Science.gov

Sample records for abc transport protein

  1. [ABC transporter proteins in multidrug resistance of microorganisms].

    PubMed

    Balková, K; Gbelská, Y

    2007-08-01

    The ABC (ATP binding cassette) transporter family includes membrane proteins that can transport a wide variety of substrates across biological membranes. These proteins play an essential role in the protection of cells from toxic compounds/metabolites. Their overexpression which leads to the development of multidrug resistance (MDR) in pathogens and enables cancer cells to survive chemotherapy is of major concern for human health. Mutations in ABC transporters are implicated in a number of Mendelian disorders such as cystic fibrosis, adrenoleukodystrophy and cholesterol and bile transport defects. In microbial cells, several homologues of human ABC transporters were identified. Their further molecular biological study can contribute to better understanding and treatment of MDR or diseases caused by dysfunction of ABC transporter proteins. A review is presented of the state of the art in ABC transporter proteins in both prokaryotic and eucaryotic cells. The role of microbial ABC transporters in the development of drug resistance is analyzed.

  2. ABC transporters: bacterial exporters.

    PubMed Central

    Fath, M J; Kolter, R

    1993-01-01

    The ABC transporters (also called traffic ATPases) make up a large superfamily of proteins which share a common function and a common ATP-binding domain. ABC transporters are classified into three major groups: bacterial importers (the periplasmic permeases), eukaryotic transporters, and bacterial exporters. We present a comprehensive review of the bacterial ABC exporter group, which currently includes over 40 systems. The bacterial ABC exporter systems are functionally subdivided on the basis of the type of substrate that each translocates. We describe three main groups: protein exporters, peptide exporters, and systems that transport nonprotein substrates. Prototype exporters from each group are described in detail to illustrate our current understanding of this protein family. The prototype systems include the alpha-hemolysin, colicin V, and capsular polysaccharide exporters from Escherichia coli, the protease exporter from Erwinia chrysanthemi, and the glucan exporters from Agrobacterium tumefaciens and Rhizobium meliloti. Phylogenetic analysis of the ATP-binding domains from 29 bacterial ABC exporters indicates that the bacterial ABC exporters can be divided into two primary branches. One branch contains the transport systems where the ATP-binding domain and the membrane-spanning domain are present on the same polypeptide, and the other branch contains the systems where these domains are found on separate polypeptides. Differences in substrate specificity do not correlate with evolutionary relatedness. A complete survey of the known and putative bacterial ABC exporters is included at the end of the review. PMID:8302219

  3. Mitochondrial ABC transporters.

    PubMed

    Lill, R; Kispal, G

    2001-01-01

    In contrast to bacteria, mitochondria contain only a few ATP binding cassette (ABC) transporters in their inner membrane. The known mitochondrial ABC proteins fall into two major classes that, in the yeast Saccharomyces cerevisiae, are represented by the half-transporter Atm1p and the two closely homologous proteins Mdl1p and Mdl2p. In humans two Atm1p orthologues (ABC7 and MTABC3) and two proteins homologous to Mdll/2p have been localized to mitochondria. The Atm1p-like proteins perform an important function in mitochondrial iron homeostasis and in the maturation of Fe/S proteins in the cytosol. Mutations in ABC7 are causative of hereditary X-linked sideroblastic anemia and cerebellar ataxia (XLSA/A). MTABC3 may be a candidate gene for the lethal neonatal syndrome. The function of the mitochondrial Mdl1/2p-like proteins is not clear at present with the notable exception of murine ABC-me that may transport intermediates of heme biosynthesis from the matrix to the cytosol in erythroid tissues.

  4. Plant ABC Transporters

    PubMed Central

    Kang, Joohyun; Park, Jiyoung; Choi, Hyunju; Burla, Bo; Kretzschmar, Tobias; Lee, Youngsook; Martinoia, Enrico

    2011-01-01

    ABC transporters constitute one of the largest protein families found in all living organisms. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. The plant genome encodes for more than 100 ABC transporters, largely exceeding that of other organisms. In Arabidopsis, only 22 out of 130 have been functionally analyzed. They are localized in most membranes of a plant cell such as the plasma membrane, the tonoplast, chloroplasts, mitochondria and peroxisomes and fulfill a multitude of functions. Originally identified as transporters involved in detoxification processes, they have later been shown to be required for organ growth, plant nutrition, plant development, response to abiotic stresses, pathogen resistance and the interaction of the plant with its environment. To fulfill these roles they exhibit different substrate specifies by e.g. depositing surface lipids, accumulating phytate in seeds, and transporting the phytohormones auxin and abscisic acid. The aim of this review is to give an insight into the functions of plant ABC transporters and to show their importance for plant development and survival. PMID:22303277

  5. Protein-mediated transbilayer movement of lipids in eukaryotes and prokaryotes: the relevance of ABC transporters.

    PubMed

    Tannert, Astrid; Pohl, Antje; Pomorski, Thomas; Herrmann, Andreas

    2003-09-01

    Lipid distribution across cellular membranes is regulated by specific membrane proteins controlling transbilayer movement of lipids. Flippases facilitate flip-flop of lipids and allow them to equilibrate between the two membrane leaflets independent of ATP. Distinct P-Type-ATPases transport specific lipids unidirectionally across the membrane at the expense of ATP. A group of ATP-dependent lipid transporters, the ATP-binding cassette (ABC) transporter family, was identified in studies originally related to multidrug resistance (MDR) in cancer cells. Meanwhile, lipid transport activity has been shown for full and half size ABC proteins in eukaryotic and prokaryotic cells. This activity may not only modify the organisation of lipids in membranes, but could also be of significant consequence for cell homeostasis. The various types of lipid movement mediating proteins and their cellular localisation in eukaryotes and prokaryotes are reviewed.

  6. A Vector System for ABC Transporter-Mediated Secretion and Purification of Recombinant Proteins in Pseudomonas Species

    PubMed Central

    Ryu, Jaewook; Lee, Ukjin; Park, Jiye; Yoo, Do-Hyun

    2014-01-01

    Pseudomonas fluorescens is an efficient platform for recombinant protein production. P. fluorescens has an ABC transporter secreting endogenous thermostable lipase (TliA) and protease, which can be exploited to transport recombinant proteins across the cell membrane. In this study, the expression vector pDART was constructed by inserting tliDEF, genes encoding the ABC transporter, along with the construct of the lipase ABC transporter recognition domain (LARD), into pDSK519, a widely used shuttle vector. When the gene for the target protein was inserted into the vector, the C-terminally fused LARD allowed it to be secreted through the ABC transporter into the extracellular medium. After secretion of the fused target protein, the LARD containing a hydrophobic C terminus enabled its purification through hydrophobic interaction chromatography (HIC) using a methyl-Sepharose column. Alkaline phosphatase (AP) and green fluorescent protein (GFP) were used to validate the expression, export, and purification of target proteins by the pDART system. Both proteins were secreted into the extracellular medium in P. fluorescens. In particular, AP was secreted in several Pseudomonas species with its enzymatic activity in extracellular media. Furthermore, purification of the target protein using HIC yielded some degree of AP and GFP purification, where AP was purified to almost a single product. The pDART system will provide greater convenience for the secretory production and purification of recombinant proteins in Gram-negative bacteria, such as Pseudomonas species. PMID:25548043

  7. The ABC transporters in Candidatus Liberibacter asiaticus

    PubMed Central

    Li, Wenlin; Cong, Qian; Pei, Jimin; Kinch, Lisa N; Grishin, Nick V

    2012-01-01

    Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a Gram-negative bacterium and the pathogen of Citrus Greening disease (Huanglongbing, HLB). As a parasitic bacterium, Ca. L. asiaticus harbors ABC transporters that play important roles in exchanging chemical compounds between Ca. L. asiaticus and its host. Here, we analyzed all the ABC transporter-related proteins in Ca. L. asiaticus. We identified 14 ABC transporter systems and predicted their structures and substrate specificities. In-depth sequence and structure analysis including multiple sequence alignment, phylogenetic tree reconstruction, and structure comparison further support their function predictions. Our study shows that this bacterium could use these ABC transporters to import metabolites (amino acids and phosphates) and enzyme cofactors (choline, thiamine, iron, manganese, and zinc), resist to organic solvent, heavy metal, and lipid-like drugs, maintain the composition of the outer membrane (OM), and secrete virulence factors. Although the features of most ABC systems could be deduced from the abundant experimental data on their orthologs, we reported several novel observations within ABC system proteins. Moreover, we identified seven nontransport ABC systems that are likely involved in virulence gene expression regulation, transposon excision regulation, and DNA repair. Our analysis reveals several candidates for further studies to understand and control the disease, including the type I virulence factor secretion system and its substrate that are likely related to Ca. L. asiaticus pathogenicity and the ABC transporter systems responsible for bacterial OM biosynthesis that are good drug targets. PMID:22807026

  8. [Role of the ABC transporters A1 and G1, key reverse cholesterol transport proteins, in atherosclerosis].

    PubMed

    Demina, E P; Miroshnikova, V V; Schwarzman, A L

    2016-01-01

    Atherosclerosis is one of the most common causes of death worldwide. Epidemiology studies firmly established an inverse relationship between atherogenesis and distorted lipid metabolism, in particular, higher levels of total cholesterol, an accumulation of CH-laden macrophages (foam cells), and lower plasma levels of antiatherogenic high density lipoprotein (HDL). It is believed that the reverse cholesterol transport, a process that removes excess cholesterol from peripheral tissues/cells including macrophages to circulating HDL, is one of the main mechanisms responsible for anti-atherogenic properties of HDL. The key proteins of reverse cholesterol transport-ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1)-mediate the cholesterol efflux from macrophages and prevent their transformation into foam cells. This review focuses on the role of ABC transporters A1 and G1 in the pathogenesis of atherosclerosis.

  9. Lysophosphatidylinositol: a novel link between ABC transporters and G-protein-coupled receptors.

    PubMed

    Ruban, Emily L; Ferro, Riccardo; Arifin, Syamsul Ahmad; Falasca, Marco

    2014-10-01

    Lysophosphatidylinositol (LPI) is a well-known bioactive lipid that is able to activate signalling cascades relevant to cell proliferation, migration, survival and tumorigenesis. Our previous work suggested that LPI is involved in cancer progression since it can be released in the medium of Ras-transformed fibroblasts and can function as an autocrine modulator of cell growth. Different research groups have established that LPI is the specific and functional ligand for G-protein-coupled receptor 55 (GPR55) and that this GPR55-LPI axis is able to activate signalling cascades that are relevant for different cell functions. Work in our laboratory has recently unravelled an autocrine loop, by which LPI synthesized by cytosolic phospholipase A₂ (cPLA₂) is pumped out of the cell by ATP-binding cassette (ABC) transporter C1 (ABCC1)/multidrug resistance protein 1 (MRP1), initiating a signalling cascade downstream of GPR55. Our current work suggests that blockade of this pathway may represent a novel strategy to inhibit cancer cell proliferation.

  10. ABC transporters in fish species: a review

    PubMed Central

    Ferreira, Marta; Costa, Joana; Reis-Henriques, Maria A.

    2014-01-01

    ATP-binding cassette (ABC) proteins were first recognized for their role in multidrug resistance (MDR) in chemotherapeutic treatments, which is a major impediment for the successful treatment of many forms of malignant tumors in humans. These proteins, highly conserved throughout vertebrate species, were later related to cellular detoxification and accounted as responsible for protecting aquatic organisms from xenobiotic insults in the so-called multixenobiotic resistance mechanism (MXR). In recent years, research on these proteins in aquatic species has highlighted their importance in the detoxification mechanisms in fish thus it is necessary to continue these studies. Several transporters have been pointed out as relevant in the ecotoxicological context associated to the transport of xenobiotics, such as P-glycoproteins (Pgps), multidrug-resistance-associated proteins (MRPs 1-5) and breast cancer resistance associated protein (BCRP). In mammals, several nuclear receptors have been identified as mediators of phase I and II metabolizing enzymes and ABC transporters. In aquatic species, knowledge on co-regulation of the detoxification mechanism is scarce and needs to be addressed. The interaction of emergent contaminants that can act as chemosensitizers, with ABC transporters in aquatic organisms can compromise detoxification processes and have population effects and should be studied in more detail. This review intends to summarize the recent advances in research on MXR mechanisms in fish species, focusing in (1) regulation and functioning of ABC proteins; (2) cooperation with phase I and II biotransformation enzymes; and (3) ecotoxicological relevance and information on emergent pollutants with ability to modulate ABC transporters expression and activity. Several lines of evidence are clearly suggesting the important role of these transporters in detoxification mechanisms and must be further investigated in fish to underlay the mechanism to consider their use as

  11. Interaction of ABC transport proteins with toxic metals at the level of gene and transport activity in the PLHC-1 fish cell line.

    PubMed

    Della Torre, Camilla; Zaja, Roko; Loncar, Jovica; Smital, Tvrtko; Focardi, Silvano; Corsi, Ilaria

    2012-06-25

    The aim of this study was to investigate the interaction of four toxic metals with ABC transport proteins in piscine cell line PLHC-1. Cells were exposed for 24 h to 0.01-1 μM of CdCl(2), HgCl(2), As(2)O(3), or K(2)Cr(2)O(7) and the expression of a series of ABC genes (abcb1, abcc1-4) was determined using qRT-PCR. Using the fluorescent model substrates calcein-AM and monochlorbimane we measured interaction of metals with the transport activity of ABC transporters. P-glycoprotein (P-gp) activity was measured in PLHC-1/dox (P-gp overexpressing cells) while activity and interactions of metals with MRPs was measured in PLHC-1/wt cells. After 24 h exposure, abcc2-4 genes were dose-dependently up-regulated by all metals, while abcb1 and abcc1 were less affected. Up-regulation of abcc2 was more pronounced, with up to 8-fold increase in expression. Abcc3 and abcc4 were moderately inducible by HgCl(2) with 3.3-fold and 2.2-fold, respectively. All metals caused a significant inhibition of both P-gp (2.9- to 4-fold vs. controls) and MRP (1.3- to 1.8-fold) transport activities. Modulation of ABC genes and transport activities was further investigated in PLHC-1/wt cells exposed to 1 μM HgCl(2) for 72 h and in Hg resistant cells selected by long term cultivation of PLHC-1/wt cells in increasing concentrations of HgCl(2). Exposure to HgCl(2) for 72 h induced MRP genes expression and efflux activity. The long term cultivation of PLHC-1/wt cells in HgCl(2), did not cause prolonged up-regulation of the tested abc genes but resulted in higher MRP transport activities as determined by the increased sensitivity of these cells to MK571 (MRP specific inhibitor). Results of the present study indicated specific interaction of metals with selected ABC transport proteins. Modulation of ABC transporters takes place at both transcriptional and functional level. An active involvement of efflux pumps in Hg clearance in fish is suggested.

  12. Interactions of retinoids with the ABC transporters P-glycoprotein and Breast Cancer Resistance Protein

    PubMed Central

    Tarapcsák, Szabolcs; Szalóki, Gábor; Telbisz, Ágnes; Gyöngy, Zsuzsanna; Matúz, Krisztina; Csősz, Éva; Nagy, Péter; Holb, Imre J.; Rühl, Ralph; Nagy, László; Szabó, Gábor; Goda, Katalin

    2017-01-01

    Retinoids – derivatives of vitamin A – are important cell permeant signaling molecules that regulate gene expression through activation of nuclear receptors. P-glycoprotein (Pgp) and ABCG2 are plasma membrane efflux transporters affecting the tissue distribution of numerous structurally unrelated lipophilic compounds. In the present work we aimed to study the interaction of the above ABC transporters with retinoid derivatives. We have found that 13-cis-retinoic acid, retinol and retinyl-acetate inhibited the Pgp and ABCG2 mediated substrate transport as well as the substrate stimulated ATPase activity of these transporters. Interestingly, 9-cis-retinoic acid and ATRA (all-trans retinoic acid), both are stereoisomers of 13-cis-retinoic acid, did not have any effect on the transporters’ activity. Our fluorescence anisotropy measurements revealed that 13-cis-retinoic acid, retinol and retinyl-acetate selectively increase the viscosity and packing density of the membrane. Thus, the mixed-type inhibition of both transporters by retinol and ABCG2 by 13-cis-retinoic acid may be the collective result of direct interactions of these retinoids with the substrate binding site(s) and of indirect interactions mediated by their membrane rigidifying effects. PMID:28145501

  13. 1.55 A structure of the ectoine binding protein TeaA of the osmoregulated TRAP-transporter TeaABC from Halomonas elongata.

