Recent developments in semiconductor technology brought to life a new generation of highly-compact visible-frequency cameras. Unfortunately, straight forward extension of this progress to low-frequency domains (such as mid-IR imaging) is impossible since the pixel size at these frequencies is limited by free-space diffraction limit. Here we present an approach to realize highly-compact imaging systems at lower frequencies. Our approach takes advantage of high refractive index of materials commonly utilized in semiconductor detectors of mid-IR radiation, accompanied by metagratings, structures with engineered diffraction properties, to achieve a 10-fold reduction in the pixel size. In contrast to conventional refraction-based imaging, the approach essentially produces a digital hologram - a 2D projection of the 3D optical field, enabling a post-imaging ``refocusing'' of the picture. The perspectives of numerical recovery of the optical field and the stability of such recovery are discussed.

  20. Continuous energy diffraction spectroscopy: A new d-space matching technique for energy dispersive synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Lee, P. L.; Beno, M. A.; Knapp, G. S.; Jennings, G.

    1994-07-01

    In this article, a new technique, continuous energy diffraction spectroscopy (CEDS) is described, for diffraction experiments using a synchrotron energy dispersive polychromatic beamline. This type of beamline uses a curved crystal monochromator (polychromator) to focus a range of x-ray energies (bandwidth ˜1 keV) into a narrow (100-120 μm) line image. With a sample at this image point, using an 2D detector, we are able to measure diffracted intensities for the entire energy range of the incident beam simultaneously with limited or no motion of the sample. This method allows the collection of anomalous scattering and diffraction anomalous fine structure (DAFS) data faster and more accurately than with conventional methods. Because of the speed with which these types of diffraction experiments can be done, this method creates new options for time resolved diffraction experiments and provides new data collection strategies.

  1. Detonation diffraction in gases

    SciTech Connect

    Pintgen, F.; Shepherd, J.E.

    2009-03-15

    We have experimentally investigated detonation diffraction out of a round tube into an unconfined half-space. The focus of our study is examining how the extent of detonation cellular instability influences the quantitative and qualitative features of diffraction. Detailed quantitative and qualitative measurements were obtained through simultaneous schlieren imaging, multiple-exposure chemiluminescence imaging, and planar laser-induced fluorescence imaging of OH molecules. Two types of stoichiometric mixtures, highly diluted H{sub 2}-O{sub 2}-Ar and H{sub 2}-N{sub 2}O, were studied in the sub-critical, critical and super-critical regime. These mixture types represent extreme cases in the classification of cellular instability with highly diluted H{sub 2}-O{sub 2}-Ar mixtures having very regular instability structures and H{sub 2}-N{sub 2}O having very irregular instability structures. The most striking differences between the mixtures occur in the sub-critical and critical regimes, for which the detonation fails to transition into the unconfined half-space. For the H{sub 2}-O{sub 2}-Ar mixture, the velocity on the center line was found to decay significantly slower than for the H{sub 2}-N{sub 2}O mixture. In case of the H{sub 2}-O{sub 2}-Ar mixture, it was evident from simultaneous schlieren-fluorescence images that the reaction front was coupled to the lead shock front up to 2.3 tube diameters from the exit plane. For the H{sub 2}-N{sub 2}O mixture, the reaction front velocity decreased to 60% of the corresponding Chapman-Jouguet value at 1.1 tube diameters from the tube exit plane. A geometric acoustic model showed that the observed differences in failure patterns are not caused by the differences in thermodynamic properties of the two mixtures but is linked to the larger effective activation energy and critical decay time in the H{sub 2}-N{sub 2}O mixture as compared to the H{sub 2}-O{sub 2}-Ar mixture. The re-initiation events appear similar for the two

  2. Numerical focusing in diffraction phase microscopy

    NASA Astrophysics Data System (ADS)

    Talaikova, N. A.; Grebenyuk, A. A.; Kalyanov, A. L.; Ryabukho, V. P.

    2016-04-01

    Diffraction phase microscopy (DPM) provides the possibility of high-resolution quantitative phase imaging, based on equipment of an optical microscope with a special module working in a common-path off-axis configuration. As an optical microscopy technique, DPM has a limited focus depth, which is the smaller the higher is the objective's numerical aperture. In this paper we present the results of experimental investigation of numerical focusing with the angular spectrum method in DPM.

  3. Integrated Diffractive Optics for Surface Ion Traps

    NASA Astrophysics Data System (ADS)

    Streed, Erik; Ghadimi, Moji; Blums, Valdis; Norton, Benjamin; Connor, Paul; Amini, Jason; Volin, Curtis; Lobino, Mirko; Kielpinski, David

    2016-05-01

    Photonic interconnects are a bottleneck to achieving large-scale trapped ion quantum computing. We have modified a Georgia Tech Research Institute microwave chip trap by using e-beam lithography to write reflective diffractive collimating optics (80 μm x 127 μm, f=58.6 μm, λ=369.5nm) on the center electrode. The optics have an NA of 0.55 x 0.73, capturing 13.2% of the solid angle. To evaluate the optics 174Yb+ was loaded by isotope selective photo-ionization from a thermal oven and then shuttled to imaging sites. Near diffraction limited sub-wavelength ion images were obtained with an observed spot sized FWHM of 338 nm x 268 nm vs. a diffraction limit of 336 nm x 257 nm. The total photon collection efficiency was measured to be 5.2+/-1.2%. Coupling into a single mode fiber of up to 2.0+/-0.6% was observed, limited by mismatch in the coupling optics. Image mode quality indicates coupling up to 4% may be possible. Funding from Australian Research Council and IARPA.

  4. Study of optical Laue diffraction

    SciTech Connect

    Chakravarthy, Giridhar E-mail: aloksharan@email.com; Allam, Srinivasa Rao E-mail: aloksharan@email.com; Satyanarayana, S. V. M. E-mail: aloksharan@email.com; Sharan, Alok E-mail: aloksharan@email.com

    2014-10-15

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  5. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.

    1998-01-01

    An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).

  6. Recent CMS results on diffraction

    NASA Astrophysics Data System (ADS)

    Benoît, Roland

    2015-03-01

    Recent CMS results on diffraction are presented. These include the measurements of the soft diffractive cross sections, of the forward rapidity gap cross section, of the diffractive dijet cross section, the measurement of a large rapidity gap in W and Z boson events and the measurement of the pseudorapidity distribution of charged particles in a single diffractive enhanced sample. This last measurement is the first common result of the CMS and TOTEM collaborations. Some prospects of common CMS-TOTEM data taking are also discussed.

  7. Digital electron diffraction – seeing the whole picture

    SciTech Connect

    Beanland, Richard; Thomas, Paul J.; Woodward, David I.; Thomas, Pamela A.; Roemer, Rudolf A.

    2013-07-01

    Computer control of beam tilt and image capture allows the collection of electron diffraction patterns over a large angular range, without any overlap in diffraction data and from a region limited only by the size of the electron beam. This results in a significant improvement in data volumes and ease of interpretation. The advantages of convergent-beam electron diffraction for symmetry determination at the scale of a few nm are well known. In practice, the approach is often limited due to the restriction on the angular range of the electron beam imposed by the small Bragg angle for high-energy electron diffraction, i.e. a large convergence angle of the incident beam results in overlapping information in the diffraction pattern. Techniques have been generally available since the 1980s which overcome this restriction for individual diffracted beams, by making a compromise between illuminated area and beam convergence. Here a simple technique is described which overcomes all of these problems using computer control, giving electron diffraction data over a large angular range for many diffracted beams from the volume given by a focused electron beam (typically a few nm or less). The increase in the amount of information significantly improves the ease of interpretation and widens the applicability of the technique, particularly for thin materials or those with larger lattice parameters.

  8. Diffraction contrast imaging using virtual apertures.

    PubMed

    Gammer, Christoph; Burak Ozdol, V; Liebscher, Christian H; Minor, Andrew M

    2015-08-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. PMID:25840371

  9. Diffraction limited operation with ARGOS: a hybrid AO system

    NASA Astrophysics Data System (ADS)

    Bonaglia, M.; Busoni, L.; Quirós-Pacheco, F.; Esposito, S.

    2010-07-01

    ARGOS, the Laser Guide Star (LGS) facility of the Large Binocular Telescope (LBT), implements a Ground Layer Adaptive Optics (GLAO) system, using 3 low-altitude beacons, to improve the resolution over the 4'×4' FoV of the imager and Multi Object Spectrograph (MOS) LUCIFER. In this paper we discuss the performance and the reconstruction scheme of an hybrid AO system using the ARGOS Rayleigh beacons complemented with a single faint high-altitude star (NGS or sodium beacon) to sense the turbulence of the upper atmosphere allowing an high degree of on-axis correction. With the ARGOS system, the NGS-upgrade can be immediately implemented at LBT using the already existing Pyramid WFS offering performance similar to the NGS AO system with the advantage of a larger sky coverage.

  10. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit

    NASA Astrophysics Data System (ADS)

    Centrone, Andrea

    2015-07-01

    Progress in nanotechnology is enabled by and dependent on the availability of measurement methods with spatial resolution commensurate with nanomaterials' length scales. Chemical imaging techniques, such as scattering scanning near-field optical microscopy (s-SNOM) and photothermal-induced resonance (PTIR), have provided scientists with means of extracting rich chemical and structural information with nanoscale resolution. This review presents some basics of infrared spectroscopy and microscopy, followed by detailed descriptions of s-SNOM and PTIR working principles. Nanoscale spectra are compared with far-field macroscale spectra, which are widely used for chemical identification. Selected examples illustrate either technical aspects of the measurements or applications in materials science. Central to this review is the ability to record nanoscale infrared spectra because, although chemical maps enable immediate visualization, the spectra provide information to interpret the images and characterize the sample. The growing breadth of nanomaterials and biological applications suggest rapid growth for this field.

  11. Results on diffraction at CDF

    SciTech Connect

    Wyatt, A.

    2003-10-27

    In run I CDF made an extensive range of measurements studying diffractive processes. In run II these measurements can be extended using improved triggering, new detectors and larger data samples. In these proceedings run II measurements of single diffractive dijet production and double pomeron exchange production of dijets are presented.

  12. Computer Simulation of Diffraction Patterns.

    ERIC Educational Resources Information Center

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  13. Highly transparent and flexible bio-based polyimide/TiO2 and ZrO2 hybrid films with tunable refractive index, Abbe number, and memory properties

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Tien; Tsai, Chia-Liang; Tateyama, Seiji; Kaneko, Tatsuo; Liou, Guey-Sheng

    2016-06-01

    The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system, the hybrid materials have a lower LUMO energy level which could facilitate and stabilize the charge transfer complex. Therefore, memory devices derived from these PI hybrid films exhibited tunable memory properties from DRAM, SRAM, to WORM with a different TiO2 or ZrO2 content from 0 wt% to 50 wt% with a high ON/OFF ratio (108). In addition, the different energy levels of TiO2 and ZrO2 revealed specifically unique memory characteristics, implying the potential application of the prepared 4ATA-PI/TiO2 and 4ATA-PI/ZrO2 hybrid films in highly transparent memory devices.The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system

  14. Highly transparent and flexible bio-based polyimide/TiO2 and ZrO2 hybrid films with tunable refractive index, Abbe number, and memory properties.

    PubMed

    Huang, Tzu-Tien; Tsai, Chia-Liang; Tateyama, Seiji; Kaneko, Tatsuo; Liou, Guey-Sheng

    2016-07-01

    The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system, the hybrid materials have a lower LUMO energy level which could facilitate and stabilize the charge transfer complex. Therefore, memory devices derived from these PI hybrid films exhibited tunable memory properties from DRAM, SRAM, to WORM with a different TiO2 or ZrO2 content from 0 wt% to 50 wt% with a high ON/OFF ratio (10(8)). In addition, the different energy levels of TiO2 and ZrO2 revealed specifically unique memory characteristics, implying the potential application of the prepared 4ATA-PI/TiO2 and 4ATA-PI/ZrO2 hybrid films in highly transparent memory devices. PMID:27297905

  15. Diffractive interference optical analyzer (DiOPTER)

    NASA Astrophysics Data System (ADS)

    Sasikumar, Harish; Prasad, Vishnu; Pal, Parama; Varma, Manoj M.

    2016-03-01

    This report demonstrates a method for high-resolution refractometric measurements using, what we have termed as, a Diffractive Interference Optical Analyzer (DiOpter). The setup consists of a laser, polarizer, a transparent diffraction grating and Si-photodetectors. The sensor is based on the differential response of diffracted orders to bulk refractive index changes. In these setups, the differential read-out of the diffracted orders suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6x10-7 RIU was achieved in glass. This work focuses on devices with integrated sample well, made on low-cost PDMS. As the detection methodology is experimentally straightforward, it can be used across a wide array of applications, ranging from detecting changes in surface adsorbates via binding reactions to estimating refractive index (and hence concentration) variations in bulk samples. An exciting prospect of this technique is the potential integration of this device to smartphones using a simple interface based on transmission mode configuration. In a transmission configuration, we were able to achieve an LoD of 4x10-4 RIU which is sufficient to explore several applications in food quality testing and related fields. We are envisioning the future of this platform as a personal handheld optical analyzer for applications ranging from environmental sensing to healthcare and quality testing of food products.

  16. High-Resolution Atom Interferometers with Suppressed Diffraction Phases.

    PubMed

    Estey, Brian; Yu, Chenghui; Müller, Holger; Kuan, Pei-Chen; Lan, Shau-Yu

    2015-08-21

    We experimentally and theoretically study the diffraction phase of large-momentum transfer beam splitters in atom interferometers based on Bragg diffraction. We null the diffraction phase and increase the sensitivity of the interferometer by combining Bragg diffraction with Bloch oscillations. We demonstrate agreement between experiment and theory, and a 1500-fold reduction of the diffraction phase, limited by measurement noise. In addition to reduced systematic effects, our interferometer has high contrast with up to 4.4×10(6) radians of phase difference, and a resolution in the fine structure constant of δα/α=0.25  ppb in 25 h of integration time. PMID:26340186

  17. Design of infrared diffractive telescope imaging optical systems

    NASA Astrophysics Data System (ADS)

    Zhang, ZhouFeng; Hu, BingLiang; Yin, QinYe; Xie, YongJun; Kang, FuZeng; Wang, YanJun

    2015-10-01

    Diffractive telescope is an updated imaging technology, it differs from conventional refractive and reflective imaging system, which is based on the principle of diffraction image. It has great potential for developing the larger aperture and lightweight telescope. However, one of the great challenges of design this optical system is that the diffractive optical element focuses on different wavelengths of light at different point in space, thereby distorting the color characteristics of image. In this paper, we designs a long-wavelength infrared diffractive telescope imaging system with flat surface Fresnel lens and cancels the infrared optical system chromatic aberration by another flat surface Fresnel lens, achieving broadband light(from 8μm-12μm) to a common focus with 4.6° field of view. At last, the diffuse spot size and MTF function provide diffractive-limited performance.

  18. Electromagnetic diffraction efficiencies for plane reflection diffraction gratings

    NASA Technical Reports Server (NTRS)

    Marathay, A. S.; Shrode, T. E.

    1973-01-01

    Results are presented of research activities on holographic grating research. A large portion of this work was performed using rigorous vector diffraction theory, therefore, the necessary theory has been included in this report. The diffraction efficiency studies were continued using programs based on a rigorous theory. The simultaneous occurrence of high diffraction efficiencies and the phenomenon of double Wood's anomalies is demonstrated along with a graphic method for determining the necessary grating parameters. Also, an analytical solution for a grating profile that is perfectly blazed is obtained. The performance of the perfectly blazed grating profile is shown to be significantly better than grating profiles previously studied. Finally, a proposed method is described for the analysis of coarse echelle gratings using rigorous vector diffraction that is currently being developed.

  19. Diffraction dissociation at the LHC

    NASA Astrophysics Data System (ADS)

    Jenkovszky, László; Orava, Risto; Salii, Andrii

    2013-04-01

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  20. Diffraction dissociation at the LHC

    SciTech Connect

    Jenkovszky, Laszlo; Orava, Risto; Salii, Andrii

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  1. Diffraction techniques in engineering applications

    SciTech Connect

    Kozarczek, K.J.; Hubbard, C.R.; Watkins, T.R.; Wang, X.L.; Spooner, S.

    1995-12-31

    Diffraction techniques applied to crystalline materials provide quantitative information about the crystallographic structure and mechanical condition of the material. Those two characteristics influence the chemical, physical, and mechanical properties of a Component. A concerted application of x-ray and neutron diffraction allows one to comprehensively study the bulk and subsurface variations of such material characteristics as crystallographic texture, residual stress, and cold work. The Residual Stress User Center at the Oak Ridge National Laboratory offers academic and industrial researchers both neutron and x-ray diffraction capabilities. Recent examples of the application of work related to thin film, metal, ceramic and composite material technologies are presented.

  2. Recovering magnetization distributions from their noisy diffraction data

    SciTech Connect

    Loh, Ne-Te Duane; Eisebitt, Stefan; Flewett, Samuel; Elser, Veit

    2010-12-15

    We study, using simulated experiments inspired by thin-film magnetic domain patterns, the feasibility of phase retrieval in x-ray diffractive imaging in the presence of intrinsic charge scattering given only photon-shot-noise limited diffraction data. We detail a reconstruction algorithm to recover the sample's magnetization distribution under such conditions and compare its performance with that of Fourier transform holography. Concerning the design of future experiments, we also chart out the reconstruction limits of diffractive imaging when photon-shot-noise and the intensity of charge scattering noise are independently varied. This work is directly relevant to the time-resolved imaging of magnetic dynamics using coherent and ultrafast radiation from x-ray free-electron lasers and also to broader classes of diffractive imaging experiments which suffer noisy data, missing data, or both.

  3. Pulse requirements for electron diffraction imaging of single biological molecules

    SciTech Connect

    Hau-Riege, S; London, R; Chapman, H

    2004-10-20

    The pulse requirements for electron diffraction imaging of single biological molecules are calculated. We find that the electron fluence and pulse length requirements imposed by the damage limit and by the need to classify the diffraction patterns according to their angular orientation cannot be achieved with today's electron beam technology. A simple analytical model shows that the pulse requirements cannot be achieved due to beam broadening due to spacecharge effects.

  4. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  5. Femtosecond single-electron diffraction

    PubMed Central

    Lahme, S.; Kealhofer, C.; Krausz, F.; Baum, P.

