Science.gov

Sample records for abbott cardiovascular systems

  1. 76 FR 4283 - Foreign-Trade Zone 153-San Diego, CA; Application for Manufacturing Authority; Abbott...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Foreign-Trade Zones Board Foreign-Trade Zone 153--San Diego, CA; Application for Manufacturing Authority; Abbott Cardiovascular Systems, Inc. (Cardiovascular Device Manufacturing); Riverside County, CA An... of FTZ 153, requesting manufacturing authority on behalf of Abbott Cardiovascular Systems,...

  2. [Thyroid and cardiovascular system].

    PubMed

    Gallowitsch, Hans-Jürgen

    2005-10-01

    The cardiocirculatory changes in hyperthyroidism seem to be an accommodation to the increased metabolic demands and lead to an increased perfusion of the peripheral tissues. Due to the influence of elevated thyroid hormone levels, contractility, stroke volume, resting heart rate, and contraction and relaxation velocity of the left ventricle increase. Caused by direct effect on the smooth vascular muscle, systemic vascular resistance is decreased with the consequence of a diminished afterload and an increased cardiac efficiency. The activation of the renin-angiotensin-aldosteron system and the increased production of erythropoietin additionally lead to an increased blood volume, which increases cardiac preload together with the increased venous backflow. Manifest hypothyroidism is characterized by bradycardia and diastolic dysfunction in rest and systolic dysfunction at stress. Despite a slight increase of diastolic blood pressure due to an increased systemic vascular resistance, blood pressure remains nearly stable because of diminished cardiac output. Hypercholesterinaemia and diastolic hypertension in hypothyroid patients can lead to the development of arteriosclerosis and coronary heart disease (CHD). Also subclinical hypothyroidism is associated with a significantly higher risk for arteriosclerosis and CHD, whereas subclinical hyperthyroidism seems to be associated with an increased mortality for all reasons, especially for cardiovascular diseases.

  3. Arrestins in the cardiovascular system.

    PubMed

    Lymperopoulos, Anastasios; Bathgate, Ashley

    2013-01-01

    Of the four mammalian arrestins, only the β-arrestins (βarrs; Arrestin2 and -3) are expressed throughout the cardiovascular system, where they regulate, as either desensitizers/internalizers or signal transducers, several G-protein-coupled receptors (GPCRs) critical for cardiovascular homeostasis. The cardiovascular roles of βarrs have been delineated at an accelerated pace via a variety of techniques and tools, such as knockout mice, siRNA knockdown, artificial or naturally occurring polymorphic GPCRs, and availability of new βarr "biased" GPCR ligands. This chapter summarizes the current knowledge of cardiovascular arrestin physiology and pharmacology, addressing the individual cardiovascular receptors affected by βarrs in vivo, as well as the individual cell types, tissues, and organs of the cardiovascular system in which βarr effects are exerted; for example, cardiac myocyte or fibroblast, vascular smooth muscle, adrenal gland and platelet. In the broader scope of cardiovascular βarr pharmacology, a discussion of the βarr "bias" of certain cardiovascular GPCR ligands is also included.

  4. [Cardiovascular system and aging].

    PubMed

    Saner, H

    2005-12-01

    Aging is one of the most important cardiovascular risk factors. Age-related morphologic changes in large resistance vessels include an intima-media-thickening and increased deposition of matrix substance, ultimately leading to a reduced compliance and an increased stiffness of the vessels. Aging of the heart is mainly characterized by an increase of the left ventricular mass in relation to the chamber volume and a decrease of diastolic function. There is some controversy in regard to the question if these changes in the vessel wall are the consequence of aging or if a decrease in physical activity is a major contributor of this process. With age the cardiovascular profile is changing. Whereas smoking is less prominent, arterial hypertension and diabetes mellitus are more often encountered. Primary and secondary prevention through cardiovascular risk factor management is also very important in the aging population due to the increased risk of acute vascular complications with age. Preventive measures have to include life style factor interventions as well as optimized drug therapy. There is no scientific evidence that vascular aging can be prevented by administration of supplements such as antioxidant vitamins. Aspirin is effective for cardiovascular prevention up to a higher age. Betablockers and ACE-inhibitors are generally underused in older patients after myocardial infarctions. Statins are effective in reducing cardiovascular complications up to an age of 80 years. Myocardial infarction in elderly patients is often characterized by atypical symptoms and may be even silent. Interventional therapy in elderly patients is as successful as in younger patients but has an increased complication rate. Ambulatory cardiac rehabilitation in elderly patients leads to significant improvements of physical capacity, well-being and quality of life and may help to prevent social isolation.

  5. Glucocorticoids and the Cardiovascular System.

    PubMed

    Goodwin, Julie E

    2015-01-01

    Glucocorticoids affect the developing and mature cardiovascular system in profound and, at times, contradictory ways. The glucocorticoid receptor is ubiquitous in most cell types and conserved across species, highlighting its importance in development and homeostasis. Despite the fact that the glucocorticoid receptor is widely expressed, tissue-specific effects of glucocorticoids may have pronounced effects on whole organism phenotypes. Here we will review the interactions between glucocorticoids and the cardiovascular system.

  6. Lymphatic System in Cardiovascular Medicine.

    PubMed

    Aspelund, Aleksanteri; Robciuc, Marius R; Karaman, Sinem; Makinen, Taija; Alitalo, Kari

    2016-02-05

    The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease.

  7. Abbott Preschool Program Longitudinal Effects Study: Fifth Grade Follow-Up

    ERIC Educational Resources Information Center

    Barnett, W. Steven; Jung, Kwanghee; Youn, Min-Jong; Frede, Ellen C.

    2013-01-01

    New Jersey's Abbott Preschool program is of broad national and international interest because the Abbott program provides a model for building a high-quality system of universal pre-K through public-private partnerships that transform the existing system. The program offers high-quality pre-K to all children in 31 New Jersey communities with high…

  8. Nitric oxide and cardiovascular system.

    PubMed

    Cengel, Atiye; Sahinarslan, Asife

    2006-12-01

    Endothelium has many important functions including the control of blood-tissue permeability and vascular tonus, regulation of vascular surface properties for homeostasis and inflammation. Nitric oxide is the chief molecule in regulation of endothelial functions. Nitric oxide deficiency, which is also known as endothelial dysfunction, is the first step for the occurrence of many disease states in cardiovascular system including heart failure, hypertension, dyslipidemia, insulin resistance, diabetes mellitus, hyperhomocysteinemia and smoking. This review deals with the importance of nitric oxide for cardiovascular system. It also includes the latest improvements in the diagnosis and treatment of endothelial dysfunction.

  9. PPARs and the cardiovascular system.

    PubMed

    Hamblin, Milton; Chang, Lin; Fan, Yanbo; Zhang, Jifeng; Chen, Y Eugene

    2009-06-01

    Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone-receptor superfamily. Originally cloned in 1990, PPARs were found to be mediators of pharmacologic agents that induce hepatocyte peroxisome proliferation. PPARs also are expressed in cells of the cardiovascular system. PPAR gamma appears to be highly expressed during atherosclerotic lesion formation, suggesting that increased PPAR gamma expression may be a vascular compensatory response. Also, ligand-activated PPAR gamma decreases the inflammatory response in cardiovascular cells, particularly in endothelial cells. PPAR alpha, similar to PPAR gamma, also has pleiotropic effects in the cardiovascular system, including antiinflammatory and antiatherosclerotic properties. PPAR alpha activation inhibits vascular smooth muscle proinflammatory responses, attenuating the development of atherosclerosis. However, PPAR delta overexpression may lead to elevated macrophage inflammation and atherosclerosis. Conversely, PPAR delta ligands are shown to attenuate the pathogenesis of atherosclerosis by improving endothelial cell proliferation and survival while decreasing endothelial cell inflammation and vascular smooth muscle cell proliferation. Furthermore, the administration of PPAR ligands in the form of TZDs and fibrates has been disappointing in terms of markedly reducing cardiovascular events in the clinical setting. Therefore, a better understanding of PPAR-dependent and -independent signaling will provide the foundation for future research on the role of PPARs in human cardiovascular biology.

  10. Ghrelin and the cardiovascular system.

    PubMed

    Isgaard, Jörgen

    2013-01-01

    Although ghrelin was initially associated with regulation of appetite, the cardiovascular system has also been recognized as a potentially important target for its effects. Moreover, experimental and a limited number of clinical studies suggest a potential role for ghrelin in the treatment of congestive heart failure. So far, reported cardiovascular effects of growth hormone secretagogues and/or ghrelin include lowering of peripheral resistance, either direct at the vascular level and/or by modulating sympathetic nervous activity. Other observed effects indicate possible improvement of contractility and cardioprotective and anti-inflammatory effects both in vivo and in vitro. Taken together, these results offer an interesting perspective on the future where further studies aiming at evaluating a role of growth hormone secretagogues and ghrelin in the treatment of cardiovascular disease are warranted.

  11. Bioengineering and the cardiovascular system

    PubMed Central

    Nerem, Robert M

    2013-01-01

    The development of the modern era of bioengineering and the advances in our understanding of the cardiovascular system have been intertwined over the past one-half century. This is true of bioengineering as an area for research in universities. Bioengineering is ultimately the beginning of a new engineering discipline, as well as a new discipline in the medical device industry. PMID:24688999

  12. Ghrelin and the cardiovascular system.

    PubMed

    Tokudome, Takeshi; Kishimoto, Ichiro; Miyazato, Mikiya; Kangawa, Kenj

    2014-01-01

    Ghrelin is a peptide that was originally isolated from the stomach. It exerts potent growth hormone (GH)-releasing and orexigenic activities. Several studies have highlighted the therapeutic benefits of ghrelin for the treatment of cardiovascular disease. In animal models of chronic heart failure, the administration of ghrelin improved cardiac function and remodeling; these findings were replicated in human patients with heart failure. Moreover, in an animal study, ghrelin administration effectively reduced pulmonary hypertension induced by chronic hypoxia. In addition, repeated administration of ghrelin to cachectic patients with chronic obstructive pulmonary disease had positive effects on overall body function, including muscle wasting, functional capacity and sympathetic activity. The administration of ghrelin early after myocardial infarction (MI) reduced fatal arrhythmia and related mortality. In ghrelin-deficient mice, both exogenous and endogenous ghrelin were protective against fatal arrhythmia and promoted remodeling after MI. Although the mechanisms underlying the effects of ghrelin on the cardiovascular system remain unclear, there are indications that its beneficial effects are mediated through both direct physiological actions, including increased GH levels, improved energy balance and direct actions on cardiovascular cells, and regulation of autonomic nervous system activity. Therefore, ghrelin is a promising novel therapeutic agent for cardiovascular disease.

  13. Biotypes of Candida albicans isolated from cardiovascular system and skin surveillance cultures of hospitalized patients.

    PubMed

    Vazić-Babić, Verica; Mlinarić-Missoni, Emilija; Kalenić, Smilja

    2006-01-01

    The aim of the study was to biotype 59 isolates of Candida (C.) albicans from cardiovascular system samples (blood and intravenous catheter) and 123 isolates of the same species from skin surveillance cultures (swabs of the armpit, groins and intravenous catheter insertion sites) of hospitalized patients using the Odds and Abbott biotyping method. Biotyping of 59 isolates of C. albicans taken from the cardiovascular system samples revealed the presence of 16 biotypes. Biotype 355 was the most common biotype, accounting for 35.6% of all biotype isolates from this system. Biotyping of 123 C. albicans isolates from skin surveillance cultures detected 21 biotypes. Biotype 355 was most common, accounting for 17.9% of all biotype isolates from these samples. The two systems had 10 biotypes in common: 355, 155, 257, 305, 105, 315, 300, 015, 157, and 345. These biotypes accounted for 88.3% and 81.4% of all C. albicans biotypes isolated from the cardiovascular system and skin surveillance cultures, respectively. Biotypes 355, 155, and 257 were the biotypes most frequently shared in isolates from the two systems. These biotypes accounted for 57.7% and 43.1% of all C. albicans biotypes isolated from the cardiovascular system and skin surveillance cultures, respectively.

  14. PET Radiotracers of the Cardiovascular System.

    PubMed

    Gropler, Robert J

    2009-01-01

    Cardiovascular PET provides exquisite measurements of key aspects of the cardiovascular system and as a consequence it plays central role in cardiovascular investigation. Moreover, PET is now playing an ever increasing role in the management of the cardiac patient. Central to the success of PET is the development and use of novel radiotracers that permit measurements of key aspects of cardiovascular health such as myocardial perfusion, metabolism, and neuronal function. Moreover, the development of molecular imaging radiotracers is now permitting the interrogation of cellular and sub cellular processes. This article highlights these various radiotracers and their role in both cardiovascular research and potential clinical applications.

  15. Partnering for Preschool: A Study of Center Directors in New Jersey's Mixed-Delivery Abbott Program. Research Report

    ERIC Educational Resources Information Center

    Whitebook, Marcy; Ryan, Sharon; Kipnis, Fran; Sakai, Laura

    2008-01-01

    In a series of New Jersey Supreme Court decisions known as Abbott v. Burke, the 28 (now 31) urban school districts serving the state's poorest students were ordered to create systems of high-quality preschool for all three- and four-year-old children, beginning in the 1999-2000 school year. The Abbott Preschool Program now serves approximately…

  16. [Altitude and the cardiovascular system].

    PubMed

    Richalet, Jean-Paul

    2012-06-01

    A stay at high altitude exposes an individual to various environmental changes (cold, exercise, isolation) but the most stressful for the body is hypoxia. However, the cardiovascular system yields some efficient mechanisms of acclimatization to oxygen lack. Hypoxia activates the adrenergic system and induces a tachycardia that decreases during a prolonged stay at altitude. The desensitization of the adrenergic system leads to a decrease in maximal heart rate and a protection of the myocardium against an energy disequilibrium that could be potentially harmful for the heart. Hypoxia induces a peripheral vasodilation and a pulmonary vasoconstriction, leading to few changes in systemic blood pressure and an increase in pulmonary blood pressure (PHT) that can contribute to a high altitude pulmonary edema. Advice to a cardiac patient who plans to go to high altitude should take into account that all diseases aggravated by increased adrenergic activity or associated with a PHT or a hypoxemia (right-to-left shunt) will be aggravated at high altitude. As altitude increases, a patient with a coronary disease will present an ischemic threshold for a lower power output during an EKG exercise test. The only test allowing predicting the tolerance to high altitude is the hypoxia exercise test realized at 30% of maxVO(2)and at an equivalent altitude of 4,800m.

  17. Estrogen actions in the cardiovascular system.

    PubMed

    Mendelsohn, M E

    2009-01-01

    This brief review summarizes the current state of the field for estrogen receptor actions in the cardiovascular system and the cardiovascular effects of hormone replacement therapy (HRT). It is organized into three parts: a short Introduction and overview of the current view of how estrogen works on blood vessels; a summary of the current status of clinical information regarding HRT and cardiovascular effects; and an update on state-of-the-art mouse models of estrogen action using estrogen receptor knockout mice.

  18. Avoidance of generic competition by Abbott Laboratories' fenofibrate franchise.

    PubMed

    Downing, Nicholas S; Ross, Joseph S; Jackevicius, Cynthia A; Krumholz, Harlan M

    2012-05-14

    The ongoing debate concerning the efficacy of fenofibrate has overshadowed an important aspect of the drug's history: Abbott Laboratories, the maker of branded fenofibrate, has produced several bioequivalent reformulations that dominate the market, although generic fenofibrate has been available for almost a decade. This continued use of branded formulations, which cost twice as much as generic versions of fenofibrate, imposes an annual cost of approximately $700 million on the US health care system. Abbott Laboratories maintained its dominance of the fenofibrate market in part through a complex switching strategy involving the sequential launch of branded reformulations that had not been shown to be superior to the first-generation product and patent litigation that delayed the approval of generic formulations. The small differences in dose of the newer branded formulations prevented their substitution with generics of older-generation products. As soon as direct generic competition seemed likely at the new dose level, where substitution would be allowed, Abbott would launch another reformulation, and the cycle would repeat. Based on the fenofibrate example, our objective is to describe how current policy can allow pharmaceutical companies to maintain market share using reformulations of branded medications, without demonstrating the superiority of next-generation products.

  19. Vitamin D and the cardiovascular system.

    PubMed

    Beveridge, L A; Witham, M D

    2013-08-01

    Vitamin D, a secosteroid hormone, affects multiple biological pathways via both genomic and nongenomic signalling. Several pathways have potential benefit to cardiovascular health, including effects on parathyroid hormone, the renin-angiotensin-aldosterone system, vascular endothelial growth factor and cytokine production, as well as direct effects on endothelial cell function and myocyte calcium influx. Observational data supports a link between low vitamin D metabolite levels and cardiovascular health. Cross-sectional data shows associations between low 25-hydroxyvitamin D levels and stroke, myocardial infarction, diabetes mellitus, hypertension, and heart failure. Longitudinal data also suggests a relationship with incident hypertension and new cardiovascular events. However, these associations are potentially confounded by reverse causality and by the effects that other cardiovascular risk factors have on vitamin D metabolite levels. Intervention studies to date suggest a modest antihypertensive effect of vitamin D, no effect on serum lipids, a small positive effect on insulin resistance and fasting glucose, and equivocal actions on arterial stiffness and endothelial function. Analysis of cardiovascular event data collected from osteoporosis trials does not currently show a clear signal for reduced cardiovascular events with vitamin D supplementation, but results may be confounded by the coadministration of calcium, and by the secondary nature of the analyses. Despite mechanistic and observational data that suggest a protective role for vitamin D in cardiovascular disease, intervention studies to date are less promising. Large trials using cardiovascular events as a primary outcome are needed before vitamin D can be recommended as a therapy for cardiovascular disease.

  20. Notch signaling in the developing cardiovascular system.

    PubMed

    Niessen, Kyle; Karsan, Aly

    2007-07-01

    The Notch proteins encompass a family of transmembrane receptors that have been highly conserved through evolution as mediators of cell fate. Recent findings have demonstrated a critical role of Notch in the developing cardiovascular system. Notch signaling has been implicated in the endothelial-to-mesenchymal transition during development of the heart valves, in arterial-venous differentiation, and in remodeling of the primitive vascular plexus. Mutations of Notch pathway components in humans are associated with congenital defects of the cardiovascular system such as Alagille syndrome, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and bicuspid aortic valves. This article focuses on the role of the Notch pathway in the developing cardiovascular system and congenital human cardiovascular diseases.

  1. Physics of the human cardiovascular system

    NASA Astrophysics Data System (ADS)

    Stefanovska, Aneta

    1999-01-01

    Contemporary measurement techniques permit the non-invasive observation of several cardiovascular functions, both from the central and peripheral points of view. We show that, within one cycle of blood through the cardiovascular system, the same dynamics characterizes heart function as well as blood flow in the capillary bed where cells exchange energy and matter. Analyses of several quite different signals derived from respiration, cardiac function and blood flow, all reveal the existence of five almost periodic frequency components. This result is interpreted as evidence that cardiovascular dynamics is governed by five coupled oscillators. The couplings provide co-ordination among the physiological processes involved, and are essential for efficient cardiovascular function. Understanding the dynamics of a system of five coupled oscillators not only represents a theoretical challenge, but also carries practical implications for diagnosis and for predicting the future behaviour of this life giving system.

  2. Exercise and the cardiovascular system.

    PubMed

    Golbidi, Saeid; Laher, Ismail

    2012-01-01

    There are alarming increases in the incidence of obesity, insulin resistance, type II diabetes, and cardiovascular disease. The risk of these diseases is significantly reduced by appropriate lifestyle modifications such as increased physical activity. However, the exact mechanisms by which exercise influences the development and progression of cardiovascular disease are unclear. In this paper we review some important exercise-induced changes in cardiac, vascular, and blood tissues and discuss recent clinical trials related to the benefits of exercise. We also discuss the roles of boosting antioxidant levels, consequences of epicardial fat reduction, increases in expression of heat shock proteins and endoplasmic reticulum stress proteins, mitochondrial adaptation, and the role of sarcolemmal and mitochondrial potassium channels in the contributing to the cardioprotection offered by exercise. In terms of vascular benefits, the main effects discussed are changes in exercise-induced vascular remodeling and endothelial function. Exercise-induced fibrinolytic and rheological changes also underlie the hematological benefits of exercise.

  3. Thyroid disease and the cardiovascular system.

    PubMed

    Danzi, Sara; Klein, Irwin

    2014-06-01

    Thyroid hormones, specifically triiodothyronine (T3), have significant effects on the heart and cardiovascular system. Hypothyroidism, hyperthyroidism, subclinical thyroid disease, and low T3 syndrome each cause cardiac and cardiovascular abnormalities through both genomic and nongenomic effects on cardiac myocytes and vascular smooth muscle cells. In compromised health, such as occurs in heart disease, alterations in thyroid hormone metabolism may further impair cardiac and cardiovascular function. Diagnosis and treatment of cardiac disease may benefit from including analysis of thyroid hormone status, including serum total T3 levels.

  4. [Alcohol and the cardiovascular system].

    PubMed

    Frenzel, H; Roth, H; Schwartzkopff, B

    1988-10-01

    Because of the high frequency of cardiovascular diseases and a steadily increasing consumption of alcohol the potentially causal relationship between alcohol and cardiovascular diseases gains great interest for public health policy. Alcohol and its metabolites induce a toxic damage of myocardial metabolism with an injury of electromechanic coupling. As a consequence of acute alcoholic intake cardiac arrhythmias and a reduced contractility of the myocardium are found not only for chronic alcoholics but also in healthy non-drinkers. Chronic abuse of alcoholic beverages for many years can be the cause of alcoholic cardiomyopathy in a small percentage of patients, who have a bad prognosis. Atria and ventricles are dilated, light and electron microscopic changes of the myocardium are unspecific. The pathogenesis of alcoholic cardiomyopathy is unknown, modulations of cardiomyocytic membranes are discussed in the course of a toxic damage. In the genesis of atherosclerosis alcohol can approach from different sites: Changings on thrombocytes and an increase of HDL-cholesterin can be protective, however an increase in blood pressure support the process of atherosclerosis. In numerous investigations a smaller degree of atherosclerosis was found for little or moderate alcohol intake, while in chronic heavy abuse of alcohol a higher extent of atherosclerosis was observed. As the amount of alcohol, assumed to be protective against the development of atherosclerosis, is consumed already by the majority of the population, there is no reason to propagate a regulate consume of moderate amount of alcoholic beverages.

  5. Sex hormones in the cardiovascular system.

    PubMed

    dos Santos, Roger Lyrio; da Silva, Fabrício Bragança; Ribeiro, Rogério Faustino; Stefanon, Ivanita

    2014-05-01

    Gender-associated differences in the development of cardiovascular diseases have been described in humans and animals. These differences could explain the low incidence of cardiovascular disease in women in the reproductive period, such as stroke, hypertension, and atherosclerosis. The cardiovascular protection observed in females has been attributed to the beneficial effects of estrogen on endothelial function. Besides estrogen, sex hormones are able to modulate blood pressure by acting on important systems as cardiovascular, renal, and neural. They can have complementary or antagonistic actions. For example, testosterone can raise blood pressure by stimulating the renin-angiotensin-aldosterone system, whereas estrogen alone or combined with progesterone has been associated with decreased blood pressure. The effects of testosterone in the development of cardiovascular disease are contradictory. Although some researchers suggest a positive effect, others indicate negative actions of testosterone. Estrogens physiologically stimulate the release of endothelium-derived vasodilator factors and inhibit the renin-angiotensin system. Although the cardioprotective effects of estrogen are widely appreciated, little is known about the effects of progesterone, which is commonly used in hormone replacement therapy. Progesterone has both vasodilatory and vasoconstrictive effects in the vasculature, depending on the location of the vessel and the level of exposure. Nevertheless, the mechanisms through which sex hormones modulate blood pressure have not been fully elucidated. Therefore, the characterization of those could lead to a better understanding of hypertension in women and men and perhaps to improved forms of therapy.

  6. [Cardiovascular disease and systemic inflammatory diseases].

    PubMed

    Cuende, José I; Pérez de Diego, Ignacio J; Godoy, Diego

    2016-01-01

    More than a century of research has shown that atherosclerosis is an inflammatory process more than an infiltrative or thrombogenic process. It has been demonstrated epidemiologically and by imaging techniques, that systemic inflammatory diseases (in particular, but not exclusively, rheumatoid arthritis and systemic lupus erythematosus) increase the atherosclerotic process, and has a demonstrated pathophysiological basis. Furthermore, treatments to control inflammatory diseases can modify the course of the atherosclerotic process. Although there are no specific scales for assessing cardiovascular risk in patients with these diseases, cardiovascular risk is high. A number of specific risk scales are being developed, that take into account specific factors such as the degree of inflammatory activity.

  7. Acute pneumonia and the cardiovascular system.

    PubMed

    Corrales-Medina, Vicente F; Musher, Daniel M; Shachkina, Svetlana; Chirinos, Julio A

    2013-02-09

    Although traditionally regarded as a disease confined to the lungs, acute pneumonia has important effects on the cardiovascular system at all severities of infection. Pneumonia tends to affect individuals who are also at high cardiovascular risk. Results of recent studies show that about a quarter of adults admitted to hospital with pneumonia develop a major acute cardiac complication during their hospital stay, which is associated with a 60% increase in short-term mortality. These findings suggest that outcomes of patients with pneumonia can be improved by prevention of the development and progression of associated cardiac complications. Before this hypothesis can be tested, however, an adequate mechanistic understanding of the cardiovascular changes that occur during pneumonia, and their role in the trigger of various cardiac complications, is needed. In this Review, we summarise knowledge about the burden of cardiac complications in adults with acute pneumonia, the cardiovascular response to this infection, the potential effects of commonly used cardiovascular and anti-infective drugs on these associations, and possible directions for future research.

  8. Modulation of the cardiovascular system by leptin.

    PubMed

    Abel, E Dale; Sweeney, Gary

    2012-10-01

    It is well established that individuals with the metabolic syndrome have a significantly increased risk of cardiovascular disease and much effort has been expended to elicit the underlying mechanisms. Various studies have proposed that excessive or deficient physiological effects mediated by leptin make an important contribution, yet many paradoxical observations often preclude a clear definition of the role of leptin. This review article will briefly discuss principal and most recent evidence on direct and indirect regulation of the cardiovascular system by leptin, focusing on cardiac structural and functional as well as vascular effects.

  9. PPAR-γ in the Cardiovascular System

    PubMed Central

    Duan, Sheng Zhong; Ivashchenko, Christine Y.; Usher, Michael G.; Mortensen, Richard M.

    2008-01-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ), an essential transcriptional mediator of adipogenesis, lipid metabolism, insulin sensitivity, and glucose homeostasis, is increasingly recognized as a key player in inflammatory cells and in cardiovascular diseases (CVD) such as hypertension, cardiac hypertrophy, congestive heart failure, and atherosclerosis. PPAR-γ agonists, the thiazolidinediones (TZDs), increase insulin sensitivity, lower blood glucose, decrease circulating free fatty acids and triglycerides, lower blood pressure, reduce inflammatory markers, and reduce atherosclerosis in insulin-resistant patients and animal models. Human genetic studies on PPAR-γ have revealed that functional changes in this nuclear receptor are associated with CVD. Recent controversial clinical studies raise the question of deleterious action of PPAR-γ agonists on the cardiovascular system. These complex interactions of metabolic responsive factors and cardiovascular disease promise to be important areas of focus for the future. PMID:18288291

  10. Testosterone Replacement Therapy and the Cardiovascular System.

    PubMed

    Naderi, Sahar

    2016-04-01

    As testosterone replacement therapy (TRT) has emerged as a commonly prescribed therapy for symptomatic low testosterone, conflicting data have been reported in terms of both its efficacy and potential adverse outcomes. One of the most controversial associations has been that of TRT and cardiovascular morbidity and mortality. This review briefly provides background on the history of TRT, the indications for TRT, and the data behind TRT for symptomatic low testosterone. It then specifically delves into the rather limited data for cardiovascular outcomes of those with low endogenous testosterone and those who receive TRT. The available body of literature strongly suggests that more work, by way of clinical trials, needs to be done to better understand the impact of testosterone and TRT on the cardiovascular system.

  11. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes.

    PubMed

    Lavie, Carl J; Arena, Ross; Swift, Damon L; Johannsen, Neil M; Sui, Xuemei; Lee, Duck-Chul; Earnest, Conrad P; Church, Timothy S; O'Keefe, James H; Milani, Richard V; Blair, Steven N

    2015-07-03

    Substantial evidence has established the value of high levels of physical activity, exercise training (ET), and overall cardiorespiratory fitness in the prevention and treatment of cardiovascular diseases. This article reviews some basics of exercise physiology and the acute and chronic responses of ET, as well as the effect of physical activity and cardiorespiratory fitness on cardiovascular diseases. This review also surveys data from epidemiological and ET studies in the primary and secondary prevention of cardiovascular diseases, particularly coronary heart disease and heart failure. These data strongly support the routine prescription of ET to all patients and referrals for patients with cardiovascular diseases, especially coronary heart disease and heart failure, to specific cardiac rehabilitation and ET programs.

  12. Cardiovascular remodeling and the peripheral serotonergic system.

    PubMed

    Ayme-Dietrich, Estelle; Aubertin-Kirch, Gaëlle; Maroteaux, Luc; Monassier, Laurent

    2017-01-01

    Plasma 5-hydroxytryptamine (5-HT; serotonin), released from blood platelets, plays a major role in the human cardiovascular system. Besides the effect of endogenous serotonin, many drugs targeting serotonergic receptors are widely used in the general population (antiobesity agents, antidepressants, antipsychotics, antimigraine agents), and may enhance the cardiovascular risk. Depending on the type of serotonin receptor activated and its location, the use of these compounds triggers acute and chronic effects. The acute cardiovascular response to 5-HT, named the Bezold-Jarish reflex, leads to intense bradycardia associated with atrioventricular block, and involves 5-HT3, 5-HT1B/1D, 5-HT7 and 5-HT2A/2B receptors. The chronic contribution of 5-HT and its receptors (5-HT4 and 5-HT2A/2B) in cardiovascular tissue remodeling, with a particular emphasis on cardiac hypertrophy, fibrosis and valve degeneration, will be explored in this review. Finally, through the analysis of the effects of sarpogrelate, some new aspects of 5-HT2A receptor pharmacology in vasomotor tone regulation and the interaction between endothelial and smooth muscle cells will also be discussed. The aim of this review is to emphasize the cardiac side effects caused by serotonin receptor activation, and to highlight their possible prevention by the development of new drugs targeting this system.

  13. Product development: the making of the Abbott ARCHITECT.

    PubMed

    Kisner, H J

    1997-01-01

    Many laboratorians have a limited perspective on what is involved in developing an instrument and bringing it to market. This article traces the product development process used by Abbott Diagnostics Division that resulted in Abbott being named the 1996 Concurrent Engineering Company of the Year for the design of the ARCHITECT.

  14. KATP Channels in the Cardiovascular System.

    PubMed

    Foster, Monique N; Coetzee, William A

    2016-01-01

    KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.

  15. KATP Channels in the Cardiovascular System

    PubMed Central

    Foster, Monique N.; Coetzee, William A.

    2015-01-01

    KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease. PMID:26660852

  16. Drug releasing systems in cardiovascular tissue engineering.

    PubMed

    Spadaccio, Cristiano; Chello, Massimo; Trombetta, Marcella; Rainer, Alberto; Toyoda, Yoshiya; Genovese, Jorge A

    2009-03-01

    Heart disease and atherosclerosis are the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts; however, current artificial grafts carry significant limitations, including thrombosis, infection, limited durability and the inability to grow. Tissue engineering of blood vessels, cardiovascular structures and whole organs is a promising approach for creating replacement tissues to repair congenital defects and/or diseased tissues. In an attempt to surmount the shortcomings of artificial grafts, tissue-engineered cardiovascular graft (TECVG), constructs obtained using cultured autologous vascular cells seeded onto a synthetic biodegradable polymer scaffold, have been developed. Autologous TECVGs have the potential advantages of growth, durability, resistance to infection, and freedom from problems of rejection, thrombogenicity and donor scarcity. Moreover polymers engrafted with growth factors, cytokines, drugs have been developed allowing drug-releasing systems capable of focused and localized delivery of molecules depending on the environmental requirements and the milieu in which the scaffold is placed. A broad range of applications for compound-releasing, tissue-engineered grafts have been suggested ranging from drug delivery to gene therapy. This review will describe advances in the development of drug-delivery systems for cardiovascular applications focusing on the manufacturing techniques and on the compounds delivered by these systems to date.

  17. Drug releasing systems in cardiovascular tissue engineering

    PubMed Central

    Spadaccio, Cristiano; Chello, Massimo; Trombetta, Marcella; Rainer, Alberto; Toyoda, Yoshiya; Genovese, Jorge A

    2009-01-01

    Abstract Heart disease and atherosclerosis are the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts; however, current artificial grafts carry significant limitations, including thrombosis, infection, limited durability and the inability to grow. Tissue engineering of blood vessels, cardiovascular structures and whole organs is a promising approach for creating replacement tissues to repair congenital defects and/or diseased tissues. In an attempt to surmount the shortcomings of artificial grafts, tissue-engineered cardiovascular graft (TECVG), constructs obtained using cultured autologous vascular cells seeded onto a synthetic biodegradable polymer scaffold, have been developed. Autologous TECVGs have the potential advantages of growth, durability, resistance to infection, and freedom from problems of rejection, thrombogenicity and donor scarcity. Moreover polymers engrafted with growth factors, cytokines, drugs have been developed allowing drug-releasing systems capable of focused and localized delivery of molecules depending on the environmental requirements and the milieu in which the scaffold is placed. A broad range of applications for compound-releasing, tissue-engineered grafts have been suggested ranging from drug delivery to gene therapy. This review will describe advances in the development of drug-delivery systems for cardiovascular applications focusing on the manufacturing techniques and on the compounds delivered by these systems to date. PMID:19379142

  18. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease.

    PubMed

    Riley, Callum James; Gavin, Matthew

    2017-03-15

    Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 00:000-000, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.

  19. Free radical biology of the cardiovascular system.

    PubMed

    Chen, Alex F; Chen, Dan-Dan; Daiber, Andreas; Faraci, Frank M; Li, Huige; Rembold, Christopher M; Laher, Ismail

    2012-07-01

    Most cardiovascular diseases (CVDs), as well as age-related cardiovascular alterations, are accompanied by increases in oxidative stress, usually due to increased generation and/or decreased metabolism of ROS (reactive oxygen species; for example superoxide radicals) and RNS (reactive nitrogen species; for example peroxynitrite). The superoxide anion is generated by several enzymatic reactions, including a variety of NADPH oxidases and uncoupled eNOS (endothelial NO synthase). To relieve the burden caused by this generation of free radicals, which also occurs as part of normal physiological processes, such as mitochondrial respiratory chain activity, mammalian systems have developed endogenous antioxidant enzymes. There is an increased usage of exogenous antioxidants such as vitamins C and E by many patients and the general public, ostensibly in an attempt to supplement intrinsic antioxidant activity. Unfortunately, the results of large-scale trails do not generate much enthusiasm for the continued use of antioxidants to mitigate free-radical-induced changes in the cardiovascular system. In the present paper, we review the clinical use of antioxidants by providing the rationale for their use and describe the outcomes of several large-scale trails that largely display negative outcomes. We also describe the emerging understanding of the detailed regulation of superoxide generation by an uncoupled eNOS and efforts to reverse eNOS uncoupling. SIRT1 (sirtuin 1), which regulates the expression and activity of multiple pro- and anti-oxidant enzymes, could be considered a candidate molecule for a 'molecular switch'.

  20. Cardiovascular system simulation in biomedical engineering education.

    NASA Technical Reports Server (NTRS)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  1. Vitamin D and the cardiovascular system.

    PubMed

    Artaza, Jorge N; Mehrotra, Rajnish; Norris, Keith C

    2009-09-01

    Several epidemiologic and clinical studies have suggested that there is a strong association between hypovitaminosis D and cardiovascular disease (CVD). Hypovitaminosis D was reported as a risk factor for increased cardiovascular events among 1739 adult participants in the Framingham Offspring Study. Analysis of more than 13,000 adults in the Third National Health and Nutrition Examination Survey (NHANES III) showed that even though hypovitaminosis D is associated with an increased prevalence of CVD risk factors, its association with all-cause mortality is independent of these risk factors. Importantly, epidemiologic studies suggested that patients who had chronic kidney disease and were treated with activated vitamin D had a survival advantage when compared with those who did not receive treatment with these agents. Mechanistically, emerging data have linked vitamin D administration with improved cardiac function and reduced proteinuria, and hypovitaminosis D is associated with obesity, insulin resistance, and systemic inflammation. Preliminary studies suggested that activated vitamin D inhibits the proliferation of cardiomyoblasts by promoting cell-cycle arrest and enhances the formation of cardiomyotubes without inducing apoptosis. Activated vitamin D has also been shown to attenuate left ventricular dysfunction in animal models and humans. In summary, emerging studies suggest that hypovitaminosis D has emerged as an independent risk factor for all-cause and cardiovascular mortality, reinforcing its importance as a public health problem. There is a need to advance our understanding of the biologic pathways through which vitamin D affects cardiovascular health and to conduct prospective clinical interventions to define precisely the cardioprotective effects of nutritional vitamin D repletion.

  2. Distribution of nitric oxide in cardiovascular system.

    PubMed

    Mesáros, S; Grunfeld, S

    1997-01-01

    We report here the in vitro measurements of nitric oxide in the cardiovascular system using a porphyrinic sensor specific for NO. Nitric oxide concentrations were measured directly in different parts of the heart and also in different arteries and veins, ranging from 100 microm to 5 mm in diameter. Highest NO. concentrations were found in the heart and particularly in the areas of aortic and pulmonary valves. The NO. concentration in the arteries was higher than in the veins. A clearcut positive correlation was obtained by plotting the vessel diameter and production of nitric oxide.

  3. Targets of oxidative stress in cardiovascular system.

    PubMed

    Chakraborti, T; Ghosh, S K; Michael, J R; Batabyal, S K; Chakraborti, S

    1998-10-01

    Although oxidants such as superoxide (O2.) and hydrogen peroxide (H2O2) play a role in host-mediated destruction of foreign pathogens yet excessive generation of oxidants may lead to a variety of pathological complications in the cardiovascular system. An important mechanism by which oxidants cause dysfunction of the cardiovascular system appears to be due to the increase in intracellular free Ca2+ concentration. Oxidants cause cellular Ca2+ mobilization by modulating activities of a variety of regulators such as Na+/H+ and Na+/Ca2+ exchangers, Na+/K+ ATPase and Ca2+ ATPase and Ca2+ channels that are associated with Ca2+ transport in the plasma membrane and the sarco(endo)plasmic reticular membrane of myocardial cells. Recent research have suggested that the increase in Ca2+ level by oxidants plays a pivotal role in inducing several protein kinases such as protein kinase C, tyrosine kinase and mitogen activated protein kinases. Oxidant-mediated alteration of different signal transduction systems and their interations eventually regulate a variety of pathological conditions such as atherosclerosis, apoptosis and necrosis in the myocardium.

  4. Exercise and the Cardiovascular System: Clinical Science and Cardiovascular Outcomes

    PubMed Central

    Lavie, Carl J.; Arena, Ross; Swift, Damon L.; Johannsen, Neil M.; Sui, Xuemei; Lee, Duck-chul; Earnest, Conrad P.; Church, Timothy S.; O’Keefe, James H.; Milani, Richard V.; Blair, Steven N.

    2015-01-01

    Substantial evidence has established the value of high levels of physical activity (PA), exercise training (ET), and overall cardiorespiratory fitness (CRF) in the prevention and treatment of cardiovascular diseases (CVD). This paper reviews some basics of exercise physiology and the acute and chronic responses of ET, as well as the impact of PA and CRF on CVD. This review also surveys data from epidemiologic and ET studies in the primary and secondary prevention of CVD, particularly coronary heart disease (CHD) and heart failure (HF). These data strongly support the routine prescription of ET to all patients and referrals for patients with CVD, especially CHD and HF, to specific cardiac rehabilitation and ET programs. PMID:26139859

  5. Role of endothelin in the cardiovascular system.

    PubMed

    Rodríguez-Pascual, Fernando; Busnadiego, Oscar; Lagares, David; Lamas, Santiago

    2011-06-01

    The endothelin (ET) system consists of three peptide ligands (ET-1, ET-2 and ET-3) and two G-protein-coupled receptors, ET(A) and ET(B). In the cardiovascular system, ETs, particularly ET-1, are expressed in smooth muscle cells, cardiomyocytes, fibroblasts, and notably in vascular endothelial cells. Intense research over the last 10 years has changed the original view of ET-1 as mainly a vasoconstrictor regulating blood pressure, into a biological factor regulating processes such as vascular remodeling, angiogenesis or extracellular matrix synthesis. The advent of specific (and type-selective) ET receptor antagonists has greatly fostered our knowledge of the biological function of ET-1, and has offered a potential therapeutic approach for numerous diseases including hypertension, atherosclerosis or fibrosis. In this article, we review the regulation of the expression of vascular ET-1, as well as the contribution of ET-1 to endothelial, smooth muscle and fibroblast cell function, with particular interest in the role of ET-1 in the development of cardiovascular diseases.

  6. Space weather and cardiovascular system. New findings

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yury; Breus, Tamara

    2014-05-01

    Researches of last two decades have shown that the cardiovascular system represents the most probable target for influence of helio - and geomagnetic activity. Both cardiovascular system and system of blood are connected very closely: one system cannot exist without another. For the same reason the effects perceived by one system, are easily transferred to another. Laboratory tests such as blood coagulation, platelet aggregation, and capillary blood velocity (CBV) performed in Scientific Clinical Center JSC "Russian Railways in patients suffering from coronary heart disease (CHD) revealed a high dependence with a level of geomagnetic activity. Results of these and other findings allow to assume that blood itself can be a sensor of geomagnetic fields variations because erythrocytes, platelets, and leucocytes bearing electric charge on membranes, and in a comparable magnetic field can change as own properties and properties of blood flow. It is interesting that not only geomagnetic disturbances, but also the periods of very quiet geomagnetic conditions affect a capillary blood velocity, slowing down it. It was shown during long-term experiment with isolation named 'MARS-500' in spatial facility of the Institute of Biomedical Problems in Moscow as imitation of an extended space mission to Mars. Using digital capillaroscope 'Russia', two crewmembers - medical doctors made records of microcirculation parameters at themselves and other four participants of 'Martian' team. Capillary records were performed before, during, and after period of isolation in medical module of MARS-500 facility. At the period of experiment nobody of crewmembers knew about real geomagnetic conditions. In days of active geomagnetic conditions average CBV has registered as 389 ± 167 μm/s, that statistically significant (p

  7. QRAR models for cardiovascular system drugs using biopartitioning micellar chromatography.

    PubMed

    Wang, Sumin; Yang, Gengliang; Zhang, Hua; Liu, Haiyan; Li, Zhiwei

    2007-02-01

    The capability of biopartitioning micellar chromatography (BMC) to describe and estimate pharmacological parameters of cardiovascular system drugs has been studied. The retention of cardiovascular system drugs was studied using different pH of Brij-35 as micellar mobile phase in modified C(18) stationary phase. Quantitative retention-activity relationships (QRAR) in BMC were investigated for these compounds. An adequate correlation between the retention factors (log k) and the toxicity (LD(50)) of cardiovascular system drugs was obtained.

  8. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension.

  9. The human cardiovascular system during space flight

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. I.; Kotovskaya, A. R.; Fomina, G. A.

    2011-05-01

    Purpose of the work is to analyze and to summarize the data of investigations into human hemodynamics performed over 20 years aboard orbital stations Salyut-7 and Mir with participation of 26 cosmonauts on space flights (SF) from 8 to 438 days in duration. The ultrasonic techniques and occlusive plethysmography demonstrated dynamics of changes in the cardiovascular system during SF of various durations. The parameters of general hemodynamics, the pumping function of the heart and arterial circulation in the brain remained stable in all the space flights; however, there were alterations in peripheral circulation associated with blood redistribution and hypovolemie in microgravity. The anti-gravity distribution of the vascular tone decayed gradually as unneeded. The most considerable changes were observed in leg vessels, equally in arteries (decrease in resistance) and veins (increase in maximum capacity). The lower body negative pressure test (LBNP) revealed deterioration of the gravity-dependent reactions that changed for the worse as SF duration extended. The cardiovascular deconditioning showed itself as loss of descent acceleration tolerance and orthostatic instability in the postflight period.

  10. Hydrogen sulfide in the mammalian cardiovascular system.

    PubMed

    Liu, Yi-Hong; Lu, Ming; Hu, Li-Fang; Wong, Peter T-H; Webb, George D; Bian, Jin-Song

    2012-07-01

    For more than a century, hydrogen sulfide (H(2)S) has been regarded as a toxic gas. This review surveys the growing recognition of the role of H(2)S as an endogenous signaling molecule in mammals, with emphasis on its physiological and pathological pathways in the cardiovascular system. In biological fluids, H(2)S gas is a weak acid that exists as about 15% H(2)S, 85% HS(-), and a trace of S(2-). Here, we use "H(2)S" to refer to this mixture. H(2)S has been found to influence heart contractile functions and may serve as a cardioprotectant for treating ischemic heart diseases and heart failure. Alterations of the endogenous H(2)S level have been found in animal models with various pathological conditions such as myocardial ischemia, spontaneous hypertension, and hypoxic pulmonary hypertension. In the vascular system, H(2)S exerts biphasic regulation of a vascular tone with varying effects based on its concentration and in the presence of nitric oxide. Over the past decade, several H(2)S-releasing compounds (NaHS, Na(2)S, GYY4137, etc.) have been utilized to test the effect of exogenous H(2)S under different physiological and pathological situations in vivo and in vitro. H(2)S has been found to promote angiogenesis and to protect against atherosclerosis and hypertension, while excess H(2)S may promote inflammation in septic or hemorrhagic shock. H(2)S-releasing compounds and inhibitors of H(2)S synthesis hold promise in alleviating specific disease conditions. This comprehensive review covers in detail the effects of H(2)S on the cardiovascular system, especially in disease situations, and also the various underlying mechanisms.

  11. [Cell polarity in the cardiovascular system].

    PubMed

    Haller, C; Kübler, W

    1999-05-01

    The importance of cell polarity as a fundamental biological principle is increasingly recognized in the cardiovascular system. Polar cell mechanisms underlie not only the development of the heart and blood vessels, but also play a major role in the adult organism for polarized endothelial functions such as the separation of the intra- and extravascular compartment and the vectorial exchange of substances between these compartments. Endothelial cells are connected through intercellular junctions which separate the functionally and structurally distinct luminal and abluminal cell surfaces. The luminal plasma membrane is in contact with the blood and takes part in the regulation of hemostasis. The abluminal cell membrane connects the endothelial cell with the basement membrane and modulates blood flow through the release of vasoactive substances. Results from epithelial model systems have shown that the polarized cell phenotype is generated by specific protein sorting and regulated protein trafficking between the trans-Golgi network and the cell surface. The polarized distribution of cell membrane proteins is maintained by anchorage with the cytoskeleton and limitation of lateral diffusion by tight junctions. Disturbances of cell polarity may contribute to the pathogenesis of disease states, including ischemic and radiocontrast-induced acute renal failure and carcinomas. Recent results have demonstrated the importance of cholesterol for protein traffic from the trans-Golgi network to the apical cell membrane. This novel intracellular function of cholesterol could point to a connection between cell polarity and the pathogenesis of arteriosclerosis. The polarity of the endothelium also has to be taken into account when developing gene-therapeutic strategies, since therapeutic success will not only depend on the efficient expression of the desired gene product, but also on its correct cellular location or secretion into the correct extracellular compartment. These

  12. Cardiovascular

    NASA Video Gallery

    Overview of Cardiovascular research which addresses risks of space flight, including adaptive changes to the cephalad fluid shift (such as reduced circulating blood volume), potential for heart rhy...

  13. Update: Systemic Diseases and the Cardiovascular System (II). The endocrine system and the heart: a review.

    PubMed

    Rhee, Soo S; Pearce, Elizabeth N

    2011-03-01

    Normal endocrine function is essential for cardiovascular health. Disorders of the endocrine system, consisting of hormone hyperfunction and hypofunction, have multiple effects on the cardiovascular system. In this review, we discuss the epidemiology, diagnosis, and management of disorders of the pituitary, thyroid, parathyroid, and adrenal glands, with respect to the impact of endocrine dysfunction on the cardiovascular system. We also review the cardiovascular benefits of restoring normal endocrine function.

  14. The brain norepinephrine system, stress and cardiovascular vulnerability.

    PubMed

    Wood, Susan K; Valentino, Rita J

    2017-03-01

    Chronic exposure to psychosocial stress has adverse effects on cardiovascular health, however the stress-sensitive neurocircuitry involved remains to be elucidated. The anatomical and physiological characteristics of the locus coeruleus (LC)-norepinephrine (NE) system position it to contribute to stress-induced cardiovascular disease. This review focuses on cardiovascular dysfunction produced by social stress and a major theme highlighted is that differences in coping strategy determine individual differences in social stress-induced cardiovascular vulnerability. The establishment of different coping strategies and cardiovascular vulnerability during repeated social stress has recently been shown to parallel a unique plasticity in LC afferent regulation, resulting in either excitatory or inhibitory input to the LC. This contrasting regulation of the LC would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The advances described suggest new directions for developing treatments and/or strategies for decreasing stress-induced cardiovascular vulnerability.

  15. A Mechanical System to Reproduce Cardiovascular Flows

    NASA Astrophysics Data System (ADS)

    Lindsey, Thomas; Valsecchi, Pietro

    2010-11-01

    Within the framework of the "Pumps&Pipes" collaboration between ExxonMobil Upstream Research Company and The DeBakey Heart and Vascular Center in Houston, a hydraulic control system was developed to accurately simulate general cardiovascular flows. The final goal of the development of the apparatus was the reproduction of the periodic flow of blood through the heart cavity with the capability of varying frequency and amplitude, as well as designing the systolic/diastolic volumetric profile over one period. The system consists of a computer-controlled linear actuator that drives hydraulic fluid in a closed loop to a secondary hydraulic cylinder. The test section of the apparatus is located inside a MRI machine, and the closed loop serves to physically separate all metal moving parts (control system and actuator cylinder) from the MRI-compatible pieces. The secondary cylinder is composed of nonmetallic elements and directly drives the test section circulatory flow loop. The circulatory loop consists of nonmetallic parts and several types of Newtonian and non-Newtonian fluids, which model the behavior of blood. This design allows for a periodic flow of blood-like fluid pushed through a modeled heart cavity capable of replicating any healthy heart condition as well as simulating anomalous conditions. The behavior of the flow inside the heart can thus be visualized by MRI techniques.

  16. Gravitational Force and the Cardiovascular System

    NASA Technical Reports Server (NTRS)

    Pendergast, D. R.; Olszowka, A. J.; Rokitka, M. A.; Farhi, L. E.

    1991-01-01

    Cardiovascular responses to changes in gravitational force are considered. Man is ideally suited to his 1-g environment. Although cardiovascular adjustments are required to accommodate to postural changes and exercise, these are fully accomplished for short periods (min). More challenging stresses are those of short-term microgravity (h) and long-term microgravity (days) and of gravitational forces greater than that of Earth. The latter can be simulated in the laboratory and quantitative studies can be conducted.

  17. European multicentre evaluation of the ABBOTT Spectrum clinical chemistry analyzer.

    PubMed

    Blijenberg, B G; Braconnier, F; Vallez, J M; Burlina, A; Plebani, M; Celadin, M; Haeckel, R; Römer, M; Hänseler, E; De Schrijver, G

    1989-06-01

    The analytical performance of the selective multitest ABBOTT Spectrum analyser was studied according to the ECCLS guidelines and partly the CERMAB protocol in a multicentre evaluation involving laboratories from six European countries. Fifteen analytes, including the electrolytes sodium, potassium and chloride, were measured each in at least 3 laboratories, all at 37 degrees C, except the electrolytes, which are measured at room temperature. The trial lasted approximately three months and involved the collection of over 60,000 data points. It yielded the following results: 1. The precision was at least as good as the precision obtained with the comparison instruments. The majority of the coefficients of variation were between 1 and 4%. 2. The recovery for method assigned control sera values was, with few exceptions, within 10%. 3. Good agreement with respect to the method assigned values of control materials and method comparison with patient specimens to different instruments (e.g. SMAC, Hitachi 737, RA 1000) was found. 4. No drift was observed. 5. Reagent-related carry-over was not found. Specimen-related carry-over was detected in some cases, the deviation being of little or no clinical significance. 6. The manufacturer's claims regarding method linearity were as stated or exceeded. 7. The open system capability was tested and rated as very convenient. 8. The practicability of the instrument was very good.

  18. Computer model of cardiovascular control system responses to exercise

    NASA Technical Reports Server (NTRS)

    Croston, R. C.; Rummel, J. A.; Kay, F. J.

    1973-01-01

    Approaches of systems analysis and mathematical modeling together with computer simulation techniques are applied to the cardiovascular system in order to simulate dynamic responses of the system to a range of exercise work loads. A block diagram of the circulatory model is presented, taking into account arterial segments, venous segments, arterio-venous circulation branches, and the heart. A cardiovascular control system model is also discussed together with model test results.

  19. [Assessing the cardiovascular risk in patients with systemic lupus erythematosus].

    PubMed

    Arnaud, L; Mathian, A; Bruckert, E; Amoura, Z

    2014-11-01

    Multiple factors contribute to the increased cardiovascular risk observed in patients with systemic lupus erythematosus (SLE). Among these are the so-called classical cardiovascular risk factors, the disease itself through its activity, treatments, and complications, and the thrombotic risk due to antiphospholipid antibodies (aPL). Observational studies suggest that most classical cardiovascular risk factors are observed more frequently in SLE patients than in the general population, and that these are insufficient to explain the increased cardiovascular risk observed in most studies. Given this high risk, adequate management of cardiovascular risk factors should be recommended in SLE patients. Paradoxically, the benefit due to the anti-inflammatory properties of treatments such as corticosteroids may exceed, in certain cases, their pro-atherogenic effect. Importantly, the tools that were developed for the estimation of cardiovascular risk at the individual level among the general population cannot be used reliably in SLE patients, as these tools appear to underestimate the true cardiovascular risk. The adequate indications and targets of cardiovascular treatments are therefore not fully known in SLE. A better understanding of the determinants of the cardiovascular risk in SLE will allow the identification and more tailored management of these high-risk patients.

  20. The role of PPARδ signaling in the cardiovascular system.

    PubMed

    Ding, Yishu; Yang, Kevin D; Yang, Qinglin

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARα, β/δ, and γ), members of the nuclear receptor transcription factor superfamily, play important roles in the regulation of metabolism, inflammation, and cell differentiation. All three PPAR subtypes are expressed in the cardiovascular system with various expression patterns. Among the three PPAR subtypes, PPARδ is the least studied but has arisen as a potential therapeutic target for cardiovascular and many other diseases. It is known that PPARδ is ubiquitously expressed and abundantly expressed in cardiomyocytes. Accumulated evidence illustrates the role of PPARδ in regulating cardiovascular function and determining pathological progression. In this chapter, we will discuss the current knowledge in the role of PPARδ in the cardiovascular system, the mechanistic insights, and the potential therapeutic utilization for treating cardiovascular disease.

  1. Mechanisms of Lipotoxicity in the Cardiovascular System

    PubMed Central

    Wende, Adam R.; Symons, J. David; Abel, E. Dale

    2012-01-01

    Cardiovascular diseases account for approximately one third of all deaths globally. Obese and diabetic patients have a high likelihood of dying from complications associated with cardiovascular dysfunction. Obesity and diabetes increase circulating lipids that upon tissue uptake, may be stored as triglyceride, or may be metabolized in other pathways, leading to the generation of toxic intermediates. Excess lipid utilization or activation of signaling pathways by lipid metabolites may disrupt cellular homeostasis and contribute to cell death, defining the concept of lipotoxicity. Lipotoxicity occurs in multiple organs, including cardiac and vascular tissues, and a number of specific mechanisms have been proposed to explain lipotoxic tissue injury. In addition, recent data suggests that increased tissue lipids may also be protective in certain contexts. This review will highlight recent progress toward elucidating the relationship between nutrient oversupply, lipotoxicity, and cardiovascular dysfunction. The review will focus in two sections on the vasculature and cardiomyocytes respectively. PMID:23054891

  2. The paleopathology of the cardiovascular system.

    PubMed Central

    Zimmerman, M R

    1993-01-01

    Paleopathology, the study of disease in ancient remains, adds the dimension of time to our study of health and disease. The oldest preserved heart is from a mummified rabbit of the Pleistocene epoch, over 20,000 years old. Cardiovascular disease has been identified in human mummies from Alaska and Egypt, covering a time span ranging from approximately 3,000 to 300 years ago. An experimental study suggests that the potential exists for identifying a wide range of cardiovascular pathologic conditions in mummified remains. The antiquity and ubiquity of arteriosclerotic heart disease is considered in terms of pathogenesis. Images PMID:8298320

  3. [Effects of vitamin D on the cardiovascular system].

    PubMed

    Shoji, Tetsuo; Nishizawa, Yoshiki

    2006-07-01

    Active vitamin D plays important roles not only in bone and mineral metabolism but also in the cardiovascular system. Cohort studies in hemodialysis patients demonstrated that use of active vitamin D analogs was associated with reduced risk of death, particularly death from cardiovascular disease. Treatment with vitamin D had beneficial effects on cardiac and immune functions in dialysis patients, and inflammatory markers in non-renal subjects. Also, anti-proteinuric effect was recently shown in chronic kidney disease. Experimentally, active vitamin D inhibits atherogenic cellular behaviors and activation of the renin-angiotensin system. Thus, active vitamin D is a regulator of cardiovascular and kidney functions.

  4. Leukocytes Link Local and Systemic Inflammation in Ischemic Cardiovascular Disease: An Expanded “Cardiovascular Continuum”

    PubMed Central

    Libby, Peter; Nahrendorf, Matthias; Swirski, Filip K.

    2016-01-01

    We have traditionally viewed ischemic heart disease in a cardiocentric manner: plaques grow in arteries until they block blood flow, causing acute coronary and other ischemic syndromes. Recent research provides new insight into the integrative biology of inflammation as it contributes to ischemic cardiovascular disease. These results have revealed hitherto unsuspected inflammatory signaling networks at work in these disorders that link the brain, autonomic nervous system, bone marrow, and spleen to the atherosclerotic plaque and to the infarcting myocardium. A burgeoning clinical literature indicates that such inflammatory networks—far from a mere laboratory curiosity—operate in our patients and can influence aspects of ischemic cardiovascular disease that determine decisively clinical outcomes. These new findings enlarge the circle of the traditional “cardiovascular continuum” beyond the heart and vessels to include the nervous system, the spleen, and the bone marrow. PMID:26940931

  5. The Abbott Districts in 2005-06: Progress and Challenges, Spring 2006

    ERIC Educational Resources Information Center

    Hirsch, Lesley

    2006-01-01

    New Jersey's urban--or "Abbott"--schools have improved at the preschool and elementary school level, but lag when it comes to middle and high school performance. These are the key findings of an Abbott Indicators Project report entitled, "The Abbott Districts in 2005-06: Progress and Challenges." The report was prepared by…

  6. Women in History--Grace Abbott: A Leader in Social Reform

    ERIC Educational Resources Information Center

    Hoffman, Shari Cole

    2006-01-01

    This article profiles Grace Abbott, one of the earlier 20th century American women leaders in Progressivism. Abbott's heritage influenced her lifetime commitment to social improvement. She was born on November 17, 1878 in Grand Island, Nebraska into a family of activists. Her Quaker mother, Elizabeth Griffin Abbott, came from an abolitionist…

  7. Tracking stem cells in the cardiovascular system.

    PubMed

    Chemaly, Elie R; Yoneyama, Ryuichi; Frangioni, John V; Hajjar, Roger J

    2005-11-01

    Stem cells are a promising approach to cardiovascular therapeutics. Animal experiments have assessed the fate of injected stem cells through ex vivo methods on sacrificed animals. Approaches are needed for in vivo tracking of stem cells. Various imaging techniques and contrast agents for stem cell tracking will be reviewed.

  8. 42. Peaks of Otter, Abbott Lake. View across lake to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Peaks of Otter, Abbott Lake. View across lake to peaks of Outter Lodge, completed in 1964. Construction of the lake got underway in 1964. Looking east-northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  9. Pharmacological effects of Chinese herb aconite (fuzi) on cardiovascular system.

    PubMed

    Zhao, Dandan; Wang, Jie; Cui, Yanjing; Wu, Xinfang

    2012-09-01

    Fuzi (aconite, Radix Aconiti praeparata), a widely used Chinese herb, plays a significant role in the cardiovascular system. This is mainly reflected by Fuzi's cardiotonic effect, its protective effect on myocardial cells, and its effect on heart rate and rhythm, blood pressure, and hemodynamics. In this article, the pharmacological effects and the corresponding mechanisms of Fuzi (aconite) and its active components on cardiovascular system are reviewed.

  10. Cardiovascular Events in Systemic Lupus Erythematosus

    PubMed Central

    Fernández-Nebro, Antonio; Rúa-Figueroa, Íñigo; López-Longo, Francisco J.; Galindo-Izquierdo, María; Calvo-Alén, Jaime; Olivé-Marqués, Alejandro; Ordóñez-Cañizares, Carmen; Martín-Martínez, María A.; Blanco, Ricardo; Melero-González, Rafael; Ibáñez-Rúan, Jesús; Bernal-Vidal, José Antonio; Tomero-Muriel, Eva; Uriarte-Isacelaya, Esther; Horcada-Rubio, Loreto; Freire-González, Mercedes; Narváez, Javier; Boteanu, Alina L.; Santos-Soler, Gregorio; Andreu, José L.; Pego-Reigosa, José M.

    2015-01-01

    Abstract This article estimates the frequency of cardiovascular (CV) events that occurred after diagnosis in a large Spanish cohort of patients with systemic lupus erythematosus (SLE) and investigates the main risk factors for atherosclerosis. RELESSER is a nationwide multicenter, hospital-based registry of SLE patients. This is a cross-sectional study. Demographic and clinical variables, the presence of traditional risk factors, and CV events were collected. A CV event was defined as a myocardial infarction, angina, stroke, and/or peripheral artery disease. Multiple logistic regression analysis was performed to investigate the possible risk factors for atherosclerosis. From 2011 to 2012, 3658 SLE patients were enrolled. Of these, 374 (10.9%) patients suffered at least a CV event. In 269 (7.4%) patients, the CV events occurred after SLE diagnosis (86.2% women, median [interquartile range] age 54.9 years [43.2–66.1], and SLE duration of 212.0 months [120.8–289.0]). Strokes (5.7%) were the most frequent CV event, followed by ischemic heart disease (3.8%) and peripheral artery disease (2.2%). Multivariate analysis identified age (odds ratio [95% confidence interval], 1.03 [1.02–1.04]), hypertension (1.71 [1.20–2.44]), smoking (1.48 [1.06–2.07]), diabetes (2.2 [1.32–3.74]), dyslipidemia (2.18 [1.54–3.09]), neurolupus (2.42 [1.56–3.75]), valvulopathy (2.44 [1.34–4.26]), serositis (1.54 [1.09–2.18]), antiphospholipid antibodies (1.57 [1.13–2.17]), low complement (1.81 [1.12–2.93]), and azathioprine (1.47 [1.04–2.07]) as risk factors for CV events. We have confirmed that SLE patients suffer a high prevalence of premature CV disease. Both traditional and nontraditional risk factors contribute to this higher prevalence. Although it needs to be verified with future studies, our study also shows—for the first time—an association between diabetes and CV events in SLE patients. PMID:26200625

  11. Emerging role of neurotensin in regulation of the cardiovascular system.

    PubMed

    Osadchii, Oleg E

    2015-09-05

    There is increasing evidence in support of an important role played by neurotensin (NT), a tridecapeptide originally found in bovine hypothalamus, in regulation of cardiovascular system. Elevated systemic levels of NT may contribute to pathogenesis of acute circulatory disoders, and predict the risk for cardiovascular morbidity and mortality in population-based studies. Within cardiovascular system, NT-containing neural fibers are found in close contact with atrial and ventricular cardiac myocytes, cardiac conduction system, intracardiac ganglia, as well as coronary vessels in humans and various animal species. The density of NT-immunoreactive innervation is reduced in cardiac disease. NT produces a variety of cardiovascular actions including effects on heart rate, myocardial contractility, systemic blood pressure, coronary vascular tone, venous smooth muscle tone, and regional blood flow in gastrointestinal tract, cutaneous and adipose tissue. NT could trigger cardiovascular reflexes by stimulating primary visceral afferents synaptically connected with preganglionic sympathetic neurons at the spinal cord. Structural determinants of biological activity of NT reside primarily in the C-terminal portion of its molecule which is responsible for receptor activation. NT effects are mediated via activation of NT receptors, or produced indirectly via stimulation of release of various endogenous neuromodulators/neurotransmitters such as histamine, catecholamines and prostaglandins. Three subtypes of NT receptor (NTS1, NTS2 and NTS3) have been shown to be expressed in the myocardium. NTS1, a high-affinity NT binding site coupled to phospholipase C-inositoltrisphosphate transduction pathway, is thought to mediate NT-induced cardiovascular responses.

  12. Integrating Students of Limited English Proficiency into Standards-Based Reform in the Abbott Districts. Abbott Implementation Resource Guide

    ERIC Educational Resources Information Center

    Lucas, Tamara; Villegas, Ana Maria

    2004-01-01

    In 1999-2000, over one-third of all students in the 30 Abbott districts spoke a native language other than English, and more than one-tenth were considered limited English proficient (LEP). The proportions of LEP students varied considerably across the districts, but they comprised between 5% and 29% of total enrollments in 18 of the districts.…

  13. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.