    PubMed

    Kuhlmann, Sonja I; Terwisscha van Scheltinga, Anke C; Bienert, Ralf; Kunte, Hans-Jörg; Ziegler, Christine

    2008-09-09

    TeaABC from the moderate halophilic bacterium Halomonas elongata belongs to the tripartite ATP-independent periplasmic transporters (TRAP-T), a family of secondary transporters functioning in conjunction with periplasmic substrate binding proteins. TeaABC facilitates the uptake of the compatible solutes ectoine and hydroxyectoine that are accumulated in the cytoplasm under hyperosmotic stress to protect the cell from dehydration. TeaABC is the only known TRAP-T activated by osmotic stress. Currently, our knowledge on the osmoregulated compatible solute transporter is limited to ABC transporters or conventional secondary transporters. Therefore, this study presents the first detailed analysis of the molecular mechanisms underlying substrate recognition of the substrate binding protein of an osmoregulated TRAP-T. In the present study we were able to demonstrate by isothermal titration calorimetry measurements that TeaA is a high-affinity ectoine binding protein ( K d = 0.19 microM) that also has a significant but somewhat lower affinity to hydroxyectoine ( K d = 3.8 microM). Furthermore, we present the structure of TeaA in complex with ectoine at a resolution of 1.55 A and hydroxyectoine at a resolution of 1.80 A. Analysis of the TeaA binding pocket and comparison of its structure to other compatible solute binding proteins from ABC transporters reveal common principles in compatible solute binding but also significant differences like the solvent-mediated specific binding of ectoine to TeaA.

  14. The ABC transporter gene family of Daphnia pulex

    PubMed Central

    Sturm, Armin; Cunningham, Phil; Dean, Michael

    2009-01-01

    Background The large gene superfamily of ABC (ATP-binding cassette) transporters encodes membrane proteins involved in trafficking processes across biological membranes and further essential cell biological functions. ABC transporters are evolutionary ancient and involved in the biochemical defence against toxicants. We report here a genome-wide survey of ABC proteins of Daphnia pulex, providing for the first time information on ABC proteins in crustacea, a primarily aquatic arthropod subphylum of high ecological and economical importance. Results We identified 64 ABC proteins in the Daphnia genome, which possesses members of all current ABC subfamilies A to H. To unravel phylogenetic relationships, ABC proteins of Daphnia were compared to those from yeast, worm, fruit fly and human. A high conservation of Daphnia of ABC transporters was observed for proteins involved in fundamental cellular processes, including the mitochondrial half transporters of the ABCB subfamily, which function in iron metabolism and transport of Fe/S protein precursors, and the members of subfamilies ABCD, ABCE and ABCF, which have roles in very long chain fatty acid transport, initiation of gene transcription and protein translation, respectively. A number of Daphnia proteins showed one-to-one orthologous relationships to Drosophila ABC proteins including the sulfonyl urea receptor (SUR), the ecdysone transporter ET23, and the eye pigment precursor transporter scarlet. As the fruit fly, Daphnia lacked homologues to the TAP protein, which plays a role in antigene processing, and the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as a chloride channel. Daphnia showed two proteins homologous to MDR (multidrug resistance) P-glycoproteins (ABCB subfamily) and six proteins homologous to MRPs (multidrug resistance-associated proteins) (ABCC subfamily). However, lineage specific gene duplications in the ABCB and ABCC subfamilies complicated the inference of function. A

  15. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter - substrate binding protein complex

    PubMed Central

    Nguyen, Phong T.; Li, Qi Wen; Kadaba, Neena S.; Lai, Jeffrey Y.; Yang, Janet G.; Rees, Douglas C.

    2015-01-01

    Despite the ubiquitous role of ATP Binding Cassette (ABC) importers in nutrient uptake, only the E. coli maltose and vitamin B12 ABC transporters have been structurally characterized in multiple conformations relevant to the alternating access transport mechanism. To complement our previous structure determination of the E. coli MetNI methionine importer in the inward facing conformation (Kadaba et al. (2008) Science 321, 250–253), we have explored conditions stabilizing the outward facing conformation. Using two variants, the Walker B E166Q mutation with ATP+EDTA to stabilize MetNI in the ATP-bound conformation and the N229A variant of the binding protein MetQ, shown in this work to disrupt methionine binding, a high affinity MetNIQ complex was formed with a dissociation constant measured to be 27 nM. Using wild type MetQ containing a co-purified methionine (for which the crystal structure is reported at 1.6 Å resolution), the dissociation constant for complex formation with MetNI is measured to be ~40-fold weaker, indicating that complex formation lowers the affinity of MetQ for methionine by this amount. Preparation of a stable MetNIQ complex is an essential step towards the crystallographic analysis of the outward facing conformation, a key intermediate in the uptake of methionine by this transport system. PMID:25803078

  16. ABC transporters in the CNS - an inventory.

    PubMed

    Hartz, A M S; Bauer, B

    2011-04-01

    In the present review we provide a summary of ATP-binding cassette (ABC) transporters in the central nervous system (CNS). Our review is focused on transporters of the ABC A, B, C, D, and G families that have been detected in the cells of the neurovascular unit/blood-brain barrier including brain capillary endothelial cells, pericytes, astrocytes, and neurons, as well as in other brain cells, such as microglia, oligodendrocytes, and choroid plexus epithelial cells. In this review, we provide an overview, organized by ABC family, of transporter expression, localization, and function. We summarize recent findings on ABC transporter regulation in the CNS and address the role of ABC transporters in CNS diseases including brain cancer, seizures/epilepsy, and Alzheimer's disease. Finally, we discuss new therapeutic strategies focused on ABC transporters in CNS disease.

  17. Tissue and developmental expression of a gene from Hessian fly encoding an ABC-active-transporter protein during interactions with wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the transcriptional patterns of a putative white (w) gene encoding an ABC-transporter protein during development in Hessian fly, Mayetiola destructor. The deduced amino acid sequence for the Hessian fly white showed 77 to 74% similarities to white/ATP-binding-cassette proteins and 57 t...

  18. Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of Halomonas elongata DSM 2581(T).

    PubMed

    Schweikhard, Eva S; Kuhlmann, Sonja I; Kunte, Hans-Jörg; Grammann, Katrin; Ziegler, Christine M

    2010-03-16

    The halophilic bacterium Halomonas elongata takes up the compatible solute ectoine via the osmoregulated TRAP transporter TeaABC. A fourth orf (teaD) is located adjacent to the teaABC locus that encodes a putative universal stress protein (USP). By RT-PCR experiments we proved a cotranscription of teaD along with teaABC. Deletion of teaD resulted in an enhanced uptake for ectoine by the transporter TeaABC and hence a negative activity regulation of TeaABC by TeaD. A transcriptional regulation via DNA binding could be excluded. ATP binding to native TeaD was shown by HPLC, and the crystal structure of TeaD was solved in complex with ATP to a resolution of 1.9 A by molecular replacement. TeaD forms a dimer-dimer complex with one ATP molecule bound to each monomer, which has a Rossmann-like alpha/beta overall fold. Our results reveal an ATP-dependent oligomerization of TeaD, which might have a functional role in the regulatory mechanism of TeaD. USP-encoding orfs, which are located adjacent to genes encoding for TeaABC homologues, could be identified in several other organisms, and their physiological role in balancing the internal cellular ectoine pool is discussed.

  19. Lyme Disease-Causing Borrelia Species Encode Multiple Lipoproteins Homologous to Peptide-Binding Proteins of ABC-Type Transporters

    PubMed Central

    Kornacki, Jon A.; Oliver, Donald B.

    1998-01-01

    To identify cell envelope proteins of Borrelia burgdorferi, the causative agent of Lyme disease, we constructed a library of B. burgdorferi genes fused to the Escherichia coli phoA gene, which expresses enzymatically active alkaline phosphatase. One such gene, oppA-1, encodes a predicted polypeptide with significant similarities to various peptide-binding proteins of ABC-type transporters. Immediately downstream of oppA-1 are two genes, oppA-2 and oppA-3, whose predicted polypeptide products show strong similarities in their amino acid sequences to OppA-1, including a sequence that resembles the most highly conserved region in peptide-binding proteins. By labeling with [3H]palmitate, OppA-1, OppA-2, and OppA-3 were shown to be lipoproteins. DNA hybridization analysis showed that the oppA-1 oppA-2 oppA-3 region is located on the linear chromosome of B. burgdorferi, and the genes are conserved among different Borrelia species that cause Lyme disease (B. burgdorferi, B. garinii, and B. afzelli), suggesting that all three homologous genes are important to the maintenance of Lyme disease spirochetes in one or more of their hosts. PMID:9712756

  20. Crystal structure of the phosphate-binding protein (PBP-1) of an ABC-type phosphate transporter from Clostridium perfringens

    PubMed Central

    Gonzalez, Daniel; Richez, Magali; Bergonzi, Celine; Chabriere, Eric; Elias, Mikael

    2014-01-01

    Phosphate limitation is an important environmental stress that affects the metabolism of various organisms and, in particular, can trigger the virulence of numerous bacterial pathogens. Clostridium perfringens, a human pathogen, is one of the most common causes of enteritis necroticans, gas gangrene and food poisoning. Here, we focused on the high affinity phosphate-binding protein (PBP-1) of an ABC-type transporter, responsible for cellular phosphate uptake. We report the crystal structure (1.65 Å resolution) of the protein in complex with phosphate. Interestingly, PBP-1 does not form the short, low-barrier hydrogen bond with phosphate that is typical of previously characterized phosphate-binding proteins, but rather a canonical hydrogen bond. In its unique binding configuration, PBP-1 forms an unusually high number of hydrogen bonds (14) with the phosphate anion. Discrimination experiments reveal that PBP-1 is the least selective PBP characterised so far and is able to discriminate phosphate from its close competing anion, arsenate, by ~150-fold. PMID:25338617

  1. ABC transporter research: going strong 40 years on

    PubMed Central

    Theodoulou, Frederica L.; Kerr, Ian D.

    2015-01-01

    In most organisms, ABC transporters constitute one of the largest families of membrane proteins. In humans, their functions are diverse and underpin numerous key physiological processes, as well as being causative factors in a number of clinically relevant pathologies. Advances in our understanding of these diseases have come about through combinations of genetic and protein biochemical investigations of these transporters and the power of in vitro and in vivo investigations is helping to develop genotype–phenotype understanding. However, the importance of ABC transporter research goes far beyond human biology; microbial ABC transporters are of great interest in terms of understanding virulence and drug resistance and industrial biotechnology researchers are exploring the potential of prokaryotic ABC exporters to increase the capacity of synthetic biology systems. Plant ABC transporters play important roles in transport of hormones, xenobiotics, metals and secondary metabolites, pathogen responses and numerous aspects of development, all of which are important in the global food security area. For 3 days in Chester, this Biochemical Society Focused Meeting brought together researchers with diverse experimental approaches and with different fundamental questions, all of which are linked by the commonality of ABC transporters. PMID:26517919

  2. ABC proteins protect the human body and maintain optimal health.

    PubMed

    Ueda, Kazumitsu

    2011-01-01

    Human MDR1, a multi-drug transporter gene, was isolated as the first of the eukaryote ATP Binding Cassette (ABC) proteins from a multidrug-resistant carcinoma cell line in 1986. To date, over 25 years, many ABC proteins have been found to play important physiological roles by transporting hydrophobic compounds. Defects in their functions cause various diseases, indicating that endogenous hydrophobic compounds, as well as water-soluble compounds, are properly transported by transmembrane proteins. MDR1 transports a large number of structurally unrelated drugs and is involved in their pharmacokinetics, and thus is a key factor in drug interaction. ABCA1, an ABC protein, eliminates excess cholesterol in peripheral cells by generating HDL. Because ABCA1 is a key molecule in cholesterol homeostasis, its function and expression are highly regulated. Eukaryote ABC proteins function on the body surface facing the outside and in organ pathways to adapt to the extracellular environment and protect the body to maintain optimal health.

  3. Functional Dependence between Septal Protein SepJ from Anabaena sp. Strain PCC 7120 and an Amino Acid ABC-Type Uptake Transporter

    PubMed Central

    Escudero, Leticia; Mariscal, Vicente

    2015-01-01

    ABSTRACT In the diazotrophic filaments of heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients, including some amino acids. In the model organism Anabaena sp. strain PCC 7120, the SepJ protein, composed of periplasmic and integral membrane (permease) sections, is located at the intercellular septa joining adjacent cells in the filament. The unicellular cyanobacterium Synechococcus elongatus strain PCC 7942 bears a gene, Synpcc7942_1024 (here designated dmeA), encoding a permease homologous to the SepJ permease domain. Synechococcus strains lacking dmeA or lacking dmeA and expressing Anabaena sepJ were constructed. The Synechococcus dmeA mutant showed a significant 22 to 32% decrease in the uptake of aspartate, glutamate, and glutamine, a phenotype that could be partially complemented by Anabaena sepJ. Synechococcus mutants of an ATP-binding-cassette (ABC)-type transporter for polar amino acids showed >98% decreased uptake of glutamate irrespective of the presence of dmeA or Anabaena sepJ in the same strain. Thus, Synechococcus DmeA or Anabaena SepJ is needed to observe full (or close to full) activity of the ABC transporter. An Anabaena sepJ deletion mutant was significantly impaired in glutamate and aspartate uptake, which also in this cyanobacterium requires the activity of an ABC-type transporter for polar amino acids. SepJ appears therefore to generally stimulate the activity of cyanobacterial ABC-type transporters for polar amino acids. Conversely, an Anabaena mutant of three ABC-type transporters for amino acids was impaired in the intercellular transfer of 5-carboxyfluorescein, a SepJ-related property. Our results unravel possible functional interactions in transport elements important for diazotrophic growth. IMPORTANCE Membrane transporters are essential for many aspects of cellular life, from uptake and export of substances in unicellular organisms to intercellular

  4. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein

    PubMed Central

    Tay, Wee Tek; Mahon, Rod J.; Heckel, David G.; Walsh, Thomas K.; Downes, Sharon; James, William J.; Lee, Sui-Fai; Reineke, Annette; Williams, Adam K.; Gordon, Karl H. J.