    2014-01-01

    Ultrafast electron diffraction allows the tracking of atomic motion in real time, but space charge effects within dense electron packets are a problem for temporal resolution. Here, we report on time-resolved pump-probe diffraction using femtosecond single-electron pulses that are free from intra-pulse Coulomb interactions over the entire trajectory from the source to the detector. Sufficient average electron current is achieved at repetition rates of hundreds of kHz. Thermal load on the sample is avoided by minimizing the pump-probe area and by maximizing heat diffusion. Time-resolved diffraction from fibrous graphite polycrystals reveals coherent acoustic phonons in a nanometer-thick grain ensemble with a signal-to-noise level comparable to conventional multi-electron experiments. These results demonstrate the feasibility of pump-probe diffraction in the single-electron regime, where simulations indicate compressibility of the pulses down to few-femtosecond and attosecond duration. PMID:26798778

  6. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.

    1998-05-26

    An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.

  7. Diffraction by random Ronchi gratings.

    PubMed

    Torcal-Milla, Francisco Jose; Sanchez-Brea, Luis Miguel

    2016-08-01

    In this work, we obtain analytical expressions for the near-and far-field diffraction of random Ronchi diffraction gratings where the slits of the grating are randomly displaced around their periodical positions. We theoretically show that the effect of randomness in the position of the slits of the grating produces a decrease of the contrast and even disappearance of the self-images for high randomness level at the near field. On the other hand, it cancels high-order harmonics in far field, resulting in only a few central diffraction orders. Numerical simulations by means of the Rayleigh-Sommerfeld diffraction formula are performed in order to corroborate the analytical results. These results are of interest for industrial and technological applications where manufacture errors need to be considered. PMID:27505363

  8. Fresnel diffraction by spherical obstacles

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.

  9. Diffractive dijet production in CDF

    SciTech Connect

    Albrow, M.G.; CDF Collaboration

    1998-04-17

    We have studied events with a high-x{sub F} antiproton and two central jets in CDF, with p{anti p} collisions at {radical}s = 630 and 1800 GeV. These events are expected to be dominated by diffraction (pomeron exchange). The jet E{sub T} spectra are very similar to those of non-diffractively produced jets but slightly steeper; their azimuthal difference {Delta}{phi} is more peaked at 180{degree}.

  10. New CDF results on diffraction

    SciTech Connect

    Mesropian, Christina; /Rockefeller U.

    2006-12-01

    We report new diffraction results obtained by the CDF collaboration in proton-antiproton collisions at the Fermilab Tevatron collider at {radical}s=1.96 TeV. The first experimental evidence of exclusive dijet and diphoton production is presented. The exclusive results are discussed in context of the exclusive Higgs production at LHC. We also present the measurement of the Q{sup 2} and t dependence of the diffractive structure function.

  11. Atomic Resolution Coherent Diffractive Imaging and Ultrafast Science

    SciTech Connect

    Zuo, Jian-min

    2011-01-12

    A major scientific challenge is determining the 3-D atomic structure of small nanostructures, including single molecules. Coherent diffractive imaging (CDI) is a promising approach. Recent progress has demonstrated coherent diffraction patterns can be recorded from individual nanostructures and phased to reconstruct their structure. However, overcoming the dose limit imposed by radiation damage is a major obstacle toward the full potential of CDI. One approach is to use ultrafast x-ray or electron pulses. In electron diffraction, amplitudes recorded in a diffraction pattern are unperturbed by lens aberrations, defocus, and other microscope resolution-limiting factors. Sub-A signals are available beyond the information limit of direct imaging. Significant contrast improvement is obtained compared to high-resolution electron micrographs. progress has also been made in developing time-resolved electron diffraction and imaging for the study of ultrafast dynamic processes in materials. This talk will cover these crosscutting issues and the convergence of electron and x-ray diffraction techniques toward structure determination of single molecules.

  12. A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry

    SciTech Connect

    Goldberg, K.A. |; Tejnil, E.; Bokor, J. |

    1995-12-01

    A 3-D electromagnetic field simulation is used to model the propagation of extreme ultraviolet (EUV), 13-nm, light through sub-1500 {Angstrom} dia pinholes in a highly absorptive medium. Deviations of the diffracted wavefront phase from an ideal sphere are studied within 0.1 numerical aperture, to predict the accuracy of EUV point diffraction interferometersused in at-wavelength testing of nearly diffraction-limited EUV optical systems. Aberration magnitudes are studied for various 3-D pinhole models, including cylindrical and conical pinhole bores.

  13. Diffraction efficiency analysis for multi-level diffractive optical elements

    SciTech Connect

    Erteza, I.A.

    1995-11-01

    Passive optical components can be broken down into two main groups: Refractive elements and diffractive elements. With recent advances in manufacturing technologies, diffractive optical elements are becoming increasingly more prevalent in optical systems. It is therefore important to be able to understand and model the behavior of these elements. In this report, we present a thorough analysis of a completely general diffractive optical element (DOE). The main goal of the analysis is to understand the diffraction efficiency and power distribution of the various modes affected by the DOE. This is critical to understanding cross talk and power issues when these elements are used in actual systems. As mentioned, the model is based on a completely general scenario for a DOE. This allows the user to specify the details to model a wide variety of diffractive elements. The analysis is implemented straightforwardly in Mathematica. This report includes the development of the analysis, the Mathematica implementation of the model and several examples using the Mathematical analysis tool. It is intended that this tool be a building block for more specialized analyses.

  14. Enhanced high-speed coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Potier, Jonathan; Fricker, Sebastien; Idir, Mourad

    2011-03-01

    Due to recent advances in X-ray microscopy, we are now able to image objects with nanometer resolution thanks to Synchrotron beam lines or Free Electron Lasers (FEL). The PCI (Phase Contrast Imaging) is a robust technique that can recover the wavefront from measurements of only few intensity pictures in the Fresnel diffraction region. With our fast straightforward calculus methods, we manage to provide the phase induced by a microscopic specimen in few seconds. We can therefore obtain high contrasted images from transparent materials at very small scales. To reach atomic resolution imaging and thus make a transition from the near to the far field, the Coherent Diffraction Imaging (CDI) technique finds its roots in the analysis of diffraction patterns to obtain the phase of the altered complex wave. Theoretical results about existence and uniqueness of this retrieved piece of information by both iterative and direct algorithms have already been released. However, performances of algorithms remain limited by the coherence of the X-ray beam, presence of random noise and the saturation threshold of the detector. We will present reconstructions of samples using an enhanced version of HIO algorithm improving the speed of convergence and its repeatability. As a first step toward a practical X-Ray CDI system, initial images for reconstructions are acquired with the laser-based CDI system working in the visible spectrum.

  15. Scalar wave diffraction from a circular aperture

    SciTech Connect

    Cerjan, C.

    1995-01-25

    The scalar wave theory is used to evaluate the expected diffraction patterns from a circular aperture. The standard far-field Kirchhoff approximation is compared to the exact result expressed in terms of oblate spheroidal harmonics. Deviations from an expanding spherical wave are calculated for circular aperture radius and the incident beam wavelength using suggested values for a recently proposed point diffractin interferometer. The Kirchhoff approximation is increasingly reliable in the far-field limit as the aperture radius is increased, although significant errors in amplitude and phase persist.

  16. Sensitive visual test for concave diffraction gratings.

    NASA Technical Reports Server (NTRS)

    Bruner, E. C., Jr.

    1972-01-01

    A simple visual test for the evaluation of concave diffraction gratings is described. It is twice as sensitive as the Foucault knife edge test, from which it is derived, and has the advantage that the images are straight and free of astigmatism. It is particularly useful for grating with high ruling frequency where the above image faults limit the utility of the Foucault test. The test can be interpreted quantitatively and can detect zonal grating space errors of as little as 0.1 A.

  17. Diffraction described by virtual particle momentum exchange: the "diffraction force"

    NASA Astrophysics Data System (ADS)

    Mobley, Michael J.

    2011-09-01

    Particle diffraction can be described by an ensemble of particle paths determined through a Fourier analysis of a scattering lattice where the momentum exchange probabilities are defined at the location of scattering, not the point of detection. This description is compatible with optical wave theories and quantum particle models and provides deeper insights to the nature of quantum uncertainty. In this paper the Rayleigh-Sommerfeld and Fresnel-Kirchoff theories are analyzed for diffraction by a narrow slit and a straight edge to demonstrate the dependence of particle scattering on the distance of virtual particle exchange. The quantized momentum exchange is defined by the Heisenberg uncertainty principle and is consistent with the formalism of QED. This exchange of momentum manifests the "diffraction force" that appears to be a universal construct as it applies to neutral and charged particles. This analysis indicates virtual particles might form an exchange channel that bridges the space of momentum exchange.

  18. Secondary diffraction of diffracted Gaussian beam of laser radiation

    NASA Astrophysics Data System (ADS)

    Vasil'Ev, Yu. V.; Kozar', A. V.; Matyunin, A. V.

    2011-10-01

    The diffraction of a narrow Gaussian beam of laser radiation on mutually perpendicular edges of crossed, superimposed sharp wedge-shaped blades (safety razors) has been studied. The diffraction pattern observed on a flat screen behind the blades comprises a very bright central spot, which exhibits the structure of a "light network" with rectangular cells, and four groups of narrow bright bands that expand from the central spot toward the periphery and form a rectangular cross. The spatial frequency of light-field modulation on the screen can be controlled by varying the distance from the blades to screen.

  19. Electromagnetic diffraction efficiencies for plane reflection diffraction gratings

    NASA Technical Reports Server (NTRS)

    Marathay, A. S.; Shrode, T. E.

    1974-01-01

    The theory and computer programs, based on electromagnetic theory, for the analysis and design of echelle gratings were developed. The gratings are designed for instruments that operate in the ultraviolet portion of the spectrum. The theory was developed so that the resulting computer programs will be able to analyze deep (up to 30 wavelengths) gratings by including as many as 100 real or homogeneous diffraction orders. The program calculates the complex amplitude coefficient for each of the diffracted orders. A check on the numerical method used to solve the integral equations is provided by a conservation of energy calculation.

  20. Lensless reflective point diffraction interferometer.

    PubMed

    Zhu, Wenhua; Chen, Lei; Zheng, Donghui; Yang, Ying; Han, Zhigang; Li, Jinpeng

    2016-07-01

    A lensless reflective point diffraction interferometer (LRPDI) is proposed for dynamic wavefront measurement. The point diffraction interferometer is integrated on a small substrate with properly designed thin film, which is used for generating the interferogram with high carrier frequency at a CCD target. By lensless imaging, the complex amplitude at the CCD target can be propagated to the conjugated plane of the exit pupil of an incident wavefront, which not only avoids the edge diffraction in the interferogram, but also eliminates systematic error. The accuracy of LRPDI is demonstrated by simulation and experiment, and a precision better than 1/150 wavelength is achieved. The new design with lensless imaging processing is suitable for dynamic wavefront measurement. PMID:27409204

  1. Electron diffraction by plasmon waves

    NASA Astrophysics Data System (ADS)

    García de Abajo, F. J.; Barwick, B.; Carbone, F.

    2016-07-01

    An electron beam traversing a structured plasmonic field is shown to undergo diffraction with characteristic angular patterns of both elastic and inelastic outgoing electron components. In particular, a plasmonic grating (e.g., a standing wave formed by two counterpropagating plasmons in a thin film) produces diffraction orders of the same parity as the net number of exchanged plasmons. Large diffracted beam fractions are predicted to occur for realistic plasmon intensities in attainable geometries due to a combination of phase and amplitude changes locally imprinted on the passing electron wave. Our study opens vistas in the study of multiphoton exchanges between electron beams and evanescent optical fields with unexplored effects related to the transversal component of the electron wave function.

  2. Angle-resolved diffraction grating biosensor based on porous silicon

    NASA Astrophysics Data System (ADS)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  3. Boundary diffraction wave integrals for diffraction modeling of external occulters.

    PubMed

    Cady, Eric

    2012-07-01

    An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly model these effects. We present a fast method for the calculation of electric fields following an occulter, based on the concept of the boundary diffraction wave: the 2D structure of the occulter is reduced to a 1D edge integral which directly incorporates the occulter shape, and which can be easily adjusted to include changes in occulter position and shape, as well as the effects of sources-such as exoplanets-which arrive off-axis to the occulter. The structure of a typical implementation of the algorithm is included. PMID:22772218

  4. Distributed etched diffraction grating demultiplexer

    NASA Astrophysics Data System (ADS)

    Jafari, Amir

    This doctoral thesis studies the concept of a distributed etched diffraction grating (DEDG) and presents a methodology to engineer the spectral response of the device. The design which incorporates a distributed Bragg reflector (DBR) at the facets of a conventional etched diffraction grating demultiplexer promises for a superior performance in multiple aspects. Where in a conventional etched diffraction grating, smooth vertical deep etched walls are required in order to realize a low insertion loss device; in the DEDG such requirement is significantly mitigated. Deep etched walls are replaced with shallowly etched diffraction grating facets followed by a DBR structure and as a result devices with significantly lower insertion loss are achievable. The feasibility of the application of DEDG as a wavelength demultiplexer was demonstrated through fabrication and characterization of a prototype device. The proof of concept device was fabricated using the state of the art deep UV optical lithography and reactive ion etching in a nano-photonic silicon-on-insulator (SOI) material platform. The fabricated device was then characterized in the lab. Furthermore, incorporation of the DBR structure at the facets of the conventional etched diffraction grating decouples the reflection and diffraction functionalities, rendering the DEDG suitable for spectral response engineering. According to the application, the output spectral response of the device can be tailored through careful design and optimization of the incorporated DBR. In this thesis, through numerical simulations we have shown that functionalities such as polarization independent performance and at top insertion loss envelop are viable. A methodology to engineer the spectral response of the DEDG is discussed in details.

  5. Photoacoustic tomography: Ultrasonically beating optical diffusion and diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Lihong

    2014-03-01

    A decade of research has pushed photoacoustic computed tomography to the forefront of molecular-level imaging, notes SPIE Fellow Lihong Wang (Washington University, St. Louis) in his plenary talk, "Photoacoustic Tomography: Ultrasonically Beating Optical Diffusion and Diffraction." Modern optical microscopy has resolution and diffraction limitations. But noninvasive functional photoacoustic computed tomography has overcome this limit, offering deep penetration with optical contrast and ultrasonic resolution of 1 cm depth or more -- up to 7 cm of penetration in some cases, such as evaluating sentinel lymph nodes for breast cancer staging. This opens up applications in whole body imaging, brain function, oxygen saturation, label-free cell analysis, and noninvasive cancer biopsies.

  6. Neutron diffraction on pulsed sources

    NASA Astrophysics Data System (ADS)

    Aksenov, V. L.; Balagurov, A. M.

    2016-03-01

    The current capabilities of and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades have been mainly the emergence of third-generation pulsed sources with a megawatt time-averaged power and advances in neutron optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method from F L Shapiro, the centennial of whose birth was celebrated in 2015. The state of the art with respect to neutron sources for studies on extracted beams is reviewed in a special section.

  7. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  8. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, Richard J.

    1991-01-01

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection.

  9. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, R.J.

    1991-09-24

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection. 3 figures.

  10. Ellipsometry of diffractive insect reflectors

    NASA Astrophysics Data System (ADS)

    Brink, D. J.; Lee, M. E.

    1996-04-01

    Scales on the wings of certain insects, such as Trichoplusia orichalcea, exhibit a surface microstructure resembling a fine diffraction grating. Diffraction of incident light by this structure is responsible for many of the optical properties of the wings of this moth, such as the metallic yellow color and the almost-specular reflection and polarization properties of the scattered radiation. It is shown that by the use of null ellipsometry the polarization characteristics can be used to obtain the optical constants of the scale material. Theoretical considerations and suitable experimental conditions are discussed and evaluated.

  11. Subwavelength diffractive color beam combiner.

    PubMed

    Petrov, Nikolai I; Nikitin, Vladislav G; Danilov, Viktor A; Popov, Vladimir V; Usievich, Boris A

    2014-09-01

    A high-efficiency subwavelength diffractive beam combiner operating in a visible spectral range is designed, fabricated, and demonstrated. Such a device combines red, green, and blue color beams into one output light beam. Diffraction efficiencies of different types of gratings are calculated for various materials, incidence angles, and polarizations of light. It is shown that the plasmon resonance via a grating coupling occurs at the determined conditions. Subwavelength gratings with a period of 400 nm are fabricated and tested using laser and laser diode sources. PMID:25321371

  12. Diffraction model of a step-out transition

    SciTech Connect

    Chao, A.W.; Zimmermann, F.

    1996-06-01

    The diffraction model of a cavity, suggested by Lawson, Bane and Sands is generalized to a step out transition. Using this model, the high frequency impedance is calculated explicitly for the case that the transition step is small compared with the beam pipe radius. In the diffraction model for a small step out transition, the total energy is conserved, but, unlike the cavity case, the diffracted waves in the geometric shadow and the pipe region, in general, do not always carry equal energy. In the limit of small step sizes, the impedance derived from the diffraction model agrees with that found by Balakin, Novokhatsky and also Kheifets. This impedance can be used to compute the wake field of a round collimator whose half aperture is much larger than the bunch length, as existing in the SLC final focus.

  13. FEMTO SECOND ELECTRON BEAM DIFFRACTION USING A PHOTOCATHODE RF GUN.

    SciTech Connect

    WANG,X.J.WU,Z.IHEE,H.

    2003-05-12

    One of the 21st century scientific frontiers is to explore the molecule structure transition on the femtosecond time scale. X-ray free electron laser (XFEL) is one of the tools now under development for investigating femto-second structure transition. We are proposing an alternative technique--femto-second electron diffraction based on a photocathode RF gun. We will present a design of a kHz femto-seconds electron diffraction system based on a photocathode RF gun. Our simulation shows that, the photocathode RF gun can produce 100 fs (FWHM) electron bunch with millions electrons at about 2 MeV. This is at least one order of magnitude reduction in bunch length, and two orders of magnitude increase in number of electrons comparing to present time-resolved electron diffraction system. We will also discuss various issues and limitations related to MeV electron diffraction.

  14. Fresnel Diffraction for CTR Microbunching

    SciTech Connect

    Tikhoplav, R.; Knyazik, A.; Rosenzweig, J. B.; Andonian, G.

    2009-01-22

    Laser beams of high intensities are routinely used for IFEL experiments. Such beams can potentially destroy microbunching diagnostic tools such as coherent transition radiation foils due to their low damage thresholds. Near-field Fresnel diffraction scheme for termination of CO{sub 2} laser beam has been experimentally studied and is presented in this paper. Novel THz camera was utilized for such study.