    PubMed

    Akki, Ashwin; Gupta, Ashish; Weiss, Robert G

    2013-03-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.

  14. Radiological features of uncommon aneurysms of the cardiovascular system

    PubMed Central

    Kalisz, Kevin; Rajiah, Prabhakar

    2016-01-01

    Although aortic aneurysms are the most common type encountered clinically, they do not span the entire spectrum of possible aneurysms of the cardiovascular system. As cross sectional imaging techniques with cardiac computed tomography and cardiac magnetic resonance imaging continue to improve and becomes more commonplace, once rare cardiovascular aneurysms are being encountered at higher rates. In this review, a series of uncommon, yet clinically important, cardiovascular aneurysms will be presented with review of epidemiology, clinical presentation and complications, imaging features and relevant differential diagnoses, and aneurysm management. PMID:27247710

  15. Kinect system in home-based cardiovascular rehabilitation.

    PubMed

    Vieira, Ágata; Gabriel, Joaquim; Melo, Cristina; Machado, Jorge

    2017-01-01

    Cardiovascular diseases lead to a high consumption of financial resources. An important part of the recovery process is the cardiovascular rehabilitation. This study aimed to present a new cardiovascular rehabilitation system to 11 outpatients with coronary artery disease from a Hospital in Porto, Portugal, later collecting their opinions. This system is based on a virtual reality game system, using the Kinect sensor while performing an exercise protocol which is integrated in a home-based cardiovascular rehabilitation programme, with a duration of 6 months and at the maintenance phase. The participants responded to a questionnaire asking for their opinion about the system. The results demonstrated that 91% of the participants (n = 10) enjoyed the artwork, while 100% (n = 11) agreed on the importance and usefulness of the automatic counting of the number of repetitions, moreover 64% (n = 7) reported motivation to continue performing the programme after the end of the study, and 100% (n = 11) recognized Kinect as an instrument with potential to be an asset in cardiovascular rehabilitation. Criticisms included limitations in motion capture and gesture recognition, 91% (n = 10), and the lack of home space, 27% (n = 3). According to the participants' opinions, the Kinect has the potential to be used in cardiovascular rehabilitation; however, several technical details require improvement, particularly regarding the motion capture and gesture recognition.

  16. Role of TRP channels in the cardiovascular system.

    PubMed

    Yue, Zhichao; Xie, Jia; Yu, Albert S; Stock, Jonathan; Du, Jianyang; Yue, Lixia

    2015-02-01

    The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases.

  17. Evaluation of the electromechanical properties of the cardiovascular system

    NASA Technical Reports Server (NTRS)

    Bergman, S. A., Jr.; Hoffler, G. W.; Johnson, R. L.

    1974-01-01

    Cardiovascular electromechanical measurements were collected on returning Skylab crewmembers at rest and during both lower body negative pressure and exercise stress testing. These data were compared with averaged responses from multiple preflight tests. Systolic time intervals and first heart sound amplitude changes were measured. Clinical cardiovascular examinations and clinical phonocardiograms were evaluated. All changes noted returned to normal within 30 days postflight so that the processes appear to be transient and self limited. The cardiovascular system seems to adapt quite readily to zero-g, and more importantly it is capable of readaptation to one-g after long duration space flight. Repeated exposures to zero-g also appear to have no detrimental effects on the cardiovascular system.

  18. A novel approach to modeling and diagnosing the cardiovascular system

    SciTech Connect

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T.; Allen, P.A.

    1995-07-01

    A novel approach to modeling and diagnosing the cardiovascular system is introduced. A model exhibits a subset of the dynamics of the cardiovascular behavior of an individual by using a recurrent artificial neural network. Potentially, a model will be incorporated into a cardiovascular diagnostic system. This approach is unique in that each cardiovascular model is developed from physiological measurements of an individual. Any differences between the modeled variables and the variables of an individual at a given time are used for diagnosis. This approach also exploits sensor fusion to optimize the utilization of biomedical sensors. The advantage of sensor fusion has been demonstrated in applications including control and diagnostics of mechanical and chemical processes.

  19. RhoA/Rho-Kinase in the Cardiovascular System.

    PubMed

    Shimokawa, Hiroaki; Sunamura, Shinichiro; Satoh, Kimio

    2016-01-22

    Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system.

  20. Cardiovascular and nervous system changes during meditation

    PubMed Central

    Steinhubl, Steven R.; Wineinger, Nathan E.; Patel, Sheila; Boeldt, Debra L.; Mackellar, Geoffrey; Porter, Valencia; Redmond, Jacob T.; Muse, Evan D.; Nicholson, Laura; Chopra, Deepak; Topol, Eric J.

    2015-01-01

    Background: A number of benefits have been described for the long-term practice of meditation, yet little is known regarding the immediate neurological and cardiovascular responses to meditation. Wireless sensor technology allows, for the first time, multi-parameter and quantitative monitoring of an individual's responses during meditation. The present study examined inter-individual variations to meditation through continuous monitoring of EEG, blood pressure, heart rate and its variability (HRV) in novice and experienced meditators. Methods: Participants were 20 experienced and 20 novice meditators involved in a week-long wellness retreat. Monitoring took place during meditation sessions on the first and last full days of the retreat. All participants wore a patch that continuously streamed ECG data, while half of them also wore a wireless EEG headset plus a non-invasive continuous blood pressure monitor. Results: Meditation produced variable but characteristic EEG changes, significantly different from baseline, even among novice meditators on the first day. In addition, although participants were predominately normotensive, the mean arterial blood pressure fell a small (2–3 mmHg) but significant (p < 0.0001) amount during meditation. The effect of meditation on HRV was less clear and influenced by calculation technique and respiration. No clear relationship between EEG changes, HRV alterations, or mean blood pressure during meditation was found. Conclusion: This is the first study to investigate neurological and cardiovascular responses during meditation in both novice and experienced meditators using novel, wearable, wireless devices. Meditation produced varied inter-individual physiologic responses. These results support the need for further investigation of the short- and long-term cardiovascular effects of mental calm and individualized ways to achieve it. PMID:25852526

  1. Radiation Toxicity to the Cardiovascular System.

    PubMed

    Marmagkiolis, Konstantinos; Finch, William; Tsitlakidou, Despina; Josephs, Tyler; Iliescu, Cezar; Best, John F; Yang, Eric H

    2016-03-01

    Radiation therapy is an important component of cancer treatment, and today, it is applied to approximately 50% of malignancies, including valvular, myocardial, pericardial, coronary or peripheral vascular disease, and arrhythmias. An increased clinical suspicion and knowledge of those mechanisms is important to initiate appropriate screening for the optimal diagnosis and treatment. As the number of cancer survivors has been steadily increasing over the last decades, cardio-oncology, an evolving subspecialty of cardiology, will soon play a pivotal role in raising awareness of the increased cardiovascular risk and formulate strategies to optimally manage patients in this unique population.

  2. Arterial branching in various parts of the cardiovascular system.

    PubMed

    Zamir, M; Brown, N

    1982-04-01

    Angiographic pictures of vascular beds in various parts of the cardiovascular system were analyzed to study the geometrical structure of arterial bifurcations. The sites of arterial bifurcations were enlarged individually, and measurements were made of the branching angles and branch diameters at each site. Results from various parts of the cardiovascular system of man, and some from rabbit and pig, were compared with each other. The measurements were also compared with "optimum" values of branching angles and branch diameters which have been predicted by various theoretical studies. In general the measurements were found to give support to the theoretical premise that branching angles and branch diameters in the cardiovascular system are dictated by certain optimality principles which aim to maximize the efficiency of the system in its fluid-conducting function. In some parts of the system, however, the measured angles and diameters were found to be decidedly lower than those predicted by theory.

  3. Cardiovascular risk assessment and treatment in systemic lupus erythematosus.

    PubMed

    Elliott, Jennifer R; Manzi, Susan

    2009-08-01

    With improved treatment modalities and survival rates, patients with systemic lupus erythematosus live longer and their co-morbidities have become more apparent. Of great concern is cardiovascular disease, which has become a leading cause of death. Lupus patients prematurely develop atherosclerosis, which likely arises from an interaction among traditional cardiovascular risk factors, factors specific to lupus itself and inflammatory mediators. Despite these findings, lupus patients are not always adequately evaluated for traditional risk factors, many of which are treatable and reversible. We propose that lupus patients be assessed and managed regarding cardiovascular risk factors in the same manner as patients with known cardiovascular disease. As a result, preventive cardiology should be considered an essential component of the care for patients with lupus.

  4. Adipokines and the cardiovascular system: mechanisms mediating health and disease.

    PubMed

    Northcott, Josette M; Yeganeh, Azadeh; Taylor, Carla G; Zahradka, Peter; Wigle, Jeffrey T

    2012-08-01

    This review focuses on the role of adipokines in the maintenance of a healthy cardiovascular system, and the mechanisms by which these factors mediate the development of cardiovascular disease in obesity. Adipocytes are the major cell type comprising the adipose tissue. These cells secrete numerous factors, termed adipokines, into the blood, including adiponectin, leptin, resistin, chemerin, omentin, vaspin, and visfatin. Adipose tissue is a highly vascularised endocrine organ, and different adipose depots have distinct adipokine secretion profiles, which are altered with obesity. The ability of many adipokines to stimulate angiogenesis is crucial for adipose tissue expansion; however, excessive blood vessel growth is deleterious. As well, some adipokines induce inflammation, which promotes cardiovascular disease progression. We discuss how these 7 aforementioned adipokines act upon the various cardiovascular cell types (endothelial progenitor cells, endothelial cells, vascular smooth muscle cells, pericytes, cardiomyocytes, and cardiac fibroblasts), the direct effects of these actions, and their overall impact on the cardiovascular system. These were chosen, as these adipokines are secreted predominantly from adipocytes and have known effects on cardiovascular cells.

  5. Leptin and the cardiovascular system: a review.

    PubMed

    Ashwin, Patel J; Dilipbhai, Patel J

    2007-06-01

    Obesity is an increasing health problem not only in the industrialized western countries but, also in the developing countries like India. The adipose tissue specific obese (ob) gene and its peptide product leptin were discovered in 1994. Leptin binding to specific receptors in the hypothalamus results in altered expression of orexigenic and anorexigenic neuropeptides that regulate neuroendocrine functions and energy homeostasis. Recent patents and experimental evidence suggest that leptin plays an important role in the pathogenesis of obesity and eating disorders. Central leptin action also includes regulation of blood pressure, bone mass, and immune function. Peripherally also, leptin plays an important role in direct regulation of immune cells, pancreatic beta cells, adipocytes and muscle cells. Leptin receptors are present on human endothelial cells, and it has been shown to induce angiogenesis both in vitro and in vivo. Further, leptin appears to be a potential pressure and volume regulating factor and may function pathophysiologically as a common link to obesity and hypertension. Obesity is also a risk factor for several other cardiovascular diseases like myocardial hypertrophy, myocardial infarction, coronary atherosclerosis and increased cardiovascular morbidity and mortality. Recent progress in understanding central and peripheral leptin receptor signaling pathways may provide potential new targets to combat obesity, hypertension etc.

  6. Reactive oxygen species and the cardiovascular system.

    PubMed

    Taverne, Yannick J H J; Bogers, Ad J J C; Duncker, Dirk J; Merkus, Daphne

    2013-01-01

    Ever since the discovery of free radicals, many hypotheses on the deleterious actions of reactive oxygen species (ROS) have been proposed. However, increasing evidence advocates the necessity of ROS for cellular homeostasis. ROS are generated as inherent by-products of aerobic metabolism and are tightly controlled by antioxidants. Conversely, when produced in excess or when antioxidants are depleted, ROS can inflict damage to lipids, proteins, and DNA. Such a state of oxidative stress is associated with many pathological conditions and closely correlated to oxygen consumption. Although the deleterious effects of ROS can potentially be reduced by restoring the imbalance between production and clearance of ROS through administration of antioxidants (AOs), the dosage and type of AOs should be tailored to the location and nature of oxidative stress. This paper describes several pathways of ROS signaling in cellular homeostasis. Further, we review the function of ROS in cardiovascular pathology and the effects of AOs on cardiovascular outcomes with emphasis on the so-called oxidative paradox.

  7. Effects of thyroid hormone on the cardiovascular system.

    PubMed

    Fazio, Serafino; Palmieri, Emiliano A; Lombardi, Gaetano; Biondi, Bernadette

    2004-01-01

    Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that overt hyperthyroidism induces a hyperdynamic cardiovascular state (high cardiac output with low systemic vascular resistance), which is associated with a faster heart rate, enhanced left ventricular (LV) systolic and diastolic function, and increased prevalence of supraventricular tachyarrhythmias - namely, atrial fibrillation - whereas overt hypothyroidism is characterized by the opposite changes. However, whether changes in cardiac performance associated with overt thyroid dysfunction are due mainly to alterations of myocardial contractility or to loading conditions remains unclear. Extensive evidence indicates that the cardiovascular system responds to the minimal but persistent changes in circulating thyroid hormone levels, which are typical of individuals with subclinical thyroid dysfunction. Subclinical hyperthyroidism is associated with increased heart rate, atrial arrhythmias, increased LV mass, impaired ventricular relaxation, reduced exercise performance, and increased risk of cardiovascular mortality. Subclinical hypothyroidism is associated with impaired LV diastolic function and subtle systolic dysfunction and an enhanced risk for atherosclerosis and myocardial infarction. Because all cardiovascular abnormalities are reversed by restoration of euthyroidism ("subclinical hypothyroidism") or blunted by beta-blockade and L-thyroxine (L-T4) dose tailoring ("subclinical hyperthyroidism"), timely treatment is advisable in an attempt to avoid adverse cardiovascular effects. Interestingly, some data indicate that patients with acute and chronic cardiovascular disorders and those undergoing cardiac surgery may have altered peripheral thyroid hormone metabolism that, in turn, may contribute to altered cardiac function. Preliminary clinical investigations suggest that administration of

  8. Cardiovascular involvement in pediatric systemic autoimmune diseases: the emerging role of noninvasive cardiovascular imaging.

    PubMed

    Mavrogeni, Sophie; Servos, George; Smerla, Roubini; Markousis-Mavrogenis, George; Grigoriadou, Georgia; Kolovou, Genovefa; Papadopoulos, George

    2015-01-01

    Cardiac involvement in pediatric systemic autoimmune diseases has a wide spectrum of presentation ranging from asymptomatic to severe clinically overt involvement. Coronary artery disease, pericardial, myocardial, valvular and rythm disturbances are the most common causes of heart lesion in pediatric systemic autoimmune diseases and cannot be explained only by the traditional cardiovascular risk factors. Therefore, chronic inflammation has been considered as an additive causative factor of cardiac disease in these patients. Rheumatic fever, juvenile idiopathic arthritis, systemic lupus erythematosus, ankylosing spondylitis/spondyloarthritides, juvenile scleroderma, juvenile dermatomyositis/polymyositis, Kawasaki disease and other autoimmune vasculitides are the commonest pediatric systemic autoimmune diseases with heart involvement. Noninvasive cardiovascular imaging is an absolutely necessary adjunct to the clinical evaluation of these patients. Echocardiography is the cornerstone of this assessment, due to excellent acoustic window in children, lack of radiation, low cost and high availability. However, it can not detect disease acuity and pathophysiologic background of cardiac lesions. Recently, the development of cardiovascular magnetic resonance imaging holds the promise for early detection of subclinical heart disease and detailed serial evaluation of myocardium (function, inflammation, stress perfusion-fibrosis) and coronary arteries (assessment of ectasia and aneurysms).

    .

  9. Inorganic nitrate and the cardiovascular system.

    PubMed

    Kapil, V; Webb, A J; Ahluwalia, A

    2010-11-01

    Fruit and vegetable-rich diets reduce blood pressure and risk of ischaemic stroke and ischaemic heart disease. While the cardioprotective effects of a fruit and vegetable-rich diet are unequivocal, the exact mechanisms of this effect remain uncertain. Recent evidence has highlighted the possibility that dietary nitrate, an inorganic anion found in large quantities in vegetables (particularly green leafy vegetables), may have a part to play. This beneficial activity lies in the processing in vivo of nitrate to nitrite and thence to the pleiotropic molecule nitric oxide. In this review, recent preclinical and clinical evidence identifying the mechanisms involved in nitrate bioactivity, and the evidence supporting the potential utility of exploitation of this pathway for the prevention and/or treatment of cardiovascular diseases are discussed.

  10. Purinergic Signaling in the Cardiovascular System.

    PubMed

    Burnstock, Geoffrey

    2017-01-06

    There is nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory-motor nerves, as well as in intracardiac neurons. Centers in the brain control heart activities and vagal cardiovascular reflexes involve purines. Adenine nucleotides and nucleosides act on purinoceptors on cardiomyocytes, AV and SA nodes, cardiac fibroblasts, and coronary blood vessels. Vascular tone is controlled by a dual mechanism. ATP, released from perivascular sympathetic nerves, causes vasoconstriction largely via P2X1 receptors. Endothelial cells release ATP in response to changes in blood flow (via shear stress) or hypoxia, to act on P2 receptors on endothelial cells to produce nitric oxide, endothelium-derived hyperpolarizing factor, or prostaglandins to cause vasodilation. ATP is also released from sensory-motor nerves during antidromic reflex activity, to produce relaxation of some blood vessels. Purinergic signaling is involved in the physiology of erythrocytes, platelets, and leukocytes. ATP is released from erythrocytes and platelets, and purinoceptors and ectonucleotidases are expressed by these cells. P1, P2Y1, P2Y12, and P2X1 receptors are expressed on platelets, which mediate platelet aggregation and shape change. Long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides promote migration and proliferation of vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis, vessel remodeling during restenosis after angioplasty and atherosclerosis. The involvement of purinergic signaling in cardiovascular pathophysiology and its therapeutic potential are discussed, including heart failure, infarction, arrhythmias, syncope, cardiomyopathy, angina, heart transplantation and coronary bypass grafts, coronary artery disease, diabetic cardiomyopathy, hypertension, ischemia, thrombosis, diabetes mellitus, and migraine.

  11. Central Neural Control of the Cardiovascular System: Current Perspectives

    ERIC Educational Resources Information Center

    Dampney, Roger A. L.

    2016-01-01

    This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system.…

  12. Central neural control of the cardiovascular system: current perspectives.

    PubMed

    Dampney, Roger A L

    2016-09-01

    This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system. Such cardiovascular regulatory mechanisms do not operate in isolation but are closely coordinated with respiratory and other regulatory mechanisms to maintain homeostasis. The brain regulates the cardiovascular system by two general means: 1) feedforward regulation, often referred to as "central command," and 2) feedback or reflex regulation. In most situations (e.g., during exercise, defensive behavior, sleep, etc.), both of these general mechanisms contribute to overall cardiovascular homeostasis. The review first describes the mechanisms and central circuitry subserving the baroreceptor, chemoreceptor, and other reflexes that work together to regulate an appropriate level of blood pressure and blood oxygenation and then considers the brain mechanisms that defend the body against more complex environmental challenges, using dehydration and cold and heat stress as examples. The last section of the review considers the central mechanisms regulating cardiovascular function associated with different behaviors, with a specific focus on defensive behavior and exercise.

  13. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems

    PubMed Central

    Choma, Michael A.; Suter, Melissa J.; Vakoc, Benjamin J.; Bouma, Brett E.; Tearney, Guillermo J.

    2011-01-01

    SUMMARY The physiology of the Drosophila melanogaster cardiovascular system remains poorly characterized compared with its vertebrate counterparts. Basic measures of physiological performance remain unknown. It also is unclear whether subtle physiological defects observed in the human cardiovascular system can be reproduced in D. melanogaster. Here we characterize the cardiovascular physiology of D. melanogaster in its pre-pupal stage by using high-speed dye angiography and optical coherence tomography. The heart has vigorous pulsatile contractions that drive intracardiac, aortic and extracellular-extravascular hemolymph flow. Several physiological measures, including weight-adjusted cardiac output, body-length-adjusted aortic velocities and intracardiac shear forces, are similar to those in the closed vertebrate cardiovascular systems, including that of humans. Extracellular-extravascular flow in the pre-pupal D. melanogaster circulation drives convection-limited fluid transport. To demonstrate homology in heart dysfunction, we showed that, at the pre-pupal stage, a troponin I mutant, held-up2 (hdp2), has impaired systolic and diastolic heart wall velocities. Impaired heart wall velocities occur in the context of a non-dilated phenotype with a mildly depressed fractional shortening. We additionally derive receiver operating characteristic curves showing that heart wall velocity is a potentially powerful discriminator of systolic heart dysfunction. Our results demonstrate physiological homology and support the use of D. melanogaster as an animal model of complex cardiovascular disease. PMID:21183476

  14. Effect of zero magnetic field on cardiovascular system and microcirculation

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.

    2016-02-01

    The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling ;ARFA; has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.

  15. Clinical Application of Stem Cells in the Cardiovascular System

    NASA Astrophysics Data System (ADS)

    Stamm, Christof; Klose, Kristin; Choi, Yeong-Hoon

    Regenerative medicine encompasses "tissue engineering" - the in vitro fabrication of tissues and/or organs using scaffold material and viable cells - and "cell therapy" - the transplantation or manipulation of cells in diseased tissue in vivo. In the cardiovascular system, tissue engineering strategies are being pursued for the development of viable replacement blood vessels, heart valves, patch material, cardiac pacemakers and contractile myocardium. Anecdotal clinical applications of such vessels, valves and patches have been described, but information on systematic studies of the performance of such implants is not available, yet. Cell therapy for cardiovascular regeneration, however, has been performed in large series of patients, and numerous clinical studies have produced sometimes conflicting results. The purpose of this chapter is to summarize the clinical experience with cell therapy for diseases of the cardiovascular system, and to analyse possible factors that may influence its outcome.

  16. Does the kinin system mediate in cardiovascular abnormalities? An overview.

    PubMed

    Sharma, Jagdish N

    2003-11-01

    All the components of the kallikrein-kinin system are located in the cardiac muscle, and its deficiency may lead to cardiac dysfunction. In recent years, numerous observations obtained from clinical and experimental models of diabetes, hypertension, cardiac failure, ischemia, myocardial infarction, and left ventricular hypertrophy have suggested that the reduced activity of the local kallikrein-kinin system may be instrumental for the induction of cardiovascular-related diseases. The cardioprotective property of the angiotensin-converting enzyme inhibitors is primarily mediated via the kinin-releasing pathway, which may cause regression of left ventricular hypertrophy in hypertensive situations. The ability of kallikrein gene delivery to produce a wide spectrum of beneficial effects makes it an excellent candidate in treating hypertension and cardiovascular and renal diseases. In addition, stable kinin agonists may also be available in the future as therapeutic agents for cardiovascular and renal disorders.

  17. Hydroxybenzoic acid isomers and the cardiovascular system

    PubMed Central

    2014-01-01

    Today we are beginning to understand how phytochemicals can influence metabolism, cellular signaling and gene expression. The hydroxybenzoic acids are related to salicylic acid and salicin, the first compounds isolated that have a pharmacological activity. In this review we examine how a number of hydroxyphenolics have the potential to ameliorate cardiovascular problems related to aging such as hypertension, atherosclerosis and dyslipidemia. The compounds focused upon include 2,3-dihydroxybenzoic acid (Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid), 3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-monohydroxybenzoic acid. The latter two compounds activate the hydroxycarboxylic acid receptors with a consequence there is a reduction in adipocyte lipolysis with potential improvements of blood lipid profiles. Several of the other compounds can activate the Nrf2 signaling pathway that increases the expression of antioxidant enzymes, thereby decreasing oxidative stress and associated problems such as endothelial dysfunction that leads to hypertension as well as decreasing generalized inflammation that can lead to problems such as atherosclerosis. It has been known for many years that increased consumption of fruits and vegetables promotes health. We are beginning to understand how specific phytochemicals are responsible for such therapeutic effects. Hippocrates’ dictum of ‘Let food be your medicine and medicine your food’ can now be experimentally tested and the results of such experiments will enhance the ability of nutritionists to devise specific health-promoting diets. PMID:24943896

  18. 76 FR 62164 - VASRD Improvement Forum-Updating Disability Criteria for the Respiratory System, Cardiovascular...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... AFFAIRS VASRD Improvement Forum--Updating Disability Criteria for the Respiratory System, Cardiovascular...) Improvement Forum-- Updating Disability Criteria for the Respiratory System, Cardiovascular System, Hearing... four body systems: (1) Respiratory System (38 CFR 4.96-4.97), (2) the Cardiovascular System (38 CFR...

  19. Molecular Mechanisms of Autophagy in the Cardiovascular System

    PubMed Central

    Gatica, Damián; Chiong, Mario; Lavandero, Sergio; Klionsky, Daniel J.

    2014-01-01

    Autophagy is a catabolic recycling pathway triggered by various intra- or extracellular stimuli that is conserved from yeast to mammals. During autophagy diverse cytosolic constituents are enveloped by double-membrane vesicles, autophagosomes, which later fuse with lysosomes or the vacuole in order to degrade their cargo. Dysregulation in autophagy is associated with a diverse range of pathologies including cardiovascular disease, the leading cause of death in the world. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been widely characterized in cardiomyocytes, cardiac fibroblasts, endothelial cells and vascular smooth muscle cells. In all cases, a window of optimal autophagic activity appears to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. Here we review the molecular mechanisms that govern autophagosome formation and analyze the link between autophagy and cardiovascular disease. PMID:25634969

  20. Molecular mechanisms of autophagy in the cardiovascular system.

    PubMed

    Gatica, Damián; Chiong, Mario; Lavandero, Sergio; Klionsky, Daniel J

    2015-01-30

    Autophagy is a catabolic recycling pathway triggered by various intra- or extracellular stimuli that is conserved from yeast to mammals. During autophagy, diverse cytosolic constituents are enveloped by double-membrane vesicles, autophagosomes, which later fuse with lysosomes or the vacuole to degrade their cargo. Dysregulation in autophagy is associated with a diverse range of pathologies including cardiovascular disease, the leading cause of death in the world. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been characterized widely in cardiomyocytes, cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells. In all cases, a window of optimal autophagic activity seems to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. Here, we review the molecular mechanisms that govern autophagosome formation and analyze the link between autophagy and cardiovascular disease.

  1. The emerging role of the endocannabinoid system in cardiovascular disease.

    PubMed

    Pacher, Pál; Steffens, Sabine

    2009-06-01

    Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB(1) and CB(2). Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB(1) receptors. Furthermore, tonic activation of CB(1) receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB(2) receptors in immune cells exerts various immunomodulatory effects, and the CB(2) receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorders.

  2. Aldosterone and mineralocorticoid receptors in the cardiovascular system.

    PubMed

    Funder, John W

    2010-01-01

    Aldosterone is currently thought to exert its physiologic effects by activating epithelial mineralocorticoid receptors, and its pathologic effects on the cardiovascular system via mineralocorticoid receptors in the heart and blood vessels. Recent studies have extended this understanding to include a reevaluation of the roles of aldosterone and mineralocorticoid receptor activation in blood pressure control; the rapid, nongenomic effects of aldosterone; the role of cortisol as a mineralocorticoid receptor agonist under conditions of redox change/tissue damage/reactive oxygen species generation; the growing consensus that primary aldosteronism accounts for approximately 10% of all essential hypertension; recent new insights into the cardioprotective role of spironolactone; and the development of third- and fourth-generation mineralocorticoid receptor antagonists for use in cardiovascular and other inflammatory disease. These findings on aldosterone action and mineralocorticoid receptor blockade are analyzed in the context of the prevention and treatment of cardiovascular disease.

  3. [Serotonin and its receptors in the cardiovascular system].

    PubMed

    Nadeev, A D; Zharkikh, I L; Avdonin, P V; Goncharov, N V

    2014-01-01

    Serotonin in cardiovascular system plays an important role in blood coagulation, allergy, and inflammation, as well as in blood vessel tone regulation. In this review, the mechanisms of serotonin effects upon the cells of blood vessels are considered and the list of main agonists and antagonists is presented. The signaling pathways activated by serotonin and their interaction in normal and pathological states are described.

  4. A Computer Model of the Cardiovascular System for Effective Learning.

    ERIC Educational Resources Information Center

    Rothe, Carl F.

    1979-01-01

    Described is a physiological model which solves a set of interacting, possibly nonlinear, differential equations through numerical integration on a digital computer. Sample printouts are supplied and explained for effects on the components of a cardiovascular system when exercise, hemorrhage, and cardiac failure occur. (CS)

  5. Decadal Cycles in the Human Cardiovascular System

    PubMed Central

    Halberg, Franz; Cornelissen, Germaine; Sothern, Robert B.; Hillman, Dewayne; Watanabe, Yoshihiko; Haus, Erhard; Schwartzkopff, Othild; Best, William R.

    2013-01-01

    Seven of the eight authors of this report each performed physiologic self-surveillance, some around the clock for decades. We here document the presence of long cycles (decadals, including circaundecennians) in the time structure of systolic (S) and diastolic (D) blood pressure (BP) and heart rate (HR). Because of the non-stationary nature in time and space of these and other physiologic and environmental periodic components that, like the wind, can appear and disappear in a given or other geographic location at one or another time, they have been called “Aeolian”. The nonlinear estimation of the uncertainties of the periods (τs) of two or more variables being compared has been used to determine whether these components are congruent or not, depending on whether their CIs (95% confidence intervals) overlap or not. Among others, congruence has been found for components with τs clustering around 10 years in us and around us. There is a selective assortment among individuals, variables and cycle characteristics (mean and circadian amplitude and acrophase). Apart from basic interest, like other nonphotic solar signatures such as transyears with periods slightly longer than one year or about 33-year Brückner-Egeson-Lockyer (BEL) cycles, about 10-year and longer cycles present in 7 of 7 self-monitoring individuals are of interest in the diagnosis of Vascular Variability Anomalies (VVAs), including MESOR-hypertension, and others. Some of the other VVAs, such as a circadian overswing, i.e., CHAT (Circadian Hyper-Aplitude-Tension), or an excessive pulse pressure, based on repeated 7-day around-the-clock records, can represent a risk of severe cardiovascular events, greater than that of a high BP. The differential diagnosis of physiologic cycles, infradians (components with a τ longer than 28 hours) as well as circadians awaits the collection of reference values for the infradian parameters of the cycles described herein. Just as in stroke-prone spontaneously

  6. Mathematical biomarkers for the autonomic regulation of cardiovascular system.

    PubMed

    Campos, Luciana A; Pereira, Valter L; Muralikrishna, Amita; Albarwani, Sulayma; Brás, Susana; Gouveia, Sónia

    2013-10-07

    Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance.

  7. Mathematical biomarkers for the autonomic regulation of cardiovascular system

    PubMed Central

    Campos, Luciana A.; Pereira, Valter L.; Muralikrishna, Amita; Albarwani, Sulayma; Brás, Susana; Gouveia, Sónia

    2013-01-01

    Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance. PMID:24109456

  8. Endocannabinoids and the Cardiovascular System in Health and Disease.

    PubMed

    O'Sullivan, Saoirse Elizabeth

    2015-01-01

    The endocannabinoid system is widely distributed throughout the cardiovascular system. Endocannabinoids play a minimal role in the regulation of cardiovascular function in normal conditions, but are altered in most cardiovascular disorders. In shock, endocannabinoids released within blood mediate the associated hypotension through CB(1) activation. In hypertension, there is evidence for changes in the expression of CB(1), and CB(1) antagonism reduces blood pressure in obese hypertensive and diabetic patients. The endocannabinoid system is also upregulated in cardiac pathologies. This is likely to be cardioprotective, via CB(2) and CB(1) (lesser extent). In the vasculature, endocannabinoids cause vasorelaxation through activation of multiple target sites, inhibition of calcium channels, activation of potassium channels, NO production and the release of vasoactive substances. Changes in the expression or function of any of these pathways alter the vascular effect of endocannabinoids. Endocannabinoids have positive (CB(2)) and negative effects (CB(1)) on the progression of atherosclerosis. However, any negative effects of CB(1) may not be consequential, as chronic CB(1) antagonism in large scale human trials was not associated with significant reductions in atheroma. In neurovascular disorders such as stroke, endocannabinoids are upregulated and protective, involving activation of CB(1), CB(2), TRPV1 and PPARα. Although most of this evidence is from preclinical studies, it seems likely that cannabinoid-based therapies could be beneficial in a range of cardiovascular disorders.

  9. Cell death and survival signalling in the cardiovascular system.

    PubMed

    Tucka, Joanna; Bennett, Martin; Littlewood, Trevor

    2012-01-01

    The loss of cells is an important factor in many diseases, including those of the cardiovascular system. Whereas apoptosis is an essential process in development and tissue homeostasis, its occurrence is often associated with various pathologies. Apoptosis of neurons that fail to make appropriate connections is essential for the selection of correct neural signalling in the developing embryo, but its appearance in adults is often associated with neurodegenerative disease. Similarly, in the cardiovascular system, remodeling of the mammalian outflow tract during the transition from a single to dual series circulation with four chambers is accompanied by a precise pattern of cell death, but apoptosis of cardiomyocytes contributes to ischemia-reperfusion injury in the heart. In many cases, it is unclear whether apoptosis represents a causative association or merely a consequence of the disease itself. There are many excellent reviews on cell death in the cardiovascular system (1-5); in this review we outline the critical signalling pathways that promote the survival of cardiovascular cells, and their relevance to both physiological cell death and disease.

  10. Differential Role of Leptin and Adiponectin in Cardiovascular System

    PubMed Central

    Ghantous, C. M.; Azrak, Z.; Hanache, S.; Abou-Kheir, W.; Zeidan, A.

    2015-01-01

    Leptin and adiponectin are differentially expressed adipokines in obesity and cardiovascular diseases. Leptin levels are directly associated with adipose tissue mass, while adiponectin levels are downregulated in obesity. Although significantly produced by adipocytes, leptin is also produced by vascular smooth muscle cells and cardiomyocytes. Plasma leptin concentrations are elevated in cases of cardiovascular diseases, such as hypertension, congestive heart failure, and myocardial infarction. As for the event of left ventricular hypertrophy, researchers have been stirring controversy about the role of leptin in this form of cardiac remodeling. In this review, we discuss how leptin has been shown to play an antihypertrophic role in the development of left ventricular hypertrophy through in vitro experiments, population-based cross-sectional studies, and longitudinal cohort studies. Conversely, we also examine how leptin may actually promote left ventricular hypertrophy using in vitro analysis and human-based univariate and multiple linear stepwise regression analysis. On the other hand, as opposed to leptin's generally detrimental effects on the cardiovascular system, adiponectin is a cardioprotective hormone that reduces left ventricular and vascular hypertrophy, oxidative stress, and inflammation. In this review, we also highlight adiponectin signaling and its protective actions on the cardiovascular system. PMID:26064110

  11. O-GlcNAc and the cardiovascular system.

    PubMed

    Dassanayaka, Sujith; Jones, Steven P

    2014-04-01

    The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets.

  12. The role of urocortins in the cardiovascular system.

    PubMed

    Walczewska, J; Dzieza-Grudnik, A; Siga, O; Grodzicki, T

    2014-12-01

    Urocortins (Ucn) 1, 2 and 3 are a group of endogenous peptide hormones belonging to the corticotropin-releasing hormone (CRH) family of peptides. The presence of urocortins has been detected in the central nervous system as well as in peripheral tissues. They play an important role in a stress response (with respect to its duration, intensity and restoration of homeostasis). They also act as regulatory factors of the cardiovascular, gastrointestinal, reproductive and immune systems. Urocortins act by binding to G-protein-coupled receptors (GPCR). The "central" effects of urocortins are mediated mainly by activation of CRH receptor 1 (CRH-R1), and the "peripheral" effects by activation of CRH-R2. Ucn2 and Ucn3 are selective CRH-R2 agonists and have much higher binding affinity to this receptor than CRH and Ucn1. Recent studies have shown that urocortins exert various biological effects in the cardiovascular system, such as vasodilation, positive inotropic and lusitropic effects, as well as cardioprotection against ischemia-reperfusion injury. They also suppress the renin-angiotensin system and may have an impact on the sympathetic nervous system. Urocortins and CRH-R2 may be a potential therapeutic target in coronary heart disease, congestive heart failure and hypertension. This review summarizes the data published to date on the role of urocortins in the cardiovascular system.

  13. Protease-activated receptor-2 (PAR2) in cardiovascular system.

    PubMed

    Bucci, Mariarosaria; Roviezzo, Fiorentina; Cirino, Giuseppe

    2005-10-01

    Vascular system is constituted by a complex and articulate network, e.g. arteries, arterioles, venules and veins, that requires a high degree of coordination between different elemental cell types. Proteinase-activated receptors (PARs) constitute a recent described family of 7-transmembrane G protein-coupled receptors that are activated by proteolysis. In recent years several evidence have been accumulated for an involvement of this receptor in the response to endothelial injury in vitro and in vivo experimental settings suggesting a role for PAR2 in the pathophysiology of cardiovascular system. This review will deal with the role of PAR2 receptor in the cardiovascular system analyzing both in vivo and in vitro published data. In particular this review will deal with the role of this receptor in vascular reactivity, ischemia/reperfusion injury, coronary atherosclerotic lesions and angiogenesis.

  14. Non-genomic effect of glucocorticoids on cardiovascular system.

    PubMed

    Lee, Sung Ryul; Kim, Hyoung Kyu; Youm, Jae Boum; Dizon, Louise Anne; Song, In Sung; Jeong, Seung Hun; Seo, Dae Yun; Ko, Kyoung Soo; Rhee, Byoung Doo; Kim, Nari; Han, Jin

    2012-12-01

    Glucocorticoids (GCs) are essential steroid hormones for homeostasis, development, metabolism, and cognition and possess anti-inflammatory and immunosuppressive actions. Since glucocorticoid receptor II (GR) is nearly ubiquitous, chronic activation or depletion of GCs leads to dysfunction of diverse organs, including the heart and blood vessels, resulting predominantly from changes in gene expression. Most studies, therefore, have focused on the genomic effects of GC to understand its related pathophysiological manifestations. The nongenomic effects of GCs clearly differ from well-known genomic effects, with the former responding within several minutes without the need for protein synthesis. There is increasing evidence that the nongenomic actions of GCs influence various physiological functions. To develop a GC-mediated therapeutic target for the treatment of cardiovascular disease, understanding the genomic and nongenomic effects of GC on the cardiovascular system is needed. This article reviews our current understanding of the underlying mechanisms of GCs on cardiovascular diseases and stress, as well as how nongenomic GC signaling contributes to these conditions. We suggest that manipulation of GC action based on both GC and GR metabolism, mitochondrial impact, and the action of serum- and glucocorticoid-dependent kinase 1 may provide new information with which to treat cardiovascular diseases.

  15. CaMKII in the cardiovascular system: sensing redox states.

    PubMed

    Erickson, Jeffrey R; He, B Julie; Grumbach, Isabella M; Anderson, Mark E

    2011-07-01

    The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure, and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca(2+)/CaM). Under conditions of sustained exposure to elevated Ca(2+)/CaM, CaMKII transitions into a Ca(2+)/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine-287 in the CaMKII regulatory domain "traps" CaMKII into an open configuration even after Ca(2+)/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca(2+)/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease.

  16. Glucagon-like peptide 1 and the cardiovascular system.

    PubMed

    Fava, Stephen

    2014-01-01

    Glucagon-like peptide 1 (GLP1) is a major incretin hormone. This means that it is secreted by the gut in response to food and helps in reducing post-prandial glucose exertion. It achieves this through a number of mechanisms, including stimulating insulin release by pancreatic β-cells in a glucose-dependent manner; inhibition of glucagon release by pancreatic α-cells (also in a glucose-dependent manner); induction of central appetite suppression and by delaying gastric empting thereby inducing satiety and also reducing the rate of absorption of nutrients. However, GLP1 receptors have been described in a number of extra-pancreatic tissues, including the endothelium and the myocardium. This suggests that the physiological effects of GLP1 extend beyond post-prandial glucose control and raises the possibility that GLP1 might have cardiovascular effects. This is of importance in our understanding of incretin hormone physiology and especially because of the possible implications that it might have with regard to cardiovascular effects of incretin-based therapies, namely DPP-IV inhibitors (gliptins) and GLP1 analogues. This review analyzes the animal and human data on the effects of GLP1 on the cardiovascular system in health and in disease and the currently available data on cardiovascular effects of incretin-based therapies. It is the author's view that the physiological role of GLP1 is not only to minimize postprandial hypoglycaemia, but also protect against it.

  17. Physiological role of ROCKs in the cardiovascular system.

    PubMed

    Noma, Kensuke; Oyama, Naotsugu; Liao, James K

    2006-03-01

    Rho-associated kinases (ROCKs), the immediate downstream targets of RhoA, are ubiquitously expressed serine-threonine protein kinases that are involved in diverse cellular functions, including smooth muscle contraction, actin cytoskeleton organization, cell adhesion and motility, and gene expression. Recent studies have shown that ROCKs may play a pivotal role in cardiovascular diseases such as vasospastic angina, ischemic stroke, and heart failure. Indeed, inhibition of ROCKs by statins or other selective inhibitors leads to the upregulation and activation of endothelial nitric oxide synthase (eNOS) and reduction of vascular inflammation and atherosclerosis. Thus inhibition of ROCKs may contribute to some of the cholesterol-independent beneficial effects of statin therapy. Currently, two ROCK isoforms have been identified, ROCK1 and ROCK2. Because ROCK inhibitors are nonselective with respect to ROCK1 and ROCK2 and also, in some cases, may be nonspecific with respect to other ROCK-related kinases such as myristolated alanine-rich C kinase substrate (MARCKS), protein kinase A, and protein kinase C, the precise role of ROCKs in cardiovascular disease remains unknown. However, with the recent development of ROCK1- and ROCK2-knockout mice, further dissection of ROCK signaling pathways is now possible. Herein we review what is known about the physiological role of ROCKs in the cardiovascular system and speculate about how inhibition of ROCKs could provide cardiovascular benefits.

  18. Xenobiotic pulmonary exposure and systemic cardiovascular response via neurological links.

    PubMed

    Stapleton, Phoebe A; Abukabda, Alaeddin B; Hardy, Steven L; Nurkiewicz, Timothy R

    2015-11-15

    The cardiovascular response to xenobiotic particle exposure has been increasingly studied over the last two decades, producing an extraordinary scope and depth of research findings. With the flourishing of nanotechnology, the term "xenobiotic particles" has expanded to encompass not only air pollution particulate matter (PM) but also anthropogenic particles, such as engineered nanomaterials (ENMs). Historically, the majority of research in these fields has focused on pulmonary exposure and the adverse physiological effects associated with a host inflammatory response or direct particle-tissue interactions. Because these hypotheses can neither account entirely for the deleterious cardiovascular effects of xenobiotic particle exposure nor their time course, the case for substantial neurological involvement is apparent. Indeed, considerable evidence suggests that not only is neural involvement a significant contributor but also a reality that needs to be investigated more thoroughly when assessing xenobiotic particle toxicities. Therefore, the scope of this review is several-fold. First, we provide a brief overview of the major anatomical components of the central and peripheral nervous systems, giving consideration to the potential biologic targets affected by inhaled particles. Second, the autonomic arcs and mechanisms that may be involved are reviewed. Third, the cardiovascular outcomes following neurological responses are discussed. Lastly, unique problems, future risks, and hurdles associated with xenobiotic particle exposure are discussed. A better understanding of these neural issues may facilitate research that in conjunction with existing research, will ultimately prevent the untoward cardiovascular outcomes associated with PM exposures and/or identify safe ENMs for the advancement of human health.

  19. Role of substance P in the cardiovascular system.

    PubMed

    Mistrova, Eliska; Kruzliak, Peter; Chottova Dvorakova, Magdalena

    2016-08-01

    This article provides an overview of the structure and function of substance P signalling system and its involvement in the cardiovascular regulation. Substance P is an undecapeptide originating from TAC1 gen and belonging to the tachykinin family. The biological actions of substance P are mainly mediated through neurokinin receptor 1 since substance P is the ligand with the highest affinity to neurokinin receptor 1. Substance P is widely distributed within the central and peripheral nervous systems as well as in the cardiovascular system. Substance P is involved in the regulation of heart frequency, blood pressure and in the stretching of vessels. Substance P plays an important role in ischemia and reperfusion and cardiovascular response to stress. Additionally, it has been also implicated in angiogenesis, pain transmission and inflammation. The substance P/neurokinin receptor 1 receptor system is involved in the molecular bases of many human pathological processes. Antagonists of neurokinin receptor 1 receptor could provide clinical solutions for a variety of diseases. Neurokinin receptor 1 antagonists are already used in the prevention of chemotherapy induced nausea and vomiting.

  20. Heart Rate, Life Expectancy and the Cardiovascular System: Therapeutic Considerations.

    PubMed

    Boudoulas, Konstantinos Dean; Borer, Jeffrey S; Boudoulas, Harisios

    2015-01-01

    It has long been known that life span is inversely related to resting heart rate in most organisms. This association between heart rate and survival has been attributed to the metabolic rate, which is greater in smaller animals and is directly associated with heart rate. Studies have shown that heart rate is related to survival in apparently healthy individuals and in patients with different underlying cardiovascular diseases. A decrease in heart rate due to therapeutic interventions may result in an increase in survival. However, there are many factors regulating heart rate, and it is quite plausible that these may independently affect life expectancy. Nonetheless, a fast heart rate itself affects the cardiovascular system in multiple ways (it increases ventricular work, myocardial oxygen consumption, endothelial stress, aortic/arterial stiffness, decreases myocardial oxygen supply, other) which, in turn, may affect survival. In this brief review, the effects of heart rate on the heart, arterial system and survival will be discussed.

  1. Endothelial Interfaces - Master Gatekeepers of the Cardiovascular System

    NASA Astrophysics Data System (ADS)

    Junghans, Sylvia Ann; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Waltman, Mary Jo; Majewski, Jaroslaw

    2014-03-01

    Endothelial cells, master gatekeepers of the cardiovascular system, line its inner boundary from the heart to distant capillaries constantly exposed to blood flow. Inter-endothelial signaling and the monolayer's adhesion to the underlying collagen rich basal lamina are key in physiology and disease. Using neutron scattering, we report the first-ever interfacial structure of endothelial monolayers under dynamic flow conditions mimicking the cardiovascular system. Endothelial adhesion strength (defined as the separation distance l between the basal cell membrane and solid boundary) is explained using developed interfacial potentials and intra-membrane segregation of specific adhesion proteins. Our method provides a powerful tool for the biophysical study of cellular layer adhesion strength in living tissues.

  2. 77 FR 75610 - Foreign-Trade Zone 22-Chicago, IL, Notification of Proposed Production Activity, Abbott...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... Foreign-Trade Zones Board Foreign-Trade Zone 22--Chicago, IL, Notification of Proposed Production Activity, Abbott Laboratories, Inc., AbbVie, Inc. (Pharmaceutical Production), North Chicago, IL, Area Abbott... authority within Subzones 22F and 22S, at sites located in the North Chicago and Lake County, Illinois,...

  3. The Abbott Preschool Program: Fifth Year Report on Enrollment and Budget

    ERIC Educational Resources Information Center

    Applewhite, Erain; Hirsch, Lesley

    2003-01-01

    The New Jersey Supreme Court's 1998 ruling in Abbott v. Burke represents the first judicial directive in the nation that public education must include a high-quality, well-planned preschool program starting at age three. This decision applies to 30 urban school districts, known as the Abbott districts, that serve approximately 25 percent of the…

  4. Age- and Gender-Specific Reference Intervals for Fasting Blood Glucose and Lipid Levels in School Children Measured With Abbott Architect c8000 Chemistry Analyzer.

    PubMed

    Tamimi, Waleed; Albanyan, Esam; Altwaijri, Yasmin; Tamim, Hani; Alhussein, Fahad

    2012-04-01

    Reference intervals for pubertal characteristics are influenced by genetic, geographic, dietary and socioeconomic factors. Therefore, the aim of this study was to establish age-specific reference intervals of glucose and lipid levels among local school children. This was cross-sectional study, conducted among Saudi school children. Fasting blood samples were collected from 2149 children, 1138 (53%) boys and 1011 (47%) girls, aged 6 to 18 years old. Samples were analyzed on the Architect c8000 Chemistry System (Abbott Diagnostics, USA) for glucose, cholesterol, triglycerides, HDL and LDL. Reference intervals were established by nonparametric methods between the 2.5th and 97.5th percentiles. Significant differences were observed between boys and girls for cholesterol and triglycerides levels in all age groups (P < 0.02). Only at age 6-7 years and at adolescents, HDL and LDL levels were found to be significant (P < 0.001). No significant differences were seen in glucose levels except at age 12 to 13 years. Saudi children have comparable serum cholesterol levels than their Western counterparts. This may reflect changing dietary habits and increasing affluence in Saudi Arabia. Increased lipid screening is anticipated, and these reference intervals will aid in the early assessment of cardiovascular and diabetes risk in Saudi pediatric populations.

  5. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    NASA Technical Reports Server (NTRS)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  6. [Radionuclide evaluation of the cardiovascular system in arterial hypertension].

    PubMed

    Oganesian, N M; Babaian, A S; Mikaelian, R S; Mnatsakanian, E L

    1986-08-01

    Proceeding from a study of the nature of changes in hemodynamics during development of hypertensive disease (HD) at its different stages it was shown that hemodynamic changes in 42.1% of the patients with Stage I-IIA HD were of hypertensive type, in the patients with Stage IIB-III HD normal and hypokinetic types of the blood circulation prevailed. After bicycle ergometry exercise the reactivity of the cardiovascular system was revealed more completely. The transition of one hemodynamic type into another and its detection acquired a great importance. The definition of the types of hemodynamics at rest and of effort was very important in terms of adequate antihypertensive therapy and the prediction of a subsequent course of disease. The most complete information on function of the cardiovascular system and myocardial contractility can be obtained with the help of radio-angiocardiography and radionuclide ventriculography. However in the absence of a gamma-chamber radiocardiography can provide necessary information on function of the cardiovascular system in case it is used in one and the same patient over time using bicycle ergometry testing.

  7. How valuable is physical examination of the cardiovascular system?

    PubMed

    Elder, Andrew; Japp, Alan; Verghese, Abraham

    2016-07-27

    Physical examination of the cardiovascular system is central to contemporary teaching and practice in clinical medicine. Evidence about its value focuses on its diagnostic accuracy and varies widely in methodological quality and statistical power. This makes collation, analysis, and understanding of results difficult and limits their application to daily clinical practice. Specific factors affecting interpretation and clinical application include poor standardisation of observers' technique and training, the study of single signs rather than multiple signs or signs in combination with symptoms, and the tendency to compare physical examination directly with technological aids to diagnosis rather than explore diagnostic strategies that combine both. Other potential aspects of the value of physical examination, such as cost effectiveness or patients' perceptions, are poorly studied. This review summarises the evidence for the clinical value of physical examination of the cardiovascular system. The best was judged to relate to the detection and evaluation of valvular heart disease, the diagnosis and treatment of heart failure, the jugular venous pulse in the assessment of central venous pressure, and the detection of atrial fibrillation, peripheral arterial disease, impaired perfusion, and aortic and carotid disease. Although technological aids to diagnosis are likely to become even more widely available at the point of care, the evidence suggests that further research into the value of physical examination of the cardiovascular system is needed, particularly in low resource settings and as a potential means of limiting inappropriate overuse of technological aids to diagnosis.

  8. Salt, aldosterone, and insulin resistance: impact on the cardiovascular system.

    PubMed

    Lastra, Guido; Dhuper, Sonal; Johnson, Megan S; Sowers, James R

    2010-10-01

    Hypertension and type 2 diabetes mellitus (T2DM) are powerful risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), both of which are leading causes of morbidity and mortality worldwide. Research into the pathophysiology of CVD and CKD risk factors has identified salt sensitivity and insulin resistance as key elements underlying the relationship between hypertension and T2DM. Excess dietary salt and caloric intake, as commonly found in westernized diets, is linked not only to increased blood pressure, but also to defective insulin sensitivity and impaired glucose homeostasis. In this setting, activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system (RAAS), as well as increased signaling through the mineralocorticoid receptor (MR), result in increased production of reactive oxygen species and oxidative stress, which in turn contribute to insulin resistance and impaired vascular function. In addition, insulin resistance is not limited to classic insulin-sensitive tissues such as skeletal muscle, but it also affects the cardiovascular system, where it participates in the development of CVD and CKD. Current clinical knowledge points towards an impact of salt restriction, RAAS blockade, and MR antagonism on cardiovascular and renal protection, but also on improved insulin sensitivity and glucose homeostasis.

  9. A forward model-based validation of cardiovascular system identification

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Cohen, R. J.

    2001-01-01

    We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.

  10. Redox modification of cell signaling in the cardiovascular system.

    PubMed

    Shao, Dan; Oka, Shin-ichi; Brady, Christopher D; Haendeler, Judith; Eaton, Philip; Sadoshima, Junichi

    2012-03-01

    Oxidative stress is presumed to be involved in the pathogenesis of many diseases, including cardiovascular disease. However, oxidants are also generated in healthy cells, and increasing evidence suggests that they can act as signaling molecules. The intracellular reduction-oxidation (redox) status is tightly regulated by oxidant and antioxidant systems. Imbalance between them causes oxidative or reductive stress which triggers cellular damage or aberrant signaling, leading to dysregulation. In this review, we will briefly summarize the aspects of ROS generation and neutralization mechanisms in the cardiovascular system. ROS can regulate cell signaling through oxidation and reduction of specific amino acids within proteins. Structural changes during post-translational modification allow modification of protein activity which can result in altered cellular function. We will focus on the molecular basis of redox protein modification and how this regulatory mechanism affects signal transduction in the cardiovascular system. Finally, we will discuss some techniques applied to monitoring redox status and identifying redox-sensitive proteins in the heart. This article is part of a Special Section entitled "Post-translational Modification."

  11. Effects of artificial gravity on the cardiovascular system: Computational approach

    NASA Astrophysics Data System (ADS)

    Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.

    2016-09-01

    Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected

  12. Isolated heart models: cardiovascular system studies and technological advances.

    PubMed

    Olejnickova, Veronika; Novakova, Marie; Provaznik, Ivo

    2015-07-01

    Isolated heart model is a relevant tool for cardiovascular system studies. It represents a highly reproducible model for studying broad spectrum of biochemical, physiological, morphological, and pharmaceutical parameters, including analysis of intrinsic heart mechanics, metabolism, and coronary vascular response. Results obtained in this model are under no influence of other organ systems, plasma concentration of hormones or ions and influence of autonomic nervous system. The review describes various isolated heart models, the modes of heart perfusion, and advantages and limitations of various experimental setups. It reports the improvements of perfusion setup according to Langendorff introduced by the authors.

  13. Systems Medicine as an Emerging Tool for Cardiovascular Genetics

    PubMed Central

    Haase, Tina; Börnigen, Daniela; Müller, Christian; Zeller, Tanja

    2016-01-01

    Cardiovascular disease (CVD) is a major contributor to morbidity and mortality worldwide. However, the pathogenesis of CVD is complex and remains elusive. Within the last years, systems medicine has emerged as a novel tool to study the complex genetic, molecular, and physiological interactions leading to diseases. In this review, we provide an overview about the current approaches for systems medicine in CVD. They include bioinformatical and experimental tools such as cell and animal models, omics technologies, network, and pathway analyses. Additionally, we discuss challenges and current literature examples where systems medicine has been successfully applied for the study of CVD. PMID:27626034

  14. Glucocorticoids and the cardiovascular system: state of the art.

    PubMed

    Nussinovitch, Udi; de Carvalho, Jozélio Freire; Pereira, Rosa Maria R; Shoenfeld, Yehuda

    2010-01-01

    Glucocorticoids (GC) are drugs commonly used, by approximately 1% of the total adult population as anti-inflammatory and immunosuppressive therapies for asthma, inflammatory bowel disease, dermatological, ophthalmic, neurological, and rheumatic autoimmune diseases. Supporting evidence exists of GC use in both immune mediated and non-immune mediated heart disease. The molecular mechanisms by which GC induces immune-modulation and direct cardioprotection, are complex and not fully understood. We review herein, the current knowledge of GC use in various immune-mediated or non-immune mediated cardiovascular conditions. GC have been investigated in autoimmune, inflammatory and idiopathic heart diseases such as atrio-ventricular conduction abnormalities, rheumatic fever, myocarditis, dilated cardiomyopathy, Churg-Strauss syndrome, Kawasaki disease and sarcoidosis. GC therapy has been studied in non-autoimmune and non-inflammatory indications such as acute myocardial infarction, angina, postpericardiotomy syndrome and other pericardial diseases, endocarditis and cardiac amyloidosis, as well as in invasive cardiology, coronary interventions, and cardiopulmonary-bypass surgery. Despite GC's role as natural, physiologic regulators of the immune system, cardiovascular adverse outcomes may occur. Some of the well-known side effects of GC therapy involve bone, metabolic, and cardiovascular systems and include osteoporosis, fractures, dyslipidemia, diabetes, obesity, and hypertension.

  15. IRAG and novel PKG targeting in the cardiovascular system.

    PubMed

    Schlossmann, Jens; Desch, Matthias

    2011-09-01

    Signaling by nitric oxide (NO) determines several cardiovascular functions including blood pressure regulation, cardiac and smooth muscle hypertrophy, and platelet function. NO stimulates the synthesis of cGMP by soluble guanylyl cyclases and thereby activates cGMP-dependent protein kinases (PKGs), mediating most of the cGMP functions. Hence, an elucidation of the PKG signaling cascade is essential for the understanding of the (patho)physiological aspects of NO. Several PKG signaling pathways were identified, meanwhile regulating the intracellular calcium concentration, mediating calcium desensitization or cytoskeletal rearrangement. During the last decade it emerged that the inositol trisphosphate receptor-associated cGMP-kinase substrate (IRAG), an endoplasmic reticulum-anchored 125-kDa membrane protein, is a main signal transducer of PKG activity in the cardiovascular system. IRAG interacts specifically in a trimeric complex with the PKG1β isoform and the inositol 1,4,5-trisphosphate receptor I and, upon phosphorylation, reduces the intracellular calcium release from the intracellular stores. IRAG motifs for phosphorylation and for targeting to PKG1β and 1,4,5-trisphosphate receptor I were identified by several approaches. The (patho)physiological functions for the regulation of smooth muscle contractility and the inhibition of platelet activation were perceived. In this review, the IRAG recognition, targeting, and function are summarized compared with PKG and several PKG substrates in the cardiovascular system.

  16. Nicotine effect on cardiovascular system and ion channels.

    PubMed

    Hanna, Salma Toma

    2006-03-01

    Smoking is a leading cause of cardiovascular disease, hypertension, myocardial infarction, and stroke. Nicotine is one of the components of cigarette smoke. Nicotine effects on the cardiovascular system reflect the activity of the nicotine receptors centrally and on peripheral autonomic ganglia. It has been found that cigarette smoke extract-induced contraction of porcine coronary arteries is related to superoxide anion-mediated degradation of nitric oxide. Treatment of rabbit aortas with an oxygen free radicals scavenger attenuated cigarette smoke impairment of arterial relaxation. Treatment of smokers with vitamin C, an antioxidant, improved impaired endothelium-dependent reactivity of large peripheral arteries. Thus it appears that chronic smoking and acute exposure to cigarette smoke extract may alter endothelium-dependent reactivity via the production of oxygen derived free radicals. This review discusses the effects of nicotine on resistance arterioles, compliance arteries, smooth muscle cells, and ion channels in the cardiovascular system. We discuss studies performed on humans, nicotine-exposed animals, and cell cultures yielding varying and inconsistent results that may be due to differences in experimental design, species, and the dose of exposure. Nicotine exposure appears to induce a combination of free radical production, vascular wall adhesion, and a reduction of fibrinolytic activity in the plasma.

  17. The human cardiovascular system in the absence of gravity

    NASA Technical Reports Server (NTRS)

    Bungo, M. W.; Charles, J. B.

    1985-01-01

    The data collected from a Space Shuttle crew to investigate cardiovascular changes due to microgravity are presented. The experimental procedures which involved preflight, immediate postflight, and one week following postflight echocardiograms of 13 individuals are described. The immediate postflight results reveal a 20 percent decrease in stroke volume, a 16 percent decrease in left ventricular diastolic volume index (LVDVI), no change in systolic volume, blood pressure, or cardiac index, and a 24 percent increase in heart rate. One week later a 17 percent stroke volume increase, a 29 percent increase in cardiac index, and normal blood pressure, and LVDVI were observed. It is concluded that upon reexposure to gravity a readaptation process for the cardiovascular system occurs.

  18. Exercise protects the cardiovascular system: effects beyond traditional risk factors.

    PubMed

    Joyner, Michael J; Green, Daniel J

    2009-12-01

    In humans, exercise training and moderate to high levels of physical activity are protective against cardiovascular disease. In fact they are 40% more protective than predicted based on the changes in traditional risk factors (blood lipids, hypertension, diabetes etc.) that they cause. In this review, we highlight the positive effects of exercise on endothelial function and the autonomic nervous system. We also ask if these effects alone, or in combination, might explain the protective effects of exercise against cardiovascular disease that appear to be independent of traditional risk factor modification. Our goal is to use selected data from our own work and that of others to stimulate debate on the nature and cause of the 'risk factor gap' associated with exercise and physical activity.

  19. Molecular mechanism of vitamin D in the cardiovascular system.

    PubMed

    Li, Yan Chun

    2011-08-01

    Vitamin D deficiency is a global health problem that has various adverse consequences. Vitamin D is mainly synthesized in the skin by sunlight (UV light) irradiation; therefore, vitamin D status is influenced by geographic locations, seasonal changes, and skin pigmentations. The kidney is involved in the biosynthesis of 1,25-dihydroxyvitamin D and the reuptake of filtered 25-hydroxyvitamin D from the proximal tubules, thus, vitamin D deficiency is highly prevalent in patients with kidney disease who have renal insufficiency. There is a growing body of epidemiological and clinical evidence in the literature that links vitamin D deficiency to cardiovascular disease. The discovery of the vitamin D hormone functioning as an endocrine inhibitor of the renin-angiotensin system provides an explanation for this association. This review will discuss the mechanism underlying the connection between vitamin D and cardiovascular disease and its physiological and therapeutic implications.

  20. Xenobiotic pulmonary exposure and systemic cardiovascular response via neurological links

    PubMed Central

    Stapleton, Phoebe A.; Abukabda, Alaeddin B.; Hardy, Steven L.

    2015-01-01

    The cardiovascular response to xenobiotic particle exposure has been increasingly studied over the last two decades, producing an extraordinary scope and depth of research findings. With the flourishing of nanotechnology, the term “xenobiotic particles” has expanded to encompass not only air pollution particulate matter (PM) but also anthropogenic particles, such as engineered nanomaterials (ENMs). Historically, the majority of research in these fields has focused on pulmonary exposure and the adverse physiological effects associated with a host inflammatory response or direct particle-tissue interactions. Because these hypotheses can neither account entirely for the deleterious cardiovascular effects of xenobiotic particle exposure nor their time course, the case for substantial neurological involvement is apparent. Indeed, considerable evidence suggests that not only is neural involvement a significant contributor but also a reality that needs to be investigated more thoroughly when assessing xenobiotic particle toxicities. Therefore, the scope of this review is several-fold. First, we provide a brief overview of the major anatomical components of the central and peripheral nervous systems, giving consideration to the potential biologic targets affected by inhaled particles. Second, the autonomic arcs and mechanisms that may be involved are reviewed. Third, the cardiovascular outcomes following neurological responses are discussed. Lastly, unique problems, future risks, and hurdles associated with xenobiotic particle exposure are discussed. A better understanding of these neural issues may facilitate research that in conjunction with existing research, will ultimately prevent the untoward cardiovascular outcomes associated with PM exposures and/or identify safe ENMs for the advancement of human health. PMID:26386111

  1. The endocannabinoid system: a new approach to control cardiovascular disease.

    PubMed

    Cannon, Christopher P

    2005-01-01

    The endocannabinoid (EC) system consists of 2 types of G-protein-coupled cannabinoid receptors--cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2)--and their natural ligands. The EC system plays a key role in the regulation of food intake and fat accumulation, as well as glucose and lipid metabolism. When overactivated, the EC system triggers dyslipidemia, thrombotic and inflammatory states, and insulin resistance. Blocking CB1 receptors centrally and peripherally in adipose tissue can help normalize an overactivated EC system. CB1 blockade helps regulate food intake and adipose tissue metabolism, contributing to improved insulin sensitivity and other features of the metabolic syndrome. Visceral adipose tissue is most closely associated with the metabolic syndrome, which is a constellation of conditions that place people at high risk for coronary artery disease. Targeting the EC system represents a new approach to treating visceral obesity and reducing cardiovascular risk factors.

  2. Aldosterone and the cardiovascular system: a dangerous association.

    PubMed

    Cachofeiro, Victoria; López-Andrés, Natalia; Miana, Maria; Martín-Fernández, Beatriz; de Las Heras, Natalia; Martínez, Ernesto; Lahera, Vicente; Fortuño, María Antonia

    2010-12-01

    Initial studies have focussed on the actions of aldosterone in renal electrolyte handling and, as a consequence, blood pressure control. More recently, attention has primarily been focussed on its actions on the heart and vascular system, where it is locally produced. Aldosterone by binding mineralocorticoid receptors causes oxidative stress, fibrosis and triggers an inflammatory response in the cardiovascular system. All these effects could be underlying the role of aldo-sterone on cardiac and vascular remodelling associated with different pathological situations. At the vascular level, aldo-sterone affects endothelial function because administration of aldosterone to rats impaired endothelium-dependent relaxations. In addition, the administration of mineralocorticoid receptor antagonists ameliorates endothelium-dependent relaxation in models of both hypertension and atherosclerosis, and in patients with heart failure. Several mechanisms can participate in this effect, including production of vasoconstrictor factors and a reduction in nitric oxide levels. This reduction can involve both a decrease in its production as well as an increase in its degradation by reactive oxygen species. Aldosterone can produce oxidative stress by the activation of transcription factors such as the NF-κB system, which can also trigger an inflammatory process through the production of different cytokines. At cardiac level, high levels of aldosterone can also adversely impact heart function by producing cardiac hypertrophy, diastolic dysfunction and electrical remodelling through changes in ionic channels. All these effects can explain the beneficial effect of mineralocorticoid blockade in the cardiovascular system.