    2015-01-01

    The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton) expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests) to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC) marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC) transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the detailed mode

  5. Archaeal Binding Protein-Dependent ABC Transporter: Molecular and Biochemical Analysis of the Trehalose/Maltose Transport System of the Hyperthermophilic Archaeon Thermococcus litoralis

    PubMed Central

    Horlacher, Reinhold; Xavier, Karina B.; Santos, Helena; DiRuggiero, Jocelyne; Kossmann, Marina; Boos, Winfried

    1998-01-01

    We report the cloning and sequencing of a gene cluster encoding a maltose/trehalose transport system of the hyperthermophilic archaeon Thermococcus litoralis that is homologous to the malEFG cluster encoding the Escherichia coli maltose transport system. The deduced amino acid sequence of the malE product, the trehalose/maltose-binding protein (TMBP), shows at its N terminus a signal sequence typical for bacterial secreted proteins containing a glyceride lipid modification at the N-terminal cysteine. The T. litoralis malE gene was expressed in E. coli under control of an inducible promoter with and without its natural signal sequence. In addition, in one construct the endogenous signal sequence was replaced by the E. coli MalE signal sequence. The secreted, soluble recombinant protein was analyzed for its binding activity towards trehalose and maltose. The protein bound both sugars at 85°C with a Kd of 0.16 μM. Antibodies raised against the recombinant soluble TMBP recognized the detergent-soluble TMBP isolated from T. litoralis membranes as well as the products from all other DNA constructs expressed in E. coli. Transmembrane segments 1 and 2 as well as the N-terminal portion of the large periplasmic loop of the E. coli MalF protein are missing in the T. litoralis MalF. MalG is homologous throughout the entire sequence, including the six transmembrane segments. The conserved EAA loop is present in both proteins. The strong homology found between the components of this archaeal transport system and the bacterial systems is evidence for the evolutionary conservation of the binding protein-dependent ABC transport systems in these two phylogenetic branches. PMID:9457875

  6. Effluxing ABC Transporters in Human Corneal Epithelium

    PubMed Central

    Vellonen, Kati-Sisko; Mannermaa, Eliisa; Turner, Helen; Häkli, Marika; Wolosin, J. Mario; Tervo, Timo; Honkakoski, Paavo; Urtti, Arto

    2010-01-01

    ATP-binding cassette (ABC) transporters are able to efflux their substrate drugs from the cells. We compared expression of efflux proteins in normal human corneal epithelial tissue, primary human corneal epithelial cells (HCEpiC), and corneal epithelial cell culture model (HCE model) based on human immortal cell line. Expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1–6 (MRP1–6) and breast cancer resistance protein (BCRP) was studied using quantitative RT-PCR, Western blot, and immunohistochemistry. Only MRP1, MRP5, and BCRP were expressed in the freshly excised human corneal epithelial tissue. Expression of MRP1 and MRP5 was localized predominantly in the basal cells of the central cornea and limbus. Functional efflux activity was shown in the cell models, but they showed over-expression of most efflux transporters compared to that of normal corneal epithelium. In conclusion, MRP1, MRP5, and BCRP are expressed in the corneal epithelium, but MDR1, MRP2, MRP3, MRP4, and MRP6 are not significantly expressed. HCE cell model and commercially available primary cells deviate from this expression profile. PMID:19623615

  7. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein.

    PubMed

    Hinsa, Shannon M; Espinosa-Urgel, Manuel; Ramos, Juan L; O'Toole, George A

    2003-08-01

    We report the identification of an ATP-binding cassette (ABC) transporter and an associated large cell-surface protein that are required for biofilm formation by Pseudomonas fluorescens WCS365. The genes coding for these proteins are designated lap for large adhesion protein. The LapA protein, with a predicted molecular weight of approximately 900 kDa, is found to be loosely associated with the cell surface and present in the culture supernatant. The LapB, LapC and LapE proteins are predicted to be the cytoplasmic membrane-localized ATPase, membrane fusion protein and outer membrane protein component, respectively, of an ABC transporter. Consistent with this prediction, LapE, like other members of this family, is localized to the outer membrane. We propose that the lapEBC-encoded ABC transporter participates in the secretion of LapA, as strains with mutations in the lapEBC genes do not have detectable LapA associated with the cell surface or in the supernatant. The lap genes are conserved among environmental pseudomonads such as P. putida KT2440, P. fluorescens PfO1 and P. fluorescens WCS365, but are absent from pathogenic pseudomonads such as P. aeruginosa and P. syringae. The wild-type strain of P. fluorescens WCS365 and its lap mutant derivatives were assessed for their biofilm forming ability in static and flow systems. The lap mutant strains are impaired in an early step in biofilm formation and are unable to develop the mature biofilm structure seen for the wild-type bacterium. Time-lapse microscopy studies determined that the lap mutants are unable to progress from reversible (or transient) attachment to the irreversible attachment stage of biofilm development. The lap mutants were also found to be defective in attachment to quartz sand, an abiotic surface these organisms likely encounter in the environment.

  8. A Drosophila ABC Transporter Regulates Lifespan

    PubMed Central

    Huang, He; Lu-Bo, Ying; Haddad, Gabriel G.

    2014-01-01

    MRP4 (multidrug resistance-associated protein 4) is a member of the MRP/ABCC subfamily of ATP-binding cassette (ABC) transporters that are essential for many cellular processes requiring the transport of substrates across cell membranes. Although MRP4 has been implicated as a detoxification protein by transport of structurally diverse endogenous and xenobiotic compounds, including antivirus and anticancer drugs, that usually induce oxidative stress in cells, its in vivo biological function remains unknown. In this study, we investigate the biological functions of a Drosophila homolog of human MRP4, dMRP4. We show that dMRP4 expression is elevated in response to oxidative stress (paraquat, hydrogen peroxide and hyperoxia) in Drosophila. Flies lacking dMRP4 have a shortened lifespan under both oxidative and normal conditions. Overexpression of dMRP4, on the other hand, is sufficient to increase oxidative stress resistance and extend lifespan. By genetic manipulations, we demonstrate that dMRP4 is required for JNK (c-Jun NH2-terminal kinase) activation during paraquat challenge and for basal transcription of some JNK target genes under normal condition. We show that impaired JNK signaling is an important cause for major defects associated with dMRP4 mutations, suggesting that dMRP4 regulates lifespan by modulating the expression of a set of genes related to both oxidative resistance and aging, at least in part, through JNK signaling. PMID:25474322

  9. Coupled ATPase-adenylate kinase activity in ABC transporters

    PubMed Central

    Kaur, Hundeep; Lakatos-Karoly, Andrea; Vogel, Ramona; Nöll, Anne; Tampé, Robert; Glaubitz, Clemens

    2016-01-01

    ATP-binding cassette (ABC) transporters, a superfamily of integral membrane proteins, catalyse the translocation of substrates across the cellular membrane by ATP hydrolysis. Here we demonstrate by nucleotide turnover and binding studies based on 31P solid-state NMR spectroscopy that the ABC exporter and lipid A flippase MsbA can couple ATP hydrolysis to an adenylate kinase activity, where ADP is converted into AMP and ATP. Single-point mutations reveal that both ATPase and adenylate kinase mechanisms are associated with the same conserved motifs of the nucleotide-binding domain. Based on these results, we propose a model for the coupled ATPase-adenylate kinase mechanism, involving the canonical and an additional nucleotide-binding site. We extend these findings to other prokaryotic ABC exporters, namely LmrA and TmrAB, suggesting that the coupled activities are a general feature of ABC exporters. PMID:28004795

  10. Functional Interaction between the Cytoplasmic ABC Protein LptB and the Inner Membrane LptC Protein, Components of the Lipopolysaccharide Transport Machinery in Escherichia coli

    PubMed Central

    Martorana, Alessandra M.; Benedet, Mattia; Maccagni, Elisa A.; Sperandeo, Paola; Villa, Riccardo; Dehò, Gianni

    2016-01-01

    ABSTRACT The assembly of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) requires the transenvelope Lpt (lipopolysaccharide transport) complex, made in Escherichia coli of seven essential proteins located in the inner membrane (IM) (LptBCFG), periplasm (LptA), and OM (LptDE). At the IM, LptBFG constitute an unusual ATP binding cassette (ABC) transporter, composed by the transmembrane LptFG proteins and the cytoplasmic LptB ATPase, which is thought to extract LPS from the IM and to provide the energy for its export across the periplasm to the cell surface. LptC is a small IM bitopic protein that binds to LptBFG and recruits LptA via its N- and C-terminal regions, and its role in LPS export is not completely understood. Here, we show that the expression level of lptB is a critical factor for suppressing lethality of deletions in the C-terminal region of LptC and the functioning of a hybrid Lpt machinery that carries Pa-LptC, the highly divergent LptC orthologue from Pseudomonas aeruginosa. We found that LptB overexpression stabilizes C-terminally truncated LptC mutant proteins, thereby allowing the formation of a sufficient amount of stable IM complexes to support growth. Moreover, the LptB level seems also critical for the assembly of IM complexes carrying Pa-LptC which is otherwise defective in interactions with the E. coli LptFG components. Overall, our data suggest that LptB and LptC functionally interact and support a model whereby LptB plays a key role in the assembly of the Lpt machinery. IMPORTANCE The asymmetric outer membrane (OM) of Gram-negative bacteria contains in its outer leaflet an unusual glycolipid, the lipopolysaccharide (LPS). LPS largely contributes to the peculiar permeability barrier properties of the OM that prevent the entry of many antibiotics, thus making Gram-negative pathogens difficult to treat. In Escherichia coli the LPS transporter (the Lpt machine) is made of seven essential proteins (LptABCDEFG) that form a

  11. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station

    PubMed Central

    Sippel, K. H.; Bacik, J.; Quiocho, F. A.; Fisher, S. Z.

    2014-01-01

    Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP–phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4 −) and dibasic (HPO4 2−) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily. PMID:24915101

  12. ABC transporters and the blood-brain barrier.

    PubMed

    Begley, David J

    2004-01-01

    The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) form a very effective barrier to the free diffusion of many polar solutes into the brain. Many metabolites that are polar have their brain entry facilitated by specific inwardly-directed transport mechanisms. In general the more lipid soluble a molecule or drug is, the more readily it will tend to partition into brain tissue. However, a very significant number of lipid soluble molecules, among them many useful therapeutic drugs have lower brain permeability than would be predicted from a determination of their lipid solubility. These molecules are substrates for the ABC efflux transporters which are present in the BBB and BCSB and the activity of these transporters very efficiently removes the drug from the CNS, thus limiting brain uptake. P-glycoprotein (Pgp) was the first of these ABC transporters to be described, followed by the multidrug resistance-associated proteins (MRP) and more recently breast cancer resistance protein (BCRP). All are expressed in the BBB and BCSFB and combine to reduce the brain penetration of many drugs. This phenomenon of "multidrug resistance" is a major hurdle when it comes to the delivery of therapeutics to the brain, not to mention the problem of cancer chemotherapy in general. Therefore, the development of strategies for bypassing the influence of these ABC transporters and for the design of effective drugs that are not substrates and the development of inhibitors for the ABC transporters becomes a high imperative for the pharmaceutical industry.

  13. MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA.

    PubMed

    Lin, Hong Ting; Bavro, Vassiliy N; Barrera, Nelson P; Frankish, Helen M; Velamakanni, Saroj; van Veen, Hendrik W; Robinson, Carol V; Borges-Walmsley, M Inês; Walmsley, Adrian R

    2009-01-09

    Gram-negative bacteria utilize specialized machinery to translocate drugs and protein toxins across the inner and outer membranes, consisting of a tripartite complex composed of an inner membrane secondary or primary active transporter (IMP), a periplasmic membrane fusion protein, and an outer membrane channel. We have investigated the assembly and function of the MacAB/TolC system that confers resistance to macrolides in Escherichia coli. The membrane fusion protein MacA not only stabilizes the tripartite assembly by interacting with both the inner membrane protein MacB and the outer membrane protein TolC, but also has a role in regulating the function of MacB, apparently increasing its affinity for both erythromycin and ATP. Analysis of the kinetic behavior of ATP hydrolysis indicated that MacA promotes and stabilizes the ATP-binding form of the MacB transporter. For the first time, we have established unambiguously the dimeric nature of a noncanonic ABC transporter, MacB that has an N-terminal nucleotide binding domain, by means of nondissociating mass spectrometry, analytical ultracentrifugation, and atomic force microscopy. Structural studies of ABC transporters indicate that ATP is bound between a pair of nucleotide binding domains to stabilize a conformation in which the substrate-binding site is outward-facing. Consequently, our data suggest that in the presence of ATP the same conformation of MacB is promoted and stabilized by MacA. Thus, MacA would facilitate the delivery of drugs by MacB to TolC by enhancing the binding of drugs to it and inducing a conformation of MacB that is primed and competent for binding TolC. Our structural studies are an important first step in understanding how the tripartite complex is assembled.

  14. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    PubMed Central

    Choi, Cheol-Hee

    2005-01-01

    One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC) transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein. PMID:16202168

  15. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance.

    PubMed

    Dermauw, Wannes; Van Leeuwen, Thomas

    2014-02-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods.

  16. Identification and functional characterization of Penicillium marneffei pleiotropic drug resistance transporters ABC1 and ABC2.

    PubMed

    Panapruksachat, Siribun; Iwatani, Shun; Oura, Takahiro; Vanittanakom, Nongnuch; Chindamporn, Ariya; Niimi, Kyoko; Niimi, Masakazu; Lamping, Erwin; Cannon, Richard D; Kajiwara, Susumu

    2016-07-01

    Penicilliosis caused by the dimorphic fungus Penicillium marneffei is an endemic, AIDS-defining illness and, after tuberculosis and cryptococcosis, the third most common opportunistic infection of AIDS patients in tropical Southeast Asia. Untreated, patients have poor prognosis; however, primary amphotericin B treatment followed by prolonged itraconazole prophylaxis is effective. To identify ATP-binding cassette (ABC) transporters that may play a role in potential multidrug resistance of P. marneffei, we identified and classified all 46 P. marneffei ABC transporters from the genome sequence. PmABC1 and PmABC2 were most similar to the archetype Candida albicans multidrug efflux pump gene CDR1. P. marneffei Abc1p (PmAbc1p) was functionally expressed in Saccharomyces cerevisiae, although at rather low levels, and correctly localized to the plasma membrane, causing cells to be fourfold to eightfold more resistant to azoles and many other xenobiotics than untransformed cells. P. marneffei Abc2p (PmAbc2p) was expressed at similarly low levels, but it had no efflux activity and did not properly localize to the plasma membrane. Interestingly, PmAbc1p mislocalized and lost its transport activity when cells were shifted to 37 °C. We conclude that expression of PmAbc1p in S. cerevisiae confers resistance to several xenobiotics indicating that PmAbc1p may be a multidrug efflux pump.

  17. PET and SPECT Radiotracers to Assess Function and Expression of ABC Transporters in Vivo

    PubMed Central

    Mairinger, Severin; Erker, Thomas; Müller, Markus; Langer, Oliver

    2013-01-01

    Adenosine triphosphate-binding cassette (ABC) transporters, such as P-glycoprotein (Pgp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance-associated proteins (MRPs) are expressed in high concentrations at various physiological barriers (e.g. blood-brain barrier, blood-testis barrier, blood-tumor barrier), where they impede the tissue accumulation of various drugs by active efflux transport. Changes in ABC transporter expression and function are thought to be implicated in various diseases, such as cancer, epilepsy, Alzheimer’s and Parkinson’s disease. The availability of a non-invasive imaging method which allows for measuring ABC transporter function or expression in vivo would be of great clinical use in that it could facilitate the identification of those patients that would benefit from treatment with ABC transporter modulating drugs. To date three different kinds of imaging probes have been described to measure ABC transporters in vivo: i) radiolabelled transporter substrates ii) radiolabelled transporter inhibitors and iii) radiolabelled prodrugs which are enzymatically converted into transporter substrates in the organ of interest (e.g. brain). The design of new imaging probes to visualize efflux transporters is inter alia complicated by the overlapping substrate recognition pattern of different ABC transporter types. The present article will describe currently available ABC transporter radiotracers for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and critically discuss strengths and limitations of individual probes and their potential clinical applications. PMID:21434859

  18. Subtle Structural Differences Trigger Inhibitory Activity of Propafenone Analogues at the Two Polyspecific ABC Transporters: P‐Glycoprotein (P‐gp) and Breast Cancer Resistance Protein (BCRP)

    PubMed Central

    Schwarz, Theresa; Montanari, Floriane; Cseke, Anna; Wlcek, Katrin; Visvader, Lene; Palme, Sarah; Chiba, Peter; Kuchler, Karl; Urban, Ernst

    2016-01-01

    Abstract The transmembrane ABC transporters P‐glycoprotein (P‐gp) and breast cancer resistance protein (BCRP) are widely recognized for their role in cancer multidrug resistance and absorption and distribution of compounds. Furthermore, they are linked to drug–drug interactions and toxicity. Nevertheless, due to their polyspecificity, a molecular understanding of the ligand‐transporter interaction, which allows designing of both selective and dual inhibitors, is still in its infancy. This study comprises a combined approach of synthesis, in silico prediction, and in vitro testing to identify molecular features triggering transporter selectivity. Synthesis and testing of a series of 15 propafenone analogues with varied rigidity and basicity of substituents provide first trends for selective and dual inhibitors. Results indicate that both the flexibility of the substituent at the nitrogen atom, as well as the basicity of the nitrogen atom, trigger transporter selectivity. Furthermore, inhibitory activity of compounds at P‐gp seems to be much more influenced by logP than those at BCRP. Exploiting these differences further should thus allow designing specific inhibitors for these two polyspecific ABC‐transporters. PMID:26970257

  19. An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems.

    PubMed

    Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Koumoto, Yasuko; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko

    2016-01-01

    A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.