  15. Digital diffractive optics: Have diffractive optics entered mainstream industry yet?

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Hejmadi, Vic

    2010-05-01

    When a new technology is integrated into industry commodity products and consumer electronic devices, and sold worldwide in retail stores, it is usually understood that this technology has then entered the realm of mainstream technology and therefore mainstream industry. Such a leap however does not come cheap, as it has a double edge sword effect: first it becomes democratized and thus massively developed by numerous companies for various applications, but also it becomes a commodity, and thus gets under tremendous pressure to cut down its production and integration costs while not sacrificing to performance. We will show, based on numerous examples extracted from recent industry history, that the field of Diffractive Optics is about to undergo such a major transformation. Such a move has many impacts on all facets of digital diffractive optics technology, from the optical design houses to the micro-optics foundries (for both mastering and volume replication), to the final product integrators or contract manufacturers. The main causes of such a transformation are, as they have been for many other technologies in industry, successive technological bubbles which have carried and lifted up diffractive optics technology within the last decades. These various technological bubbles have been triggered either by real industry needs or by virtual investment hype. Both of these causes will be discussed in the paper. The adjective ""digital"" in "digital diffractive optics" does not refer only, as it is done in digital electronics, to the digital functionality of the element (digital signal processing), but rather to the digital way they are designed (by a digital computer) and fabricated (as wafer level optics using digital masking techniques). However, we can still trace a very strong similarity between the emergence of micro-electronics from analog electronics half a century ago, and the emergence of digital optics from conventional optics today.

  16. Teaching Diffraction with Hands-On Optical Spectrometry

    ERIC Educational Resources Information Center

    Fischer, Robert

    2012-01-01

    Although the observation of optical spectra is common practice in physics classes, students are usually limited to a passive, qualitative observation of nice colours. This paper discusses a diffraction-based spectrometer that allows students to take quantitative measurements of spectral bands. Students can build it within minutes from generic…

  17. Photon diffractive dissociation in deep-inelastic scattering

    SciTech Connect

    Levin, E. ); Wuesthoff, M. )

    1994-10-01

    This paper is mainly devoted to the presentation and discussion of formulas for the cross section of photon diffractive dissociation. The calculations which we present in a very detailed way are based on perturbative QCD. We improve formulas which describe this process in the triple Regge limit where the square of the missing mass [ital M][sub [ital X

  18. Diffraction Analysis of Solar Coronagraphs

    NASA Astrophysics Data System (ADS)

    Rabin, Douglas M.; gong, qian

    2016-05-01

    The design of a solar coronagraph is predicated on controlling diffracted and scattered light using principles dating back to Bernard Lyot in the 1930’s. The existence of many successful ground- and space-based coronagraphs testifies to our ability to apply these principles in specific cases, but it is difficult to explore a significant range of design parameters because the calculations are tricky and time-consuming. Indeed, scattered light is so design-specific that ad hoc analysis is unavoidable once guidelines from experience are used to create a first-guess system of baffles and low-scatter surfaces. Here we describe a combination of analytic and computational approaches that has the potential to explore coronagraph design space somewhat more systematically with respect to diffracted light.

  19. Diffraction operators in paraxial approach

    NASA Astrophysics Data System (ADS)

    Lasso, William; Navas, Marianela; Añez, Liz; Urdaneta, Romer; Díaz, Leonardo; Torres, César O.

    2014-07-01

    Nowadays, research in the field of science education points to the creation of alternative ways of teaching contents encouraging the development of more elaborate reasoning, where a high degree of abstraction and generalization of scientific knowledge prevails. On that subject, this research shows a didactic alternative proposal for the construction of Fresnel and Fraunhoffer diffraction concepts applying the Fourier transform technique in the study of electromagnetic waves propagation in free space. Curvature transparency and Fourier sphere operators in paraxial approximation are used in order to make the usual laborious mathematical approach easier. The main result shows that the composition of optic metaxial operators results in the discovery of a simpler way out of the standard electromagnetic wave propagation in free space between a transmitter and a receptor separated from a given distance. This allows to state that the didactic proposal shown encourages the construction of Fresnel and Fraunhoffer diffraction concepts in a more effective and easier way than the traditional teaching.

  20. Ultra-broadband achromatic imaging with diffractive photon sieves

    PubMed Central

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-01-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element. PMID:27328713

  1. Ultra-broadband achromatic imaging with diffractive photon sieves.

    PubMed

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-01-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element. PMID:27328713

  2. Diffraction gratings for lighting applications

    NASA Astrophysics Data System (ADS)

    Cornelissen, Hugo J.; de Boer, Dick K. G.; Tukker, Teus

    2013-09-01

    Sub-micron diffraction gratings have been used for two LED illumination applications. One is to create a transparent see through luminaire which can be used to illuminate and read a paper document or e-book. A second is a light sensor that can be used in a feedback loop to control a multicolor LED lamp. Optical design and experimental proof-of-principle are presented.

  3. Industrial applications of neutron diffraction

    SciTech Connect

    Felcher, G.P.

    1989-01-01

    Neutron diffraction (or, to be more general, neutron scattering) is a most versatile and universal tool, which has been widely employed to probe the structure, the dynamics and the magnetism of condensed matter. Traditionally used for fundamental research in solid state physics, this technique more recently has been applied to problems of immediate industrial interest, as illustrated in examples covering the main fields of endeavour. 14 refs., 14 figs.

  4. Diffraction techniques in structural biology.

    PubMed

    Egli, Martin

    2010-06-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:20517991

  5. Diffraction Techniques in Structural Biology.

    PubMed

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last twenty years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. © 2016 by John Wiley & Sons, Inc. PMID:27248784

  6. Vorticity production in shock diffraction

    NASA Astrophysics Data System (ADS)

    Sun, M.; Takayama, K.

    2003-03-01

    The production of vorticity or circulation production in shock wave diffraction over sharp convex corners has been numerically simulated and quantified. The corner angle is varied from 5° to 180°. Total vorticity is represented by the circulation, which is evaluated by integrating the velocity along a path enclosing the perturbed region behind a diffracting shock wave. The increase of circulation in unit time, or the rate of circulation production, depends on the shock strength and wall angle if the effects of viscosity and heat conductivity are neglected. The rate of vorticity production is determined by using a solution-adaptive code, which solves the Euler equations. It is shown that the rate of vorticity production is independent of the computational mesh and numerical scheme by comparing solutions from two different codes. It is found that larger wall angles always enhance the vorticity production. The vorticity production increases sharply when the corner angle is varied from 15° to 45°. However, for corner angles over 90°, the rate of vorticity production hardly increases and reaches to a constant value. Strong shock waves produce vorticity faster in general, except when the slipstream originating from the shallow corner attaches to the downstream wall. It is found that the vorticity produced by the slipstream represents a large proportion of the total vorticity. The slipstream is therefore a more important source of vorticity than baroclinic effects in shock diffraction.

  7. Liquid crystal filled diffraction gratings

    NASA Astrophysics Data System (ADS)

    Jepsen, Mary Lou

    1997-12-01

    Liquid crystal technology is becoming increasingly important for flat displays in electronics, computers and TV. Most liquid crystal displays currently made have as their basic unit, two flat surfaces each coated with a transparent, conductive layer, between which a thin layer of liquid crystals is sandwiched. The work detailed in this dissertation is based on a modification of the basic liquid crystal unit and studies the properties of structures which consist of certain anisotropic liquid crystals confined between a flat substrate and a corrugated one, each substrate being transparent and having a thin trans-parent conductive coating. Without an applied electric field, the refractive indices of the liquid crystal and corrugated substrate do not match, and thus strong diffraction occurs. When an electric field is applied to the device, the liquid crystals are re-oriented so that the refractive indices now match, and the device behaves as a uniform slab of homogeneous material producing no diffraction. Rigorous coupled wave analysis was developed to design the ideal devices and analyze the performance of our experimental ones. 99% diffraction efficiencies in single wavelength polarized illumination are shown to be possible with this class of devices. The best device we fabricated showed a 62% distraction efficiency, as our fabrication process roughened the top surface of the device so that (≃30%) of the incident light was lost to scatter. Several new fabrication processes are proposed to eliminate this scatter problem, and that details of fabrication processes thus far attempted are outlined.

  8. Submicron X-ray diffraction

    SciTech Connect

    MacDowell, Alastair; Celestre, Richard; Tamura, Nobumichi; Spolenak, Ralph; Valek, Bryan; Brown, Walter; Bravman, John; Padmore, Howard; Batterman, Boris; Patel, Jamshed

    2000-08-17

    At the Advanced Light Source in Berkeley the authors have instrumented a beam line that is devoted exclusively to x-ray micro diffraction problems. By micro diffraction they mean those classes of problems in Physics and Materials Science that require x-ray beam sizes in the sub-micron range. The instrument is for instance, capable of probing a sub-micron size volume inside micron sized aluminum metal grains buried under a silicon dioxide insulating layer. The resulting Laue pattern is collected on a large area CCD detector and automatically indexed to yield the grain orientation and deviatoric (distortional) strain tensor of this sub-micron volume. A four-crystal monochromator is then inserted into the beam, which allows monochromatic light to illuminate the same part of the sample. Measurement of diffracted photon energy allows for the determination of d spacings. The combination of white and monochromatic beam measurements allow for the determination of the total strain/stress tensor (6 components) inside each sub-micron sized illuminated volume of the sample.

  9. Diffraction Techniques in Structural Biology

    PubMed Central

    Egli, Martin

    2010-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy and neutron diffraction are well established and have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches and high-speed computing and visualization, now provide specialists and non-specialists alike with a steady flow of molecular images of unprecedented detail. The present chapter combines a general overview of diffraction methods with a step-by-step description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:20517991

  10. Growing Larger Crystals for Neutron Diffraction

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    2003-01-01

    Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.

  11. LED color mixing with diffractive structures

    NASA Astrophysics Data System (ADS)

    Bonenberger, Theresa; Baumgart, Jörg; Wendel, Simon; Neumann, Cornelius

    2013-03-01

    Lighting solutions with colored LEDs provide many opportunities for illumination. One of these opportunities is to create a color tunable light source. In this way different kinds of white light (color temperature) as well as discrete colors may be realized. This opens the field for applications as mood lighting. But there is always a spatial separation of the distinct LEDs that might get converted into an angular separation by any collimating optics. This angular separation causes such problems like color fringes and colored shadows that cannot be accepted in most applications. Conventional methods to solve these problems include e.g. mixing rods or dichroic filters. A new approach is the use of the dispersive effect of a diffractive structure to compensate the angular separation of the different colors. In this contribution the potential and limitations of diffractive structures in LED color mixing applications are discussed. Ray tracing simulations were performed to analyze such important parameters like efficiency, color performance and the cross section of the color mixing optics. New means for the estimation of color mixing performance were developed. A software tool makes it possible to detect the color distribution within ray trace data and it provides a quality factor to estimate the color mixing performance. It can be shown that the spectral band width has a large influence on the mixing process. Ray tracing simulations are compared with results of an experimental setup such that both measured as well as simulated data is presented.

  12. Advanced X-ray diffractive optics

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, J.; Jefimovs, K.; Pilvi, T.; Ritala, M.; Sarkar, S. S.; Solak, H. H.; Guzenko, V. A.; Stampanoni, M.; Marone, F.; Raabe, J.; Tzvetkov, G.; Fink, R. H.; Grolimund, D.; Borca, C. N.; Kaulich, B.; David, C.

    2009-09-01

    X-ray microscopy greatly benefits from the advances in x-ray optics. At the Paul Scherrer Institut, developments in x-ray diffractive optics include the manufacture and optimization of Fresnel zone plates (FZPs) and diffractive optical elements for both soft and hard x-ray regimes. In particular, we demonstrate here a novel method for the production of ultra-high resolution FZPs. This technique is based on the deposition of a zone plate material (iridium) onto the sidewalls of a prepatterned template structure (silicon) by atomic layer deposition. This approach overcomes the limitations due to electron-beam writing of dense patterns in FZP fabrication and provides a clear route to push the resolution into sub-10 nm regime. A FZP fabricated by this method was used to resolve test structures with 12 nm lines and spaces at the scanning transmission x-ray microscope of the PolLux beamline of the Swiss Light Source at 1.2 keV photon energy.

  13. Diffraction Gratings for High-Intensity Laser Applications

    SciTech Connect

    Britten, J

    2008-01-23

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  14. Compatibility of a Diffractive Pupil and Coronagraphic Imaging

    NASA Technical Reports Server (NTRS)

    Bendek, Eduardo; Belikov, Rusian; Pluzhnyk, Yevgeniy; Guyon, Olivier

    2013-01-01

    Detection and characterization of exo-earths require direct-imaging techniques that can deliver contrast ratios of 10(exp 10) at 100 milliarc-seconds or smaller angular separation. At the same time, astrometric data is required to measure planet masses and can help detect planets and constrain their orbital parameters. To minimize costs, a single space mission can be designed using a high efficiency coronograph to perform direct imaging and a diffractive pupil to calibrate wide-field distortions to enable high precision astrometric measurements. This paper reports the testing of a diffractive pupil on the high-contrast test bed at the NASA Ames Research Center to assess the compatibility of using a diffractive pupil with coronographic imaging systems. No diffractive contamination was found within our detectability limit of 2x10(exp -7) contrast outside a region of 12lambda/D and 2.5x10(exp -6) within a region spanning from 2 to 12lambda/D. Morphology of the image features suggests that no contamination exists even beyond the detectability limit specified or at smaller working angles. In the case that diffractive contamination is found beyond these stated levels, active wavefront control would be able to mitigate its intensity to 10(exp -7) or better contrast.

  15. New approaches to nonlinear diffractive field propagation.

    PubMed

    Christopher, P T; Parker, K J

    1991-07-01

    In many domains of acoustic field propagation, such as medical ultrasound imaging, lithotripsy shock treatment, and underwater sonar, a realistic calculation of beam patterns requires treatment of the effects of diffraction from finite sources. Also, the mechanisms of loss and nonlinear effects within the medium are typically nonnegligible. The combination of diffraction, attenuation, and nonlinear effects has been treated by a number of formulations and numerical techniques. A novel model that incrementally propagates the field of baffled planar sources with substeps that account for the physics of diffraction, attenuation, and nonlinearity is presented. The model accounts for the effect of refraction and reflection (but not multiple reflections) in the case of propagation through multiple, parallel layers of fluid medium. An implementation of the model for axis symmetric sources has been developed. In one substep of the implementation, a new discrete Hankel transform is used with spatial transform techniques to propagate the field over a short distance with diffraction and attenuation. In the other substep, the temporal frequency domain solution to Burgers' equation is implemented to account for the nonlinear accretion and depletion of harmonics. This approach yields a computationally efficient procedure for calculating beam patterns from a baffled planar, axially symmetric source under conditions ranging from quasilinear through shock. The model is not restricted by the usual parabolic wave approximation and the field's directionality is explicitly accounted for at each point. Useage of a harmonic-limiting scheme allows the model to propagate some previously intractable high-intensity nonlinear fields. Results of the model are shown to be in excellent agreement with measurements performed on the nonlinear field of an unfocused 2.25-MHz piston source, even in the near field where the established parabolic wave approximation model fails. Next, the model is used to

  16. Stratified Diffractive Optic Approach for Creating High Efficiency Gratings

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.; Nordin, Gregory P.

    1998-01-01

    Gratings with high efficiency in a single diffracted order can be realized with both volume holographic and diffractive optical elements. However, each method has limitations that restrict the applications in which they can be used. For example, high efficiency volume holographic gratings require an appropriate combination of thickness and permittivity modulation throughout the bulk of the material. Possible combinations of those two characteristics are limited by properties of currently available materials, thus restricting the range of applications for volume holographic gratings. Efficiency of a diffractive optic grating is dependent on its approximation of an ideal analog profile using discrete features. The size of constituent features and, consequently, the number that can be used within a required grating period restricts the applications in which diffractive optic gratings can be used. These limitations imply that there are applications which cannot be addressed by either technology. In this paper we propose to address a number of applications in this category with a new method of creating high efficiency gratings which we call stratified diffractive optic gratings. In this approach diffractive optic techniques are used to create an optical structure that emulates volume grating behavior. To illustrate the stratified diffractive optic grating concept we consider a specific application, a scanner for a space-based coherent wind lidar, with requirements that would be difficult to meet by either volume holographic or diffractive optic methods. The lidar instrument design specifies a transmissive scanner element with the input beam normally incident and the exiting beam deflected at a fixed angle from the optical axis. The element will be rotated about the optical axis to produce a conical scan pattern. The wavelength of the incident beam is 2.06 microns and the required deflection angle is 30 degrees, implying a grating period of approximately 4 microns

  17. Electron Backscatter Diffraction in Low Vacuum Conditions

    SciTech Connect

    El-Dasher, B S; Torres, S G

    2008-07-17

    Most current scanning electron microscopes (SEMs) have the ability to analyze samples in a low vacuum mode, whereby a partial pressure of water vapor is introduced into the SEM chamber, allowing the characterization of nonconductive samples without any special preparation. Although the presence of water vapor in the chamber degrades electron backscatter diffraction (EBSD) patterns, the potential of this setup for EBSD characterization of nonconductive samples is immense. In this chapter we discuss the requirements, advantages and limitations of low vacuum EBSD (LV-EBSD), and present how this technique can be applied to a two-phase ceramic composite as well as hydrated biominerals as specific examples of when LV-EBSD can be invaluable.

  18. Blood screening using diffraction phase cytometry

    NASA Astrophysics Data System (ADS)

    Mir, Mustafa; Ding, Huafeng; Wang, Zhuo; Reedy, Jason; Tangella, Krishnarao; Popescu, Gabriel

    2010-03-01

    Blood smear analysis has remained a crucial diagnostic tool for pathologists despite the advent of automatic analyzers such as flow cytometers and impedance counters. Though these current methods have proven to be indispensible tools for physicians and researchers alike, they provide limited information on the detailed morphology of individual cells, and merely alert the operator to manually examine a blood smear by raising flags when abnormalities are detected. We demonstrate an automatic interferometry-based smear analysis technique known as diffraction phase cytometry (DPC), which is capable of providing the same information on red blood cells as is provided by current clinical analyzers, while rendering additional, currently unavailable parameters on the 2-D and 3-D morphology of individual red blood cells. To validate the utility of our technique in a clinical setting, we present a comparison between tests generated from 32 patients by a state of the art clinical impedance counter and DPC.