  3. The Equine Neonatal Cardiovascular System in Health and Disease.

    PubMed

    Marr, Celia M

    2015-12-01

    The neonatal foal is in a transitional state from prenatal to postnatal circulation. Healthy newborn foals often have cardiac murmurs and dysrhythmias, which are usually transient and of little clinical significance. The neonatal foal is prone to infection and cardiac trauma. Echocardiography is the main tool used for valuation of the cardiovascular system. With prompt identification and appropriate action, dysrhythmias and other sequel to cardiac trauma can be corrected. With infection, the management and prognosis are driven by concurrent sepsis. Congenital disease represents an interesting diagnostic challenge for the neonatologist, but surgical correction is not appropriate for most equids.

  4. Patient-specific modeling of human cardiovascular system elements

    NASA Astrophysics Data System (ADS)

    Kossovich, Leonid Yu.; Kirillova, Irina V.; Golyadkina, Anastasiya A.; Polienko, Asel V.; Chelnokova, Natalia O.; Ivanov, Dmitriy V.; Murylev, Vladimir V.

    2016-03-01

    Object of study: The research is aimed at development of personalized medical treatment. Algorithm was developed for patient-specific surgical interventions of the cardiovascular system pathologies. Methods: Geometrical models of the biological objects and initial and boundary conditions were realized by medical diagnostic data of the specific patient. Mechanical and histomorphological parameters were obtained with the help mechanical experiments on universal testing machine. Computer modeling of the studied processes was conducted with the help of the finite element method. Results: Results of the numerical simulation allowed evaluating the physiological processes in the studied object in normal state, in presence of different pathologies and after different types of surgical procedures.

  5. Physiological adaptation of the cardiovascular system to high altitude.

    PubMed

    Naeije, Robert

    2010-01-01

    Altitude exposure is associated with major changes in cardiovascular function. The initial cardiovascular response to altitude is characterized by an increase in cardiac output with tachycardia, no change in stroke volume, whereas blood pressure may temporarily be slightly increased. After a few days of acclimatization, cardiac output returns to normal, but heart rate remains increased, so that stroke volume is decreased. Pulmonary artery pressure increases without change in pulmonary artery wedge pressure. This pattern is essentially unchanged with prolonged or lifelong altitude sojourns. Ventricular function is maintained, with initially increased, then preserved or slightly depressed indices of systolic function, and an altered diastolic filling pattern. Filling pressures of the heart remain unchanged. Exercise in acute as well as in chronic high-altitude exposure is associated with a brisk increase in pulmonary artery pressure. The relationships between workload, cardiac output, and oxygen uptake are preserved in all circumstances, but there is a decrease in maximal oxygen consumption, which is accompanied by a decrease in maximal cardiac output. The decrease in maximal cardiac output is minimal in acute hypoxia but becomes more pronounced with acclimatization. This is not explained by hypovolemia, acid-bases status, increased viscosity on polycythemia, autonomic nervous system changes, or depressed systolic function. Maximal oxygen uptake at high altitudes has been modeled to be determined by the matching of convective and diffusional oxygen transport systems at a lower maximal cardiac output. However, there has been recent suggestion that 10% to 25% of the loss in aerobic exercise capacity at high altitudes can be restored by specific pulmonary vasodilating interventions. Whether this is explained by an improved maximum flow output by an unloaded right ventricle remains to be confirmed. Altitude exposure carries no identified risk of myocardial ischemia in

  6. Mathematical modelling and electrical analog equivalent of the human cardiovascular system.

    PubMed

    Abdolrazaghi, Mona; Navidbakhsh, Mahdi; Hassani, Kamran

    2010-06-01

    The objective of this study is to develop a model of the cardiovascular system capable of simulating the normal operation of the systemic and pulmonary circulation, starts from aorta, and follows by upper and lower extremities vessels, finally ends with pulmonary veins. The model consists of a closed loop lumped elements with 43 compartments representing the cardiovascular system. The model parameters have been extracted from the literature. Using MATLAB software, the mathematical model has been simulated for the cardiovascular system. Each compartment includes a Resistor-Inductor-Capacitor (RLC) segment. The normal cardiovascular operation is characterised by the pressure-volume curves in different parts of the system. Model verification is performed by comparing the simulation results with the clinical observation reported in the literature. The described model is a useful tool in studying the physiology of cardiovascular system, and the related diseases. Also, it could be a great tool to investigate the effects of the pathologies of the cardiovascular system.

  7. Aldosterone: effects on the kidney and cardiovascular system.

    PubMed

    Briet, Marie; Schiffrin, Ernesto L

    2010-05-01

    Aldosterone, a steroid hormone with mineralocorticoid activity, is mainly recognized for its action on sodium reabsorption in the distal nephron of the kidney, which is mediated by the epithelial sodium channel (ENaC). Beyond this well-known action, however, aldosterone exerts other effects on the kidney, blood vessels and the heart, which can have pathophysiological consequences, particularly in the presence of a high salt intake. Aldosterone is implicated in renal inflammatory and fibrotic processes, as well as in podocyte injury and mesangial cell proliferation. In the cardiovascular system, aldosterone has specific hypertrophic and fibrotic effects and can alter endothelial function. Several lines of evidence support the existence of crosstalk between aldosterone and angiotensin II in vascular smooth muscle cells. The deleterious effects of aldosterone on the cardiovascular system require concomitant pathophysiological conditions such as a high salt diet, increased oxidative stress, or inflammation. Large interventional trials have confirmed the benefits of adding mineralocorticoid-receptor antagonists to standard therapy, in particular to angiotensin-converting-enzyme inhibitor and angiotensin II receptor blocker therapy, in patients with heart failure. Small interventional studies in patients with chronic kidney disease have shown promising results, with a significant reduction of proteinuria associated with aldosterone antagonism, but large interventional trials that test the efficacy and safety of mineralocorticoid-receptor antagonists in chronic kidney disease are needed.

  8. Aspirin and lipid mediators in the cardiovascular system.

    PubMed

    Schrör, Karsten; Rauch, Bernhard H

    2015-09-01

    Aspirin is an unique compound because it bears two active moieties within one and the same molecule: a reactive acetyl group and the salicylate metabolite. Salicylate has some effects similar to aspirin, however only at higher concentrations, usually in the millimolar range, which are not obtained at conventional antiplatelet aspirin doses of 100-300 mg/day. Pharmacological actions of aspirin in the cardiovascular system at these doses are largely if not entirely due to target structure acetylation. Several classes of lipid mediators become affected: Best known is the cyclooxygenase-1 (COX-1) in platelets with subsequent inhibition of thromboxane and, possibly, thrombin formation. By this action, aspirin also inhibits paracrine thromboxane functions on other lipid mediators, such as the platelet storage product sphingosine-1-phosphate (S1P), an inflammatory mediator. Acetylation of COX-2 allows for generation of 15-(R)HETE and subsequent formation of "aspirin-triggered lipoxin" (ATL) by interaction with white cell lipoxygenases. In the cardiovascular system, aspirin also acetylates eNOS with subsequent upregulation of NO formation and enhanced expression of the antioxidans heme-oxygenase-1. This action is possibly also COX-2/ATL mediated. Many more acetylation targets have been identified in live cells by quantitative acid-cleavable activity-based protein profiling and might result in discovery of even more aspirin targets in the near future.

  9. [Behavior of the cardiovascular system in outer space].

    PubMed

    Iglesias Leal, R

    1987-01-01

    One of the important factors in outer space is the absence of gravity (OG). During longterm missions, this factor is responsible for the larger number of anatomical and physiological changes that astronauts experience. The cardiovascular system undergoes these changes with severe intensity, which is part of an adaptation process to the new environmental conditions. The modifications observed in both the anatomy of the cardiovascular system and its hemodynamics occur in two phases. The first phase begins when the astronauts enter into Earth orbit or in interplanetary trajectory and extends until the second or fourth day of the mission. It is characterized by an important shifting of fluids from the lower extremities to the cephalic regions which produces an increase of the venous return and the preload, the heart rate is increased, the blood volume in the thorax is also increased, the cardiac chambers become dilated, and by reflex action, the antidiuretic hormone diminishes, diuresis increases and leads to a virtual state of dehydration. Clinically, the first stage is manifested by headache, dizziness, space disorientation, nausea, anorexia, projectile vomiting, sweating and pallor. This constalation of data is known as "The Space Adaptation Syndrome". The second phase begins at the end of the first phase and finishes toward the fortieth or fiftieth day of the mission.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. An allometric analysis of the giraffe cardiovascular system.

    PubMed

    Mitchell, G; Skinner, J D

    2009-12-01

    There has been co-evolution of a long neck and high blood pressure in giraffes. How the cardiovascular system (CVS) has adapted to produce a high blood pressure, and how it compares with other similar sized mammals largely is unknown. We have measured body mass and heart structure in 56 giraffes of both genders ranging in body mass from 18 kg to 1500 kg, and developed allometric equations that relate changes in heart dimensions to growth and to cardiovascular function. Predictions made from these equations match measurements made in giraffes. We have found that heart mass increases as body mass increases but it has a relative mass of 0.51+/-0.7% of body mass which is the same as that in other mammals. The left ventricular and interventricular walls are hypertrophied and their thicknesses are linearly related to neck length. Systemic blood pressure increases as body mass and neck length increase and is twice that of mammals of the same body mass. Cardiac output is the same as, but peripheral resistance double that predicted for similar sized mammals. We have concluded that increasing hydrostatic pressure of the column of blood during neck elongation results in cardiac hypertrophy and concurrent hypertrophy of arteriole walls raising peripheral resistance, with an increase in blood pressure following.

  11. An integrated mathematical model of the cardiovascular and respiratory systems.

    PubMed

    Trenhago, Paulo Roberto; Fernandes, Luciano Gonçalves; Müller, Lucas Omar; Blanco, Pablo Javier; Feijóo, Raúl Antonino

    2016-01-01

    This study presents a lumped model for the human cardiorespiratory system. Specifically, we incorporate a sophisticated gas dissociation and transport system to a fully integrated cardiovascular and pulmonary model. The model provides physiologically consistent predictions in terms of hemodynamic variables such as pressure, flow rate, gas partial pressures, and pH. We perform numerical simulations to evaluate the behavior of the partial pressures of oxygen and carbon dioxide in different vascular and pulmonary compartments. For this, we design the rest condition with low oxygen requirements and carbon dioxide production and exercise conditions with high oxygen demand and carbon dioxide production. Furthermore, model sensitivity to more relevant model parameters is studied. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Mathematical modelling of flow distribution in the human cardiovascular system

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1992-01-01

    The paper presents a detailed model of the entire human cardiovascular system which aims to study the changes in flow distribution caused by external stimuli, changes in internal parameters, or other factors. The arterial-venous network is represented by 325 interconnected elastic segments. The mathematical description of each segment is based on equations of hydrodynamics and those of stress/strain relationships in elastic materials. Appropriate input functions provide for the pumping of blood by the heart through the system. The analysis employs the finite-element technique which can accommodate any prescribed boundary conditions. Values of model parameters are from available data on physical and rheological properties of blood and blood vessels. As a representative example, simulation results on changes in flow distribution with changes in the elastic properties of blood vessels are discussed. They indicate that the errors in the calculated overall flow rates are not significant even in the extreme case of arteries and veins behaving as rigid tubes.

  13. Physio-pathological effects of alcohol on the cardiovascular system: its role in hypertension and cardiovascular disease.

    PubMed

    Kawano, Yuhei

    2010-03-01

    Alcohol has complex effects on the cardiovascular system. The purpose of this article is to review physio-pathological effects of alcohol on cardiovascular and related systems and to describe its role in hypertension and cardiovascular disease. The relationship between alcohol and hypertension is well known, and a reduction in the alcohol intake is widely recommended in the management of hypertension. Moreover, alcohol has both pressor and depressor actions. The latter actions are clear in Oriental subjects, especially in those who show alcohol flush because of the genetic variation in aldehyde dehydrogenase activity. Repeated alcohol intake in the evening causes an elevation in daytime and a reduction in nighttime blood pressure (BP), with little change in the average 24-h BP in Japanese men. Thus, the hypertensive effect of alcohol seems to be overestimated by the measurement of casual BP during the day. Heavy alcohol intake seems to increase the risk of several cardiovascular diseases, such as hemorrhagic stroke, arrhythmia and heart failure. On the other hand, alcohol may act to prevent atherosclerosis and to decrease the risk of ischemic heart disease, mainly by increasing HDL cholesterol and inhibiting thrombus formation. A J- or U-shaped relationship has been observed between the level of alcohol intake and risk of cardiovascular mortality and total mortality. It is reasonable to reduce the alcohol intake to less than 30 ml per day for men and 15 ml per day for women in the management of hypertension. As a small amount of alcohol seems to be beneficial, abstinence from alcohol is not recommended to prevent cardiovascular disease.

  14. Angiopoietin–Tie signalling in the cardiovascular and lymphatic systems

    PubMed Central

    Eklund, Lauri; Kangas, Jaakko; Saharinen, Pipsa

    2016-01-01

    Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)–Tie system is a second endothelial cell specific ligand–receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang–Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang–Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang–Tie system in vascular development and pathogenesis of vascular diseases. PMID:27941161

  15. Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system.

    PubMed

    Cai, Anping; Li, Liwen; Zhou, Yingling

    2016-01-01

    In past decades, growing evidence from basic and clinical researches reveal that small guanosine triphosphate binding protein ras homolog gene family, member A (RhoA) and its main effector Rho-associated kinase (ROCK) play central and complex roles in cardiovascular systems, and increasing RhoA and ROCK activity is associated with a broad range of cardiovascular diseases such as congestive heart failure, atherosclerosis, and hypertension. Favorable outcomes have been observed with ROCK inhibitors treatment. In this review, we briefly summarize the pathophysiological roles of RhoA/ROCK signaling pathway on cardiovascular system, displaying the potential benefits in the cardiovascular system with controlling RhoA/ROCK signaling pathway.

  16. Use of implantable telemetry systems for study of cardiovascular phenomena.

    NASA Technical Reports Server (NTRS)

    Sandler, H.; Fryer, T. B.; Westbrook, R. M.; Stone, H. L.

    1972-01-01

    Preliminary observations of cardiovascular function have been made in four chimpanzees using multichannel implantable units. Measurements of right- and left-sided pressures were periodically made in these animals over a four-month period, including continuous observations for selected 24-hour periods. Pressures recorded with animals in an awake, unanesthetized, unrestrained state were much lower than pressures reported for restrained animals in similar situations. Diurnal variations of pressure tended to occur, but were not as clear-cut as those reported to occur for humans. The ability to implant a transmitter chronically and receive useful multichannel information in the chimpanzee encourages the future use of such implant devices as part of the control system for an artificial heart or directly for use in man.

  17. Is the cardiovascular system a therapeutic target for cannabidiol?

    PubMed

    Stanley, Christopher P; Hind, William H; O'Sullivan, Saoirse E

    2013-02-01

    Cannabidiol (CBD) has beneficial effects in disorders as wide ranging as diabetes, Huntington's disease, cancer and colitis. Accumulating evidence now also suggests that CBD is beneficial in the cardiovascular system. CBD has direct actions on isolated arteries, causing both acute and time-dependent vasorelaxation. In vitro incubation with CBD enhances the vasorelaxant responses in animal models of impaired endothelium-dependent vasorelaxation. CBD protects against the vascular damage caused by a high glucose environment, inflammation or the induction of type 2 diabetes in animal models and reduces the vascular hyperpermeability associated with such environments. A common theme throughout these studies is the anti-inflammatory and anti-oxidant effect of CBD. In the heart, in vivo CBD treatment protects against ischaemia-reperfusion damage and against cardiomyopathy associated with diabetes. Similarly, in a different model of ischaemia-reperfusion, CBD has been shown to reduce infarct size and increase blood flow in animal models of stroke, sensitive to 5HT(1A) receptor antagonism. Although acute or chronic CBD treatment seems to have little effect on haemodynamics, CBD reduces the cardiovascular response to models of stress, applied either systemically or intracranially, inhibited by a 5HT(1A) receptor antagonist. In blood, CBD influences the survival and death of white blood cells, white blood cell migration and platelet aggregation. Taken together, these preclinical data appear to support a positive role for CBD treatment in the heart, and in peripheral and cerebral vasculature. However, further work is required to strengthen this hypothesis, establish mechanisms of action and whether similar responses to CBD would be observed in humans.

  18. Influence of exposure to electromagnetic field on the cardiovascular system.

    PubMed

    Jeong, J H; Kim, J S; Lee, B C; Min, Y S; Kim, D S; Ryu, J S; Soh, K S; Seo, K M; Sohn, U D

    2005-01-01

    1 We examined whether extremely low frequency electromagnetic fields (ELF-EMF) affect the basal level of cardiovascular parameters and influence of drugs acting on the sympathetic nervous system. 2 Male rats were exposed to sham control and EMF (60 Hz, 20 G) for 1 (MF-1) or 5 days (MF-5). We evaluated the alterations of blood pressure (BP), pulse pressure (PP), heart rate (HR), and the PR interval, QRS interval and QT interval on the electrocardiogram and dysrhythmic ratio in basal level and dysrhythmia induced by beta-adrenoceptor agonists. 3 In terms of the basal levels, there were no statistically significant differences among control, MF-1 and MF-5 in PR interval, QRS interval, mean BP, HR and PP. However, the QT interval, representing ventricular repolarization, was significantly reduced by MF-1 (P < 0.05). 4 (-)-Dobutamine (beta1-adrenoceptor-selective agonist)-induced tachycardia was significantly suppressed by ELF-EMF exposure in MF-1 for the increase in HR (DeltaHR), the decrease in QRS interval (DeltaQRS) and the decrease in QT (DeltaQT) interval. Adrenaline (nonselective beta-receptor agonist)-induced dysrhythmia was also significantly suppressed by ELF-EMF in MF-1 for the number of missing beats, the dysrhythmic ratio, and the increase in BP and PP. 5 These results indicated that 1-day exposure to ELF-EMF (60 Hz, 20 G) could suppress the increase in HR by affecting ventricular repolarization and may have a down-regulatory effect on responses of the cardiovascular system induced by sympathetic agonists.

  19. O-GlcNAc Signaling in the Cardiovascular System

    PubMed Central

    Ngoh, Gladys A.; Facundo, Heberty T.; Zafir, Ayesha; Jones, Steven P.

    2010-01-01

    Cardiovascular function is regulated at multiple levels. Some of the most important aspects of such regulation involve alterations in an ever-growing list of post-translational modifications. One such modification orchestrates input from numerous metabolic cues to modify proteins and alter their localization and/or function. Known as the beta-O-linkage of N-acetylglucosamine (i.e. O-GlcNAc) to cellular proteins, this unique monosaccharide is involved in a diverse array of physiologic and pathologic functions. This Review will introduce readers to the general concepts related to O-GlcNAc, the regulation of this modification, and its role in primary pathophysiology. Much of the existing literature regarding the role of O-GlcNAcylation in disease addresses the protracted elevations in O-GlcNAcylation observed during diabetes. In this Review, we will focus on the emerging evidence of its involvement in the cardiovascular system. In particular, we will highlight evidence of protein O-GlcNAcylation as an autoprotective alarm or stress response. We will discuss recent literature supporting the idea that promoting O-GlcNAcylation improves cell survival during acute stress (e.g. hypoxia, ischemia, oxidative stress), whereas limiting O-GlcNAcylation exacerbates cell damage in similar models. In addition to addressing the potential mechanisms of O-GlcNAc-mediated cardioprotection, we will discuss technical issues related to studying protein O-GlcNAcylation in biological systems. The reader should gain an understanding of what protein O-GlcNAcylation is, and, that its roles in the acute and chronic disease settings appear distinct. PMID:20651294

  20. O-GlcNAc signaling in the cardiovascular system.

    PubMed

    Ngoh, Gladys A; Facundo, Heberty T; Zafir, Ayesha; Jones, Steven P

    2010-07-23

    Cardiovascular function is regulated at multiple levels. Some of the most important aspects of such regulation involve alterations in an ever-growing list of posttranslational modifications. One such modification orchestrates input from numerous metabolic cues to modify proteins and alter their localization and/or function. Known as the beta-O-linkage of N-acetylglucosamine (ie, O-GlcNAc) to cellular proteins, this unique monosaccharide is involved in a diverse array of physiological and pathological functions. This review introduces readers to the general concepts related to O-GlcNAc, the regulation of this modification, and its role in primary pathophysiology. Much of the existing literature regarding the role of O-GlcNAcylation in disease addresses the protracted elevations in O-GlcNAcylation observed during diabetes. In this review, we focus on the emerging evidence of its involvement in the cardiovascular system. In particular, we highlight evidence of protein O-GlcNAcylation as an autoprotective alarm or stress response. We discuss recent literature supporting the idea that promoting O-GlcNAcylation improves cell survival during acute stress (eg, hypoxia, ischemia, oxidative stress), whereas limiting O-GlcNAcylation exacerbates cell damage in similar models. In addition to addressing the potential mechanisms of O-GlcNAc-mediated cardioprotection, we discuss technical issues related to studying protein O-GlcNAcylation in biological systems. The reader should gain an understanding of what protein O-GlcNAcylation is and that its roles in the acute and chronic disease settings appear distinct.

  1. Regulation of chromatin structure in the cardiovascular system.

    PubMed

    Rosa-Garrido, Manuel; Karbassi, Elaheh; Monte, Emma; Vondriska, Thomas M

    2013-01-01

    It has been appreciated for some time that cardiovascular disease involves large-scale transcriptional changes in various cell types. What has become increasingly clear only in the past few years, however, is the role of chromatin remodeling in cardiovascular phenotypes in normal physiology, as well as in development and disease. This review summarizes the state of the chromatin field in terms of distinct mechanisms to regulate chromatin structure in vivo, identifying when these modes of regulation have been demonstrated in cardiovascular tissues. We describe areas in which a better understanding of chromatin structure is leading to new insights into the fundamental biology of cardiovascular disease. 

  2. Neural Control of the Cardiovascular System in Space

    NASA Technical Reports Server (NTRS)

    Levine, Benjamin D.; Pawelczyk, James A.; Zuckerman, Julie; Zhang, Rong; Fu, Qi; Iwasaki, Kenichi; Ray, Chet; Blomqvist, C. Gunnar; Lane, Lynda D.; Giller, Cole A.

    2003-01-01

    During the acute transition from lying supine to standing upright, a large volume of blood suddenly moves from the chest into the legs. To prevent fainting, the blood pressure control system senses this change immediately, and rapidly adjusts flow (by increasing heart rate) and resistance to flow (by constricting the blood vessels) to restore blood pressure and maintain brain blood flow. If this system is inadequate, the brain has a backup plan. Blood vessels in the brain can adjust their diameter to keep blood flow constant. If blood pressure drops, the brain blood vessels dilate; if blood pressure increases, the brain blood vessels constrict. This process, which is called autoregulation, allows the brain to maintain a steady stream of oxygen, even when blood pressure changes. We examined what changes in the blood pressure control system or cerebral autoregulation contribute to the blood pressure control problems seen after spaceflight. We asked: (1) does the adaptation to spaceflight cause an adaptation in the blood pressure control system that impairs the ability of the system to constrict blood vessels on return to Earth?; (2) if such a defect exists, could we pinpoint the neural pathways involved?; and (3) does cerebral autoregulation become abnormal during spaceflight, impairing the body s ability to maintain constant brain blood flow when standing upright on Earth? We stressed the blood pressure control system using lower body negative pressure, upright tilt, handgrip exercise, and cold stimulation of the hand. Standard cardiovascular parameters were measured along with sympathetic nerve activity (the nerve activity causing blood vessels to constrict) and brain blood flow. We confirmed that the primary cardiovascular effect of spaceflight was a postflight reduction in upright stroke volume (the amount of blood the heart pumps per beat). Heart rate increased appropriately for the reduction in stroke volume, thereby showing that changes in heart rate

  3. Endothelin and endothelin receptors in the renal and cardiovascular systems.

    PubMed

    Vignon-Zellweger, Nicolas; Heiden, Susi; Miyauchi, Takashi; Emoto, Noriaki

    2012-10-15

    Endothelin-1 (ET-1) is a multifunctional hormone which regulates the physiology of the cardiovascular and renal systems. ET-1 modulates cardiac contractility, systemic and renal vascular resistance, salt and water renal reabsorption, and glomerular function. ET-1 is responsible for a variety of cellular events: contraction, proliferation, apoptosis, etc. These effects take place after the activation of the two endothelin receptors ET(A) and ET(B), which are present - among others - on cardiomyocytes, fibroblasts, smooth muscle and endothelial cells, glomerular and tubular cells of the kidney. The complex and numerous intracellular pathways, which can be contradictory in term of functional response depending on the receptor type, cell type and physiological situation, are described in this review. Many diseases share an enhanced ET-1 expression as part of the pathophysiology. However, the use of endothelin blockers is currently restricted to pulmonary arterial hypertension, and more recently to digital ulcer. The complexity of the endothelin system does not facilitate the translation of the molecular knowledge to clinical applications. Endothelin antagonists can prevent disease development but secondary undesirable effects limit their usage. Nevertheless, the increasing understanding of the effects of ET-1 on the cardiac and renal physiology maintains the endothelin system as a promising therapeutic target.

  4. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module VI. Cardiovascular System.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on the cardiovascular system is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Seven units of study are presented: (1) the anatomy and physiology of the cardiovascular system; (2) patient assessment for the cardiac patient; (3) pathophysiology; (4) reading…

  5. Effects of exercise training on the cardiovascular system: pharmacological approaches.

    PubMed

    Zanesco, Angelina; Antunes, Edson

    2007-06-01

    Physical exercise promotes beneficial health effects by preventing or reducing the deleterious effects of pathological conditions, such as arterial hypertension, coronary artery disease, atherosclerosis, diabetes mellitus, osteoporosis, Parkinson's disease, and Alzheimer disease. Human movement studies are becoming an emerging science in the epidemiological area and public health. A great number of studies have shown that exercise training, in general, reduces sympathetic activity and/or increases parasympathetic tonus either in human or laboratory animals. Alterations in autonomic nervous system have been correlated with reduction in heart rate (resting bradycardia) and blood pressure, either in normotensive or hypertensive subjects. However, the underlying mechanisms by which physical exercise produce bradycardia and reduces blood pressure has not been fully understood. Pharmacological studies have particularly contributed to the comprehension of the role of receptor and transduction signaling pathways on the heart and blood vessels in response to exercise training. This review summarizes and examines the data from studies using animal models and human to determine the effect of exercise training on the cardiovascular system.

  6. Technological innovations in the development of cardiovascular clinical information systems.

    PubMed

    Hsieh, Nan-Chen; Chang, Chung-Yi; Lee, Kuo-Chen; Chen, Jeen-Chen; Chan, Chien-Hui

    2012-04-01

    Recent studies have shown that computerized clinical case management and decision support systems can be used to assist surgeons in the diagnosis of disease, optimize surgical operation, aid in drug therapy and decrease the cost of medical treatment. Therefore, medical informatics has become an extensive field of research and many of these approaches have demonstrated potential value for improving medical quality. The aim of this study was to develop a web-based cardiovascular clinical information system (CIS) based on innovative techniques, such as electronic medical records, electronic registries and automatic feature surveillance schemes, to provide effective tools and support for clinical care, decision-making, biomedical research and training activities. The CIS developed for this study contained monitoring, surveillance and model construction functions. The monitoring layer function provided a visual user interface. At the surveillance and model construction layers, we explored the application of model construction and intelligent prognosis to aid in making preoperative and postoperative predictions. With the use of the CIS, surgeons can provide reasonable conclusions and explanations in uncertain environments.

  7. Theory and Developments in an Unobtrusive Cardiovascular System Representation: Ballistocardiography

    PubMed Central

    Pinheiro, Eduardo; Postolache, Octavian; Girão, Pedro

    2010-01-01

    Due to recent technological improvements, namely in the field of piezoelectric sensors, ballistocardiography – an almost forgotten physiological measurement – is now being object of a renewed scientific interest. Transcending the initial purposes of its development, ballistocardiography has revealed itself to be a useful informative signal about the cardiovascular system status, since it is a non-intrusive technique which is able to assess the body’s vibrations due to its cardiac, and respiratory physiological signatures. Apart from representing the outcome of the electrical stimulus to the myocardium – which may be obtained by electrocardiography – the ballistocardiograph has additional advantages, as it can be embedded in objects of common use, such as a bed or a chair. Moreover, it enables measurements without the presence of medical staff, factor which avoids the stress caused by medical examinations and reduces the patient’s involuntary psychophysiological responses. Given these attributes, and the crescent number of systems developed in recent years, it is therefore pertinent to revise all the information available on the ballistocardiogram’s physiological interpretation, its typical waveform information, its features and distortions, as well as the state of the art in device implementations. PMID:21673836

  8. Effects of Tetrodotoxin on the Mammalian Cardiovascular System

    PubMed Central

    Zimmer, Thomas

    2010-01-01

    The human genome encodes nine functional voltage-gated Na+ channels. Three of them, namely Nav1.5, Nav1.8, and Nav1.9, are resistant to nanomolar concentrations of tetrodotoxin (TTX; IC50 ≥ 1 μM). The other isoforms, which are predominantly expressed in the skeletal muscle and nervous system, are highly sensitive to TTX (IC50 ~ 10 nM). During the last two decades, it has become evident that in addition to the major cardiac isoform Nav1.5, several of those TTX sensitive isoforms are expressed in the mammalian heart. Whereas immunohistochemical and electrophysiological methods demonstrated functional expression in various heart regions, the physiological importance of those isoforms for cardiac excitation in higher mammals is still debated. This review summarizes our knowledge on the systemic cardiovascular effects of TTX in animals and humans, with a special focus on cardiac excitation and performance at lower concentrations of this marine drug. Altogether, these data strongly suggest that TTX sensitive Na+ channels, detected more recently in various heart tissues, are not involved in excitation phenomena in the healthy adult heart of higher mammals. PMID:20411124

  9. The role of the apelinergic and vasopressinergic systems in the regulation of the cardiovascular system and the pathogenesis of cardiovascular disease.

    PubMed

    Czarzasta, Katarzyna; Cudnoch-Jedrzejewska, Agnieszka

    2014-01-01

    Research studies indicate a role of the apelinergic and vasopressinergic systems both in the regulation of the cardiovascular system and the pathogenesis of CVD, including in such settings as obesity and stress. Based on these data, it may be suggested that interactions between these systems underlie numerous physiological and pathophysiological processes, some of them related to the cardiovascular system. Better understanding of the role of these systems and their interactions, both physiological and related to the pathogenesis of CVD, will allow further advances in prevention and drug therapy.

  10. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    PubMed Central

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  11. Role for primary cilia as flow detectors in the cardiovascular system.

    PubMed

    Van der Heiden, Kim; Egorova, Anastasia D; Poelmann, Robert E; Wentzel, Jolanda J; Hierck, Beerend P

    2011-01-01

    The cardiovascular system is exposed to biochemical and biomechanical signals. Various sensors for these signals have been described and they contribute to cardiovascular development, maintenance of vessel integrity during adult life, and to pathogenesis. In the past 10years, primary cilia, membrane-covered, rod-like cellular protrusions, were discovered on multiple cell types of the cardiovascular system. Primary cilia are sensory organelles involved in several key (developmental) signaling pathways and in chemo- and mechanosensing on a myriad of cell types. In the embryonic and adult cardiovascular system, they have been demonstrated to function as shear stress sensors on endothelial cells and could act as strain sensors on smooth muscle cells and cardiomyocytes and as chemosensors on fibroblasts. This review will cover their occurrence and elaborate on established and possible functions of primary cilia in the cardiovascular system.

  12. Fully automated quantification of cytomegalovirus (CMV) in whole blood with the new sensitive Abbott RealTime CMV assay in the era of the CMV international standard.

    PubMed

    Schnepf, Nathalie; Scieux, Catherine; Resche-Riggon, Matthieu; Feghoul, Linda; Xhaard, Alienor; Gallien, Sébastien; Molina, Jean-Michel; Socié, Gérard; Viglietti, Denis; Simon, François; Mazeron, Marie-Christine; Legoff, Jérôme

    2013-07-01

    Fully standardized reproducible and sensitive quantification assays for cytomegalovirus (CMV) are needed to better define thresholds for antiviral therapy initiation and interruption. We evaluated the newly released Abbott RealTime CMV assay for CMV quantification in whole blood (WB) that includes automated extraction and amplification (m2000 RealTime system). Sensitivity, accuracy, linearity, and intra- and interassay variability were validated in a WB matrix using Quality Control for Molecular Diagnostics (QCMD) panels and the WHO international standard (IS). The intra- and interassay coefficients of variation were 1.37% and 2.09% at 5 log10 copies/ml and 2.41% and 3.80% at 3 log10 copies/ml, respectively. According to expected values for the QCMD and Abbott RealTime CMV methods, the lower limits of quantification were 104 and <50 copies/ml, respectively. The conversion factor between international units and copies (2.18), determined from serial dilutions of the WHO IS in WB, was significantly different from the factor provided by the manufacturer (1.56) (P = 0.001). Results from 302 clinical samples were compared with those from the Qiagen artus CMV assay on the same m2000 RealTime system. The two assays provided highly concordant results (concordance correlation coefficient, 0.92), but the Abbott RealTime CMV assay detected and quantified, respectively, 20.6% and 47.8% more samples than the Qiagen/artus CMV assay. The sensitivity and reproducibility of the results, along with the automation, fulfilled the quality requirements for implementation of the Abbott RealTime CMV assay in clinical settings. Our results highlight the need for careful validation of conversion factors provided by the manufacturers for the WHO IS in WB to allow future comparison of results obtained with different assays.

  13. Fully Automated Quantification of Cytomegalovirus (CMV) in Whole Blood with the New Sensitive Abbott RealTime CMV Assay in the Era of the CMV International Standard

    PubMed Central

    Schnepf, Nathalie; Scieux, Catherine; Resche-Riggon, Matthieu; Feghoul, Linda; Xhaard, Alienor; Gallien, Sébastien; Molina, Jean-Michel; Socié, Gérard; Viglietti, Denis; Simon, François; Mazeron, Marie-Christine

    2013-01-01

    Fully standardized reproducible and sensitive quantification assays for cytomegalovirus (CMV) are needed to better define thresholds for antiviral therapy initiation and interruption. We evaluated the newly released Abbott RealTime CMV assay for CMV quantification in whole blood (WB) that includes automated extraction and amplification (m2000 RealTime system). Sensitivity, accuracy, linearity, and intra- and interassay variability were validated in a WB matrix using Quality Control for Molecular Diagnostics (QCMD) panels and the WHO international standard (IS). The intra- and interassay coefficients of variation were 1.37% and 2.09% at 5 log10 copies/ml and 2.41% and 3.80% at 3 log10 copies/ml, respectively. According to expected values for the QCMD and Abbott RealTime CMV methods, the lower limits of quantification were 104 and <50 copies/ml, respectively. The conversion factor between international units and copies (2.18), determined from serial dilutions of the WHO IS in WB, was significantly different from the factor provided by the manufacturer (1.56) (P = 0.001). Results from 302 clinical samples were compared with those from the Qiagen artus CMV assay on the same m2000 RealTime system. The two assays provided highly concordant results (concordance correlation coefficient, 0.92), but the Abbott RealTime CMV assay detected and quantified, respectively, 20.6% and 47.8% more samples than the Qiagen/artus CMV assay. The sensitivity and reproducibility of the results, along with the automation, fulfilled the quality requirements for implementation of the Abbott RealTime CMV assay in clinical settings. Our results highlight the need for careful validation of conversion factors provided by the manufacturers for the WHO IS in WB to allow future comparison of results obtained with different assays. PMID:23616450

  14. Nanoparticles and the cardiovascular system: a critical review.

    PubMed

    Donaldson, Ken; Duffin, Rodger; Langrish, Jeremy P; Miller, Mark R; Mills, Nicholas L; Poland, Craig A; Raftis, Jennifer; Shah, Anoop; Shaw, Catherine A; Newby, David E

    2013-03-01

    Nanoparticles (NPs) are tiny particles with a diameter of less than 100 nm. Traffic exhaust is a major source of combustion-derived NPs (CDNPs), which represent a significant component in urban air pollution. Epidemiological, panel and controlled human chamber studies clearly demonstrate that exposure to CDNPs is associated with multiple adverse cardiovascular effects in both healthy individuals and those with pre-existing cardiovascular disease. NPs are also manufactured from a large range of materials for industrial use in a vast array of products including for use as novel imaging agents for medical use. There is currently little information available on the impacts of manufactured NPs in humans, but experimental studies demonstrate similarities to the detrimental cardiovascular actions of CDNPs. This review describes the evidence for these cardiovascular effects and attempts to resolve the paradox between the adverse effects of the unintentional exposure of CDNPs and the intentional delivery of manufactured NPs for medical purposes.

  15. The role of epoxyeicosatrienoic acids in the cardiovascular system.

    PubMed

    Yang, L; Mäki-Petäjä, K; Cheriyan, J; McEniery, C; Wilkinson, I B

    2015-07-01

    There is increasing evidence suggesting that epoxyeicosatrienoic acids (EETs) play an important role in cardioprotective mechanisms. These include regulating vascular tone, modulating inflammatory responses, improving cardiomyocyte function and reducing ischaemic damage, resulting in attenuation of animal models of cardiovascular risk factors. This review discusses the current knowledge on the role of EETs in endothelium-dependent control of vascular tone in the healthy and in subjects with cardiovascular risk factors, and considers the pharmacological potential of targeting this pathway.

  16. The CD40-CD40L system in cardiovascular disease.

    PubMed

    Pamukcu, Burak; Lip, Gregory Y H; Snezhitskiy, Viktor; Shantsila, Eduard

    2011-08-01

    The CD40-CD40L system is a pathway which is associated with both prothrombotic and proinflammatory effects. CD40 and its ligand were first discovered on the surface of activated T cells, but its presence on B cells, antigen-presenting cells, mast cells, and finally platelets, is evident. The soluble form of CD40L (sCD40L) is derived mainly from activated platelets and contributes to the pathophysiology of atherosclerosis and atherothrombosis. Indeed, sCD40L has autocrine, paracrine, and endocrine activities, and it enhances platelet activation, aggregation, and platelet-leucocyte conjugation that may lead to atherothrombosis. It has even been suggested that sCD40L may play a pathogenic role in triggering acute coronary syndromes. Conversely, blockade of this pathway with anti-CD40L antibodies may prevent or delay the progression of atherosclerosis. Concentrations of sCD40L also predict risk of future cardiovascular disease in healthy women and clinical outcomes in patients with acute coronary syndromes. However, there are controversial and uncertain points over the application of this biomarker to clinical cardiology. In this review, we provide an overview of potential implications of CD40-CD40L signalling and sCD40L as a biomarker in patients with atherosclerotic vascular diseases.

  17. How did Haly Abbas look at the cardiovascular system?

    PubMed

    Dalfardi, Behnam; Mahmoudi Nezhad, Golnoush Sadat; Mehdizadeh, Alireza

    2014-03-01

    Persian scholars, especially those who lived during the Golden Age of Islamic Medicine (9th-12th century AD), made significant contributions to the healing arts and secured a place of honor for themselves in the history of this science. Abū l-Ḥasan Alī ibn al-'Abbās al-Majūsī Ahvazi (? 930-994AD), with the Latinized name of Haly Abbas, was a scientist from this part of the world who contributed to the advancement of medicine. He is the author of Kāmil al-Sinā'ah al-Tibbīyah (The Perfect Book of the Art of Medicine), also commonly known as al-Kitāb al-Malikī (The Royal Book), a medical encyclopedia renowned for its systematic and precise content. This textbook covers a wide variety of medical issues, among them topics related to the science of cardiology. This paper reviews the main points of Haly Abbas' knowledge of the cardiovascular system, of which little has been written until now.

  18. Gravity, the hydrostatic indifference concept and the cardiovascular system.

    PubMed

    Hinghofer-Szalkay, Helmut

    2011-02-01

    Gravity, like any acceleration, causes a hydrostatic pressure gradient in fluid-filled bodily compartments. At a force of 1G, this pressure gradient amounts to 10 kPa/m. Postural changes alter the distribution of hydrostatic pressure patterns according to the body's alignment to the acceleration field. At a certain location--referred to as hydrostatically indifferent--within any given fluid compartment, pressure remains constant during a given change of position relative to the acceleration force acting upon the body. At this specific location, there is probably little change in vessel volume, wall tension, and the balance of Starling forces after a positional manoeuvre. In terms of cardiac function, this is important because arterial and venous hydrostatic indifference locations determine postural cardiac preload and afterload changes. Baroreceptors pick up pressure signals that depend on their respective distance to hydrostatic indifference locations with any change of body position. Vascular shape, filling volume, and compliance, as well as temperature, nervous and endocrine factors, drugs, and time all influence hydrostatic indifference locations. This paper reviews the physiology of pressure gradients in the cardiovascular system that are operational in a gravitational/acceleration field, offers a broadened hydrostatic indifference concept, and discusses implications that are relevant in physiological and clinical terms.

  19. Metal ions affecting the pulmonary and cardiovascular systems.

    PubMed

    Corradi, Massimo; Mutti, Antonio

    2011-01-01

    Some metals, such as copper and manganese, are essential to life and play irreplaceable roles in, e.g., the functioning of important enzyme systems. Other metals are xenobiotics, i.e., they have no useful role in human physiology and, even worse, as in the case of lead, may be toxic even at trace levels of exposure. Even those metals that are essential, however, have the potential to turn harmful at very high levels of exposure, a reflection of a very basic tenet of toxicology--"the dose makes the poison." Toxic metal exposure may lead to serious risks to human health. As a result of the extensive use of toxic metals and their compounds in industry and consumer products, these agents have been widely disseminated in the environment. Because metals are not biodegradable, they can persist in the environment and produce a variety of adverse effects. Exposure to metals can lead to damage in a variety of organ systems and, in some cases, metals also have the potential to be carcinogenic. Even though the importance of metals as environmental health hazards is now widely appreciated, the specific mechanisms by which metals produce their adverse effects have yet to be fully elucidated. The unifying factor in determining toxicity and carcinogenicity for most metals is the generation of reactive oxygen and nitrogen species. Metal-mediated formation of free radicals causes various modifications to nucleic acids, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Whilst copper, chromium, and cobalt undergo redox-cycling reactions, for metals such as cadmium and nickel the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. This chapter attempts to show that the toxic effects of different metallic compounds may be manifested in the pulmonary and cardiovascular systems. The knowledge of health effects due to metal exposure is necessary for practising physicians, and should be assessed by inquiring

  20. TRPV1 channels in cardiovascular system: A double edged sword?

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2017-02-01

    Apart from modulating nociception, there is vital role of TRPV1 channels in modulating atherosclerosis, congestive heart failure, systemic hypertension, pulmonary hypertension, hemorrhagic shock and vascular remodeling. TRPV1 channel activation has shielding effect against the development of atherosclerosis and systemic hypertension. TRPV1 channel activation alleviates the formation of atherosclerotic lesions via increasing the expression of cholesterol efflux regulatory protein, UCP 2 and enhancing autophagy. Furthermore, activation of these channels enhances Na(+) excretion and NO release to reduce the blood pressure. TRPV1 channel activation in the cardiac sensory neurons and subsequent CGRP release reduces ischemia-reperfusion injury. Activation of these channels during conditioning enhances CGRP and SP release from the sensory nerve fibers innervating the heart to induce cardioprotection. However, activation of these channels may elicit detrimental effects in pulmonary hypertension, hemorrhage and vascular remodeling. Activation of TRPV1 channels enhances smooth muscle cell proliferation to promote pulmonary hypertension. Moreover, TRPV1 channel inhibition reduces massive catecholamine release, improves survival during hemorrhage. Activation of these channels enhances vascular remodeling via enhancing NO release. Furthermore, dual role of TRPV1 channels has been reported in the perpetuation of congestive heart failure. On one hand, TRPV1 channel activation increases the expression of UCP2, PPAR- δ and mitochondrial sirtuin 3 to decrease oxidative stress and reduce heart injury. On the other hand, activation of these channels may enhance the expression of hypertrophic fibrotic proteins viz. GATA4, MMP to promote cardiac fibrosis. The present review discusses the dual role of activation of TRPV1 channels in diseases associated with cardiovascular system.

  1. Systemic Inflammation in Cardiovascular and Periodontal Disease: Comparative Study

    PubMed Central

    Glurich, Ingrid; Grossi, Sara; Albini, Boris; Ho, Alex; Shah, Rashesh; Zeid, Mohamed; Baumann, Heinz; Genco, Robert J.; De Nardin, Ernesto

    2002-01-01

    Epidemiological studies have implicated periodontal disease (PD) as a risk factor for the development of cardiovascular disease (CVD). These studies addressed the premise that local infection may perturb the levels of systemic inflammatory mediators, thereby promoting mechanisms of atherosclerosis. Levels of inflammatory mediators in the sera of subjects with only PD, only CVD, both diseases, or neither condition were compared. Subjects were assessed for levels of C-reactive protein (CRP), serum amyloid A (SAA), ceruloplasmin, α1-acid-glycoprotein (AAG), α1-antichymotrypsin (ACT), and the soluble cellular adhesion molecules sICAM-1 and sVCAM by enzyme-linked immunoabsorbent and/or radial immunodiffusion assays. CRP levels in subjects with either condition alone were elevated twofold above subjects with neither disease, whereas a threefold increase was noted in subjects with both diseases (P = 0.0389). Statistically significant increases in SAA and ACT were noted in subjects with both conditions compared to those with one or neither condition (P = 0.0162 and 0.0408, respectively). Ceruloplasmin levels were increased in subjects with only CVD (P = 0.0001). Increases in sVCAM levels were noted in all subjects with CVD (P = 0.0054). No differences in sICAM levels were noted among subject groups. A trend toward higher levels of AAG was noted in subjects with both conditions and for ACT in subjects with only PD. Immunohistochemical examination of endarterectomy specimens of carotid arteries from subjects with atherosclerosis documented SAA and CRP deposition in association with atheromatous lesions. The data support the hypothesis that localized persistent infection may influence systemic levels of inflammatory mediators. Changes in inflammatory mediator levels potentially impact inflammation-associated atherosclerotic processes. PMID:11874889

  2. Impact of gestational risk factors on maternal cardiovascular system

    PubMed Central

    Perales, María; Santos-Lozano, Alejandro; Luaces, María; Pareja-Galeano, Helios; Garatachea, Nuria; Barakat, Rubén; Lucia, Alejandro

    2016-01-01

    Background Scarce evidence is available on the potential cardiovascular abnormalities associated with some common gestational complications. We aimed to analyze the potential maternal cardiac alterations related to gestational complications, including body mass index (BMI) >25 kg/m2, gaining excessive weight, or developing antenatal depression. Methods The design of this study was a secondary analysis of a randomized controlled trial. Echocardiography was performed to assess cardiovascular indicators of maternal hemodynamic, cardiac remodeling and left ventricular (LV) function in 59 sedentary pregnant women at 20 and 34 weeks of gestation. Results Starting pregnancy with a BMI >25 kg/m2, gaining excessive weight, and developing antenatal depression had no cardiovascular impact on maternal health (P value >0.002). Depressed women were more likely to exceed weight gain recommendations than non-depressed women (P value <0.002). Conclusions The evaluated gestational complications seem not to induce cardiovascular alterations in hemodynamic, remodeling and LV function indicators. However, developing antenatal depression increases the risk of an excessive weight gain. This finding is potentially important because excessive weight gain during pregnancy associates with a higher risk of cardiovascular diseases (CVD) later in life. PMID:27500154

  3. A practical application of computer pattern recognition research: the Abbott ADC-500 differential classifier.

    PubMed

    Green, J E

    1979-01-01

    The ADC-500 is a new blood cell differential classifier manufactured by Abbott Laboratories. It performs 500-cell leukocyte differentials on both normal and abnormal cells, evaluates red cell morphology and estimates platelet sufficiency at a rate of 40 to 50 samples per hour in stand-alone operation. The ADC-500 system consists of a spinner which prepares a uniform blood monolayer on a slide, a stainer which reproducibly stains the slide with Wright's stain, an encoder which attaches an instrument and human readable identification to the slide and an analyzer which accepts a stack of up to 50 slides, evaluates these slides and prints the results and the slide identification on report forms. The system's analysis rate, which represents a 5- to 10-fold increase over other commercially available differential counters, requires a number of specialized techniques for its realization. One key to this performance is the development of a high speed X-Y slide positioning stage which can move to a new cell and settle in 50 msec. Another is the high degree of parallelism used in the system structure and the pipelining of the data processing. A third is the development of uniform and repeatable sample preparation modules. Within the analyzer module, the autofocus, white cell acquisition and high resolution cell analysis systems are independent and operate in parallel. At the same time within the high resolution cell analysis system, one cell is acquired; the digitized image of a second processed; and a third is classified using pattern recognition techniques. All of these tasks, except focus, are under the control of a minicomputer system. Tests of the system reveal good accuracy and an improvement in precision due to the increase in the number of counted cells.

  4. Fulfilling the Promise of Abbott: The Lighthouse Assessment Process--Improving Programs through Measured Outcomes. Policy Progress, Spring 2004

    ERIC Educational Resources Information Center

    Association for Children of New Jersey, 2004

    2004-01-01

    In an attempt to better prepare young children for the challenges of kindergarten and first grade, the Supreme Court of New Jersey, in its 1998 landmark decision of "Abbott v. Burke" (Abbott V), required the State's poorest school districts to implement high quality, intensive preschool for all 3-and 4-year old children. To take…

  5. Protective effects of AMP-activated protein kinase in the cardiovascular system.

    PubMed

    Xu, Qiang; Si, Liang-Yi

    2010-11-01

    Cardiovascular diseases remain the leading cause of mortality worldwide. Recent studies of AMP-activated protein kinase (AMPK), a highly conserved sensor of cellular energy status, suggest that there might be therapeutic value in targeting the AMPK signaling pathway. AMPK is found in most mammalian tissues, including those of the cardiovascular system. As cardiovascular diseases are typically associated with blood flow occlusion and blood occlusion may induce rapid energy deficit, AMPK activation may occur during the early phase upon nutrient deprivation in cardiovascular organs. Therefore, investigation of AMPK in cardiovascular organs may help us to understand the pathophysiology of defence mechanisms in these organs. Recent studies have provided proof of concept for the idea that AMPK is protective in heart as well as in vascular endothelial and smooth muscle cells. Moreover, dysfunction of the AMPK signalling pathway is involved in the genesis and development of various cardiovascular diseases, including atherosclerosis, hypertension and stroke. The roles of AMPK in the cardiovascular system, as they are currently understood, will be presented in this review. The interaction between AMPK and other cardiovascular signalling pathways such as nitric oxide signalling is also discussed.

  6. FoxO proteins: cunning concepts and considerations for the cardiovascular system.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Hou, Jinling

    2009-02-01

    Dysfunction in the cardiovascular system can lead to the progression of a number of disease entities that can involve cancer, diabetes, cardiac ischaemia, neurodegeneration and immune system dysfunction. In order for new therapeutic avenues to overcome some of the limitations of present clinical treatments for these disorders, future investigations must focus upon novel cellular processes that control cellular development, proliferation, metabolism and inflammation. In this respect, members of the mammalian forkhead transcription factors of the O class (FoxOs) have increasingly become recognized as important and exciting targets for disorders of the cardiovascular system. In the present review, we describe the role of these transcription factors in the cardiovascular system during processes that involve angiogenesis, cardiovascular development, hypertension, cellular metabolism, oxidative stress, stem cell proliferation, immune system regulation and cancer. Current knowledge of FoxO protein function combined with future studies should continue to lay the foundation for the successful translation of these transcription factors into novel and robust clinical therapies.

  7. P2 receptor subtypes in the cardiovascular system.

    PubMed Central

    Kunapuli, S P; Daniel, J L

    1998-01-01

    Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859

  8. Biochemistry, Physiology and Pathophysiology of NADPH Oxidases in the Cardiovascular System

    PubMed Central

    Lassègue, Bernard; San Martín, Alejandra; Griendling, Kathy K.

    2012-01-01

    The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4 and 5), their roles in cardiovascular cell biology, and their contributions to disease development. PMID:22581922

  9. Invited review-Computed tomographic angiography (CTA) of the thoracic cardiovascular system in companion animals.

    PubMed

    Drees, Randi; François, Christopher J; Saunders, Jimmy H

    2014-01-01

    Computed tomographic angiography (CTA) of the thoracic cardiovascular system is offering new diagnostic opportunities in companion animal patients with the increasing availability of multidetector-row computed tomographic (MDCT) units in veterinary facilities. Optimal investigation of the systemic, pulmonary, and coronary circulation provides unique challenges due to the constant movement of the heart, the small size of several of the structures of interest, and the dependence of angiographic quality on various contrast bolus design and patient factors. Technical and practical aspects of thoracic cardiovascular CTA are reviewed in light of the currently available veterinary literature and future opportunities given utilizing MDCT in companion animal patients with suspected thoracic cardiovascular disease.

  10. Mathematical modeling of human cardiovascular system for simulation of orthostatic response

    NASA Technical Reports Server (NTRS)

    Melchior, F. M.; Srinivasan, R. S.; Charles, J. B.

    1992-01-01

    This paper deals with the short-term response of the human cardiovascular system to orthostatic stresses in the context of developing a mathematical model of the overall system. It discusses the physiological issues involved and how these issues have been handled in published cardiovascular models for simulation of orthostatic response. Most of the models are stimulus specific with no demonstrated capability for simulating the responses to orthostatic stimuli of different types. A comprehensive model incorporating all known phenomena related to cardiovascular regulation would greatly help to interpret the various orthostatic responses of the system in a consistent manner and to understand the interactions among its elements. This paper provides a framework for future efforts in mathematical modeling of the entire cardiovascular system.

  11. Physical exercise and epigenetic adaptations of the cardiovascular system.

    PubMed

    Zimmer, P; Bloch, W

    2015-05-01

    During the last decade, epigenetics became one of the fastest growing research fields in numerous clinical and basic science disciplines. Evidence suggests that chromatin modifications (e.g., histone modifications and DNA methylation) as well as the expression of micro-RNA molecules play a crucial role in the pathogenesis of several cardiovascular diseases. On the one hand, they are involved in the development of general risk factors like chronic inflammation, but on the other hand, epigenetic modifications are conducive to smooth muscle cell, cardiomyocyte, and endothelial progenitor cell proliferation/differentiation as well as to extracellular matrix processing and endothelial function (e.g., endothelial nitric oxide synthase regulation). Therefore, epigenetic medical drugs have gained increased attention and provided the first promising results in the context of cardiovascular malignancies. Beside other lifestyle factors, physical activity and sports essentially contribute to cardiovascular health and regeneration. In this review we focus on recent research proposing physical activity as a potent epigenetic regulator that has the potential to counteract pathophysiological alterations in almost all the aforementioned cardiovascular cells and tissues. As with epigenetic medical drugs, more knowledge about the molecular mechanisms and dose-response relationships of exercise is needed to optimize the outcome of preventive and rehabilitative exercise programs and recommendations.

  12. Applicability of implantable telemetry systems in cardiovascular research.

    NASA Technical Reports Server (NTRS)

    Krutz, R. W.; Rader, R. D.; Meehan, J. P.; Henry, J. P.

    1971-01-01

    This paper briefly describes the results of an experimental program undertaken to develop and apply implanted telemetry to cardiovascular research. Because of the role the kidney may play in essential hypertension, emphasis is placed on telemetry's applicability in the study of renal physiology. Consequently, the relationship between pressure, flow, and hydraulic impedance are stressed. Results of an exercise study are given.

  13. 78 FR 23220 - Foreign-Trade Zone 22-Chicago, Illinois, Authorization of Production Activity, Abbott...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... Foreign-Trade Zones Board Foreign-Trade Zone 22--Chicago, Illinois, Authorization of Production Activity, Abbott Laboratories, Inc., AbbVie, Inc. (Pharmaceutical Production), North Chicago, Illinois, Area On... production authority within Subzones 22F and 22S, respectively, at sites located in the North Chicago...

  14. 78 FR 54487 - Abbott Laboratories; Diagnostic-Hematology; Including On-Site Leased Workers From Manpower...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Employment and Training Administration Abbott Laboratories; Diagnostic--Hematology; Including On-Site Leased... Laboratories, Diagnostic--Hematology division, including on-site leased workers from Manpower Service Group... to the production of hematology reagents and instruments. The company reports that workers...

  15. Preconcepts in Physics. Report to the John Abbott College Research and Development Committee.

    ERIC Educational Resources Information Center

    Dickie, L. O.

    This study was conducted to examine the basic conceptual knowledge and understanding of physics possessed by students enrolled in introductory physics, mechanics and waves and optics courses at John Abbott College (JAC). The study used a 36-item multiple-choice test of physics preconcepts developed by Halloun and Hestenes. The Halloun and Hestenes…

  16. 75 FR 340 - Approval for Expansion of Subzone 22F, Abbott Molecular, Inc. (Pharmaceutical and Molecular...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... [Federal Register Volume 75, Number 2 (Tuesday, January 5, 2010)] [Notices] [Pages 340-341] [FR Doc No: E9-31315] DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1654] Approval for Expansion of Subzone 22F, Abbott Molecular, Inc. (Pharmaceutical and Molecular Diagnostic Products),...

  17. Film shows hospital's neighborliness. Depicts Abbott Northwestern's work with Phillips neighborhood.

    PubMed

    Rees, Tom

    2003-01-01

    Abbott Northwestern Hospital, Minneapolis, worked with Twist, a production company also located in Minneapolis, to create a six-minute documentary about its role in the community. It affirms the hospital's commitment to the Phillips neighborhood and uses interviews with local residents, hoping to stimulate community action.

  18. Breaking Ground: Rebuilding New Jersey's Urban Schools. The Abbott School Construction Program

    ERIC Educational Resources Information Center

    Ponessa, Joan

    2004-01-01

    This report presents a brief history of the Abbott School Construction Program, describes the implementation to date, lays out some current challenges, and outlines lessons learned from the process so far--what is known now about how such an initiative should be planned and carried out. The report is intended to illuminate the complex process of…

  19. Engaging Parents, Families and the Community to Improve Student Achievement. Abbott Implementation Resource Guide

    ERIC Educational Resources Information Center

    Henderson, Anne

    2004-01-01

    During the summer of 2003, a statewide committee of representative educational stakeholders on "cooperative rulemaking" was convened jointly by the Department of Education and the Education Law Center. The Supreme Court in "Abbott X" had directed the establishment of this committee to develop new regulations more consistent…

  20. [Peculiarities of cardiovascular system pathology depending on psychological profile in patients of senior age groups].

    PubMed

    Prokhorenko, I O

    2013-01-01

    Interrelations between peculiarities of psychological profile of patients of senior age groups (according to Cattel), level of stress hormones in blood and background pathology of cardiovascular system were studied. Levels of catecholamine and corticosteroids in dynamics, rate of magnesium in erythrocytes and calcium in plaques of coronary arteries as well as fats, Holter ECG, daily profiles of blood pressure, vasomotor function of endothelium and microcirculation were analysed. It is established that stress hormones indirectly determine original form of stress reaction depending on patients' psychological profile. This contributes to the development of one or another form of cardiovascular system pathology. Excessive alcohol intake also promotes progression of cardiovascular system pathology. Depression, being a reflection of disbalance of stress hormones levels, can be used as a marker of unfavourable course of cardiovascular pathology.

  1. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases.

    PubMed

    Tobaldini, Eleonora; Costantino, Giorgio; Solbiati, Monica; Cogliati, Chiara; Kara, Tomas; Nobili, Lino; Montano, Nicola

    2017-03-01

    Sleep deprivation (SD) has become a relevant health problem in modern societies. We can be sleep deprived due to lifestyle habits or due to sleep disorders, such as insomnia, obstructive sleep apnea (OSA) and neurological disorders. One of the common element of sleep disorders is the condition of chronic SD, which has complex biological consequences. SD is capable of inducing different biological effects, such as neural autonomic control changes, increased oxidative stress, altered inflammatory and coagulatory responses and accelerated atherosclerosis. All these mechanisms links SD and cardiovascular and metabolic disorders. Epidemiological studies have shown that short sleep duration is associated with increased incidence of cardiovascular diseases, such as coronary artery disease, hypertension, arrhythmias, diabetes and obesity, after adjustment for socioeconomic and demographic risk factors and comorbidities. Thus, an early assessment of a condition of SD and its treatment is clinically relevant to prevent the harmful consequences of a very common condition in adult population.

  2. Pathophysiology of the Cardiovascular System and Neonatal Hypotension.

    PubMed

    Shead, Sandra L

    2015-01-01

    Hypotension is common in low birth weight neonates and less common in term newborns and is associated with significant morbidity and mortality. Determining an adequate blood pressure in neonates remains challenging for the neonatal nurse because of the lack of agreed-upon norms. Values for determining norms for blood pressure at varying gestational and postnatal ages are based on empirical data. Understanding cardiovascular pathophysiology, potential causes of hypotension, and assessment of adequate perfusion in the neonatal population is important and can assist the neonatal nurse in the evaluation of effective blood pressure. This article reviews cardiovascular pathophysiology as it relates to blood pressure and discusses potential causes of hypotension in the term and preterm neonate. Variation in management of hypotension across centers is discussed. Underlying causes and pathophysiology of hypotension in the neonate are described.

  3. Cardiovascular symptoms in patients with systemic mast cell activation disease.

    PubMed

    Kolck, Ulrich W; Haenisch, Britta; Molderings, Gerhard J

    2016-08-01

    Traditionally, mast cell activation disease (MCAD) has been considered as just one rare (neoplastic) disease, mastocytosis, focused on the mast cell (MC) mediators tryptase and histamine and the suggestive, blatant symptoms of flushing and anaphylaxis. Recently another form of MCAD, the MC activation syndrome, has been recognized featuring inappropriate MC activation with little to no neoplasia and likely much more heterogeneously clonal and far more prevalent than mastocytosis. Increasing expertise and appreciation has been established for the truly very large menagerie of MC mediators and their complex patterns of release, engendering complex, nebulous presentations of chronic and acute illness best characterized as multisystem polymorbidity of generally inflammatory ± allergic theme. We describe the pathogenesis of MCAD with a particular focus on clinical cardiovascular symptoms and the therapeutic options for MC mediator-induced cardiovascular symptoms.

  4. The effects of music on the cardiovascular system and cardiovascular health.

    PubMed

    Trappe, Hans-Joachim

    2010-12-01

    Music may not only improve quality of life but may also effect changes in heart rate and heart rate variability. It has been shown that cerebral flow was significantly lower when listening to 'Va pensiero' from Verdi's 'Nabucco' (70.4±3.3 cm/s) compared with 'Libiam nei lieti calici' from Verdi's 'La Traviata' (70.2±3.1 cm/s) (p<0.02) or Bach's Cantata No. 169 'Gott soll allein mein Herze haben' (70.9±2.9 cm/s) (p<0.02). There was no significant difference in cerebral flow during rest (67.6±3.3 cm/s) or when listening to Beethoven's Ninth Symphony (69.4±3.1 cm/s). It was reported that relaxing music significantly decreases the level of anxiety of patients in a preoperative setting (State-Trait Anxiety Inventory (STAI)-X-1 score 34)-to a greater extent even than orally administered midazolam (STAI-X-1 score 36) (p<0.001). In addition the score was better after surgery in the music group (STAI-X-1 score 30) compared with the midazolam group (STAI-X-1 score 34) (p<0.001). Higher effectiveness and absence of apparent adverse effects make relaxing, preoperative music a useful alternative to midazolam for premedication. In addition, there is sufficient practical evidence of stress reduction suggesting that a proposed regimen of listening to music while resting in bed after open-heart surgery is important in clinical use. After 30 min of bed rest, there was a significant difference in cortisol levels between the music (484.4 mmol/l) and the non-music group (618.8 mmol/l) (p<0.02). Vocal and orchestral music produce significantly better correlations between cardiovascular or respiratory signals compared with music with a more uniform emphasis (p<0.05). The greatest benefit on health is visible with classical music and meditation music, whereas heavy metal music or techno are not only ineffective but possibly dangerous and can lead to stress and/or life-threatening arrhythmias. The music of many composers most effectively improves quality of life, will increase health

  5. Cardiovascular system and microgravity simulation and inflight results

    NASA Astrophysics Data System (ADS)

    Pottier, J. M.; Patat, F.; Arbeille, P.; Pourcelot, L.; Massabuau, P.; Guell, A.; Gharib, C.

    Main results of cardiovascular investigation, performed with ultrasound methods during the common French/Soviet flight aboard Salyut VII in June 1982, are compared to variations of the same parameters studied during ground-based simulations on the same subject or observed by other investigators during various ground-based experiences. The antiorthostatic bed rest simulation partly reproduces microgravity conditions and seems to be better adaptated to cardiac hemodynamics, despite some differences, and to the cerebral circulation, than to the inferior limb circulation.

  6. Aerobic vs anaerobic exercise training effects on the cardiovascular system.

    PubMed

    Patel, Harsh; Alkhawam, Hassan; Madanieh, Raef; Shah, Niel; Kosmas, Constantine E; Vittorio, Timothy J

    2017-02-26

    Physical exercise is one of the most effective methods to help prevent cardiovascular (CV) disease and to promote CV health. Aerobic and anaerobic exercises are two types of exercise that differ based on the intensity, interval and types of muscle fibers incorporated. In this article, we aim to further elaborate on these two categories of physical exercise and to help decipher which provides the most effective means of promoting CV health.