  20. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum

    PubMed Central

    2013-01-01

    Background The ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins that have important physiological functions in all living organisms. Most are integral membrane proteins that transport a broad spectrum of substrates across lipid membranes. In insects, ABC transporters are of special interest because of their role in insecticide resistance. Results We have identified 73 ABC transporter genes in the genome of T. castaneum, which group into eight subfamilies (ABCA-H). This coleopteran ABC family is significantly larger than those reported for insects in other taxonomic groups. Phylogenetic analysis revealed that this increase is due to gene expansion within a single clade of subfamily ABCC. We performed an RNA interference (RNAi) screen to study the function of ABC transporters during development. In ten cases, injection of double-stranded RNA (dsRNA) into larvae caused developmental phenotypes, which included growth arrest and localized melanization, eye pigmentation defects, abnormal cuticle formation, egg-laying and egg-hatching defects, and mortality due to abortive molting and desiccation. Some of the ABC transporters we studied in closer detail to examine their role in lipid, ecdysteroid and eye pigment transport. Conclusions The results from our study provide new insights into the physiological function of ABC transporters in T. castaneum, and may help to establish new target sites for insect control. PMID:23324493

  1. Structure of a Type-1 Secretion System ABC Transporter.

    PubMed

    Morgan, Jacob L W; Acheson, Justin F; Zimmer, Jochen

    2017-03-07

    Type-1 secretion systems (T1SSs) represent a widespread mode of protein secretion across the cell envelope in Gram-negative bacteria. The T1SS is composed of an inner-membrane ABC transporter, a periplasmic membrane-fusion protein, and an outer-membrane porin. These three components assemble into a complex spanning both membranes and providing a conduit for the translocation of unfolded polypeptides. We show that ATP hydrolysis and assembly of the entire T1SS complex is necessary for protein secretion. Furthermore, we present a 3.15-Å crystal structure of AaPrtD, the ABC transporter found in the Aquifex aeolicus T1SS. The structure suggests a substrate entry window just above the transporter's nucleotide binding domains. In addition, highly kinked transmembrane helices, which frame a narrow channel not observed in canonical peptide transporters, are likely involved in substrate translocation. Overall, the AaPrtD structure supports a polypeptide transport mechanism distinct from alternating access.

  2. Ectoine-induced proteins in Sinorhizobium meliloti include an Ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism.

    PubMed

    Jebbar, Mohamed; Sohn-Bösser, Linda; Bremer, Erhard; Bernard, Théophile; Blanco, Carlos

    2005-02-01

    To understand the mechanisms of ectoine-induced osmoprotection in Sinorhizobium meliloti, a proteomic examination of S. meliloti cells grown in minimal medium supplemented with ectoine was undertaken. This revealed the induction of 10 proteins. The protein products of eight genes were identified by using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Five of these genes, with four other genes whose products were not detected on two-dimensional gels, belong to the same gene cluster, which is localized on the pSymB megaplasmid. Four of the nine genes encode the characteristic components of an ATP-binding cassette transporter that was named ehu, for ectoine/hydroxyectoine uptake. This transporter was encoded by four genes (ehuA, ehuB, ehuC, and ehuD) that formed an operon with another gene cluster that contains five genes, named eutABCDE for ectoine utilization. On the basis of sequence homologies, eutABCDE encode enzymes with putative and hypothetical functions in ectoine catabolism. Analysis of the properties of ehuA and eutA mutants suggests that S. meliloti possesses at least one additional ectoine catabolic pathway as well as a lower-affinity transport system for ectoine and hydroxyectoine. The expression of ehuB, as determined by measurements of UidA activity, was shown to be induced by ectoine and hydroxyectoine but not by glycine betaine or by high osmolality.

  3. A Multidrug ABC Transporter with a Taste for Salt

    PubMed Central

    Gutmann, Daniel A. P.; Venter, Henrietta; Barrera, Nelson P.; Seeger, Markus A.; Woebking, Barbara; Matak-Vinkovic, Dijana; Balakrishnan, Lekshmy; Yao, Yao; U, Edmond C. Y.; Shilling, Richard A.; Robinson, Carol V.; Thorn, Peter; van Veen, Hendrik W.

    2009-01-01

    Background LmrA is a multidrug ATP-binding cassette (ABC) transporter from Lactococcus lactis with no known physiological substrate, which can transport a wide range of chemotherapeutic agents and toxins from the cell. The protein can functionally replace the human homologue ABCB1 (also termed multidrug resistance P-glycoprotein MDR1) in lung fibroblast cells. Even though LmrA mediates ATP-dependent transport, it can use the proton-motive force to transport substrates, such as ethidium bromide, across the membrane by a reversible, H+-dependent, secondary-active transport reaction. The mechanism and physiological context of this reaction are not known. Methodology/Principal Findings We examined ion transport by LmrA in electrophysiological experiments and in transport studies using radioactive ions and fluorescent ion-selective probes. Here we show that LmrA itself can transport NaCl by a similar secondary-active mechanism as observed for ethidium bromide, by mediating apparent H+-Na+-Cl− symport. Remarkably, LmrA activity significantly enhances survival of high-salt adapted lactococcal cells during ionic downshift. Conclusions/Significance The observations on H+-Na+-Cl− co-transport substantiate earlier suggestions of H+-coupled transport by LmrA, and indicate a novel link between the activity of LmrA and salt stress. Our findings demonstrate the relevance of investigations into the bioenergetics of substrate translocation by ABC transporters for our understanding of fundamental mechanisms in this superfamily. This study represents the first use of electrophysiological techniques to analyze substrate transport by a purified multidrug transporter. PMID:19593434

  4. The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum.

    PubMed

    Weber, Stefan S; Kovalchuk, Andriy; Bovenberg, Roel A L; Driessen, Arnold J M

    2012-11-01

    The filamentous fungus Penicillium chrysogenum is used for the industrial production of β-lactam antibiotics. The pathway for β-lactam biosynthesis has been resolved and involves the enzyme phenylacetic acid CoA ligase that is responsible for the CoA activation of the side chain precursor phenylacetic acid (PAA) that is used for the biosynthesis of penicillin G. To identify ABC transporters related to β-lactam biosynthesis, we analyzed the expression of all 48 ABC transporters present in the genome of P. chryso-genum when grown in the presence and absence of PAA. ABC40 is significantly upregulated when cells are grown or exposed to high levels of PAA. Although deletion of this transporter did not affect β-lactam biosynthesis, it resulted in a significant increase in sensitivity to PAA and other weak acids. It is concluded that ABC40 is involved in weak acid detoxification in P. chrysogenum including resistance to phenylacetic acid.

  5. Crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus.

    PubMed

    Manjula, M; Pampa, K J; Kumar, S M; Mukherjee, S; Kunishima, N; Rangappa, K S; Lokanath, N K

    2015-03-27

    The ATP binding cassette (ABC) transporters, represent one of the largest superfamilies of primary transporters, which are very essential for various biological functions. The crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus has been determined at 1.77 Å resolution. The crystal structure revealed that the protomer has two thick arms, (arm I and II), which resemble 'L' shape. The ATP-binding pocket is located close to the end of arm I. ATP molecule is docked into the active site of the protein. The dimeric crystal structure of ATP-binding subunit of ABC transporter from G. kaustophilus has been compared with the previously reported crystal structure of ATP-binding subunit of ABC transporter from Salmonella typhimurium.

  6. Class C ABC transporters and Saccharomyces cerevisiae vacuole fusion

    PubMed Central

    Sasser, Terry L; Fratti, Rutilio A

    2014-01-01

    Membrane fusion is carried out by core machinery that is conserved throughout eukaryotes. This is comprised of Rab GTPases and their effectors, and SNARE proteins, which together are sufficient to drive the fusion of reconstituted proteoliposomes. However, an outer layer of factors that are specific to individual trafficking pathways in vivo regulates the spatial and temporal occurrence of fusion. The homotypic fusion of Saccharomyces cerevisiae vacuolar lysosomes utilizes a growing set of factors to regulate the fusion machinery that include members of the ATP binding cassette (ABC) transporter family. Yeast vacuoles have five class C ABC transporters that are known to transport a variety of toxins into the vacuole lumen as part of detoxifying the cell. We have found that ABCC transporters can also regulate vacuole fusion through novel mechanisms. For instance Ybt1 serves as negative regulator of fusion through its effects on vacuolar Ca2+ homeostasis. Additional studies showed that Ycf1 acts as a positive regulator by affecting the efficient recruitment of the SNARE Vam7. Finally, we discuss the potential interface between the translocation of lipids across the membrane bilayer, also known as lipid flipping, and the efficiency of fusion. PMID:25610719

  7. Transcriptome-Based Identification of ABC Transporters in the Western Tarnished Plant Bug Lygus hesperus

    PubMed Central

    Hull, J. Joe; Chaney, Kendrick; Geib, Scott M.; Fabrick, Jeffrey A.; Brent, Colin S.; Walsh, Douglas; Lavine, Laura Corley

    2014-01-01

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic clearance. While ABC transporters have been extensively studied in vertebrates, less is known concerning this superfamily in insects, particularly hemipteran pests. We used RNA-Seq transcriptome sequencing to identify 65 putative ABC transporter sequences (including 36 full-length sequences) from the eight ABC subfamilies in the western tarnished plant bug (Lygus hesperus), a polyphagous agricultural pest. Phylogenetic analyses revealed clear orthologous relationships with ABC transporters linked to insecticide/xenobiotic clearance and indicated lineage specific expansion of the L. hesperus ABCG and ABCH subfamilies. The transcriptional profile of 13 LhABCs representative of the ABCA, ABCB, ABCC, ABCG, and ABCH subfamilies was examined across L. hesperus development and within sex-specific adult tissues. All of the transcripts were amplified from both reproductively immature and mature adults and all but LhABCA8 were expressed to some degree in eggs. Expression of LhABCA8 was spatially localized to the testis and temporally timed with male reproductive development, suggesting a potential role in sexual maturation and/or spermatozoa protection. Elevated expression of LhABCC5 in Malpighian tubules suggests a possible role in xenobiotic clearance. Our results provide the first transcriptome-wide analysis of ABC transporters in an agriculturally important hemipteran pest and, because ABC transporters are known to be important mediators of insecticidal resistance, will provide the basis for future biochemical and toxicological studies on the role of this protein family in insecticide resistance in Lygus species. PMID:25401762

  8. Transcriptome-based identification of ABC transporters in the western tarnished plant bug lygus hesperus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic cle...

  9. The Predicted ABC Transporter AbcEDCBA Is Required for Type IV Secretion System Expression and Lysosomal Evasion by Brucella ovis

    PubMed Central

    Silva, Teane M. A.; Mol, Juliana P. S.; Winter, Maria G.; Atluri, Vidya; Xavier, Mariana N.; Pires, Simone F.; Paixão, Tatiane A.; Andrade, Hélida M.; Santos, Renato L.; Tsolis, Renee M.

    2014-01-01

    Brucella ovis is a major cause of reproductive failure in rams and it is one of the few well-described Brucella species that is not zoonotic. Previous work showed that a B. ovis mutant lacking a species-specific ABC transporterabcBA) was attenuated in mice and was unable to survive in macrophages. The aim of this study was to evaluate the role of this ABC transporter during intracellular survival of B. ovis. In HeLa cells, B. ovis WT was able to survive and replicate at later time point (48 hpi), whereas an ΔabcBA mutant was attenuated at 24 hpi. The reduced survival of the ΔabcBA mutant was associated with a decreased ability to exclude the lysosomal marker LAMP1 from its vacuolar membrane, suggesting a failure to establish a replicative niche. The ΔabcBA mutant showed a reduced abundance of the Type IV secretion system (T4SS) proteins VirB8 and VirB11 in both rich and acid media, when compared to WT B. ovis. However, mRNA levels of virB1, virB8, hutC, and vjbR were similar in both strains. These results support the notion that the ABC transporter encoded by abcEDCBA or its transported substrate acts at a post-transcriptional level to promote the optimal expression of the B. ovis T4SS within infected host cells. PMID:25474545

  10. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2006-03-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  11. The ABC protein turned chloride channel whose failure causes cystic fibrosis.

    PubMed

    Gadsby, David C; Vergani, Paola; Csanády, László

    2006-03-23

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  12. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis

    SciTech Connect

    Gao, Jinlan; Li, Xiaolu; Feng, Yue; Zhang, Bo; Miao, Shiying; Wang, Linfang; Wang, Na

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We truncated the signal peptide of OppA{sub TTE0054} to make it express in Escherichia coli as a soluble protein. Black-Right-Pointing-Pointer Crystals of OppA{sub TTE0054} were grown by sitting-drop vapor diffusion method. Black-Right-Pointing-Pointer The crystal of OppA{sub TTE0054} diffracted to 2.25 A. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGE after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 A. The crystal belonged to space group C222{sub 1}, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 A, and {alpha} = {beta} = {gamma} = 90 Degree-Sign .

  13. High-throughput screening of dipeptide utilization mediated by the ABC transporter DppBCDF and its substrate-binding proteins DppA1-A5 in Pseudomonas aeruginosa.

    PubMed

    Pletzer, Daniel; Lafon, Corinne; Braun, Yvonne; Köhler, Thilo; Page, Malcolm G P; Mourez, Michael; Weingart, Helge

    2014-01-01

    In this study, we show that the dppBCDF operon of Pseudomonas aeruginosa PA14 encodes an ABC transporter responsible for the utilization of di/tripeptides. The substrate specificity of ABC transporters is determined by its associated substrate-binding proteins (SBPs). Whereas in E. coli only one protein, DppA, determines the specificity of the transporter, five orthologous SBPs, DppA1-A5 are present in P. aeruginosa. Multiple SBPs might broaden the substrate specificity by increasing the transporter capacity. We utilized the Biolog phenotype MicroArray technology to investigate utilization of di/tripeptides in mutants lacking either the transport machinery or all of the five SBPs. This high-throughput method enabled us to screen hundreds of dipeptides with various side-chains, and subsequently, to determine the substrate profile of the dipeptide permease. The substrate spectrum of the SBPs was elucidated by complementation of a penta mutant, deficient of all five SBPs, with plasmids carrying individual SBPs. It became apparent that some dipeptides were utilized with different affinity for each SBP. We found that DppA2 shows the highest flexibility on substrate recognition and that DppA2 and DppA4 have a higher tendency to utilize tripeptides. DppA5 was not able to complement the penta mutant under our screening conditions. Phaseolotoxin, a toxic tripeptide inhibiting the enzyme ornithine carbamoyltransferase, is also transported into P. aeruginosa via the DppBCDF permease. The SBP DppA1, and with much greater extend DppA3, are responsible for delivering the toxin to the permease. Our results provide a first overview of the substrate pattern of the ABC dipeptide transport machinery in P. aeruginosa.