  19. Quantitative metallography by electron backscattered diffraction.

    PubMed

    Humphreys

    1999-09-01

    Although electron backscattered diffraction (EBSD) in the scanning electron microscope is used mainly to investigate the relationship between local textures and microstructures, the technique has now developed to the stage where it requires serious consideration as a tool for routine quantitative characterization of microstructures. This paper examines the application of EBSD to the characterization of phase distributions, grain and subgrain structures and also textures. Comparisons are made with the standard methods of quantitative metallography and it is shown that in many cases EBSD can produce more accurate and detailed measurements than the standard methods and that the data may sometimes be obtained more rapidly. The factors which currently limit the use of EBSD for quantitative microstructural characterization, including the speed of data acquisition and the angular and spatial resolutions, are discussed, and future developments are considered. PMID:10460682

  20. Coherent X-ray diffraction from collagenous soft tissues

    SciTech Connect

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-09-11

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  1. 50 years of fiber diffraction.

    PubMed

    Holmes, Kenneth C

    2010-05-01

    In 1955 Ken Holmes started working on tobacco mosaic virus (TMV) as a research student with Rosalind Franklin at Birkbeck College, London. Afterward he spent 18months as a post doc with Don Caspar and Carolyn Cohen at the Children's Hospital, Boston where he continued the work on TMV and also showed that the core of the thick filament of byssus retractor muscle from mussels is made of two-stranded alpha-helical coiled-coils. Returning to England he joined Aaron Klug's group at the newly founded Laboratory of Molecular Biology in Cambridge. Besides continuing the TMV studies, which were aimed at calculating the three-dimensional density map of the virus, he collaborated with Pringle's group in Oxford to show that two conformation of the myosin cross-bridge could be identified in insect flight muscle. In 1968 he opened the biophysics department at the Max Planck Institute for Medical Research in Heidelberg, Germany. With Gerd Rosenbaum he initiated the use of synchrotron radiation as a source for X-ray diffraction. In his lab the TMV structure was pushed to 4A resolution and showed how the RNA binds to the protein. With his co-workers he solved the structure of g-actin as a crystalline complex and then solved the structure of the f-actin filament by orientating the g-actin structure so as to give the f-actin fiber diffraction pattern. He was also able to solve the structure of the complex of actin with tropomyosin from fiber diffraction. PMID:20079849

  2. Coherent Diffractive Imaging at LCLS

    NASA Astrophysics Data System (ADS)

    Schulz, Joachim

    2010-03-01

    Soft x-ray FEL light sources produce ultrafast x-ray pulses with outstanding high peak brilliance. This might enable the structure determination of proteins that cannot be crystallized. The deposited energy would destroy the molecules completely, but owing to the short pulses the destruction will ideally only happen after the termination of the pulse. In order to address the many challenges that we face in attempting molecular diffraction, we have carried out experiments in coherent diffraction from protein nanocrystals at the Linac Coherent Light Source (LCLS) at SLAC. The periodicity of these objects gives us much higher scattering signals than uncrystallized proteins would. The crystals are filtered to sizes less than 2 micron, and delivered to the pulsed X-ray beam in a liquid jet. The effects of pulse duration and fluence on the high-resolution structure of the crystals have been studied. Diffraction patterns are recorded at a repetition rate of 30 Hz with pnCCD detectors. This allows us to take 108,000 images per hour. With 2-mega-pixel-detectors this gives a data-rate of more than 400 GB per hour. The automated sorting and evaluation of hundreds of thousands images is another challenge of this kind of experiments. Preliminary results will be presented on our first LCLS experiments. This work was carried out as part of a collaboration, for which Henry Chapman is the spokesperson. The collaboration consists of CFEL DESY, Arizona State University, SLAC, Uppsala University, LLNL, The University of Melbourne, LBNL, the Max Planck Institute for Medical Research, and the Max Planck Advanced Study Group (ASG) at the CFEL. The experiments were carried out using the CAMP apparatus, which was designed and built by the Max Planck ASG at CFEL. The LCLS is operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

  3. A diffractive mechanism of focusing.

    PubMed

    Case, W B; Sadurni, E; Schleich, W P

    2012-12-01

    We examine the free time evolution of a rectangular one dimensional Schrödinger wave packet of constant phase during the early stage which in the paraxial wave approximation is identical to the diffraction of a scalar field from a single slit. Our analysis, based on numerics and the Cornu spiral reveals considerable intricate detail behavior in the density and phase of the wave. We also point out a concentration of the intensity that occurs on axis and propose a new measure of width that expresses this concentration. PMID:23262675

  4. Fiber optic diffraction grating maker

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1991-01-01

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  5. Fiber optic diffraction grating maker

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-05-21

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  6. Nonlinear ptychographic coherent diffractive imaging.

    PubMed

    Odstrcil, M; Baksh, P; Gawith, C; Vrcelj, R; Frey, J G; Brocklesby, W S

    2016-09-01

    Ptychographic Coherent diffractive imaging (PCDI) is a significant advance in imaging allowing the measurement of the full electric field at a sample without use of any imaging optics. So far it has been confined solely to imaging of linear optical responses. In this paper we show that because of the coherence-preserving nature of nonlinear optical interactions, PCDI can be generalised to nonlinear optical imaging. We demonstrate second harmonic generation PCDI, directly revealing phase information about the nonlinear coefficients, and showing the general applicability of PCDI to nonlinear interactions. PMID:27607631

  7. Issues in Optical Diffraction Theory

    PubMed Central

    Mielenz, Klaus D.

    2009-01-01

    This paper focuses on unresolved or poorly documented issues pertaining to Fresnel’s scalar diffraction theory and its modifications. In Sec. 2 it is pointed out that all thermal sources used in practice are finite in size and errors can result from insufficient coherence of the optical field. A quarter-wave criterion is applied to show how such errors can be avoided by placing the source at a large distance from the aperture plane, and it is found that in many cases it may be necessary to use collimated light as on the source side of a Fraunhofer experiment. If these precautions are not taken the theory of partial coherence may have to be used for the computations. In Sec. 3 it is recalled that for near-zone computations the Kirchhoff or Rayleigh-Sommerfeld integrals are applicable, but fail to correctly describe the energy flux across the aperture plane because they are not continuously differentiable with respect to the assumed geometrical field on the source side. This is remedied by formulating an improved theory in which the field on either side of a semi-reflecting screen is expressed as the superposition of mutually incoherent components which propagate in the opposite directions of the incident and reflected light. These components are defined as linear combinations of the Rayleigh-Sommerfeld integrals, so that they are rigorous solutions of the wave equation as well as continuously differentiable in the aperture plane. Algorithms for using the new theory for computing the diffraction patterns of circular apertures and slits at arbitrary distances z from either side of the aperture (down to z = ± 0.0003 λ) are presented, and numerical examples of the results are given. These results show that the incident geometrical field is modulated by diffraction before it reaches the aperture plane while the reflected field is spilled into the dark space. At distances from the aperture which are large compared to the wavelength λ these field expressions are

  8. Ultrafast electron diffraction from aligned molecules

    SciTech Connect

    Centurion, Martin

    2015-08-17

    The aim of this project was to record time-resolved electron diffraction patterns of aligned molecules and to reconstruct the 3D molecular structure. The molecules are aligned non-adiabatically using a femtosecond laser pulse. A femtosecond electron pulse then records a diffraction pattern while the molecules are aligned. The diffraction patterns are then be processed to obtain the molecular structure.

  9. Undergraduate Experiment with Fractal Diffraction Gratings

    ERIC Educational Resources Information Center

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  10. Linear systems approach to simulation of optical diffraction.

    PubMed

    Lambert, A J; Fraser, D

    1998-12-01

    The diffractive processes within an optical system can be simulated by computer to compute the diffraction-altered electric-field distribution at the output of the system from the electric-field distribution at the input. In the paraxial approximation the system can be described by an ABCD ray matrix whose elements in turn can be used to simplify the computation such that only a single computational step is required. We describe two rearrangements of such computations that allow the simulation to be expressed in a linear systems formulation, in particular using the fast-Fourier-transform algorithm. We investigate the sampling requirements for the kernel-modifying function or chirp that arises. We also use the special properties of the chirp to determine the spreading imposed by the diffraction. This knowledge can be used to reduce the computation if only a limited region of either the input or the output is of interest. PMID:18301681

  11. Diffraction imaging with electrons from an ultracold plasma source

    NASA Astrophysics Data System (ADS)

    Saliba, S. D.; Sheludko, D. V.; McCulloch, A. J.; Junker, M.; Bell, S. C.; Quiney, H. M.; Scholten, R. E.

    2010-03-01

    The molecular structure of biological molecules such as bacteriorhodopsin can be determined by electron diffraction, but general application has been limited by the brightness of conventional electron sources. Brightness is proportional to current and inversely proportional to electron temperature. A high brightness electron source from cold atom clouds presents a promising alternative to traditional high temperature (104 K) sources. Cold atoms in a MOT can be photoionized just above threshold, releasing electron bunches with temperatures as low as 10 K. Although the number of electrons that can be extracted from a MOT is relatively small, the reduced temperature may enable brightness competitive with conventional alternatives. We have simulated electron diffraction from electron microscopy grids and 2D arrays of simple molecules, exploring the energy, coherence and brightness requirements for practical diffraction imaging.

  12. Application of Electron Backscatter Diffraction to Phase Identification

    SciTech Connect

    El-Dasher, B S; Deal, A

    2008-07-16

    The identification of crystalline phases in solids requires knowledge of two microstructural properties: crystallographic structure and chemical composition. Traditionally, this has been accomplished using X-ray diffraction techniques where the measured crystallographic information, in combination with separate chemical composition measurements for specimens of unknown pedigrees, is used to deduce the unknown phases. With the latest microstructural analysis tools for scanning electron microscopes, both the crystallography and composition can be determined in a single analysis utilizing electron backscatter diffraction and energy dispersive spectroscopy, respectively. In this chapter, we discuss the approach required to perform these experiments, elucidate the benefits and limitations of this technique, and detail via case studies how composition, crystallography, and diffraction contrast can be used as phase discriminators.

  13. High pressure x-ray diffraction studies on nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2004-02-01

    Application of the in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2-30 nm in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (<30 nm) are discussed. It is shown that a unique value of the lattice parameter cannot be determined for such small crystals using a standard powder diffraction experiment. It is also shown that, due to the complex structure constituting a two-phase, core/surface shell system, no unique compressibility coefficient can satisfactorily describe the behaviour of nanocrystalline powders under pressure. We offer a tentative interpretation of the distribution of macro- and micro-strains in nanoparticles of different grain size.

  14. Diffraction optics for terahertz waves

    NASA Astrophysics Data System (ADS)

    Wiltse, James C.

    2004-09-01

    Conventional lenses are important components for many terahertz applications, but ordinary lenses are very difficult to fabricate for short-focal lengths. Multi-level phase-corrected zoned lens antennas have been investigated with particular application at terahertz wavelengths. These zoned lenses (or diffractive optics) give better performance than ordinary lenses, and because of their planar construction are easier and cheaper to fabricate. The depths of cut needed for a grooved zone plate are quite small, even when materials with low dielectric constants are used. Zoned lenses have been built and tested at various frequencies from 100 GHz to 1.5 THz, with phase correction levels of half-wave, quarter-wave, or eighth-wavelength. The inherent losses in transparent materials increase monotonically over this frequency range. Typical low-loss materials include polystyrene, polyethylene, Teflon, polycarbonate, polystyrene foam, foamed polyethylene, low density polytetrafluoroethylene (PTFE), TPX, quartz, sapphire, and silicon. Low dielectric-constant materials are normally preferred to reduce reflection and attenuation losses. Techniques for cutting or milling the materials to small dimensions are important, because at 1.0 THz an eighth-wavelength correction for silicon is only 15 μm. Another characteristic of zoned diffraction optics is their frequency behavior. Previous investigations have considered their bandwidth dependence and quasi-periodic extended frequency response for a specified focal length. As frequency changes, the focal point moves along the axis of the zoned lens. An analysis is given to explain this effect.

  15. A phase retrieval algorithm based on three-dimensionally translated diffraction patterns

    NASA Astrophysics Data System (ADS)

    Loetgering, L.; Hammoud, R.; Juschkin, L.; Wilhein, T.

    2015-09-01

    An iterative phase retrieval method is proposed that combines alternating projections and registration of three-dimensionally translated near-field diffraction patterns. This method allows to enhance resolution limited by a finite detector size and automatically stitches the assembled data while avoiding the need for a priori knowledge or scanning of the object as encountered in coherent diffraction imaging or ptychography.

  16. Microarcsecond Astrometry with MCAO Using a Diffractive Mask

    NASA Astrophysics Data System (ADS)

    Ammons, S. Mark; Bendek, Eduardo A.; Guyon, Olivier; Macintosh, Bruce; Savransky, Dmitry

    2014-04-01

    We present a new ground-based technique to detect or follow-up long-period, potentially habitable exoplanets via precise relative astrometry of host stars using Multi-Conjugate Adaptive Optics (MCAO) on 8 meter telescopes equipped with diffractive masks. MCAO improves relative astrometry both by cancellation of high-altitude atmospheric layers, which induce dynamic focal-plane distortions, and the improvement of centroiding precision with sharper PSFs. However, mass determination of habitable exoplanets requires multi-year reference grid stability of ~1-10 μas or nanometer-level stability on the long-term average of out-of-pupil phase errors, which is difficult to achieve with MCAO (e.g., Meyer et al. 2011). The diffractive pupil technique calibrates dynamic distortion via extended diffraction spikes generated by a dotted primary mirror, which are referenced against a grid of background stars (Guyon et al. 2012). The diffractive grid provides three benefits to relative astrometry: (1) increased dynamic range, permitting observation of V < 10 stars without saturation; (2) calibration of dynamic distortion; and (3) a spectrum of the target star, which can be used to calibrate the magnitude of differential atmospheric refraction to the microarcsecond level. A diffractive 8-meter telescope with diffraction-limited MCAO in K-band reaches < 3-5 μas relative astrometric error per coordinate perpendicular to the zenith vector in one hour on a bright target star in fields of moderate stellar density (~10-40 stars arcmin-2). We present preliminary on-sky results of a test of the diffractive mask on the Nickel telescope at Lick Observatory.

  17. Future directions in high-pressure neutron diffraction

    NASA Astrophysics Data System (ADS)

    Guthrie, M.

    2015-04-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  18. Twenty Meter Space Telescope Based on Diffractive Fresnel Lens

    SciTech Connect

    Early, J; Hyde, R; Baron, R

    2003-06-26

    Diffractive lenses offer two potential advantages for very large aperture space telescopes; very loose surface-figure tolerances and physical implementation as thin, flat optical elements. In order to actually realize these advantages one must be able to build large diffractive lenses with adequate optical precision and also to compactly stow the lens for launch and then fully deploy it in space. We will discuss the recent fabrication and assembly demonstration of a 5m glass diffractive Fresnel lens at LLNL. Optical performance data from smaller full telescopes with diffractive lens and corrective optics show diffraction limited performance with broad bandwidths. A systems design for a 20m space telescope will be presented. The primary optic can be rolled to fit inside of the standard fairings of the Delta IV vehicle. This configuration has a simple deployment and requires no orbital assembly. A twenty meter visible telescope could have a significant impact in conventional astronomy with eight times the resolution of Hubble and over sixty times the light gathering capacity. If the light scattering is made acceptable, this telescope could also be used in the search for terrestrial planets.

  19. Cold neutron diffraction contrast tomography of polycrystalline material.

    PubMed

    Peetermans, S; King, A; Ludwig, W; Reischig, P; Lehmann, E H

    2014-11-21

    Traditional neutron imaging is based on the attenuation of a neutron beam through scattering and absorption upon traversing a sample of interest. It offers insight into the sample's material distribution at high spatial resolution in a non-destructive way. In this work, it is expanded to include the diffracted neutrons that were ignored so far and obtain a crystallographic distribution (grain mapping). Samples are rotated in a cold neutron beam of limited wavelength band. Projections of the crystallites formed by the neutrons they diffract are captured on a two dimensional imaging detector. Their positions on the detector reveal their orientation whereas the projections themselves are used to reconstruct the shape of the grains. Indebted to established synchrotron diffraction contrast tomography, this 'cold neutron diffraction contrast tomography' is performed on recrystallized aluminium for experimental comparison between both. Differences between set-up and method are discussed, followed by the application range in terms of sample properties (crystallite size and number, mosaicity and typical materials). Neutron diffraction contrast tomography allows to study large grains in bulky metallic structures. PMID:25274183

  20. Future directions in high-pressure neutron diffraction.

    PubMed

    Guthrie, M

    2015-04-22

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy. PMID:25789450

  1. Polarized point diffraction interferometer for fringe stabilization

    NASA Astrophysics Data System (ADS)

    Kihm, Hagyong; Lee, Yun-Woo

    2010-08-01

    We propose a new point diffraction interferometer using a polarizer with a pinholed for qualitative optical analysis. Diffraction from a polarizer with a pinholed makes reference and measurement waves. Interference fringe between diffracted-undiffracted measurement wave and undiffracted-diffracted reference wave is stabilized by common-path configuration. We examined the pinhole size and divergence angle of the diffracted wave for test optics with various numerical aperture. Optical parts comprising the interferometer can be assembled into a small monolithic component and embedded into an imaging target for easy alignment. Optical systems evaluating imaging performances such as modulation transfer function would benefit in aligning target objects.

  2. Diffraction gratings for optical sensing

    NASA Astrophysics Data System (ADS)

    Lu, Patrick P.