  7. Aerobic vs anaerobic exercise training effects on the cardiovascular system

    PubMed Central

    Patel, Harsh; Alkhawam, Hassan; Madanieh, Raef; Shah, Niel; Kosmas, Constantine E; Vittorio, Timothy J

    2017-01-01

    Physical exercise is one of the most effective methods to help prevent cardiovascular (CV) disease and to promote CV health. Aerobic and anaerobic exercises are two types of exercise that differ based on the intensity, interval and types of muscle fibers incorporated. In this article, we aim to further elaborate on these two categories of physical exercise and to help decipher which provides the most effective means of promoting CV health. PMID:28289526

  8. The Abbott Architect c8000: analytical performance and productivity characteristics of a new analyzer applied to general chemistry testing.

    PubMed

    Pauli, Daniela; Seyfarth, Michael; Dibbelt, Leif

    2005-01-01

    Applying basic potentiometric and photometric assays, we evaluated the fully automated random access chemistry analyzer Architect c8000, a new member of the Abbott Architect system family, with respect to both its analytical and operational performance and compared it to an established high-throughput chemistry platform, the Abbott Aeroset. Our results demonstrate that intra- and inter-assay imprecision, inaccuracy, lower limit of detection and linear range of the c8000 generally meet actual requirements of laboratory diagnosis; there were only rare exceptions, e.g. assays for plasma lipase or urine uric acid which apparently need to be improved by additional rinsing of reagent pipettors. Even with plasma exhibiting CK activities as high as 40.000 U/l, sample carryover by the c8000 could not be detected. Comparison of methods run on the c8000 and the Aeroset revealed correlation coefficients of 0.98-1.00; if identical chemistries were applied on both analyzers, slopes of regression lines approached unity. With typical laboratory workloads including 10-20% STAT samples and up to 10% samples with high analyte concentrations demanding dilutional reruns, steady-state throughput numbers of 700 to 800 tests per hour were obtained with the c8000. The system generally responded to STAT orders within 2 minutes yielding analytical STAT order completion times of 5 to 15 minutes depending on the type and number of assays requested per sample. Due to its extended test and sample processing capabilities and highly comfortable software, the c8000 may meet the varying needs of clinical laboratories rather well.

  9. Perspectives of induced pluripotent stem cells for cardiovascular system regeneration

    PubMed Central

    Csöbönyeiová, Mária; Polák, Štefan

    2015-01-01

    Induced pluripotent stem cells (iPSCs) hold great promise for basic research and regenerative medicine. They offer the same advantages as embryonic stem cells (ESCs) and moreover new perspectives for personalized medicine. iPSCs can be generated from adult somatic tissues by over-expression of a few defined transcription factors, including Oct4, Sox2, Klf4, and c-myc. For regenerative medicine in particular, the technology provides great hope for patients with incurable diseases or potentially fatal disorders such as heart failure. The endogenous regenerative potentials of adult hearts are extremely limited and insufficient to compensate for myocardial loss occurring after myocardial infarction. Recent discoveries have demonstrated that iPSCs have the potential to significantly advance future cardiovascular regenerative therapies. Moreover, iPSCs can be generated from somatic cells of patients with genetic basis for their disease. This human iPSC derivates offer tremendous potential for new disease models. This paper reviews current applications of iPSCs in cardiovascular regenerative medicine and discusses progress in modeling cardiovascular diseases using iPSCs-derived cardiac cells. PMID:25595188

  10. Physiological system integrations with emphasis on the respiratory-cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1975-01-01

    The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.

  11. [Adverse effects of ultrafine particles on the cardiovascular system and its mechanisms].

    PubMed

    Yi, Tie-ci; Li, Jian-ping

    2014-12-18

    Cardiovascular disease is one of the major threats to human. Air pollution, which , as it become a problem too serious to be ignored in China, is known to be an important risk factor for cardiovascular disease. Among all pollutants, ultrafine particles ( UFPs) , defined as particles with their diameter less than 0. 1 f.Lm, are a specific composition. They are very small in size, large in quantity and surface area, and most important, capable of passing through the air-blood barrier. These unique features of UFPs make them special in their impact on cardiovascular system. Nowadays, the influence of UFPs on the cardiovascular system has become a hot topic. On the one side, studies have shown that UFPs can cause inflammation and oxidative stress in the lung, and then induce systemic inflammation by releasing cytokine and reactive oxygen species into the circulation. On the other side, UFPs themselves can "spillout"into the circulation and interact with their targets. By this way, UFPs directly affect endothelial cells, myocardial cells and the autonomic nervous system, which ultimately result in increased cardiovascular events. We intend to make an overview about the recent progress about the influence of UFPs on human cardiovascular disease and the related mechanisms, and argue for more attention to this issue.

  12. A Disintegrin and Metalloprotease 17 in the Cardiovascular and Central Nervous Systems

    PubMed Central

    Xu, Jiaxi; Mukerjee, Snigdha; Silva-Alves, Cristiane R. A.; Carvalho-Galvão, Alynne; Cruz, Josiane C.; Balarini, Camille M.; Braga, Valdir A.; Lazartigues, Eric; França-Silva, Maria S.

    2016-01-01

    ADAM17 is a metalloprotease and disintegrin that lodges in the plasmatic membrane of several cell types and is able to cleave a wide variety of cell surface proteins. It is somatically expressed in mammalian organisms and its proteolytic action influences several physiological and pathological processes. This review focuses on the structure of ADAM17, its signaling in the cardiovascular system and its participation in certain disorders involving the heart, blood vessels, and neural regulation of autonomic and cardiovascular modulation. PMID:27803674

  13. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes.

    PubMed

    Golbidi, Saeid; Frisbee, Jefferson C; Laher, Ismail

    2015-06-15

    Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies.

  14. Space physiology IV: mathematical modeling of the cardiovascular system in space exploration.

    PubMed

    Keith Sharp, M; Batzel, Jerry Joseph; Montani, Jean-Pierre

    2013-08-01

    Mathematical modeling represents an important tool for analyzing cardiovascular function during spaceflight. This review describes how modeling of the cardiovascular system can contribute to space life science research and illustrates this process via modeling efforts to study postflight orthostatic intolerance (POI), a key issue for spaceflight. Examining this application also provides a context for considering broader applications of modeling techniques to the challenges of bioastronautics. POI, which affects a large fraction of astronauts in stand tests upon return to Earth, presents as dizziness, fainting and other symptoms, which can diminish crew performance and cause safety hazards. POI on the Moon or Mars could be more critical. In the field of bioastronautics, POI has been the dominant application of cardiovascular modeling for more than a decade, and a number of mechanisms for POI have been investigated. Modeling approaches include computational models with a range of incorporated factors and hemodynamic sophistication, and also physical models tested in parabolic and orbital flight. Mathematical methods such as parameter sensitivity analysis can help identify key system mechanisms. In the case of POI, this could lead to more effective countermeasures. Validation is a persistent issue in modeling efforts, and key considerations and needs for experimental data to synergistically improve understanding of cardiovascular responses are outlined. Future directions in cardiovascular modeling include subject-specific assessment of system status, as well as research on integrated physiological responses, leading, for instance, to assessment of subject-specific susceptibility to POI or effects of cardiovascular alterations on muscular, vision and cognitive function.

  15. Nonlinear effects of respiration on the crosstalk between cardiovascular and cerebrovascular control systems

    NASA Astrophysics Data System (ADS)

    Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Rossato, Gianluca; Nollo, Giandomenico; Faes, Luca; Porta, Alberto

    2016-05-01

    Cardiovascular and cerebrovascular regulatory systems are vital control mechanisms responsible for guaranteeing homeostasis and are affected by respiration. This work proposes the investigation of cardiovascular and cerebrovascular control systems and the nonlinear influences of respiration on both regulations through joint symbolic analysis (JSA), conditioned or unconditioned on respiration. Interactions between cardiovascular and cerebrovascular regulatory systems were evaluated as well by performing correlation analysis between JSA indexes describing the two control systems. Heart period, systolic and mean arterial pressure, mean cerebral blood flow velocity and respiration were acquired on a beat-to-beat basis in 13 subjects experiencing recurrent syncope episodes (SYNC) and 13 healthy individuals (non-SYNC) in supine resting condition and during head-up tilt test at 60° (TILT). Results showed that JSA distinguished conditions and groups, whereas time domain parameters detected only the effect of TILT. Respiration affected cardiovascular and cerebrovascular regulatory systems in a nonlinear way and was able to modulate the interactions between the two control systems with different outcome in non-SYNC and SYNC groups, thus suggesting that the analysis of the impact of respiration on cardiovascular and cerebrovascular regulatory systems might improve our understanding of the mechanisms underpinning the development of postural-related syncope.

  16. [Postmenopausal hormone replacement therapy and the cardiovascular system].

    PubMed

    Yildirir, Aylin

    2010-03-01

    Women suffer from cardiovascular diseases 10 years later than men, therefore female sex has been considered to be a 'protective factor'. However, the risk in women increases rapidly after menopause and the declining levels of endogenous estrogen is thought to be responsible. Postmenopausal hormone replacement therapy (HRT) decreases the severity and intensity of menopausal symptoms and improves women's quality of life. Until the last 10 years, based on the results of observational studies, postmenopausal HRT was thought to protect women against cardiovascular events and decrease the risk of coronary artery disease by 35-50%. However, recent randomized primary and secondary prevention trials did not support the cardioprotective effect of HRT. The different results of observational and randomized controlled trials are discussed to be related to the differences in the study population. The study population in observational and prospective cohort studies included relatively young women at the earlier stages of menopause, whereas studies showing neutral or negative effects of HRT included women older than 50 years old at least 10 years in menopause. Furthermore, the effects of estrogen depend on the state of vascular pathology. In relatively healthy vessels with no or early signs of atherosclerosis, estrogen prevent the development or progression of atherosclerotic lesions, whereas in the presence of established atherosclerotic lesions, estrogen promotes atherosclerosis or may even trigger acute events. Therefore, it is critically important to predict which women can safely receive HRT and which are at increased risk from HRT. Under the light of current knowledge, HRT should not be used for prevention from cardiovascular disease in postmenopausal women and the many other preventive strategies, (diet, exercise, blood pressure or cholesterol control) that are proven to be effective but underused, should be kept in mind.

  17. Regulation of Rho proteins by phosphorylation in the cardiovascular system.

    PubMed

    Loirand, Gervaise; Guilluy, Christophe; Pacaud, Pierre

    2006-08-01

    The small G protein Rho signaling pathways are recognized as major regulators of cardiovascular functions, and activation of Rho proteins appears to be a common component for the pathogenesis of hypertension and vascular proliferative disorders. Rho proteins are tightly regulated, and recent evidence suggests that modulation of Rho protein signaling by phosphorylation of Rho proteins provides an additional simple mechanism for coordinating Rho protein functions. This regulation by phosphorylation is particularly important in the arterial wall, where RhoA protein expressed in vascular smooth muscle cells is controlled by the endothelium through the nitric oxide/cGMP-dependent kinase pathway.

  18. Experimental models of renal disease and the cardiovascular system.

    PubMed

    Grossman, Rebecca C

    2010-11-26

    Cardiovascular disease is a leading cause of death among patients with end stage renal failure. Animal models have played a crucial role in teasing apart the complex pathological processes involved. This review discusses the principles of using animal models, the history of their use in the study of renal hypertension, the controversies arising from experimental models of non-hypertensive uraemic cardiomyopathy and the lessons learned from these models, and highlights important areas of future research in this field, including de novo cardiomyopathy secondary to renal transplantation.

  19. Modeling and simulation of the cardiovascular system: a review of applications, methods, and potentials.

    PubMed

    Brunberg, Anja; Heinke, Stefanie; Spillner, Jan; Autschbach, Rüdiger; Abel, Dirk; Leonhardt, Steffen

    2009-10-01

    Proper function of the cardiovascular system is indispensible to human survival. However, this system is dominated by complex interactions between different physiological processes and control mechanisms. A structured analysis and a mathematical description of this system can provide more insight, and a computer-based simulation of dynamic processes in the cardiovascular system could be applied in numerous tasks. This article gives a review of different approaches to cardio-circulatory modeling and discusses methodological aspects and fields of application for several classes of models.

  20. The Learning Healthcare System and Cardiovascular Care: A Scientific Statement From the American Heart Association.

    PubMed

    Maddox, Thomas M; Albert, Nancy M; Borden, William B; Curtis, Lesley H; Ferguson, T Bruce; Kao, David P; Marcus, Gregory M; Peterson, Eric D; Redberg, Rita; Rumsfeld, John S; Shah, Nilay D; Tcheng, James E

    2017-03-02

    The learning healthcare system uses health information technology and the health data infrastructure to apply scientific evidence at the point of clinical care while simultaneously collecting insights from that care to promote innovation in optimal healthcare delivery and to fuel new scientific discovery. To achieve these goals, the learning healthcare system requires systematic redesign of the current healthcare system, focusing on 4 major domains: science and informatics, patient-clinician partnerships, incentives, and development of a continuous learning culture. This scientific statement provides an overview of how these learning healthcare system domains can be realized in cardiovascular disease care. Current cardiovascular disease care innovations in informatics, data uses, patient engagement, continuous learning culture, and incentives are profiled. In addition, recommendations for next steps for the development of a learning healthcare system in cardiovascular care are presented.

  1. Physiological interdependence of the cardiovascular and postural control systems under orthostatic stress.

    PubMed

    Garg, Amanmeet; Xu, Da; Laurin, Alexandre; Blaber, Andrew P

    2014-07-15

    The cardiovascular system has been observed to respond to changes in human posture and the environment. On the same lines, frequent fallers have been observed to suffer from cardiovascular deficits. The present article aims to demonstrate the existence of interactions between the cardiovascular and postural control systems. The behavior of the two systems under orthostatic challenge was studied through novel adaptations of signal processing techniques. To this effect, the interactions between the two systems were assessed with two metrics, coherence and phase lock value, based on the wavelet transform. Measurements from the cardiovascular system (blood pressure), lower limb muscles (surface electromyography), and postural sway (center of pressure) were acquired from young healthy adults (n = 28, men = 12, age = 20-28 yr) during quiet stance. The continuous wavelet transform was applied to decompose the representative signals on a time-scale basis in a frequency region of 0.01 to 0.1 Hz. Their linear coupling was quantified through a coherence metric, and the synchrony was characterized via the phase information. The outcomes of this study present evidence that the cardiovascular and postural control systems work together to maintain homeostasis under orthostatic challenge. The inferences open a new direction of study for effects under abnormalities and extreme environmental conditions.

  2. Individual differences in the locus coeruleus-norepinephrine system: Relevance to stress-induced cardiovascular vulnerability.

    PubMed

    Wood, Christopher S; Valentino, Rita J; Wood, Susan K

    2017-04-01

    Repeated exposure to psychosocial stress is a robust sympathomimetic stressor and as such has adverse effects on cardiovascular health. While the neurocircuitry involved remains unclear, the physiological and anatomical characteristics of the locus coeruleus (LC)-norepinephrine (NE) system suggest that it is poised to contribute to stress-induced cardiovascular vulnerability. A major theme throughout is to review studies that shed light on the role that the LC may play in individual differences in vulnerability to social stress-induced cardiovascular dysfunction. Recent findings are discussed that support a unique plasticity in afferent regulation of the LC, resulting in either excitatory or inhibitory input to the LC during establishment of different stress coping strategies. This contrasting regulation of the LC by either afferent regulation, or distinct differences in stress-induced neuroinflammation would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The goal of this review is to highlight recent developments in the interplay between the LC-NE and cardiovascular systems during repeated stress in an effort to advance therapeutic treatments for the development of stress-induced cardiovascular vulnerability.

  3. Study report on guidelines and test procedures for investigating stability of nonlinear cardiovascular control system models

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1974-01-01

    A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.

  4. Possible Muscle Repair in the Human Cardiovascular System.

    PubMed

    Sommese, Linda; Zullo, Alberto; Schiano, Concetta; Mancini, Francesco P; Napoli, Claudio

    2017-04-01

    The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.

  5. Mathematical modelling of the human cardiovascular system in the presence of stenosis

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1993-01-01

    This paper reports a theoretical study on the distribution of blood flow in the human cardiovascular system when one or more blood vessels are affected by stenosis. The analysis employs a mathematical model of the entire system based on the finite element method. The arterial-venous network is represented by a large number of interconnected segments in the model. Values for the model parameters are based upon the published data on the physiological and rheological properties of blood. Computational results show how blood flow through various parts of the cardiovascular system is affected by stenosis in different blood vessels. No significant changes in the flow parameters of the cardiovascular system were found to occur when the reduction in the lumen diameter of the stenosed vessels was less than 65%.

  6. Mathematical modelling of the human cardiovascular system in the presence of stenosis.

    PubMed

    Sud, V K; Srinivasan, R S; Charles, J B; Bungo, M W

    1993-03-01

    This paper reports a theoretical study on the distribution of blood flow in the human cardiovascular system when one or more blood vessels are affected by stenosis. The analysis employs a mathematical model of the entire system based on the finite element method. The arterial-venous network is represented by a large number of interconnected segments in the model. Values for the model parameters are based upon the published data on the physiological and rheological properties of blood. Computational results show how blood flow through various parts of the cardiovascular system is affected by stenosis in different blood vessels. No significant changes in the flow parameters of the cardiovascular system were found to occur when the reduction in the lumen diameter of the stenosed vessels was less than 65%.

  7. Beta 3-adrenoreceptor regulation of nitric oxide in the cardiovascular system.

    PubMed

    Moens, An L; Yang, Ronghua; Watts, Vabren L; Barouch, Lili A

    2010-06-01

    The presence of a third beta-adrenergic receptor (beta 3-AR) in the cardiovascular system has challenged the classical paradigm of sympathetic regulation by beta1- and beta2-adrenergic receptors. While beta 3-AR's role in the cardiovascular system remains controversial, increasing evidence suggests that it serves as a "brake" in sympathetic overstimulation - it is activated at high catecholamine concentrations, producing a negative inotropic effect that antagonizes beta1- and beta2-AR activity. The anti-adrenergic effects induced by beta 3-AR were initially linked to nitric oxide (NO) release via endothelial NO synthase (eNOS), although more recently it has been shown under some conditions to increase NO production in the cardiovascular system via the other two NOS isoforms, namely inducible NOS (iNOS) and neuronal NOS (nNOS). We summarize recent findings regarding beta 3-AR effects on the cardiovascular system and explore its prospective as a therapeutic target, particularly focusing on its emerging role as an important mediator of NO signaling in the pathogenesis of cardiovascular disorders.

  8. Liver Rapid Reference Set Application: Hemken - Abbott (2015) — EDRN Public Portal

    Cancer.gov

    The aim for this testing is to find a small panel of biomarkers (n=2-5) that can be tested on the Abbott ARCHITECT automated immunoassay platform for the early detection of hepatocellular carcinoma (HCC). This panel of biomarkers should perform significantly better than alpha-fetoprotein (AFP) alone based on multivariate statistical analysis. This testing of the EDRN reference set will help expedite the selection of a small panel of ARCHITECT biomarkers for the early detection of HCC. The panel of ARCHITECT biomarkers Abbott plans to test include: AFP, protein induced by vitamin K absence or antagonist-II (PIVKA-II), golgi protein 73 (GP73), hepatocellular growth factor (HGF), dipeptidyl peptidase 4 (DPP4) and DPP4/seprase (surface expressed protease) heterodimer hybrid. PIVKA-II is abnormal des-carboxylated prothrombin (DCP) present in vitamin K deficiency.

  9. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.

    PubMed

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-07-15

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis.

  10. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system

    PubMed Central

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-01-01

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis. PMID:25952563

  11. The cardiovascular system in growth hormone excess and growth hormone deficiency.

    PubMed

    Lombardi, G; Di Somma, C; Grasso, L F S; Savanelli, M C; Colao, A; Pivonello, R

    2012-12-01

    The clinical conditions associated with GH excess and GH deficiency (GHD) are known to be associated with an increased risk for the cardiovascular morbidity and mortality, suggesting that either an excess or a deficiency in GH and/or IGF-I is deleterious for cardiovascular system. In patients with acromegaly, chronic GH and IGF-I excess commonly causes a specific cardiomyopathy characterized by a concentric cardiac hypertrophy associated with diastolic dysfunction and, in later stages, with systolic dysfunction ending in heart failure if GH/IGF-I excess is not controlled. Abnormalities of cardiac rhythm and anomalies of cardiac valves can also occur. Moreover, the increased prevalence of cardiovascular risk factors, such as hypertension, diabetes mellitus, and insulin resistance, as well as dyslipidemia, confer an increased risk for vascular atherosclerosis. Successful control of the disease is accompanied by a decrease of the cardiac mass and improvement of cardiac function and an improvement in cardiovascular risk factors. In patients with hypopituitarism, GHD has been considered the under- lying factor of the increased mortality when appropriate standard replacement of the pituitary hormones deficiencies is given. Either childhood-onset or adulthood-onset GHD are characterized by a cluster of abnormalities associated with an increased cardiovascular risk, including altered body composition, unfavorable lipid profile, insulin resistance, endothelial dysfunction and vascular atherosclerosis, a decrease in cardiac mass together with an impairment of systolic function mainly after exercise. Treatment with recombinant GH in patients with GHD is followed by an improvement of the cardiovascular risk factors and an increase in cardiac mass together with an improvement in cardiac performance. In conclusion, acromegaly and GHD are associated with an increased risk for cardiovascular morbidity and mortality, but the control of GH/IGF-I secretion reverses cardiovascular

  12. Ambient particle inhalation and the cardiovascular system: potential mechanisms.

    PubMed Central

    Donaldson, K; Stone, V; Seaton, A; MacNee, W

    2001-01-01

    Well-documented air pollution episodes throughout recent history have led to deaths among individuals with cardiovascular and respiratory disease. Although the components of air pollution that cause the adverse health effects in these individuals are unknown, a small proportion by mass but a large proportion by number of the ambient air particles are ultrafine, i.e., less than 100 nm in diameter. This ultrafine component of particulate matter with a mass median aerodynamic diameter less than 10 microm (PM(10) may mediate some of the adverse health effects reported in epidemiologic studies and for which there is toxicologic evidence to support this contention. The exact mechanism by which ultrafine particles have adverse effects is unknown, but these particles have recently been shown to enhance calcium influx on contact with macrophages. Oxidative stress is also to be anticipated at the huge particle surface; this can be augmented by oxidants generated by recruited inflammatory leukocytes. Atheromatous plaques form in the coronary arteries and are major causes of morbidity and death associated epidemiologically with particulate air pollution. In populations exposed to air pollution episodes, blood viscosity, fibrinogen, and C-reactive protein (CRP) were higher. More recently, increases in heart rate in response to rising air pollution have been described and are most marked in individuals who have high blood viscosity. In our study of elderly individuals, there were significant rises in CRP, an index of inflammation. In this present review, we consider the likely interactions between the ultrafine particles the acute phase response and cardiovascular disease. PMID:11544157

  13. BRSCW Reference Set Application: Karen Abbott -University of Arkansas (2014) — EDRN Public Portal

    Cancer.gov

    Our earlier glycoproteomic studies have identified bisecting glycoslyation and core fucosylation changes on particular glycoproteins in endometrioid ovarian cancer tissues and plasma (Abbott et al, 2010, Proteomics). We have validated that these glycan changes occur on the same glycoproteins in serous ovarian cancer plasma using a lectin-pull down western blot assays. We would like to used pooled reference samples to develop a sensitive magnetic bead-based assay to detect these glycoproteins with bisecting and core fucosylation changes.

  14. Revisiting Abbott Thayer: non-scientific reflections about camouflage in art, war and zoology

    PubMed Central

    Behrens, Roy R.

    2008-01-01

    This paper reviews the achievements of Abbott Handerson Thayer (1849–1921), an American painter and naturalist whose pioneering writings on animal camouflage addressed shared concerns among artists, zoologists and military tacticians. It discusses his beliefs about camouflage (both natural and military) in the context of his training as an artist, with particular emphasis on three of his major ideas: countershading, ruptive (or disruptive) coloration and background picturing. PMID:19000975

  15. Complementary role of cardiovascular imaging and laboratory indices in early detection of cardiovascular disease in systemic lupus erythematosus.

    PubMed

    Mavrogeni, S; Koutsogeorgopoulou, L; Dimitroulas, T; Markousis-Mavrogenis, G; Kolovou, G

    2017-03-01

    Background Cardiovascular disease (CVD) has been documented in >50% of systemic lupus erythematosus (SLE) patients, due to a complex interplay between traditional risk factors and SLE-related factors. Various processes, such as coronary artery disease, myocarditis, dilated cardiomyopathy, vasculitis, valvular heart disease, pulmonary hypertension and heart failure, account for CVD complications in SLE. Methods Electrocardiogram (ECG), echocardiography (echo), nuclear techniques, cardiac computed tomography (CT), cardiovascular magnetic resonance (CMR) and cardiac catheterization (CCa) can detect CVD in SLE at an early stage. ECG and echo are the cornerstones of CVD evaluation in SLE. The routine use of cardiac CT and nuclear techniques is limited by radiation exposure and use of iodinated contrast agents. Additionally, nuclear techniques are also limited by low spatial resolution that does not allow detection of sub-endocardial and sub-epicardial lesions. CCa gives definitive information about coronary artery anatomy and pulmonary artery pressure and offers the possibility of interventional therapy. However, it carries the risk of invasive instrumentation. Recently, CMR was proved of great value in the evaluation of cardiac function and the detection of myocardial inflammation, stress-rest perfusion defects and fibrosis. Results An algorithm for CVD evaluation in SLE includes clinical, laboratory, ECG and echo assessment as well as CMR evaluation in patients with inconclusive findings, persistent cardiac symptoms despite normal standard evaluation, new onset of life-threatening arrhythmia/heart failure and/or as a tool to select SLE patients for CCa. Conclusions A non-invasive approach including clinical, laboratory and imaging evaluation is key for early CVD detection in SLE.

  16. Abbott AxSYM Vancomycin II assay: multicenter evaluation and interference studies.

    PubMed

    Azzazy, H M; Chou, P P; Tsushima, J H; Troxil, S; Gordon, M; Avers, R J; Chiappetta, E; Duh, S H; Christenson, R H

    1998-04-01

    The authors evaluated the performance characteristics of the Abbott AxSYM Vancomycin II immunoassay in sera of patients with (n = 93 samples) and without (n = 327 patients) renal dysfunction. Correlation of vancomycin measurements with the Abbott AxSYM Vancomycin, Abbott TDx/TDxFLx, Syva enzyme-multiplied immunoassay technique (EMIT), DuPont automated chemistry analyzer (ACA), and high-performance liquid chromatography methods showed acceptable correlation as indicated by: slope values >0.95, r-values >0.97, y-intercepts <1.7 microg/ml, and S(y/x) ranging from 9% to 15% of the average vancomycin value. The AxSYM Vancomycin II assay showed acceptable correlation with AxSYM vancomycin, TDx/TDxFLx, and high-performance liquid chromatography methods in 93 samples from patients with renal dysfunction. This monoclonal antibody-based assay showed no apparent interference from the presence of human antimouse antibody (HAMA) or the microbiologically inactive vancomycin crystalline degradation product (CDP). The authors conclude that the AxSYM Vancomycin II assay showed satisfactory agreement with other methods tested in this study.

  17. A cardiovascular system model for lower-body negative pressure response

    NASA Technical Reports Server (NTRS)

    Mitchell, B. A., Jr.; Giese, R. P.

    1971-01-01

    Mathematical models used to study complex physiological control systems are discussed. Efforts were made to modify a model of the cardiovascular system for use in studying lower body negative pressure. A computer program was written which allows orderly, straightforward expansion to include exercise, metabolism (thermal stress), respiration, and other body functions.

  18. Multifractality in the peripheral cardiovascular system from pointwise holder exponents of laser Doppler flowmetry signals.

    PubMed

    Humeau, Anne; Chapeau-Blondeau, François; Rousseau, David; Tartas, Maylis; Fromy, Bérengère; Abraham, Pierre

    2007-12-15

    We study the dynamics of skin laser Doppler flowmetry signals giving a peripheral view of the cardiovascular system. The analysis of Hölder exponents reveals that the experimental signals are weakly multifractal for young healthy subjects at rest. We implement the same analysis on data generated by a standard theoretical model of the cardiovascular system based on nonlinear coupled oscillators with linear couplings and fluctuations. We show that the theoretical model, although it captures basic features of the dynamics, is not complex enough to reflect the multifractal irregularities of microvascular mechanisms.

  19. Patient-specific system for prognosis of surgical treatment outcomes of human cardiovascular system

    NASA Astrophysics Data System (ADS)

    Golyadkina, Anastasiya A.; Kalinin, Aleksey A.; Kirillova, Irina V.; Kossovich, Elena L.; Kossovich, Leonid Y.; Menishova, Liyana R.; Polienko, Asel V.

    2015-03-01

    Object of study: Improvement of life quality of patients with high stroke risk ia the main goal for development of system for patient-specific modeling of cardiovascular system. This work is dedicated at increase of safety outcomes for surgical treatment of brain blood supply alterations. The objects of study are common carotid artery, internal and external carotid arteries and bulb. Methods: We estimated mechanical properties of carotid arteries tissues and patching materials utilized at angioplasty. We studied angioarchitecture features of arteries. We developed and clinically adapted computer biomechanical models, which are characterized by geometrical, physical and mechanical similarity with carotid artery in norm and with pathology (atherosclerosis, pathological tortuosity, and their combination). Results: Collaboration of practicing cardiovascular surgeons and specialists in the area of Mathematics and Mechanics allowed to successfully conduct finite-element modeling of surgical treatment taking into account various features of operation techniques and patching materials for a specific patient. Numerical experiment allowed to reveal factors leading to brain blood supply decrease and atherosclerosis development. Modeling of carotid artery reconstruction surgery for a specific patient on the basis of the constructed biomechanical model demonstrated the possibility of its application in clinical practice at approximation of numerical experiment to the real conditions.

  20. Introduction to the series on microRNAs in the cardiovascular system.

    PubMed

    van Rooij, Eva

    2012-02-03

    Until recently, microRNAs (miRNAs) were considered to be relatively small players in biological systems by having a balancing function through moderate effects on gene expression levels. However, it has become appreciated that miRNAs are actually much more relevant during both development and disease, which is underscored by the attention they have been receiving. The goal of this thematic review series is to highlight current knowledge of miRNA function during cardiovascular development, their dysregulation under disease conditions and the disease modifying functions they have been shown to exert in the cardiovascular system. These reviews, in addition to discussing the recent advancements in using miRNAs as circulating biomarkers or therapeutic modalities, will hopefully be able to provide a strong basis for future research to further expand our insights into miRNA function in cardiovascular biology.

  1. Role of tissue kallikrein-kininogen-kinin pathways in the cardiovascular system.

    PubMed

    Sharma, Jagdish N

    2006-04-01

    All the components of the kallikrein-kinin system are located in the cardiac muscle, and its deficiency may lead to cardiac dysfunction. In recent years, numerous observations obtained from clinical and experimental models of diabetes, hypertension, cardiac failure, ischemia, myocardial infarction and left ventricular hypertrophy have suggested that the reduced activity of the local kallikrein-kinin system may be instrumental for the induction of cardiovascular-related diseases. The cardioprotective property of the angiotensin converting enzyme inhibitors is primarily mediated via kinin-releasing pathway, which may cause regression of the left ventricular hypertrophy in hypertensive situations. The ability of kallikrein gene delivery to produce a wide spectrum of beneficial effects makes it an excellent candidate in treating hypertension, cardiovascular and renal diseases. In addition, stable kinin agonists may also be available in the future as therapeutic agents for cardiovascular and renal disorders.

  2. Adaptive life simulator: A novel approach to modeling the cardiovascular system

    SciTech Connect

    Kangas, L.J.; Keller, P.E.; Hashem, S.

    1995-06-01

    In this paper, an adaptive life simulator (ALS) is introduced. The ALS models a subset of the dynamics of the cardiovascular behavior of an individual by using a recurrent artificial neural network. These models are developed for use in applications that require simulations of cardiovascular systems, such as medical mannequins, and in medical diagnostic systems. This approach is unique in that each cardiovascular model is developed from physiological measurements of an individual. Any differences between the modeled variables and the actual variables of an individual can subsequently be used for diagnosis. This approach also exploits sensor fusion applied to biomedical sensors. Sensor fusion optimizes the utilization of the sensors. The advantage of sensor fusion has been demonstrated in applications including control and diagnostics of mechanical and chemical processes.

  3. TREK-1 K(+) channels in the cardiovascular system: their significance and potential as a therapeutic target.

    PubMed

    Goonetilleke, Lakshman; Quayle, John

    2012-02-01

    Potassium (K(+) ) channels are important in cardiovascular disease both as drug targets and as a cause of underlying pathology. Voltage-dependent K(+) (K(V) ) channels are inhibited by the class III antiarrhythmic agents. Certain vasodilators work by opening K(+) channels in vascular smooth muscle cells (VSMCs), and K(+) channel activation may also be a route to improving endothelial function. The two-pore domain K(+) (K(2P) ) channels form a group of 15 known channels with an expanding list of functions in the cardiovascular system. One of these K(2P) channels, TREK-1, is the focus of this review. TREK-1 channel activity is tightly regulated by intracellular and extracellular pH, membrane stretch, polyunsaturated fatty acids (PUFAs), temperature, and receptor-coupled second messenger systems. TREK-1 channels are also activated by volatile anesthetics and some neuroprotectant agents, and they are inhibited by selective serotonin reuptake inhibitors (SSRIs) as well as amide local anesthetics. Some of the clinical cardiovascular effects and side effects of these drugs may be through their actions on TREK-1 channels. It has recently been suggested that TREK-1 channels have a role in mechano-electrical coupling in the heart. They also seem important in the vascular responses to PUFAs, and this may underlie some of the beneficial cardiovascular effects of the essential dietary fatty acids. Development of selective TREK-1 openers and inhibitors may provide promising routes for intervention in cardiovascular diseases.

  4. Pediatric computed tomographic angiography: imaging the cardiovascular system gently.

    PubMed

    Hellinger, Jeffrey C; Pena, Andres; Poon, Michael; Chan, Frandics P; Epelman, Monica

    2010-03-01

    Whether congenital or acquired, timely recognition and management of disease is imperative, as hemodynamic alterations in blood flow, tissue perfusion, and cellular oxygenation can have profound effects on organ function, growth and development, and quality of life for the pediatric patient. Ensuring safe computed tomographic angiography (CTA) practice and "gentle" pediatric imaging requires the cardiovascular imager to have sound understanding of CTA advantages, limitations, and appropriate indications as well as strong working knowledge of acquisition principles and image post processing. From this vantage point, CTA can be used as a useful adjunct along with the other modalities. This article presents a summary of dose reduction CTA methodologies along with techniques the authors have employed in clinical practice to achieve low-dose and ultralow-dose exposure in pediatric CTA. CTA technical principles are discussed with an emphasis on the low-dose methodologies and safe contrast medium delivery strategies. Recommended parameters for currently available multidetector-row computed tomography scanners are summarized alongside recommended radiation and contrast medium parameters. In the second part of the article an overview of pediatric CTA clinical applications is presented, illustrating low-dose and ultra-low dose techniques, with an emphasis on the specific protocols.

  5. Iron, oxidative stress, and redox signaling in the cardiovascular system.

    PubMed

    Gudjoncik, Aurélie; Guenancia, Charles; Zeller, Marianne; Cottin, Yves; Vergely, Catherine; Rochette, Luc

    2014-08-01

    The redox state of the cell is predominantly dependent on an iron redox couple and is maintained within strict physiological limits. Iron is an essential metal for hemoglobin synthesis in erythrocytes, for oxidation-reduction reactions, and for cellular proliferation. The maintenance of stable iron concentrations requires the coordinated regulation of iron transport into plasma from dietary sources in the duodenum, from recycled senescent red cells in macrophages, and from storage in hepatocytes. The absorption of dietary iron, which is present in heme or nonheme form, is carried out by mature villus enterocytes of the duodenum and proximal jejunum. Multiple physiological processes are involved in maintaining iron homeostasis. These include its storage at the intracellular and extracellular level. Control of iron balance in the whole organism requires communication between sites of uptake, utilization, and storage. Key protein transporters and the molecules that regulate their activities have been identified. In this field, ferritins and hepcidin are the major regulator proteins. A variety of transcription factors may be activated depending on the level of oxidative stress, leading to the expression of different genes. Major preclinical and clinical trials have shown advances in iron-chelation therapy for the treatment of iron-overload disease as well as cardiovascular and chronic inflammatory diseases.

  6. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training.

    PubMed

    Martins-Pinge, M C

    2011-09-01

    The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  7. Klinefelter syndrome, cardiovascular system, and thromboembolic disease: review of literature and clinical perspectives.

    PubMed

    Salzano, Andrea; Arcopinto, Michele; Marra, Alberto M; Bobbio, Emanuele; Esposito, Daniela; Accardo, Giacomo; Giallauria, Francesco; Bossone, Eduardo; Vigorito, Carlo; Lenzi, Andrea; Pasquali, Daniela; Isidori, Andrea M; Cittadini, Antonio

    2016-07-01

    Klinefelter syndrome (KS) is the most frequently occurring sex chromosomal aberration in males, with an incidence of about 1 in 500-700 newborns. Data acquired from large registry-based studies revealed an increase in mortality rates among KS patients when compared with mortality rates among the general population. Among all causes of death, metabolic, cardiovascular, and hemostatic complication seem to play a pivotal role. KS is associated, as are other chromosomal pathologies and genetic diseases, with cardiac congenital anomalies that contribute to the increase in mortality. The aim of the current study was to systematically review the relationships between KS and the cardiovascular system and hemostatic balance. In summary, patients with KS display an increased cardiovascular risk profile, characterized by increased prevalence of metabolic abnormalities including Diabetes mellitus (DM), dyslipidemia, and alterations in biomarkers of cardiovascular disease. KS does not, however, appear to be associated with arterial hypertension. Moreover, KS patients are characterized by subclinical abnormalities in left ventricular (LV) systolic and diastolic function and endothelial function, which, when associated with chronotropic incompetence may led to reduced cardiopulmonary performance. KS patients appear to be at a higher risk for cardiovascular disease, attributing to an increased risk of thromboembolic events with a high prevalence of recurrent venous ulcers, venous insufficiency, recurrent venous and arterial thromboembolism with higher risk of deep venous thrombosis or pulmonary embolism. It appears that cardiovascular involvement in KS is mainly due to chromosomal abnormalities rather than solely on low serum testosterone levels. On the basis of evidence acquisition and authors' own experience, a flowchart addressing the management of cardiovascular function and prognosis of KS patients has been developed for clinical use.

  8. Influence of mitochondrion-toxic agents on the cardiovascular system.

    PubMed

    Finsterer, Josef; Ohnsorge, Peter

    2013-12-01

    Cardiovascular disease may be induced or worsened by mitochondrion-toxic agents. Mitochondrion-toxic agents may be classified as those with or without a clinical effect, those which induce cardiac disease only in humans or animals or both, as prescribed drugs, illicit drugs, exotoxins, or nutritiants, as those which affect the heart exclusively or also other organs, as those which are effective only in patients with a mitochondrial disorder or cardiac disease or also in healthy subjects, or as solid, liquid, or volatile agents. In humans, cardiotoxic agents due to mitochondrial dysfunction include anthracyclines (particularly doxorubicin), mitoxantrone, cyclophosphamide, cisplatin, fluorouracil, imatinib, bortezomib, trastuzumab, arsenic trioxide, cyclosporine-A, zidovudine, lamotrigine, glycosides, lidocain, isoproterenol, nitroprusside, pivalic acid, alcohol, cocaine, pesticides, cadmium, mycotoxins, cyanotoxins, meat meal, or carbon monoxide. Even more agents exhibit cardiac abnormalities due to mitochondrion-toxicity only in animals or tissue cultures. The mitochondrion-toxic effect results from impairment of the respiratory chain, the oxidative phosphorylation, the Krebs cycle, or the β-oxidation, from decrease of the mitochondrion-membrane potential, from increased oxidative stress, reduced anti-oxidative capacity, or from induction of apoptosis. Cardiac abnormalities induced via these mechanisms include cardiomyopathy, myocarditis, coronary heart disease, arrhythmias, heart failure, or Takotsubo syndrome. Discontinuation of the cardiotoxic agent results in complete recovery in the majority of the cases. Antioxidants and nutritiants may be of additional help. Particularly coenzyme-Q, riboflavin, vitamin-E, vitamin-C, L-carnitine, vitamin-D, thiamin, folic acid, omega-3 fatty acids, and D-ribose may alleviate mitochondrial cardiotoxic effects.

  9. Interactions between immune, stress-related hormonal and cardiovascular systems following strenuous physical exercise.

    PubMed

    Menicucci, Danilo; Piarulli, Andrea; Mastorci, Francesca; Sebastiani, Laura; Laurino, Marco; Garbella, Erika; Castagnini, Cinzia; Pellegrini, Silvia; Lubrano, Valter; Bernardi, Giulio; Metelli, Maria; Bedini, Remo; L'abbate, Antonio; Pingitore, Alessandro; Gemignani, Angelo

    2013-09-01

    Physical exercise represents a eustress condition that promotes rapid coordinated adjustments in the immune, stress-related hormonal and cardiovascular systems, for maintaining homeostasis in response to increased metabolic demands. Compared to the tight multisystem coordination during exercise, evidence of between-systems cross talk in the early post exercise is still lacking. This study was aimed at identifying possible interactions between multiple systems following strenuous physical exercise (Ironman race) performed by twenty well-trained triathletes. Cardiac hemodynamics, left ventricle systolic and diastolic function and heart rate variability were measured along with plasma concentrations of immune messengers (cytokines and C-reactive protein) and stress-related hormones (catecholamines and cortisol) both 24h before and within 20 min after the race. Observed changes in antiinflammatory pathways, stress-related hormones and cardiovascular function were in line with previous findings; moreover, correlating parameters' changes (post versus pre-race) highlighted a dependence of cardiovascular function on the post-race biohumoral milieu: in particular, individual post-race variations of heart rate and diastolic function were strongly correlated with individual variations of anti-inflammatory cytokines, while individual baroreflex sensitivity changes were linked to IL-8 increase. Multiple correlations between anti-inflammatory cytokines and catecholamines were also found according with the autonomic regulation of immune function. Observed post-race cytokine and hormone levels were presumptively representative of the increases reached at the effort end while the cardiovascular parameters after the race were measured during the cardiovascular recovery; thus, results suggest that sustained strenuous exercise produced a stereotyped cardiovascular early recovery, whose speed could be conditioned by the immune and stress-related hormonal milieu.

  10. Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system.

    PubMed

    Wiedmann, Felix; Schmidt, Constanze; Lugenbiel, Patrick; Staudacher, Ingo; Rahm, Ann-Kathrin; Seyler, Claudia; Schweizer, Patrick A; Katus, Hugo A; Thomas, Dierk

    2016-05-01

    The improvement of treatment strategies in cardiovascular medicine is an ongoing process that requires constant optimization. The ability of a therapeutic intervention to prevent cardiovascular pathology largely depends on its capacity to suppress the underlying mechanisms. Attenuation or reversal of disease-specific pathways has emerged as a promising paradigm, providing a mechanistic rationale for patient-tailored therapy. Two-pore-domain K(+) (K(2P)) channels conduct outward K(+) currents that stabilize the resting membrane potential and facilitate action potential repolarization. K(2P) expression in the cardiovascular system and polymodal K2P current regulation suggest functional significance and potential therapeutic roles of the channels. Recent work has focused primarily on K(2P)1.1 [tandem of pore domains in a weak inwardly rectifying K(+) channel (TWIK)-1], K(2P)2.1 [TWIK-related K(+) channel (TREK)-1], and K(2P)3.1 [TWIK-related acid-sensitive K(+) channel (TASK)-1] channels and their role in heart and vessels. K(2P) currents have been implicated in atrial and ventricular arrhythmogenesis and in setting the vascular tone. Furthermore, the association of genetic alterations in K(2P)3.1 channels with atrial fibrillation, cardiac conduction disorders and pulmonary arterial hypertension demonstrates the relevance of the channels in cardiovascular disease. The function, regulation and clinical significance of cardiovascular K(2P) channels are summarized in the present review, and therapeutic options are emphasized.

  11. Systemic Hemodynamic Atherothrombotic Syndrome and Resonance Hypothesis of Blood Pressure Variability: Triggering Cardiovascular Events

    PubMed Central

    2016-01-01

    Blood pressure (BP) exhibits different variabilities and surges with different time phases, from the shortest beat-by-beat to longest yearly changes. We hypothesized that the synergistic resonance of these BP variabilites generates an extraordinarily large dynamic surge in BP and triggers cardiovascular events (the resonance hypothesis). The power of pulses is transmitted to the peripheral sites without attenuation by the large arteries, in individuals with stiffened arteries. Thus, the effect of a BP surge on cardiovascular risk would be especially exaggerated in high-risk patients with vascular disease. Based on this concept, our group recently proposed a new theory of systemic hemodynamic atherothromboltic syndrome (SHATS), a vicious cycle of hemodynamic stress and vascular disease that advances organ damage and triggers cardiovascular disease. Clinical phenotypes of SHATS are large-artery atherothombotic diseases such as stroke, coronary artery disease, and aortic and pheripheral artery disease; small-artery diseases, and microcirculation-related disease such as vascular cognitive dysfunction, heart failure, and chronic kidney disease. The careful consideration of BP variability and vascular diseases such as SHATS, and the early detection and management of SHATS, will achieve more effective individualized cardiovascular protection. In the near future, information and communication technology-based 'anticipation medicine' predicted by the changes of individual BP values could be a promising approach to achieving zero cardiovascular events. PMID:27482253

  12. Regulation of signal transduction by reactive oxygen species in the cardiovascular system.

    PubMed

    Brown, David I; Griendling, Kathy K

    2015-01-30

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species (ROS) in normal physiological signaling has been elucidated. Signaling pathways modulated by ROS are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here, we review the current literature on ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases, including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis, and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress.

  13. Small G proteins in the cardiovascular system: physiological and pathological aspects.

    PubMed

    Loirand, Gervaise; Sauzeau, Vincent; Pacaud, Pierre

    2013-10-01

    Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.

  14. Regulation of signal transduction by reactive oxygen species in the cardiovascular system

    PubMed Central

    Brown, David I.; Griendling, Kathy K.

    2015-01-01

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species in normal physiological signaling has been elucidated. Signaling pathways modulated by reactive oxygen species (ROS) are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here we review the current literature regarding ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. PMID:25634975

  15. [Capacity and resistance parameters of the athlete's cardiovascular system and their dynamics in regular training].

    PubMed

    Epifanov, V A; Suvorova, S S

    2001-01-01

    Viscosity and elasticity of the cardiovascular system are assessed by a new method based on evaluation of correlations between deposit properties of the left ventricular chamber, aortic wall and vascular resistance in different parts of the arterial tree. This method examines individual hemodynamic characteristics of healthy untrained persons and hemodynamic changes due to regular training.

  16. The heart and cardiovascular system in the Qur'an and Hadeeth.

    PubMed

    Loukas, Marios; Saad, Yousuf; Tubbs, R Shane; Shoja, Mohamadali M

    2010-04-01

    Descriptions of the human anatomy derived from religious texts are often omitted from the medical literature. The present review aims to discuss the comments and commentaries made regarding the heart and cardiovascular system as found in the Qur'an and Hadeeth. Based on this review, it is clear that these early sources both had a good comprehension of these parts of the body.

  17. TEMPORAL ASSOCIATION BETWEEN PULMONARY AND SYSTEMIC EFFECTS OF PARTICULATE MATTER IN HEALTHY AND CARDIOVASCULAR COMPROMISED RATS

    EPA Science Inventory

    Temporal association between pulmonary and systemic effects of particulate matter in healthy and cardiovascular compromised rats

    Urmila P. Kodavanti, Mette C. Schladweiler, Allen D. Ledbetter, Russ Hauser*, David C. Christiani*, John McGee, Judy R. Richards, Daniel L. Co...

  18. Hydrogen sulphide in cardiovascular system: A cascade from interaction between sulphur atoms and signalling molecules.

    PubMed

    Wang, Ming-Jie; Cai, Wen-Jie; Zhu, Yi-Chun

    2016-05-15

    As a gasotransmitter, hydrogen sulphide exerts its extensive physiological and pathophysiological effects in mammals. The interaction between sulphur atoms and signalling molecules forms a cascade that modulates cellular functions and homeostasis. In this review, we focus on the signalling mechanism underlying the effect of hydrogen sulphide in the cardiovascular system and metabolism as well as the biological relevance to human diseases.

  19. A Follow-Up Study of Medical Students' Biomedical Understanding and Clinical Reasoning Concerning the Cardiovascular System

    ERIC Educational Resources Information Center

    Ahopelto, Ilona; Mikkila-Erdmann, Mirjamaija; Olkinuora, Erkki; Kaapa, Pekka

    2011-01-01

    Novice medical students usually hold initial conceptions concerning medical domains, such as the cardiovascular system, which may contradict scientific explanations and thus hinder learning. The purpose of this study was to investigate which kinds of biomedical representations medical students constructed of the central cardiovascular system in…

  20. Physics of the cardiovascular system: An intrinsic control mechanism of the human heart

    NASA Astrophysics Data System (ADS)

    Uehara, Mituo; Sakane, Kumiko K.

    2003-04-01

    Differential equations for the cardiovascular system are derived by applying the continuity equation of fluid mechanics to the rate of blood flow and variation of blood volume in different parts of the system. The equations are used to explain the Frank-Starling mechanism, which plays an important role in the maintenance of the stability of the distribution of blood in the system. This treatment can be easily understood by undergraduate physics students with no previous knowledge of human physiology.

  1. Space Weather and a State of Cardiovascular System of Human Being with a Weakened Adaptation System

    NASA Astrophysics Data System (ADS)

    Samsonov, S. N.

    As has been shown in [Samsonov et al., 2013] even at the considerable disturbances of space weather parameters a healthy human being did not undergo painful symptoms although measurements of objective physiological indices showed their changes. At the same time the state of health of people with the weakened adaptation system under the same conditions can considerably be deteriorated up to fatal outcome. The analysis of results of the project "Heliomed" and the number of calls for the emergency medical care (EMC) around Yakutsk as to cardiovascular diseases (CVD) has shown:- the total number of calls for EMC concerning myocardial infarction (MI) per year near the geomagnetic disturbance maximum (1992) exceeds the number of calls per year near the geomagnetic activity minimum (1998) by a factor of 1,5 and concerning to strokes - by a factor of 1,8.- maxima of MI are observed during spring and autumn periods coinciding with maxima of geophysical disturbance;- the coincidence of 30-32 daily periods in a power spectrum of MI with the same periods in power spectra of space weather parameters (speeds and density of the solar wind, interplanetary magnetic field, geophysical disturbance);- the existence of 3 maxima of the number of calls for EMC: a) at the moment of disturbance on the Sun; during a geophysical disturbance (in 2-4 days after a disturbance on the Sun); in 2-4 days after a geophysical disturbance;- the availability of coincidence of insignificant disturbances of space weather parameters with changes of the functional state of cardiovascular system of a human being with the weakened adaptation system and the occurrence of MI and strokes at considerable values of such disturbances is explained by a quasi-logarithmic dependence of the response of human being organisms to the environment disturbance intensity.

  2. A role for the central histaminergic system in the leptin-mediated increase in cardiovascular dynamics.

    PubMed

    Rao, Sumangala P; Dunbar, Joseph C

    2005-01-15

    The central nervous system (CNS) histaminergic neurons have been shown to regulate feeding behavior and are a target of leptin in the brain. The present study aimed to examine the involvement of the histaminergic system in the leptin-mediated regulation of cardiovascular dynamics. We investigated the cardiovascular responses to the CNS administration of histamine, leptin and alpha-melanocyte stimulating hormone (alpha-MSH) both in the presence and absence of the histamine H1 antagonist, chlorpheniramine. The intracerebroventricular (i.c.v.) administration of histamine resulted in an immediate increase in both mean arterial pressure (MAP) and heart rate (HR) and vasoconstricted the iliac, renal and superior mesenteric vessels. The i.c.v. pretreatment with chlorpheniramine attenuated the histamine-induced increase in MAP, HR and decreased vascular conductance. The i.c.v. administration of leptin increased MAP and HR and decreased vascular conductance. The i.c.v. pretreatment with chlorpheniramine decreased the leptin-induced increase in MAP and the leptin-mediated iliac vasoconstriction. The i.c.v. administration of alpha-MSH also increased MAP, HR and decreased vascular conductance. However, pretreatment with chlorpheniramine did not influence the central alpha-MSH-mediated increase in MAP, HR and decreased vascular conductance. These results indicate that the central histaminergic system mediated by H1 receptors have a role in the central signaling pathway and is involved in leptin's regulation of cardiovascular dynamics. It appears that leptin directly or indirectly stimulates histaminergic neurons that lead to increased cardiovascular activity.

  3. A Bionic Approach to Cardiovascular Regulation: Bionic Arterial Baroreflex System

    DTIC Science & Technology

    2007-11-02

    micromanometer and by stimulating celiac with the knowledge of system characteristics. succeeded in functionally identifying the native arterial...system was obtained. Similarly we recorded blood pressure while stimulating sympathetic nerves at the celiac ganglia randomly. We A BIONIC APPROACH TO...baroreflex was realized by stimulating the celiac ganglia according to the stimulation command. The stimulation command was calculated by convolving the

  4. Some peculiar effects of NO-synthase inhibition on the structure and function of cardiovascular system.

    PubMed

    Kristek, Frantisek

    2011-09-01

    Long-term increase of blood pressure represents one of the most important risk factors triggering many cardiovascular diseases, and via counter-regulatory mechanisms it is itself modulated by them. Adequate perfusion of the respective areas with nutrients requires appropriate production of vasodilatory and vasoconstrictory agents. Disharmony among them has an important impact on mechanical properties of the arteries, resulting in pathological alterations in the cardiovascular system. Defective production of the vasodilatory agent nitric oxide (NO) has a pronounced effect on this delicate balance and can evoke functional and structural changes in the cardiovascular system leading to hypertension. This review is focused mainly on changes in the cardiovascular system of newborn and adult Wistar rats after long-term administration of two different types of NO-synthase inhibitors: nonspecific inhibitor NG-nitro-L-arginine methylester and specific inhibitor of neuronal NO-synthase 7-nitroindazole. A possible supplementation of decreased endogenous NO production by NO donors is discussed. Particular attention is given to the complex interplay among blood pressure, arterial geometry, including arterial wall thickness, cross-sectional area, inner diameter, and individual components of the arterial wall, as extracellular matrix, endothelial and smooth muscle cell trophicity. Some methodological remarks for determination of the arterial geometry are also presented. Better understanding of the interrelationship among the factors involved can help in explaining more accurately differences in functional manifestations of vessels in various types of hypertension. The review indicates that the current concept of NO production, effect of NO deficiency, substitution of the missing NO in failing NO production in the cardiovascular system appears to be oversimplified.

  5. Serotonin and Sensory Nerves: Meeting in the Cardiovascular System

    PubMed Central

    Watts, Stephanie W.

    2014-01-01

    Blood pressure regulation by 5-HT has proven to be a complex story to unravel. The work by Cuesta et al in this issue of Vascular Pharmacology adds another layer of complexity by providing sound in vivo data that 5-HT, through the 5-HT7 receptor, can inhibit the vasodepressor actions of the sensory nervous system and thereby promote blood pressure maintenance. This interaction of 5-HT with the sensory nervous system is inhibitory, whereas 5-HT is understood to be stimulatory in other systems. Moreover, activation of the 5-HT7 receptor has been linked to both reduction and elevation of blood pressure. These interactions are discussed in this mini-review, as are potential steps forward in understanding the interplay of 5-HT, the sensory nervous system and blood pressure. PMID:25181552

  6. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System

    PubMed Central

    2011-01-01

    Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models

  7. Consequences of Circadian and Sleep Disturbances for the Cardiovascular System.

    PubMed

    Alibhai, Faisal J; Tsimakouridze, Elena V; Reitz, Cristine J; Pyle, W Glen; Martino, Tami A

    2015-07-01

    Circadian rhythms play a crucial role in our cardiovascular system. Importantly, there has been a recent flurry of clinical and experimental studies revealing the profound adverse consequences of disturbing these rhythms on the cardiovascular system. For example, circadian disturbance worsens outcome after myocardial infarction with implications for patients in acute care settings. Moreover, disturbing rhythms exacerbates cardiac remodelling in heart disease models. Also, circadian dyssynchrony is a causal factor in the pathogenesis of heart disease. These discoveries have profound implications for the cardiovascular health of shift workers, individuals with circadian and sleep disorders, or anyone subjected to the 24/7 demands of society. Moreover, these studies give rise to 2 new frontiers for translational research: (1) circadian rhythms and the cardiac sarcomere, which sheds new light on our understanding of myofilament structure, signalling, and electrophysiology; and (2) knowledge translation, which includes biomarker discovery (chronobiomarkers), timing of therapies (chronotherapy), and other new promising approaches to improve the management and treatment of cardiovascular disease. Reconsidering circadian rhythms in the clinical setting benefits repair mechanisms, and offers new promise for patients.

  8. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging.

    PubMed

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI.

  9. TRPM4 channels in the cardiovascular system: physiology, pathophysiology, and pharmacology.

    PubMed

    Abriel, Hugues; Syam, Ninda; Sottas, Valentin; Amarouch, Mohamed Yassine; Rougier, Jean-Sébastien

    2012-10-01

    The transient receptor potential channel (TRP) family comprises at least 28 genes in the human genome. These channels are widely expressed in many different tissues, including those of the cardiovascular system. The transient receptor potential channel melastatin 4 (TRPM4) is a Ca(2+)-activated non-specific cationic channel, which is impermeable to Ca(2+). TRPM4 is expressed in many cells of the cardiovascular system, such as cardiac cells of the conduction pathway and arterial and venous smooth muscle cells. This review article summarizes the recently described roles of TRPM4 in normal physiology and in various disease states. Genetic variants in the human gene TRPM4 have been linked to several cardiac conduction disorders. TRPM4 has also been proposed to play a crucial role in secondary hemorrhage following spinal cord injuries. Spontaneously hypertensive rats with cardiac hypertrophy were shown to over-express the cardiac TRPM4 channel. Recent studies suggest that TRPM4 plays an important role in cardiovascular physiology and disease, even if most of the molecular and cellular mechanisms have yet to be elucidated. We conclude this review article with a brief overview of the compounds that have been shown to either inhibit or activate TRPM4 under experimental conditions. Based on recent findings, the TRPM4 channel can be proposed as a future target for the pharmacological treatment of cardiovascular disorders, such as hypertension and cardiac arrhythmias.

  10. Drug targeting of estrogen receptor signaling in the cardiovascular system: preclinical and clinical studies.

    PubMed

    Sanz-González, Silvia M; Cano, Antonio; Valverde, M A; Hermenegildo, Carlos; Andrés, Vicente

    2004-04-01

    Atherosclerosis and associated coronary heart disease events have lower prevalence in women than in men, especially during young adult years. Although multiple lines of evidence suggest that estrogens contribute to this difference, the efficacy of hormone replacement therapy for the prevention of cardiovascular disease in postmenopausal women is controversial. The protective action of estrogen in the cardiovascular system appears to be mediated indirectly by an effect on serum lipoprotein and triglyceride profiles and on the expression of coagulant and fibrinolytic proteins, and by a direct effect on the vessel wall itself. Estrogen has both rapid effects involving alteration of membrane ionic permeability and activation of membrane-bound enzymes and increases in endothelial cell nitric oxide synthase activity, as well as longer-term effects on gene expression that are mediated, at least in part, by the ligand-activated transcription factors, estrogen receptor alpha and beta. Compounds with pure antiestrogenic activity and selective estrogen receptor modulators that regulate estrogen receptor function in a tissue-specific manner have been developed in an attempt to achieve the cardioprotective effects of estrogens while minimizing the undesirable risks associated with hormone replacement therapy (e.g., endometrial and breast cancer). In this review, we will discuss recent developments on the mechanisms of estrogen action in the cardiovascular system. The results of clinical trials testing the long-term efficacy of hormone replacement therapy for the treatment of cardiovascular disease will also be discussed.

  11. Intra- and Interorgan Communication in the Cardiovascular System: A Special View on Redox Regulation.

    PubMed

    Gödecke, Axel; Haendeler, Judith

    2017-02-07

    Intraorgan communication in the cardiovascular system is exerted not only by direct cell-cell contacts but also by locally released factors, which modulate neighboring cells by paracrine signals (e.g., NO, vascular endothelial growth factor, adenosine, reactive oxygen species). Moreover, cells in close proximity to the typical cardiovascular cells such as fibroblasts, red blood cells, as well as resident and invading immune cells must be considered in attempts to understand cardiovascular function in physiology and pathology. The second level of communication is the interorgan communication, which may be distinguished from intraorgan communication, since it involves signaling from remote organs to the heart and circulation. Therefore, mediators released by, for example, the kidney or skeletal muscle reach the heart and modulate its function. This is not only the case under physiological conditions, because there is increasing evidence that the organ-specific response to a primary insult may affect also the function of remote organs by the release of factors. This Forum will summarize novel mechanisms involved in intraorgan and interorgan communication of the cardiovascular system, with a special view on the remote organs, skeletal muscle and kidney.

  12. Energy Drinks and Their Impact on the Cardiovascular System: Potential Mechanisms.

    PubMed

    Grasser, Erik Konrad; Miles-Chan, Jennifer Lynn; Charrière, Nathalie; Loonam, Cathríona R; Dulloo, Abdul G; Montani, Jean-Pierre

    2016-09-01

    Globally, the popularity of energy drinks is steadily increasing. Scientific interest in their effects on cardiovascular and cerebrovascular systems in humans is also expanding and with it comes a growing number of case reports of adverse events associated with energy drinks. The vast majority of studies carried out in the general population report effects on blood pressure and heart rate. However, inconsistencies in the current literature render it difficult to draw firm conclusions with regard to the effects of energy drinks on cardiovascular and cerebrovascular variables. These inconsistencies are due, in part, to differences in methodologies, volume of drink ingested, and duration of postconsumption measurements, as well as subject variables during the test. Recent well-controlled, randomized crossover studies that used continuous beat-to-beat measurements provide evidence that cardiovascular responses to the ingestion of energy drinks are best explained by the actions of caffeine and sugar, with little influence from other ingredients. However, a role for other active constituents, such as taurine and glucuronolactone, cannot be ruled out. This article reviews the potentially adverse hemodynamic effects of energy drinks, particularly on blood pressure and heart rate, and discusses the mechanisms by which their active ingredients may interact to adversely affect the cardiovascular system. Research areas and gaps in the literature are discussed with particular reference to the use of energy drinks among high-risk individuals.

  13. Cardiovascular and other dynamic systems in long-term space flight

    NASA Technical Reports Server (NTRS)

    Tipton, David A.

    1987-01-01

    The paper examines the physiology of the cardiovascular system, and to a lesser extent the endocrine, renal, and hematopoietic systems. The paper highlights the aspects of these areas that are most pertinent to space manufacturing, i.e., working in space. Areas covered include the physiological costs of working in microgravity and partial gravity (e.g., the moon or Mars), countermeasures to potentially adverse physiological adaptations, and problems associated with return to earth after long periods of weightlessness.

  14. Subsurface damage distribution characterization of ground surfaces using Abbott-Firestone curves.

    PubMed

    Laheurte, Raynald; Darnis, Philippe; Darbois, Nathalie; Cahuc, Olivier; Neauport, Jérôme

    2012-06-04

    Measurement of subsurface damage (SSD) induced by grinding process is of major interest in the development of high laser damage fused silica optical components manufacturing processes. Most SSD measurements methods give only access to the peak to peak value. We herein report on the benefit of using Abbott-Firestone curves to get an insight of the SSD distribution inside the optical material. We evidence on various diamond wheel ground fused silica substrates that such an approach is complementary to a classical SSD peak to peak measurement and bring useful information to optimize a grinding process.

  15. Effect of lubricants and a vaginal spermicide gel on the detection of prostate specific antigen, a biomarker of semen exposure, using a quantitative (Abbott ARCHITECT) assay☆, ☆☆, ★

    PubMed Central

    Snead, Margaret C.; Melendez, Johan H.; Kourtis, Athena P.; Chaney, Dorothy M.; Brown, Teresa M.; Black, Carolyn M.; Mauck, Christine K.; Schwartz, Jill L.; Zenilman, Jonathan M.; Jamieson, Denise J.; Macaluso, Maurizio; Doncel, Gustavo F.

    2015-01-01

    Objectives Little is known about the effects of commonly used lubricants on detection of biomarkers of semen exposure. We investigated the in vitro effect of Gynol®, K-Y Jelly®, Replens®, Astroglide®, Carbopol, and Silicorel on quantitative detection of prostate specific antigen (PSA). Study Design A predetermined concentration of each of the gels was added to serially diluted semen samples. Additionally, serial dilutions of each of the gels were added to three different semen dilutions (high, medium, or low). The resulting samples were tested for PSA on the Abbott ARCHITECT System. Results When using the Abbott ARCHITECT system, the only products that inhibited PSA detection were Gynol® and Replens®. The inhibition caused by Gynol® was dose-dependent, but that of Replens was dose-independent. K-Y Jelly®-spiked samples had higher PSA values than controls. Conclusions Caution is warranted when using the Abbott quantitative assay for PSA detection as a biomarker of semen exposure in settings where Gynol®, Replens® or K-Y Jelly® might also have been used. Neither Astroglide® nor Silicorel inhibited PSA detection. Additional studies evaluating other vaginal products, including microbicides, and their effects on other assays, are needed. In vivo studies will be especially important to optimize PSA detection from clinical samples. Implications Researchers should consider the potential for specific lubricants or any vaginal products to affect the particular assay used for semen biomarker detection. The Abbott ARCHITECT’s total PSA assay should not be used with the product Replens. Caution is warranted when using the assay in settings where Gynol or K-Y jelly may have been used. PMID:24314911

  16. What Research Says: The Cardiovascular System: Children's Conceptions and Misconceptions.

    ERIC Educational Resources Information Center

    Arnaudin, Mary W.; Mintzes, Joel J.