  14. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model.

    PubMed

    Vaquer, Sergi; Cuyàs, Elisabet; Rabadán, Arnau; González, Albert; Fenollosa, Felip; de la Torre, Rafael

    2014-01-01

    Microgravity has been shown to influence the expression of ABC (ATP-Binding Cassette) transporters in bacteria, fungi and mammals, but also to modify the activity of certain cellular components with structural and functional similarities to ABC transporters. Changes in activity of ABC transporters could lead to important metabolic disorders and undesired pharmacological effects during spaceflights. However, no current means exist to study the functionality of these transporters in microgravity. To this end, a Vesicular Transport Assay (®) (Solvo Biotechnology, Hungary) was adapted to evaluate multi-drug resistance-associated protein 2 (MRP2) trans-membrane estradiol-17-β-glucuronide (E17βG) transport activity, when activated by adenosine-tri-phosphate (ATP) during parabolic flights. Simple diffusion, ATP-independent transport and benzbromarone inhibition were also evaluated. A high accuracy engineering system was designed to perform, monitor and synchronize all procedures. Samples were analysed using a validated high sensitivity drug detection protocol. Experiments were performed in microgravity during parabolic flights, and compared to 1g on ground results using identical equipment and procedures in all cases. Our results revealed that sufficient equipment accuracy and analytical sensitivity were reached to detect transport activity in both gravitational conditions. Additionally, transport activity levels of on ground samples were within commercial transport standards, proving the validity of the methods and equipment used. MRP2 net transport activity was significantly reduced in microgravity, so was signal detected in simple diffusion samples. Ultra-structural changes induced by gravitational stress upon vesicle membranes or transporters could explain the current results, although alternative explanations are possible. Further research is needed to provide a conclusive answer in this regard. Nevertheless, the present validated technology opens new and

  15. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model

    PubMed Central

    Vaquer, Sergi; Cuyàs, Elisabet; Rabadán, Arnau; González, Albert; Fenollosa, Felip; de la Torre, Rafael

    2014-01-01

    Microgravity has been shown to influence the expression of ABC (ATP-Binding Cassette) transporters in bacteria, fungi and mammals, but also to modify the activity of certain cellular components with structural and functional similarities to ABC transporters. Changes in activity of ABC transporters could lead to important metabolic disorders and undesired pharmacological effects during spaceflights. However, no current means exist to study the functionality of these transporters in microgravity. To this end, a Vesicular Transport Assay ® (Solvo Biotechnology, Hungary) was adapted to evaluate multi-drug resistance-associated protein 2 (MRP2) trans-membrane estradiol-17-β-glucuronide (E17βG) transport activity, when activated by adenosine-tri-phosphate (ATP) during parabolic flights. Simple diffusion, ATP-independent transport and benzbromarone inhibition were also evaluated. A high accuracy engineering system was designed to perform, monitor and synchronize all procedures. Samples were analysed using a validated high sensitivity drug detection protocol. Experiments were performed in microgravity during parabolic flights, and compared to 1g on ground results using identical equipment and procedures in all cases. Our results revealed that sufficient equipment accuracy and analytical sensitivity were reached to detect transport activity in both gravitational conditions. Additionally, transport activity levels of on ground samples were within commercial transport standards, proving the validity of the methods and equipment used. MRP2 net transport activity was significantly reduced in microgravity, so was signal detected in simple diffusion samples. Ultra-structural changes induced by gravitational stress upon vesicle membranes or transporters could explain the current results, although alternative explanations are possible. Further research is needed to provide a conclusive answer in this regard. Nevertheless, the present validated technology opens new and

  16. Cellodextrin and Laminaribiose ABC Transporters in Clostridium thermocellum▿

    PubMed Central

    Nataf, Yakir; Yaron, Sima; Stahl, Frank; Lamed, Raphael; Bayer, Edward A.; Scheper, Thomas-Helmut; Sonenshein, Abraham L.; Shoham, Yuval

    2009-01-01

    Clostridium thermocellum is an anaerobic thermophilic bacterium that grows efficiently on cellulosic biomass. This bacterium produces and secretes a highly active multienzyme complex, the cellulosome, that mediates the cell attachment to and hydrolysis of the crystalline cellulosic substrate. C. thermocellum can efficiently utilize only β-1,3 and β-1,4 glucans and prefers long cellodextrins. Since the bacterium can also produce ethanol, it is considered an attractive candidate for a consolidated fermentation process in which cellulose hydrolysis and ethanol fermentation occur in a single process. In this study, we have identified and characterized five sugar ABC transporter systems in C. thermocellum. The putative transporters were identified by sequence homology of the putative solute-binding lipoprotein to known sugar-binding proteins. Each of these systems is transcribed from a gene cluster, which includes an extracellular solute-binding protein, one or two integral membrane proteins, and, in most cases, an ATP-binding protein. The genes of the five solute-binding proteins were cloned, fused to His tags, overexpressed, and purified, and their abilities to interact with different sugars was examined by isothermal titration calorimetry. Three of the sugar-binding lipoproteins (CbpB to -D) interacted with different lengths of cellodextrins (G2 to G5), with disassociation constants in the micromolar range. One protein, CbpA, binds only cellotriose (G3), while another protein, Lbp (laminaribiose-binding protein) interacts with laminaribiose. The sugar specificity of the different binding lipoproteins is consistent with the observed substrate preference of C. thermocellum, in which cellodextrins (G3 to G5) are assimilated faster than cellobiose. PMID:18952792

  17. Genome organisation and expression profiling of ABC protein-encoding genes in Heterobasidion annosum s.l. complex.

    PubMed

    Baral, Bikash; Kovalchuk, Andriy; Asiegbu, Fred O

    2016-03-01

    Members of Heterobasidion annosum species complex are widely regarded as the most destructive fungal pathogens of conifer trees in the boreal and temperate zones of Northern hemisphere. To invade and colonise their host trees, Heterobasidion fungi must overcome components of host chemical defence, including terpenoid oleoresin and phenolic compounds. ABC transporters may play an important role in this process participating in the export of toxic host metabolites and maintaining their intracellular concentration below the critical level. We have identified and phylogenetically classified Heterobasidion genes encoding ABC transporters and closely related ABC proteins. The number of ABC proteins in the Heterobasidion genome is one of the lowest among analysed species of Agaricomycotina. Using quantitative RT-PCR, we have analysed transcriptional response of Heterobasidion ABC transporter-encoding genes to monoterpenes as well as their expression profile during growth on pine wood in comparison to the growth on defined media. Several ABC transporters were up-regulated during growth on pine wood. The ABC-transporter encoding gene ABCG1.1 was induced both during growth of H. annosum on pine wood and upon exposure to monoterpenes. Our experimental data demonstrate the differential responses of Heterobasidion ABC genes to growth conditions and chemical stressors. The presented results suggest a potential role of Heterobasidion ABC-G transporters in the resistance to the components of conifer chemical defence.

  18. Regulation of ABC Transporters at the Blood-Brain Barrier

    PubMed Central

    Miller, David S.

    2015-01-01

    ATP Binding Cassette (ABC) transporters at the blood-brain barrier function as ATP-driven xenobiotic efflux pumps and limit delivery of small molecule drugs to the brain. Here I review recent progress in understanding the regulation of the expression and transport activity of these transporters and comment on how this new information might aid in improving drug delivery to the brain. PMID:25670036

  19. Regulation of ABC transporters blood-brain barrier: the good, the bad, and the ugly.

    PubMed

    Miller, David S

    2015-01-01

    The brain capillary endothelial cells that constitute the blood-brain barrier express multiple ABC transport proteins on the luminal, blood-facing, plasma membrane. These transporters function as ATP-driven efflux pumps for xenobiotics and endogenous metabolites. High expression of these ABC transporters at the barrier is a major obstacle to the delivery of therapeutics, including chemotherapeutics, to the CNS. Here, I review the signals that alter ABC transporter expression and transport function with an emphasis on P-glycoprotein, Mrp2, and breast cancer resistance protein (BCRP), the efflux transporters for which we have the most detailed picture of regulation. Recent work shows that transporter protein expression can be upregulated in response to inflammatory and oxidative stress, therapeutic drugs, diet, and persistent environmental pollutants; as a consequence, drug delivery to the brain is reduced (potentially bad and ugly). In contrast, basal transport activity of P-glycoprotein and BCRP can be reduced through complex signaling pathways that involve events in and on the brain capillary endothelial cells. Targeting these signaling events provides opportunities to rapidly and reversibly increase brain accumulation of drugs that are substrates for the transporters (potentially good). The clinical usefulness of targeting signaling to reduce efflux transporter activity and improve drug delivery to the CNS remains to be established.

  20. Detergent-free purification of ABC (ATP-binding-cassette) transporters.

    PubMed

    Gulati, Sonali; Jamshad, Mohammed; Knowles, Timothy J; Morrison, Kerrie A; Downing, Rebecca; Cant, Natasha; Collins, Richard; Koenderink, Jan B; Ford, Robert C; Overduin, Michael; Kerr, Ian D; Dafforn, Timothy R; Rothnie, Alice J

    2014-07-15

    ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.

  1. The riboswitch regulates a thiamine pyrophosphate ABC transporter of the oral spirochete Treponema denticola.

    PubMed

    Bian, Jiang; Shen, Hongwu; Tu, Youbin; Yu, Aiming; Li, Chunhao

    2011-08-01

    Thiamine pyrophosphate (TPP), a biologically active form of thiamine (vitamin B₁), is an essential cofactor in all living systems. Microorganisms either synthesize TPP via de novo biosynthesis pathways or uptake exogenous thiamine from the environment via specific transporters. The oral spirochete Treponema denticola is an important pathogen that is associated with human periodontal diseases. It lacks a de novo TPP biosynthesis pathway and needs exogenous TPP for growth, suggesting that it may obtain exogenous TPP via a thiamine transporter. In this study, we identified a gene cluster that encodes a TPP ABC transporter which consists of a TPP-binding protein (TDE0143), a transmembrane permease (TDE0144), and a cytosolic ATPase (TDE0145). Transcriptional and translational analyses showed that the genes encoding these three proteins are cotranscribed and form an operon (tbpABC(Td)) that is initiated by a σ⁷⁰-like promoter. The expression level of this operon is negatively regulated by exogenous TPP and is mediated by a TPP-sensing riboswitch (Td(thi-)(box)). Genetic and biochemical studies revealed that the TDE0143 deletion mutant (T. denticola ΔtbpA) had a decreased ability to transport exogenous TPP, and the mutant failed to grow when exogenous TPP was insufficient. These results taken together indicate that the tbpABC(Td) operon encodes an ABC transporter that is required for the uptake of exogenous TPP and that the expression of this operon is regulated by a TPP-binding riboswitch via a feedback inhibition mechanism.

  2. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy

    PubMed Central

    El-Awady, Raafat; Saleh, Ekram; Hashim, Amna; Soliman, Nehal; Dallah, Alaa; Elrasheed, Azza; Elakraa, Ghada

    2017-01-01

    Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. “Resistance to chemotherapy,” however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux – a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed. PMID:28119610

  3. Genome-wide identification of ATP-binding cassette (ABC) transporters and conservation of their xenobiotic transporter function in the monogonont rotifer (Brachionus koreanus).

    PubMed

    Jeong, Chang-Bum; Kim, Hui-Su; Kang, Hye-Min; Lee, Young Hwan; Zhou, Bingsheng; Choe, Joonho; Lee, Jae-Seong

    2017-03-01

    The ATP-binding cassette (ABC) transporter family is one of the largest gene family in animals, and members of this family are known to be involved in various biological processes due to their ability to transport a wide range of substrates across membranes using ATP cleavage-derived energy. We identified 61 ABC transporters in the genome of the monogonont rotifer Brachionus koreanus, and classified these into eight distinct subfamilies (A-H) by phylogenetic analysis. ABC transporters in the rotifer B. koreanus are comprised of 11 ABCA genes, 19 ABCB genes, 14 ABCC genes, 3 ABCD genes, 1 ABCE gene, 3 ABCF genes, 8 ABCG genes, and 2 ABCH genes. Extensive gene duplication and loss events in synteny were observed in several subfamilies. In particular, massive gene duplications of P-glycoproteins (P-gps), multidrug resistance proteins (MRPs), and Bk-Abcg-like proteins were observed. The ability of these B. koreanus proteins to function as multixenobiotic resistance (MXR) ABC transporters was validated using specific fluorescence substrates/inhibitors. The ABC transporter superfamily members identified in this study will be useful in future toxicological studies, and will facilitate comparative studies of the evolution of the ABC transporter superfamily in invertebrates.

  4. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice.

    PubMed

    Qin, Peng; Tu, Bin; Wang, Yuping; Deng, Luchang; Quilichini, Teagen D; Li, Ting; Wang, Hui; Ma, Bingtian; Li, Shigui

    2013-01-01

    In flowering plants, anther and pollen development is critical for male reproductive success. The anther cuticle and pollen exine play an essential role, and in many cereals, such as rice, orbicules/ubisch bodies are also thought to be important for pollen development. The formation of the anther cuticle, exine and orbicules is associated with the biosynthesis and transport of wax, cutin and sporopollenin components. Recently, progress has been made in understanding the biosynthesis of sporopollenin and cutin components in Arabidopsis and rice, but less is known about the mechanisms by which they are transported to the sites of deposition. Here, we report that the rice ATP-binding cassette (ABC) transporter, ABCG15, is essential for post-meiotic anther and pollen development, and is proposed to play a role in the transport of rice anther cuticle and sporopollenin precursors. ABCG15 is highly expressed in the tapetum at the young microspore stage, and the abcg15 mutant exhibits small, white anthers lacking mature pollen, lipidic cuticle, orbicules and pollen exine. Gas chromatography-mass spectrometry (GC-MS) analysis of the abcg15 anther cuticle revealed significant reductions in a number of wax components and aliphatic cutin monomers. The expression level of genes involved in lipid metabolism in the abcg15 mutant was significantly different from their levels in the wild type, possibly due to perturbations in the homeostasis of anther lipid metabolism. Our study provides new insights for understanding the molecular mechanism of the formation of the anther cuticle, orbicules and pollen wall, as well as the machinery for lipid metabolism in rice anthers.

  5. Tonoplast-localized Abc2 Transporter Mediates Phytochelatin Accumulation in Vacuoles and Confers Cadmium Tolerance*

    PubMed Central

    Mendoza-Cózatl, David G.; Zhai, Zhiyang; Jobe, Timothy O.; Akmakjian, Garo Z.; Song, Won-Yong; Limbo, Oliver; Russell, Matthew R.; Kozlovskyy, Volodymyr I.; Martinoia, Enrico; Vatamaniuk, Olena K.; Russell, Paul; Schroeder, Julian I.