    The following document summarizes a journey through the world of diffraction gratings, covering topics such as their history, fabrication, metrology, and uses in some of the most precise scientific experiments ever proposed. Though diffraction gratings have long been used for spectroscopy and pulse compression, it was not until recently that researchers have explored their ability to split and recombine single-frequency CW laser sources for high-precision interferometry. Gravitational-wave detection, one of the most challenging sensing applications to date, is being investigated by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Laser Interferometer Space Antenna (LISA) projects. Future generations of LIGO and LISA detectors may incorporate gratings as key optical components. This thesis describes the ways gratings can improve interferometer performance by simplifying thermal management and discusses the essential challenges that must be overcome before they can be adopted. The use of gratings requires new interferometer geometries. We show cases where these can be implemented simply and compactly. Gravitational-wave interferometry imposes many requirements on grating components. Using improved metrology methods, we demonstrate that large dielectric gratings with uniformly high efficiency can be fabricated and validated. In particular, we measure the diffraction efficiency of two 20-cm-scale gratings over their entire apertures. The values taken from across their surfaces collectively had means and standard deviations of mu = 99.293% and sigma = 0.164%, and mu =99.084% and sigma =0.079%. We also present simplified models of thermal distortions in gratings, and show them to be in good agreement with measurements conducted by a wavefront sensor. Special focus is given to experimental demonstrations that have achieved highly precise measurements of translational and rotational motion, also known as displacement and angular sensing. For the former

  3. Fresnel diffraction of aperture with rough edge

    NASA Astrophysics Data System (ADS)

    Cui, Yuwei; Zhang, Wei; Wang, Junhong; Zhang, Meina; Teng, Shuyun

    2015-06-01

    The Fresnel diffraction of an aperture with a rough edge is studied in this paper. Circular and elliptical apertures with sinusoidal and random edges are chosen as examples to investigate the influence of the aperture edge on the diffraction. The numerical calculation results indicate intuitively the variations of the transverse and longitude diffraction intensity distributions with the edge parameters of the aperture. The data files of aperture models are obtained through the numerical calculations, and the aperture samples are obtained with the help of a liquid crystal light modulator (LCLM). Thus, the practical experiments of the diffractions of apertures with rough edges are carried out. The measured results are consistent with the calculated ones. The approximate analytic expressions of the diffraction by the modified aperture are deduced on the basis of the Fresnel diffraction theory and the statistic optics, and the reasonable explanations for the influence of edge parameters on the diffraction are given through the theoretical analysis.

  4. Nuclear dynamical diffraction using synchrotron radiation

    SciTech Connect

    Brown, D.E.

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of {sup 57}Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2{plus_minus}0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1{1/2} natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.

  5. Variable focus crystal diffraction lens

    SciTech Connect

    Smither, R.K.

    1988-11-01

    A new method has been developed to control the shape of the surface of a diffracting crystal that will allow it to function as a variable focus crystal diffraction lens, for focusing photon beams from a synchrotron source. The new method uses thermal gradients in the crystal to control the shape of the surface of the crystal in two dimensions and allows one to generate both spherical and ellipsoidal surface shapes. In this work the thermal gradient was generated by core drilling two sets of cooling channels in a silicon crystal so that cooling or heating fluids could be circulated through the crystal at two different levels. The first set of channels is close to the surface of the crystal where the photon beam strikes it. The second set of channels is equal distant from the back surface. If a concave surface is desired, the fluid in the channels just below the surface exposed to the beam is cooler than the fluid circulating through the channels near the back surface. If a convex surface is desired, then the cooling fluid in the upper channels near the surface exposed to the incident photon beam, is warmer than the fluid in the lower channels. The focal length of the crystal lens is varied by varying the thermal gradient in the crystal. This approach can also be applied to the first crystal in a high power synchrotron beam line to eliminate the bowing and other thermal distortions of the crystal caused by the high heat load. 6 refs., 8 figs., 3 tabs.

  6. Bragg's Law diffraction simulations for electron backscatter diffraction analysis.

    PubMed

    Kacher, Josh; Landon, Colin; Adams, Brent L; Fullwood, David

    2009-08-01

    In 2006, Angus Wilkinson introduced a cross-correlation-based electron backscatter diffraction (EBSD) texture analysis system capable of measuring lattice rotations and elastic strains to high resolution. A variation of the cross-correlation method is introduced using Bragg's Law-based simulated EBSD patterns as strain free reference patterns that facilitates the use of the cross-correlation method with polycrystalline materials. The lattice state is found by comparing simulated patterns to collected patterns at a number of regions on the pattern using the cross-correlation function and calculating the deformation from the measured shifts of each region. A new pattern can be simulated at the deformed state, and the process can be iterated a number of times to converge on the absolute lattice state. By analyzing an iteratively rotated single crystal silicon sample and recovering the rotation, this method is shown to have an angular resolution of approximately 0.04 degrees and an elastic strain resolution of approximately 7e-4. As an example of applications, elastic strain and curvature measurements are used to estimate the dislocation density in a single grain of a compressed polycrystalline Mg-based AZ91 alloy. PMID:19520512

  7. Current limiters

    SciTech Connect

    Loescher, D.H.; Noren, K.

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  8. On limit and limit setting.

    PubMed

    Gorney, J E

    1994-01-01

    This article investigates the role of limit and limit setting within the psychoanalytic situation. Limit is understood to be a boundary between self and others, established as an interactional dimension of experience. Disorders of limit are here understood within the context of Winnicott's conception of the "anti-social tendency." Limit setting is proposed as a necessary and authentic response to the patient's acting out via holding and empathic responsiveness, viewed here as a form of boundary delineation. It is proposed that the patient attempts to repair his or her boundary problem through a seeking of secure limits within the analyst. The setting of secure and appropriate limits must arise from a working through of the analyst's own countertransference response to the patient. It is critical that this response be evoked by, and arise from, the immediate therapeutic interaction so that the patient can experience limit setting as simultaneously personal and authentic. PMID:7972580

  9. Teaching diffraction with hands-on optical spectrometry

    NASA Astrophysics Data System (ADS)

    Fischer, Robert

    2012-09-01

    Although the observation of optical spectra is common practice in physics classes, students are usually limited to a passive, qualitative observation of nice colours. This paper discusses a diffraction-based spectrometer that allows students to take quantitative measurements of spectral bands. Students can build it within minutes from generic low-cost materials. The spectrometer’s simple, didactic design allows students to fully comprehend the underlying physical concepts and to engage in a discussion of measurement errors and uncertainties.

  10. Microarcsecond relative astrometry from the ground with a diffractive pupil

    SciTech Connect

    Ammons, S M; Bendek, E; Guyon, O

    2011-09-08

    The practical use of astrometry to detect exoplanets via the reflex motion of the parent star depends critically on the elimination of systematic floors in imaging systems. In the diffractive pupil technique proposed for space-based detection of exo-earths, extended diffraction spikes generated by a dotted primary mirror are referenced against a wide-field grid of background stars to calibrate changing optical distortion and achieve microarcsecond astrometric precision on bright targets (Guyon et al. 2010). We describe applications of this concept to ground-based uncrowded astrometry using a diffractive, monopupil telescope and a wide-field camera to image as many as {approx}4000 background reference stars. Final relative astrometric precision is limited by differential tip/tilt jitter caused by high altitude layers of turbulence. A diffractive 3-meter telescope is capable of reaching {approx}35 {micro}as relative astrometric error per coordinate perpendicular to the zenith vector in three hours on a bright target star (I < 10) in fields of moderate stellar density ({approx}40 stars arcmin{sup -2} with I < 23). Smaller diffractive apertures (D < 1 m) can achieve 100-200 {micro}as performance with the same stellar density and exposure time and a large telescope (6.5-10 m) could achieve as low as 10 {micro}as, nearly an order of magnitude better than current space-based facilities. The diffractive pupil enables the use of larger fields of view through calibration of changing optical distortion as well as brighter target stars (V < 6) by preventing star saturation. Permitting the sky to naturally roll to average signals over many thousands of pixels can mitigate the effects of detector imperfections.

  11. Feasibility studies for high pressure neutron powder diffraction experiments

    SciTech Connect

    Von Dreele, R.B. ); Parise, J. )

    1990-01-01

    We recently performed two neutron powder diffraction experiments on very small samples on the High Intensity Powder Diffractometer (HIPD). These were done to determine the feasibility of performing in situ high pressure/high temperature neutron diffraction experiments on HIPD at pressures which would exceed the previous limit of {approximately}50 kbar achievable in a neutron diffraction experiment. The first experiment consisted of examining the product from a high pressure preparation done at Stony Brook. The sample, which had been prepared at 65 kbar and 1000{degree}C, consisted of a small platinum capsule filled with CaGeO{sub 3} perovskite. The weights of the capsule included 225 mg of platinum and 49 mg of the germanate. A diffraction experiment taking {approximately}8.6 hrs at a LANSCE proton beam current of {approximately}53 {mu}A gave peaks of good intensity from both Pt and CaGeO{sub 3}; we could begin to see them after only 20 min of beam time. The second experiment was to test the possibility of diffraction from a high pressure apparatus. We placed in the HIPD sample position the central assembly from a 100 kbar octahedral press. Four tungsten carbide anvils and a copper block previously pressed to 65 kbar were held in an aluminum frame. The sample consisted of a small bit of nickel foil (175 mg) placed in a 3 mm hole in the copper block. The active sample volume is defined by the gap between the anvils and the length of the sample. A small portion of the copper block is also seen in this arrangement. This is viewed at 90{degree} 2{Theta} through a similar gap between the anvils by 4 1/2 in. {times} 12 in. {sup 3}He counter tubes. This arrangement simulates the operating conditions of a high pressure run at 100 kbar and takes advantage of the fixed instrument geometry possible in time-of-flight neutron diffraction experiments.

  12. Anomalous Diffraction in Crystallographic Phase Evaluation

    PubMed Central

    Hendrickson, Wayne A.

    2014-01-01

    X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017

  13. Hard diffraction with dynamic gap survival

    NASA Astrophysics Data System (ADS)

    Rasmussen, Christine O.; Sjöstrand, Torbjörn

    2016-02-01

    We present a new framework for the modelling of hard diffraction in pp and poverline{p} collisions. It starts from the the approach pioneered by Ingelman and Schlein, wherein the single diffractive cross section is factorized into a Pomeron flux and a Pomeron PDF. To this it adds a dynamically calculated rapidity gap survival factor, derived from the modelling of multiparton interactions. This factor is not relevant for diffraction in ep collisions, giving non-universality between HERA and Tevatron diffractive event rates. The model has been implemented in P ythia 8 and provides a complete description of the hadronic state associated with any hard single diffractive process. Comparisons with poverline{p} and pp data reveal improvement in the description of single diffractive events.

  14. Optimizing Crystal Volume for Neutron Diffraction

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; vanderWoerd, Mark; Damon, Michael; Judge, Russell, A.; Myles, Dean; Meilleur, F.

    2006-01-01

    Neutron diffraction is uniquely sensitive to hydrogen positions and protonation state. In that context structural information from neutron data is complementary to that provided through X-ray diffraction. However, there are practical obstacles to overcome in fully exploiting the potential of neutron diffraction, Le. low flux and weak scattering. Several approaches are available to overcome these obstacles and we have investigated the simplest: increasing the diffracting volume of the crystals. Volume is a quantifiable metric that is well suited for experiment design and optimization techniques. By using response surface methods we have optimized xylose isomerase crystal volume, enabling neutron diffraction while we determined the crystallization parameters with the minimum of experiments. Our results suggest a systematic means of enabling neutron diffraction studies for a larger number of samples that require information on hydrogen position and/or protonation state.

  15. Twenty years of diffraction at the Tevatron

    SciTech Connect

    Goulianos, K.; /Rockefeller U.

    2005-10-01

    Results on diffractive particle interactions from the Fermilab Tevatron {bar p}p collider are placed in perspective through a QCD inspired phenomenological approach, which exploits scaling and factorization properties observed in data. The results discussed are those obtained by the CDF Collaboration from a comprehensive set of single, double, and multigap soft and hard diffraction processes studied during the twenty year period since 1985, when the CDF diffractive program was proposed and the first Blois Workshop was held.

  16. Diffraction gratings used as identifying markers

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-03-26

    A finely detailed diffraction grating is applied to an object as an identifier or tag which is unambiguous, difficult to duplicate, or remove and transfer to another item, and can be read and compared with prior readings with relative ease. The exact pattern of the diffraction grating is mapped by diffraction moire techniques and recorded for comparison with future readings of the same grating. 7 figures.

  17. Aircraft noise propagation. [sound diffraction by wings

    NASA Technical Reports Server (NTRS)

    Hadden, W. J.; Pierce, A. D.

    1978-01-01

    Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources.

  18. Convex Diffraction Grating Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P. (Inventor)

    1999-01-01

    A 1:1 Offner mirror system for imaging off-axis objects is modified by replacing a concave spherical primary mirror that is concentric with a convex secondary mirror with two concave spherical mirrors M1 and M2 of the same or different radii positioned with their respective distances d1 and d2 from a concentric convex spherical diffraction grating having its grooves parallel to the entrance slit of the spectrometer which replaces the convex secondary mirror. By adjusting their distances d1 and d2 and their respective angles of reflection alpha and beta, defined as the respective angles between their incident and reflected rays, all aberrations are corrected without the need to increase the spectrometer size for a given entrance slit size to reduce astigmatism, thus allowing the imaging spectrometer volume to be less for a given application than would be possible with conventional imaging spectrometers and still give excellent spatial and spectral imaging of the slit image spectra over the focal plane.

  19. Sub-wavelength diffractive optics

    SciTech Connect

    Warren, M.E.; Wendt, J.R.; Vawter, G.A.

    1998-03-01

    This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program to investigate sub-wavelength surface relief structures fabricated by direct-write e-beam technology as unique and very high-efficiency optical elements. A semiconductor layer with sub-wavelength sized etched openings or features can be considered as a layer with an effective index of refraction determined by the fraction of the surface filled with semiconductor relative to the fraction filled with air or other material. Such as a layer can be used to implement planar gradient-index lenses on a surface. Additionally, the nanometer-scale surface structures have diffractive properties that allow the direct manipulation of polarization and altering of the reflective properties of surfaces. With this technology a single direct-write mask and etch can be used to integrate a wide variety of optical functions into a device surface with high efficiencies; allowing for example, direct integration of polarizing optics into the surface with high efficiencies; allowing for example, direct integration of polarizing optics into the surfaces of devices, forming anti-reflection surfaces or fabricating high-efficiency, high-numerical aperture lenses, including integration inside vertical semiconductor laser cavities.

  20. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  1. Diffractively corrected counter-rotating Risley prisms.

    PubMed

    Nie, Xin; Yang, Hongfang; Xue, Changxi

    2015-12-10

    Using the vector refraction equation and the vector diffraction equation, we obtain the expressions of the direction cosines of the refractive rays for the two wedge prisms, and the direction cosines of the diffractive rays for two wedge grisms, in which diffractive gratings were etched into the prism faces to correct the chromatic aberrations. A mathematical model between the two vector equations is proposed to compare the difference angle chromatic aberrations when the Risley prisms/grisms are rotating at different angles. We conclude that the use of diffractively corrected prisms offers a new method to correct chromatic aberrations in Risley prisms. PMID:26836873

  2. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  3. Diffraction by m-bonacci gratings

    NASA Astrophysics Data System (ADS)

    Monsoriu, Juan A.; Giménez, Marcos H.; Furlan, Walter D.; Barreiro, Juan C.; Saavedra, Genaro

    2015-11-01

    We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed.

  4. Electron Diffraction Using Transmission Electron Microscopy

    PubMed Central

    Bendersky, Leonid A.; Gayle, Frank W.

    2001-01-01

    Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy.

  5. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  6. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  7. Facteurs de risques de mortalité néonatale dans l'hôpital de gynécologie-obstétrique de la wilaya de Sidi Bel Abbes, Algérie

    PubMed Central

    Noria, Harir; Sarah, Ourrad; Asmaa, Ourrad

    2015-01-01

    Introduction Il s'est agit ici de déterminer la fréquence et les facteurs de risques de mortalité néonatale au service néonatologie de l'Etablissement Hospitalier Spécialisé Gynécologie Obstétrique de la wilaya de Sidi Bel Abbés (Ouest Algérien). Méthodes Il s'agit d'une étude rétrospective a visée descriptive et analytique porté sur tous les décès de 2011-2012 survenus au service de néonatologie de Sidi Bel Abbes. Résultats Au total 1209 cas de mortalité néonatale ont été enregistré durant les deux années (2011-2012), soit une fréquence de 5.3%. Il s'agissait dans 96,85% des cas de mortalité précoce. La mortalité néonatale étant multifactorielle, l'analyse statistique a pu incriminer de façon majoritaire: l’âge maternel avancé (>35) (OR = 3.1; IC 95% (2.30 -4.40); p = 0.001); la multiparité (OR = 8.15; IC 95% (2.85-10.05); p = 0.001); l'infection génitale(OR = 5.3; IC 95% (2.5-6.7); p = 0.001); la prématurité (OR = 10.08; IC 95% (3.45-12.02); p = 0.001); le faible poids de naissance (OR = 4.5; IC 95% (1.6-10.5); p = 0.001); l'ictère (OR = 4.8; IC 95% (1.26-6.02; p = 0.001) et la souffrance fœtale aigue (OR = 3.4; IC 95% (0.89-5.14); p = 0.001). Conclusion Une prise en charge efficace de la grossesse et du nouveau-né dans sa première semaine de vie, devraient amélioraient le pronostic néonatal. PMID:26185577

  8. Advances in multiple wavelength anomalous diffraction crystallography.

    PubMed

    Ealick, S E

    2000-10-01

    In only a few years, multiple wavelength anomalous diffraction (MAD) phasing has advanced from an esoteric technique used in only a few favorable cases to the method of choice for solving new macromolecular structures. Before 1994, MAD phasing had been used for fewer than a dozen new structure determinations. In 1999 alone, well over 100 new structures were determined by MAD phasing. The meteoric rise in MAD applications resulted from the availability of new synchrotron beamlines, equipped with low bandpass optics, fast readout detectors, cryogenic cooling and user-friendly interfaces. The power of MAD phasing has been amplified by the availability of new computer programs for locating the positions of the anomalous scattering atoms and for calculating phases from the experimental data. Phasing by anomalous scattering techniques has been applied to structures as large as 640 kDa and 120 selenium atoms in the asymmetric unit. The practical size limitation for application of MAD phasing techniques has not yet been encountered. PMID:11006535

  9. Light by light diffraction in vacuum

    SciTech Connect

    Tommasini, Daniele; Michinel, Humberto

    2010-07-15

    We show that a laser beam can be diffracted by a more concentrated light pulse due to quantum vacuum effects. We compute analytically the intensity pattern in a realistic experimental configuration, and discuss how it can be used to measure the parameters describing photon-photon scattering in vacuum. In particular, we show that the quantum electrodynamics prediction can be detected in a single-shot experiment at future 100-PW lasers such as ELI or HIPER. On the other hand, if carried out at one of the present high-power facilities, such as OMEGA EP, this proposal can lead either to the discovery of nonstandard physics or to substantial improvement in the current limits by PVLAS collaboration on the photon-photon cross section at optical wavelengths. This example of manipulation of light by light is simpler to realize and more sensitive than existing, alternative proposals, and can also be used to test Born-Infeld theory or to search for axionlike or minicharged particles.