    1986-01-01

    Reports findings of a study on children's perceptions and alternate conceptions about the human circulatory system. Summarizes the responses of fifth and eighth grade students on questions dealing with the heart and blood. Offers examples of hands-on activities and confrontation strategies that address common misconceptions on circulation. (ML)

  17. [Current concepts of the origin of circadian changes in the cardiovascular system under normal and pathological conditions].

    PubMed

    Arushanyan, E B

    2012-01-01

    The importance of circadian rhythms for the function of the cardiovascular system and its pharmacotherapy is discussed The central mechanisms regulating these rhythms at the level of suprachiasmatic hypothalamic nucleus and pineal gland are considered in conjunction with the approaches to modulating their activity for optimization of chronopharmnacotherapy of cardiovascular diseases.

  18. The Applicability of Nonlinear Systems Dynamics Chaos Measures to Cardiovascular Physiology Variables

    NASA Technical Reports Server (NTRS)

    Hooker, John C.

    1991-01-01

    Three measures of nonlinear chaos (fractal dimension, Approximate Entropy (ApEn), and Lyapunov exponents) were studied as potential measures of cardiovascular condition. It is suggested that these measures have potential in the assessment of cardiovascular condition in environments of normal cardiovascular stress (normal gravity on the Earth surface), cardiovascular deconditioning (microgravity of space), and increased cardiovascular stress (lower body negative pressure (LBNP) treatments).

  19. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system

    PubMed Central

    Laczy, Boglarka; Hill, Bradford G.; Wang, Kai; Paterson, Andrew J.; White, C. Roger; Xing, Dongqi; Chen, Yiu-Fai; Darley-Usmar, Victor; Oparil, Suzanne; Chatham, John C.

    2009-01-01

    The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide β-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function. PMID:19028792

  20. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system.

    PubMed

    Laczy, Boglarka; Hill, Bradford G; Wang, Kai; Paterson, Andrew J; White, C Roger; Xing, Dongqi; Chen, Yiu-Fai; Darley-Usmar, Victor; Oparil, Suzanne; Chatham, John C

    2009-01-01

    The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function.

  1. System identification: a multi-signal approach for probing neural cardiovascular regulation.

    PubMed

    Xiao, Xinshu; Mullen, Thomas J; Mukkamala, Ramakrishna

    2005-06-01

    Short-term, beat-to-beat cardiovascular variability reflects the dynamic interplay between ongoing perturbations to the circulation and the compensatory response of neurally mediated regulatory mechanisms. This physiologic information may be deciphered from the subtle, beat-to-beat variations by using digital signal processing techniques. While single signal analysis techniques (e.g., power spectral analysis) may be employed to quantify the variability itself, the multi-signal approach of system identification permits the dynamic characterization of the neural regulatory mechanisms responsible for coupling the variability between signals. In this review, we provide an overview of applications of system identification to beat-to-beat variability for the quantitative characterization of cardiovascular regulatory mechanisms. After briefly summarizing the history of the field and basic principles, we take a didactic approach to describe the practice of system identification in the context of probing neural cardiovascular regulation. We then review studies in the literature over the past two decades that have applied system identification for characterizing the dynamical properties of the sinoatrial node, respiratory sinus arrhythmia, and the baroreflex control of sympathetic nerve activity, heart rate and total peripheral resistance. Based on this literature review, we conclude by advocating specific methods of practice and that future research should focus on nonlinear and time-varying behaviors, validation of identification methods, and less understood neural regulatory mechanisms. Ultimately, we hope that this review stimulates such future investigations by both new and experienced system identification researchers.

  2. Role of the endothelin system in sexual dimorphism in cardiovascular and renal diseases.

    PubMed

    Gohar, Eman Y; Giachini, Fernanda R; Pollock, David M; Tostes, Rita C

    2016-08-15

    Epidemiological studies of blood pressure in men and women and in experimental animal models point to substantial sex differences in the occurrence of arterial hypertension as well as in the various manifestations of arterial hypertension, including myocardial infarction, stroke, retinopathy, chronic kidney failure, as well as hypertension-associated diseases (e.g. diabetes mellitus). Increasing evidence demonstrates that the endothelin (ET) system is a major player in the genesis of sex differences in cardiovascular and renal physiology and diseases. Sex differences in the ET system have been described in the vasculature, heart and kidney of humans and experimental animals. In the current review, we briefly describe the role of the ET system in the cardiovascular and renal systems. We also update information on sex differences at different levels of the ET system including synthesis, circulating and tissue levels, receptors, signaling pathways, ET actions, and responses to antagonists in different organs that contribute to blood pressure regulation. Knowledge of the mechanisms underlying sex differences in arterial hypertension can impact therapeutic strategies. Sex-targeted and/or sex-tailored approaches may improve treatment of cardiovascular and renal diseases.

  3. Nano-constructed Carriers Loaded With Antioxidant: Boon For Cardiovascular System.

    PubMed

    Jain, Ashay; Kesharwani, Prashant; Garg, Neeraj Kumar; Jain, Atul; Nirbhavane, Pradip; Dwivedi, Nitin; Banerjee, Sanjeev; Iyer, Arun K; Iqbal Mohd Amin, Mohd Cairul

    2015-01-01

    In the last couple of decades antioxidant agents have entered the health market as an easy and attractive means of managing diseases. These agents are of enormous interest for an increasingly health-concerned society, and may be particularly relevant for prophylaxis of a number of diseases i.e. arthritis, cancer, metabolic and cardiovascular diseases, osteoporosis, cataracts, brain disorders, etc. Antioxidants are also favorable to vascular healthiness and symbolize useful compounds because they are able to diminish overall cardiovascular risk by acting analogous to first line therapy or as adjuvants in case of failure or in situations where first line therapy cannot be used. Furthermore, well-designed trials are indeed needed to improve the therapeutic efficacy and health benefits of antioxidants. Numerous in vivo proof-of-concepts studies are offered to underline the feasibility of nanostructure system in order to optimizing the delivery of cardiovascular drugs. The present review highlights the recent approaches for management of cardiovascular disease using different vesicular and particulate carriers, including liposomes, nanoparticles, and nanoemulsions, with a primary emphasis on those which are expected to enhance the antioxidants level.

  4. Computational Models of the Cardiovascular System and Its Response to Microgravity

    NASA Technical Reports Server (NTRS)

    Kamm, Roger D.

    1999-01-01

    Computational models of the cardiovascular system are powerful adjuncts to ground-based and in-flight experiments. We will provide NSBRI with a model capable of simulating the short-term effects of gravity on cardiovascular function. The model from this project will: (1) provide a rational framework which quantitatively defines interactions among complex cardiovascular parameters and which supports the critical interpretation of experimental results and testing of hypotheses. (2) permit predictions of the impact of specific countermeasures in the context of various hypothetical cardiovascular abnormalities induced by microgravity. Major progress has been made during the first 18 months of the program: (1) We have developed an operational first-order computer model capable of simulating the cardiovascular response to orthostatic stress. The model consists of a lumped parameter hemodynamic model and a complete reflex control system. The latter includes cardiopulmonary and carotid sinus reflex limbs and interactions between the two. (2) We have modeled the physiologic stress of tilt table experiments and lower body negative pressure procedures (LBNP). We have verified our model's predictions by comparing them with experimental findings from the literature. (3) We have established collaborative efforts with leading investigators interested in experimental studies of orthostatic intolerance, cardiovascular control, and physiologic responses to space flight. (4) We have established a standardized method of transferring data to our laboratory from the ongoing NSBRI bedrest studies. We use this data to estimate input parameters to our model and compare our model predictions to actual data to further verify our model. (5) We are in the process of systematically simulating current hypotheses concerning the mechanism underlying orthostatic intolerance by matching our simulations to stand test data from astronauts pre- and post-flight. (6) We are in the process of developing a

  5. Diagnosis of cardiovascular diseases based on diffuse optical tomography system

    NASA Astrophysics Data System (ADS)

    Yu, Zong-Han; Wu, Chun-Ming; Lin, Yo-Wei; Chuang, Ming-Lung; Tsai, Jui-che; Sun, Chia-Wei

    2008-02-01

    Diffuse optical tomography (DOT) is a technique to assess the spatial variation in absorption and scattering properties of the biological tissues. DOT provides the measurement of changes in concentrations of oxy-hemoglobin and deoxy-hemoglobin. The oxygenation images are reconstructed by the measured optical signals with nearest-neighbor pairs of sources and detectors. In our study, a portable DOT system is built with optode design on a flexible print circuit board (FPCB). In experiments, the hemodynamics temporal evolution of exercises and vessel occlusions are observed with in vivo measurements form normal subjects and some patients in intensive care unit.

  6. Systolic time interval data acquisition system. Specialized cardiovascular studies

    NASA Technical Reports Server (NTRS)

    Baker, J. T.

    1976-01-01

    The development of a data acquisition system for noninvasive measurement of systolic time intervals is described. R-R interval from the ECG determines instantaneous heart rate prior to the beat to be measured. Total electromechanical systole (Q-S2) is measured from the onset of the ECG Q-wave to the onset of the second heart sound (S2). Ejection time (ET or LVET) is measured from the onset of carotid upstroke to the incisure. Pre-ejection period (PEP) is computed by subtracting ET from Q-S2. PEP/ET ratio is computed directly.

  7. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System.

    PubMed

    Nagpure, B V; Bian, Jin-Song

    2016-01-01

    Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, "gasotransmitters" in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress.

  8. Autonomic nervous system abnormalities in spinocerebellar ataxia type 2: a cardiovascular neurophysiologic study.

    PubMed

    De Joanna, G; De Rosa, A; Salvatore, E; Castaldo, I; De Luca, N; Izzo, R; Manzo, V; Filla, A; De Michele, G

    2008-12-15

    Autonomic nervous system dysfunction is part of the spinocerebellar ataxia (SCA) clinical picture, but few data are available on this topic. The present study is aimed to report a detailed investigation of autonomic nervous system in patients with molecular diagnosis of SCA type 2, one of the most frequent forms and the commonest in Italy. Nine patients with a mild to moderate form of SCA2 underwent a questionnaire about dysautonomic symptoms and a complete cardiovascular neurophysiologic evaluation of both sympathetic and parasympathetic system, comprising head-up tilt, standing, isometric hand grip, cold pressure, mental arithmetic, Valsalva manoeuvre, deep breathing, and hyperventilation tests. An echocardiographic study and Holter-ECG recording were also performed. All patients complained dysautonomic problems regarding urinary tract, cardiovascular system, or gastrointestinal dysfunction. The neurophysiologic study showed both sympathetic and parasympathetic involvement, with highly variable degree and pattern of dysautonomia. The present study results show that the autonomic dysfunction is common in SCA2 representing a significant component of the complex picture of the disease. We found a wide spectrum of cardiovascular autonomic abnormalities, without a typical pattern of dysfunction and without correlation with clinical variables.

  9. Role of silver nanoparticles (AgNPs) on the cardiovascular system.

    PubMed

    Gonzalez, Carmen; Rosas-Hernandez, Hector; Ramirez-Lee, Manuel Alejandro; Salazar-García, Samuel; Ali, Syed F

    2016-03-01

    With the advent of nanotechnology, the use and applications of silver nanoparticles (AgNPs) have increased, both in consumer products as well as in medical devices. However, little is known about the effects of these nanoparticles on human health, more specific in the cardiovascular system, since this system represents an important route of action in terms of distribution, bioaccumulation and bioavailability of the different circulating substances in the bloodstream. A collection of studies have addressed the effects and applications of different kinds of AgNPs (shaped, sized, coated and functionalized) in several components of the cardiovascular system, such as endothelial cells, isolated vessels and organs as well as integrative animal models, trying to identify the underlying mechanisms involved in their actions, to understand their implication in the field of biomedicine. The purpose of the present review is to summarize the most relevant studies to date of AgNPs effects in the cardiovascular system and provide a broader picture of the potential toxic effects and exposure risks, which in turn will allow pointing out the directions of further research as well as new applications of these versatile nanomaterials.

  10. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System

    PubMed Central

    Nagpure, B. V.; Bian, Jin-Song

    2016-01-01

    Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress. PMID:26640616

  11. Golden ratio: A subtle regulator in our body and cardiovascular system?

    PubMed

    Ozturk, Selcuk; Yalta, Kenan; Yetkin, Ertan

    2016-11-15

    Golden ratio, which is an irrational number and also named as the Greek letter Phi (φ), is defined as the ratio between two lines of unequal length, where the ratio of the lengths of the shorter to the longer is the same as the ratio between the lengths of the longer and the sum of the lengths. The so-called formula is a mathematical ratio and there exist a variety of examples in natural and man-made structures of great beauty. Moreover, golden ratio is expressed throughout the human body in some ways, including digits, uterus, teeth, and cardiovascular system. Although the association of Fibonacci series or golden ratio with systems and organs of human being has not been assessed in depth yet, the mainstream regulation of cardiovascular system seems to be associated with golden ratio. This raises the idea that there might have been a fine and subtle regulator in our body. In this article, we aimed to elaborate the relationship between the existence of golden ratio and the human body and to discuss the golden ratio and its association with cardiovascular system.

  12. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  13. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    PubMed Central

    Fernandes Azevedo, Bruna; Barros Furieri, Lorena; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra; Frizera Vassallo, Paula; Ronacher Simões, Maylla; Fiorim, Jonaina; Rossi de Batista, Priscila; Fioresi, Mirian; Rossoni, Luciana; Stefanon, Ivanita; Alonso, María Jesus; Salaices, Mercedes; Valentim Vassallo, Dalton

    2012-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced. PMID:22811600

  14. Neutrophil gelatinase-associated lipocalin is a novel mineralocorticoid target in the cardiovascular system.

    PubMed

    Latouche, Celine; El Moghrabi, Soumaya; Messaoudi, Smail; Nguyen Dinh Cat, Aurélie; Hernandez-Diaz, Ivan; Alvarez de la Rosa, Diego; Perret, Claudine; López Andrés, Natalia; Rossignol, Patrick; Zannad, Faiez; Farman, Nicolette; Jaisser, Frederic

    2012-05-01

    Mineralocorticoid receptor (MR) activation may be deleterious to the cardiovascular system, and MR antagonists improve morbidity and mortality of patients with heart failure. However, mineralocorticoid signaling in the heart remains largely unknown. Using a pan-genomic transcriptomic analysis, we identified neutrophil gelatinase-associated lipocalin (NGAL or lipocalin 2) as a strongly induced gene in the heart of mice with conditional and targeted MR overexpression in cardiomyocytes (whereas induction was low in glucocorticoid receptor-overexpressing mice). NGAL mRNA levels were enhanced after hormonal stimulation by the MR ligand aldosterone in cultured cardiac cells and in the heart of wild-type mice. Mineralocorticoid pathological challenge induced by nephrectomy/aldosterone/salt treatment upregulated NGAL expression in the heart and aorta and its plasma levels. We show evidence for MR binding to an NGAL promoter, providing a mechanism for NGAL regulation. We propose that NGAL may be a marker of mineralocorticoid-dependent injury in the cardiovascular system in mice.

  15. Natriuretic peptide receptor B signaling in the cardiovascular system: protection from cardiac hypertrophy.

    PubMed

    Pagel-Langenickel, Ines; Buttgereit, Jens; Bader, Michael; Langenickel, Thomas H

    2007-08-01

    Natriuretic peptides (NP) represent a family of structurally homologous but genetically distinct peptide hormones involved in regulation of fluid and electrolyte balance, blood pressure, fat metabolism, cell proliferation, and long bone growth. Recent work suggests a role for natriuretic peptide receptor B (NPR-B) signaling in regulation of cardiac growth by either a direct effect on cardiomyocytes or by modulation of other signaling pathways including the autonomic nervous system. The research links NPR-B for the first time to a cardiac phenotype in vivo and underlines the importance of the NP in the cardiovascular system. This manuscript will focus on the role of NPR-B and its ligand C-type natriuretic peptide in cardiovascular physiology and disease and will evaluate these new findings in the context of the known function of this receptor, with a perspective on how future research might further elucidate NPR-B function.

  16. Investigating autonomic control of the cardiovascular system: a battery of simple tests.

    PubMed

    Johnson, Christopher D; Roe, Sean; Tansey, Etain A

    2013-12-01

    Sympathetic and parasympathetic divisions of the autonomic nervous system constantly control the heart (sympathetic and parasympathetic divisions) and blood vessels (predominantly the sympathetic division) to maintain appropriate blood pressure and organ blood flow over sometimes widely varying conditions. This can be adversely affected by pathological conditions that can damage one or both branches of autonomic control. The set of teaching laboratory activities outlined here uses various interventions, namely, 1) the heart rate response to deep breathing, 2) the heart rate response to a Valsalva maneuver, 3) the heart rate response to standing, and 4) the blood pressure response to standing, that cause fairly predictable disturbances in cardiovascular parameters in normal circumstances, which serve to demonstrate the dynamic control of the cardiovascular system by autonomic nerves. These tests are also used clinically to help investigate potential damage to this control.

  17. Physiology and pharmacology of the cardiovascular adrenergic system.

    PubMed

    Lymperopoulos, Anastasios

    2013-09-04

    Heart failure (HF), the leading cause of death in the western world, ensues in response to cardiac injury or insult and represents the inability of the heart to adequately pump blood and maintain tissue perfusion. It is characterized by complex interactions of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. The most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are greatly elevated in HF. Acutely, provided that the heart still works properly, this activation of the ANS will promptly restore cardiac function according to the fundamental Frank-Starling law of cardiac function. However, if the cardiac insult persists over time, this law no longer applies and ANS will not be able to sustain cardiac function. This is called decompensated HF, and the hyperactive ANS will continue to "push" the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, and, finally, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications for the failing heart.

  18. Skeletal Muscle Pump Drives Control of Cardiovascular and Postural Systems

    PubMed Central

    Verma, Ajay K.; Garg, Amanmeet; Xu, Da; Bruner, Michelle; Fazel-Rezai, Reza; Blaber, Andrew P.; Tavakolian, Kouhyar

    2017-01-01

    The causal interaction between cardio-postural-musculoskeletal systems is critical in maintaining postural stability under orthostatic challenge. The absence or reduction of such interactions could lead to fainting and falls often experienced by elderly individuals. The causal relationship between systolic blood pressure (SBP), calf electromyography (EMG), and resultant center of pressure (COPr) can quantify the behavior of cardio-postural control loop. Convergent cross mapping (CCM) is a non-linear approach to establish causality, thus, expected to decipher nonlinear causal cardio-postural-musculoskeletal interactions. Data were acquired simultaneously from young participants (25 ± 2 years, n = 18) during a 10-minute sit-to-stand test. In the young population, skeletal muscle pump was found to drive blood pressure control (EMG → SBP) as well as control the postural sway (EMG → COPr) through the significantly higher causal drive in the direction towards SBP and COPr. Furthermore, the effect of aging on muscle pump activation associated with blood pressure regulation was explored. Simultaneous EMG and SBP were acquired from elderly group (69 ± 4 years, n = 14). A significant (p = 0.002) decline in EMG → SBP causality was observed in the elderly group, compared to the young group. The results highlight the potential of causality to detect alteration in blood pressure regulation with age, thus, a potential clinical utility towards detection of fall proneness. PMID:28345674

  19. Physiology and pharmacology of the cardiovascular adrenergic system

    PubMed Central

    Lymperopoulos, Anastasios

    2013-01-01

    Heart failure (HF), the leading cause of death in the western world, ensues in response to cardiac injury or insult and represents the inability of the heart to adequately pump blood and maintain tissue perfusion. It is characterized by complex interactions of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. The most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are greatly elevated in HF. Acutely, provided that the heart still works properly, this activation of the ANS will promptly restore cardiac function according to the fundamental Frank-Starling law of cardiac function. However, if the cardiac insult persists over time, this law no longer applies and ANS will not be able to sustain cardiac function. This is called decompensated HF, and the hyperactive ANS will continue to “push” the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, and, finally, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications for the failing heart. PMID:24027534

  20. Mixed quantitative/qualitative modeling and simulation of the cardiovascular system.

    PubMed

    Nebot, A; Cellier, F E; Vallverdú, M

    1998-02-01

    The cardiovascular system is composed of the hemodynamical system and the central nervous system (CNS) control. Whereas the structure and functioning of the hemodynamical system are well known and a number of quantitative models have already been developed that capture the behavior of the hemodynamical system fairly accurately, the CNS control is, at present, still not completely understood and no good deductive models exist that are able to describe the CNS control from physical and physiological principles. The use of qualitative methodologies may offer an interesting alternative to quantitative modeling approaches for inductively capturing the behavior of the CNS control. In this paper, a qualitative model of the CNS control of the cardiovascular system is developed by means of the fuzzy inductive reasoning (FIR) methodology. FIR is a fairly new modeling technique that is based on the general system problem solving (GSPS) methodology developed by G.J. Klir (Architecture of Systems Problem Solving, Plenum Press, New York, 1985). Previous investigations have demonstrated the applicability of this approach to modeling and simulating systems, the structure of which is partially or totally unknown. In this paper, five separate controller models for different control actuations are described that have been identified independently using the FIR methodology. Then the loop between the hemodynamical system, modeled by means of differential equations, and the CNS control, modeled in terms of five FIR models, is closed, in order to study the behavior of the cardiovascular system as a whole. The model described in this paper has been validated for a single patient only.

  1. Could a high-fat diet rich in unsaturated fatty acids impair the cardiovascular system?

    PubMed Central

    Medei, Emiliano; Lima-Leopoldo, Ana Paula; Pereira-Junior, Pedro Paulo; Leopoldo, André Soares; Campos, Dijon Henrique Salomé; Raimundo, Juliana Montani; Sudo, Roberto Takashi; Zapata-Sudo, Gisele; Bruder-Nascimento, Thiago; Cordellini, Sandra; Nascimento, José Hamilton Matheus; Cicogna, Antonio Carlos

    2010-01-01

    BACKGROUND: Dyslipidemia results from consumption of a diet rich in saturated fatty acids and is usually associated with cardiovascular disease. A diet rich in unsaturated fatty acids is usually associated with improved cardiovascular condition. OBJECTIVE: To investigate whether a high-fat diet rich in unsaturated fatty acids (U-HFD) – in which fatty acid represents approximately 45% of the total calories – impairs the cardiovascular system. METHODS: Male, 30-day-old Wistar rats were fed a standard (control) diet or a U-HFD containing 83% unsaturated fatty acid for 19 weeks. The in vivo electrocardiogram, the spectral analysis of heart rate variability, and the vascular reactivity responses to phenylephrine, acetylcholine, noradrenaline and prazosin in aortic ring preparations were analyzed to assess the cardiovascular parameters. RESULTS: After 19 weeks, the U-HFD rats had increased total body fat, baseline glucose levels and feed efficiency compared with control rats. However, the final body weight, systolic blood pressure, area under the curve for glucose, calorie intake and heart weight/final body weight ratio were similar between the groups. In addition, both groups demonstrated no alteration in the electrocardiogram or cardiac sympathetic parameters. There was no difference in the responses to acetylcholine or the maximal contractile response of the thoracic aorta to phenylephrine between groups, but the concentration necessary to produce 50% of maximal response showed a decrease in the sensitivity to phenylephrine in U-HFD rats. The cumulative concentration-effect curve for noradrenaline in the presence of prazosin was shifted similarly in both groups. CONCLUSIONS: The present work shows that U-HFD did not impair the cardiovascular parameters analyzed. PMID:21165364

  2. Altered Nitric Oxide System in Cardiovascular and Renal Diseases

    PubMed Central

    Bae, Eun Hui; Ma, Seong Kwon; Kim, Soo Wan

    2016-01-01

    Nitric oxide (NO) is synthesized by a family of NO synthases (NOS), including neuronal, inducible, and endothelial NOS (n/i/eNOS). NO-mediated effects can be beneficial or harmful depending on the specific risk factors affecting the disease. In hypertension, the vascular relaxation response to acetylcholine is blunted, and that to direct NO donors is maintained. A reduction in the activity of eNOS is mainly responsible for the elevation of blood pressure, and an abnormal expression of iNOS is likely to be related to the progression of vascular dysfunction. While eNOS/nNOS-derived NO is protective against the development of atherosclerosis, iNOS-derived NO may be proatherogenic. eNOS-derived NO may prevent the progression of myocardial infarction. Myocardial ischemia/reperfusion injury is significantly enhanced in eNOS-deficient animals. An important component of heart failure is the loss of coronary vascular eNOS activity. A pressure-overload may cause severer left ventricular hypertrophy and dysfunction in eNOS null mice than in wild-type mice. iNOS-derived NO has detrimental effects on the myocardium. NO plays an important role in regulating the angiogenesis and slowing the interstitial fibrosis of the obstructed kidney. In unilateral ureteral obstruction, the expression of eNOS was decreased in the affected kidney. In triply n/i/eNOS null mice, nephrogenic diabetes insipidus developed along with reduced aquaporin-2 abundance. In chronic kidney disease model of subtotal-nephrectomized rats, treatment with NOS inhibitors decreased systemic NO production and induced left ventricular systolic dysfunction (renocardiac syndrome). PMID:27231671

  3. The influence of selective vitamin D receptor activator paricalcitol on cardiovascular system and cardiorenal protection.

    PubMed

    Duplancic, Darko; Cesarik, Marijan; Poljak, Nikola Kolja; Radman, Maja; Kovacic, Vedran; Radic, Josipa; Rogosic, Veljko

    2013-01-01

    The ubiquitous distribution of vitamin D receptors in the human body is responsible for the pleiotropic effects of vitamin D-receptor activation. We discuss the possible beneficial effects of a selective activator of vitamin D receptor, paricalcitol, on the cardiovascular system in chronic heart failure patients and chronic kidney patients, in light of new trials. Paricalcitol should provide additional clinical benefits over the standard treatment for chronic kidney and heart failure, especially in cases of cardiorenal syndrome.

  4. Nonlinear systems dynamics in cardiovascular physiology: The heart rate delay map and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Hooker, John C.

    1990-01-01

    A preliminary study of the applicability of nonlinear dynamic systems analysis techniques to low body negative pressure (LBNP) studies. In particular, the applicability of the heart rate delay map is investigated. It is suggested that the heart rate delay map has potential as a supplemental tool in the assessment of subject performance in LBNP tests and possibly in the determination of susceptibility to cardiovascular deconditioning with spaceflight.

  5. Phase and frequency locking in the model of cardiovascular system baroreflectory regulation

    NASA Astrophysics Data System (ADS)

    Ishbulatov, Yurii M.; Karavaev, Anatoly S.; Kiselev, Anton R.; Ponomarenko, Vladimir I.; Prokhorov, Mikhail D.

    2016-04-01

    We proposed the model of cardiovascular system which describes the sinus rhythm, autonomic regulation of heart and arterial vessels, baroreflex, arterial pressure and respiration process. The model included a self-oscillating loop of regulation of mean arterial pressure. It was shown that suggested model more accurately simulated the spectral and statistical characteristics of heart rate variability signal in comparison with the model proposed earlier by Seidel and Herzel.

  6. [Cardiovascular manifestations in systemic lupus erythematosus in Dakar: Descriptive study about 50 cases].

    PubMed

    Ngaïdé, A A; Ly, F; Ly, K; Diao, M; Kane, Ad; Mbaye, A; Lèye, M; Aw, F; Sarr, S A; Dioum, M; Ndao, C T; Gaye, N D; Ndiaye, M B; Bodian, M; Bah, M B; Ndiaye, M; Cissé, A F; Kouamé, I; Tabane, A; Mingou, J S; Thiombiano, P; Kane, A; Bâ, S A

    2016-12-01

    Systemic lupus erythematosus is a non-specific inflammatory disorder of an organ of unknown cause and autoimmune origin. Visceral injuries, including those cardiovascular, determine the prognosis of this disease primarily affecting women. The objectives of this study were to determine the frequency and describe the cardiovascular manifestations in systemic lupus erythematosus in a lupus population of the Dakar region. This is a multicenter prospective study descriptive and analytical conducted in the region of Dakar (Senegal) from 14 February 2011 to 2 July 2012. Patients were either hospitalized or monitored as outpatients. Included were all patients with lupus and meeting at least four criteria of the American College of Rheumatology of lupus disease classification 1997. All patients underwent physical examination, an electrocardiogram and an echocardiogram looking for cardiovascular damage. The collected data were entered into the Epi Info version 3.5.1 and processed with SPSS 16.0 software. Quantitative variables are described in the median and the qualitative workforce, percentage and frequency. We have included 50 patients. The average age of the population was 36.18 years. A female predominance is noted with a sex ratio man/woman of 0.09. Cardiovascular functional symptoms were dominated by dyspnea stage II to IV NYHA (26%) and palpitations (22%). The physical signs we have found were mainly tachycardia (40%), spontaneous turgor of the jugular veins (29%), a muffling of the heart sounds (29%) and a infandibulopulmonairy shock (18%). The frequency of cardiovascular events was 46%. Electrical cardiac events were dominated by sinus tachycardia (40%) of repolarization disorders (16.3%) type of ischemia, injury, ischemia injury, necrosis and hypertrophy with 18% atrial and left ventricular hypertrophy each. Furthermore, one case of BAV first degree at 280 ms was recorded. We found 19 cases of pericarditis including 2 tamponade, 3 cases of dilated cardiomyopathy

  7. A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications.

    PubMed

    Blanco, P J; Feijóo, R A

    2013-05-01

    In the present work a computational model of the entire cardiovascular system is developed using heterogeneous mathematical representations. This model integrates different levels of detail for the blood circulation. The arterial tree is described by a one dimensional model in order to simulate the wave propagation phenomena that take place at the larger arterial vessels. The inflow and outflow locations of this 1D model are coupled with lumped parameter descriptions of the remainder part of the circulatory system, closing the loop. The four cardiac valves are considered using a valve model which allows for stenoses and regurgitation phenomena. In addition, full 3D geometrical models of arterial districts are embedded in this closed-loop circuit to model the local blood flow in specific vessels. This kind of detailed closed-loop network for the cardiovascular system allows hemodynamics analyses of patient-specific arterial district, delivering naturally the appropriate boundary conditions for different cardiovascular scenarios. An example of application involving the effect of aortic insufficiency on the local hemodynamics of a cerebral aneurism is provided as a motivation to reproduce, through numerical simulation, the hemodynamic environment in patients suffering from infective endocarditis and mycotic aneurisms. The need for incorporating homeostatic control mechanisms is also discussed in view of the large sensitivity observed in the results, noting that this kind of integrative modeling allows such incorporation.

  8. Laboratory model of the cardiovascular system for experimental demonstration of pulse wave propagation

    NASA Astrophysics Data System (ADS)

    Stojadinović, Bojana; Nestorović, Zorica; Djurić, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikić, Dejan

    2017-03-01

    The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system. Here, we present a laboratory model of the cardiovascular system. We have designed an experimental setup which can help medical and nursing students to properly learn and understand basic fluid hemodynamic principles, pulse wave and the phenomenon of wave propagation in blood vessels. Demonstration of wave propagation allowed a real time observation of the formation of compression and expansion waves by students, thus enabling them to better understand the difference between the two waves, and also to measure the pulse wave velocity for different fluid viscosities. The laboratory model of the cardiovascular system could be useful as an active learning methodology and a complementary tool for understanding basic principles of hemodynamics.

  9. The nuclear uptake and retention of a synthetic progestin in the cardiovascular system of the baboon.

    PubMed

    Sheridan, P J; McGill, H C

    1984-06-01

    It has long been known that there is a sexual dimorphism in the incidence of coronary heart disease. This observation, together with more recent reports of increased cardiovascular disease associated with the use of oral contraceptives, led to a search for steroid receptors in the cardiovascular system. In this study we examined the nuclear uptake and retention of a synthetic progestin in the cardiovascular system of the baboons. Long term oophorectomized baboons were primed with estradiol benzoate for 3 days before the experiment (50 micrograms/kg, im) and adrenalectomized 2 days before the experiment. On the day of the experiment, the animals were injected under anesthesia with 2.5 micrograms/kg BW [3H]ORG 2058 (16 alpha-ethyl-21-hydroxy-19-nor-[6,7-3H]pregn-4-ene-3,20-dione) or with [3H] ORG 2058 plus a 1000-fold excess of unlabeled progesterone (control). One hour after the injection, the animals were rapidly exsanguinated, and parts of the cardiovascular system were removed and processed for autoradiography. Localization of the synthetic progestin was found in nuclei of between 25-75% of all smooth muscle cells of the media of all arteries examined and to a lesser extent in the nuclei of the fibroblasts and others cells of the adventitia. Localization of the synthetic progestin in the heart was limited to approximately 1% of the myocardial cells and less than 5% of interstitial cell nuclei. The pattern of localization found differs from that for estrogen and androgen and suggests the possible presence of estrogen-independent progesterone receptors in smooth muscle cells of the media of the aorta and coronary arteries.

  10. Nnuclear uptake and retention of a synthetic progestin in the cardiovascular system of the baboon

    SciTech Connect

    Sheridan, P.J.; McGill, H.C. Jr.

    1984-06-01

    It has long been known that there is a sexual dimorphism in the incidence of coronary heart disease. This observation, together with more recent reports of increased cardiovascular disease associated with the use of oral contraceptives, led to a search for steroid receptors in the cardiovascular system. In this study the nuclear uptake and retention of a synthetic progestin was examined in the cardiovascular system of the baboons. Long term oophorectomized baboons were primed with estradiol benzoate for 3 days before the experiment (50 micrograms/kg, im) and adrenalectomized 2 days before the experiment. On the day of the experiment, the animals were injected under anesthesia with 2.5 micrograms/kg BW (/sup 3/H)ORG 2058 (16 alpha-ethyl-21-hydroxy-19-nor-(6,7-/sup 3/H)pregn-4-ene-3,20-dione) or with (/sup 3/H) ORG 2058 plus a 1000-fold excess of unlabeled progesterone (control). One hour after the injection, the animals were rapidly exsanguinated, and parts of the cardiovascular system were removed and processed for autoradiography. Localization of the synthetic progestin was found in nuclei of between 25-75% of all smooth muscle cells of the media of all arteries examined and to a lesser extent in the nuclei of the fibroblasts and others cells of the adventitia. Localization of the synthetic progestin in the heart was limited to approximately 1% of the myocardial cells and less than 5% of interstitial cell nuclei. The pattern of localization found differs from that for estrogen and androgen and suggests the possible presence of estrogen-independent progesterone receptors in smooth muscle cells of the media of the aorta and coronary arteries.

  11. Impact of the human circadian system, exercise, and their interaction on cardiovascular function.

    PubMed

    Scheer, Frank A J L; Hu, Kun; Evoniuk, Heather; Kelly, Erin E; Malhotra, Atul; Hilton, Michael F; Shea, Steven A

    2010-11-23

    The risk of adverse cardiovascular events peaks in the morning (≈9:00 AM) with a secondary peak in the evening (≈8:00 PM) and a trough at night. This pattern is generally believed to be caused by the day/night distribution of behavioral triggers, but it is unknown whether the endogenous circadian system contributes to these daily fluctuations. Thus, we tested the hypotheses that the circadian system modulates autonomic, hemodynamic, and hemostatic risk markers at rest, and that behavioral stressors have different effects when they occur at different internal circadian phases. Twelve healthy adults were each studied in a 240-h forced desynchrony protocol in dim light while standardized rest and exercise periods were uniformly distributed across the circadian cycle. At rest, there were large circadian variations in plasma cortisol (peak-to-trough ≈85% of mean, peaking at a circadian phase corresponding to ≈9:00 AM) and in circulating catecholamines (epinephrine, ≈70%; norepinephrine, ≈35%, peaking during the biological day). At ≈8:00 PM, there was a circadian peak in blood pressure and a trough in cardiac vagal modulation. Sympathetic variables were consistently lowest and vagal markers highest during the biological night. We detected no simple circadian effect on hemostasis, although platelet aggregability had two peaks: at ≈noon and ≈11:00 PM. There was circadian modulation of the cardiovascular reactivity to exercise, with greatest vagal withdrawal at ≈9:00 AM and peaks in catecholamine reactivity at ≈9:00 AM and ≈9:00 PM. Thus, the circadian system modulates numerous cardiovascular risk markers at rest as well as their reactivity to exercise, with resultant profiles that could potentially contribute to the day/night pattern of adverse cardiovascular events.

  12. Impact of atrial fibrillation on the cardiovascular system through a lumped-parameter approach.

    PubMed

    Scarsoglio, Stefania; Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca

    2014-11-01

    Atrial fibrillation (AF) is the most common arrhythmia affecting millions of people in the Western countries and, due to the widespread impact on the population and its medical relevance, is largely investigated in both clinical and bioengineering sciences. However, some important feedback mechanisms are still not clearly established. The present study aims at understanding the global response of the cardiovascular system during paroxysmal AF through a lumped-parameter approach, which is here performed paying particular attention to the stochastic modeling of the irregular heartbeats and the reduced contractility of the heart. AF can be here analyzed by means of a wide number of hemodynamic parameters and avoiding the presence of other pathologies, which usually accompany AF. Reduced cardiac output with correlated drop of ejection fraction and decreased amount of energy converted to work by the heart during blood pumping, as well as higher left atrial volumes and pressures are some of the most representative results aligned with the existing clinical literature and here emerging during acute AF. The present modeling, providing new insights on cardiovascular variables which are difficult to measure and rarely reported in literature, turns out to be an efficient and powerful tool for a deeper comprehension and prediction of the arrythmia impact on the whole cardiovascular system.

  13. An Integrative Model of the Cardiovascular System Coupling Heart Cellular Mechanics with Arterial Network Hemodynamics

    PubMed Central

    Kim, Young-Tae; Lee, Jeong Sang; Youn, Chan-Hyun; Choi, Jae-Sung

    2013-01-01

    The current study proposes a model of the cardiovascular system that couples heart cell mechanics with arterial hemodynamics to examine the physiological role of arterial blood pressure (BP) in left ventricular hypertrophy (LVH). We developed a comprehensive multiphysics and multiscale cardiovascular model of the cardiovascular system that simulates physiological events, from membrane excitation and the contraction of a cardiac cell to heart mechanics and arterial blood hemodynamics. Using this model, we delineated the relationship between arterial BP or pulse wave velocity and LVH. Computed results were compared with existing clinical and experimental observations. To investigate the relationship between arterial hemodynamics and LVH, we performed a parametric study based on arterial wall stiffness, which was obtained in the model. Peak cellular stress of the left ventricle and systolic blood pressure (SBP) in the brachial and central arteries also increased; however, further increases were limited for higher arterial stiffness values. Interestingly, when we doubled the value of arterial stiffness from the baseline value, the percentage increase of SBP in the central artery was about 6.7% whereas that of the brachial artery was about 3.4%. It is suggested that SBP in the central artery is more critical for predicting LVH as compared with other blood pressure measurements. PMID:23960442

  14. Injected nanoparticles: the combination of experimental systems to assess cardiovascular adverse effects.

    PubMed

    Vlasova, Maria A; Tarasova, Olga S; Riikonen, Joakim; Raula, Janne; Lobach, Anatoly S; Borzykh, Anna A; Smirin, Boris V; Kauppinen, Esko I; Eletskii, Alexander V; Herzig, Karl-Heinz; Salonen, Jarno; Tavi, Pasi; Lehto, Vesa-Pekka; Järvinen, Kristiina

    2014-05-01

    When nanocarriers are used for drug delivery they can often achieve superior therapeutic outcomes over standard drug formulations. However, concerns about their adverse effects are growing due to the association between exposure to certain nanosized particles and cardiovascular events. Here we examine the impact of intravenously injected drug-free nanocarriers on the cardiovasculature at both the systemic and organ levels. We combine in vivo and in vitro methods to enable monitoring of hemodynamic parameters in conscious rats, assessments of the function of the vessels after sub-chronic systemic exposure to nanocarriers and evaluation of the direct effect of nanocarriers on vascular tone. We demonstrate that nanocarriers can decrease blood pressure and increase heart rate in vivo via various mechanisms. Depending on the type, nanocarriers induce the dilation of the resistance arteries and/or change the responses induced by vasoconstrictor or vasodilator drugs. No direct correlation between physicochemical properties and cardiovascular effects of nanoparticles was observed. The proposed combination of methods empowers the studies of cardiovascular adverse effects of the nanocarriers.

  15. [Cyclic nucleotide phosphodiesterase IV expression, activity and targeting in cells of cardiovascular system].

    PubMed

    Yan, Jun; Zhu, Hai-Bo

    2007-06-01

    Cyclic nucleotide second messages (cAMP and cGMP) play a central role in signal transduction and regulation of physiologic responses. The only way to inactivate them is to degrade them through the action of phosphodiesterases (PDEs). Recent advances show that PDE4, a cAMP specific phosphodiesterase, has specific functions in regulating the activities of the cardiovascular system. PDE4 is expressed in the cells of cardiovascular systems including cardiomyocytes, vascular smooth muscle cells, and vascular endothelial cells. The expression level of PDE4 is shown to be downregulated in the failure hearts, while it is upregulated in hypertrophied hearts. And PDE4 deficiency in mice is associated with a cardiac phenotype comprised of a progressive, age-related cardiomyopathy, accelerated heart failure after myocardial infarction and exercise-induced arrhythmias. Local levels of cAMP regulate the precise opening of the ryanodine receptor complex (RyR2) which releases calcium at the start of a heartbeat. Loss or inhibition of PDE4 activity increases calcium flow through RyR2, and causes leakiness and heart failure in mice. These finding may show us a new target for treating cardiovascular diseases.

  16. PHYSIOLAB: a new laboratory for the study of the cardio-vascular system.

    PubMed

    Marsal, O; Andre-Deshays, C; Cauquil, D; Kotovskaya, A; Gratchev, V; Noskin, A

    1995-01-01

    On the basis of the experience gained during the previous french-russian missions on board MIR about the adaptation processes of the cardio-vascular system, a new laboratory has been designed. The objective of this "PHYSIOLAB" is to have a better understanding of the mechanisms underlying the changes in the cardio-vascular system, with a special emphasis on the phenomenon of cardio-vascular deconditioning after landing. Beyond these scientific objectives, it is also intended to use PHYSIOLAB to help in the medical monitoring on-board MIR, during functional tests such as LBNP. PHYSIOLAB will be set up in MIR by the French cosmonaut during the next french-russian CASSIOPEE mission in 1996. Its architecture is based on a central unit, which controls the experimental protocols, records the results and provides an interface for transmission to the ground via telemetry. Different specific modules are used for the acquisition of various physiological parameters. This PHYSIOLAB under development for the CASSIOPEE mission should evolve towards a more ambitious laboratory, whose definition would take into account the results obtained with the first version of PHYSIOLAB. This "second generation" laboratory should be developed in the frame of wide International cooperation.

  17. Systems biology—opportunities and challenges: the application of proteomics to study the cardiovascular extracellular matrix

    PubMed Central

    Barallobre-Barreiro, Javier; Lynch, Marc; Yin, Xiaoke; Mayr, Manuel

    2016-01-01

    Systems biology approaches including proteomics are becoming more widely used in cardiovascular research. In this review article, we focus on the application of proteomics to the cardiac extracellular matrix (ECM). ECM remodelling is a hallmark of many cardiovascular diseases. Proteomic techniques using mass spectrometry (MS) provide a platform for the comprehensive analysis of ECM proteins without a priori assumptions. Proteomics overcomes various constraints inherent to conventional antibody detection. On the other hand, studies that use whole tissue lysates for proteomic analysis mask the identification of the less abundant ECM constituents. In this review, we first discuss decellularization-based methods that enrich for ECM proteins in cardiac tissue, and how targeted MS allows for accurate protein quantification. The second part of the review will focus on post-translational modifications including hydroxylation and glycosylation and on the release of matrix fragments with biological activity (matrikines), all of which can be interrogated by proteomic techniques. PMID:27635058

  18. Mechanosensitive channels in striated muscle and the cardiovascular system: not quite a stretch anymore.

    PubMed

    Stiber, Jonathan A; Seth, Malini; Rosenberg, Paul B

    2009-08-01

    Stretch-activated or mechanosensitive channels transduce mechanical forces into ion fluxes across the cell membrane. These channels have been implicated in several aspects of cardiovascular physiology including regulation of blood pressure, vasoreactivity, and cardiac arrhythmias, as well as the adverse remodeling associated with cardiac hypertrophy and heart failure. This review discusses mechanosensitive channels in skeletal muscle and the cardiovascular system and their role in disease pathogenesis. We describe the regulation of gating of mechanosensitive channels including direct mechanisms and indirect activation by signaling pathways, as well as the influence on activation of these channels by the underlying cytoskeleton and scaffolding proteins. We then focus on the role of transient receptor potential channels, several of which have been implicated as mechanosensitive channels, in the pathogenesis of adverse cardiac remodeling and as potential therapeutic targets in the treatment of heart failure.

  19. Pain perception and cardiovascular system response among athletes playing contact sports.

    PubMed

    Leźnicka, Katarzyna; Pawlak, Matthias; Białecka, Monika; Safranow, Krzysztof; Cięszczyk, Paweł

    2017-04-10

    The aim of this study was to determine whether the contact sports change the perception of pain as assessed by the cold pressor test (CPT), and if the test induces the same reaction of the cardiovascular system in contact athletes and non-athletes. The study involved 321 healthy men; 140 contact athletes and 181 students of the University of Szczecin (control). Pain threshold and pain tolerance were evaluated using CPT. Cardiovascular measurements were made during CPT. The contact athletes showed a much higher tolerance to pain than the control group (median time 120 vs. 94 s, respectively, p = 0.0002). The thresholds of pain in both groups did not differ significantly between the groups. Systolic blood pressure measured before and during the test in all three measurements was statistically significantly higher in athletes compared with the control group. Heart rate and diastolic blood pressure did not differ significantly between the studied groups.

  20. Novel aspects of the roles of Rac1 GTPase in the cardiovascular system.

    PubMed

    Sawada, Naoki; Li, Yuxin; Liao, James K

    2010-04-01

    Rac1 GTPase is an established master regulator of cell motility through cortical actin re-organization and of reactive oxygen species generation through regulation of NADPH oxidase activity. Numerous molecular and cellular studies have implicated Rac1 in various cardiovascular pathologies: vascular smooth muscle proliferation, cardiomyocyte hypertrophy, and endothelial cell shape change. The physiological relevance of these in vitro findings, however, is just beginning to be reassessed with the newly developed, conditional mouse mutagenesis technology. Conditional gene targeting has also revealed unexpected, cell type-specific roles of Rac1. The aim of this review is to summarize the recent advance made in Rac1 research in the cardiovascular system, with special focus on its novel roles in the regulation of endothelial function, angiogenesis, and endothelium-mediated neuroprotection.

  1. Protein kinase d in the cardiovascular system: emerging roles in health and disease.

    PubMed

    Avkiran, Metin; Rowland, Alexandra J; Cuello, Friederike; Haworth, Robert S

    2008-02-01

    The protein kinase D (PKD) family is a recent addition to the calcium/calmodulin-dependent protein kinase group of serine/threonine kinases, within the protein kinase complement of the mammalian genome. Relative to their alphabetically superior cousins in the AGC group of kinases, namely the various isoforms of protein kinase A, protein kinase B/Akt, and protein kinase C, PKD family members have to date received limited attention from cardiovascular investigators. Nevertheless, increasing evidence now points toward important roles for PKD-mediated signaling pathways in the cardiovascular system, particularly in the regulation of myocardial contraction, hypertrophy and remodeling. This review provides a primer on PKD signaling, using information gained from studies in multiple cell types, and discusses recent data that suggest novel functions for PKD-mediated pathways in the heart and the circulation.

  2. [Study on mechanism of Salvia miltiorrhiza treating cardiovascular disease through auxiliary mechanism elucidation system for Chinese medicine].

    PubMed

    He, Shuai-bing; Zhang, Bai-xia; Wang, Hui-hui; Wang, Yun; Qiao, Yan-jiang

    2015-10-01

    Salvia miltiorrhiza is a traditional Chinese medicine (TCM) and is widely used as a clinically medication for its efficiency in treating cardiovascular disease. Due to TCM is a comprehensive system, the mechanism of S. miltiorrhiza treating cardiovascular disease through integrated multiple pathways are still unclear in some aspects. With the rapid progress of bioinformatics and systems biology, network pharmacology is considered as a promising approach toward reveal the underlying complex relationship between an herb and the disease. In order to discover the mechanism of S. miltiorrhiza treating cardiovascular disease systematically, we use the auxiliary mechanism elucidation system for Chinese medicine, built up a molecule interaction network on the active component targets of S. miltiorrhiza and the therapeutic targets of cardiovascular disease to offer an opportunity for deep understanding the mechanism of S. miltiorrhiza treating cardiovascular disease from the perspective of network pharmacology. The results showed that S. miltiorrhiza treating cardiovascular disease through ten pathways as follows: improve lipid metabolism, anti-inflammation, regulate blood pressure, negatively regulates blood coagulation factor and antithrombotic, regulate cell proliferation, anti-stress injury, promoting angiogenesis, inhibited apoptosis, adjust vascular systolic and diastolic, promoting wound repair. The results of this paper provide theoretical guidance for the development of new drugs to treat cardiovascular disease and the discovery of new drugs through component compatibility.

  3. Effects of acute and chronic systemic methamphetamine on respiratory, cardiovascular and metabolic function, and cardiorespiratory reflexes

    PubMed Central

    Hassan, Sarah F.; Wearne, Travis A.; Cornish, Jennifer L.

    2016-01-01

    Key points Methamphetamine (METH) abuse is escalating worldwide, with the most common cause of death resulting from cardiovascular failure and hyperthermia; however, the underlying physiological mechanisms are poorly understood.Systemic administration of METH in anaesthetised rats reduced the effectiveness of some protective cardiorespiratory reflexes, increased central respiratory activity independently of metabolic function, and increased heart rate, metabolism and respiration in a pattern indicating that non‐shivering thermogenesis contributes to the well‐described hyperthermia.In animals that showed METH‐induced behavioural sensitisation following chronic METH treatment, no changes were evident in baseline cardiovascular, respiratory and metabolic measures and the METH‐evoked effects in these parameters were similar to those seen in saline‐treated or drug naïve animals.Physiological effects evoked by METH were retained but were neither facilitated nor depressed following chronic treatment with METH.These data highlight and identify potential mechanisms for targeted intervention in patients vulnerable to METH overdose. Abstract Methamphetamine (METH) is known to promote cardiovascular failure or life‐threatening hyperthermia; however, there is still limited understanding of the mechanisms responsible for evoking the physiological changes. In this study, we systematically determined the effects on both autonomic and respiratory outflows, as well as reflex function, following acute and repeated administration of METH, which enhances behavioural responses. Arterial pressure, heart rate, phrenic nerve discharge amplitude and frequency, lumbar and splanchnic sympathetic nerve discharge, interscapular brown adipose tissue and core temperatures, and expired CO2 were measured in urethane‐anaesthetised male Sprague‐Dawley rats. Novel findings include potent increases in central inspiratory drive and frequency that are not dependent on METH

  4. Cell Systems to Investigate the Impact of Polyphenols on Cardiovascular Health.

    PubMed

    Grootaert, Charlotte; Kamiloglu, Senem; Capanoglu, Esra; Van Camp, John

    2015-11-11

    Polyphenols are a diverse group of micronutrients from plant origin that may serve as antioxidants and that contribute to human health in general. More specifically, many research groups have investigated their protective effect against cardiovascular diseases in several animal studies and human trials. Yet, because of the excessive processing of the polyphenol structure by human cells and the residing intestinal microbial community, which results in a large variability between the test subjects, the exact mechanisms of their protective effects are still under investigation. To this end, simplified cell culture systems have been used to decrease the inter-individual variability in mechanistic studies. In this review, we will discuss the different cell culture models that have been used so far for polyphenol research in the context of cardiovascular diseases. We will also review the current trends in cell culture research, including co-culture methodologies. Finally, we will discuss the potential of these advanced models to screen for cardiovascular effects of the large pool of bioactive polyphenols present in foods and their metabolites.

  5. Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events.

    PubMed

    Fardet, Laurence; Fève, Bruno

    2014-10-01

    The prevalence of use of long-term systemic glucocorticoid therapy in the general adult population is 1 %. This figure increases to up to 3 % in elderly women. Metabolic (i.e. diabetes mellitus, dyslipidemia, weight gain, lipodystrophy) and cardiovascular (i.e. hypertension, cardiovascular events) adverse events are commonly observed in these patients and can be life threatening. Paradoxically, there is very few data on some of these adverse events and many of the available studies remain inconclusive. Incidence of and risk factors for dyslipidemia, weight gain and lipodystrophy are poorly defined. The optimal treatment plan for patients diagnosed with glucocorticoid-induced diabetes or hypertension is undetermined. Finally, there is no medical consensus on the best strategies for the prevention and detection of these complications. However, certain of these questions can be answered by looking at available data on patients with endogenous hypercortisolism (i.e. Cushing's syndrome). This article reviews the pathophysiology, incidence, risk factors, screening, and treatment of glucocorticoid-induced weight gain, lipodystrophy, diabetes, dyslipidemia, hypertension, and cardiovascular events. It also focuses on the possible prevention of these adverse events by targeting the glucocorticoid receptor using selective glucocorticoid receptor modulators.

  6. Red blood cell flow in the cardiovascular system: a fluid dynamics perspective.

    PubMed

    AlMomani, Thakir D; Vigmostad, Sarah C; Chivukula, Venkat Keshav; Al-zube, Loay; Smadi, Othman; BaniHani, Suleiman

    2012-01-01

    The dynamics of red blood cells (RBCs) is one of the major aspects of the cardiovascular system that has been studied intensively in the past few decades. The dynamics of biconcave RBCs are thought to have major influences in cardiovascular diseases, the problems associated with cardiovascular assistive devices, and the determination of blood rheology and properties. This article provides an overview of the works that have been accomplished in the past few decades and aim to study the dynamics of RBCs under different flow conditions. While significant progress has been made in both experimental and numerical studies, a detailed understanding of the behavior of RBCs is still faced with many challenges. Experimentally, the size of RBCs is considered to be a major limitation that allows measurements to be performed under conditions similar to physiological conditions. In numerical computations, researchers still are working to develop a model that can cover the details of the RBC mechanics as it deforms and moves in the bloodstream. Moreover, most of reported computational models have been confined to the behavior of a single RBC in 2-dimensional domains. Advanced models are yet to be developed for accurate description of RBC dynamics under physiological flow conditions in 3-dimensional regimes.

  7. Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease.

    PubMed

    Robinson, Emma; Grieve, David J

    2009-06-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.

  8. [Simulation Analysis of the Pulse Signal on the Electricity Network of Cardiovascular System].

    PubMed

    Liu, Ying; Yin, Yanfei; Zhang, Defa; Wang, Menghong; Bi, Yongqiang

    2015-12-01

    Pulse waves contain abundant physiological and pathological information of human body. Research of the relationship between pulse wave and human cardiovascular physiological parameters can not only help clinical diagnosis and treatment of cardiovascular diseases, but also contribute to develop many new medical instruments. Based on the traditional double elastic cavity model, the human cardiovascular system was established by using the electric network model in this paper. The change of wall pressure and blood flow in artery was simulated. And the influence of the peripheral resistance and vessel compliance to the distribution of blood flow in artery was analyzed. The simulation results were compared with the clinical monitoring results to predict the physiological and pathological state of human body. The result showed that the simulation waveform of arterial wall pressure and blood flow was stabile after the second cardiac cycle. With the increasing of peripheral resistance, the systolic blood pressure of artery increased, the diastolic blood pressure had no significant change, and the pulse pressure of artery increased gradually. With the decreasing of vessel compliance, the vasoactivity became worse and the pulse pressure increased correspondingly. The simulation results were consistent with the clinical monitoring results. The increasing of peripheral resistance and decreasing of vascular compliance indicated that the incidence of hypertension and atherosclerosis was increased.

  9. Cell Systems to Investigate the Impact of Polyphenols on Cardiovascular Health

    PubMed Central

    Grootaert, Charlotte; Kamiloglu, Senem; Capanoglu, Esra; Van Camp, John

    2015-01-01

    Polyphenols are a diverse group of micronutrients from plant origin that may serve as antioxidants and that contribute to human health in general. More specifically, many research groups have investigated their protective effect against cardiovascular diseases in several animal studies and human trials. Yet, because of the excessive processing of the polyphenol structure by human cells and the residing intestinal microbial community, which results in a large variability between the test subjects, the exact mechanisms of their protective effects are still under investigation. To this end, simplified cell culture systems have been used to decrease the inter-individual variability in mechanistic studies. In this review, we will discuss the different cell culture models that have been used so far for polyphenol research in the context of cardiovascular diseases. We will also review the current trends in cell culture research, including co-culture methodologies. Finally, we will discuss the potential of these advanced models to screen for cardiovascular effects of the large pool of bioactive polyphenols present in foods and their metabolites. PMID:26569293

  10. Insulin-like growth factor-2 regulates early neural and cardiovascular system development in zebrafish embryos.

    PubMed

    Hartnett, Lori; Glynn, Catherine; Nolan, Catherine M; Grealy, Maura; Byrnes, Lucy

    2010-01-01

    The insulin-like growth factor (IGF) family is essential for normal embryonic growth and development and it is highly conserved through vertebrate evolution. However, the roles that the individual members of the IGF family play in embryonic development have not been fully elucidated. This study focuses on the role of IGF-2 in zebrafish embryonic development. Two igf-2 genes, igf-2a and igf-2b, are present in the zebrafish genome. Antisense morpholinos were designed to knock down both igf-2 genes. The neural and cardiovascular defects in IGF-2 morphant embryos were then examined further using wholemount in situ hybridisation, TUNEL analysis and O-dianisidine staining. Knockdown of igf-2a or igf-2b resulted in ventralised embryos with reduced growth, reduced eyes, disrupted brain structures and a disrupted cardiovascular system, with igf-2b playing a more significant role in development. During gastrulation, igf-2a and igf-2b are required for development of anterior neural structures and for regulation of genes critical to dorsal-ventral patterning. As development proceeds, igf-2a and igf-2b play anti-apoptotic roles. Gene expression analysis demonstrates that igf-2a and igf-2b play overlapping roles in angiogenesis and cardiac outflow tract development. Igf-2b is specifically required for cardiac valve development and cardiac looping. Injection of a dominant negative IGF-1 receptor led to similar defects in angiogenesis and cardiac valve development, indicating IGF-2 signals through this receptor to regulate cardiovascular development. This is the first study describing two functional igf-2 genes in zebrafish. This work demonstrates that igf-2a and igf-2b are critical to neural and cardiovascular development in zebrafish embryos. The finding that igf-2a and igf-2b do not act exclusively in a redundant manner may explain why both genes have been stably maintained in the genome.

  11. Recent insights and therapeutic perspectives of angiotensin-(1-9) in the cardiovascular system.

    PubMed

    Ocaranza, Maria Paz; Michea, Luis; Chiong, Mario; Lagos, Carlos F; Lavandero, Sergio; Jalil, Jorge E

    2014-11-01

    Chronic RAS (renin-angiotensin system) activation by both AngII (angiotensin II) and aldosterone leads to hypertension and perpetuates a cascade of pro-hypertrophic, pro-inflammatory, pro-thrombotic and atherogenic effects associated with cardiovascular damage. In 2000, a new pathway consisting of ACE2 (angiotensin-converting enzyme2), Ang-(1-9) [angiotensin-(1-9)], Ang-(1-7) [angiotensin-(1-7)] and the Mas receptor was discovered. Activation of this novel pathway stimulates vasodilation, anti-hypertrophy and anti-hyperplasia. For some time, studies have focused mainly on ACE2, Ang-(1-7) and the Mas receptor, and their biological properties that counterbalance the ACE/AngII/AT1R (angiotensin type 1 receptor) axis. No previous information about Ang-(1-9) suggested that this peptide had biological properties. However, recent data suggest that Ang-(1-9) protects the heart and blood vessels (and possibly the kidney) from adverse cardiovascular remodelling in patients with hypertension and/or heart failure. These beneficial effects are not modified by the Mas receptor antagonist A779 [an Ang-(1-7) receptor blocker], but they are abolished by the AT2R (angiotensin type 2 receptor) antagonist PD123319. Current information suggests that the beneficial effects of Ang-(1-9) are mediated via the AT2R. In the present review, we summarize the biological effects of the novel vasoactive peptide Ang-(1-9), providing new evidence of its cardiovascular-protective activity. We also discuss the potential mechanism by which this peptide prevents and ameliorates the cardiovascular damage induced by RAS activation.

  12. Comparison of the Abbott Realtime HIV-1 and HCV viral load assays with commercial competitor assays.

    PubMed

    Schutten, Martin

    2008-07-01

    The introduction of commercially available quantitative HIV-1 RNA detection methods at the end of the last century has had a significant impact on the management of patients requiring treatment. Similarly for hepatitis C virus (HCV), clinical decision-making with respect to initiation and prolonging therapy is largely based on data from viral load assays. The methods developed in the early 1990s and further improved since then still have significant drawbacks. For example, they are labor intensive, have a small dynamic range and are contamination sensitive. The development of real-time detection techniques for reverse transcription PCR has in part solved these problems. In the present review the advantages and disadvantages of the recently marketed Abbott Realtime HCV and HIV-1 viral load assays relative to their competitors will be discussed.

  13. The children's republic of science in the antebellum literature of Samuel Griswold Goodrich and Jacob Abbott.

    PubMed

    Pandora, Katherine

    2009-01-01

    The antebellum years in the United States were marked by vigorous debates about national identity in which issues of hierarchy, authority, and democratic values came under intense scrutiny. During this period, a prime objective of indigenous authors writing for American children was educating the young so they would be ready to assume their republican responsibilities. The question of how depictions and discussions about nature and science were deployed toward this end is explored by examining key texts about nature and science from the era's two most prolific and popular children's authors--Samuel Griswold Goodrich (1793-1860) and Jacob Abbott (1803-79)--and highlighting assumptions within these works about what the proper relationship should be between the search for scientific knowledge and the larger polity.

  14. Evaluating lubricating capacity of vegetal oils using Abbott-Firestone curve

    NASA Astrophysics Data System (ADS)

    Georgescu, C.; Cristea, G. C.; Dima, C.; Deleanu, L.

    2017-02-01

    The paper presents the change of functional parameters defined on the Abbott-Firestone curve in order to evaluate the surface quality of the balls from the four ball tester, after tests done with several vegetable oils. The tests were done using two grades of rapeseed oil (degummed and refined) and two grades of soybean oil (coarse and degummed) and a common transmission oil (T90). Test parameters were 200 N and 0.576 m/s (1500 rpm) for 60 minutes. For the refined rapeseed oil, the changes in shape of the Abbott-Firestone curves are more dramatic, these being characterized by high values of Spk (the average value for the wear scars on the three balls), thus being 40% of the sum Svk + Sk + Spk, percentage also obtained for the soybean oil, but the value Spk being lower. For the degummed soybean oil, the profile height of the wear scars are taller than those obtained after testing the coarse soybean oil, meaning that the degumming process has a negative influence on the worn surface quality and the lubricating capacity of this oil. Comparing the surface quality of the wear scars on fixed tested balls is a reliable method to point out the lubricant properties of the vegetable oils, especially if they are compared to a “classical” lubricant as a non-additivated transmission mineral oil T90. The best surface after testing was obtained for the soybean oil, followed by T90 oil and the degummed grades of the soybean oil and rapeseed oil (these three giving very close values for the functional parameters), but the refined rapeseed oil generated the poorest quality of the wear scars on the balls, under the same testing conditions.

  15. Numerical simulation of the blood flow in the human cardiovascular system.

    PubMed

    Zácek, M; Krause, E

    1996-01-01

    This paper describes a numerical model of the human cardiovascular system. The model is composed of 15 elements connected in series representing the main parts of the system. Each element is composed of a rigid connecting tube and an elastic reservoir. The blood flow is described by a one-dimensional time-dependent Bernoulli equation. The action of the ventricles is simulated with a Hill's three-element model, adapted for the left and right heart. The closing of the four heart valves is simulated with the aid of time-dependent drag coefficients. Closing is achieved by letting the drag coefficient approach infinity. The resulting system of 32 non-linear ordinary differential equations is solved numerically with the Runge-Kutta method. The results of the simulation (pressure-time and volume-time dependence for the atria and ventricles and pressure forms in the aorta at a heart rate of 70 beats per minute) agree with the physiological data given in the literature. The model's input aortic impedance is 31.5 dyn s cm-5 which agrees with literature data given for aortic input impedance in man 26-80 dyn s cm-5). Long-term stability of the system was achieved. The cardiovascular system presented here can also be simulated at higher and varying heart rates--up to 200 beats per minute. The results of calculations for some pathological changes (e.g. valvular abnormalities) are discussed.