    2010-01-01

    Phytochelatins mediate tolerance to heavy metals in plants and some fungi by sequestering phytochelatin-metal complexes into vacuoles. To date, only Schizosaccharomyces pombe Hmt1 has been described as a phytochelatin transporter and attempts to identify orthologous phytochelatin transporters in plants and other organisms have failed. Furthermore, recent data indicate that the hmt1 mutant accumulates significant phytochelatin levels in vacuoles, suggesting that unidentified phytochelatin transporters exist in fungi. Here, we show that deletion of all vacuolar ABC transporters abolishes phytochelatin accumulation in S. pombe vacuoles and abrogates 35S-PC2 uptake into S. pombe microsomal vesicles. Systematic analysis of the entire S. pombe ABC transporter family identified Abc2 as a full-size ABC transporter (ABCC-type) that mediates phytochelatin transport into vacuoles. The S. pombe abc1 abc2 abc3 abc4 hmt1 quintuple and abc2 hmt1 double mutant show no detectable phytochelatins in vacuoles. Abc2 expression restores phytochelatin accumulation into vacuoles and suppresses the cadmium sensitivity of the abc quintuple mutant. A novel, unexpected, function of Hmt1 in GS-conjugate transport is also shown. In contrast to Hmt1, Abc2 orthologs are widely distributed among kingdoms and are proposed as the long-sought vacuolar phytochelatin transporters in plants and other organisms. PMID:20937798

  6. Regulation of ABC Efflux Transporters at Blood-Brain Barrier in Health and Neurological Disorders

    PubMed Central

    Qosa, Hisham; Miller, David S.; Pasinelli, Piera; Trotti, Davide

    2015-01-01

    The strength of the blood-brain barrier (BBB) in providing protection to the central nervous system from exposure to circulating chemicals is maintained by tight junctions between endothelial cells and by a broad range of transporter proteins that regulate exchange between CNS and blood. The most important transporters that restrict the permeability of large number of toxins as well as therapeutic agents are the ABC transporters. Among them, P-gp, BCRP, MRP1 and MRP2 are the utmost studied. These efflux transporters are neuroprotective, limiting the brain entry of neurotoxins; however, they could also restrict the entry of many therapeutics and contribute to CNS pharmacoresistance. Characterization of several regulatory pathways that govern expression and activity of ABC efflux transporters in the endothelium of brain capillaries have led to an emerging consensus that these processes are complex and contain several cellular and molecular elements. Alterations in ABC efflux transporters expression and/or activity occur in several neurological diseases. Here, we review the signaling pathways that regulate expression and transport activity of P-gp, BCRP, MRP1 and MRP2 as well as how their expression/activity changes in neurological diseases. PMID:26187753

  7. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  8. Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport

    PubMed Central

    Cockerell, Steven R.; Rutkovsky, Alex C.; Zayner, Josiah P.; Cooper, Rebecca E.; Porter, Lindsay R.; Pendergraft, Sam S.; Parker, Zach M.; McGinnis, Marcus W.

    2014-01-01

    The polyamines norspermidine and spermidine are among the environmental signals that regulate Vibrio cholerae biofilm formation. The effects of these polyamines are mediated by NspS, a member of the bacterial periplasmic solute binding protein superfamily. Almost all members of this superfamily characterized to date are components of ATP-binding cassette-type transporters involved in nutrient uptake. Consequently, in the current annotation of the V. cholerae genome, NspS has been assigned a function in transport. The objective of this study was to further characterize NspS and investigate its potential role in transport. Our results support a role for NspS in signal transduction in response to norspermidine and spermidine, but not their transport. In addition, we provide evidence that these polyamine signals are processed by c-di-GMP signalling networks in the cell. Furthermore, we present comparative genomics analyses which reveal the presence of NspS-like proteins in a variety of bacteria, suggesting that periplasmic ligand binding proteins may be widely utilized for sensory transduction. PMID:24530989

  9. Exploring conformational equilibria of a heterodimeric ABC transporter

    PubMed Central

    Timachi, M Hadi; Hutter, Cedric AJ; Hohl, Michael; Assafa, Tufa; Böhm, Simon; Mittal, Anshumali; Seeger, Markus A; Bordignon, Enrica

    2017-01-01

    ABC exporters pump substrates across the membrane by coupling ATP-driven movements of nucleotide binding domains (NBDs) to the transmembrane domains (TMDs), which switch between inward- and outward-facing (IF, OF) orientations. DEER measurements on the heterodimeric ABC exporter TM287/288 from Thermotoga maritima, which contains a non-canonical ATP binding site, revealed that in the presence of nucleotides the transporter exists in an IF/OF equilibrium. While ATP binding was sufficient to partially populate the OF state, nucleotide trapping in the pre- or post-hydrolytic state was required for a pronounced conformational shift. At physiologically high temperatures and in the absence of nucleotides, the NBDs disengage asymmetrically while the conformation of the TMDs remains unchanged. Nucleotide binding at the degenerate ATP site prevents complete NBD separation, a molecular feature differentiating heterodimeric from homodimeric ABC exporters. Our data suggest hydrolysis-independent closure of the NBD dimer, which is further stabilized as the consensus site nucleotide is committed to hydrolysis. DOI: http://dx.doi.org/10.7554/eLife.20236.001 PMID:28051765

  10. Inhibition of ABC Transporters Abolishes Antimony Resistance in Leishmania Infection▿

    PubMed Central

    Mookerjee Basu, Jayati; Mookerjee, Ananda; Banerjee, Rajdeep; Saha, Manik; Singh, Subhankar; Naskar, Ksudiram; Tripathy, Gayetri; Sinha, Prabhat K.; Pandey, Krishna; Sundar, Shyam; Bimal, Sanjeev; Das, Pradip K.; Choudhuri, Soumitra K.; Roy, Syamal

    2008-01-01

    The emergence of antimony (Sb) resistance has jeopardized the treatment of visceral leishmaniasis in various countries. Previous studies have considered the part played by leishmanial parasites in antimony resistance, but the involvement of host factors in the clinical scenario remained to be investigated. Here we show that unlike infection with Sb-sensitive (Sbs) Leishmania donovani, infection with Sb-resistant (Sbr) L. donovani induces the upregulation of multidrug resistance-associated protein 1 (MRP1) and permeability glycoprotein (P-gp) in host cells, resulting in a nonaccumulation of intracellular Sb following treatment with sodium antimony gluconate (SAG) favoring parasite replication. The inhibition of MRP1 and P-gp with resistance-modifying agents such as lovastatin allows Sb accumulation and parasite killing within macrophages and offers protection in an animal model in which infection with Sbr L. donovani is otherwise lethal. The occurrence of a similar scenario in clinical cases is supported by the findings that unlike monocytes from SAG-sensitive kala-azar (KA) patients, monocytes from SAG-unresponsive KA patients overexpress P-gp and MRP1 and fail to accumulate Sb following in vitro SAG treatment unless pretreated with inhibitors of ABC transporters. Thus, the expression status of MRP1 and P-gp in blood monocytes may be used as a diagnostic marker for Sb resistance and the treatment strategy can be designed accordingly. Our results also indicate that lovastatin, which can inhibit both P-gp and MRP1, might be beneficial for reverting Sb resistance in leishmaniasis as well as drug resistance in other clinical situations, including cancer. PMID:18056276

  11. Discovery of an auto-regulation mechanism for the maltose ABC transporter MalFGK2.

    PubMed

    Bao, Huan; Duong, Franck

    2012-01-01

    The maltose transporter MalFGK(2), together with the substrate-binding protein MalE, is one of the best-characterized ABC transporters. In the conventional model, MalE captures maltose in the periplasm and delivers the sugar to the transporter. Here, using nanodiscs and proteoliposomes, we instead find that MalE is bound with high-affinity to MalFGK2 to facilitate the acquisition of the sugar. When the maltose concentration exceeds the transport capacity, MalE captures maltose and dissociates from the transporter. This mechanism explains why the transport rate is high when MalE has low affinity for maltose, and low when MalE has high affinity for maltose. Transporter-bound MalE facilitates the acquisition of the sugar at low concentrations, but also captures and dissociates from the transporter past a threshold maltose concentration. In vivo, this maltose-forced dissociation limits the rate of transport. Given the conservation of the substrate-binding proteins, this mode of allosteric regulation may be universal to ABC importers.

  12. The role of ABCG-type ABC transporters in phytohormone transport.

    PubMed

    Borghi, Lorenzo; Kang, Joohyun; Ko, Donghwi; Lee, Youngsook; Martinoia, Enrico

    2015-10-01

    Plant hormones (phytohormones) integrate endogenous and exogenous signals thus synchronizing plant growth with environmental and developmental changes. Similar to animals, phytohormones have distinct source and target tissues, hence controlled transport and focused targeting are required for their functions. Many evidences accumulated in the last years about the regulation of long-distance and directional transport of phytohormones. ATP-binding cassette (ABC) transporters turned out to play major roles in routing phytohormones not only in the plant body but also towards the outer environment. The ABCG-type proteins ABCG25 and ABCG40 are high affinity abscisic acid (ABA) transporters. ABCG14 is highly co-expressed with cytokinin biosynthesis and is the major root-to-shoot cytokinin transporter. Pleiotropic drug resistance1 (PDR1) from Petunia hybrida transports strigolactones (SLs) from the root tip to the plant shoot but also outside to the rhizosphere, where SLs are the main attractants to mycorrhizal fungi. Last but not least, ABCG36 and ABCG37 possibly play a dual role in coumarine and IBA transport.

  13. Nucleotide-induced conformational dynamics in ABC transporters from structure-based coarse grained modelling.

    NASA Astrophysics Data System (ADS)

    Flechsig, Holger

    2016-02-01

    ATP-binding cassette (ABC) transporters are integral membrane proteins which mediate the exchange of diverse substrates across membranes powered by ATP molecules. Our understanding of their activity is still hampered since the conformational dynamics underlying the operation of such proteins cannot yet be resolved in detailed molecular dynamics studies. Here a coarse grained model which allows to mimic binding of nucleotides and follow subsequent conformational motions of full-length transporter structures in computer simulations is proposed and implemented. To justify its explanatory quality, the model is first applied to the maltose transporter system for which multiple conformations are known and we find that the model predictions agree remarkably well with the experimental data. For the MalK subunit the switching from open to the closed dimer configuration upon ATP binding is reproduced and, moreover, for the full-length maltose transporter, progression from inward-facing to the outward-facing state is correctly obtained. For the heme transporter HmuUV, for which only the free structure could yet be determined, the model was then applied to predict nucleotide-induced conformational motions. Upon binding of ATP-mimicking ligands the structure changed from a conformation in which the nucleotide-binding domains formed an open shape, to a conformation in which they were found in tight contact, while, at the same time, a pronounced rotation of the transmembrane domains was observed. This finding is supported by normal mode analysis, and, comparison with structural data of the homologous vitamin B12 transporter BtuCD suggests that the observed rotation mechanism may contribute a common functional aspect for this class of ABC transporters. Although in HmuuV noticeable rearrangement of essential transmembrane helices was detected, there are no indications from our simulations that ATP binding alone may facilitate propagation of substrate molecules in this transporter

  14. A Putative Bacterial ABC Transporter Circumvents the Essentiality of Signal Peptidase

    PubMed Central

    Morisaki, J. Hiroshi; Smith, Peter A.; Date, Shailesh V.; Kajihara, Kimberly K.; Truong, Chau Linda; Modrusan, Zora; Yan, Donghong; Kang, Jing; Xu, Min; Shah, Ishita M.; Mintzer, Robert; Kofoed, Eric M.; Cheung, Tommy K.; Arnott, David; Koehler, Michael F. T.; Heise, Christopher E.; Brown, Eric J.

    2016-01-01

    ABSTRACT The type I signal peptidase of Staphylococcus aureus, SpsB, is an attractive antibacterial target because it is essential for viability and extracellularly accessible. We synthesized compound 103, a novel arylomycin-derived inhibitor of SpsB with significant potency against various clinical S. aureus strains (MIC of ~1 µg/ml). The predominant clinical strain USA300 developed spontaneous resistance to compound 103 with high frequency, resulting from single point mutations inside or immediately upstream of cro/cI, a homolog of the lambda phage transcriptional repressor cro. These cro/cI mutations led to marked (>50-fold) overexpression of three genes encoding a putative ABC transporter. Overexpression of this ABC transporter was both necessary and sufficient for resistance and, notably, circumvented the essentiality of SpsB during in vitro culture. Mutation of its predicted ATPase gene abolished resistance, suggesting a possible role for active transport; in these bacteria, resistance to compound 103 occurred with low frequency and through mutations in spsB. Bacteria overexpressing the ABC transporter and lacking SpsB were capable of secreting a subset of proteins that are normally cleaved by SpsB and instead were cleaved at a site distinct from the canonical signal peptide. These bacteria secreted reduced levels of virulence-associated proteins and were unable to establish infection in mice. This study reveals the mechanism of resistance to a novel arylomycin derivative and demonstrates that the nominal essentiality of the S. aureus signal peptidase can be circumvented by the upregulation of a putative ABC transporter in vitro but not in vivo. PMID:27601569

  15. The yeast vacuolar ABC transporter Ybt1p regulates membrane fusion through Ca2+ transport modulation

    PubMed Central

    Sasser, Terry L.; Padolina, Mark; Fratti, Rutilio A.

    2013-01-01

    Ybt1p is a class C ABC transporter (ATP-binding cassette transporter) that is localized to the vacuole of Saccharomyces cerevisiae. Although Ybt1p was originally identified as a bile acid transporter, it has also been found to function in other capacities, including the translocation of phosphatidylcholine to the vacuole lumen, and the regulation of Ca2+ homoeostasis. In the present study we found that deletion of YBT1 enhanced in vitro homotypic vacuole fusion by up to 50 % relative to wild-type vacuoles. The increased vacuole fusion was not due to aberrant protein sorting of SNAREs (soluble N-ethylmaleimide-sensitive factor-attachment protein receptors) or recruitment of factors from the cytosol such as Ypt7p and the HOPS (homotypic fusion and vacuole protein sorting) tethering complex. In addition, ybt1Δ vacuoles displayed no observable differences in the formation of SNARE complexes, interactions between SNAREs and HOPS, or formation of vertex microdomains. However, the absence of Ybt1p caused significant changes in Ca2+ transport during fusion. One difference was the prolonged Ca2+ influx exhibited by ybt1Δ vacuoles at the start of the fusion reaction. We also observed a striking delay in SNARE-dependent Ca2+ efflux. As vacuole fusion can be inhibited by high Ca2+ concentrations, we suggest that the delayed efflux in ybt1Δ vacuoles leads to the enhanced SNARE function. PMID:22970809

  16. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    PubMed

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.

  17. How to move an amphipathic molecule across a lipid bilayer: different mechanisms for different ABC transporters?

    PubMed Central

    Theodoulou, Frederica L.; Carrier, David J.; Schaedler, Theresia A.; Baldwin, Stephen A.; Baker, Alison

    2016-01-01

    Import of β-oxidation substrates into peroxisomes is mediated by ATP binding cassette (ABC) transporters belonging to subfamily D. In order to enter the β-oxidation pathway, fatty acids are activated by conversion to fatty acyl-CoA esters, a reaction which is catalysed by acyl-CoA synthetases (ACSs). Here, we present evidence for an unusual transport mechanism, in which fatty acyl-CoA substrates are accepted by ABC subclass D protein (ABCD) transporters, cleaved by the transporters during transit across the lipid bilayer to release CoA, and ultimately re-esterified in the peroxisome lumen by ACSs which interact with the transporter. We propose that this solves the biophysical problem of moving an amphipathic molecule across the peroxisomal membrane, since the intrinsic thioesterase activity of the transporter permits separate membrane translocation pathways for the hydrophobic fatty acid moiety and the polar CoA moiety. The cleavage/re-esterification mechanism also has the potential to control entry of disparate substrates into the β-oxidation pathway when coupled with distinct peroxisomal ACSs. A different solution to the movement of amphipathic molecules across a lipid bilayer is deployed by the bacterial lipid-linked oligosaccharide (LLO) flippase, PglK, in which the hydrophilic head group and the hydrophobic polyprenyl tail of the substrate are proposed to have distinct translocation pathways but are not chemically separated during transport. We discuss a speculative alternating access model for ABCD proteins based on the mammalian ABC transporter associated with antigen processing (TAP) and compare it to the novel mechanism suggested by the recent PglK crystal structures and biochemical data. PMID:27284041

  18. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58*

    PubMed Central

    Wichelecki, Daniel J.; Vetting, Matthew W.; Chou, Liyushang; Al-Obaidi, Nawar; Bouvier, Jason T.; Almo, Steven C.; Gerlt, John A.