  10. Non-diffractive computational ghost imaging.

    PubMed

    Phillips, D B; He, Ruiqing; Chen, Qian; Gibson, G M; Padgett, M J

    2016-06-27

    Computational ghost imaging (CGI) enables an image to be recorded using a single-pixel detector. The image can be reconstructed from correlations between the scene and a series of known projected intensity patterns. In this work we investigate the performance of CGI using pseudo non-diffracting (ND) speckle patterns. We demonstrate an extended depth-of-field that is ∼ 2-3 times greater than that achievable with conventional speckle, when only computing each intensity pattern to a single depth. In addition, the average speckle grain size of ND speckle is reduced by a factor of ∼ 1.5 relative to conventional speckle, which enhances the lateral Rayleigh-limit resolving power of our reconstructed images. However, the point-spread function (PSF) of our imaging system takes the form of a Bessel beam, which manifests itself as long-range correlations between speckle grains in the projected patterns. We discuss the trade-off between enhancement of the depth-of-field and the lateral resolution when using ND speckle, at the expense of a reduction in image contrast. Our work demonstrates that the tailoring of lateral and axial correlations in projected intensity patterns permits PSF engineering in CGI. PMID:27410575

  11. Defining Electron Backscatter Diffraction Resolution

    SciTech Connect

    El-Dasher, B S; Rollett, A D

    2005-02-07

    Automated electron backscatter diffraction (EBSD) mapping systems have existed for more than 10 years [1,2], and due to their versatility in characterizing multiple aspects of microstructure, they have become an important tool in microscale crystallographic studies. Their increasingly widespread use however raises questions about their accuracy in both determining crystallographic orientations, as well as ensuring that the orientation information is spatially correct. The issue of orientation accuracy (as defined by angular resolution) has been addressed previously [3-5]. While the resolution of EBSD systems is typically quoted to be on the order of 1{sup o}, it has been shown that by increasing the pattern quality via acquisition parameter adjustment, the angular resolution can be improved to sub-degree levels. Ultimately, the resolution is dependent on how it is identified. In some cases it can be identified as the orientation relative to a known absolute, in others as the misorientation between nearest neighbor points in a scan. Naturally, the resulting values can be significantly different. Therefore, a consistent and universal definition of resolution that can be applied to characterize any EBSD system is necessary, and is the focus of the current study. In this work, a Phillips (FEI) XL-40 FEGSEM coupled to a TexSEM Laboratories OIM system was used. The pattern capturing hardware consisted of both a 512 by 512 pixel SIT CCD camera and a 1300 by 1030 pixel Peltier cooled CCD camera. Automated scans of various sizes, each consisting of 2500 points, were performed on a commercial-grade single crystal silicon wafer used for angular resolution measurements. To adequately quantify angular resolution for all possible EBSD applications we define two angular values. The first is {omega}{sub center}, the mean of the misorientation angle distribution between all scan points and the scan point coincident to the calibration source (typically the scan center). The {omega

  12. Unsteady relativistic shock-wave diffraction by cylinders and spheres.

    PubMed

    Tsai, I-Nan; Huang, Juan-Chen; Tsai, Shang-Shi; Yang, J Y

    2012-02-01

    The unsteady relativistic shock-wave diffraction patterns generated by a relativistic blast wave impinging on a circular cylinder and a sphere are numerically simulated using some high-resolution relativistic kinetic beam schemes in a general coordinate system for solving the relativistic Euler equations of gas dynamics. The diffraction patterns are followed through about 6 radii of travel of the incident shock past the body. The complete diffraction patterns, including regular reflection, transition from regular to Mach reflection, slip lines, and the complex shock-on-shock interaction at the wake region resulting from the Mach shocks collision behind the body are reported in detail. Computational results of several incident shock Mach numbers covering the near ultrarelativistic limit are studied. Various contours of flow properties including the Lorentz factor and velocity streamline plots are also presented to add a better understanding of the complex diffraction phenomena. The three-dimensional relieving effects of the sphere cases are evident and can be quantitatively evaluated as compared with the corresponding cylinder cases. PMID:22463327

  13. Diffraction-controlled backscattering threshold and application to Raman gap

    SciTech Connect

    Rose, Harvey A.; Mounaix, Philippe

    2011-04-15

    In most classic analytical models of linear stimulated scatter, light diffraction is omitted, a priori. However, modern laser optic typically includes a variant of the random phase plate [Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984)], resulting in diffraction limited laser intensity fluctuations - or localized speckles - which may result in explosive reflectivity growth as the average laser intensity approaches a critical value [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)]. Among the differences between stimulated Raman scatter (SRS) and stimulated Brillouin scatter is that the SRS scattered light diffracts more strongly than the laser light with increase of electron density. This weakens the tendency of the SRS light to closely follow the most amplified paths, diminishing gain. Let G{sub 0} be the one-dimensional power gain exponent of the stimulated scatter. In this paper we show that differential diffraction gives rise to an increase of G{sub 0} at the SRS physical threshold with increase of electron density up to a drastic disruption of SRS as electron density approaches one fourth of its critical value from below. For three wave interaction lengths not small compared to a speckle length, this is a physically robust Raman gap mechanism.

  14. Unsteady relativistic shock-wave diffraction by cylinders and spheres

    NASA Astrophysics Data System (ADS)

    Tsai, I.-Nan; Huang, Juan-Chen; Tsai, Shang-Shi; Yang, J. Y.

    2012-02-01

    The unsteady relativistic shock-wave diffraction patterns generated by a relativistic blast wave impinging on a circular cylinder and a sphere are numerically simulated using some high-resolution relativistic kinetic beam schemes in a general coordinate system for solving the relativistic Euler equations of gas dynamics. The diffraction patterns are followed through about 6 radii of travel of the incident shock past the body. The complete diffraction patterns, including regular reflection, transition from regular to Mach reflection, slip lines, and the complex shock-on-shock interaction at the wake region resulting from the Mach shocks collision behind the body are reported in detail. Computational results of several incident shock Mach numbers covering the near ultrarelativistic limit are studied. Various contours of flow properties including the Lorentz factor and velocity streamline plots are also presented to add a better understanding of the complex diffraction phenomena. The three-dimensional relieving effects of the sphere cases are evident and can be quantitatively evaluated as compared with the corresponding cylinder cases.

  15. Off-axis collimation of diode laser beams by means of single-element holographic diffractive optics

    NASA Astrophysics Data System (ADS)

    Miler, M.; Pala, J.; Aubrecht, I.; Hradil, M.

    2006-09-01

    Principles of single-element holographic diffractive optics for collimation of diode laser beams with a large divergence, an elliptic cross-section, and astigmatism are presented. Holographic off-axis transformation enables collimation of the beam in two variants: one with a perpendicular input beam and an oblique output beam, and the other with the beams arranged vice-versa. Diffraction due to an elliptic aperture is analyzed. Inspection of experimental samples demonstrates an agreement with theory in the case of diffraction limited focal pattern and shows increase of astigmatism with the departure from diffraction only limitation.

  16. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  17. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  18. Characterization of the diffraction properties of quantum-dot-array diffraction grating

    NASA Astrophysics Data System (ADS)

    Wang, Chuanke; Kuang, Longyu; Wang, Zhebin; Liu, Shenye; Ding, Yongkun; Cao, Leifeng; Foerster, Eckhart; Wang, Deqiang; Xie, Changqing; Ye, Tianchun

    2007-05-01

    A new dispersive element named as quantum-dot-array diffraction grating [L. F. Cao, China patent No. 200410081499 (August 10, 2004)] for visible light has been developed and characterized experimentally. A large number of quantum dots distributed on a substrate as sinusoidal function can be used to diffract x rays without higher-order diffraction. The experimental patterns show that the higher-order diffractions which inevitably exist in the spectrum recorded using traditional diffraction gratings can be eliminated effectively by this newly designed element. It indicates that quantum-dot-array diffraction grating could be an attractive alternative of presently used diffraction grating in soft x-ray spectroscopy application to get rid of the higher-order diffraction distortions.

  19. Characterization of the diffraction properties of quantum-dot-array diffraction grating

    SciTech Connect

    Wang Chuanke; Kuang Longyu; Wang Zhebin; Liu Shenye; Ding Yongkun; Cao Leifeng; Foerster, Eckhart; Wang Deqiang; Xie Changqing; Ye Tianchun

    2007-05-15

    A new dispersive element named as quantum-dot-array diffraction grating [L. F. Cao, China patent No. 200410081499 (August 10, 2004)] for visible light has been developed and characterized experimentally. A large number of quantum dots distributed on a substrate as sinusoidal function can be used to diffract x rays without higher-order diffraction. The experimental patterns show that the higher-order diffractions which inevitably exist in the spectrum recorded using traditional diffraction gratings can be eliminated effectively by this newly designed element. It indicates that quantum-dot-array diffraction grating could be an attractive alternative of presently used diffraction grating in soft x-ray spectroscopy application to get rid of the higher-order diffraction distortions.

  20. CMS results on exclusive and diffractive production

    SciTech Connect

    Alves, Gilvan A.

    2015-04-10

    We present recent CMS measurements of diffractive and exclusive processes, using data collected at 7 TeV at the LHC. Measurements of soft single- and double-diffractive cross sections are presented, as well as measurements of photon-induced processes including studies of exclusive WW production via photon-photon exchange.

  1. White-Light Diffraction with a CD

    ERIC Educational Resources Information Center

    Ivanov, Dragia Trifonov; Nikolaev, Stefan

    2010-01-01

    Various wave optics experiments can be carried out using an ordinary compact disc. The CD is suitable for use as a diffraction grating. For instance, a standard CD (700 MB) has 625 lines/mm. In this article, the authors describe two white-light diffraction demonstrations for a large audience, realizable using a CD (as reflection or transmission…

  2. Liquid-Crystal Point-Diffraction Interferometer

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    1996-01-01

    Liquid-crystal point-diffraction interferometer (LCPDI) invented to combine flexible control of liquid-crystal phase-shifts with robustness of point-diffraction interferometers. Produces interferograms indicative of shapes of wavefronts of laser beams having passed through or reflected from objects of interest. Interferograms combined in computers to produce phase maps describing wavefronts.

  3. Unusual features of Drell-Yan diffraction

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan; Tarasov, A. V.

    2006-12-01

    The cross section of the diffractive Drell-Yan (DY) process, pp{yields}llXp, where the system llX is separated by a large rapidity gap from the recoil proton, is calculated in the light-cone dipole approach. This process reveals unusual features, quite different from what is known for diffractive deeply inelastic scattering (DIS) and non-Abelian radiation: (i) the diffractive radiation of a heavy dilepton by a quark vanishes in the forward direction; (ii) the diffractive production of a dilepton is controlled by the large hadronic radius; (iii) in contrast with DIS where diffraction is predominantly soft, the diffractive DY reaction is semihard-semisoft; (iv) as a result of the saturated shape of the dipole cross section, the fraction of diffractive DY events steeply falls with energy but rises as a function of the hard scale. These features are common for other Abelian bremsstrahlung processes (higgsstrahlung, Z-strahlung, etc.). Measurements of diffractive DY processes at modern colliders would be a sensitive probe for the shape of the dipole cross section at large separations.

  4. Structure refinement from precession electron diffraction data.

    PubMed

    Palatinus, Lukáš; Jacob, Damien; Cuvillier, Priscille; Klementová, Mariana; Sinkler, Wharton; Marks, Laurence D

    2013-03-01

    Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for the calculation of diffracted intensities. The method is demonstrated on data from three materials - silicon, orthopyroxene (Mg,Fe)(2)Si(2)O(6) and gallium-indium tin oxide (Ga,In)(4)Sn(2)O(10). In particular, it is shown that atomic occupancies of mixed crystallographic sites can be refined to an accuracy approaching X-ray or neutron diffraction methods. In comparison with conventional electron diffraction data, the refinement against precession diffraction data yields significantly lower figures of merit, higher accuracy of refined parameters, much broader radii of convergence, especially for the thickness and orientation of the sample, and significantly reduced correlations between the structure parameters. The full dynamical refinement is compared with refinement using kinematical and two-beam approximations, and is shown to be superior to the latter two. PMID:23403968

  5. Diffraction experiments with infrared remote controls

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik

    2012-02-01

    In this paper we describe an experiment in which radiation emitted by an infrared remote control is passed through a diffraction grating. An image of the diffraction pattern is captured using a cell phone camera and then used to determine the wavelength of the radiation.

  6. RENORM predictions of diffraction at LHC confirmed

    SciTech Connect

    Goulianos, Konstantin

    2015-04-10

    The RENORM model predictions of diffractive, total, and total-inelastic cross sections at the LHC are confirmed by recent measurements. The predictions of several other available models are discussed, highlighting their differences from RENORM, mainly arising from the way rapidity gap formation, low- and high-mass diffraction, unitarization, and hadronization are implemented.

  7. Inquiry with Laser Printer Diffraction Gratings

    ERIC Educational Resources Information Center

    Van Hook, Stephen J.

    2007-01-01

    The pages of "The Physics Teacher" have featured several clever designs for homemade diffraction gratings using a variety of materials--cloth, lithographic film, wire, compact discs, parts of aerosol spray cans, and pseudoliquids and pseudosolids. A different and inexpensive method I use to make low-resolution diffraction gratings takes advantage…

  8. Intensity Measurements in a Fresnel Diffraction Pattern

    ERIC Educational Resources Information Center

    Boyer, R.; Fortin, E.

    1972-01-01

    Describes an undergraduate optics laboratory experiment to verify the law of intensity in the Fesnel diffraction of a thin wire. A gas laser as light source and a photocell as detector scan the diffraction pattern. The agreement with the theoretical pattern is remarkably good. (Author/TS)

  9. The effect of machining error on the diffraction efficiency of refraction and diffractive optical element

    NASA Astrophysics Data System (ADS)

    Gao, Long; Xue, Changxi; Yang, Hongfang; Nie, Xin

    2014-08-01

    According to the expression of the phase delay and diffraction efficiency of the diffractive optical elements(DOEs), the expression of diffraction efficiency of refraction and diffractive optical element with the tilt and decenter error in fabrication process was presented in this paper. Analysis results show, in the wavelength band of 501nm-554nm, the cycle of 500μm, the center wavelength of 521nm, when the tilt angleα increases form 0° to9.8° , the diffraction efficiency is above 99%; when the tilt angleα increases form 9.8° to 29.7° , diffraction efficiency is above 92.5%; when the tilt angleα is above 29.7° , the diffraction efficiency declines rapidly, diffraction efficiency is 0 when the tilt angleα is above 58° . When the decenter Δ increases form 0nm to 21.6μm,the diffraction efficiency is above 98%; when the decenter Δ increases form 21.6nm to 63.3μm, the diffraction efficiency is above 90%; when the decenter Δ is above 63.3μm, the diffraction efficiency declines rapidly, diffraction efficiency is 0 when the he decenter Δ is above 241.7μm. To sum up the results of analysis,mathematical analysis model of the relationship between the decenter and tilt error of diffractive optical element in processing and the diffraction efficiency can be used to guide the design of the refraction and diffractive hybrid optical system comprising the diffractive optical element.

  10. Nonlinear diffraction in orientation-patterned semiconductors.

    PubMed

    Karpinski, Pawel; Chen, Xin; Shvedov, Vladlen; Hnatovsky, Cyril; Grisard, Arnaud; Lallier, Eric; Luther-Davies, Barry; Krolikowski, Wieslaw; Sheng, Yan

    2015-06-01

    This work represents experimental demonstration of nonlinear diffraction in an orientation-patterned semiconducting material. By employing a new transverse geometry of interaction, three types of second-order nonlinear diffraction have been identified according to different configurations of quasi-phase matching conditions. Specifically, nonlinear Čerenkov diffraction is defined by the longitudinal quasi-phase matching condition, nonlinear Raman-Nath diffraction satisfies only the transverse quasi-phase matching condition, and nonlinear Bragg diffraction fulfils the full vectorial quasi-phase matching conditions. The study extends the concept of transverse nonlinear parametric interaction toward infrared frequency conversion in semiconductors. It also offers an effective nondestructive method to visualise and diagnose variations of second-order nonlinear coefficients inside semiconductors. PMID:26072847

  11. Diffraction in time: An exactly solvable model

    NASA Astrophysics Data System (ADS)

    Goussev, Arseni

    2014-03-01

    In optics, diffraction is typically portrayed as deflection of light incident upon an obstacle with sharp boundaries, that can not be accounted for by reflection or refraction. Interestingly, quantum mechanics allows for an additional, intrinsically time-dependent manifestation of the phenomenon: Owing to the dispersive nature of quantum matter waves, sudden changes in boundary conditions may cause the particle wave function to develop interference fringes akin to those in stationary (optical) diffraction problems. This phenomenon, pioneered in 1952 by Moshinsky [Phys. Rev. 88, 625 (1952)] and presently referred to as ``diffraction in time,'' is at the heart of a vibrant area of experimental and theoretical research concerned with quantum transients. In my talk, I will introduce a new versatile exactly-solvable model of diffraction in time. The model describes dynamics of a quantum particle in the presence of an absorbing time-dependent barrier, and enables a quantitative description of diffraction and interference patterns in a large variety of setups.

  12. Fraunhofer diffraction by arbitrary-shaped obstacles.

    PubMed

    Malinka, Aleksey V; Zege, Eleonora P

    2009-08-01

    We consider Fraunhofer diffraction by an ensemble of large arbitrary-shaped screens that are randomly oriented in the plane of a wavefront and have edges of arbitrary shape. It is shown that far outside the main diffraction peak the differential scattering cross section behaves asymptotically as theta(-3), where theta is the diffraction angle. Moreover, the differential scattering cross section depends only on the length of the contours bordering the screens and does not depend on the shape of the obstacles. As both strictly forward and total diffraction cross sections are specified by obstacle area only, the differential cross section of size-distributed obstacles is expected to be nearly independent of obstacle shape over the entire region of the diffraction angles. PMID:19649110

  13. Design and fabrication for the diffractive optical element of an infrared system

    NASA Astrophysics Data System (ADS)

    Yang, Changcheng; Li, Shenghui; Li, Yong; Wang, Bin

    2009-05-01

    A diffractive/refractive system with a relative aperture of f/4.0, the EFL of 150mm at 3.7-4.8μm is designed. A diffractive optical element (DOE) is fabricated by means of diamond turning on a conic substrate of the Germanium lens in this system. The characteristics of the diffractive optical element are analyzed in the software of Diffsys. And the zone radius of DOE and step height are detected by profilometry and result is produced. Test results of DOE are coincided with the design figures and the DOE has tiny surface error and high diffractive efficiency. Result of Modulation Transfer Function (MTF) for the system is tested by Ealing and the tested value is closely approximate to diffractive limit. The DOE has better behaviour of chromatic aberration and athermalization.