  16. The effects of a 50-Hz magnetic field on the cardiovascular system in rats

    PubMed Central

    Zhou, Ling; Wan, Baoquan; Liu, Xingfa; Zhang, Yemao; Lai, Jinsheng; Ruan, Guoran; He, Mengying; Chen, Chen; Wang, Dao Wen

    2016-01-01

    A 50-Hz magnetic field (MF) is a potential health-risk factor. Its effects on the cardiovascular system have not been fully investigated. This study was conducted to explore the effects of long-term exposure to a 50-Hz MF on the cardiovascular system. In the study, an exposure system was constructed, and the distribution of the 50-Hz MF was determined. Sixty-four Sprague-Dawley (SD) rats were exposed to a 50-Hz MF at 100 μT for 24 weeks, 20 h per day, while another 64 rats were sham exposed. During the exposure, blood pressure was measured every 4 weeks. After 24 weeks, echocardiography, cardiac catheterization and electrocardiography were performed. Moreover, heart and body weight were recorded, and haematoxylin–eosin staining and real-time PCR were conducted. The results showed that compared with the sham group, exposure to a 50-Hz MF did not exert any effects on blood pressure, pulse rate, heart rate or cardiac rhythm. Furthermore, echocardiography and cardiac catheterization showed that there were no significant differences in the cardiac morphology or haemodynamics. In addition, histopathological examination showed that exposure to a 50-Hz MF had no effects on the structure of the heart. Finally, expression of the cardiac hypertrophy–related genes did not show any significant differences between the 50-Hz MF exposure group and the sham group. Taken together, in SD rats, exposure to a 50-Hz/100 μT MF for 24 weeks did not show any obvious effects on the cardiovascular system. PMID:27694282

  17. Evaluation of a commercial ligase chain reaction kit (Abbott LCx) for direct detection of Mycobacterium tuberculosis in pulmonary and extrapulmonary specimens.

    PubMed Central

    Tortoli, E; Lavinia, F; Simonetti, M T

    1997-01-01

    Direct detection of Mycobacterium tuberculosis by means of a commercial ligase chain reaction DNA amplification method (LCx M. tuberculosis; Abbott Diagnostics Division, Abbott Park, Ill.) was investigated with 511 (including 147 extrarespiratory) specimens collected from 358 patients. LCx results were compared with standard microbiological data, and conflicting cases were resolved according to the final clinical diagnosis. M. tuberculosis was detected in 45 of 358 subjects by means of the LCx test. The test was negative for all 30 specimens with mycobacteria other than M. tuberculosis. The sensitivity, specificity, and positive and negative predictive values for the LCx test, compared with culture results, were 93.90, 92.31, 70.00, and 98.75%, respectively; these values rose in resolved cases to 95.53, 99.25, 97.27, and 98.75%, respectively. With respiratory specimens, for which the LCx system is licensed, the sensitivity reached 98.97%. In patients with a final clinical diagnosis of tuberculosis the sensitivity of the LCx system was 89.36% compared to 82.98% for cultures and 78.72% for microscopy. We conclude that the LCx test is user friendly, rapid, fairly sensitive, and highly specific. It can also be effectively used on extrapulmonary specimens provided possible false-negative results are taken into account. However, the use of LCx test appears to be less appropriate for the monitoring of antituberculosis therapy, as the majority of samples from treated tuberculosis patients gave consistently positive results, despite the sterilization of cultures. PMID:9276432

  18. The influence of whole body vibration on the central and peripheral cardiovascular system.

    PubMed

    Robbins, Dan; Yoganathan, Priya; Goss-Sampson, Mark

    2014-09-01

    The purpose of this study was to investigate the physiological changes of the cardiovascular system in response to whole body vibration during quiet standing and identify whether there is a greater influence on the central or peripheral cardiovascular system. Twenty healthy participants (12 male and 8 female) were assessed over two separate testing sessions for changes in peripheral skin temperature, peripheral venous function, blood flow velocity in the dorsalis pedis artery, blood pressure and heart rate during quiet standing with 40 Hz 1·9 mm synchronous vibration. Vibration exposure totalled 5 min in 1 min increments with 5 min recovery during each testing session. There were no significant changes in heart rate, blood pressure or peripheral skin temperature. Significant results were obtained for blood flow velocity with increases from 0·5 + 0·2 cm·s(-1) at baseline to 1 + 0·2 cm·s(-1) during vibration, returning to baseline levels during the recovery period. Due to the absence of changes in heart rate, blood pressure or lower leg and foot temperature, the change in blood flow velocity can be attributed to changes in peripheral vascular function. The results suggest a high level of sensitivity of the peripheral vascular system to vibration exposure; therefore, further studies should be completed to ascertain the physiological mechanisms underlying the effects of vibration on the peripheral vascular system.

  19. An experimental ovine Theileriosis: The effect of Theileria lestoquardi infection on cardiovascular system in sheep.

    PubMed

    Yaghfoori, Saeed; Razmi, Gholam Reza; Mohri, Mehrdad; Razavizadeh, Ali Reza Taghavi; Movassaghi, Ahmad Reza

    2016-09-01

    The malignant ovine theileriosis is caused by Theileria lestoquardi, which is highly pathogenic in sheep. Theileriosis involves different organs in ruminants, but the effect of the disease on the cardiovascular system is unclear. To understand the pathogenesis of T. lestoquardi on the cardiovascular system, Baluchi breed sheep were infected with the mentioned parasite by releasing unfed adults of Hyalomma anatolicum anatolicum, which were infected with T. lestoquardi. The infected sheep were clinically examined on days 0, 2, 5, 7, 10, 12, 14, 17, and 21, and the blood samples were collected for biochemical parameters measurement. At termination of the experiment, the infected sheep were euthanized and pathological examinations of heart tissue were conducted. During experimental infection of sheep with T. lestoquardi, activities of cardiac troponin I (cTnI), lactate dehydrogenase, and aspartate aminotransferase, were significantly increased (P˂0.05), while a conspicuous decrease (P˂0.05) was observed in creatine phosphokinase activities. Alterations made in biochemical factors almost coincided with the presence of piroplasm in the blood and schizont in lymph nodes. Maximum and minimum of parasitemia in the sheep stood between 3.3% and 0.28%, respectively. In addition, electrocardiography revealed sinus tachycardia, sinus arrhythmia, sino-atrial block and ST-elevation, atrial premature beat, and alteration in QRS and in T waves' amplitude. Heart histopathological examination showed hyperemia, infiltration of mononuclear inflammatory cells into interstitial tissue, endocarditis, and focal necrosis of cardiac muscle cells. In addition, in one of the sheep, definite occurrence of infarction was observed. The results indicate that T. lestoquardi infection has devastating pathological impacts on the cardiovascular system of sheep. Furthermore, measurement of the cTnI amount is a useful biochemical factor for diagnosis and for better understanding of the severity and

  20. The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system.

    PubMed

    Bjørnerud, Atle; Johansson, Lars

    2004-11-01

    This review will discuss the in vivo physical chemical relaxation properties of superparamagnetic iron oxide particles. Various parameters such as size, magnetization, compartmentalization and water exchange effects and how these alter the behavior of the iron oxide particles in an in vitro vs an in vivo situation with special reference to the cardiovascular system will be exemplified. Furthermore, applications using iron oxide particles for vascular, perfusion and viability imaging as well as assessment of the inflammatory status of a given tissue will be discussed.

  1. The circadian organization of the cardiovascular system in health and disease.

    PubMed

    Portaluppi, Francesco

    2014-05-01

    In normal conditions, the temporal organization of blood pressure (BP) is mainly controlled by neuroendocrine mechanisms. Above all, the monoaminergic systems (including variations in activity of the autonomous nervous system, and in secretion of biogenic amines) appear to integrate the major driving factors of temporal variability, but evidence is available also for a role of the hypothalamic-pituitary-adrenal, hypothalamic-pituitary-thyroid, opioid, renin-angiotensin-aldosterone, and endothelial systems, as well as other vasoactive peptides. Many hormones with established actions on the cardiovascular system (arginine vasopressin, vasoactive intestinal peptide, melatonin, somatotropin, insulin, steroids, serotonin, CRF, ACTH, TRH, endogenous opioids, and prostaglandin E2) are also involved in sleep induction or arousal, which in turn affects BP regulation. Hence, physical, mental, and pathological stimuli which may drive activation or inhibition of these neuroendocrine effectors of biological rhythmicity, may also interfere with the temporal BP structure. On the other hand, the immediate adaptation of the exogenous components of BP rhythms to the demands of the environment are modulated by the circadian-time-dependent responsiveness of the biological oscillators and their neuroendocrine effectors. These notions may contribute to a better understanding of the pathophysiology and therapeutics of hypertension, myocardial ischemia and infarction, cardiac arrhythmias and all kind of acute cardiovascular accidents. For instance, the normal temporal balance between external stimuli and neurohumoral influences with endogenous rhythmicity is preserved in uncomplicated, essential hypertension, whereas it is frequently lost in complicated and secondary forms of hypertension where gross alterations are found in the circadian profile of BP. When all the gates of the critical physiologic functions are aligned at the same time, the susceptibility, and thus risk, of adverse

  2. Long-term consequences of drugs on the paediatric cardiovascular system.

    PubMed

    Hausner, Elizabeth; Fiszman, Monica L; Hanig, Joseph; Harlow, Patricia; Zornberg, Gwen; Sobel, Solomon

    2008-01-01

    Many pharmacological and toxicological actions of drugs in children cannot be fully predicted from adult clinical experience or from standard non-clinical toxicology studies. Numerous drugs have direct or indirect pharmacological effects on the heart and are prescribed for children of all ages. Toxicity or secondary effects may be immediate or delayed for years after drug exposure has ceased. Originally, the aim of this review was to compile information on the effect of specific drugs on the post-natal development of the cardiovascular system and to examine long-term follow-up of the use of cardio-active drugs in children. The limited database of published information caused the original question to evolve into an examination of the medical literature for three areas of information: (i) whether vulnerable developmental windows have been identified that reflect the substantial functional development that the cardiovascular system undergoes after birth; (ii) what is known about pharmacological perturbation of development; and (iii) what the likelihood is of drug exposure during childhood. We examined different scenarios for exposure including random, isolated exposure, conditions historically associated with adults, primary or secondary cardiac disease, psychiatric and neurological conditions, asthma, cancer and HIV. Except for random, isolated drug exposures, each category of possible exposure contained numerous drugs known to have either primary or secondary effects on the cardiovascular system or to influence factors associated with atherosclerosis. It is likely that a significant number of children will be prescribed drugs having either direct or indirect effects upon the immature cardiovascular system. A confounding factor is the simultaneous use of over-the-counter medications and herbal or nutraceutical preparations that a patient, parent or guardian does not mention to a prescribing physician. Metabolism is also important in assessing drug effects in children

  3. [Functional state of cardiovascular system by progressive absences--epilepsy and its treatment].

    PubMed

    Mamalyga, M L

    2014-05-01

    Age-dependent increase of seizure activity at absence epilepsy exacerbates hemodynamic and autonomic regulation of heart rate. Cardiac dysfunction is accompanied by an increasing duration of intervals repolarization left ventricular QTc, which causes the risk of life-threatening arrhythmias, increases the threat of sudden cardiac death. Anticonvulsant drug therapy provides an opportunity to improve the functional state of the cardiovascular system, if not exceeded a certain level of seizure activity of the brain. This possibility remains as long as the progressive seizure activity isn't reaches a certain level. Later anticonvulsant drug therapy reduces seizure activity of the brain, but does not improve the functional state of heart.

  4. Phosphodiesterases and subcellular compartmentalized cAMP signaling in the cardiovascular system.

    PubMed

    Stangherlin, Alessandra; Zaccolo, Manuela

    2012-01-01

    Phosphodiesterases are key enzymes in the cAMP signaling cascade. They convert cAMP in its inactive form 5'-AMP and critically regulate the intensity and the duration of cAMP-mediated signals. Multiple isoforms exist that possess different intracellular distributions, different affinities for cAMP, and different catalytic and regulatory properties. This complex repertoire of enzymes provides a multiplicity of ways to modulate cAMP levels, to integrate more signaling pathways, and to respond to the specific needs of the cell within distinct subcellular domains. In this review we summarize key findings on phosphodiesterase compartmentalization in the cardiovascular system.

  5. [Diabetic neuropathies. IV. Autonomous neuropathy. Peripheral sympathetic innervation and the cardiovascular system].

    PubMed

    Gentile, S; Marmo, R; Costume, A; Persico, M; Bronzino, P; Contaldi, P; Stroffolini, T

    1984-04-28

    The clinical conditions due to damage to the peripheral sympathetic nervous system during diabetic neuropathy mainly involve alterations to subcutaneous vasomotility , temperature body regulation and exudation, which may take form of hyper or hypoactivity. Gustatory exudation and local anhydrosis are described in detail as well as the connection with aggravating factors like long duration, poor balance and early onset of diabetes mellitus . Change in the relevant cardiovascular reflexes, commonly used in diagnosing diabetic neuropathy, are also analysed with a discussion of their physiopathological background and clinical significance. Finally the painless infarct, sudden death and abnormal response to hypoglycaemia, that are the common features of diabetic neuropathy, are also described.

  6. Integrated Metabolomics and Genomics: Systems Approaches to Biomarkers and Mechanisms of Cardiovascular Disease

    PubMed Central

    Shah, Svati H.; Newgard, Christopher B.

    2015-01-01

    The genetic architecture underlying the heritability of cardiovascular disease (CVD) is incompletely understood. Metabolomics is an emerging technology platform that has shown early success in identifying biomarkers and mechanisms of common, chronic diseases. Integration of metabolomics, genetics and other ‘omics’ platforms in a systems biology approach holds potential for elucidating novel genetic markers and mechanisms for CVD. We review important studies that have utilized metabolomic profiling in cardiometabolic diseases, approaches for integrating metabolomics with genetics and other molecular profiling platforms, and key studies showing the potential for such studies in deciphering CVD genetics, biomarkers and mechanisms. PMID:25901039

  7. Premarket Evaluations of the IMDx C. difficile for Abbott m2000 Assay and the BD Max Cdiff Assay

    PubMed Central

    Espino, A. A.; Maceira, V. P.; Nattanmai, S. M.; Butt, S. A.; Wroblewski, D.; Hannett, G. E.; Musser, K. A.

    2014-01-01

    Clostridium difficile-associated diarrhea is a well-recognized complication of antibiotic use. Historically, diagnosing C. difficile has been difficult, as antigen assays are insensitive and culture-based methods require several days to yield results. Nucleic acid amplification tests (NAATs) are quickly becoming the standard of care. We compared the performance of two automated investigational/research use only (IUO/RUO) NAATs for the detection of C. difficile toxin genes, the IMDx C. difficile for Abbott m2000 Assay (IMDx) and the BD Max Cdiff Assay (Max). A prospective analysis of 111 stool specimens received in the laboratory for C. difficile testing by the laboratory's test of record (TOR), the BD GeneOhm Cdiff Assay, and a retrospective analysis of 88 specimens previously determined to be positive for C. difficile were included in the study. One prospective specimen was excluded due to loss to follow-up discrepancy analysis. Of the remaining 198 specimens, 90 were positive by all three methods, 9 were positive by TOR and Max, and 3 were positive by TOR only. One negative specimen was initially inhibitory by Max. The remaining 95 specimens were negative by all methods. Toxigenic C. difficile culture was performed on the 12 discrepant samples. True C. difficile-positive status was defined as either positive by all three amplification assays or positive by toxigenic culture. Based on this definition, the sensitivity and specificity were 96.9% and 95% for Max and 92.8% and 100% for IMDx. In summary, both highly automated systems demonstrated excellent performance, and each has individual benefits, which will ensure that they will both have a niche in clinical laboratories. PMID:24554744

  8. Premarket evaluations of the IMDx C. difficile for Abbott m2000 Assay and the BD Max Cdiff Assay.

    PubMed

    Stellrecht, K A; Espino, A A; Maceira, V P; Nattanmai, S M; Butt, S A; Wroblewski, D; Hannett, G E; Musser, K A

    2014-05-01

    Clostridium difficile-associated diarrhea is a well-recognized complication of antibiotic use. Historically, diagnosing C. difficile has been difficult, as antigen assays are insensitive and culture-based methods require several days to yield results. Nucleic acid amplification tests (NAATs) are quickly becoming the standard of care. We compared the performance of two automated investigational/research use only (IUO/RUO) NAATs for the detection of C. difficile toxin genes, the IMDx C. difficile for Abbott m2000 Assay (IMDx) and the BD Max Cdiff Assay (Max). A prospective analysis of 111 stool specimens received in the laboratory for C. difficile testing by the laboratory's test of record (TOR), the BD GeneOhm Cdiff Assay, and a retrospective analysis of 88 specimens previously determined to be positive for C. difficile were included in the study. One prospective specimen was excluded due to loss to follow-up discrepancy analysis. Of the remaining 198 specimens, 90 were positive by all three methods, 9 were positive by TOR and Max, and 3 were positive by TOR only. One negative specimen was initially inhibitory by Max. The remaining 95 specimens were negative by all methods. Toxigenic C. difficile culture was performed on the 12 discrepant samples. True C. difficile-positive status was defined as either positive by all three amplification assays or positive by toxigenic culture. Based on this definition, the sensitivity and specificity were 96.9% and 95% for Max and 92.8% and 100% for IMDx. In summary, both highly automated systems demonstrated excellent performance, and each has individual benefits, which will ensure that they will both have a niche in clinical laboratories.

  9. Age-related changes in pharmacodynamics: focus on drugs acting on central nervous and cardiovascular systems.

    PubMed

    Trifirò, Gianluca; Spina, Edoardo

    2011-09-01

    Aging is characterized by progressive impairment of functional capacities of all system organs, reduction in homeostatic mechanisms, and altered response to receptor stimulation. These age-related physiologic changes influence both pharmacokinetics and pharmacodynamics of drugs in elderly patients. Pharmacokinetic and pharmacodynamics changes as well as polypharmacy and comorbidities may alter significantly the effect of pharmacological treatment with advancing age. With the same drug concentration at the site of action, significant differences in the response to several drugs have been observed in older patients as compared to younger patients. Elderly patients are particularly suceptibles to the effects of frequently prescribed drugs acting on central nervous system, such as benzodiazepines, antidepressants, antipsychotics and lithium, with high potential for adverse drug reactions. Moreover, in older patients increased sensitivity to warfarin resulting in increased risk of bleeding has been previously documented. On the other hand, reduced effectiveness of conventional doses of cardiovascular drugs, such as diuretics and β-blockers, has been observed. Due to pharmacodynamic changes, therefore, dose adjustment of the above mentioned cardiovascular and psychotropic drugs is recommended in elderly. Clinicians should be aware of the age-related physiologic changes affecting several organ systems and their implications on the effect of drugs that are commonly prescribed to elderly patients.

  10. Study of nanosensor systems for hypertension associated cerebrovascular and cardiovascular disorders

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2015-04-01

    Hypertension and hypertension associated cerebrovascular and cardiovascular diseases are on a rise. At-least 970 million people in the world and Seventy percent of the American adults are affected by high blood pressure, also known as hypertension. Even though blood pressure monitoring systems are readily available, the number of people being affected has been increasing. Most of the blood pressure monitoring systems require cumbersome approaches. Even the noninvasive techniques have not lowered the number of people affected nor did at-least increase the user base of these systems. Uncontrolled or untreated hypertension may lead to various cerebrovascular disorders including stroke, hypertensive crisis, lacunar infarcts intracerebral damage, microaneurysm, and cardiovascular disorders including heart failure, myocardial infraction, and ischemic heart disease. Hypertension is rated as the one of the most important causes of premature death in spite of the technical advances in biomedical technology. This paper briefs a review of the widely adopted blood pressure monitoring methods, research techniques, and finally, proposes a concept of implementing nanosensors and wireless communication for real time non-invasive blood pressure monitoring.

  11. Cardiovascular risk

    PubMed Central

    Payne, Rupert A

    2012-01-01

    Cardiovascular disease is a major, growing, worldwide problem. It is important that individuals at risk of developing cardiovascular disease can be effectively identified and appropriately stratified according to risk. This review examines what we understand by the term risk, traditional and novel risk factors, clinical scoring systems, and the use of risk for informing prescribing decisions. Many different cardiovascular risk factors have been identified. Established, traditional factors such as ageing are powerful predictors of adverse outcome, and in the case of hypertension and dyslipidaemia are the major targets for therapeutic intervention. Numerous novel biomarkers have also been described, such as inflammatory and genetic markers. These have yet to be shown to be of value in improving risk prediction, but may represent potential therapeutic targets and facilitate more targeted use of existing therapies. Risk factors have been incorporated into several cardiovascular disease prediction algorithms, such as the Framingham equation, SCORE and QRISK. These have relatively poor predictive power, and uncertainties remain with regards to aspects such as choice of equation, different risk thresholds and the roles of relative risk, lifetime risk and reversible factors in identifying and treating at-risk individuals. Nonetheless, such scores provide objective and transparent means of quantifying risk and their integration into therapeutic guidelines enables equitable and cost-effective distribution of health service resources and improves the consistency and quality of clinical decision making. PMID:22348281

  12. Energy harvesting from the cardiovascular system, or how to get a little help from yourself.

    PubMed

    Pfenniger, Alois; Jonsson, Magnus; Zurbuchen, Adrian; Koch, Volker M; Vogel, Rolf

    2013-11-01

    Human energy harvesting is envisioned as a remedy to the weight, the size, and the poor energy density of primary batteries in medical implants. The first implant to have necessarily raised the idea of a biological power supply was the pacemaker in the early 1960s. So far, review articles on human energy harvesting have been rather unspecific and no tribute has been given to the early role of the pacemaker and the cardiovascular system in triggering research in the field. The purpose of the present article is to provide an up-to-date review of research efforts targeting the cardiovascular system as an alternative energy source for active medical implants. To this end, a chronological survey of the last 14 most influential publications is proposed. They include experimental and/or theoretical studies based on electromagnetic, piezoelectric, or electrostatic transducers harnessing various forms of energy, such as heart motion, pressure gradients, and blood flow. Technical feasibility does not imply clinical applicability: although most of the reported devices were shown to harvest an interesting amount of energy from a physiological environment, none of them were tested in vivo for a longer period of time.

  13. Functional plasticity of the developing cardiovascular system: examples from different vertebrates.

    PubMed

    Pelster, Bernd; Gittenberger-de Groot, A C; Poelmann, R E; Rombough, Peter; Schwerte, Thorsten; Thompson, Michael B

    2010-01-01

    Technical advances that have made it possible to perform physiological measurements on very small organisms, including those in embryonic and larval stages, have resulted in the formation of the discipline of developmental physiology. The transparency and size of developing organisms in some areas permit insights into physiological processes that cannot be obtained with opaque, adult organisms. On the other hand, it is widely accepted that without eggs, there are no chickens, so physiological adaptations during early life are just as important to species survival as those manifested by adults. Physiological adaptations of early developmental stages, however, are not always the same as patterns known in adults; they often follow their own rules. The adaptability of early developmental stages demonstrates that development is not stereotyped and a phenotype is not just the result of genetic information and the expression of a certain series of genes. Environmental factors influence phenotype production, and this in turn results in flexibility and plasticity in physiological processes. This article comprises exemplary studies presented at the Fourth International Conference in Africa for Comparative Physiology and Biochemistry (Maasai Mara, Kenya, 2008). It includes a brief introduction into technical advances, discusses the developing cardiovascular system of various vertebrates, and demonstrates the flexibility and plasticity of early developmental stages. Fluid forces, oxygen availability, ionic homeostasis, and the chemical environment (including, e.g., hormone concentrations or cholesterol levels) all contribute to the shaping and performance of the cardiovascular system.

  14. Cardiovascular and systemic effects of gastric dilatation and volvulus in dogs.

    PubMed

    Sharp, Claire R; Rozanski, Elizabeth A

    2014-09-01

    Gastric dilatation and volvulus (GDV) is a common emergency condition in large and giant breed dogs that is associated with high morbidity and mortality. Dogs with GDV classically fulfill the criteria for the systemic inflammatory response syndrome (SIRS) and can go on to develop multiple organ dysfunction syndrome (MODS). Previously reported organ dysfunctions in dogs with GDV include cardiovascular, respiratory, gastrointestinal, coagulation and renal dysfunction. Cardiovascular manifestations of GDV include shock, cardiac arrhythmias and myocardial dysfunction. Respiratory dysfunction is also multifactorial, with contributory factors including decreased respiratory excursion due to gastric dilatation, decreased pulmonary perfusion and aspiration pneumonia. Gastrointestinal dysfunction includes gastric necrosis and post-operative gastrointestinal upset such as regurgitation, vomiting, and ileus. Coagulation dysfunction is another common feature of MODS in dogs with GDV. Disseminated intravascular coagulation can occur, putting them at risk of complications associated with thrombosis in the early hypercoagulable state and hemorrhage in the subsequent hypocoagulable state. Acute kidney injury, acid-base and electrolyte disturbances are also reported in dogs with GDV. Understanding the potential for systemic effects of GDV allows the clinician to monitor patients astutely and detect such complications early, facilitating early intervention to maximize the chance of successful management.

  15. Role of the endocannabinoid system in abdominal obesity and the implications for cardiovascular risk.

    PubMed

    Rosenson, Robert S

    2009-01-01

    Several cardiometabolic factors present in obese and insulin-resistant individuals represent a continuum of increasing risk for the development of type 2 diabetes and cardiovascular disease. The importance of abdominal obesity as an independent risk factor is underscored by its association with adverse endocrine function. Recent evidence from animal and human studies has shown a role for the endocannabinoid system in maintaining energy balance and glucose and lipoprotein metabolism, with overactivity linked to aberrant glycemic and lipoprotein control, and a link to adiposity. Modulation of this system through endocannabinoid-receptor blockade has resulted in an improvement in a number of important risk factors in clinical trials, including visceral and subcutaneous abdominal adipose tissue, glucose tolerance, dyslipidemia and measures of inflammation. These findings may have significant implications for the management of patients at risk of developing cardiovascular and metabolic disease; however, the occurrence of psychiatric adverse events with rimonabant may preclude further development of centrally active endocannabinoid receptor antagonists for the treatment of cardiometabolic disorders. Future research is needed to explore the role of selective peripheral CB(1) receptor antagonists in the treatment of patients at high cardiometabolic risk.

  16. Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Marks, Daniel L.; Ralston, Tyler S.; Boppart, Stephen A.

    2006-03-01

    Optical coherence tomography (OCT) is an emerging high-resolution real-time biomedical imaging technology that has potential as a novel investigational tool in developmental biology and functional genomics. In this study, murine embryos and embryonic hearts are visualized with an OCT system capable of 2-µm axial and 15-µm lateral resolution and with real-time acquisition rates. We present, to our knowledge, the first sets of high-resolution 2- and 3-D OCT images that reveal the internal structures of the mammalian (murine) embryo (E10.5) and embryonic (E14.5 and E17.5) cardiovascular system. Strong correlations are observed between OCT images and corresponding hematoxylin- and eosin-stained histological sections. Real-time in vivo embryonic (E10.5) heart activity is captured by spectral-domain optical coherence tomography, processed, and displayed at a continuous rate of five frames per second. With the ability to obtain not only high-resolution anatomical data but also functional information during cardiovascular development, the OCT technology has the potential to visualize and quantify changes in murine development and in congenital and induced heart disease, as well as enable a wide range of basic in vitro and in vivo research studies in functional genomics.

  17. [Hydrogen sulfide as a biologically active mediator in the cardiovascular system].

    PubMed

    Bełtowski, Jerzy

    2004-07-19

    Recent studies suggest that apart from nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2S) is another inorganic gaseous mediator in the cardiovascular system. H2S is synthesized from L-cysteine by either cystathionine beta-synthase (CBS) or cystathionin gamma--lyase (CSE), both using pyridoxal 5'-phosphate (vitamin B6) as a cofactor. CBS is the main H2S-producing enzyme in the brain and CSE is involved in H2S formation in the cardiovascular system. H2S induces hypotension in vivo and vasodilation vitro by opening KATP channels in vascular smooth muscle cells. Chronic administration of CSE inhibitor induces arterial hypertension in the rat. In addition, decreased H2S generation has been demonstrated in the vasculature of spontaneously hypertensive rat, in experimental hypertension induced by NO synthase blockade, and in hypoxia-induced pulmonary hypertension, and administration of exogenous H2S donor has significant therapeutic effects in these models. Deficiency of H2S may contribute to atherogenesis in some patients with hyperhomocysteinemia, in whom the metabolism of homocysteine to cysteine and H2S is compromised by vitamin B6 deficiency. Reduced H2S production in the brain was observed in patients with Alzheimer's disease. On the other hand, excess of H2S may lead to mental retardation in patients with Down's syndrome and may be involved in the pathogenesis of hypotension associated with septic shock.

  18. Histamine H3 receptors--general characterization and their function in the cardiovascular system.

    PubMed

    Malinowska, B; Godlewski, G; Schlicker, E

    1998-06-01

    The histamine H3 receptor was initially identified as a presynaptic autoreceptor controlling histamine release and synthesis in the brain. It belongs to the superfamily of G protein-coupled receptors. The existence of the H3 receptor which has not yet been cloned was definitely established by the design of highly potent and selective agonists (R-(-)-alpha-methylhistamine, imetit) and antagonists (thioperamide, clobenpropit). These receptors also occur as heteroreceptors both in the central nervous system and on peripheral neurons of the gastrointestinal and bronchial tract, where they regulate the release of a variety of neurotransmitters. In the cardiovascular system, histamine H3 receptors are mainly located presynaptically on the postganglionic sympathetic nerve fibers innervating the blood vessels and the heart. Their activation leads to the inhibition of noradrenaline release and consequently to the reduction of the neurogenic vasopressor and cardiostimulatory responses. The presence of such receptors has been shown both in vitro (human, pig, guinea-pig, rabbit, rat isolated tissues) and in vivo (rat, guinea-pig). The vascular and cardiac presynaptic H3 receptors may be activated by endogenous histamine. The vascular H3 receptors appear to be operative in hypertension and interact with presynaptic alpha 2-adrenoceptors. Postsynaptic vasodilatatory H3 receptors have been detected in several vascular beds as well. H3 receptor ligands affect basal cardiovascular parameters in conscious and anesthetized guinea-pigs but not rats. Presynaptic H3 receptors may play a role in the pathophysiology of headache and cardiac ischemia.

  19. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system.

    PubMed

    Mehta, Puja K; Griendling, Kathy K

    2007-01-01

    The renin-angiotensin system is a central component of the physiological and pathological responses of cardiovascular system. Its primary effector hormone, angiotensin II (ANG II), not only mediates immediate physiological effects of vasoconstriction and blood pressure regulation, but is also implicated in inflammation, endothelial dysfunction, atherosclerosis, hypertension, and congestive heart failure. The myriad effects of ANG II depend on time (acute vs. chronic) and on the cells/tissues upon which it acts. In addition to inducing G protein- and non-G protein-related signaling pathways, ANG II, via AT(1) receptors, carries out its functions via MAP kinases (ERK 1/2, JNK, p38MAPK), receptor tyrosine kinases [PDGF, EGFR, insulin receptor], and nonreceptor tyrosine kinases [Src, JAK/STAT, focal adhesion kinase (FAK)]. AT(1)R-mediated NAD(P)H oxidase activation leads to generation of reactive oxygen species, widely implicated in vascular inflammation and fibrosis. ANG II also promotes the association of scaffolding proteins, such as paxillin, talin, and p130Cas, leading to focal adhesion and extracellular matrix formation. These signaling cascades lead to contraction, smooth muscle cell growth, hypertrophy, and cell migration, events that contribute to normal vascular function, and to disease progression. This review focuses on the structure and function of AT(1) receptors and the major signaling mechanisms by which angiotensin influences cardiovascular physiology and pathology.

  20. Design and implementation of multimedia display system for electronic cardiovascular conferences with radiological consultation services

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguo; Stahl, Johannes N.; Li, Gaoping; Huang, H. K.; Liu, Jun; Li, Jian; Zhou, Peng

    2000-04-01

    We present a networked multimedia display system based on component technologies for the electronic cardiovascular conferences with radiological consultation services. The system consists of two parts: a data acquisition gateway and a multimedia display workstation. The acquisition gateway is used to collect digital data from difference modalities and authorize them in different sessions for conference presentation. The display workstation is used to display static/dynamic radiographic images, or video sequences, ECG and other text information. The display program is designed with functions of image processing, multimedia data manipulation and visualization. In addition, the workstation also integrates with a real time tele-consultation component for the necessary consultation between cardiologists and remote radiologists equipped with a tele-consultation workstation. Finally, we discuss the system clinical performance and the applications.

  1. Risk stratification in cardiovascular disease primary prevention - scoring systems, novel markers, and imaging techniques.

    PubMed

    Zannad, Faiez; De Backer, Guy; Graham, Ian; Lorenz, Matthias; Mancia, Giuseppe; Morrow, David A; Reiner, Zeljko; Koenig, Wolfgang; Dallongeville, Jean; Macfadyen, Robert J; Ruilope, Luis M; Wilhelmsen, Lars

    2012-04-01

    The aim of this paper is to review and discuss current methods of risk stratification for cardiovascular disease (CVD) prevention, emerging biomarkers, and imaging techniques, and their relative merits and limitations. This report is based on discussions that took place among experts in the area during a special CardioVascular Clinical Trialists workshop organized by the European Society of Cardiology Working Group on Cardiovascular Pharmacology and Drug Therapy in September 2009. Classical risk factors such as blood pressure and low-density lipoprotein cholesterol levels remain the cornerstone of risk estimation in primary prevention but their use as a guide to management is limited by several factors: (i) thresholds for drug treatment vary with the available evidence for cost-effectiveness and benefit-to-risk ratios; (ii) assessment may be imprecise; (iii) residual risk may remain, even with effective control of dyslipidemia and hypertension. Novel measures include C-reactive protein, lipoprotein-associated phospholipase A(2) , genetic markers, and markers of subclinical organ damage, for which there are varying levels of evidence. High-resolution ultrasound and magnetic resonance imaging to assess carotid atherosclerotic lesions have potential but require further validation, standardization, and proof of clinical usefulness in the general population. In conclusion, classical risk scoring systems are available and inexpensive but have a number of limitations. Novel risk markers and imaging techniques may have a place in drug development and clinical trial design. However, their additional value above and beyond classical risk factors has yet to be determined for risk-guided therapy in CVD prevention.

  2. Milan PM1 Induces Adverse Effects on Mice Lungs and Cardiovascular System

    PubMed Central

    Farina, Francesca; Sancini, Giulio; Longhin, Eleonora; Mantecca, Paride; Camatini, Marina; Palestini, Paola

    2013-01-01

    Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with cardiorespiratory diseases. Since the response to PM1 has not yet been deeply investigated, its impact on mice lungs and cardiovascular system is here examined. A repeated exposure to Milan PM1 was performed on BALB/c mice. The bronchoalveolar lavage fluid (BALf) and the lung parenchyma were screened for markers of inflammation (cell counts, tumor necrosis factor-α (TNF-α); macrophage inflammatory protein-2 (MIP-2); heme oxygenase-1 (HO-1); nuclear factor kappa-light-chain-enhancer of activated B cells p50 subunit (NFκB-p50); inducible nitric oxide synthetase (iNOS); endothelial-selectin (E-selectin)), cytotoxicity (lactate dehydrogenase (LDH); alkaline phosphatase (ALP); heat shock protein 70 (Hsp70); caspase-8-p18), and a putative pro-carcinogenic marker (cytochrome 1B1 (Cyp1B1)). Heart tissue was tested for HO-1, caspase-8-p18, NFκB-p50, iNOS, E-selectin, and myeloperoxidase (MPO); plasma was screened for markers of platelet activation and clot formation (soluble platelet-selectin (sP-selectin); fibrinogen; plasminogen activator inhibitor 1 (PAI-1)). PM1 triggers inflammation and cytotoxicity in lungs. A similar cytotoxic effect was observed on heart tissues, while plasma analyses suggest blood-endothelium interface activation. These data highlight the importance of lung inflammation in mediating adverse cardiovascular events following increase in ambient PM1 levels, providing evidences of a positive correlation between PM1 exposure and cardiovascular morbidity. PMID:23509745

  3. Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease.

    PubMed

    Willis, Monte S; Townley-Tilson, W H Davin; Kang, Eunice Y; Homeister, Jonathon W; Patterson, Cam

    2010-02-19

    The ubiquitin proteasome system (UPS) plays a crucial role in biological processes integral to the development of the cardiovascular system and cardiovascular diseases. The UPS prototypically recognizes specific protein substrates and places polyubiquitin chains on them for subsequent destruction by the proteasome. This system is in place to degrade not only misfolded and damaged proteins, but is essential also in regulating a host of cell signaling pathways involved in proliferation, adaptation to stress, regulation of cell size, and cell death. During the development of the cardiovascular system, the UPS regulates cell signaling by modifying transcription factors, receptors, and structural proteins. Later, in the event of cardiovascular diseases as diverse as atherosclerosis, cardiac hypertrophy, and ischemia/reperfusion injury, ubiquitin ligases and the proteasome are implicated in protecting and exacerbating clinical outcomes. However, when misfolded and damaged proteins are ubiquitinated by the UPS, their destruction by the proteasome is not always possible because of their aggregated confirmations. Recent studies have discovered how these ubiquitinated misfolded proteins can be destroyed by alternative "specific" mechanisms. The cytosolic receptors p62, NBR, and histone deacetylase 6 recognize aggregated ubiquitinated proteins and target them for autophagy in the process of "selective autophagy." Even the ubiquitination of multiple proteins within whole organelles that drive the more general macro-autophagy may be due, in part, to similar ubiquitin-driven mechanisms. In summary, the crosstalk between the UPS and autophagy highlight the pivotal and diverse roles the UPS plays in maintaining protein quality control and regulating cardiovascular development and disease.

  4. Role of MicroRNAs in Renin-Angiotensin-Aldosterone System-Mediated Cardiovascular Inflammation and Remodeling

    PubMed Central

    Tchounwou, Paul B.

    2015-01-01

    MicroRNAs are endogenous regulators of gene expression either by inhibiting translation or protein degradation. Recent studies indicate that microRNAs play a role in cardiovascular disease and renin-angiotensin-aldosterone system- (RAAS-) mediated cardiovascular inflammation, either as mediators or being targeted by RAAS pharmacological inhibitors. The exact role(s) of microRNAs in RAAS-mediated cardiovascular inflammation and remodeling is/are still in early stage of investigation. However, few microRNAs have been shown to play a role in RAAS signaling, particularly miR-155, miR-146a/b, miR-132/122, and miR-483-3p. Identification of specific microRNAs and their targets and elucidating microRNA-regulated mechanisms associated RAS-mediated cardiovascular inflammation and remodeling might lead to the development of novel pharmacological strategies to target RAAS-mediated vascular pathologies. This paper reviews microRNAs role in inflammatory factors mediating cardiovascular inflammation and RAAS genes and the effect of RAAS pharmacological inhibition on microRNAs and the resolution of RAAS-mediated cardiovascular inflammation and remodeling. Also, this paper discusses the advances on microRNAs-based therapeutic approaches that may be important in targeting RAAS signaling. PMID:26064773

  5. Pharmacologic therapy for erectile dysfunction and its interaction with the cardiovascular system.

    PubMed

    Ioakeimidis, Nikolaos; Kostis, John B

    2014-01-01

    Phosphodiesterase (PDE) enzymes are widely distributed throughout the body, having numerous effects and functions. The PDE type 5 (PDE5) inhibitors are widely used to treat erectile dysfunction (ED). Recent, intense preclinical and clinical research with PDE5 inhibitors has shed light on new mechanisms and has revealed a number of pleiotropic effects on the cardiovascular (CV) system. To date, PDE5 inhibition has been shown to be effective for the treatment of idiopathic pulmonary arterial hypertension, and both sildenafil and tadalafil are approved for this indication. However, current or future PDE5 inhibitors have the potential of becoming clinically useful in a variety of CV conditions such as heart failure, coronary artery disease, and hypertension. The present review discusses recent findings regarding pharmacologic treatment of ED and its interaction with the CV system and highlights current and future clinical applications beyond ED.

  6. Endothelin receptor polymorphisms in the cardiovascular system: potential implications for therapy and screening.

    PubMed

    Holzhauser, Luise; Zolty, Ronald

    2014-11-01

    Since its discovery in 1988, the endothelin system has been employed in multiple physiological and pathological roles. Endothelin-1 (ET-1) is not only a major regulator of vascular tone and cardiac contractility but also exerts mitogenic effects and is involved in inflammatory responses. ET-1 acts via two endothelin receptors located mainly on smooth muscle and endothelial cells through complex intracellular pathways differing between receptors and cell types. Polymorphisms of the endothelin receptor A have been associated not only with the risk in pulmonary arterial hypertension (PAH), systolic heart failure and systemic hypertension but are also of prognostic significance in dilated cardiomyopathy. Polymorphisms of endothelin receptors might lead to altered endothelin signaling and influence the response to endothelin receptor antagonist therapy in PAH in light of pharmacogenetics. This review will summarize the role of ET-1 within major cardiovascular pathologies and discuss endothelin receptor polymorphisms with special emphasis on potential therapeutic and screening implications.

  7. Unusual fistulas and connections in the cardiovascular system: A pictorial review

    PubMed Central

    Ghandour, Abed; Rajiah, Prabhakar

    2014-01-01

    A fistula is an abnormal vascular connection leading to diversion of blood from a high resistance arterial circuit to low resistance venous circuit. Coronary artery fistulas are abnormal communications of the coronary artery with a chamber of the heart, or with any segment of systemic or pulmonary circulation, bypassing the myocardial capillaries. Other unusual fistulas include connection between aorta and the right atrium/superior vena cava, aorta and the inferior vena cava or between a coronary artery bypass graft and a cardiac vein. Abnormal connections also include origin of the coronary artery from the pulmonary artery. In this article, we review the imaging, particularly computed tomography and magnetic resonance imaging of unusual fistulas and connections involving the cardiovascular system, particularly the coronary arteries and the aorta. PMID:24876921

  8. Protective actions of melatonin and growth hormone on the aged cardiovascular system.

    PubMed

    Paredes, Sergio D; Forman, Katherine A; García, Cruz; Vara, Elena; Escames, Germaine; Tresguerres, Jesús A F

    2014-05-01

    Epidemiological studies indicate that certain aspects of lifestyle and genetics act as risk factors for a variety of cardiovascular disorders, including coronary disease, hypertension, heart failure and stroke. Aging, however, appears to be the major contributor for morbidity and mortality of the impaired cardiovascular system. Growth hormone (GH) and melatonin seem to prevent cardiac aging, as they contribute to the recovery of several physiological parameters affected by age. These hormones exhibit antioxidant properties and decrease oxidative stress and apoptosis. This paper summarizes a set of studies related to the potential role that therapy with GH and melatonin may play in the protection of the altered cardiac function due to aging, with a focus on experiments performed in our laboratory using the senescence-accelerated mouse as an aging model. In general, we observed significantly increased inflammation, oxidative stress and apoptosis markers in hearts from senescence-accelerated prone 10-month-old animals compared to 2-month-old controls, while anti-inflammatory and antiapoptotic markers as well as endothelial nitric oxide synthase were decreased. Senescence-accelerated resistant animals showed no significant changes with age. GH or melatonin treatment prevented the age-dependent cardiac alterations observed in the senescence-accelerated prone group. Combined administration of GH plus melatonin reduced the age-related changes in senescence-accelerated prone hearts in an additive fashion that was different to that displayed when administered alone. GH and melatonin may be potential agents for counteracting oxidative stress, apoptosis and inflammation in the aging heart.

  9. Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention.

    PubMed

    Zhang, Yanhang; Barocas, Victor H; Berceli, Scott A; Clancy, Colleen E; Eckmann, David M; Garbey, Marc; Kassab, Ghassan S; Lochner, Donna R; McCulloch, Andrew D; Tran-Son-Tay, Roger; Trayanova, Natalia A

    2016-09-01

    Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications.

  10. Modeling the cardiovascular system using a nonlinear additive autoregressive model with exogenous input

    NASA Astrophysics Data System (ADS)

    Riedl, M.; Suhrbier, A.; Malberg, H.; Penzel, T.; Bretthauer, G.; Kurths, J.; Wessel, N.

    2008-07-01

    The parameters of heart rate variability and blood pressure variability have proved to be useful analytical tools in cardiovascular physics and medicine. Model-based analysis of these variabilities additionally leads to new prognostic information about mechanisms behind regulations in the cardiovascular system. In this paper, we analyze the complex interaction between heart rate, systolic blood pressure, and respiration by nonparametric fitted nonlinear additive autoregressive models with external inputs. Therefore, we consider measurements of healthy persons and patients suffering from obstructive sleep apnea syndrome (OSAS), with and without hypertension. It is shown that the proposed nonlinear models are capable of describing short-term fluctuations in heart rate as well as systolic blood pressure significantly better than similar linear ones, which confirms the assumption of nonlinear controlled heart rate and blood pressure. Furthermore, the comparison of the nonlinear and linear approaches reveals that the heart rate and blood pressure variability in healthy subjects is caused by a higher level of noise as well as nonlinearity than in patients suffering from OSAS. The residue analysis points at a further source of heart rate and blood pressure variability in healthy subjects, in addition to heart rate, systolic blood pressure, and respiration. Comparison of the nonlinear models within and among the different groups of subjects suggests the ability to discriminate the cohorts that could lead to a stratification of hypertension risk in OSAS patients.

  11. [Heme oxygenase and carbon monoxide in the physiology and pathology of the cardiovascular system].

    PubMed

    Bełtowski, Jerzy; Jamroz, Anna; Borkowska, Ewelina

    2004-03-03

    Heme oxygenase (HO) degrades heme to carbon monoxide (CO), ferrous ions, and the bile pigment biliverdin, which is subsequently reduced to the other important bile pigment, bilirubin, by biliverdin reductase. Fe2+ liberated from the heme molecule upregulates ferritin production, and bile pigments are potent endogenous antioxidants. The HO enzyme exists in three isophorms: HO-1 is expressed at low levels under physiological conditions, but is induced by numerous factors, including oxidative stress, inflammation, nitric oxide, an elevated level of substrate, and hypoxia. HO-2 is a constitutive enzyme involved in the baseline production of CO in the cardiovascular and nervous systems, whereas HO-3 is also ubiquitously expressed, but possesses low catalytic activity. Like nitric oxide, CO activates soluble guanylate cyclase and elevates cGMP in target tissues, which dilates blood vessels. It also does this by directly activating potassium channels in vascular smooth muscle cells. In addition, CO inhibits platelet aggregation and proliferation of vascular smooth muscle cells, inhibits apoptosis, and stimulates angiogenesis. Both deficiency, and excess of HO-1 may be involved in the pathogenesis of arterial hypertension. Induction of HO-1 attenuates atherosclerosis and myocardial ischemia-reperfusion injury. Pharmacological and genetic induction of HO-1 as well as the delivery of exogenous CO are promising therapeutic strategies for the treatment of cardiovascular diseases.

  12. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease.

    PubMed

    Guarner, Verónica; Rubio-Ruiz, Maria Esther

    2015-01-01

    Aging is associated with immunosenescence and accompanied by a chronic inflammatory state which contributes to metabolic syndrome, diabetes and their cardiovascular consequences. Risk factors for cardiovascular diseases (CVDs) and diabetes overlap, leading to the hypothesis that both share an inflammatory basis. Obesity is increased in the elderly population, and adipose tissue induces a state of systemic inflammation partially induced by adipokines. The liver plays a pivotal role in the metabolism of nutrients and exhibits alterations in the expression of genes associated with inflammation, cellular stress and fibrosis. Hepatic steatosis and its related inflammatory state (steatohepatitis) are the main hepatic complications of obesity and metabolic diseases. Aging-linked declines in expression and activity of endoplasmic reticulum molecular chaperones and folding enzymes compromise proper protein folding and the adaptive response of the unfolded protein response. These changes predispose aged individuals to CVDs. CVDs and endothelial dysfunction are characterized by a chronic alteration of inflammatory function and markers of inflammation and the innate immune response, including C-reactive protein, interleukin-6, TNF-α, and several cell adhesion molecules are linked to the occurrence of myocardial infarction and stroke in healthy elderly populations and patients with metabolic diseases.

  13. Nprl3 is required for normal development of the cardiovascular system.

    PubMed

    Kowalczyk, Monika S; Hughes, Jim R; Babbs, Christian; Sanchez-Pulido, Luis; Szumska, Dorota; Sharpe, Jacqueline A; Sloane-Stanley, Jacqueline A; Morriss-Kay, Gillian M; Smoot, Leslie B; Roberts, Amy E; Watkins, Hugh; Bhattacharya, Shoumo; Gibbons, Richard J; Ponting, Chris P; Wood, William G; Higgs, Douglas R

    2012-08-01

    C16orf35 is a conserved and widely expressed gene lying adjacent to the human α-globin cluster in all vertebrate species. In-depth sequence analysis shows that C16orf35 (now called NPRL3) is an orthologue of the yeast gene Npr3 (nitrogen permease regulator 3) and, furthermore, is a paralogue of its protein partner Npr2. The yeast Npr2/3 dimeric protein complex senses amino acid starvation and appropriately adjusts cell metabolism via the TOR pathway. Here we have analysed a mouse model in which expression of Nprl3 has been abolished using homologous recombination. The predominant effect on RNA expression appears to involve genes that regulate protein synthesis and cell cycle, consistent with perturbation of the mTOR pathway. Embryos homozygous for this mutation die towards the end of gestation with a range of cardiovascular defects, including outflow tract abnormalities and ventriculoseptal defects consistent with previous observations, showing that perturbation of the mTOR pathway may affect development of the myocardium. NPRL3 is a candidate gene for harbouring mutations in individuals with developmental abnormalities of the cardiovascular system.

  14. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System.

    PubMed

    Menazza, Sara; Murphy, Elizabeth

    2016-03-18

    Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.

  15. Vascular peroxidase 1: a novel enzyme in promoting oxidative stress in cardiovascular system.

    PubMed

    Ma, Qi-Lin; Zhang, Guo-Gang; Peng, Jun

    2013-07-01

    Vascular peroxidase 1 (VPO1) is a recently identified novel family member of peroxidases in cardiovascular system. As an enzyme that is downstream of NADPH oxidases (NOX), VPO1 functions to utilize NOX - derived hydrogen peroxide (H2O2) to produce hypochlorous acid (HOCl), a strong oxidant which is believed to greatly promote oxidative stress. Under multiple conditions, NOX is activated concomitantly with an increase in superoxide anion (O2(.-)) and H2O2 production. The latter is converted to HOCl by VPO1. In this process (O2(.-) → H2O2 → HOCl), the oxidant reactivities of reactive oxygen species (ROS) are significantly increased and therefore the oxidative stress is dramatically amplified. Several lines of evidence suggest that the NOX/VPO1 pathway - mediated oxidative stress plays an important role in myocardial ischemia-reperfusion injury, endothelial cell apoptosis and/or smooth muscle cell proliferation. In addition, VPO1 can be secreted into the extracellular space to participate in extracellular matrix formation, suggesting that VPO1 may also play a role in cardiovascular remodeling (such as fibrosis). This function is independent of the peroxidase activity of VPO1.

  16. Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system.

    PubMed

    Kim, Teayoun; Yang, Qinglin

    2013-06-26

    Peroxisome-proliferator-activated receptors (PPARs) comprise three subtypes (PPARα, δ and γ) to form a nuclear receptor superfamily. PPARs act as key transcriptional regulators of lipid metabolism, mitochondrial biogenesis, and anti-oxidant defense. While their roles in regulating lipid metabolism have been well established, the role of PPARs in regulating redox activity remains incompletely understood. Since redox activity is an integral part of oxidative metabolism, it is not surprising that changes in PPAR signaling in a specific cell or tissue will lead to alteration of redox state. The effects of PPAR signaling are directly related to PPAR expression, protein activities and PPAR interactions with their coregulators. The three subtypes of PPARs regulate cellular lipid and energy metabolism in most tissues in the body with overlapping and preferential effects on different metabolic steps depending on a specific tissue. Adding to the complexity, specific ligands of each PPAR subtype may also display different potencies and specificities of their role on regulating the redox pathways. Moreover, the intensity and extension of redox regulation by each PPAR subtype are varied depending on different tissues and cell types. Both beneficial and adverse effects of PPAR ligands against cardiovascular disorders have been extensively studied by many groups. The purpose of the review is to summarize the effects of each PPAR on regulating redox and the underlying mechanisms, as well as to discuss the implications in the cardiovascular system.

  17. System identification of closed-loop cardiovascular control mechanisms: diabetic autonomic neuropathy

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Mathias, J. M.; Mullen, T. J.; Cohen, R. J.; Freeman, R.

    1999-01-01

    We applied cardiovascular system identification (CSI) to characterize closed-loop cardiovascular regulation in patients with diabetic autonomic neuropathy (DAN). The CSI method quantitatively analyzes beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize four physiological coupling mechanisms, two of which are autonomically mediated (the heart rate baroreflex and the coupling of respiration, measured in terms of ILV, to heart rate) and two of which are mechanically mediated (the coupling of ventricular contraction to the generation of the ABP wavelet and the coupling of respiration to ABP). We studied 37 control and 60 diabetic subjects who were classified as having minimal, moderate, or severe DAN on the basis of standard autonomic tests. The autonomically mediated couplings progressively decreased with increasing severity of DAN, whereas the mechanically mediated couplings were essentially unchanged. CSI identified differences between the minimal DAN and control groups, which were indistinguishable based on the standard autonomic tests. CSI may provide a powerful tool for assessing DAN.

  18. Examing nursing students' understanding of the cardiovascular system in a BSN program

    NASA Astrophysics Data System (ADS)

    Stuart, Parker Emerson

    This study investigated the alignment of important cardiovascular system (CVS) concepts identified by expert nurses with nursing student's knowledge. Specifically, it focused on the prevalence of nursing students' alternative conceptions for these important concepts as a potential reason for a theory-practice gap in nursing (Corlett, 2000; Jordan, 1994). This is the first study to target nursing student alternative conceptions exclusively whereas other studies focused on diverse groups of undergraduates' CVS knowledge (Michael et al., 2002). The study was divided into two phases and used a case study approach with each phase of the study representing a single case. The first phase of the study sought to understand what CVS concepts expert nurses deemed relevant to their daily practice and how these experts used these concepts. The second phase identified nursing student alternative conceptions through the use of open-ended scenarios based on the results of phase I. For the first phase of the study involved four CVS expert nurses practicing in emergency rooms and cardiac intensive care units at two local hospitals. Interviews were used to elicit important CVS concepts. The expert nurses identified five broad concepts as important to their practice. These concepts were a) cardiovascular anatomical concepts; b) cardiovascular physiological concepts; c) homeostasis and diseases of the CVS; d) the interdependence and interaction of the CVS with other organ systems and e) the intersection of the CVS and technology in patient diagnosis and treatment. These finding reinforce concepts already being taught to nursing students but also suggest that instruction should focus more on how the CVS interacts with other organ systems and how technology and the CVS interact. The presence of alternative conceptions in the nursing students was examined through the use of open-ended questions. A total of 17 students fully completed the scenario questions. Results indicate that this

  19. Cardiovascular system identification: Simulation study using arterial and central venous pressures.

    PubMed

    Karamolegkos, Nikolaos; Vicario, Francesco; Chbat, Nicolas W

    2015-08-01

    The paper presents a study of the identifiability of a lumped model of the cardiovascular system. The significance of this work from the existing literature is in the potential advantage of using both arterial and central venous (CVP) pressures, two signals that are frequently monitored in the critical care unit. The analysis is done on the system's state-space representation via control theory and system identification techniques. Non-parametric state-space identification is preferred over other identification techniques as it optimally assesses the order of a model, which best describes the input-output data, without any prior knowledge about the system. In particular, a recent system identification algorithm, namely Observer Kalman Filter Identification with Deterministic Projection, is used to identify a simplified version of an existing cardiopulmonary model. The outcome of the study highlights the following two facts. In the deterministic (noiseless) case, the theoretical indicators report that the model is fully identifiable, whereas the stochastic case reveals the difficulty in determining the complete system's dynamics. This suggests that even with the use of CVP as an additional pressure signal, the identification of a more detailed (high order) model of the circulatory system remains a challenging task.

  20. Survey of fishes and environmental conditions in Abbotts Lagoon, Point Reyes National Seashore, California

    USGS Publications Warehouse

    Saiki, M.K.; Martin, B.A.

    2001-01-01

    This study was conducted to gain a better understanding of fishery resources in Abbotts Lagoon, Point Reyes National Seashore. During February/March, May, August, and November 1999, fish were sampled with floating variable-mesh gill nets and small minnow traps from as many as 14 sites in the lagoon. Water temperature, dissolved oxygen, pH, total ammonia(NH3 + NH4+), salinity, turbidity, water depth, and bottom substrate composition were also measured at each site. A total of 2,656 fish represented by eight species was captured during the study. Gill nets captured Sacramento perch, Archoplites interruptus; largemouth bass, Micropterus salmoides; Pacific herring, Clupea pallasi; prickly sculpin, Cottus asper, silver surfperch, Hyperprosopon ellipticum; longfin smelt, Spirinchus thaleichthys; and striped bass, Morone saxatilis; whereas minnow traps captured Sacramento perch; prickly sculpin; and threespine stickleback, Gasterosteus aculeatus. Cluster analysis (Ward's minimum variance method of fish catch statistics identified two major species assemblages-the first dominated by Sacramento perch and, to a lesser extent, by largemouth bass, and the second dominated by Pacific herring and threespine stickleback. Simple discriminant analysis of environmental variables indicated that salinity contributed the most towards separating the two assemblages.

  1. Hidden processes in structural representations: A reply to Abbott, Austerweil, and Griffiths (2015).

    PubMed

    Jones, Michael N; Hills, Thomas T; Todd, Peter M

    2015-07-01

    In recent work exploring the semantic fluency task, we found evidence indicative of optimal foraging policies in memory search that mirror search in physical environments. We determined that a 2-stage cue-switching model applied to a memory representation from a semantic space model best explained the human data. Abbott, Austerweil, and Griffiths demonstrate how these patterns could also emerge from a random walk applied to a network representation of memory based on human free-association norms. However, a major representational issue limits any conclusions that can be drawn about the process model comparison: Our process model operated on a memory space constructed from a learning model, whereas their model used human behavioral data from a task that is quite similar to the behavior they attempt to explain. Predicting semantic fluency (e.g., how likely it is to say cat after dog in a sequence of animals) from free association (how likely it is to say cat when given dog as a cue) should be possible with a relatively simple retrieval mechanism. The 2 tasks both tap memory, but they also share a common process of retrieval. Assuming that semantic memory is a network from free-association behavior embeds variance due to the shared retrieval process directly into the representation. A simple process mechanism is then sufficient to simulate semantic fluency because much of the requisite process complexity may already be hidden in the representation. (PsycINFO Database Record

  2. Nongenomic signaling pathways triggered by thyroid hormones and their metabolite 3-iodothyronamine on the cardiovascular system.

    PubMed

    Axelband, F; Dias, J; Ferrão, F M; Einicker-Lamas, M

    2011-01-01

    Thyroid hormones play a wide range of important physiological activities in almost all organism. As changes in these hormones levels-observed in hypothyroidism and hyperthyroidism-promote serious derangements of the cardiovascular system, it is important to know their mechanisms of action. Although the classic genomic actions which are dependent on interaction with nuclear receptors to modulate cardiac myocytes genes expression, there is growing evidence about T(3) and T(4)-triggered nongenomic pathways, resulted from their binding to plasma membrane, cytoplasm, or mitocondrial receptors that leads to a rapidly regulation of cardiac functions. Interestingly both actions converge to amplify thyroid hormone effects on cardiovascular system. T(3) and T(4) nongenomic actions modify inotropic and chronotropic effects, cardiac action potential duration, cardiac growth, and myocyte shape by protein translation through protein kinases-dependent signaling cascades, which include PKA, PKC, PI3K, and MAPK, and changes on ion channels and pumps activity. In respect to the decreased systemic vascular resistance seen in hyperthyroidism, T(3) appears to activate NOS or ATP-sensitive K(+) channels. In addition, a novel biologically active T(4)-derived metabolite has been described, 3-iodothyronamine, T(1)AM, which also acts through membrane receptors to mediate nongenomic cardiac effects. This metabolite influences the physiological manifestations of thyroid hormone actions by inducing opposite effects from those stimulated by T(3) and T(4), such as negative inotropic and chronotropic effects. Therefore, beyond genomic and nongenomic effects of thyroid hormones, it is crucial for there to be an equilibrium between T(3) or T(4) and T(1)AM levels for maintaining cardiac homeostasis.

  3. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    PubMed

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  4. Effects of intrauterine growth restriction on sleep and the cardiovascular system: The use of melatonin as a potential therapy?

    PubMed

    Yiallourou, Stephanie R; Wallace, Euan M; Miller, Suzanne L; Horne, Rosemary S C

    2016-04-01

    Intrauterine growth restriction (IUGR) complicates 5-10% of pregnancies and is associated with increased risk of preterm birth, mortality and neurodevelopmental delay. The development of sleep and cardiovascular control are closely coupled and IUGR is known to alter this development. In the long-term, IUGR is associated with altered sleep and an increased risk of hypertension in adulthood. Melatonin plays an important role in the sleep-wake cycle. Experimental animal studies have shown that melatonin therapy has neuroprotective and cardioprotective effects in the IUGR fetus. Consequently, clinical trials are currently underway to assess the short and long term effects of antenatal melatonin therapy in IUGR pregnancies. Given melatonin's role in sleep regulation, this hormone could affect the developing infants' sleep-wake cycle and cardiovascular function after birth. In this review, we will 1) examine the role of melatonin as a therapy for IUGR pregnancies and the potential implications on sleep and the cardiovascular system; 2) examine the development of sleep-wake cycle in fetal and neonatal life; 3) discuss the development of cardiovascular control during sleep; 4) discuss the effect of IUGR on sleep and the cardiovascular system and 5) discuss the future implications of melatonin therapy in IUGR pregnancies.

  5. Imaging interactions between the immune and cardiovascular systems in vivo by multiphoton microscopy.

    PubMed

    Millington, Owain R; Brewer, James M; Garside, Paul; Maffia, Pasquale

    2010-01-01

    Several recent studies in immunology have used multiphoton laser-scanning microscopy to visualise the induction of an immune response in real time in vivo. These experiments are illuminating the cellular and molecular interactions involved in the induction, maintenance and regulation of immune responses. Similar approaches are being applied in cardiovascular research where there is an increasing body of evidence to support a significant role for the adaptive immune system in vascular disease. As such, we have begun to dissect the role of T lymphocytes in atherosclerosis in real time in vivo. Here, we provide step-by-step guides to the various stages involved in visualising the migration of T cells within a lymph node and their infiltration into inflamed tissues such as atherosclerotic arteries. These methods provide an insight into the mechanisms involved in the activation and function of immune cells in vivo.

  6. Multiscale model of the human cardiovascular system: Description of heart failure and comparison of contractility indices.

    PubMed

    Kosta, S; Negroni, J; Lascano, E; Dauby, P C

    2017-02-01

    A multiscale model of the cardiovascular system is presented. Hemodynamics is described by a lumped parameter model, while heart contraction is described at the cellular scale. An electrophysiological model and a mechanical model were coupled and adjusted so that the pressure and volume of both ventricles are linked to the force and length of a half-sarcomere. Particular attention was paid to the extreme values of the sarcomere length, which must keep physiological values. This model is able to reproduce healthy behavior, preload variations experiments, and ventricular failure. It also allows to compare the relevance of standard cardiac contractility indices. This study shows that the theoretical gold standard for assessing cardiac contractility, namely the end-systolic elastance, is actually load-dependent and therefore not a reliable index of cardiac contractility.

  7. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.

    PubMed

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.

  8. [Structure and biological action on cardiovascular systems of saponins from Panax notoginseng].

    PubMed

    Li, Juan; Wang, Ru-feng; Yang, Li; Wang, Zheng-tao

    2015-09-01

    Notoginseng Radix et Rhizoma (Sanqi), the underground part of Panax notoginseng (Burk.) F. H. Chen (Araliaceae) is commonly used in Chinese medicine for treatment of haemorrhage, haemostasis, swelling, etc. The aerial part including leaves, flowers and fruits are also applied for similar functions. Triterpenoid saponins are considered to be responsible for the biological activities of Sanqi. Up to date, more than 100 saponins have been isolated from theroots, rhizomes, leaves, flowers and fruits of P. notoginseng. The reported saponins can be classified into protopanaxadiol (PPD), protopanaxatriol (PPT), C17 side-chain varied and other types, according to the skeletons of the aglycons. The present review summarizes the saponins isolated from P. notoginseng and their distribution in different medicinal organs, as well as the pharmacological actions on cardiovascular system.

  9. Preclinical safety assessments of nano-sized constructs on cardiovascular system toxicity: A case for telemetry.

    PubMed

    Cheah, Hoay Yan; Kiew, Lik Voon; Lee, Hong Boon; Japundžić-Žigon, Nina; Vicent, Marίa J; Hoe, See Ziau; Chung, Lip Yong

    2017-02-06

    While nano-sized construct (NSC) use in medicine has grown significantly in recent years, reported unwanted side effects have raised safety concerns. However, the toxicity of NSCs to the cardiovascular system (CVS) and the relative merits of the associated evaluation methods have not been thoroughly studied. This review discusses the toxicological profiles of selected NSCs and provides an overview of the assessment methods, including in silico, in vitro, ex vivo and in vivo models and how they are related to CVS toxicity. We conclude the review by outlining the merits of telemetry coupled with spectral analysis, baroreceptor reflex sensitivity analysis and echocardiography as an appropriate integrated strategy for the assessment of the acute and chronic impact of NSCs on the CVS. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Limitations and vulnerabilities of the neonatal cardiovascular system: considerations for anesthetic management.