    2015-01-01

    Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool. PMID:26472925

  19. ATP-Binding Cassette (ABC) Transporters of the Human Respiratory Tract Pathogen, Moraxella catarrhalis: Role in Virulence

    PubMed Central

    Murphy, Timothy F; Brauer, Aimee L.; Johnson, Antoinette; Kirkham, Charmaine

    2016-01-01

    Moraxella catarrhalis is a human respiratory tract pathogen that causes otitis media (middle ear infections) in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. In view of the huge global burden of disease caused by M. catarrhalis, the development of vaccines to prevent these infections and better approaches to treatment have become priorities. In previous work, we used a genome mining approach that identified three substrate binding proteins (SBPs) of ATP-binding cassette (ABC) transporters as promising candidate vaccine antigens. In the present study, we performed a comprehensive assessment of 19 SBPs of 15 ABC transporter systems in the M. catarrhalis genome by engineering knockout mutants and studying their role in assays that assess mechanisms of infection. The capacity of M. catarrhalis to survive and grow in the nutrient-limited and hostile environment of the human respiratory tract, including intracellular growth, account in part for its virulence. The results show that ABC transporters that mediate uptake of peptides, amino acids, cations and anions play important roles in pathogenesis by enabling M. catarrhalis to 1) grow in nutrient-limited conditions, 2) invade and survive in human respiratory epithelial cells and 3) persist in the lungs in a murine pulmonary clearance model. The knockout mutants of SBPs and ABC transporters showed different patterns of activity in the assay systems, supporting the conclusion that different SBPs and ABC transporters function at different stages in the pathogenesis of infection. These results indicate that ABC transporters are nutritional virulence factors, functioning to enable the survival of M catarrhalis in the diverse microenvironments of the respiratory tract. Based on the role of ABC transporters as virulence factors of M. catarrhalis, these molecules represent potential drug targets to eradicate the organism from the human respiratory tract. PMID:27391026

  20. Differential Contributions of Five ABC Transporters to Mutidrug Resistance, Antioxidion and Virulence of Beauveria bassiana, an Entomopathogenic Fungus

    PubMed Central

    Ying, Sheng-Hua; Feng, Ming-Guang

    2013-01-01

    Multidrug resistance (MDR) confers agrochemical compatibility to fungal cells-based mycoinsecticdes but mechanisms involved in MDR remain poorly understood for entomopathogenic fungi, which have been widely applied as biocontrol agents against arthropod pests. Here we characterized the functions of five ATP-binding cassette (ABC) transporters, which were classified to the subfamilies ABC-B (Mdr1), ABC-C (Mrp1) and ABC-G (Pdr1, Pdr2 and Pdr5) and selected from 54 full-size ABC proteins of Beauveria bassiana based on their main domain architecture, membrane topology and transcriptional responses to three antifungal inducers. Disruption of each transporter gene resulted in significant reduction in resistance to four to six of eight fungicides or antifungal drugs tested due to their differences in structure and function. Compared with wild-type and complemented (control) strains, disruption mutants of all the five transporter genes became significantly less tolerant to the oxidants menadione and H2O2 based on 22−41% and 10−31% reductions of their effective concentrations required for the suppression of 50% colony growth at 25°C. Under a standardized spray, the killing actions of ΔPdr5 and ΔMrp1 mutants against Spodoptera litura second-instar larvae were delayed by 59% and 33% respectively. However, no significant virulence change was observed in three other delta mutants. Taken together, the examined five ABC transporters contribute differentially to not only the fungal MDR but antioxidant capability, a phenotype rarely associated with ABC efflux pumps in previous reports; at least some of them are required for the full virulence of B. bassiana, thereby affecting the fungal biocontrol potential. Our results indicate that ABC pump-dependent MDR mechanisms exist in entomopathogenic fungi as do in yeasts and human and plant pathogenic fungi. PMID:23596534

  1. Antitubercular Agent Delamanid and Metabolites as Substrates and Inhibitors of ABC and Solute Carrier Transporters

    PubMed Central

    Shimokawa, Yoshihiko; Shibata, Masakazu; Hashizume, Kenta; Hamasako, Yusuke; Ohzone, Yoshihiro; Kashiyama, Eiji; Umehara, Ken

    2016-01-01

    Delamanid (Deltyba, OPC-67683) is the first approved drug in a novel class of nitro-dihydro-imidazooxazoles developed for the treatment of multidrug-resistant tuberculosis. Patients with tuberculosis require treatment with multiple drugs, several of which have known drug-drug interactions. Transporters regulate drug absorption, distribution, and excretion; therefore, the inhibition of transport by one agent may alter the pharmacokinetics of another, leading to unexpected adverse events. Therefore, it is important to understand how delamanid affects transport activity. In the present study, the potencies of delamanid and its main metabolites as the substrates and inhibitors of various transporters were evaluated in vitro. Delamanid was not transported by the efflux ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2), solute carrier (SLC) transporters, organic anion-transporting polypeptides, or organic cation transporter 1. Similarly, metabolite 1 (M1) was not a substrate for any of these transporters except P-gp. Delamanid showed no inhibitory effect on ABC transporters MDR1, BCRP, and bile salt export pump (BSEP; ABCB11), SLC transporters, or organic anion transporters. M1 and M2 inhibited P-gp- and BCRP-mediated transport but did so only at the 50% inhibitory concentrations (M1, 4.65 and 5.71 μmol/liter, respectively; M2, 7.80 and 6.02 μmol/liter, respectively), well above the corresponding maximum concentration in plasma values observed following the administration of multiple doses in clinical trials. M3 and M4 did not affect the activities of any of the transporters tested. These in vitro data suggest that delamanid is unlikely to have clinically relevant interactions with drugs for which absorption and disposition are mediated by this group of transporters. PMID:27021329

  2. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection

    PubMed Central

    Sharkey, Liam K. R.; Edwards, Thomas A.

    2016-01-01

    ABSTRACT Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro. To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection. PMID:27006457

  3. Substrate binding by a bacterial ABC transporter involved in polysaccharide export

    SciTech Connect

    Cuthbertson, Leslie; Kimber, Matthew S.; Whitfield, Chris

    2008-04-02

    ATP-binding-cassette (ABC) transporters are responsible for the export of a wide variety of cell-surface glycoconjugates in both Gram-positive and Gram-negative bacteria. These include the O-antigenic polysaccharide (O-PS) portion of lipopolysaccharide, a crucial virulence determinant in Gram-negative pathogens. O-PSs are synthesized by one of two fundamentally different pathways. Escherichia coli O serotypes O8 and O9a provide the prototype systems for studying O-PS export via ABC transporters. The transporter is composed of the transmembrane component Wzm and the nucleotide-binding component Wzt. Although the N-terminal domain of Wzt is a conventional ABC protein, the C-terminal domain of Wzt (C-Wzt) is a unique structural element that determines the specificity of the transporter for either the O8 or O9a O-PS. We show here that the two domains of Wzt can function when expressed as separate polypeptides; both are essential for export. In vitro, C-Wzt binds its cognate O-PS by recognizing a residue located at the nonreducing end of the polymer. The crystal structure of C-WztO9a is reported here and reveals a {beta} sandwich with an immunoglobulin-like topology that contains the O-PS-binding pocket. Substrate interactions with nucleotide-binding domains have been demonstrated in an ABC exporter previously. However, to our knowledge substrate binding by a discrete, cytoplasmic accessory domain in an extended nucleotide-binding domain polypeptide has not previously been demonstrated. Elucidation of the substrate-recognition system involved in O-PS export provides insight into the mechanism that coordinates polymer biosynthesis, termination, and export.

  4. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path–Force Matching QM/MM Method

    PubMed Central

    Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  5. Whole-transcriptome survey of the putative ATP-binding cassette (ABC) transporter family genes in the latex-producing laticifers of Hevea brasiliensis.

    PubMed

    Zhiyi, Nie; Guijuan, Kang; Yu, Li; Longjun, Dai; Rizhong, Zeng

    2015-01-01

    The ATP-binding cassette (ABC) proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree). A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 'full-size', 21 'half-size' and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress) stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis.

  6. Investigation of the quaternary structure of an ABC transporter in living cells using spectrally resolved resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Singh, Deo Raj

    Forster resonance energy transfer (FRET) has become an important tool to study proteins inside living cells. It has been used to explore membrane protein folding and dynamics, determine stoichiometry and geometry of protein complexes, and measure the distance between two molecules. In this dissertation, we use a method based on FRET and optical micro-spectroscopy (OptiMiS) technology, developed in our lab, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of an ABC transporter in living cells. Specifically, the transporter we investigate originates from the pathogen Pseudomonas aeruginosa, which is a Gram-negative bacterium with several virulence factors, lipopolysaccharides being one of them. This pathogen coexpresses two unique forms of lipopolysaccharides on its surface, the A- and B-bands. The A-band polysaccharides, synthesized in the cytoplasm, are translocated into the periplasm through an ATP-binding-cassette (ABC) transporter consisting of a transmembranar protein, Wzm, and a nucleotide-binding protein, Wzt. In P. aeruginosa, all of the biochemical studies of A-band LPS are concentrated on the stages of the synthesis and ligation of polysaccharides (PSs), leaving the export stage involving ABC transporter unexplored. The mode of PS export through ABC transporters is still unknown. This difficulty is due to the lack of information about sub-unit composition and structure of this bi-component ABC transporter. Using the FRET-OptiMiS combination method developed by our lab, we found that Wzt forms a rhombus-shaped homo-tetramer which becomes a square upon co-expression with Wzm, and that Wzm forms a square-shaped homo-tetramer both in the presence and absence of Wzt. Based on these results, we propose a structural model for the double-tetramer complex formed by the bi-component ABC transporter in living cells. An understanding of the

  7. Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii.

    PubMed Central

    Wanner, C; Soppa, J

    1999-01-01

    More than 40 nitrate respiration-deficient mutants of Haloferax volcanii belonging to three different phenotypic classes were isolated. All 15 mutants of the null phenotype were complemented with a genomic library of the wild type. Wild-type copies of mutated genes were recovered from complemented mutants using two different approaches. The DNA sequences of 13 isolated fragments were determined. Five fragments were found to overlap; therefore nine different genomic regions containing genes essential for nitrate respiration could be identified. Three genomic regions containing genes coding for subunits of ABC transporters were further characterized. In two cases, genes coding for an ATP-binding subunit and a permease subunit were clustered and overlapped by four nucleotides. The third gene for a permease subunit had no additional ABC transporter gene in proximity. One ABC transporter was found to be glucose specific. The mutant reveals that the ABC transporter solely mediates anaerobic glucose transport. Based on sequence similarity, the second ABC transporter is proposed to be molybdate specific, explaining its essential role in nitrate respiration. The third ABC transporter is proposed to be anion specific. Genome sequencing has shown that ABC transporters are widespread in Archaea. Nevertheless, this study represents only the second example of a functional characterization. PMID:10430572

  8. ABC-transporters: implications on drug resistance from microorganisms to human cancers.

    PubMed

    Lage, Hermann

    2003-09-01

    Resistance to chemotherapy is a common clinical problem in patients with infectious diseases as well as in patients with cancer. During treatment of infections or malignant tumors, the drug targets of prokaryotic or eukaryotic microorganisms and neoplastic cells are often found to be refractory to a variety of drugs that have different structures and functions. This phenomenon has been termed multidrug resistance (MDR). The mechanisms leading to MDR are frequently caused by trans-membrane xenobiotic transport molecules belonging to the superfamily of ATP-binding cassette (ABC) transporters. There is an urgent need to understand the structure-function relationships of these efflux pumps that underlie their transport mechanism and drug selectivity. This knowledge may allow the rational design of new drugs that can inhibit or circumvent the activity of these MDR transport molecules. Furthermore, the development of such chemosensitizing agents would help us learn more about the physiological functions and substrates of these pump proteins. This review will discuss the current state of knowledge of the functional and structural similarities among ABC-transporters in prokaryotic and eukaryotic cells and their impact on MDR.

  9. Genome-wide analysis of the ATP-binding cassette (ABC) transporter gene family in the silkworm, Bombyx mori.

    PubMed

    Xie, Xiaodong; Cheng, Tingcai; Wang, Genhong; Duan, Jun; Niu, Weihuan; Xia, Qingyou

    2012-07-01

    The ATP-binding cassette (ABC) superfamily is a larger protein family with diverse physiological functions in all kingdoms of life. We identified 53 ABC transporters in the silkworm genome, and classified them into eight subfamilies (A-H). Comparative genome analysis revealed that the silkworm has an expanded ABCC subfamily with more members than Drosophila melanogaster, Caenorhabditis elegans, or Homo sapiens. Phylogenetic analysis showed that the ABCE and ABCF genes were highly conserved in the silkworm, indicating possible involvement in fundamental biological processes. Five multidrug resistance-related genes in the ABCB subfamily and two multidrug resistance-associated-related genes in the ABCC subfamily indicated involvement in biochemical defense. Genetic variation analysis revealed four ABC genes that might be evolving under positive selection. Moreover, the silkworm ABCC4 gene might be important for silkworm domestication. Microarray analysis showed that the silkworm ABC genes had distinct expression patterns in different tissues on day 3 of the fifth instar. These results might provide new insights for further functional studies on the ABC genes in the silkworm genome.

  10. Research Progress on the Role of ABC Transporters in the Drug Resistance Mechanism of Intractable Epilepsy

    PubMed Central

    Xiong, Jie; Mao, Ding-an; Liu, Li-qun

    2015-01-01

    The pathogenesis of intractable epilepsy is not fully clear. In recent years, both animal and clinical trials have shown that the expression of ATP-binding cassette (ABC) transporters is increased in patients with intractable epilepsy; additionally, epileptic seizures can lead to an increase in the number of sites that express ABC transporters. These findings suggest that ABC transporters play an important role in the drug resistance mechanism of epilepsy. ABC transporters can perform the funcions of a drug efflux pump, which can reduce the effective drug concentration at epilepsy lesions by reducing the permeability of the blood brain barrier to antiepileptic drugs, thus causing resistance to antiepileptic drugs. Given the important role of ABC transporters in refractory epilepsy drug resistance, antiepileptic drugs that are not substrates of ABC transporters were used to obtain ABC transporter inhibitors with strong specificity, high safety, and few side effects, making them suitable for long-term use; therefore, these drugs can be used for future clinical treatment of intractable epilepsy. PMID:26491660

  11. The multidrug transporter Pdr5 on the 25th anniversary of its discovery: an important model for the study of asymmetric ABC transporters

    PubMed Central

    Golin, John; Ambudkar, Suresh V.

    2016-01-01

    Asymmetric ABC (ATP-binding cassette) transporters make up a significant proportion of this important superfamily of integral membrane proteins. These proteins contain one canonical (catalytic) ATP-binding site and a second atypical site with little enzymatic capability. The baker’s yeast (Saccharomyces cerevisiae) Pdr5 multidrug transporter is the founding member of the Pdr subfamily of asymmetric ABC transporters, which exist only in fungi and slime moulds. Because these organisms are of considerable medical and agricultural significance, Pdr5 has been studied extensively, as has its medically important homologue Cdr1 from Candida albicans. Genetic and biochemical analyses of Pdr5 have contributed important observations that are likely to be applicable to mammalian asymmetric ABC multidrug transporter proteins, including the basis of transporter promiscuity, the function of the non-catalytic deviant ATP-binding site, the most complete description of an in vivo transmission interface, and the recent discovery that Pdr5 is a molecular diode (one-way gate). In the present review, we discuss the observations made with Pdr5 and compare them with findings from clinically important asymmetric ABC transporters, such as CFTR (cystic fibrosis transmembrane conductance regulator), Cdr1 and Tap1/Tap2. PMID:25886173

  12. Characterization of Two ABC Transporters from Biocontrol and Phytopathogenic Fusarium oxysporus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ABC transporter genes from four strains of Fusarium oxysporum [two biocontrol and two phytopathogenic (f. sp. lycopersici Race 1) isolates] indicated that this gene is well conserved. However, sequences of promoter regions of FoABC1 differed between 8 phytopathogenic and 11 biocontrol strains of F....