  14. Tolerance analysis of multilayer diffractive optics based on polychromatic integral diffraction efficiency.

    PubMed

    Mao, Shan; Cui, Qingfeng; Piao, Mingxu

    2015-11-10

    Multilayer diffractive optical elements (MLDOEs) can achieve high diffraction efficiency for broadband wavelength. Polychromatic integral diffraction efficiency (PIDE) is the key concern for evaluating diffraction efficiency over the waveband. The modulation transfer function of a hybrid refractive-diffractive optical system is directly affected by the PIDE. The relationship between PIDE and continuous manufacturing errors for microstructure heights and periodic widths of MLDOEs is studied theoretically in this paper, and an example of MLDOEs is discussed in the visible waveband. The analysis results can be used for manufacturing error control in microstructure heights and periodic widths. PMID:26560782

  15. Discussion of the finite element method in optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Lobera, Julia; Coupland, Jeremy

    2006-04-01

    In Optical Diffraction Tomography (ODT) the refractive index is reconstructed from images with different illuminating wavefronts. In most cases the Born approximation is assumed, although this limits the applicability of the technique to weak-scattering problems. In this work we examine the scattering problem from first principles beginning from the Helmholtz equation that governs scalar diffraction and wave propagation. We demonstrate the use of the Born approximation and show typical errors when it is applied in practice. Solution of the Helmholtz equation using a Finite Element Method (FEM) with an appropriate Absorbing Boundary Condition (ABC) is described, and a non-linear optimization technique, the Conjugate Gradient Method (CGM), previously proposed for microwave imaging, is applied to the inverse problem.

  16. Magnetic structures of actinide materials by pulsed neutron diffraction

    SciTech Connect

    Lawson, A.C.; Goldstone, J.A.; Huber, J.G.; Giorgi, A.L.; Conant, J.W.; Severing, A.; Cort, B.; Robinson, R.A.

    1990-01-01

    We describe some attempts to observe magnetic structure in various actinide (5f-electron) materials. Our experimental technique is neutron powder diffraction as practiced at a spallation (pulsed) neutron source. We will discuss our investigations of {alpha}-Pu, {delta}-Pu, {alpha}-UD{sub 3} and {beta}-UD{sub 3}. {beta}-UD{sub 3} is a simple ferromagnet: surprisingly, the moments on the two non-equivalent uranium atoms are the same within experimental error. {alpha}-UD{sub 3}, {alpha}-Pu and {delta}-Pu are non-magnetic, within the limits of our observations. Our work with pulsed neutron diffraction shows that it is a useful technique for research on magnetic materials.

  17. Incorporating mask topography edge diffraction in photolithography simulations.

    PubMed

    Tirapu-Azpiroz, Jaione; Yablonovitch, Eli

    2006-04-01

    In deep ultraviolet lithography simulations, conventional application of Kirchhoff's boundary conditions on the mask surface provides the so-called "thin-mask" approximation of the object field. Current subwavelength lithographic operation, however, places a serious limitation on this approximation, which fails to account for the topographical, or "thick-mask," effects. In this paper, a new simulation model is proposed that is theoretically founded on the well-established physical theory of diffraction. This model relies on the key result that diffraction effects can be interpreted as an intrinsic edge property, and modeled with just two fixed parameters: width and transmission coefficient of a locally determined boundary layer applied to each chrome edge. The proposed model accurately accounts for thick-mask effects of the fields on the mask, greatly improving the accuracy of aerial image simulations in photolithography, while maintaining a reasonable computational cost. PMID:16604762

  18. The use of an improved diffraction grating interferometer.

    PubMed

    Maddox, A R; Binder, R C

    1969-11-01

    A conventional schlieren system was converted into a Kraushaar interferometer by the addition of matched diffraction gratings as the beam splitting and recombination elements. Optical quality of the added features of this installation were shown to be not a limiting factor, but the optical platform must be isolated well for good results. Basic optical theory applicable to this device is summarized. Several aspects are indicated which enhance the fringe or image quality. This device has been used to find the surface pressures and flow field structure around some simple two-dimensional airfoil shapes. Comparison of these results with calculations indicates good agreement between the diffraction grating interferometer data and analytical data. PMID:20075998

  19. Transmittance analysis of diffraction phase grating.

    PubMed

    Jing, Xufeng; Jin, Yunxia

    2011-03-20

    In order to accurately analyze and design the transmittance characteristic of a diffraction phase grating, the validity of both the scalar diffraction theory and the effective medium theory is quantitatively evaluated by the comparison of diffraction efficiencies predicted from both simplified theories to exact results calculated by the rigorous vector electromagnetic theory. The effect of surface profile parameters, including the normalized period, the normalized depth, and the fill factor for the precision of the simplified methods is determined at normal incidence. It is found that, in general, when the normalized period is more than four wavelengths of the incident light, the scalar diffraction theory is useful to estimate the transmittance of the phase grating. When the fill factor approaches 0.5, the error of the scalar method is minimized, and the scalar theory is accurate even at the grating period of two wavelengths. The transmittance characteristic as a function of the normalized period is strongly influenced by the grating duty cycle, but the diffraction performance on the normalized depth is independent of the fill factor of the grating. Additionally, the effective medium theory is accurate for evaluating the diffraction efficiency within an error of less than around 1% when no higher-order diffraction waves appear and only the zero-order waves exist. The precision of the effective medium theory for calculating transmittance properties as a function of the normalized period, the normalized groove depth, and the polarization state of incident light is insensitive to the fill factor of the phase grating. PMID:21460923

  20. On Limits

    NASA Technical Reports Server (NTRS)

    Holzmann, Gerard J.

    2008-01-01

    In the last 3 decades or so, the size of systems we have been able to verify formally with automated tools has increased dramatically. At each point in this development, we encountered a different set of limits -- many of which we were eventually able to overcome. Today, we may have reached some limits that may be much harder to conquer. The problem I will discuss is the following: given a hypothetical machine with infinite memory that is seamlessly shared among infinitely many CPUs (or CPU cores), what is the largest problem size that we could solve?

  1. Research on properties of an infrared imaging diffractive element

    NASA Astrophysics Data System (ADS)

    Rachoń, M.; Wegrzyńska, K.; Doch, M.; Kołodziejczyk, A.; Siemion, A.; Suszek, J.; Kakarenko, K.; Sypek, M.

    2014-09-01

    Novel thermovision imaging systems having high efficiency require very sophisticated optical components. This paper describes the diffractive optical elements which are designed for the wavelengths between 8 and 14 μm for the application in the FLIR cameras. In the current paper the authors present phase only diffractive elements manufactured in the etched gallium arsenide. Due to the simplicity of the manufacturing process only binary phase elements were designed and manufactured. Such solution exhibits huge chromatic aberration. Moreover, the performance of such elements is rather poor, which is caused by two factors. The first one is the limited diffraction efficiency (c.a. 40%) of binary phase structures. The second problem lies in the Fresnel losses coming from the reflection from the two surfaces (around 50%). Performance of this structures is limited and the imaging contrast is poor. However, such structures can be used for relatively cheap practical testing of the new ideas. For example this solution is sufficient for point spread function (PSF) measurements. Different diffractive elements were compared. The first one was the equivalent of the lens designed on the basis of the paraxial approximation. For the second designing process, the non-paraxial approach was used. It was due to the fact that f/# was equal to 1. For the non-paraxial designing the focal spot is smaller and better focused. Moreover, binary phase structures suffer from huge chromatic aberrations. Finally, it is presented that non-paraxially designed optical element imaging with extended depth of focus (light-sword) can suppress chromatic aberration and therefore it creates the image not only in the image plane.

  2. Diffraction enhanced x-ray imaging

    SciTech Connect

    Thomlinson, W.; Zhong, Z.; Chapman, D.; Johnston, R.E.; Sayers, D.

    1997-09-01

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography.

  3. 3D printed diffractive terahertz lenses.

    PubMed

    Furlan, Walter D; Ferrando, Vicente; Monsoriu, Juan A; Zagrajek, Przemysław; Czerwińska, Elżbieta; Szustakowski, Mieczysław

    2016-04-15

    A 3D printer was used to realize custom-made diffractive THz lenses. After testing several materials, phase binary lenses with periodic and aperiodic radial profiles were designed and constructed in polyamide material to work at 0.625 THz. The nonconventional focusing properties of such lenses were assessed by computing and measuring their axial point spread function (PSF). Our results demonstrate that inexpensive 3D printed THz diffractive lenses can be reliably used in focusing and imaging THz systems. Diffractive THz lenses with unprecedented features, such as extended depth of focus or bifocalization, have been demonstrated. PMID:27082335

  4. A scattering approach to sea wave diffraction

    NASA Astrophysics Data System (ADS)

    Corradini, M. L.; Garbuglia, M.; Maponi, P.; Ruggeri, M.

    2016-06-01

    This paper intends to show a model for the diffraction of sea waves approaching an OWC device, which converts the sea waves motion into mechanical energy and then electrical energy. This is a preliminary study to the optimisation of the device, in fact the computation of sea waves diffraction around the device allows the estimation of the sea waves energy which enters into the device. The computation of the diffraction phenomenon is the result of a sea waves scattering problem, solved with an integral equation method.

  5. Strain Determination Using Electron Backscatter Diffraction

    SciTech Connect

    Krause, M.; Graff, A.; Altmann, F.

    2010-11-24

    In the present paper we demonstrate the use of electron backscatter diffraction (EBSD) for high resolution elastic strain determination. Here, we focus on analysis methods based on determination of small shifts in EBSD pattern with respect to a reference pattern using cross-correlation algorithms. Additionally we highlight the excellent spatial and depth resolution of EBSD and introduce the use of simulated diffraction patterns based on dynamical diffraction theory for sensitivity estimation. Moreover the potential of EBSD for strain analysis of strained thin films with particular emphasis on appropriate target preparation which respect to occurring lattice defects is demonstrated.

  6. Theory of hard diffraction and rapidity gaps

    SciTech Connect

    Del Duca, V.

    1996-02-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). {copyright} {ital 1996 American Institute of Physics.}

  7. Final Report: Algorithms for Diffractive Microscopy

    SciTech Connect

    Elser, Veit

    2010-10-08

    The phenomenal coherence and brightness of x-ray free-electron laser light sources, such as the LCLS at SLAC, have the potential of revolutionizing the investigation of structure and dynamics in the nano-domain. However, this potential will go unrealized without a similar revolution in the way the data are analyzed. While it is true that the ambitious design parameters of the LCLS have been achieved, the prospects of realizing the most publicized goal of this instrument — the imaging of individual bio-particles — remains daunting. Even with 10{sup 12} photons per x-ray pulse, the feebleness of the scattering process represents a fundamental limit that no amount of engineering ingenuity can overcome. Large bio-molecules will scatter on the order of only 10{sup 3} photons per pulse into a detector with 106 pixels; the diffraction “images” will be virtually indistinguishable from noise. Averaging such noisy signals over many pulses is not possible because the particle orientation cannot be controlled. Each noisy laser snapshot is thus confounded by the unknown viewpoint of the particle. Given the heavy DOE investment in LCLS and the profound technical challenges facing single-particle imaging, the final two years of this project have concentrated on this effort. We are happy to report that we succeeded in developing an extremely efficient algorithm that can reconstruct the shapes of particles at even the extremes of noise expected in future LCLS experiments with single bio-particles. Since this is the most important outcome of this project, the major part of this report documents this accomplishment. The theoretical techniques that were developed for the single-particle imaging project have proved useful in other imaging problems that are described at the end of the report.

  8. High-resolution projection image reconstruction of thick objects by hard x-ray diffraction microscopy

    SciTech Connect

    Takahashi, Yukio; Nishino, Yoshinori; Tsutsumi, Ryosuke; Zettsu, Nobuyuki; Matsubara, Eiichiro; Yamauchi, Kazuto; Ishikawa, Tetsuya

    2010-12-01

    Hard x-ray diffraction microscopy enables us to observe thick objects at high spatial resolution. The resolution of this method is limited, in principle, by only the x-ray wavelength and the largest scattering angle recorded. As the resolution approaches the wavelength, the thickness effect of objects plays a significant role in x-ray diffraction microscopy. In this paper, we report high-resolution hard x-ray diffraction microscopy for thick objects. We used highly focused coherent x rays with a wavelength of {approx}0.1 nm as an incident beam and measured the diffraction patterns of a {approx}150-nm-thick silver nanocube at the scattering angle of {approx}3 deg. We observed a characteristic contrast of the coherent diffraction pattern due to only the thickness effect and collected the diffraction patterns at nine incident angles so as to obtain information on a cross section of Fourier space. We reconstructed a pure projection image by the iterative phasing method from the patched diffraction pattern. The edge resolution of the reconstructed image was {approx}2 nm, which was the highest resolution so far achieved by x-ray microscopy. The present study provides us with a method for quantitatively observing thick samples at high resolution by hard x-ray diffraction microscopy.

  9. Diffractive optics fabricated by direct write methods with an electron beam

    NASA Technical Reports Server (NTRS)

    Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.

    1993-01-01

    State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.

  10. Sub-wavelength optical diffraction and photoacoustic metrologies for the characterisation of nanoimprinted structures

    NASA Astrophysics Data System (ADS)

    Kehoe, T.; Bryner, J.; Reboud, V.; Kehagias, N.; Landis, S.; Gourgon, C.; Vollmann, J.; Dual, J.; Sotomayor Torres, C. M.

    2008-03-01

    We report on the use of two original techniques for the quality evaluation of nanoimprint lithography with 50 nm feature size: sub-wavelength blazed diffraction gratings and photoacoustic metrology. Sub-wavelength diffraction has been used to characterise nanoscale structures by studying the diffraction patterns of visible wavelengths of light from gratings which are made up of features below the diffraction limit. Diffraction efficiencies of the diffracted orders are related to the nanoscale line-widths, heights and defects of the gratings. A stamp of a sub-wavelength blazed grating was fabricated by electron beam lithography and reactive ion etching in silicon and imprinted by NIL with different tools. Measured diffraction efficiencies agree with those from finite difference time domain simulations and we demonstrated the possibility to distinguish diffraction patterns from successfully imprinted gratings and those with a defect. The photoacoustic method has been used for the first time to study nanoimprint polymers. Signals were obtained from the top and bottom interfaces of polymer layers with aluminium and silicon, respectively, and thicknesses calculated from the time of flight of the acoustic wave and modelling physical parameters of the polymers, agree well with those measured by profilometry.

  11. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    PubMed Central

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; Lima, Enju; Marchesini, Stefano; Miao, Huijie; Neiman, Aaron M.; Shapiro, David; Steinbrener, Jan; Stewart, Andrew; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below −170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics. PMID:20365955

  12. Phase sensitive x-ray diffraction imaging of defects in biological macromolecular crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Lai, B.; Chu, Y. S.; Cai, Z.; Mancini, D. C.; Thomas, B. R.; Chernov, A. A.

    2001-01-01

    Conventional x-ray diffraction topography is currently used to map defects in the bulk of protein crystals, but the lack of sufficient contrast is frequently a limiting factor. We experimentally demonstrate that this barrier can be circumvented using a method that combines phase sensitive and diffraction imaging principles. Details of defects revealed in tetragonal lysozyme and cubic ferritin crystals are presented and discussed. The approach enabling the detection of the phase changes of diffracted x rays should prove to be useful in the study of defect structures in a broad range of biological macromolecular crystals.

  13. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE PAGESBeta

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; Lima, Enju; Marchesini, Stefano; Miao, Huijie; Neiman, Aaron M.; Shapiro, David; Steinbrener, Jan; Stewart, Andrew; et al

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  14. Simulation and study of Fresnel diffraction for arbitrary two-dimensional apertures

    SciTech Connect

    Dauger, D.E.

    1996-11-01

    A stable, efficient algorithm to calculate numerically a Fresnel diffraction image, given any two-dimensional aperture or obstacle, is introduced. The algorithm predicts both the intensity and relative phase of the image. An alternate faster algorithm is presented for a limited class of apertures. Also examined are images formed from a variety of aperture shapes. Using this computational technique, plots on the complex plane are shown to give insight into Fresnel diffraction. With additional modifications to accept parameters from an experimental apparatus, the algorithms model Fresnel diffraction for laboratory situations. In addition, the algorithms are suitable for numerical implementation on personal computers. {copyright} {ital 1996 American Institute of Physics.}

  15. Superimposed nanostructured diffraction gratings as high capacity barcodes for biological and chemical applications

    NASA Astrophysics Data System (ADS)

    Birtwell, S. W.; Galitonov, G. S.; Morgan, H.; Zheludev, N. I.

    2008-04-01

    We describe a new non-contact high capacity optical tagging technique for bead based assays, based on the use of nanostructured barcodes. The tags are generated from a number of superimposed diffraction gratings. With one-dimensional diffraction, capacity for up to 68,000 distinguishable tags has been demonstrated, with a theoretical capacity of up to 10 9 tags. Extension into two dimensions increases this theoretical limit to 10 21 tags.

  16. Optical diffraction by inhomogeneous volume objects

    NASA Astrophysics Data System (ADS)

    Forte, Gustavo; Lencina, Alberto; Tebaldi, Myrian; Bolognini, Nestor

    2008-08-01

    Electromagnetic waves propagation research in volume media increases considerably in the last years. The study evolved from thick hologram gratings, Bragg and Raman-Nath diffraction regimes up to current research in photonics materials. Usually differential methods are employed to account for the light transmitted for volume media. In our proposal, we develop a simple and versatile integral method to calculate the diffracted field provided the media refractive index has low variations in a wavelength scale. In fact, starting from first principles, we obtain a modified version of the Fresnel propagator of the scalar diffraction theory. Our method is valid for some kind of magnetic, dielectric and absorbent inhomogeneous media. In particular, for TE (TM) fields, we can study media where the permittivity (permeability) gradient is perpendicular to the electric (magnetic) field and its permeability (permittivity) is constant. To validate the approach, we applied it to (in) homogeneous media having well known diffraction properties.