    PubMed

    Wolf, Andrew R; Humphry, Adrian T

    2014-01-01

    Development of the cardiovascular system through the last trimester of pregnancy and the subsequent neonatal period is profound. Morphological changes within the myocardium make the heart vulnerable to challenges such as fluid shifts and anesthetic drugs. The sensitivity of the myocardium to metabolic challenges and potential harm of drugs needed to maintain adequate blood pressure and cardiac output are highlighted. Traditional monitoring under anesthesia has focussed on maintaining oxygenation and heart rate in the neonate with less attention paid to blood pressure, cardiac output, and more importantly organ well-being. There is now a better understanding of the limitations of blood pressure homeostasis in the neonate and the potential consequences of marginal hypoperfusion. This article highlights some of these vulnerabilities particularly as they relate to anesthesia and surgery in the very young.

  11. A practical introduction to the hemodynamic analysis of the cardiovascular system with 4D Flow MRI.

    PubMed

    Pineda Zapata, J A; Delgado de Bedout, J A; Rascovsky Ramírez, S; Bustamante, C; Mesa, S; Calvo Betancur, V D

    2014-01-01

    The 4D Flow MRI technique provides a three-dimensional representation of blood flow over time, making it possible to evaluate the hemodynamics of the cardiovascular system both qualitatively and quantitatively. In this article, we describe the application of the 4D Flow technique in a 3T scanner; in addition to the technical parameters, we discuss the advantages and limitations of the technique and its possible clinical applications. We used 4D Flow MRI to study different body areas (chest, abdomen, neck, and head) in 10 volunteers. We obtained 3D representations of the patterns of flow and quantitative hemodynamic measurements. The technique makes it possible to evaluate the pattern of blood flow in large and midsize vessels without the need for exogenous contrast agents.

  12. Role of sulfur-containing gaseous substances in the cardiovascular system.

    PubMed

    Hart, Joanne L

    2011-01-01

    Gaseous mediators are important signaling molecules with properties that differ from other, larger signaling molecules. Small gaseous mediators readily cross cell membranes and can access sites on target molecules that would be inaccessible to bulkier molecules. They have a variety of signaling mechanisms, some well understood, some not. The family of gasotransmitters is growing, well known members include nitric oxide (NO) and carbon monoxide (CO). Newer candidates include the sulfur containing gases hydrogen sulfide (H2S), which has been shown to have a wide range of physiological functions, and more recently sulfur dioxide (SO2) has been studied as a potential new gasotransmitter. This review explores the production, regulation and role of the sulfur-containing gases H2S and SO2 at the level of the endothelial and vascular smooth muscle cells as well as the broader effects on the cardiovascular system under both physiological and pathophysiological conditions.

  13. Polyphenols: benefits to the cardiovascular system in health and in aging.

    PubMed

    Khurana, Sandhya; Venkataraman, Krishnan; Hollingsworth, Amanda; Piche, Matthew; Tai, T C

    2013-09-26

    Numerous studies have demonstrated the importance of naturally occurring dietary polyphenols in promoting cardiovascular health and emphasized the significant role these compounds play in limiting the effects of cellular aging. Polyphenols such as resveratrol, epigallocatechin gallate (EGCG), and curcumin have been acknowledged for having beneficial effects on cardiovascular health, while some have also been shown to be protective in aging. This review highlights the literature surrounding this topic on the prominently studied and documented polyphenols as pertaining to cardiovascular health and aging.

  14. Associations Between Cardiovascular Health and Health-Related Quality of Life, Behavioral Risk Factor Surveillance System, 2013

    PubMed Central

    Fang, Jing; Zack, Matthew; Moore, Latetia; Loustalot, Fleetwood

    2016-01-01

    Introduction The American Heart Association established 7 cardiovascular health metrics as targets for promoting healthier lives. Cardiovascular health has been hypothesized to play a role in individuals’ perception of quality of life; however, previous studies have mostly assessed the effect of cardiovascular risk factors on quality of life. Methods Data were from the 2013 Behavioral Risk Factor Surveillance System, a state-based telephone survey of adults 18 years or older (N = 347,073). All measures of cardiovascular health and health-related quality of life were self-reported. The 7 ideal cardiovascular health metrics were normal blood pressure, cholesterol, body mass index, not having diabetes, not smoking, being physically active, and having adequate fruit or vegetable intake. Cardiovascular health was categorized into meeting 0–2, 3–5, or 6–7 ideal cardiovascular health metrics. Logistic regression models examined the association between cardiovascular health, general health status, and 3 measures of unhealthy days per month, adjusting for age, sex, race/ethnicity, education, and annual income. Results Meeting 3 to 5 or 6 to 7 ideal cardiovascular health metrics was associated with a 51% and 79% lower adjusted prevalence ratio (aPR) of fair/poor health, respectively (aPR = 0.49, 95% confidence interval [CI] [0.47–0.50], aPR = 0.21, 95% CI [0.19–0.23]); a 47% and 72% lower prevalence of ≥14 physically unhealthy days (aPR = 0.53, 95% CI [0.51–0.55], aPR = 0.28, 95% CI [0.26–0.20]); a 43% and 66% lower prevalence of ≥14 mentally unhealthy days (aPR = 0.57, 95% CI [0.55–0.60], aPR = 0.34, 95% CI [0.31–0.37]); and a 50% and 74% lower prevalence of ≥14 activity limitation days (aPR = 0.50, 95% CI [0.48–0.53], aPR = 0.26, 95% CI [0.23–0.29]) in the past 30 days. Conclusion Achieving a greater number of ideal cardiovascular health metrics may be associated with less impairment in health-related quality of life. PMID:27468158

  15. [Vitamin D and cardiovascular risk].

    PubMed

    Mayer, Otto

    2012-05-01

    The pathogenesis of cardiovascular disease is without any doubt multifactorial, and it is generally accepted, that conventional risk factors determined only about 80% of cardiovascular risk. There is accumulating evidence that vitamin D exerts important pathophysiological effects on cardiovascular system. Low vitamin D was associated with increased cardiovascular risk in several reports. This review summarizes recent epidemiological evidence and possible pathophysiological mechanism for a role of low vitamin D in cardiovascular diseases. Moreover, available data concerning vitamin D supplementation are depicted.

  16. Differential Distribution of Bradykinin B(2) Receptors in the Rat and Human Cardiovascular System.

    PubMed

    Figueroa, Carlos D.; Marchant, Alejandra; Novoa, Ulises; Förstermann, Ulrich; Jarnagin, Kurt; Schölkens, Bernward; Müller-Esterl, Werner

    2001-01-01

    -Bradykinin, a major vasodilator peptide, plays an important role in the local regulation of blood pressure, blood flow, and vascular permeability; however, the cellular distribution of the major bradykinin B(2) receptor in the cardiovascular system is not precisely known. Immunoblot analysis with an anti-peptide antibody to the bradykinin B(2) receptor or chemical cross-linkage with [(125)I]Tyr(0)-bradykinin revealed a band of 69+/-3 kDa at varying intensity in the homogenates of the endothelium and tunica media of the rat aorta and endocardium. Immunostaining showed that the B(2) receptor is abundant in the endothelial linings of the aorta, other elastic arteries, muscular arteries, capillaries, venules, and large veins, where it localizes preferentially to the luminal face of the endothelial cells. In marked contrast, small arterioles (ie, the principal blood-pressure regulating vessels) of the mesenterium, heart, urinary bladder, brain, salivary gland, and kidney had a different staining pattern in which B(2) receptor was prominent in the perivascular smooth muscle cells of the tunica media. A similar distribution pattern was found in mouse as well as in human tissues, indicating that the particular distribution pattern of the B(2) receptor in arterioles is not a species-specific phenomenon. During development, the distribution of B(2) receptor in the heart changes; for example, in the heart of newborn rats, the B(2) receptor was abundant in the myocardium, whereas in the adult heart, the receptor was present in the endocardium of atria, atrioventricular valves, and ventricles but not in the myocardium. Thus, B(2) receptors are localized differentially in different parts of the cardiovascular system: the arterioles have smooth muscle-localized B(2) receptors, and large elastic vessels have endothelium-localized receptors.

  17. Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system

    PubMed Central

    Imanaka-Yoshida, Kyoko; Aoki, Hiroki

    2014-01-01

    Living tissue is composed of cells and extracellular matrix (ECM). In the heart and blood vessels, which are constantly subjected to mechanical stress, ECM molecules form well-developed fibrous frameworks to maintain tissue structure. ECM is also important for biological signaling, which influences various cellular functions in embryonic development, and physiological/pathological responses to extrinsic stimuli. Among ECM molecules, increased attention has been focused on matricellular proteins. Matricellular proteins are a growing group of non-structural ECM proteins highly up-regulated at active tissue remodeling, serving as biological mediators. Tenascin-C (TNC) is a typical matricellular protein, which is highly expressed during embryonic development, wound healing, inflammation, and cancer invasion. The expression is tightly regulated, dependent on the microenvironment, including various growth factors, cytokines, and mechanical stress. In the heart, TNC appears in a spatiotemporal-restricted manner during early stages of development, sparsely detected in normal adults, but transiently re-expressed at restricted sites associated with tissue injury and inflammation. Similarly, in the vascular system, TNC is strongly up-regulated during embryonic development and under pathological conditions with an increase in hemodynamic stress. Despite its intriguing expression pattern, cardiovascular system develops normally in TNC knockout mice. However, deletion of TNC causes acute aortic dissection (AAD) under strong mechanical and humoral stress. Accumulating reports suggest that TNC may modulate the inflammatory response and contribute to elasticity of the tissue, so that it may protect cardiovascular tissue from destructive stress responses. TNC may be a key molecule to control cellular activity during development, adaptation, or pathological tissue remodeling. PMID:25120494

  18. Modeling ventricular interaction: a multiscale approach from sarcomere mechanics to cardiovascular system hemodynamics.

    PubMed

    Lumens, Joost; Delhaas, Tammo; Kirn, Borut; Arts, Theo

    2008-01-01

    Direct ventricular interaction via the interventricular septum plays an important role in ventricular hemodynamics and mechanics. A large amount of experimental data demonstrates that left and right ventricular pump mechanics influence each other and that septal geometry and motion depend on transmural pressure. We present a lumped model of ventricular mechanics consisting of three wall segments that are coupled on the basis of balance laws stating mechanical equilibrium at the intersection of the three walls. The input consists of left and right ventricular volumes and an estimate of septal wall geometry. Wall segment geometry is expressed as area and curvature and is related to sarcomere extension. With constitutive equations of the sarcomere, myofiber stress is calculated. The force exerted by each wall segment on the intersection, as a result of wall tension, is derived from myofiber stress. Finally, septal geometry and ventricular pressures are solved by achieving balance of forces. We implemented this ventricular module in a lumped model of the closed-loop cardiovascular system (CircAdapt model) The resulting multiscale model enables dynamic simulation of myofiber mechanics, ventricular cavity mechanics, and cardiovascular system hemodynamics. The model was tested by performing simulations with synchronous and asynchronous mechanical activation of the wall segments. The simulated results of ventricular mechanics and hemodynamics were compared with experimental data obtained before and after acute induction of left bundle branch block (LBBB) in dogs. The changes in simulated ventricular mechanics and septal motion as a result of the introduction of mechanical asynchrony were very similar to those measured in the animal experiments. In conclusion, the module presented describes ventricular mechanics including direct ventricular interaction realistically and thereby extends the physiological application range of the CircAdapt model.

  19. Oleamide: a fatty acid amide signaling molecule in the cardiovascular system?

    PubMed

    Hiley, C Robin; Hoi, Pui Man

    2007-01-01

    Oleamide (cis-9,10-octadecenoamide), a fatty acid primary amide discovered in the cerebrospinal fluid of sleep-deprived cats, has a variety of actions that give it potential as a signaling molecule, although these actions have not been extensively investigated in the cardiovascular system. The synthetic pathway probably involves synthesis of oleoylglycine and then conversion to oleamide by peptidylglycine alpha-amidating monooxygenase (PAM); breakdown of oleamide is by fatty acid amide hydrolase (FAAH). Oleamide interacts with voltage-gated Na(+) channels and allosterically with GABA(A) and 5-HT(7) receptors as well as having cannabinoid-like actions. The latter have been suggested to be due to potentiation of the effects of endocannabinoids such as anandamide by inhibiting FAAH-mediated hydrolysis. This might underlie an "entourage effect" whereby co-released endogenous nonagonist congeners of endocannabinoids protect the active molecule from hydrolysis by FAAH. However, oleamide has direct agonist actions at CB(1) cannabinoid receptors and also activates the TRPV1 vanilloid receptor. Other actions include inhibition of gap-junctional communication, and this might give oleamide a role in myocardial development. Many of these actions are absent from the trans isomer of 9,10-octadecenoamide. One of the most potent actions of oleamide is vasodilation. In rat small mesenteric artery the response does not involve CB(1) cannabinoid receptors but another pertussis toxin-sensitive, G protein-coupled receptor, as yet unidentified. This receptor is sensitive to rimonabant and O-1918, an antagonist at the putative "abnormal-cannabidiol" or endothelial "anandamide" receptors. Vasodilation is mediated by endothelium-derived nitric oxide, endothelium-dependent hyperpolarization, and also through activation of TRPV1 receptors. A physiological role for oleamide in the heart and circulation has yet to be demonstrated, as has production by cells of the cardiovascular system, but

  20. The implication of protein malnutrition on cardiovascular control systems in rats

    PubMed Central

    Silva, Fernanda C.; de Menezes, Rodrigo C.; Chianca, Deoclécio A.

    2015-01-01

    The malnutrition in early life is associated with metabolic changes and cardiovascular impairment in adulthood. Deficient protein intake-mediated hypertension has been observed in clinical and experimental studies. In rats, protein malnutrition also increases the blood pressure and enhances heart rate and sympathetic activity. In this review, we discuss the effects of post-weaning protein malnutrition on the resting mean arterial pressure and heart rate and their variabilities, cardiovascular reflexes sensitivity, cardiac autonomic balance, sympathetic and renin-angiotensin activities and neural plasticity during adult life. These insights reveal an interesting prospect on the autonomic modulation underlying the cardiovascular imbalance and provide relevant information on preventing cardiovascular diseases. PMID:26388783

  1. A multiformalism and multiresolution modelling environment: application to the cardiovascular system and its regulation

    PubMed Central

    Hernández, Alfredo I.; Le Rolle, Virginie; Defontaine, Antoine; Carrault, Guy

    2009-01-01

    The role of modelling and simulation on the systemic analysis of living systems is now clearly established. Emerging disciplines, such as Systems Biology, and world-wide research actions, such as the Physiome project or the Virtual Physiological Human, are based on an intensive use of modelling and simulation methodologies and tools. One of the key aspects in this context is to perform an efficient integration of various models representing different biological or physiological functions, at different resolutions, spanning through different scales. This paper presents a multi-formalism modelling and simulation environment (M2SL) that has been conceived to ease model integration. A given model is represented as a set of coupled and atomic model components that may be based on different mathematical formalisms with heterogeneous structural and dynamical properties. A co-simulation approach is used to solve these hybrid systems. The pioneering model of the overall regulation of the cardiovascular system, proposed by Guyton, Coleman & Granger in 1972 has been implemented under M2SL and a pulsatile ventricular model, based on a time-varying elastance has been integrated, in a multi-resolution approach. Simulations reproducing physiological conditions and using different coupling methods show the benefits of the proposed environment. PMID:19884187

  2. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system.

    PubMed

    Kucinska-Lipka, J; Gubanska, I; Janik, H; Sienkiewicz, M

    2015-01-01

    Electrospinning is a unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of the cardiovascular system. Such artificial soft tissues of the cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportunity to form fibres with nm- to μm-scale in diameter. The arrangement of obtained fibres and their surface determine the biocompatibility of the scaffolds. Polyurethanes (PUs) are being commonly used as a prosthesis of cardiovascular soft tissues due to their excellent biocompatibility, non-toxicity, elasticity and mechanical properties. PUs also possess fine spinning properties. The combination of a variety of PU properties with an electrospinning technique, conducted at the well tailored conditions, gives unlimited possibilities of forming novel polyurethane materials suitable for soft tissue scaffolds applied in cardiovascular tissue engineering. This paper can help researches to gain more widespread and deeper understanding of designing electrospinable PU materials, which may be used as cardiovascular soft tissue scaffolds. In this paper we focus on reagents used in PU synthesis designed to increase PU biocompatibility (polyols) and biodegradability (isocyanates). We also describe suggested surface modifications of electrospun PUs, and the direct influence of surface wettability on providing enhanced biocompatibility of scaffolds. We indicate a great influence of electrospinning parameters (voltage, flow rate, working distance) and used solvents (mostly DMF, THF and HFIP) on fibre alignment and diameter - what impacts the biocompatibility and hemocompatibility of such electrospun PU scaffolds. Moreover, we present PU modifications with natural polymers with novel approach applied in electrospinning of PU scaffolds. This work may contribute with further developing of novel electrospun PUs, which may be

  3. Exosomes and Cardiovascular Protection.

    PubMed

    Davidson, Sean M; Takov, Kaloyan; Yellon, Derek M

    2017-02-01

    Most, if not all, cells of the cardiovascular system secrete small, lipid bilayer vesicles called exosomes. Despite technical challenges in their purification and analysis, exosomes from various sources have been shown to be powerfully cardioprotective. Indeed, it is possible that much of the so-called "paracrine" benefit in cardiovascular function obtained by stem cell therapy can be replicated by the injection of exosomes produced by stem cells. However, exosomes purified from plasma appear to be just as capable of activating cardioprotective pathways. We discuss the potential roles of endogenous exosomes in the cardiovascular system, how this is perturbed in cardiovascular disease, and evaluate their potential as therapeutic agents to protect the heart.

  4. Usefulness of serum interleukin-18 in predicting cardiovascular mortality in patients with chronic kidney disease--systems and clinical approach.

    PubMed

    Formanowicz, Dorota; Wanic-Kossowska, Maria; Pawliczak, Elżbieta; Radom, Marcin; Formanowicz, Piotr

    2015-12-16

    The aim of this study was to check if serum interleukin-18 (IL-18) predicts 2-year cardiovascular mortality in patients at various stages of chronic kidney disease (CKD) and history of acute myocardial infarction (AMI) within the previous year. Diabetes mellitus was one of the key factors of exclusion. It was found that an increase in serum concentration of IL-18 above the cut-off point (1584.5 pg/mL) was characterized by 20.63-fold higher risk of cardiovascular deaths among studied patients. IL-18 serum concentration was found to be superior to the well-known cardiovascular risk parameters, like high sensitivity C-reactive protein (hsCRP), carotid intima media thickness (CIMT), glomerular filtration rate, albumins, ferritin, N-terminal prohormone of brain natriuretic peptide (NT-proBNP) in prognosis of cardiovascular mortality. The best predictive for IL-18 were 4 variables, such as CIMT, NT-proBNP, albumins and hsCRP, as they predicted its concentration at 89.5%. Concluding, IL-18 seems to be important indicator and predictor of cardiovascular death in two-year follow-up among non-diabetic patients suffering from CKD, with history of AMI in the previous year. The importance of IL-18 in the process of atherosclerotic plaque formation has been confirmed by systems analysis based on a formal model expressed in the language of Petri nets theory.

  5. Usefulness of serum interleukin-18 in predicting cardiovascular mortality in patients with chronic kidney disease – systems and clinical approach

    PubMed Central

    Formanowicz, Dorota; Wanic-Kossowska, Maria; Pawliczak, Elżbieta; Radom, Marcin; Formanowicz, Piotr

    2015-01-01

    The aim of this study was to check if serum interleukin-18 (IL-18) predicts 2-year cardiovascular mortality in patients at various stages of chronic kidney disease (CKD) and history of acute myocardial infarction (AMI) within the previous year. Diabetes mellitus was one of the key factors of exclusion. It was found that an increase in serum concentration of IL-18 above the cut-off point (1584.5 pg/mL) was characterized by 20.63-fold higher risk of cardiovascular deaths among studied patients. IL-18 serum concentration was found to be superior to the well-known cardiovascular risk parameters, like high sensitivity C-reactive protein (hsCRP), carotid intima media thickness (CIMT), glomerular filtration rate, albumins, ferritin, N-terminal prohormone of brain natriuretic peptide (NT-proBNP) in prognosis of cardiovascular mortality. The best predictive for IL-18 were 4 variables, such as CIMT, NT-proBNP, albumins and hsCRP, as they predicted its concentration at 89.5%. Concluding, IL-18 seems to be important indicator and predictor of cardiovascular death in two-year follow-up among non-diabetic patients suffering from CKD, with history of AMI in the previous year. The importance of IL-18 in the process of atherosclerotic plaque formation has been confirmed by systems analysis based on a formal model expressed in the language of Petri nets theory. PMID:26669254

  6. O-GlcNAcylation and oxidation of proteins: is signalling in the cardiovascular system becoming sweeter?

    PubMed

    Lima, Victor V; Spitler, Kathryn; Choi, Hyehun; Webb, R Clinton; Tostes, Rita C

    2012-10-01

    O-GlcNAcylation is an unusual form of protein glycosylation, where a single-sugar [GlcNAc (N-acetylglucosamine)] is added (via β-attachment) to the hydroxyl moiety of serine and threonine residues of nuclear and cytoplasmic proteins. A complex and extensive interplay exists between O-GlcNAcylation and phosphorylation. Many phosphorylation sites are also known glycosylation sites, and this reciprocal occupancy may produce different activities or alter the stability in a target protein. The interplay between these two post-translational modifications is not always reciprocal, as some proteins can be concomitantly phosphorylated and O-GlcNAcylated, and the adjacent phosphorylation or O-GlcNAcylation can regulate the addition of either moiety. Increased cardiovascular production of ROS (reactive oxygen species), termed oxidative stress, has been consistently reported in various chronic diseases and in conditions where O-GlcNAcylation has been implicated as a contributing mechanism for the associated organ injury/protection (for example, diabetes, Alzheimer's disease, arterial hypertension, aging and ischaemia). In the present review, we will briefly comment on general aspects of O-GlcNAcylation and provide an overview of what has been reported for this post-translational modification in the cardiovascular system. We will then specifically address whether signalling molecules involved in redox signalling can be modified by O-GlcNAc (O-linked GlcNAc) and will discuss the critical interplay between O-GlcNAcylation and ROS generation. Experimental evidence indicates that the interactions between O-GlcNAcylation and oxidation of proteins are important not only for cell regulation in physiological conditions, but also under pathological states where the interplay may become dysfunctional and thereby exacerbate cellular injury.

  7. The impact of high fructose on cardiovascular system: Role of α-lipoic acid.

    PubMed

    Saygin, M; Asci, H; Cankara, F N; Bayram, D; Yesilot, S; Candan, I A; Alp, H H

    2016-02-01

    The aim of this study was to evaluate the role of α-lipoic acid (α-LA) on oxidative damage and inflammation that occur in endothelium of aorta and heart while constant consumption of high-fructose corn syrup (HFCS). The rats were randomly divided into three groups with each group containing eight rats. The groups include HFCS, HFCS + α-LA treatment, and control. HFCS was given to the rats at a ratio of 30% of F30 corn syrup in drinking water for 10 weeks. α-LA treatment was given to the rats at a dose of 100 mg/kg/day orally for the last 6 weeks. At the end of the experiment, the rats were killed by cervical dislocation. The blood samples were collected for biochemical studies, and the aortic and cardiac tissues were collected for evaluation of oxidant-antioxidant system, tissue bath, and pathological examination. HFCS had increased the levels of malondialdehyde, creatine kinase MB, lactate dehydrogenase, and uric acid and showed significant structural changes in the heart of the rats by histopathology. Those changes were improved by α-LA treatment as it was found in this treatment group. Immunohistochemical expressions of tumor necrosis factor α and inducible nitric oxide synthase were increased in HFCS group, and these receptor levels were decreased by α-LA treatment. All the tissue bath studies supported these findings. Chronic consumption of HFCS caused several problems like cardiac and endothelial injury of aorta by hyperuricemia and induced oxidative stress and inflammation. α-LA treatment reduced uric acid levels, oxidative stress, and corrected vascular responses. α-LA can be added to cardiac drugs due to its cardiovascular protective effects against the cardiovascular diseases.

  8. [CKD-MBD (Chronic Kidney Disease-Mineral and Bone Disorder). Effect of vitamin D on kidney and cardiovascular system].

    PubMed

    Fujii, Hideki

    2010-07-01

    Recently, many investigators have reported that treatment with vitamin D improves outcomes of patients with chronic kidney disease. Though the detailed mechanisms have remained unclear, it has been speculated that such a treatment may prevent progression of chronic kidney disease and cardiovascular disease. It has been reported that Vitamin D may attenuate renal injury and ameliorate renal function and proteinuria. In addition, several studies have shown that vitamin D may prevent progression of atherosclerosis, vascular calcification and left ventricular hypertrophy. The emerging experimental and clinical evidence has suggested that vitamin D may protect kidney and cardiovascular system.

  9. Aircraft flight simulation of spacelab experiment using an implanted telemetry system to obtain cardiovascular data from the monkey

    NASA Technical Reports Server (NTRS)

    Mccutcheon, E. P.; Miranda, R.; Fryer, T. B.; Hodges, G.; Newson, B. D.; Pace, N.

    1977-01-01

    The utility of a multichannel implantable telemetry system for obtaining cardiovascular data was tested in a monkey with a CV-990 aircraft flight simulation of a space flight experiment. Valuable data were obtained to aid planning and execution of flight experiments using chronically instrumented animals.

  10. Effect of a botanical composition, UP446, on respiratory, cardiovascular and central nervous systems in beagle dogs and rats.

    PubMed

    Yimam, Mesfin; Lee, Young Chul; Jia, Qi

    2016-06-01

    Extensive safety evaluation of UP446, a botanical composition comprised of standardized extracts from roots of Scutellaria baicalensis and heartwoods of Acacia catechu, has been reported previously. Here we carried out additional studies to assess the effect of UP446 on respiratory, cardiovascular and central nervous (CNS) systems. A Functional observational battery (FOB) and whole body plethysmography system in rats and implanted telemetry in dogs were utilized to evaluate the potential CNS, respiratory and cardiovascular toxicity, respectively. UP446 was administered orally at dose levels of 800, 2000 and 5000 mg/kg to SpragueDawley rats and at 4 ascending dose levels (0, 250, 500 and 1000 mg/kg) to beagle dogs. No abnormal effects were observed on the cage side, open field, hand held, and sensori-motor observations suggestive of toxicity in respiratory, cardiovascular and central nervous (CNS) systems. Rectal temperatures were comparable for each treatment groups. Similarly, respiratory rate, tidal volume and minute volume were unaffected by any of the treatment groups. No UP446 related changes were observed on blood pressure, heart rate and electrocardiogram in beagle dogs at dose levels of 250, 500 and 1000 mg/kg. Some minor incidental, non-dose correlated changes were observed in the FOB assessment. These data suggest that UP446 has minimal or no pharmaco-toxicological effect on the respiratory, cardiovascular and central nervous systems.

  11. Therapeutic Potential of Neuregulin in Cardiovascular System: Can we Ignore the Effects of Neuregulin on Electrophysiology?

    PubMed

    Wang, Xi; Liu, Zhiqiang; Duan, Hui Nan; Wang, Long

    2016-01-01

    Neuregulin-1(NRG-1) has now been accepted to have therapeutic potential in cardiovascular disease. The preclinical and clinical researches of NRG-1 have demonstrated its advantage effects in cardiac function with multi-target cardiovascular biology and pathophysiology, but its influence on cardiac electrophysiology is rarely involved, which is a very important aspect and should not be ignored.

  12. [Significance of endogenous sulfur dioxide in the regulation of cardiovascular system].

    PubMed

    Jin, Hong Fang; DU, Shu Xu; Zhao, Xia; Zhang, Su Qing; Tian, Yue; Bu, Ding Fang; Tang, Chao Shu; DU, Jun Bao

    2007-08-18

    Since the 1980's nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S), the endogenous gas molecules produced from metabolic pathway, have been realized as signal molecules to be involved in the regulation of body homeostasis and to play important roles under physiological and pathophysiological conditions. The researches on these endogenous gas signal molecules opened a new avenue in life science. To explore the new member of gasotransmitter family, other endogenous gas molecules which have been regarded as metabolic waste up to date, and their biological regulatory effects have been paid close attention to in the current fields of life science and medicine. Sulfur dioxide (SO(2)) can be produced endogenously from normal metabolism of sulfur-containing amino acids. L-cysteine is oxidized via cysteine dioxygenase to L-cysteinesulfinate, and the latter can proceed through transamination by glutamate oxaloacetate transaminase (GOT) to beta-sulfinyl pyruvate which decomposes spontaneously to pyruvate and SO(2). In mammals, activated neutrophils by oxidative stress can convert H(2)S to sulfite through a reduced form of nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase-dependent process. The authors detected endogenous production of SO(2) in all cardiovascular tissues, including in heart, aorta, pulmonary artery, mesenteric artery, renal artery, tail artery and the plasma SO(2) content. As the key enzyme producing SO(2), GOT mRNA in cardiovascular system was detected and found to be located enriched in endothelial cells and vascular smooth muscle cells near the endothelial layer. When the normal rats were treated with hydroxamate(HDX), a GOT inhibitor, at a dose of 3.7 mg/kg body weight, the blood pressure (BP) went high markedly, the ratio of wall thickness to lumen radius was increased by 18.34%, and smooth muscle cell proliferation was enhanced. The plasma SO(2) level in the rats injected with 125 micromol/kg body weight SO(2) donor was

  13. Evaluation of the Abbott IMx automated immunoassay of prostate-specific antigen.

    PubMed

    Vessella, R L; Noteboom, J; Lange, P H

    1992-10-01

    We detail the performance characteristics of the new IMx PSA immunoassay developed by Abbott Laboratories, addressing PSA recovery, assay reproducibility, standard curve storage, lower limit of detection, dilution linearity, and correlation with the Hybritech Tandem-R PSA immunoassay. We analyzed 686 sera for PSA retrospectively, testing 555 of these concurrently with the IMx and the Tandem-R immunoassays. The IMx PSA standard curve was linear from 0 to 100 micrograms/L, and curve storage was maintained for 4 weeks. The lower limit of detection of the IMx PSA assay was < or = 0.03 microgram/L; allowing for the assay precision yielded a biological detection limit of 0.06 microgram/L. We conservatively set the clinical threshold at 0.1 microgram/L. Regression analysis of dilution linearity involving 10 samples (0.44-200 micrograms/L) resulted in coefficients of correlation ranging from 0.9972 to 1.000. Reproducibility studies with 18 specimens within the range of 0.39-413.67 micrograms/L gave intra- and interassay CVs < 6.5%. The interassay 95% confidence interval for a specimen containing 0.06 microgram of PSA per liter was 0.03-0.09 microgram/L. Correlation between IMx and Tandem-R PSA assay results was excellent: r = 0.9909 and slope = 0.95. Overall, the IMx PSA immunoassay, with the conveniencies of automation, curve storage, and nonisotopic handling, provided an improved lower limit of PSA detection, which allows for earlier indication of residual or recurrent disease after radical prostatectomy.

  14. Systems Pharmacology Dissection of the Integrated Treatment for Cardiovascular and Gastrointestinal Disorders by Traditional Chinese Medicine

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjuan; Tao, Qin; Guo, Zihu; Fu, Yingxue; Chen, Xuetong; Shar, Piar Ali; Shahen, Mohamed; Zhu, Jinglin; Xue, Jun; Bai, Yaofei; Wu, Ziyin; Wang, Zhenzhong; Xiao, Wei; Wang, Yonghua

    2016-09-01

    Though cardiovascular diseases (CVDs) and gastrointestinal disorders (GIDs) are different diseases associated with different organs, they are highly correlated clinically. Importantly, in Traditional Chinese Medicine (TCM), similar treatment strategies have been applied in both diseases. However, the etiological mechanisms underlying them remain unclear. Here, an integrated systems pharmacology approach is presented for illustrating the molecular correlations between CVDs and GIDs. Firstly, we identified pairs of genes that are associated with CVDs and GIDs and found that these genes are functionally related. Then, the association between 115 heart meridian (HM) herbs and 163 stomach meridian (SM) herbs and their combination application in Chinese patent medicine was investigated, implying that both CVDs and GIDs can be treated by the same strategy. Exemplified by a classical formula Sanhe Decoration (SHD) treating chronic gastritis, we applied systems-based analysis to introduce a drug-target-pathway-organ network that clarifies mechanisms of different diseases being treated by the same strategy. The results indicate that SHD regulated several pathological processes involved in both CVDs and GIDs. We experimentally confirmed the predictions implied by the effect of SHD for myocardial ischemia. The systems pharmacology suggests a novel integrated strategy for rational drug development for complex associated diseases.

  15. Systems Pharmacology Dissection of the Integrated Treatment for Cardiovascular and Gastrointestinal Disorders by Traditional Chinese Medicine.

    PubMed

    Zhang, Wenjuan; Tao, Qin; Guo, Zihu; Fu, Yingxue; Chen, Xuetong; Shar, Piar Ali; Shahen, Mohamed; Zhu, Jinglin; Xue, Jun; Bai, Yaofei; Wu, Ziyin; Wang, Zhenzhong; Xiao, Wei; Wang, Yonghua

    2016-09-06

    Though cardiovascular diseases (CVDs) and gastrointestinal disorders (GIDs) are different diseases associated with different organs, they are highly correlated clinically. Importantly, in Traditional Chinese Medicine (TCM), similar treatment strategies have been applied in both diseases. However, the etiological mechanisms underlying them remain unclear. Here, an integrated systems pharmacology approach is presented for illustrating the molecular correlations between CVDs and GIDs. Firstly, we identified pairs of genes that are associated with CVDs and GIDs and found that these genes are functionally related. Then, the association between 115 heart meridian (HM) herbs and 163 stomach meridian (SM) herbs and their combination application in Chinese patent medicine was investigated, implying that both CVDs and GIDs can be treated by the same strategy. Exemplified by a classical formula Sanhe Decoration (SHD) treating chronic gastritis, we applied systems-based analysis to introduce a drug-target-pathway-organ network that clarifies mechanisms of different diseases being treated by the same strategy. The results indicate that SHD regulated several pathological processes involved in both CVDs and GIDs. We experimentally confirmed the predictions implied by the effect of SHD for myocardial ischemia. The systems pharmacology suggests a novel integrated strategy for rational drug development for complex associated diseases.

  16. Systems Pharmacology Dissection of the Integrated Treatment for Cardiovascular and Gastrointestinal Disorders by Traditional Chinese Medicine

    PubMed Central

    Zhang, Wenjuan; Tao, Qin; Guo, Zihu; Fu, Yingxue; Chen, Xuetong; Shar, Piar Ali; Shahen, Mohamed; Zhu, Jinglin; Xue, Jun; Bai, Yaofei; Wu, Ziyin; Wang, Zhenzhong; Xiao, Wei; Wang, Yonghua

    2016-01-01

    Though cardiovascular diseases (CVDs) and gastrointestinal disorders (GIDs) are different diseases associated with different organs, they are highly correlated clinically. Importantly, in Traditional Chinese Medicine (TCM), similar treatment strategies have been applied in both diseases. However, the etiological mechanisms underlying them remain unclear. Here, an integrated systems pharmacology approach is presented for illustrating the molecular correlations between CVDs and GIDs. Firstly, we identified pairs of genes that are associated with CVDs and GIDs and found that these genes are functionally related. Then, the association between 115 heart meridian (HM) herbs and 163 stomach meridian (SM) herbs and their combination application in Chinese patent medicine was investigated, implying that both CVDs and GIDs can be treated by the same strategy. Exemplified by a classical formula Sanhe Decoration (SHD) treating chronic gastritis, we applied systems-based analysis to introduce a drug-target-pathway-organ network that clarifies mechanisms of different diseases being treated by the same strategy. The results indicate that SHD regulated several pathological processes involved in both CVDs and GIDs. We experimentally confirmed the predictions implied by the effect of SHD for myocardial ischemia. The systems pharmacology suggests a novel integrated strategy for rational drug development for complex associated diseases. PMID:27597117

  17. An Integrated Model of the Cardiovascular and Central Nervous Systems for Analysis of Microgravity Induced Fluid Redistribution

    NASA Technical Reports Server (NTRS)

    Price, R.; Gady, S.; Heinemann, K.; Nelson, E. S.; Mulugeta, L.; Ethier, C. R.; Samuels, B. C.; Feola, A.; Vera, J.; Myers, J. G.

    2015-01-01

    A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.

  18. Sent to Destroy: The Ubiquitin Proteasome System Regulates Cell Signaling and Protein Quality Control in Cardiovascular Development and Disease

    PubMed Central

    Willis, Monte S.; Townley-Tilson, W.H. Davin; Kang, Eunice Y.; Homeister, Jonathon W.; Patterson, Cam

    2010-01-01

    The ubiquitin proteasome system (UPS) plays a crucial role in biological processes integral to the development of the cardiovascular system and cardiovascular diseases. The UPS prototypically recognizes specific protein substrates and places polyubiquitin chains on them for subsequent destruction by the proteasome. This system is in place to degrade not only misfolded and damaged proteins, but is essential also in regulating a host of cell signaling pathways involved in proliferation, adaptation to stress, regulation of cell size, and cell death. During the development of the cardiovascular system, the UPS regulates cell signaling by modifying transcription factors, receptors, and structural proteins. Later, in the event of cardiovascular diseases as diverse as atherosclerosis, cardiac hypertrophy, and ischemia reperfusion injury, ubiquitin ligases and the proteasome are implicated in protecting and exacerbating clinical outcomes. However, when misfolded and damaged proteins are ubiquitinated by the UPS, their destruction by the proteasome is not always possible due to their aggregated confirmations. Recent studies have discovered how these ubiquitinated misfolded proteins can be destroyed by alternative “specific” mechanisms. The cytosolic receptors p62, NBR, and HDAC6 recognize aggregated ubiquitinated proteins and target them for autophagy in the process of “selective autophagy”. Even the ubiquitination of multiple proteins within whole organelles that drive the more general macro-autophagy may be due, in part, to similar ubiquitin-driven mechanisms. In summary, the cross-talk between the UPS and autophagy highlight the pivotal and diverse roles the UPS plays in maintaining protein quality control and regulating cardiovascular development and disease. PMID:20167943

  19. [Psoriasis and cardiovascular disease].

    PubMed

    Torres, Tiago; Sales, Rita; Vasconcelos, Carlos; Selores, Manuela

    2013-01-01

    Psoriasis is a common, chronic and systemic inflammatory disease associated with several comorbidities, such as obesity, hypertension, diabetes, dyslipidaemia and metabolic syndrome, but also with an increased risk of cardiovascular disease, like myocardial infarction or stroke. The chronic inflammatory nature of psoriasis has been suggested to be a contributing and potentially independent risk factor for the development of cardiovascular comorbidities and precocious atherosclerosis. Aiming at alerting clinicians to the need of screening and monitoring cardiovascular diseases and its risk factors in psoriatic patients, this review will focus on the range of cardiometabolic comorbidities and increased risk of cardiovascular disease associated with psoriasis.

  20. Redox regulation of cGMP-dependent protein kinase Iα in the cardiovascular system

    PubMed Central

    Prysyazhna, Oleksandra; Eaton, Philip

    2015-01-01

    Elevated levels of oxidants in biological systems have been historically referred to as “oxidative stress,” a choice of words that perhaps conveys an imbalanced view of reactive oxygen species in cells and tissues. The term stress suggests a harmful role, whereas a contemporary view is that oxidants are also crucial for the maintenance of homeostasis or adaptive signaling that can actually limit injury. This regulatory role for oxidants is achieved in part by them inducing oxidative post-translational modifications of proteins which may alter their function or interactions. Such mechanisms allow changes in cell oxidant levels to be coupled to regulated alterations in enzymatic function (i.e., signal transduction), which enables “redox signaling.” In this review we focus on the role of cGMP-dependent protein kinase (PKG) Ia disulfide dimerisation, an oxidative modification that is induced by oxidants that directly activates the enzyme, discussing how this impacts on the cardiovascular system. Additionally, how this oxidative activation of PKG may coordinate with or differ from classical activation of this kinase by cGMP is also considered. PMID:26236235

  1. Non-proliferative and Proliferative Lesions of the Cardiovascular System of the Rat and Mouse

    PubMed Central

    Berridge, Brian R.; Mowat, Vasanthi; Nagai, Hirofumi; Nyska, Abraham; Okazaki, Yoshimasa; Clements, Peter J.; Rinke, Matthias; Snyder, Paul W.; Boyle, Michael C.; Wells, Monique Y.

    2016-01-01

    The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Japan (JSTP), Europe (ESTP), Great Britain (BSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The primary purpose of this publication is to provide a standardized nomenclature for characterizing lesions observed in the cardiovascular (CV) system of rats and mice commonly used in drug or chemical safety assessment. The standardized nomenclature presented in this document is also available electronically for society members on the internet (http://goreni.org). Accurate and precise morphologic descriptions of changes in the CV system are important for understanding the mechanisms and pathogenesis of those changes, differentiation of natural and induced injuries and their ultimate functional consequence. Challenges in nomenclature are associated with lesions or pathologic processes that may present as a temporal or pathogenic spectrum or when natural and induced injuries share indistinguishable features. Specific nomenclature recommendations are offered to provide a consistent approach. PMID:27621537

  2. The Impact of Hypoglycemia on the Cardiovascular System: Physiology and Pathophysiology.

    PubMed

    Yang, Shi-Wei; Park, Kyoung-Ha; Zhou, Yu-Jie

    2016-10-01

    Intensive glycemic control may increase cardiovascular (CV) risk and mortality due to hypoglycemia. The pathophysiology of glucose counter-regulation in patients with type 1 or type 2 diabetes for over 15 years is characterized by impairment of the defense mechanisms against hypoglycemia. Hypoglycemia causes pronounced physiological and pathophysiological effects on the CV system as consequences of autonomic system activation and counter regulatory hormones release. These effects provoke a series of hemodynamic changes that include an increase in heart rate and peripheral systolic blood pressure, a decrease in central blood pressure, reduced peripheral arterial resistance, and increased myocardial contractility and cardiac output. Cardiac electrophysiological changes including flattening or inversion of T waves, QT prolongation, and ST segment depression were observed in both insulin-induced and spontaneous hypoglycemia. Sympathoadrenal activation is the main cause of these changes through mechanisms that involve, but are not limited to, catecholamine-mediated hypokalemia. Hypoglycemia is also involved in platelet activation. There is growing concern about the long-term effects of hypoglycemia, especially as related to inflammation and atherogenesis.

  3. System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.

    1997-01-01

    We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.

  4. Non-proliferative and Proliferative Lesions of the Cardiovascular System of the Rat and Mouse.

    PubMed

    Berridge, Brian R; Mowat, Vasanthi; Nagai, Hirofumi; Nyska, Abraham; Okazaki, Yoshimasa; Clements, Peter J; Rinke, Matthias; Snyder, Paul W; Boyle, Michael C; Wells, Monique Y

    2016-01-01

    The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Japan (JSTP), Europe (ESTP), Great Britain (BSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The primary purpose of this publication is to provide a standardized nomenclature for characterizing lesions observed in the cardiovascular (CV) system of rats and mice commonly used in drug or chemical safety assessment. The standardized nomenclature presented in this document is also available electronically for society members on the internet (http://goreni.org). Accurate and precise morphologic descriptions of changes in the CV system are important for understanding the mechanisms and pathogenesis of those changes, differentiation of natural and induced injuries and their ultimate functional consequence. Challenges in nomenclature are associated with lesions or pathologic processes that may present as a temporal or pathogenic spectrum or when natural and induced injuries share indistinguishable features. Specific nomenclature recommendations are offered to provide a consistent approach.

  5. Redox regulation of cGMP-dependent protein kinase Iα in the cardiovascular system.

    PubMed

    Prysyazhna, Oleksandra; Eaton, Philip

    2015-01-01

    Elevated levels of oxidants in biological systems have been historically referred to as "oxidative stress," a choice of words that perhaps conveys an imbalanced view of reactive oxygen species in cells and tissues. The term stress suggests a harmful role, whereas a contemporary view is that oxidants are also crucial for the maintenance of homeostasis or adaptive signaling that can actually limit injury. This regulatory role for oxidants is achieved in part by them inducing oxidative post-translational modifications of proteins which may alter their function or interactions. Such mechanisms allow changes in cell oxidant levels to be coupled to regulated alterations in enzymatic function (i.e., signal transduction), which enables "redox signaling." In this review we focus on the role of cGMP-dependent protein kinase (PKG) Ia disulfide dimerisation, an oxidative modification that is induced by oxidants that directly activates the enzyme, discussing how this impacts on the cardiovascular system. Additionally, how this oxidative activation of PKG may coordinate with or differ from classical activation of this kinase by cGMP is also considered.

  6. Effects of sleep on the cardiovascular and thermoregulatory systems: a possible role for hypocretins.

    PubMed

    Schwimmer, H; Stauss, H M; Abboud, F; Nishino, S; Mignot, E; Zeitzer, J M

    2010-10-01

    Sleep influences the cardiovascular, endocrine, and thermoregulatory systems. Each of these systems may be affected by the activity of hypocretin (orexin)-producing neurons, which are involved in the etiology of narcolepsy. We examined sleep in male rats, either hypocretin neuron-ablated orexin/ataxin-3 transgenic (narcoleptic) rats or their wild-type littermates. We simultaneously monitored electroencephalographic and electromyographic activity, core body temperature, tail temperature, blood pressure, electrocardiographic activity, and locomotion. We analyzed the daily patterns of these variables, parsing sleep and circadian components and changes between states of sleep. We also analyzed the baroreceptor reflex. Our results show that while core temperature and heart rate are affected by both sleep and time of day, blood pressure is mostly affected by sleep. As expected, we found that both blood pressure and heart rate were acutely affected by sleep state transitions in both genotypes. Interestingly, hypocretin neuron-ablated rats have significantly lower systolic and diastolic blood pressure during all sleep stages (non-rapid eye movement, rapid eye movement) and while awake (quiet, active). Thus, while hypocretins are critical for the normal temporal structure of sleep and wakefulness, they also appear to be important in regulating baseline blood pressure and possibly in modulating the effects of sleep on blood pressure.

  7. On the integration of the baroreflex control mechanism in a heterogeneous model of the cardiovascular system.

    PubMed

    Blanco, P J; Trenhago, P R; Fernandes, L G; Feijóo, R A

    2012-04-01

    The aim of the present work is to describe the integration of a mathematical model for the baroreceptor reflex mechanism to provide regulatory action into a dimensionally heterogeneous (3D-1D-0D) closed-loop model of the cardiovascular system. Such heterogeneous model comprises a 1D description of the arterial tree, a 0D network for the venous, cardiac and pulmonary circulations and 3D patient-specific geometries for vascular districts of interest. Thus, the detailed topological description of the arterial network allows us to perform vasomotor control actions in a differentiated way, while gaining insight about the effects of the baroreflex regulation over hemodynamic quantities of interest throughout the entire network. Two examples of application are presented. Firstly, we simulate the hemorrhage in the abdominal aorta artery and analyze the action of the baroreflex over the system. Secondly, the self-regulated closed-loop model is applied to study the influence of the control action in the hemodynamic environment that determines the blood flow pattern in a cerebral aneurism in the presence of a regurgitating aortic valve.

  8. Polyphenols: Benefits to the Cardiovascular System in Health and in Aging

    PubMed Central

    Khurana, Sandhya; Venkataraman, Krishnan; Hollingsworth, Amanda; Piche, Matthew; Tai, T. C.

    2013-01-01

    Numerous studies have demonstrated the importance of naturally occurring dietary polyphenols in promoting cardiovascular health and emphasized the significant role these compounds play in limiting the effects of cellular aging. Polyphenols such as resveratrol, epigallocatechin gallate (EGCG), and curcumin have been acknowledged for having beneficial effects on cardiovascular health, while some have also been shown to be protective in aging. This review highlights the literature surrounding this topic on the prominently studied and documented polyphenols as pertaining to cardiovascular health and aging. PMID:24077237

  9. Cutaneous lupus erythematosus and systemic lupus erythematosus are associated with clinically significant cardiovascular risk: a Danish nationwide cohort study.

    PubMed

    Hesselvig, J Halskou; Ahlehoff, O; Dreyer, L; Gislason, G; Kofoed, K

    2017-01-01

    Systemic lupus erythematosus (SLE) is a well-known cardiovascular risk factor. Less is known about cutaneous lupus erythematosus (CLE) and the risk of developing cardiovascular disease (CVD). Therefore, we investigated the risk of mortality and adverse cardiovascular events in patients diagnosed with SLE and CLE. We conducted a cohort study of the entire Danish population aged ≥ 18 and ≤ 100 years, followed from 1997 to 2011 by individual-level linkage of nationwide registries. Multivariable adjusted Cox regression models were used to estimate the hazard ratios (HRs) for a composite cardiovascular endpoint and all-cause mortality, for patients with SLE and CLE. A total of 3282 patients with CLE and 3747 patients with SLE were identified and compared with 5,513,739 controls. The overall HR for the composite CVD endpoint was 1.31 (95% CI 1.16-1.49) for CLE and 2.05 (95% CI 1.15-3.44) for SLE. The corresponding HRs for all-cause mortality were 1.32 (95% CI 1.20-1.45) for CLE and 2.21 (95% CI 2.03-2.41) for SLE. CLE and SLE were associated with a significantly increased risk of CVD and all-cause mortality. Local and chronic inflammation may be the driver of low-grade systemic inflammation.

  10. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control.

    PubMed

    de Kloet, Annette D; Liu, Meng; Rodríguez, Vermalí; Krause, Eric G; Sumners, Colin

    2015-09-01

    Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function.

  11. The role of nitric oxide in regulation of the cardiovascular system in reptiles.

    PubMed

    Skovgaard, Nini; Galli, Gina; Abe, Augusto; Taylor, Edwin W; Wang, Tobias

    2005-10-01

    The roles that nitric oxide (NO) plays in the cardiovascular system of reptiles are reviewed, with particular emphasis on its effects on central vascular blood flows in the systemic and pulmonary circulations. New data is presented that describes the effects on hemodynamic variables in varanid lizards of exogenously administered NO via the nitric oxide donor sodium nitroprusside (SNP) and inhibition of nitric oxide synthase (NOS) by l-nitroarginine methyl ester (l-NAME). Furthermore, preliminary data on the effects of SNP on hemodynamic variables in the tegu lizard are presented. The findings are compared with previously published data from our laboratory on three other species of reptiles: pythons (), rattlesnakes () and turtles (). These five species of reptiles possess different combinations of division of the heart and structural complexity of the lungs. Comparison of their responses to NO donors and NOS inhibitors may reveal whether the potential contribution of NO to vascular tone correlates with pulmonary complexity and/or with blood pressure. All existing studies on reptiles have clearly established a potential role for NO in regulating vascular tone in the systemic circulation and NO may be important for maintaining basal systemic vascular tone in varanid lizards, pythons and turtles, through a continuous release of NO. In contrast, the pulmonary circulation is less responsive to NO donors or NOS inhibitors, and it was only in pythons and varanid lizards that the lungs responded to SNP. Both species have a functionally separated heart, so it is possible that NO may exert a larger role in species with low pulmonary blood pressures, irrespective of lung complexity.

  12. Development of Anatomophysiologic Knowledge Regarding the Cardiovascular System: From Egyptians to Harvey

    PubMed Central

    Bestetti, Reinaldo Bulgarelli; Restini, Carolina Baraldi A.; Couto, Lucélio B.

    2014-01-01

    Our knowledge regarding the anatomophysiology of the cardiovascular system (CVS) has progressed since the fourth millennium BC. In Egypt (3500 BC), it was believed that a set of channels are interconnected to the heart, transporting air, urine, air, blood, and the soul. One thousand years later, the heart was established as the center of the CVS by the Hippocratic Corpus in the medical school of Kos, and some of the CVS anatomical characteristics were defined. The CVS was known to transport blood via the right ventricle through veins and the pneuma via the left ventricle through arteries. Two hundred years later, in Alexandria, following the development of human anatomical dissection, Herophilus discovered that arteries were 6 times thicker than veins, and Erasistratus described the semilunar valves, emphasizing that arteries were filled with blood when ventricles were empty. Further, 200 years later, Galen demonstrated that arteries contained blood and not air. With the decline of the Roman Empire, Greco-Roman medical knowledge about the CVS was preserved in Persia, and later in Islam where, Ibn Nafis inaccurately described pulmonary circulation. The resurgence of dissection of the human body in Europe in the 14th century was associated with the revival of the knowledge pertaining to the CVS. The main findings were the description of pulmonary circulation by Servetus, the anatomical discoveries of Vesalius, the demonstration of pulmonary circulation by Colombo, and the discovery of valves in veins by Fabricius. Following these developments, Harvey described blood circulation. PMID:25590934

  13. Development of anatomophysiologic knowledge regarding the cardiovascular system: from Egyptians to Harvey.

    PubMed

    Bestetti, Reinaldo Bulgarelli; Restini, Carolina Baraldi A; Couto, Lucélio B

    2014-12-01

    Our knowledge regarding the anatomophysiology of the cardiovascular system (CVS) has progressed since the fourth millennium BC. In Egypt (3500 BC), it was believed that a set of channels are interconnected to the heart, transporting air, urine, air, blood, and the soul. One thousand years later, the heart was established as the center of the CVS by the Hippocratic Corpus in the medical school of Kos, and some of the CVS anatomical characteristics were defined. The CVS was known to transport blood via the right ventricle through veins and the pneuma via the left ventricle through arteries. Two hundred years later, in Alexandria, following the development of human anatomical dissection, Herophilus discovered that arteries were 6 times thicker than veins, and Erasistratus described the semilunar valves, emphasizing that arteries were filled with blood when ventricles were empty. Further, 200 years later, Galen demonstrated that arteries contained blood and not air. With the decline of the Roman Empire, Greco-Roman medical knowledge about the CVS was preserved in Persia, and later in Islam where, Ibn Nafis inaccurately described pulmonary circulation. The resurgence of dissection of the human body in Europe in the 14th century was associated with the revival of the knowledge pertaining to the CVS. The main findings were the description of pulmonary circulation by Servetus, the anatomical discoveries of Vesalius, the demonstration of pulmonary circulation by Colombo, and the discovery of valves in veins by Fabricius. Following these developments, Harvey described blood circulation.

  14. Impact of bisphenol a on the cardiovascular system - epidemiological and experimental evidence and molecular mechanisms.

    PubMed

    Gao, Xiaoqian; Wang, Hong-Sheng

    2014-08-15

    Bisphenol A (BPA) is a ubiquitous plasticizing agent used in the manufacturing of polycarbonate plastics and epoxy resins. There is well-documented and broad human exposure to BPA. The potential risk that BPA poses to the human health has attracted much attention from regulatory agencies and the general public, and has been extensively studied. An emerging and rapidly growing area in the study of BPA's toxicity is its impact on the cardiovascular (CV) system. Recent epidemiological studies have shown that higher urinary BPA concentration in humans is associated with various types of CV diseases, including angina, hypertension, heart attack and coronary and peripheral arterial disease. Experimental studies have demonstrated that acute BPA exposure promotes the development of arrhythmias in female rodent hearts. Chronic exposure to BPA has been shown to result in cardiac remodeling, atherosclerosis, and altered blood pressure in rodents. The underlying mechanisms may involve alteration of cardiac Ca2+ handling, ion channel inhibition/activation, oxidative stress, and genome/transcriptome modifications. In this review, we discuss these recent findings that point to the potential CV toxicity of BPA, and highlight the knowledge gaps in this growing research area.

  15. Dynamic microvesicle release and clearance within the cardiovascular system: triggers and mechanisms.

    PubMed

    Ayers, Lisa; Nieuwland, Rienk; Kohler, Malcolm; Kraenkel, Nicolle; Ferry, Berne; Leeson, Paul

    2015-12-01

    Interest in cell-derived microvesicles (or microparticles) within cardiovascular diagnostics and therapeutics is rapidly growing. Microvesicles are often measured in the circulation at a single time point. However, it is becoming clear that microvesicle levels both increase and decrease rapidly in response to certain stimuli such as hypoxia, acute cardiac stress, shear stress, hypertriglyceridaemia and inflammation. Consequently, the levels of circulating microvesicles will reflect the balance between dynamic mechanisms for release and clearance. The present review describes the range of triggers currently known to lead to microvesicle release from different cellular origins into the circulation. Specifically, the published data are used to summarize the dynamic impact of these triggers on the degree and rate of microvesicle release. Secondly, a summary of the current understanding of microvesicle clearance via different cellular systems, including the endothelial cell and macrophage, is presented, based on reported studies of clearance in experimental models and clinical scenarios, such as transfusion or cardiac stress. Together, this information can be used to provide insights into potential underlying biological mechanisms that might explain the increases or decreases in circulating microvesicle levels that have been reported and help to design future clinical studies.

  16. Fundamentals of laser light interaction with human tissue, especially in the cardiovascular system.

    PubMed

    Haina, D; Landthaler, M

    1988-06-01

    The absorption of single photons in the molecules of biological tissue can induce various reactions. For the most medical laser applications the transformation from radiation energy into heat is relevant. The laser beam is used for coagulation or vaporization of tissue. The changes in tissue, which are created by light of different wavelengths depends on the thermal and optical properties (absorption and scatting) of tissue but also on the parameters of irradiation. As an example measurements from human skin are discussed. In the cardiovascular system laser light must have a clearly defined effect. Atherosclerotic plaques of different consistence have to be vaporized without damage of the vessel walls. From different reasons the usual medical CW-lasers, Argon-laser, CO2-laser and Nd:YAG-laser, are not optimal for direct ablation of arterial occlusions. In order to mimize reocclusion the walls of the channels have to be completely smooth and free of coagulation necrosis. This can be obtained by short laser pulses. Selection of a light wavelength, which is stronger absorbed in atherosclerotic plaques than in vessel walls and additional selective staining are two ways to reduce the risk of damaging the vessel walls.

  17. Bionic cardiology: exploration into a wealth of controllable body parts in the cardiovascular system.

    PubMed

    Sugimachi, Masaru; Sunagawa, Kenji

    2009-01-01

    Bionic cardiology is the medical science of exploring electronic control of the body, usually via the neural system. Mimicking or modifying biological regulation is a strategy used to combat diseases. Control of ventricular rate during atrial fibrillation by selective vagal stimulation, suppression of ischemia-related ventricular fibrillation by vagal stimulation, and reproduction of neurally commanded heart rate are some examples of bionic treatment for arrhythmia. Implantable radio-frequency-coupled on-demand carotid sinus stimulators succeeded in interrupting or preventing anginal attacks but were replaced later by coronary revascularization. Similar but fixed-intensity carotid sinus stimulators were used for hypertension but were also replaced by drugs. Recently, however, a self-powered implantable device has been reappraised for the treatment of drug-resistant hypertension. Closed-loop spinal cord stimulation has successfully treated severe orthostatic hypotension in a limited number of patients. Vagal nerve stimulation is effective in treating heart failure in animals, and a small-size clinical trial has just started. Simultaneous corrections of multiple hemodynamic abnormalities in an acute decompensated state are accomplished simply by quantifying fundamental cardiovascular parameters and controlling these parameters. Bionic cardiology will continue to promote the development of more sophisticated device-based therapies for otherwise untreatable diseases and will inspire more intricate applications in the twenty-first century.

  18. Development of Anatomophysiologic Knowledge Regarding the Cardiovascular System: From Egyptians to Harvey.

    PubMed

    Bestetti, Reinaldo Bulgarelli; Restini, Carolina Baraldi A; Couto, Lucélio B

    2014-10-10

    Our knowledge regarding the anatomophysiology of the cardiovascular system (CVS) has progressed since the fourth millennium BC. In Egypt (3500 BC), it was believed that a set of channels are interconnected to the heart, transporting air, urine, air, blood, and the soul. One thousand years later, the heart was established as the center of the CVS by the Hippocratic Corpus in the medical school of Kos, and some of the CVS anatomical characteristics were defined. The CVS was known to transport blood via the right ventricle through veins and the pneuma via the left ventricle through arteries. Two hundred years later, in Alexandria, following the development of human anatomical dissection, Herophilus discovered that arteries were 6 times thicker than veins, and Erasistratus described the semilunar valves, emphasizing that arteries were filled with blood when ventricles were empty. Further, 200 years later, Galen demonstrated that arteries contained blood and not air. With the decline of the Roman Empire, Greco-Roman medical knowledge about the CVS was preserved in Persia, and later in Islam where, Ibn Nafis inaccurately described pulmonary circulation. The resurgence of dissection of the human body in Europe in the 14th century was associated with the revival of the knowledge pertaining to the CVS. The main findings were the description of pulmonary circulation by Servetus, the anatomical discoveries of Vesalius, the demonstration of pulmonary circulation by Colombo, and the discovery of valves in veins by Fabricius. Following these developments, Harvey described blood circulation.

  19. Spectrofluorimetric methods of stability-indicating assay of certain drugs affecting the cardiovascular system

    NASA Astrophysics Data System (ADS)

    Moussa, B. A.; Mohamed, M. F.; Youssef, N. F.

    2011-01-01

    Two stability-indicating spectrofluorimetric methods have been developed for the determination of ezetimibe and olmesartan medoxomil, drugs affecting the cardiovascular system, and validated in the presence of their degradation products. The first method, for ezetimibe, is based on an oxidative coupling reaction of ezetimibe with 3-methylbenzothiazolin-2-one hydrazone hydrochloride in the presence of cerium (IV) ammonium sulfate in an acidic medium. The quenching effect of ezetimibe on the fluorescence of excess cerous ions is measured at the emission wavelength, λem, of 345 nm with the excitation wavelength, λex, of 296 nm. Factors affecting the reaction were carefully studied and optimized. The second method, for olmesartan medoxomil, is based on measuring the native fluorescence intensity of olmesartan medoxomil in methanol at λem = 360 nm with λex = 286 nm. Regression plots revealed good linear relationships in the assay limits of 10-120 and 8-112 g/ml for ezetimibe and olmesartan medoxomil, respectively. The validity of the methods was assessed according to the United States Pharmacopeya guidelines. Statistical analysis of the results exposed good Student's t-test and F-ratio values. The introduced methods were successfully applied to the analysis of ezetimibe and olmesartan medoxomil in drug substances and drug products as well as in the presence of their degradation products.

  20. A Systems Biology Approach to Uncovering Pharmacological Synergy in Herbal Medicines with Applications to Cardiovascular Disease

    PubMed Central

    Wang, Xia; Xu, Xue; Tao, Weiyang; Li, Yan; Wang, Yonghua; Yang, Ling

    2012-01-01

    Background. Clinical trials reveal that multiherb prescriptions of herbal medicine often exhibit pharmacological and therapeutic superiority in comparison to isolated single constituents. However, the synergistic mechanisms underlying this remain elusive. To address this question, a novel systems biology model integrating oral bioavailability and drug-likeness screening, target identification, and network pharmacology method has been constructed and applied to four clinically widely used herbs Radix Astragali Mongolici, Radix Puerariae Lobatae, Radix Ophiopogonis Japonici, and Radix Salviae Miltiorrhiza which exert synergistic effects of combined treatment of cardiovascular disease (CVD). Results. The results show that the structural properties of molecules in four herbs have substantial differences, and each herb can interact with significant target proteins related to CVD. Moreover, the bioactive ingredients from different herbs potentially act on the same molecular target (multiple-drug-one-target) and/or the functionally diverse targets but with potentially clinically relevant associations (multiple-drug-multiple-target-one-disease). From a molecular/systematic level, this explains why the herbs within a concoction could mutually enhance pharmacological synergy on a disease. Conclusions. The present work provides a new strategy not only for the understanding of pharmacological synergy in herbal medicine, but also for the rational discovery of potent drug/herb combinations that are individually subtherapeutic. PMID:23243453

  1. Cardiovascular System Response to Carbon Dioxide and Exercise in Oxygen-Enriched Environment at 3800 m

    PubMed Central

    Liu, Guohui; Liu, Xiaopeng; Qin, Zhifeng; Gu, Zhao; Wang, Guiyou; Shi, Weiru; Wen, Dongqing; Yu, Lihua; Luo, Yongchang; Xiao, Huajun

    2015-01-01

    Background: This study explores the responses of the cardiovascular system as humans exercise in an oxygen-enriched room at high altitude under various concentrations of CO2. Methods: The study utilized a hypobaric chamber set to the following specifications: 3800 m altitude with 25% O2 and different CO2 concentrations of 0.5% (C1), 3.0% (C2) and 5.0% (C3). Subjects exercised for 3 min three times, separated by 30 min resting periods in the above-mentioned conditions, at sea level (SL) and at 3800 m altitude (HA). The changes of heart rate variability, heart rate and blood pressure were analyzed. Results: Total power (TP) and high frequency power (HF) decreased notably during post-exercise at HA. HF increased prominently earlier the post-exercise period at 3800 m altitude with 25% O2 and 5.0% CO2 (C3), while low frequency power (LF) changed barely in all tests. The ratios of LF/HF were significantly higher during post-exercise in HA, and lower after high intensity exercise in C3. Heart rate and systolic blood pressure increased significantly in HA and C3. Conclusions: Parasympathetic activity dominated in cardiac autonomic modulation, and heart rate and blood pressure increased significantly after high intensity exercise in C3. PMID:26393634

  2. Investigation of Toxic Effects of Mushroom Poisoning on the Cardiovascular System.

    PubMed

    Erenler, Ali Kemal; Doğan, Tolga; Koçak, Cem; Ece, Yasemin

    2016-09-01

    Mushroom poisoning (MP) is a public health problem in many countries. It is well known that consumption of wild mushrooms may cause serious toxicity on renal, hepatic and brain functions. In the literature, however, studies investigating cardiotoxic effects of MP are rare. In this study, we evaluated laboratory and ECG findings of patients and sought for possible toxic effects of MP on the cardiovascular system. During a 2-year period, 175 patients with MP were included in the study. The majority of the poisonings occurred in early summertime. The most common complaint was found to be nausea and vomiting followed by mental status alterations. Methods of treatment were mainly based on gastric lavage, activated charcoal and supportive therapy. The most common ECG abnormalities in the patients with MP were sinus tachycardia, sinus arrhythmia, ST/T inversion, 1st degree AV block and QT prolongation, respectively. Cardiac markers of the patients were found to be normal. Then, patients were divided into two subgroups according to symptom onset after consumption (less than 6 hr and more than 6 hr). When the two groups were compared, prevalence of tachycardia was significantly higher in Group II. Additionally, the interval between mushroom consumption and onset of symptoms was strongly correlated with blood pressure (BP). As this interval prolonged, BP of the patients tended to increase. In conclusion, according to our results, although mechanisms need to be clarified, MP causes hypertension and ECG alterations, particularly tachycardia in patients with late-onset symptoms.