  17. High-diffraction-efficiency pseudorandom encoding.

    PubMed

    Yang, Y; Stark, H; Gurkan, D; Lawson, C L; Cohn, R W

    2000-02-01

    Pseudorandom encoding (PRE) is a statistics-based procedure in which a pure-phase spatial light modulator (SLM) can yield, on the average, the prescribed diffraction pattern specified by the user. We seek to combine PRE with the optimization of an aperture-based target function. The target function is a fully complex input transmittance, unrealizable by a phase-only SLM, that generates a prescribed light intensity. The optimization is done to increase the diffraction efficiency of the overall process. We compare three optimization methods-Monte Carlo simulation, a genetic algorithm, and a gradient search-for maximizing the diffraction efficiency of a spot-array generator. Calculated solutions are then encoded by PRE, and the resulting diffraction patterns are computer simulated. Details on the complexity of each procedure are furnished, as well as comparisons on the quality, such as uniformity of the output spot array. PMID:10680630

  18. Tension in the LHC diffractive data?

    SciTech Connect

    Gotsman, Errol

    2015-04-10

    I discuss the LHC diffractive data, and compare it to predicted energy behaviour of various models. I suggest that the so called 'tension' between the experimental results, maybe due to the different Monte Carlo programs used.

  19. An Electronic Analog of the Diffraction Grating.

    ERIC Educational Resources Information Center

    MacLeod, A. M.

    1978-01-01

    Gives an outline description of electronic circuitry which is analogous to the optical diffraction grating or to crystals used in the Bragg reflection of X-rays or electron waves, and explains how to use it. (Author/GA)

  20. Electron Diffraction of Superfluid Helium Droplets

    PubMed Central

    2014-01-01

    We present experimental results of electron diffraction of superfluid helium droplets and droplets doped with phthalocyanine gallium chloride and discuss the possibility of performing the same experiment with a laser aligned sample. The diffraction profile of pure droplets demonstrates dependence on the nozzle temperature, that is, on the average size of the droplets. Larger clusters demonstrate faster decay with increasing momentum transfer, whereas smaller clusters converge to isolated gas phase molecules at source temperatures of 18 K and higher. Electron diffraction of doped droplets shows similar modified molecular scattering intensity as that of the corresponding gas phase molecules. On the basis of fittings of the scattering profile, the number of remaining helium atoms of the doped droplets is estimated to be on the order of hundreds. This result offers guidance in assessing the possibility of electron diffraction from laser aligned molecules doped in superfluid helium droplets. PMID:24920997

  1. Electron backscatter diffraction: applications for nuclear materials.

    PubMed

    Medevielle; Hugon; Dugne

    1999-09-01

    The diffraction of electrons was first observed in 1928 by Kikuchi. The phenomenon results in the formation of characteristic diagrams of the crystalline lattice and the orientation of the phase. Backscattered electrons are diffracted by the different crystallographic planes (hkl) according to the Bragg angle thetab. These describe, by symmetry, two cones of axes normal to the diffracting plane. Information is collected on a phosphor screen, leading to the acquisition of a diffraction pattern called a Kikuchi diagram. Several improvements now give a wide range of applications such as phase identification (carbides or complex compounds in a (U,Zr,O) structure), analysis of materials interfaces (ZrO2/UO2), as well as solidification studies and local texture determination (molybdenum sheets). In these applications, EBSD, as a type of quantitative metallography, is a powerful tool. PMID:10460689

  2. Diffraction for a Neumann boundary condition

    SciTech Connect

    Lafitte, O.

    1997-11-01

    Let 0 be a bounded open set in R{sup n} and P be a constant coefficient operator of order 2 in R{sup n} x R{sub t} such that (P, {Omega}{sup c}) admits a strictly diffractive point. We calculate in this paper the principal symbol of the operator K transforming {partial_derivative}{sub n}u into u/{sub {partial_derivative}{Omega}} for a solution u of Pu = 0 in the neighborhood of a strictly diffractive point {rho}{sub 0} for (P, {Omega}{sup c}). We deduce from this calculation the principal symbol of the wave diffracted by a strictly convex analytic obstacle with a Neumann boundary condition. This result is used to calculate the electromagnetic wave diffracted by a perfectly conducting body. 7 refs., 2 figs.

  3. Mesoscale Diffractive Photonics in Geosciences

    NASA Astrophysics Data System (ADS)

    Minin, I. V.; Minin, O. V.

    2016-06-01

    The scattered light by various dielectric particles in atmosphere give information about the type of molecules and particles and their location, which are important to definition of propagation limitations through atmospheric and space weather variations, crisis communications, etc. Although these investigations explain far field properties of disturbed radiations, the solution of the physical problem requires simulations of the interactions in near-field. It has been shown that strongly localized EM field near the surface of single dielectric particle may be form by non-spherical and non-symmetrical mesoscale particles both as in transmitting as in reflection mode. It was also shown that the main lobe is narrower in case of 3 cube chain than single cube in far field, but there are many side-scattering lobes. It was mentioned that unique advantages provided by mesoscale dielectric photonic crystal based particles with three spatial dimensions of arbitrary shape allow developing a new types of micro/nano-probes with subwavelength resolution for ultra compact spectrometer-free sensor for on board a spacecraft or a plane.

  4. Dual-domain point diffraction interferometer.

    PubMed

    Naulleau, P P; Goldberg, K A

    1999-06-01

    The phase-shifting point diffraction interferometer has recently been developed and implemented at Lawrence Berkeley National Laboratory to meet the significant metrology challenge of characterizing extreme ultraviolet projection lithography systems. Here we present a refined version of this interferometer that overcomes the original design's susceptibility to noise attributed to scattered light. The theory of the new hybrid spatial- and temporal-domain (dual-domain) point diffraction interferometer is described in detail and experimental results are presented. PMID:18319953

  5. Breakdown of QCD factorization in hard diffraction

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.

    2016-07-01

    Factorization of short- and long-distance interactions is severely broken in hard diffractive hadronic collisions. Interaction with the spectator partons leads to an interplay between soft and hard scales, which results in a leading twist behavior of the cross section, on the contrary to the higher twist predicted by factorization. This feature is explicitly demonstrated for diffractive radiation of abelian (Drell-Yan, gauge bosons, Higgs) and non-abelian (heavy flavors) particles.

  6. Nuclear diffractive structure functions at high energies

    SciTech Connect

    Marquet,C.; Kowalski, H.; Lappi, T.; Venugopalan, R.

    2008-08-08

    A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F{sub 2,A}{sup D} is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

  7. Simulating interference and diffraction in instructional laboratories

    NASA Astrophysics Data System (ADS)

    Maurer, L.

    2013-03-01

    Studieshave shown that standard lectures and instructional laboratory experiments are not effective at teaching interference and diffraction. In response, the author created an interactive computer program that simulates interference and diffraction effects using the finite difference time domain method. The software allows students to easily control, visualize and quantitatively measure the effects. Students collected data from simulations as part of their laboratory exercise, and they performed well on a subsequent quiz, showing promise for this approach.

  8. Observation of hard diffraction with CMS

    SciTech Connect

    Obertino, M. M.

    2009-03-23

    Diffraction with a hard scale can be observed in the first LHC data. We present studies of single diffractive W-boson production (pp{yields}Xp, with X including a W boson) and of {upsilon} photoproduction (pp{yields}{upsilon}p, with {upsilon}{yields}{mu}{sup +}{mu}{sup -}). The feasibility of observing these processes with the CMS detector using the first 100 pb{sup -1} of collected integrated luminosity for single interactions is discussed.

  9. Family Limitation

    PubMed Central

    Smith, Robert

    1966-01-01

    Dr Robert Smith surveys the history of birth control and sounds a warning for the future of mankind, if the population explosion is allowed to continue unchecked. He stresses the importance of the role of the general practitioner in the limitation of births. Sir Theodore Fox describes the work of the Family Planning Association and stresses that, increasingly, this is a specialist service covering all aspects of fertility. He also feels that the general practitioner has a role in family planning. PMID:5954261

  10. Future of Electron Scattering and Diffraction

    SciTech Connect

    Hall, Ernest; Stemmer, Susanne; Zheng, Haimei; Zhu, Yimei; Maracas, George

    2014-02-25

    spectroscopy with high spatial resolution without damaging their structure. The strong interaction of electrons with matter allows high-energy electron pulses to gather structural information before a sample is damaged. Electron ScatteringImaging, diffraction, and spectroscopy are the fundamental capabilities of electron-scattering instruments. The DOE BES-funded TEAM (Transmission Electron Aberration-corrected Microscope) project achieved unprecedented sub-atomic spatial resolution in imaging through aberration-corrected transmission electron microscopy. To further advance electron scattering techniques that directly enable groundbreaking science, instrumentation must advance beyond traditional two-dimensional imaging. Advances in temporal resolution, recording the full phase and energy spaces, and improved spatial resolution constitute a new frontier in electron microscopy, and will directly address the BES Grand Challenges, such as to “control the emergent properties that arise from the complex correlations of atomic and electronic constituents” and the “hidden states” “very far away from equilibrium”. Ultrafast methods, such as the pump-probe approach, enable pathways toward understanding, and ultimately controlling, the chemical dynamics of molecular systems and the evolution of complexity in mesoscale and nanoscale systems. Central to understanding how to synthesize and exploit functional materials is having the ability to apply external stimuli (such as heat, light, a reactive flux, and an electrical bias) and to observe the resulting dynamic process in situ and in operando, and under the appropriate environment (e.g., not limited to UHV conditions). To enable revolutionary advances in electron scattering and science, the participants of the workshop recommended three major new instrumental developments: A. Atomic-Resolution Multi-Dimensional Transmission Electron Microscope: This instrument would provide quantitative information over the entire real space

  11. FESDIF -- Finite Element Scalar Diffraction theory code

    SciTech Connect

    Kraus, H.G.

    1992-09-01

    This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.

  12. Diffraction Effects in a Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    This paper describes a numerical study of diffraction effects in the AIRES optical system using GLAD by Applied Optics Research. AIRES (or Airborne Infrared Echelle Spectrometer) employs two gratings in series. The small, first-order (i.e., predisperser) grating sorts orders for the large, high-order echelle grating, thus providing moderately high spectral resolution over 3.6 octaves in wavelength. The AIRES' optical design includes three field stops (i.e., a circular aperture and two long, narrow slits) and four pupil stops. A detailed diffraction analysis is required to evaluate critical trade-offs between spectral resolution, optical throughput, detector background, scattered light, and system size and weight. Such an analysis must consider diffraction effects at the pupil stops (edge diffraction), at the field stops (spatial filtering), and at intermediate positions where other optical elements are located. The effects of slit width, slit length, oversizing of the second slit relative to the first, baffling at the Lyot stop and subsequent pupil stops, and the necessity for oversizing other optical elements are presented and discussed. It is found that for narrow slits, the downstream energy distribution is significantly broadened relative to that for large slits, where telescope diffraction dominates, leading to significantly more light loss than anticipated, unless other key optical elements are oversized. The importance of performing a proper diffraction analysis is emphasized and the suitability of GLAD for this task is discussed.

  13. Cloning and characterization of a novel stress-responsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells.

    PubMed

    Shekhawat, Upendra K Singh; Ganapathi, Thumballi R; Srinivas, Lingam

    2011-08-01

    WRKY transcription factor proteins play significant roles in plant stress responses. Here, we report the cloning and characterization of a novel WRKY gene, MusaWRKY71 isolated from an edible banana cultivar Musa spp. Karibale Monthan (ABB group). MusaWRKY71, initially identified using in silico approaches from an abiotic stress-related EST library, was later extended towards the 3' end using rapid amplification of cDNA ends technique. The 1299-bp long cDNA of MusaWRKY71 encodes a protein with 280 amino acids and contains a characteristic WRKY domain in the C-terminal half. Although MusaWRKY71 shares good similarity with other monocot WRKY proteins the substantial size difference makes it a unique member of the WRKY family in higher plants. The 918-bp long 5' proximal region determined using thermal asymmetric interlaced-polymerase chain reaction has many putative cis-acting elements and transcription factor binding motifs. Subcellular localization assay of MusaWRKY71 performed using a GFP-fusion platform confirmed its nuclear targeting in transformed banana suspension cells. Importantly, MusaWRKY71 expression in banana plantlets was up-regulated manifold by cold, dehydration, salt, ABA, H2O2, ethylene, salicylic acid and methyl jasmonate treatment indicating its involvement in response to a variety of stress conditions in banana. Further, transient overexpression of MusaWRKY71 in transformed banana cells led to the induction of several genes, homologues of which have been proven to be involved in diverse stress responses in other important plants. The present study is the first report on characterization of a banana stress-related transcription factor using transformed banana cells. PMID:21110110

  14. Overview Of Diffractive Optics At Honeywell

    NASA Astrophysics Data System (ADS)

    Cox, J. Allen

    1988-05-01

    Interest in holographic, or diffractive, optics has been rekindled in the last few years with demonstrated advances in three areas: computer-aided design (CAD) tools, VLSI lithographic and dry etching processes, and mathematical modeling of diffractive elements.1 The availability of CAD tools and electron-beam lithography led first to the emergence of computer-generated holography (CGH). CGH work at Honeywell was started and brought to maturity by Arnold2 in 1980-1983. However, because of the inherently low diffraction efficiency (-10%), lithographic CGHs have found a place in only a relatively few practical applications, such as testing diamond turned aspherics, and thus CGHs have not been widely accepted within industry. The first step in changing this situation came in the 1970s with numerical approaches to rigorously solve the vector field equations for diffraction from blazed gratings.3 The extensive numerical results from these models not only showed that high diffraction efficiencies are possible with etched surface profiles, but also indicated the sensitivity to various profile configurations and design parameters. Veldkamp et al.1,4'-'61 at MIT Lincoln Laboratories have taken the final step necessary to establish the practical feasibility of diffractive optics by using reactive ion etching techniques to produce the surface profiles prescribed by the numerical models and delineated by CGH lithographic masks. With this combined approach, they have demonstrated the feasibility of high-efficiency diffractive elements for a variety of diverse applications, such as the CO2 laser radar telescope,4 coherent beam addition of laser diode arrays,5 and on-axis, broadband, aspheric lens elements for infrared imagers.6 These elements are fabricated using well-established VLSI lithographic and dry etching techniques. Moreover, the ability to replicate each diffractive element provides the potential for high-volume, low-cost producibility. With this precedent, Honeywell

  15. The impact of novel 3D diffraction optics development

    NASA Astrophysics Data System (ADS)

    Firsov, Alexander; Brzhezinskaya, Maria; Loechel, Heike; Siewert, Frank; Erko, Alexei

    2013-05-01

    Dedicated diffractive VUV- and X-ray optical elements are essential for future developments in synchrotron instrumentation and methods like e.g. time-resolved spectroscopy. The quality of optical components like gratings or diffractive focusing elements matters directly to the results achievable. On the other hand the availability of such optical components is very limited at present. In this contribution we report on the development of new methods of time-resolved x-ray spectroscopy based on novel 3D diffractive optical elements (DOE) with a unique combination of properties. Such optical elements are of highest interest for application in modern synchrotron facilities like Free Electron Lasers (FELs) as well as for laboratory facilities with high harmonic generators (HHG). The project includes theoretical work as well as the development of a dedicated technology, including metrology, to manufacture such type of optics for applications in atomic, molecular and condensed matter physics. The here discussed type of optics was successfully implemented for soft-X-ray-application at the femto-second-slicing beamline at BESSY II storage ring of the Helmholtz Zentrum Berlin. DOE are expected to be important components in beamlines at upcoming new high brilliance X-ray sources such as FELs. The application of DOE`s allows to reduce the number of optical elements in a beamline. Thus allow to provide the highest possible transmission and flux as well as preserving the unique properties of FEĹs, like wave-front and coherence.

  16. Cryogenic X-ray Diffraction Microscopy for Biological Samples

    SciTech Connect

    E Lima; L Wiegart; P Pernot; M Howells; J Timmins; F Zontone; A Madsen

    2011-12-31

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  17. Aplanatic grazing incidence diffraction grating: a new optical element

    SciTech Connect

    Hettrick, M.C.

    1986-09-15

    We present the theory of a grazing incidence reflection grating capable of imaging at submicron resolution. The optic is mechanically ruled on a spherical or cylindrical surface with varied groove spacings, delivering diffraction-limited response and a wide field of view at a selected wavelength. Geometrical aberrations are calculated on the basis of Fermat's principle, revealing significant improvements over a grazing incidence mirror. Aplanatic and quasi-aplanatic versions of the grating have applications in both imaging and scanning microscopes, microprobes, collimators, and telescopes. A 2-D crossed system of such gratings, similar to the grazing incidence mirror geometry of Kirkpatrick and Baez, could potentially provide spatial resolutions of --200 A.

  18. Biological imaging by soft X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen

  19. Validation of three-dimensional diffraction contrast tomography reconstructions by means of electron backscatter diffraction characterization

    PubMed Central

    Syha, Melanie; Trenkle, Andreas; Lödermann, Barbara; Graff, Andreas; Ludwig, Wolfgang; Weygand, Daniel; Gumbsch, Peter

    2013-01-01

    Microstructure reconstructions resulting from diffraction contrast tomography data of polycrystalline bulk strontium titanate were reinvestigated by means of electron backscatter diffraction (EBSD) characterization. Corresponding two-dimensional grain maps from the two characterization methods were aligned and compared, focusing on the spatial resolution at the internal interfaces. The compared grain boundary networks show a remarkably good agreement both morphologically and in crystallographic orientation. Deviations are critically assessed and discussed in the context of diffraction data reconstruction and EBSD data collection techniques. PMID:24046507

  20. Structured illumination diffraction phase microscopy for broadband, sub-diffraction resolution, quantitative phase imaging

    PubMed Central

    Chowdhury, Shwetadwip; Izatt, Joseph A.

    2015-01-01

    Structured illumination microscopy (SIM) is an established technique that allows sub-diffraction resolution imaging by heterodyning high sample frequencies into the system’s passband via structured illumination. However, until now, SIM has been typically used to achieve sub-diffraction resolution for intensity-based imaging. Here, we present a novel optical setup that uses structured illumination with a broadband-light source to obtain noise-reduced, sub-diffraction resolution, quantitative-phase (QPM) imaging of cells. We compare this with a previous work for sub-diffraction QPM imaging via SIM that used a laser source, and was thus still corrupted by coherent noise. PMID:24562266