  3. Impact of Bisphenol A on the Cardiovascular System — Epidemiological and Experimental Evidence and Molecular Mechanisms

    PubMed Central

    Gao, Xiaoqian; Wang, Hong-Sheng

    2014-01-01

    Bisphenol A (BPA) is a ubiquitous plasticizing agent used in the manufacturing of polycarbonate plastics and epoxy resins. There is well-documented and broad human exposure to BPA. The potential risk that BPA poses to the human health has attracted much attention from regulatory agencies and the general public, and has been extensively studied. An emerging and rapidly growing area in the study of BPA’s toxicity is its impact on the cardiovascular (CV) system. Recent epidemiological studies have shown that higher urinary BPA concentration in humans is associated with various types of CV diseases, including angina, hypertension, heart attack and coronary and peripheral arterial disease. Experimental studies have demonstrated that acute BPA exposure promotes the development of arrhythmias in female rodent hearts. Chronic exposure to BPA has been shown to result in cardiac remodeling, atherosclerosis, and altered blood pressure in rodents. The underlying mechanisms may involve alteration of cardiac Ca2+ handling, ion channel inhibition/activation, oxidative stress, and genome/transcriptome modifications. In this review, we discuss these recent findings that point to the potential CV toxicity of BPA, and highlight the knowledge gaps in this growing research area. PMID:25153468

  4. Identification of genes encoding zinc finger motifs in the cardiovascular system.

    PubMed

    Wang, R; Hwang, D M; Cukerman, E; Liew, C C

    1997-01-01

    The Zn2+-finger DNA-binding domain has been identified in several developmental control proteins, transcription factors and gene products associated with diseases, as well as in several RNA-binding proteins. We applied library screening, expressed sequence tagging (EST sequencing), Zn2+-binding assays and Northern blot hybridization, in order to characterize novel cDNA clones of the human cardiovascular system which contain Zn2+-finger motifs. An embryonic (8-10 weeks gestation) heart lambda ZAP Express cDNA library was screened with an oligonucleotide probe deduced from a consensus amino acid sequence which is highly conserved for Zn2+-finger proteins, and approximately 350 positive clones were isolated from 1 x 10(4) plaque-forming units (pfu) initially plated. The isolated clones were classified as known and novel following single pass automated DNA sequencing. Analysis of Northern blot hybridization delineated the tissue specificity of these clones, as well as their association with cardiac growth and development. Existence of Zn2+-finger motifs in the novel clones was confirmed by Zn2+-binding assay. In this report, we present the characterization of eight novel clones, including the complete cDNA sequences of one of these clones (HHZ-123).

  5. Inactivation of endothelial proprotein convertase 5/6 decreases collagen deposition in the cardiovascular system: role of fibroblast autophagy.

    PubMed

    Marchesi, Chiara; Essalmani, Rachid; Lemarié, Catherine A; Leibovitz, Eyal; Ebrahimian, Talin; Paradis, Pierre; Seidah, Nabil G; Schiffrin, Ernesto L; Prat, Annik

    2011-11-01

    Proprotein convertase (PC) 5/6 belongs to a family of secretory proteases involved in proprotein proteolysis. Several studies suggest a role for PC5/6 in cardiovascular disease. Because lethality at birth of mice lacking PC5/6 precluded elucidation of its function in the adult, we generated mice in which the gene of PC5/6 (pcsk5) is specifically inactivated in endothelial cells (ecKO), which are viable and do not exhibit overt abnormalities. In order to uncover the function of PC5/6 in the cardiovascular system, the effect of ecKO was studied in aging mice. In 16 to 18-month-old ecKO mice, the left ventricle (LV) mass, media cross-sectional area of aorta and coronary arteries, and media-to-lumen ratio of mesenteric arteries were decreased. The LV presented decreased diastolic function, and mesenteric arteries showed decreased stiffness. Collagen was decreased in the LV myocardial interstitium and perivascularly in coronary arteries and aorta. Cardiovascular hypotrophy likely develops with aging, since no significant changes were observed in 2-month-old ecKO mice. Fibroblasts, as a source of collagen in myocardium and vasculature, may play a role in the decrease in collagen deposition. Fibroblasts co-cultured with ecKO endothelial cells showed decreased collagen production, decreased insulin-like growth factor (IGF)-1/Akt/mTOR signaling, and enhanced autophagic activation. PC5/6 inactivation in endothelial cells results in cardiovascular hypotrophy associated with decreased collagen deposition, decreased LV diastolic function, and vascular stiffness, suggesting a trophic role of endothelial PC5/6 in the cardiovascular system, likely mediated by IGF-1/Akt/mTOR signaling and control of autophagy.

  6. A computational physiology approach to personalized treatment models: the beneficial effects of slow breathing on the human cardiovascular system

    PubMed Central

    Fonoberova, Maria; Mezić, Igor; Buckman, Jennifer F.; Fonoberov, Vladimir A.; Mezić, Adriana; Vaschillo, Evgeny G.; Mun, Eun-Young; Vaschillo, Bronya

    2014-01-01

    Heart rate variability biofeedback intervention involves slow breathing at a rate of ∼6 breaths/min (resonance breathing) to maximize respiratory and baroreflex effects on heart period oscillations. This intervention has wide-ranging clinical benefits and is gaining empirical support as an adjunct therapy for biobehavioral disorders, including asthma and depression. Yet, little is known about the system-level cardiovascular changes that occur during resonance breathing or the extent to which individuals differ in cardiovascular benefit. This study used a computational physiology approach to dynamically model the human cardiovascular system at rest and during resonance breathing. Noninvasive measurements of heart period, beat-to-beat systolic and diastolic blood pressure, and respiration period were obtained from 24 healthy young men and women. A model with respiration as input was parameterized to better understand how the cardiovascular processes that control variability in heart period and blood pressure change from rest to resonance breathing. The cost function used in model calibration corresponded to the difference between the experimental data and model outputs. A good match was observed between the data and model outputs (heart period, blood pressure, and corresponding power spectral densities). Significant improvements in several modeled cardiovascular functions (e.g., blood flow to internal organs, sensitivity of the sympathetic component of the baroreflex, ventricular elastance) were observed during resonance breathing. Individual differences in the magnitude and nature of these dynamic responses suggest that computational physiology may be clinically useful for tailoring heart rate variability biofeedback interventions for the needs of individual patients. PMID:25063789

  7. Effects of acarbose on proinsulin and insulin secretion and their potential significance for the intermediary metabolism and cardiovascular system.

    PubMed

    Rosak, Christoph; Mertes, Gabriele

    2009-08-01

    The alpha-glucosidase inhibitor acarbose is administered to control blood glucose levels in type 2 diabetic patients and, in several countries, in those with impaired glucose tolerance. The efficacy and safety of the drug has been well established in these patient populations. Acarbose shows no weakening of efficacy in long-term diabetes treatment, reduces the development of type 2 diabetes in those with impaired glucose tolerance, and also appears to reduce the risk of cardiovascular disease. The underlying mechanisms of its effect on the risk of developing macrovascular complications have still to be elucidated. The mode of action of acarbose, which precedes all other metabolic processes involved in blood glucose regulation, inhibits high increases in postprandial blood glucose. Due to this early mode of action, acarbose also modifies insulin and proinsulin secretion which are both involved in ss-cell dysfunction and insulin resistance and may be independent risk factors for cardiovascular mortality. Based on the literature available the present state of knowledge on insulin and proinsulin as risk factors for cardiovascular mortality is reviewed as well as the effect of acarbose on the regulation of the ss-cells as monotherapy and in combination regimens. Possible associated interactions with the cardiovascular system are identified.

  8. 75 FR 80061 - Abbott Laboratories, Inc.; Withdrawal of Approval of a New Drug Application for MERIDIA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... Cardiovascular Outcomes Trial (SCOUT) that indicated that MERIDIA poses an increased risk of heart attack and... capsules, indicated for the management of obesity, including weight loss and maintenance of weight loss, no longer outweigh the risks in any identifiable patient population. FDA also acknowledged that...

  9. Evaluation of mechanisms of postflight orthostatic intolerance with a simple cardiovascular system model.

    PubMed

    Broskey, Justin; Sharp, M Keith

    2007-10-01

    A significant fraction of astronauts experience postflight orthostatic intolerance (POI) during 10-min stand tests conducted on landing day. The average time that nonfinishers can stand is about 7 min. This phenomenon, including the delay in occurrence of presyncope, was studied with a five-compartment model of the cardiovascular system incorporating compartments for the heart/lungs, systemic arteries and cephalic, central, and caudal veins. The model included 28 independent parameters, including factors characterizing cardiac performance, vascular resistance, intrathoracic pressure, nonlinear venous compliance and circulating blood volume, and 13 dependent parameters, including cardiac output and cardiac and vascular compartment pressures and volumes. First, a sensitivity analysis of hemodynamic indicators of presyncope to independent parameters was performed. Results demonstrated that both cardiac output and arterial pressure were most sensitive to volume-related parameters, particularly total blood volume, and less sensitive to peripheral resistance. Next, a simulated postflight stand test confirmed that fluid loss due to capillary filtration, particularly from the caudal region where transmural pressure is high during standing, is a plausible mechanism of POI that also explains the delayed onset of symptoms in most astronauts. An accumulated drop in arterial pressure sufficient to compromise cerebral perfusion and, therefore, cause syncope was reached in about 7 min with a fluid loss of 280 mL. Finally, additional simulations showed that a 75% increase in peripheral resistance, similar to finishers of stand tests, was insufficient to overcome the loss of circulating fluid associated with capillary filtration, and extended the time that the modeled astronaut could stand by only about 1 min. It is therefore concluded that capillary filtration may play a key role in producing POI and that development of countermeasures should perhaps focus on reducing postflight

  10. Vitamin D and the cardiovascular system: an overview of the recent literature.

    PubMed

    Messa, Piergiorgio; Curreri, Manuela; Regalia, Anna; Alfieri, Carlo Maria

    2014-02-01

    Since the discovery that the enzyme catalyzing the synthesis of the most active natural vitamin D metabolite(calcitriol) and the vitamin D-specific receptor (VDR)were expressed in a wide range of tissues and organs, not only involved in the mineral metabolism (MM), there has been increasing interest on the putative ‘non classical’ roles of vitamin D metabolites, particularly on their possible effects on the cardiovascular (CV) system. These hypothetical CV effects of vitamin D gained particular interesting the nephrology field, given the high prevalence of CV disease in patients affected by either acute or chronic kidney diseases. However, notwithstanding a huge amount of experimental data suggesting a possible protective role of vitamin D on the CV system, the conclusions of two recent meta-analyses from the Cochrane group and a recent statement from the Institute of Medicine, based on a complete revision of the available data, concluded that there is no clear evidence for a role of vitamin D other than that strictly associated with bone health. However, a continuous and increasing flow of new studies still continues to add information on this topic. In the present review, we have tried to critically address the data added on this topicin the last 2 years, considering separately the experimental,observational, and intervention studies that have appeared in PubMed in the last 2 years, discussing the data providing proof, pro or contra, the involvement of vitamin D in CV disease, both in the absence or presence of kidney function impairment.

  11. Comparison of FT4 with log TSH on the Abbott Architect ci8200: Pediatric reference intervals for free thyroxine and thyroid-stimulating hormone

    PubMed Central

    Soldin, Steven J; Cheng, Luke L; Lam, Lisa Y; Werner, Alice; Le, Alexander D; Soldin, Offie P

    2013-01-01

    Background We evaluated the clinical validity of serum FT4 measurements by assessing its correlation with log TSH. To provide pediatric reference intervals (representative ranges) for FT4, and TSH on the Architect ci8200 integrated system. Methods This population-based study encompassed 6023 children (3369 females and 2654 males). The percentile and Hoffmann approaches for obtaining reference intervals on these analytes were also compared. Results: FT4 correlation with log TSH was poor ( r=0.010 for males and 0.050 for females). Reference intervals were established. TSH and FT4 did not show a significant sex difference; moreover, the intervals decreased with age for FT4 and TSH. Conclusions Whereas in a previous study ultrafiltration tandem mass spectrometry yielded a correlation of r=0.90 for FT4 vs. log TSH this present study reveals a poor FT4 vs. log TSH correlation in the pediatric population studied and indicates the FT4 immunoassay conducted on the Abbott Architect ci8200 is less useful clinically than might have been expected. Reference intervals using the Hoffmann approach for pediatric in- and out-patients compare well with previously published results utilizing the percentile approach. PMID:19931524

  12. Association of working hours with biological indices related to the cardiovascular system among engineers in a machinery manufacturing company.

    PubMed

    Sasaki, T; Iwasaki, K; Oka, T; Hisanaga, N

    1999-10-01

    A field survey of 278 engineers (20-59 years) in a machinery manufacturing company was conducted to investigate the association of working hours with biological indices related to the cardiovascular system (heart rate variability, blood pressure and serum levels of magnesium, dehydroepiandrosterone sulfate and cholesterol). Average working hours (defined as <"hours at workplace" + "half a commuting time">) and sleeping hours in this study were 60.2 +/- 6.3 hr/week and 6.6 +/- 0.8 hr/day respectively. There were no significant relationships between working hours and biological indices related to the cardiovascular system, but sleeping hours was closely related to working hours negatively. Furthermore, the serum DHEA-S level was significantly related to sleeping hours positively. Combining these two results, it appeared that long working hours might lower the serum DHEA-S level due to the reduction of sleeping hours.

  13. Modeling of short-term mechanism of arterial pressure control in the cardiovascular system: object-oriented and acausal approach.

    PubMed

    Kulhánek, Tomáš; Kofránek, Jiří; Mateják, Marek

    2014-11-01

    This letter introduces an alternative approach to modeling the cardiovascular system with a short-term control mechanism published in Computers in Biology and Medicine, Vol. 47 (2014), pp. 104-112. We recommend using abstract components on a distinct physical level, separating the model into hydraulic components, subsystems of the cardiovascular system and individual subsystems of the control mechanism and scenario. We recommend utilizing an acausal modeling feature of Modelica language, which allows model variables to be expressed declaratively. Furthermore, the Modelica tool identifies which are the dependent and independent variables upon compilation. An example of our approach is introduced on several elementary components representing the hydraulic resistance to fluid flow and the elastic response of the vessel, among others. The introduced model implementation can be more reusable and understandable for the general scientific community.

  14. Characteristics and popular topics of latest researches into the effects of air particulate matter on cardiovascular system by bibliometric analysis.

    PubMed

    Jia, Xiaofeng; Guo, Xinbiao; Li, Haicun; An, Xinying; Zhao, Yingguang

    2013-03-01

    In recent years, many epidemiological and toxicological studies have investigated the adverse effects of air particulate matter (PM) on the cardiovascular system. However, it is difficult for the researchers to have a timely and effective overall command of the latest characteristics and popular topics in such a wide field. Different from the previous reviews, in which the research characteristics and trends are empirically concluded by experts, we try to have a comprehensive evaluation of the above topics for the first time by bibliometric analysis, a quantitative tool in information exploration. This study aims to introduce the bibliometric method into the field of PM and cardiovascular system. The articles were selected by searching PubMed/MEDLINE (from 2007 to 2012) using Medical Subject Headings (MeSH) terms "particulate matter" and "cardiovascular system". A total of 935 eligible articles and 1895 MeSH terms were retrieved and processed by the software Thomson Data Analyzer (TDA). The bibliographic information and the MeSH terms of these articles were classified and analyzed to summarize the research characteristics. The top 200 high-frequency MeSH terms (the cumulative frequency percentage was 74.2%) were clustered for popular-topic conclusion. We summarized the characteristics of published articles, of researcher collaborations and of the contents. Ten clusters of MeSH terms are presented. Six popular topics are concluded and elaborated for reference. Our study presents an overview of the characteristics and popular topics in the field of PM and cardiovascular system in the past five years by bibliometric tools, which may provide a new perspective for future researchers.

  15. Long-term regulation in the cardiovascular system - Cornerstone in the development of a composite physiological model

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    The present work discusses a model of the cardiovascular system and related subsystems capable of long-term simulations of the type desired for in-space hypogravic human physiological performance prediction. The discussion centers around the model of Guyton and modifications of it. In order to draw attention to the fluid handling capabilities of the model, one of several transfusion simulations performed is presented, namely, the isotonic saline transfusion simulation.

  16. Allopurinol reduces oxidative stress in the ovine fetal cardiovascular system after repeated episodes of ischemia-reperfusion.

    PubMed

    Derks, Jan B; Oudijk, Martijn A; Torrance, Helen L; Rademaker, Carin M A; Benders, Manon J; Rosen, Karl G; Cindrova-Davies, Tereza; Thakor, Avnesh S; Visser, Gerard H A; Burton, Graham J; van Bel, Frank; Giussani, Dino A

    2010-11-01

    In complicated labor, neonatal outcome may depend not only on the extent of fetal asphyxia and acidosis but also on the effects on the fetal cardiovascular system of reactive oxygen species (ROS) generated during the ischemia-reperfusion (I/R) associated with repeated compressions of the umbilical cord. This study tested the hypothesis that maternal treatment with clinical doses of the antioxidant allopurinol in the setting of fetal asphyxia would reduce oxidative stress in the fetal cardiovascular system. The hypothesis was tested in chronically instrumented fetal sheep in late gestation by investigating the effects of maternal treatment with therapeutic doses of allopurinol or vehicle on the fetal cardiovascular system during and after episodes of I/R. The latter were produced by repeated, measured compressions of the umbilical cord. The data show that maternal treatment with allopurinol helped maintain umbilical blood flow and it reduced fetal cardiac oxidative stress after I/R of the type associated with clinically relevant acidemia and repetitive fetal heart rate decelerations. The data support the hypothesis tested and suggest that maternal treatment with allopurinol may offer plausible clinical intervention in the management of perinatal asphyxia in complicated labor.

  17. Simulation of Left Atrial Function Using a Multi-Scale Model of the Cardiovascular System

    PubMed Central

    Pironet, Antoine; Dauby, Pierre C.; Paeme, Sabine; Kosta, Sarah; Chase, J. Geoffrey; Desaive, Thomas

    2013-01-01

    During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors. PMID:23755183

  18. Novel molecular aspects of ghrelin and leptin in the control of adipobiology and the cardiovascular system.

    PubMed

    Rodríguez, Amaia

    2014-01-01

    Ghrelin and leptin show opposite effects on energy balance. Ghrelin constitutes a gut hormone that is secreted to the bloodstream in two major forms, acylated and desacyl ghrelin. The isoforms of ghrelin not only promote adiposity by the activation of hypothalamic orexigenic neurons but also directly stimulate the expression of several fat storage-related proteins in adipocytes, including ACC, FAS, LPL and perilipin, thereby stimulating intracytoplasmic lipid accumulation. Moreover, both acylated and desacyl ghrelin reduce TNF-α-induced apoptosis and autophagy in adipocytes, suggesting an anti-inflammatory role of ghrelin in human adipose tissue. On the other hand, leptin is an adipokine with lipolytic effects. In this sense, leptin modulates via PI3K/Akt/mTOR the expression of aquaglyceroporins such as AQP3 and AQP7 that facilitate glycerol efflux from adipocytes in response to the lipolytic stimuli via its translocation from the cytosolic fraction (AQP3) or lipid droplets (AQP7) to the plasma membrane. Ghrelin and leptin also participate in the homeostasis of the cardiovascular system. Ghrelin operates as a cardioprotective factor with increased circulating acylated ghrelin concentrations in patients with left ventricular hypertrophy (LVH) causally related to LV remodeling during the progression to LVH. Additionally, leptin induces vasodilation by inducible NO synthase expression (iNOS) in the vascular wall. In this sense, leptin inhibits the angiotensin II-induced Ca(2+) increase, contraction and proliferation of VSMC through NO-dependent mechanisms. Together, dysregulation of circulating ghrelin isoforms and leptin resistance associated to obesity, type 2 diabetes, or the metabolic syndrome contribute to cardiometabolic derangements observed in these pathologies.

  19. Influence of pneumoperitoneum and postural change on the cardiovascular and respiratory systems in dogs.

    PubMed

    Park, Young Tae; Okano, Shozo

    2015-10-01

    We investigated the influence of pneumoperitoneum#(PP) and postural change under inhalation anesthesia with isoflurane, which is routinely used in dogs, on the cardiovascular and respiratory systems. As test animals, 6 adult beagles were used. To induce anesthesia, atropine, butorphanol and propofol were intravenously injected. Anesthesia was maintained with 1.3 MAC (1.7%) isoflurane. The following were the experiment conditions: I:E ratio, 1:1.9; tidal air exchange, 20 ml/kg; and ventilation frequency, 14 times/min. Respiration was regulated so that the PaCO2 was approximately 35 to 40 mmHg before the start of the experiment. PP with CO2 (intraperitoneal pressure 15 mmHg) and a postural change (15°C) was performed during the experiment. As parameters of circulatory kinetics, heart rate (HR), mean aortic pressure (MAP), mean pulmonary arterial pressure (MPAP), central venous pressure (CVP), femoral venous pressure (FVP) and cardiac output (CO) were measured. As parameters of respiratory kinetics, airway pressure (PAW) and blood gas (BG) were measured. There were significant increases in HR, MAP, MPAP, CVP, FVP, CO, PAW and PaCO2 after PP in the horizontal position. There were significant increases in CVP, FVP, PAW and PaCO2 after PP in the Trendelenburg position. There were significant increases in the MPAP, CVP, FVP, PAW and PaCO2 after PP in the inverse Trendelenburg position. There was a significant difference in FVP after PP between the Trendelenburg position and inverse Trendelenburg position. The results of this experiment suggest that appropriate anesthesia control, such as changing the ventilation conditions after PP, is required for laparoscopic surgery under inhalation anesthesia with isoflurane.

  20. Automatic recognition of fundamental tissues on histology images of the human cardiovascular system.

    PubMed

    Mazo, Claudia; Trujillo, Maria; Alegre, Enrique; Salazar, Liliana

    2016-10-01

    Cardiovascular disease is the leading cause of death worldwide. Therefore, techniques for improving diagnosis and treatment in this field have become key areas for research. In particular, approaches for tissue image processing may support education system and medical practice. In this paper, an approach to automatic recognition and classification of fundamental tissues, using morphological information is presented. Taking a 40× or 10× histological image as input, three clusters are created with the k-means algorithm using a structural tensor and the red and the green channels. Loose connective tissue, light regions and cell nuclei are recognised on 40× images. Then, the cell nuclei's features - shape and spatial projection - and light regions are used to recognise and classify epithelial cells and tissue into flat, cubic and cylindrical. In a similar way, light regions, loose connective and muscle tissues are recognised on 10× images. Finally, the tissue's function and composition are used to refine muscle tissue recognition. Experimental validation is then carried out by histologist following expert criteria, along with manually annotated images that are used as a ground-truth. The results revealed that the proposed approach classified the fundamental tissues in a similar way to the conventional method employed by histologists. The proposed automatic recognition approach provides for epithelial tissues a sensitivity of 0.79 for cubic, 0.85 for cylindrical and 0.91 for flat. Furthermore, the experts gave our method an average score of 4.85 out of 5 in the recognition of loose connective tissue and 4.82 out of 5 for muscle tissue recognition.

  1. Methods for establishing a surveillance system for cardiovascular diseases in Indian industrial populations.

    PubMed Central

    Reddy, K. S.; Prabhakaran, D.; Chaturvedi, V.; Jeemon, P.; Thankappan, K. R.; Ramakrishnan, L.; Mohan, B. V. M.; Pandav, C. S.; Ahmed, F. U.; Joshi, P. P.; Meera, R.; Amin, R. B.; Ahuja, R. C.; Das, M. S.; Jaison, T. M.

    2006-01-01

    OBJECTIVE: To establish a surveillance network for cardiovascular diseases (CVD) risk factors in industrial settings and estimate the risk factor burden using standardized tools. METHODS: We conducted a baseline cross-sectional survey (as part of a CVD surveillance programme) of industrial populations from 10 companies across India, situated in close proximity to medical colleges that served as study centres. The study subjects were employees (selected by age and sex stratified random sampling) and their family members. Information on behavioural, clinical and biochemical determinants was obtained through standardized methods (questionnaires, clinical measurements and biochemical analysis). Data collation and analyses were done at the national coordinating centre. FINDINGS: We report the prevalence of CVD risk factors among individuals aged 20-69 years (n = 19 973 for the questionnaire survey, n = 10 442 for biochemical investigations); mean age was 40 years. The overall prevalence of most risk factors was high, with 50.9% of men and 51.9% of women being overweight, central obesity was observed among 30.9% of men and 32.8% of women, and 40.2% of men and 14.9% of women reported current tobacco use. Self-reported prevalence of diabetes (5.3%) and hypertension (10.9%) was lower than when measured clinically and biochemically (10.1% and 27.7%, respectively). There was marked heterogeneity in the prevalence of risk factors among the study centres. CONCLUSION: There is a high burden of CVD risk factors among industrial populations across India. The surveillance system can be used as a model for replication in India as well as other developing countries. PMID:16799730

  2. Cardiovascular group

    NASA Technical Reports Server (NTRS)

    Blomqvist, Gunnar

    1989-01-01

    As a starting point, the group defined a primary goal of maintaining in flight a level of systemic oxygen transport capacity comparable to each individual's preflight upright baseline. The goal of maintaining capacity at preflight levels would seem to be a reasonable objective for several different reasons, including the maintenance of good health in general and the preservation of sufficient cardiovascular reserve capacity to meet operational demands. It is also important not to introduce confounding variables in whatever other physiological studies are being performed. A change in the level of fitness is likely to be a significant confounding variable in the study of many organ systems. The principal component of the in-flight cardiovascular exercise program should be large-muscle activity such as treadmill exercise. It is desirable that at least one session per week be monitored to assure maintenance of proper functional levels and to provide guidance for any adjustments of the exercise prescription. Appropriate measurements include evaluation of the heart-rate/workload or the heart-rate/oxygen-uptake relationship. Respiratory gas analysis is helpful by providing better opportunities to document relative workload levels from analysis of the interrelationships among VO2, VCO2, and ventilation. The committee felt that there is no clear evidence that any particular in-flight exercise regimen is protective against orthostatic hypotension during the early readaptation phase. Some group members suggested that maintenance of the lower body muscle mass and muscle tone may be helpful. There is also evidence that late in-flight interventions to reexpand blood volume to preflight levels are helpful in preventing or minimizing postflight orthostatic hypotension.

  3. Cardiovascular Deconditioning

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Fritsch-Yelle, Janice M.; Whitson, Peggy A.; Wood, Margie L.; Brown, Troy E.; Fortner, G. William

    1999-01-01

    Spaceflight causes adaptive changes in cardiovascular function that may deleteriously affect crew health and safety. Over the last three decades, symptoms of cardiovascular changes have ranged from postflight orthostatic tachycardia and decreased exercise capacity to serious cardiac rhythm disturbances during extravehicular activities (EVA). The most documented symptom of cardiovascular dysfunction, postflight orthostatic intolerance, has affected a significant percentage of U.S. Space Shuttle astronauts. Problems of cardiovascular dysfunction associated with spaceflight are a concern to NASA. This has been particularly true during Shuttle flights where the primary concern is the crew's physical health, including the pilot's ability to land the Orbiter, and the crew's ability to quickly egress and move to safety should a dangerous condition arise. The study of astronauts during Shuttle activities is inherently more difficult than most human research. Consequently, sample sizes have been small and results have lacked consistency. Before the Extended Duration Orbiter Medical Project (EDOMP), there was a lack of normative data on changes in cardiovascular parameters during and after spaceflight. The EDOMP for the first time allowed studies on a large enough number of subjects to overcome some of these problems. There were three primary goals of the Cardiovascular EDOMP studies. The first was to establish, through descriptive studies, a normative data base of cardiovascular changes attributable to spaceflight. The second goal was to determine mechanisms of cardiovascular changes resulting from spaceflight (particularly orthostatic hypotension and cardiac rhythm disturbances). The third was to evaluate possible countermeasures. The Cardiovascular EDOMP studies involved parallel descriptive, mechanistic, and countermeasure evaluations.

  4. Estrogen receptor β actions in the female cardiovascular system: A systematic review of animal and human studies.

    PubMed

    Muka, Taulant; Vargas, Kris G; Jaspers, Loes; Wen, Ke-xin; Dhana, Klodian; Vitezova, Anna; Nano, Jana; Brahimaj, Adela; Colpani, Veronica; Bano, Arjola; Kraja, Bledar; Zaciragic, Asija; Bramer, Wichor M; van Dijk, Gaby M; Kavousi, Maryam; Franco, Oscar H

    2016-04-01

    Five medical databases were searched for studies that assessed the role of ERβ in the female cardiovascular system and the influence of age and menopause on ERβ functioning. Of 9472 references, 88 studies met our inclusion criteria (71 animal model experimental studies, 15 human model experimental studies and 2 population based studies). ERβ signaling was shown to possess vasodilator and antiangiogenic properties by regulating the activity of nitric oxide, altering membrane ionic permeability in vascular smooth muscle cells, inhibiting vascular smooth muscle cell migration and proliferation and by regulating adrenergic control of the arteries. Also, a possible protective effect of ERβ signaling against left ventricular hypertrophy and ischemia/reperfusion injury via genomic and non-genomic pathways was suggested in 27 studies. Moreover, 5 studies reported that the vascular effects of ERβ may be vessel specific and may differ by age and menopause status. ERβ seems to possess multiple functions in the female cardiovascular system. Further studies are needed to evaluate whether isoform-selective ERβ-ligands might contribute to cardiovascular disease prevention.

  5. A follow-up study of medical students' biomedical understanding and clinical reasoning concerning the cardiovascular system.

    PubMed

    Ahopelto, Ilona; Mikkilä-Erdmann, Mirjamaija; Olkinuora, Erkki; Kääpä, Pekka

    2011-12-01

    Novice medical students usually hold initial conceptions concerning medical domains, such as the cardiovascular system, which may contradict scientific explanations and thus hinder learning. The purpose of this study was to investigate which kinds of biomedical representations medical students constructed of the central cardiovascular system in their first and second years of study, and how the quality of these representations was related to the students' success in clinical reasoning. Data for 119 medical students were collected in three phases: in the first year of study before and after a cardiovascular course and a follow-up in the second year of study. Biomedical and clinical assignments were utilised. The study revealed that students had a substantial number of different misconceptions, and they decreased only slightly over the period of instruction. Those students who had misconceptions concerning biomedical knowledge also performed poorly in clinical reasoning. Furthermore, those students whose clinical reasoning was excellent had improved their biomedical knowledge between the first and second year remarkably more than students with poorer clinical reasoning. Hence, biomedical understanding seems to act as a mediator in clinical reasoning among novice students. We suggest that domain-specific pedagogical training, which would help medical educators become aware of students' typical misconceptions concerning biomedical knowledge and the role of this knowledge in clinical reasoning, should be carried out to improve medical education.

  6. Oestrogen receptors in the central nervous system and evidence for their role in the control of cardiovascular function.

    PubMed

    Spary, Emma J; Maqbool, Azhar; Batten, Trevor F C

    2009-11-01

    Oestrogen is considered beneficial to cardiovascular health through protective effects not only on the heart and vasculature, but also on the autonomic nervous system via actions on oestrogen receptors. A plethora of evidence supports a role for the hormone within the central nervous system in modulating the pathways regulating cardiovascular function. A complex interaction of several brainstem, spinal and forebrain nuclei is required to receive, integrate and co-ordinate inputs that contribute appropriate autonomic reflex responses to changes in blood pressure and other cardiovascular parameters. Central effects of oestrogen and oestrogen receptors have already been demonstrated in many of these areas. In addition to the classical nuclear oestrogen receptors (ERalpha and ERbeta) a recently discovered G-protein coupled receptor, GPR30, has been shown to be a novel mediator of oestrogenic action. Many anatomical and molecular studies have described a considerable overlap in the regional expression of these receptors; however, the receptors do exhibit specific characteristics and subtype specific expression is found in many autonomic brain areas, for example ERbeta appears to predominate in the hypothalamic paraventricular nucleus, whilst ERalpha is important in the nucleus of the solitary tract. This review provides an overview of the available information on the localisation of oestrogen receptor subtypes and their multitude of possible modulatory actions in different groups of neurochemically and functionally defined neurones in autonomic-related areas of the brain.

  7. Emerging evidence of the importance of rapid, non-nuclear estrogen receptor signaling in the cardiovascular system.

    PubMed

    Ueda, Kazutaka; Karas, Richard H

    2013-06-01

    Estrogen receptors are classically known as ligand-activated transcription factors that regulate gene transcription in cells in response to hormone binding. In addition to this "genomic" signaling pathway, a "rapid, non-nuclear" signaling pathway mediated by cell membrane-associated estrogen receptors also has been recognized. Although for many years there was little evidence to support any physiological relevance of rapid-signaling, very recently evidence has been accumulating supporting the importance of the rapid, non-nuclear signaling as potentially critical for the protective effects of estrogen in the cardiovascular system. Better understanding of the rapid, non-nuclear signaling potentially provides an opportunity to design "pathway-specific" selective estrogen receptor modulators capable of differentially regulating non-nuclear vs. genomic effects that may prove useful ultimately as specific therapies for cardiovascular diseases.

  8. Assessment of the cardiovascular system in pediatric chronic kidney disease: a pilot study.

    PubMed

    Muscheites, Jutta; Meyer, Andreas Alexander; Drueckler, Erdmute; Wigger, Marianne; Fischer, Dagmar-Christiane; Kundt, Guenther; Kienast, Wolfgang; Haffner, Dieter

    2008-12-01

    Long-term survival of children and adolescents with chronic kidney disease (CKD) is mainly limited by cardiovascular disease. Pediatric CKD patients (n = 26) on conservative treatment, dialysis and after renal transplantation were compared with healthy controls (n = 24) with respect to cardiovascular status. Mean baseline diameter of the brachial artery was significantly higher, and mean flow-mediated vasodilation (FMD) was significantly reduced, in CKD patients. CKD patients showed significantly increased left ventricular mass index, blood pressure (BP) values and age-related values of mean carotid intima-media thickness [intima-media thickness-standard deviation score (IMT-SDS)] compared with those of controls. Approximately 60% of patients presented with impaired FMD (< or = 5.79%), which was significantly associated with intima-media thickening, although only three patients (12%) presented with both, impaired FMD and increased age-related IMT. The latter was significantly associated with higher values for day-time BP. In contrast, duration and degree of CKD, mode of renal replacement therapy, homocysteine levels and concomitant medication showed no association with cardiovascular status. The majority of our pediatric CKD patients showed reduced endothelial function, which may have preceded the development of carotid arteriopathy. Therefore, routine assessment of FMD may be a useful tool to identify CKD patients at risk of progressive cardiovascular morbidity.

  9. Investigations of the Cardiovascular and Respiratory Systems on Board the International Space Station: Experiments Puls and Pneumocard

    NASA Astrophysics Data System (ADS)

    Baranov, V. M.; Baevsky, R. M.; Drescher, J.; Tank, J.

    parameters describing the results of the function of these systems like heart rate, arterial pressure, cardiac output, or breathing frequency, concentration of O2 and CO2 , etc. Missing significant changes of these parameters during weightlessness supports the hypothesis that adaptational and compensatory mechanisms are sufficient and guarantee cardiovascular homeostasis under changing environmental conditions. characteristic changes of the vegetative balance and of the activity of different regulatory elements at the brainstem and subcortical level. This changes guaranteed the adaptation to long term weightlessness. However, it remains unclear to what extent the different levels are involved. Moreover, the criteria describing the efficacy of cardiorespiratory interaction for the different functional states are not defined yet. The investigation of this problems is highly relevant in order to improve the medical control, especially if considering that the disruption of regulatory systems mostly precedes dangerous destruction of homeostasis. cardiovascular and respiratory function on Board the International Space Station (ISS) aiming to obtain new insights into the interaction between different regulatory elements. "Puls" is measures ECG, photoplethysmogram (PPG), and the pneumotachogram (PTG). The ECG is used to measure time series of R-R intervals and to analyse HRV. PPG is used to define the pulse wave velocity, phases of the cardiac cycle, and an estimate of the filling of finger vessels. The variability of these parameters is also calculated and compared to HRV. The analysis of the PTG allows to describe the interaction of the regulatory parameters of the cardiovascular and respiratory systems. Hence, an important feature of the experiment "Puls" is the investigation of regulatory mechanisms rather than of cardiovascular homeostasis. cardiography) and left ventricular contractility (seismocardiography) will be obtained. This expansion is of major importance

  10. Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system.

    PubMed

    Votsi, E; Roussos, D; Katsikis, I; Karkanaki, A; Kita, M; Panidis, D

    2008-01-01

    The pairing of the kisspeptins (KP) with the KISS1 (GPR54) receptor has received growing attention since the description of the receptor as a molecular switch for puberty. The role of KP and its receptor, GPR54, in puberty is the most exciting finding made in the field of reproductive biology since the discovery of Gonadotropin Releasing Hormone (GnRH) in 1970s. A significant body of evidence across several species now suggests that KISS1 (GPR54) activation is a critical point in the commencement of puberty, although further investigation is required to characterize the interaction between KP and GnRH cascade. Given such pivotal roles of kisspeptins and GPR54 as gatekeepers of reproductive function, and the proven ability of sex steroids to physiologically regulate this system, it is plausible that environmental compounds with ability to interfere oestrogen and/or androgen signaling (agonists or antagonists) may target the hypothalamic kiss-1/GPR54 system, thereby inducing functional alterations of the hypothalamic-pituitary-gonadal axis. Synthetic agonists targeting KISS1 (GPR54) may represent novel therapeutic agents for the treatment of hypogonadotrophic hypogonadism in some affected individuals. The diverse multifunctional nature of the KP is beginning to unravel. The unexpected role of these peptides in puberty has raised a number of important questions that remain to be answered.

  11. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration.

    PubMed

    Chen, Zhangjian; Wang, Yun; Zhuo, Lin; Chen, Shi; Zhao, Lin; Luan, Xianguo; Wang, Haifang; Jia, Guang

    2015-12-03

    Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various consumer products, especially food and personal care products. Compared to the well-characterized adverse cardiovascular effect of inhaled ambient ultrafine particles, research on the health response to orally administrated TiO2 NPs is still limited. In our study, we performed an in vivo study in Sprague-Dawley rats to understand the cardiovascular effect of TiO2 NPs after oral intake. After daily gastrointestinal administration of TiO2 NPs at 0, 2, 10, 50 mg/kg for 30 and 90 days, heart rate (HR), blood pressure, blood biochemical parameters and histopathology of cardiac tissues was assessed to quantify cardiovascular damage. Mild and temporary reduction of HR and systolic blood pressure as well as an increase of diastolic blood pressure was observed after daily oral administration of TiO2 NPs for 30 days. Injury of cardiac function was observed after daily oral administration of TiO2 NPs for 90 days as reflected in decreased activities of lactate dehydrogenase (LDH), alpha-hydroxybutyrate dehydrogenase (HBDH) and creatine kinase (CK). Increased white blood cells count (WBC) and granulocytes (GRN) in blood as well as increased concentrations of tumor necrosis factor α (TNF α) and interleukin 6 (IL-6) in the serum indicated inflammatory response initiated by TiO2 NPs exposure. It was hypothesize that cardiac damage and inflammatory response are the possible mechanisms of the adverse cardiovascular effects induced by orally administrated TiO2 NPs. Data from our study suggested that even at low dose of TiO2 NPs can induce adverse cardiovascular effects after 30 days or 90 days of oral exposure, thus warranting concern for the dietary intake of TiO2 NPs for consumers.

  12. Simulation of hemodynamic responses to the valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system.

    PubMed

    Liang, Fuyou; Liu, Hao

    2006-02-01

    The Valsalva maneuver is a frequently used physiological test in evaluating the cardiovascular autonomic functions in human. Although a large pool of experimental data has provided substantial insights into different aspects of the mechanisms underlying the cardiovascular regulations during the Valsalva maneuver, so far a complete comprehension of these mechanisms and the interactions among them is unavailable. In the present study, a computational model of the cardiovascular system (CVS) and its interaction with the autonomic nervous system (ANS) was developed for the purpose of quantifying the individual roles of the CVS and the ANS in the hemodynamic regulations during the Valsalva maneuver. A detailed computational compartmental parameter model of the global CVS, a system of mathematical equations representing the autonomic nervous reflex regulatory functions, and an empirical cerebral autoregulation (CA) model formed the main body of the present model. Based on simulations of the Valsalva maneuvers at several typical postures, it was demonstrated that hemodynamic responses to the maneuver were not only determined by the ANS-mediated cardiovascular regulations, but also significantly affected by the postural-change-induced hemodynamic alterations preceding the maneuver. Moreover, the large-magnitude overshoot in cerebral perfusion immediately after the Valsalva maneuver was found to result from a combined effect of the circulatory autonomic functions, the CA, and the cerebral venous blood pressure.

  13. Meeting report from the 2nd International Symposium on New Frontiers in Cardiovascular Research. Protecting the cardiovascular system from ischemia: between bench and bedside.

    PubMed

    Cabrera-Fuentes, Hector A; Alba-Alba, Corina; Aragones, Julian; Bernhagen, Jürgen; Boisvert, William A; Bøtker, Hans E; Cesarman-Maus, Gabriela; Fleming, Ingrid; Garcia-Dorado, David; Lecour, Sandrine; Liehn, Elisa; Marber, Michael S; Marina, Nephtali; Mayr, Manuel; Perez-Mendez, Oscar; Miura, Tetsuji; Ruiz-Meana, Marisol; Salinas-Estefanon, Eduardo M; Ong, Sang-Bing; Schnittler, Hans J; Sanchez-Vega, Jose T; Sumoza-Toledo, Adriana; Vogel, Carl-Wilhelm; Yarullina, Dina; Yellon, Derek M; Preissner, Klaus T; Hausenloy, Derek J

    2016-01-01

    Recent advances in basic cardiovascular research as well as their translation into the clinical situation were the focus at the last "New Frontiers in Cardiovascular Research meeting". Major topics included the characterization of new targets and procedures in cardioprotection, deciphering new players and inflammatory mechanisms in ischemic heart disease as well as uncovering microRNAs and other biomarkers as versatile and possibly causal factors in cardiovascular pathogenesis. Although a number of pathological situations such as ischemia-reperfusion injury or atherosclerosis can be simulated and manipulated in diverse animal models, also to challenge new drugs for intervention, patient studies are the ultimate litmus test to obtain unequivocal information about the validity of biomedical concepts and their application in the clinics. Thus, the open and bidirectional exchange between bench and bedside is crucial to advance the field of ischemic heart disease with a particular emphasis of understanding long-lasting approaches in cardioprotection.

  14. The effects of exercise on blood flow with reference to the human cardiovascular system: a finite element study

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1992-01-01

    This paper reports on a theoretical investigation into the effects of vasomotion on blood through the human cardiovascular system. The finite element method has been used to analyse the model. Vasoconstriction and vasodilation may be effected either through the action of the central nervous system or autoregulation. One of the conditions responsible for vasomotion is exercise. The proposed model has been solved and quantitative results of flows and pressures due to changing the conductances of specific networks of arterioles, capillaries and venules comprising the arms, legs, stomach and their combinations have been obtained.

  15. Design and utilization of macrophage and vascular smooth muscle cell co-culture systems in atherosclerotic cardiovascular disease investigation.

    PubMed

    Zuniga, Mary C; White, Sharla L Powell; Zhou, Wei

    2014-10-01

    Atherosclerotic cardiovascular disease has been acknowledged as a chronic inflammatory condition. Monocytes and macrophages lead the inflammatory pathology of atherosclerosis whereas changes in atheromatous plaque thickness and matrix composition are attributed to vascular smooth muscle cells. Because these cell types are key players in atherosclerosis progression, it is crucial to utilize a reliable system to investigate their interaction. In vitro co-culture systems are useful platforms to study specific molecular mechanisms between cells. This review aims to summarize the various co-culture models that have been developed to investigate vascular smooth muscle cell and monocyte/macrophage interactions, focusing on the monocyte/macrophage effects on vascular smooth muscle cell function.

  16. Introduction: Cardiovascular physics.

    PubMed

    Wessel, Niels; Kurths, Jürgen; Ditto, William; Bauernschmitt, Robert

    2007-03-01

    The number of patients suffering from cardiovascular diseases increases unproportionally high with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop high-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Cardiovascular physics-which interconnects medicine, physics, biology, engineering, and mathematics-is based on interdisciplinary collaboration of specialists from the above scientific fields and attempts to gain deeper insights into pathophysiology and treatment options. This paper summarizes advances in cardiovascular physics with emphasis on a workshop held in Bad Honnef, Germany, in May 2005. The meeting attracted an interdisciplinary audience and led to a number of papers covering the main research fields of cardiovascular physics, including data analysis, modeling, and medical application. The variety of problems addressed by this issue underlines the complexity of the cardiovascular system. It could be demonstrated in this Focus Issue, that data analyses and modeling methods from cardiovascular physics have the ability to lead to significant improvements in different medical fields. Consequently, this Focus Issue of Chaos is a status report that may invite all interested readers to join the community and find competent discussion and cooperation partners.

  17. Introduction: Cardiovascular physics

    NASA Astrophysics Data System (ADS)

    Wessel, Niels; Kurths, Jürgen; Ditto, William; Bauernschmitt, Robert

    2007-03-01

    The number of patients suffering from cardiovascular diseases increases unproportionally high with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop high-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Cardiovascular physics-which interconnects medicine, physics, biology, engineering, and mathematics-is based on interdisciplinary collaboration of specialists from the above scientific fields and attempts to gain deeper insights into pathophysiology and treatment options. This paper summarizes advances in cardiovascular physics with emphasis on a workshop held in Bad Honnef, Germany, in May 2005. The meeting attracted an interdisciplinary audience and led to a number of papers covering the main research fields of cardiovascular physics, including data analysis, modeling, and medical application. The variety of problems addressed by this issue underlines the complexity of the cardiovascular system. It could be demonstrated in this Focus Issue, that data analyses and modeling methods from cardiovascular physics have the ability to lead to significant improvements in different medical fields. Consequently, this Focus Issue of Chaos is a status report that may invite all interested readers to join the community and find competent discussion and cooperation partners.

  18. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation.

    PubMed

    Bauer, Jochen; Ripperger, Anne; Frantz, Stefan; Ergün, Süleyman; Schwedhelm, Edzard; Benndorf, Ralf A

    2014-07-01

    Isoprostanes are free radical-catalysed PG-like products of unsaturated fatty acids, such as arachidonic acid, which are widely recognized as reliable markers of systemic lipid peroxidation and oxidative stress in vivo. Moreover, activation of enzymes, such as COX-2, may contribute to isoprostane formation. Indeed, formation of isoprostanes is considerably increased in various diseases which have been linked to oxidative stress, such as cardiovascular disease (CVD), and may predict the atherosclerotic burden and the risk of cardiovascular complications in the latter patients. In addition, several isoprostanes may directly contribute to the functional consequences of oxidant stress via activation of the TxA2 prostanoid receptor (TP), for example, by affecting endothelial cell function and regeneration, vascular tone, haemostasis and ischaemia/reperfusion injury. In this context, experimental and clinical data suggest that selected isoprostanes may represent important alternative activators of the TP receptor when endogenous TxA2 levels are low, for example, in aspirin-treated individuals with CVD. In this review, we will summarize the current understanding of isoprostane formation, biochemistry and (patho) physiology in the cardiovascular context.

  19. Effects of air pollution caused by sugarcane burning in Western São Paulo on the cardiovascular system

    PubMed Central

    Pestana, Paula Roberta da Silva; Braga, Alfésio Luís Ferreira; Ramos, Ercy Mara Cipulo; de Oliveira, Ariadna Ferraz; Osadnik, Christian Robert; Ferreira, Aline Duarte; Ramos, Dionei

    2017-01-01

    ABSTRACT OBJECTIVE To evaluate the effects of acute exposure to air pollutants (NO2 and PM10) on hospitalization of adults and older people with cardiovascular diseases in Western São Paulo. METHODS Daily cardiovascular-related hospitalization data (CID10 – I00 to I99) were acquired by the Department of Informatics of the Brazilian Unified Health System (DATASUS) from January 2009 to December 2012. Daily levels of NO2 and PM10 and weather data were obtained from Companhia Ambiental do Estado de São Paulo (CETESB – São Paulo State Environmental Agency). To estimate the effects of air pollutants exposure on hospital admissions, generalized linear Poisson regression models were used. RESULTS During the study period, 6,363 hospitalizations were analysed. On the day of NO2 exposure, an increase of 1.12% (95%CI 0.05–2.20) was observed in the interquartile range along with an increase in hospital admissions. For PM10, a pattern of similar effect was observed; however, results were not statistically significant. CONCLUSIONS Even though with values within established limits, NO2 is an important short-term risk factor for cardiovascular morbidity. PMID:28273230

  20. Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system.

    PubMed

    Mead, E J; Maguire, J J; Kuc, R E; Davenport, A P

    2007-08-01

    Orphan G-protein-coupled receptors that have recently been paired with their cognate ligand are an often untapped resource for novel drug development. The KISS1 receptor (previously designated GPR54) has been paired with biologically active cleavage peptides of the KiSS-1 gene product, the kisspeptins (KP). The focus of this review is the emerging pharmacology and physiology of the KP. Genetic linkage analysis in humans revealed that mutations in KISS1 (GPR54, AXOR12 or hOT7T175) result in idiopathic hypogonadotrophic hypogonadism and knockout mouse studies confirmed this finding. Identification of KISS1 (GPR54) as a molecular switch for puberty subsequently led to the discovery that KP activate the GnRH cascade. Prior to the role of KISS1 (GPR54) in puberty being described, KP had been shown to be inhibitors of tumour metastasis across a range of cancers. Subsequently the mechanism of this inhibition has been suggested to be via altered cell motility and adhesiveness. PCR detected highest expression of KP and KISS1 (GPR54) in placenta, and changes in KP levels throughout pregnancy and expression in trophoblasts suggests a role in placentation. Placentation and metastasis are invasive processes that require angiogenesis. Investigation of KISS1 (GPR54) and KP in vasculature revealed discrete localisation of KISS1 (GPR54) to blood vessels prone to atherosclerosis and a potent vasoconstrictor action. A role for KP has also been shown in whole body homeostasis. KP are multifunctional peptides and further investigation is required to fully elucidate the complex pathways regulated by these peptides and how these pathways integrate in the whole body system.

  1. [Analytical performances of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine].

    PubMed

    De Monte, Anne; Cannavo, Isabelle; Caramella, Anne; Ollier, Laurence; Giordanengo, Valérie

    2016-01-01

    Congenital cytomegalovirus (CMV) infection is the leading cause of sensoneurinal disability due to infectious congenital disease. The diagnosis of congenital CMV infection is based on the search of CMV in the urine within the first two weeks of life. Viral culture of urine is the gold standard. However, the PCR is highly sensitive and faster. It is becoming an alternative choice. The objective of this study is the validation of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine. Repeatability, reproducibility, detection limit and inter-sample contamination were evaluated. Urine samples from patients (n=141) were collected and analyzed simultaneously in culture and PCR in order to assess the correlation of these two methods. The sensitivity and specificity of PCR were also calculated. The Abbott RealTime CMV PCR in urine is an automated and sensitive method (detection limit 200 UI/mL). Fidelity is very good (standard deviation of repeatability: 0.08 to 0.15 LogUI/mL and reproducibility 0.18 LogUI/mL). We can note a good correlation between culture and Abbott RealTime CMV PCR (kappa 96%). When considering rapid culture as reference, real-time PCR was highly sensitive (100%) and specific (98.2%). The real-time PCR by Abbott RealTime CMV with m2000 is optimal for CMV detection in urine.

  2. Comparison of Perceptions of "Preparedness" of John Abbott C.E.G.E.P. Nursing Graduates: Prior to Graduation and After.

    ERIC Educational Resources Information Center

    Iton, Carmen; Sabiston, Judy

    A study of John Abbott College's nursing graduates was conducted to determine how well prepared for their professional responsibilities the graduates saw themselves just prior to graduation and later after working in the nursing field. A sample of 98 nursing students who graduated between 1986 and 1988 was surveyed, with 93% responding to the…

  3. Role of renin angiotensin system inhibitors in cardiovascular and renal protection: a lesson from clinical trials.

    PubMed

    Stojiljkovic, Ljuba; Behnia, Rahim

    2007-01-01

    Beneficial effects of angiotensin converting enzyme inhibitors (ACEI) and angiotensin type 1 receptor (AT1) blockers in patients with cardiovascular and renal diseases have been clearly demonstrated in numerous large outcomes studies. In patients with heart failure (HF), ACEI have been shown to reduce overall mortality, mortality from cardiovascular causes, to increase life expectancy, as well as to preserve the renal function (CONSENSUS, SAVE, TRACE, AIRE, AIREX, CATS trials). In addition, in the PROGRESS study ACEI substantially decreased the risk of stroke and transient ischemic attacks in patients with cerebrovascular disorders. The HOPE and EUROPA studies confirmed that long term therapy with ACEI provides significant survival benefit in patients with broad range of atherosclerotic cardiovascular diseases. After these large and well designed clinical studies, ACEI have become standard therapy for routine secondary prevention in all patients with cardiovascular diseases, unless contraindicated. AT1 receptor blockers have been recently added to the cardiovascular therapeutic armamentarium. They are believed to provide additional protection by inhibition of locally synthesized angiotensin II on the level of AT1 receptor. The ELITE II, ValHeFT and CHARM studies have shown that AT1 receptor blockers are equally effective as ACEI in reduction of mortality and morbidity in patients with HF. Importantly, they may be used together with ACEI, or as alternative treatment in ACEI intolerant patients. Renal protection is another important effect of both ACEI and AT1 blockers that has been confirmed in several large clinical trials. The North American Microalbuminemia Study group and EUCLID group demonstrated significant reduction in progression of diabetic nephropathy in patients with insulin dependent diabetes mellitus (IDDM) treated with ACEI. AT1 receptor blockers are mainly studied in the non-insulin dependent diabetes mellitus (NIDDM) nephropathy. Four recent clinical

  4. Critical Analysis of Cardiovascular and Central Nervous System Fixed Dose Combinations Available in Indian Market

    PubMed Central

    Prajapati, Krunal; Shah, Samidh

    2016-01-01

    Introduction Fixed Dose Combinations (FDCs) are being increasingly used to improve compliance and achieve greater benefits of the two or more active ingredients given together than the corresponding individual drug components given separately. Aim To analyse the rationality of Cardiovascular (CV) and Central Nervous System (CNS) FDCs available in Indian market. Materials and Methods CVS and CNS FDCs, enlisted in Indian Drug Review, 2014, were analysed by a pretested validated eight point criteria tool. Each FDC was assessed for number of active pharmacological ingredients, approval by regulatory authority, listing in WHO Essential Medicine List. While efficacy, safety, pharmacokinetic, pharmacodynamic interactions and advantages of each FDC were analysed by literature search. The total score of the tool was 12 and score ≥7 was considered rational. FDCs were divided in four groups as per rationality and DCGI approval. ANOVA was used for statistical analysis and p<0.05 was considering statistically significant. Results Out of 152 FDCs, 107 were CV and 45 belonged to CNS group and 40 had documented evidence of efficacy and safety. Majority of FDCs showed advantage of being convenient by reducing pill count and only 32 showed reducing adverse drug reactions. Out of 107 CV FDCs, 46 were rational and 61 were irrational with a mean rationality score of 6.72±2.82 (CI– 95 %, 3.90 - 9.54). While out of 45 CNS FDCs, 8 were rational and 37 were irrational with a mean rationality score of 6.22±2.08 (CI – 95 %, 4.14 - 8.30). A significant difference in mean rationality score of group A (DCGI approved + rational) was observed as compared to group B (DCGI approved + irrational) and group C (DCGI unapproved + rational) as compared to group D (DCGI unapproved + irrational) (p<0.05). Conclusion The absence of watertight pre-requisite, critical analysis of the scientific validity of the formulations and ‘convenience’ category has resulted into proliferation of irrational

  5. NASA'S Standard Measures During Bed Rest: Adaptations in the Cardiovascular System

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Feiveson, Alan H.; Martin, David S.; Cromwell, Roni L.; Platts, Steven H.; Stenger, Michael B.

    2016-01-01

    Bed rest is a well-accepted analog of space flight that has been used extensively to investigate physiological adaptations in a larger number of subjects in a shorter amount of time than can be studied with space flight and without the confounding effects associated with normal mission operations. However, comparison across studies of different bed rest durations, between sexes, and between various countermeasure protocols have been hampered by dissimilarities in bed rest conditions, measurement protocols, and testing schedules. To address these concerns, NASA instituted standard bed rest conditions and standard measures for all physiological disciplines participating in studies conducted at the Flight Analogs Research Unit (FARU) at the University of Texas-Medical Branch. Investigators for individual studies employed their own targeted study protocols to address specific hypothesis-driven questions, but standard measures tests were conducted within these studies on a non-interference basis to maximize data availability while reducing the need to implement multiple bed rest studies to understand the effects of a specific countermeasure. When possible, bed rest standard measures protocols were similar to tests nominally used for medically-required measures or research protocols conducted before and after Space Shuttle and International Space Station missions. Specifically, bed rest standard measures for the cardiovascular system implemented before, during, and after bed rest at the FARU included plasma volume (carbon monoxide rebreathing), cardiac mass and function (2D, 3D and Doppler echocardiography), and orthostatic tolerance testing (15- or 30-minutes of 80 degree head-up tilt). Results to-date indicate that when countermeasures are not employed, plasma volume decreases and the incidence of presyncope during head-up tilt is more frequent even after short-duration bed rest while reductions in cardiac function and mass are progressive as bed rest duration

  6. The impact of haemodialysis arteriovenous fistula on haemodynamic parameters of the cardiovascular system

    PubMed Central

    Basile, Carlo; Vernaglione, Luigi; Casucci, Francesco; Libutti, Pasquale; Lisi, Piero; Rossi, Luigi; Vigo, Valentina; Lomonte, Carlo

    2016-01-01

    Background Satisfactory vascular access flow (Qa) of an arteriovenous fistula (AVF) is necessary for haemodialysis (HD) adequacy. The aim of the present study was to further our understanding of haemodynamic modifications of the cardiovascular system of HD patients associated with an AVF. The main objective was to calculate using real data in what way an AVF influences the load of the left ventricle (LLV). Methods All HD patients treated in our dialysis unit and bearing an AVF were enrolled into the present observational cross-sectional study. Fifty-six patients bore a lower arm AVF and 30 an upper arm AVF. Qa and cardiac output (CO) were measured by means of the ultrasound dilution Transonic Hemodialysis Monitor HD02. Mean arterial pressure (MAP) was calculated; total peripheral vascular resistance (TPVR) was calculated as MAP/CO; resistance of AVF (AR) and systemic vascular resistance (SVR) are connected in parallel and were respectively calculated as AR = MAP/Qa and SVR = MAP/(CO − Qa). LLV was calculated on the principle of a simple physical model: LLV (watt) = TPVR·CO2. The latter was computationally divided into the part spent to run Qa through the AVF (LLVAVF) and that part ensuring the flow (CO − Qa) through the vascular system. The data from the 86 AVFs were analysed by categorizing them into lower and upper arm AVFs. Results Mean Qa, CO, MAP, TPVR, LLV and LLVAVF of the 86 AVFs were, respectively, 1.3 (0.6 SD) L/min, 6.3 (1.3) L/min, 92.7 (13.9) mmHg, 14.9 (3.9) mmHg·min/L, 1.3 (0.6) watt and 19.7 (3.1)% of LLV. A statistically significant increase of Qa, CO, LLV and LLVAVF and a statistically significant decrease of TPVR, AR and SVR of upper arm AVFs compared with lower arm AVFs was shown. A third-order polynomial regression model best fitted the relationship between Qa and LLV for the entire cohort (R2 = 0.546; P < 0.0001) and for both lower (R2 = 0.181; P < 0.01) and upper arm AVFs (R2 = 0.663; P < 0.0001). LLVAVF calculated as % of LLV rose with

  7. Industrywide studies report: a walk through survey of Ross Laboratories (Division of Abbott Laboratories), Columbus, Ohio. [Ethylene oxide

    SciTech Connect

    Greife, A.; Steenland, K.

    1985-10-02

    A walk-through survey was conducted at Ross Laboratories, a Division of Abbott Laboratories, Columbus, Ohio in August, 1985. The purpose of the survey was to determine the feasibility of including the facility in a NIOSH industry wide mortality/industrial hygiene survey of ethylene oxide. The facility produced infant formula and infant related products, including nipples. The company had a full time nurse on the first and second shifts. A physician was available on a contract basis. New employees were given preemployment physicals. Employees received annual physicals until 1982 after which they became optional. The physicals did not include any components relating to ethylene-oxide exposure. The authors conclude that the personnel records are not adequate to identify a cohort of exposed individuals at the facility. The facility will not be included in the NIOSH study.

  8. The potential application and challenge of powerful CRISPR/Cas9 system in cardiovascular research.

    PubMed

    Li, Yangxin; Song, Yao-Hua; Liu, Bin; Yu, Xi-Yong

    2017-01-15

    CRISPR/Cas9 is a precision-guided munition found in bacteria to fight against invading viruses. This technology has enormous potential applications, including altering genes in both somatic and germ cells, as well as generating knockout animals. Compared to other gene editing techniques such as zinc finger nucleases and TALENS, CRISPR/Cas9 is much easier to use and highly efficient. Importantly, the multiplex capacity of this technology allows multiple genes to be edited simultaneously. CRISPR/Cas9 also has the potential to prevent and cure human diseases. In this review, we wish to highlight some key points regarding the future prospect of using CRISPR/Cas9 as a powerful tool for cardiovascular research, and as a novel therapeutic strategy to treat cardiovascular diseases.

  9. What happens to cardiovascular system behind the undetectable level of HIV viremia?

    PubMed

    d'Ettorre, Gabriella; Ceccarelli, Giancarlo; Pavone, Paolo; Vittozzi, Pietro; De Girolamo, Gabriella; Schietroma, Ivan; Serafino, Sara; Giustini, Noemi; Vullo, Vincenzo

    2016-01-01

    Despite the combined antiretroviral therapy has improved the length and quality of life of HIV infected patients, the survival of these patients is always decreased compared with the general population. This is the consequence of non-infectious illnesses including cardio vascular diseases. In fact large studies have indicated an increased risk of coronary atherosclerotic disease, myocardial infarction even in HIV patients on cART. In HIV infected patients several factors may contribute to the pathogenesis of cardiovascular problems: life-style, metabolic parameters, genetic predisposition, viral factors, immune activation, chronic inflammation and side effects of antiretroviral therapy. The same factors may also contribute to complicate the clinical management of these patients. Therefore, treatment of these non-infectious illnesses in HIV infected population is an emerging challenge for physicians. The purpose of this review is to focus on the new insights in non AIDS-related cardiovascular diseases in patients with suppressed HIV viremia.

  10. Emerging anticancer therapeutic targets and the cardiovascular system: is there cause for concern?

    PubMed

    Peng, Xuyang; Pentassuglia, Laura; Sawyer, Douglas B

    2010-04-02

    The race for a cure to cancer continues, fueled by unprecedented discoveries of fundamental biology underlying carcinogenesis and tumorigenesis. The expansion of the target list and tools to approach them is moving the oncology community extraordinarily rapidly to clinical trials, bringing new hope for cancer patients. This effort is also propelling biological discoveries in cardiovascular research, because many of the targets being explored in cancer play fundamental roles in the heart and vasculature. The combined efforts of cardiovascular and cancer biologists, along with clinical investigators in these fields, will be needed to understand how to safely exploit these efforts. Here, we discuss a few of the many research foci in oncology where we believe such collaboration will be particularly important.

  11. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system.

    PubMed

    Nagatomo, Takafumi; Rashid, Mamunur; Abul Muntasir, Habib; Komiyama, Tadazumi

    2004-10-01

    The serotonin (5-hydroxytryptamine, 5-HT) receptors have conventionally been divided into seven subfamilies, most of which have several subtypes. Among them, 5-HT(2A) receptor is associated with the contraction of vascular smooth muscle, platelet aggregation and thrombus formation and coronary artery spasms. Accordingly, selective 5-HT(2A) antagonists may have potential in the treatment of cardiovascular diseases. Sarpogrelate, a selective 5-HT(2A) antagonist, has been introduced clinically as a therapeutic agent for the treatment of ischemic diseases associated with thrombosis. Molecular modeling studies also suggest that sarpogrelate is a 5-HT(2A) selective antagonist and is likely to have pharmacological effects beneficial in the treatment of cardiovascular diseases. This review describes the above findings as well as the signaling linkages of the 5-HT(2A) receptors and the mode of agonist binding to 5-HT(2A) receptor using data derived from molecular modeling and site-directed mutagenesis.

  12. In vitro cardiovascular system emulator (bioreactor) for the simulation of normal and diseased conditions with and without mechanical circulatory support.

    PubMed

    Ruiz, Paula; Rezaienia, Mohammad Amin; Rahideh, Akbar; Keeble, Thomas R; Rothman, Martin T; Korakianitis, Theodosios

    2013-06-01

    This article presents a new device designed to simulate in vitro flow rates, pressures, and other parameters representing normal and diseased conditions of the human cardiovascular system. Such devices are sometimes called bioreactors or "mock" simula