  13. The Role of the Photoreceptor ABC Transporter ABCA4 in Lipid Transport and Stargardt Macular Degeneration

    PubMed Central

    Molday, Robert S.; Zhong, Ming; Quazi, Faraz

    2009-01-01

    ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone-rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders. PMID:19230850

  14. Molecular cloning and characterization of Crmdr1, a novel MDR-type ABC transporter gene from Catharanthus roseus.

    PubMed

    Jin, Hongbin; Liu, Donghui; Zuo, Kaijing; Gong, Yifu; Miao, Zhiqi; Chen, Yuhui; Ren, Weiwei; Sun, Xiaofen; Tang, Kexuan

    2007-08-01

    A novel gene encoding a MDR-like ABC transporter protein was cloned from Catharanthus roseus, a medicinal plant with more than 120 kinds of secondary metabolites, through rapid amplification of cDNA ends (RACE). This gene (named as Crmdr1; GenBank accession no.: DQ660356) had a total length of 4395 bp with an open reading frame of 3801 bp, and encoded a predicted polypeptide of 1266 amino acids with a molecular weight of 137.1 kDa. The CrMDR1 protein shared 59.8, 62.5, 60.0 and 58.2% identity with other MDR proteins isolated from Arabidopsis thaliana (AAD31576), Coptis japonica (CjMDR), Gossypium hirsutum (GhMDR) and Triticum aestivum (TaMDR) at amino acid level, respectively. Southern blot analysis showed that Crmdr1 was a low-copy gene. Expression pattern analysis revealed that Crmdr1 constitutively expressed in the root, stem and leaf, but with lower expression in leaf. The domains analysis showed that CrMDR1 protein possessed two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) arranging in "TMD1-NBD1-TMD2-NBD2" direction, which is consistent with other MDR transporters. Within NBDs three characteristic motifs common to all ABC transporters, "Walker A", "Walker B" and C motif, were found. These results indicate that CrMDR1 is a MDR-like ABC transporter protein that may be involved in the transport and accumulation of secondary metabolites.

  15. A Silent ABC Transporter Isolated from Streptomyces rochei F20 Induces Multidrug Resistance

    PubMed Central

    Fernández-Moreno, Miguel A.; Carbó, Lázaro; Cuesta, Trinidad; Vallín, Carlos; Malpartida, Francisco

    1998-01-01

    In the search for heterologous activators for actinorhodin production in Streptomyces lividans, 3.4 kb of DNA from Streptomyces rochei F20 (a streptothricin producer) were characterized. Subcloning experiments showed that the minimal DNA fragment required for activation was 0.4 kb in size. The activation is mediated by increasing the levels of transcription of the actII-ORF4 gene. Sequencing of the minimal activating fragment did not reveal any clues about its mechanism; nevertheless, it was shown to overlap the 3′ end of two convergent genes, one of whose translated products (ORF2) strongly resembles that of other genes belonging to the ABC transporter superfamily. Computer-assisted analysis of the 3.4-kb DNA sequence showed the 3′ terminus of an open reading frame (ORF), i.e., ORFA, and three complete ORFs (ORF1, ORF2, and ORFB). Searches in the databases with their respective gene products revealed similarities for ORF1 and ORF2 with ATP-binding proteins and transmembrane proteins, respectively, which are found in members of the ABC transporter superfamily. No similarities for ORFA and ORFB were found in the databases. Insertional inactivation of ORF1 and ORF2, their transcription analysis, and their cloning in heterologous hosts suggested that these genes were not expressed under our experimental conditions; however, cloning of ORF1 and ORF2 together (but not separately) under the control of an expressing promoter induced resistance to several chemically different drugs: oleandomycin, erythromycin, spiramycin, doxorubicin, and tetracycline. Thus, this genetic system, named msr, is a new bacterial multidrug ABC transporter. PMID:9696745

  16. A silent ABC transporter isolated from Streptomyces rochei F20 induces multidrug resistance.

    PubMed

    Fernández-Moreno, M A; Carbó, L; Cuesta, T; Vallín, C; Malpartida, F

    1998-08-01

    In the search for heterologous activators for actinorhodin production in Streptomyces lividans, 3.4 kb of DNA from Streptomyces rochei F20 (a streptothricin producer) were characterized. Subcloning experiments showed that the minimal DNA fragment required for activation was 0.4 kb in size. The activation is mediated by increasing the levels of transcription of the actII-ORF4 gene. Sequencing of the minimal activating fragment did not reveal any clues about its mechanism; nevertheless, it was shown to overlap the 3' end of two convergent genes, one of whose translated products (ORF2) strongly resembles that of other genes belonging to the ABC transporter superfamily. Computer-assisted analysis of the 3.4-kb DNA sequence showed the 3' terminus of an open reading frame (ORF), i.e., ORFA, and three complete ORFs (ORF1, ORF2, and ORFB). Searches in the databases with their respective gene products revealed similarities for ORF1 and ORF2 with ATP-binding proteins and transmembrane proteins, respectively, which are found in members of the ABC transporter superfamily. No similarities for ORFA and ORFB were found in the databases. Insertional inactivation of ORF1 and ORF2, their transcription analysis, and their cloning in heterologous hosts suggested that these genes were not expressed under our experimental conditions; however, cloning of ORF1 and ORF2 together (but not separately) under the control of an expressing promoter induced resistance to several chemically different drugs: oleandomycin, erythromycin, spiramycin, doxorubicin, and tetracycline. Thus, this genetic system, named msr, is a new bacterial multidrug ABC transporter.

  17. Evidence that Bacterial ABC-Type Transporter Imports Free EDTA for Metabolism

    SciTech Connect

    Zhang, Hua; Herman, Jacob P.; Bolton, Harvey; Zhang, Zhicheng; Clark, Sue B.; Xun, Luying

    2007-11-01

    Ethylenediaminetetraacetic acid (EDTA), a common chelating agent, is becoming a major organic pollutant in the form of metal-EDTA complexes in surface waters, partly due to its recalcitrance to biodegradation. Even an EDTA-degrading bacterium BNC1 does not degrade stable metal-EDTA complexes. An ABC-type transporter was identified for possible uptake of EDTA because the transporter genes and EDTA monooxygenase gene were expressed in a single operon in BNC1. The ABC-type transporter had a periplasmic binding protein (EppA) that should confer the substrate specificity for the transporter; therefore, EppA was produced in Escherichia coli,purified, and characterized. EppA was shown to bind free EDTA with a dissociation constant as low as 25 nM by using isothermal titration calorimetry. When unstable metal-EDTA complexes, e.g. MgEDTA2-, were added to the EppA solution, binding was also observed. However, experimental data and theoretical analysis only supported EppA binding of free EDTA. When stable metal-EDTA complexes, e.g. CuEDTA2-, are titrated into the EppA solution, no binding was observed. Since EDTA monooxygenase in the cytoplasm uses some of the stable metal-EDTA complexes as substrates, we suggest that the lack of EppA binding and EDTA uptake are responsible for the failure of BNC1 cells to degrade the stable complexes.

  18. Analysis of the inhibition potential of zosuquidar derivatives on selected bacterial and fungal ABC transporters.

    PubMed

    Infed, Nacera; Smits, Sander H J; Dittrich, Torsten; Braun, Manfred; Driessen, Arnold J M; Hanekop, Nils; Schmitt, Lutz

    2013-03-01

    The increasing number of multidrug-resistant pathogenic microorganisms is a serious public health issue. Among the multitude of mechanisms that lead to multidrug resistance, the active extrusion of toxic compounds, mediated by MDR efflux pumps, plays an important role. In our study we analyzed the inhibitory capability of 26 synthesized zosuquidar derivatives on three ABC-type MDR efflux pumps, namely Saccharomyces cerevisiae Pdr5 as well as Lactococcus lactis LmrA and LmrCD. For Pdr5, five compounds could be identified that inhibited rhodamine 6G transport more efficiently than zosuquidar. One of these is a compound with a new catechol acetal structure that might represent a new lead compound. Furthermore, the determination of IC(50) values for rhodamine 6G transport of Pdr5 with representative compounds reveals values between 0.3 and 0.9 μM. Thus the identified compounds are among the most potent inhibitors known for Pdr5. For the ABC-type efflux pumps LmrA and LmrCD from L. lactis, seven and three compounds, which inhibit the transport activity more than the lead compound zosuquidar, were found. Interestingly, transport inhibition for LmrCD was very specific, with a drastic reduction by one compound while its diastereomers showed hardly an effect. Thus, the present study reveals new potent inhibitors for the ABC-type MDR efflux pumps studied with the inhibitors of Pdr5 and LmrCD being of particular interest as these proteins are well known model systems for their homologs in pathogenic fungi and Gram-positive bacteria.

  19. The Heterodimeric ABC Transporter EfrCD Mediates Multidrug Efflux in Enterococcus faecalis

    PubMed Central

    Hürlimann, Lea M.; Corradi, Valentina; Hohl, Michael; Bloemberg, Guido V.; Tieleman, D. Peter

    2016-01-01

    Nosocomial infections with Enterococcus faecalis are an emerging health problem. However, drug efflux pumps contributing to intrinsic drug resistance are poorly studied in this Gram-positive pathogen. In this study, we functionally investigated seven heterodimeric ABC transporters of E. faecalis that are annotated as drug efflux pumps. Deletion of ef0789-ef0790 on the chromosome of E. faecalis resulted in increased susceptibility to daunorubicin, doxorubicin, ethidium, and Hoechst 33342, and the corresponding transporter was named EfrCD. Unexpectedly, the previously described heterodimeric multidrug ABC transporter EfrAB contributes marginally to drug efflux in the endogenous context of E. faecalis. In contrast, heterologous expression in Lactococcus lactis revealed that EfrAB, EfrCD, and the product of ef2226-ef2227 (EfrEF) mediate the efflux of fluorescent substrates and confer resistance to multiple dyes and drugs, including fluoroquinolones. Four of seven transporters failed to exhibit drug efflux activity for the set of drugs and dyes tested, even upon overexpression in L. lactis. Since all seven transporters were purified as heterodimers after overexpression in L. lactis, a lack of drug efflux activity is not attributed to poor expression or protein aggregation. Reconstitution of the purified multidrug transporters EfrAB, EfrCD, and EfrEF in proteoliposomes revealed functional coupling between ATP hydrolysis and drug binding. Our analysis creates an experimental basis for the accurate prediction of drug efflux transporters and indicates that many annotated multidrug efflux pumps might be incapable of drug transport and thus might fulfill other physiological functions in the cell. PMID:27381387

  20. Effects of fluconazole on Candida glabrata biofilms and its relationship with ABC transporter gene expression.

    PubMed

    Fonseca, Elza; Silva, Sónia; Rodrigues, Célia Fortuna; Alves, Carlos Tiago; Azeredo, Joana; Henriques, Mariana

    2014-01-01

    Candida glabrata has emerged as the second most prevalent fungal pathogen and its ability to form biofilms has been considered one of the most important virulence factors, since biofilms present a high tolerance to antifungal agents used in fungal infection treatment. The mechanisms of biofilm tolerance to antifungal agents remain poorly understood. Thus, the aim of this study was to evaluate the effects of fluconazole (FLU) on the formation and control of C. glabrata biofilms and its relation with the expression of genes encoding for ABC transporters, CDR1, SNQ2, and PDR1. For that, minimal inhibitory concentration values for seven C. glabrata strains were determined and the effect of FLU against C. glabrata biofilms was evaluated by total biomass quantification and viable cell enumeration. Matrices from biofilms were analyzed in terms of protein, carbohydrate and DNA content. ABC transporter gene expression was analyzed for quantitative real-time PCR. In addition to the high amounts of proteins and carbohydrates detected in the extracellular matrices in the presence of FLU, this work showed that the overexpression of efflux pumps is a possible mechanism of biofilm tolerance to FLU and this phenomenon alters the structure of C. glabrata biofilms by creating cell clusters.

  1. The maltose ABC transporter: action of membrane lipids on the transporter stability, coupling and ATPase activity.

    PubMed

    Bao, Huan; Dalal, Kush; Wang, Victor; Rouiller, Isabelle; Duong, Franck

    2013-08-01

    The coupling between ATP hydrolysis and substrate transport remains a key question in the understanding of ABC-mediated transport. We show using the MalFGK2 complex reconstituted into nanodiscs, that membrane lipids participate directly to the coupling reaction by stabilizing the transporter in a low energy conformation. When surrounded by short acyl chain phospholipids, the transporter is unstable and hydrolyzes large amounts of ATP without inducing maltose. The presence of long acyl chain phospholipids stabilizes the conformational dynamics of the transporter, reduces its ATPase activity and restores dependence on maltose. Membrane lipids therefore play an essential allosteric function, they restrict the transporter ATPase activity to increase coupling to the substrate. In support to the notion, we show that increasing the conformational dynamics of MalFGK2 with mutations in MalF increases the transporter ATPase activity but decreases the maltose transport efficiency.

  2. ABC- and SLC-Transporters in Murine and Bovine Mammary Epithelium - Effects of Prochloraz

    PubMed Central

    Yagdiran, Yagmur; Oskarsson, Agneta; Knight, Christopher H.; Tallkvist, Jonas

    2016-01-01

    Some chemicals are ligands to efflux transporters which may result in high concentrations in milk. Limited knowledge is available on the influence of maternal exposure to chemicals on the expression and function of transporters in the lactating mammary gland. We determined gene expression of ABC and SLC transporters in murine mammary tissue of different gestation and lactation stages, in murine mammary cells (HC11) featuring resting and secreting phenotypes and in bovine mammary tissue and cells (BME-UV). Effects on transporter expression and function of the imidazole fungicide prochloraz, previously reported to influence BCRP in mammary cells, was investigated on transporter expression and function in the two cell lines. Transporters studied were BCRP, MDR1, MRP1, OATP1A5/OATP1A2, OCTN1 and OCT1. Gene expressions of BCRP and OCT1 in murine mammary glands were increased during gestation and lactation, whereas MDR1, MRP1, OATP1A5 and OCTN1 were decreased, compared to expressions in virgins. All transporters measured in mammary glands of mice were detected in bovine mammary tissue and in HC11 cells, while only MDR1 and MRP1 were detected in BME-UV cells. Prochloraz treatment induced MDR1 gene and protein expression in both differentiated HC11 and BME-UV cells and increased protein function in HC11 cells, resulting in decreased accumulation of the MDR1 substrate digoxin. In conclusion, our results demonstrate that murine (HC11) and bovine (BME-UV) mammary epithelial cells can be applied to characterize expression and function of transporters as well as effects of contaminants on the mammary transporters. An altered expression, induced by a drug or toxic chemical, on any of the transporters expressed in the mammary epithelial cells during lactation may modulate the well-balanced composition of nutrients and/or secretion of contaminants in milk with potential adverse effects on breast-fed infants and dairy consumers. PMID:27028005

  3. ATP-dependent substrate transport by the ABC transporter MsbA is proton-coupled

    PubMed Central

    Singh, Himansha; Velamakanni, Saroj; Deery, Michael J.; Howard, Julie; Wei, Shen L.; van Veen, Hendrik W.

    2016-01-01

    ATP-binding cassette transporters mediate the transbilayer movement of a vast number of substrates in or out of cells in organisms ranging from bacteria to humans. Current alternating access models for ABC exporters including the multidrug and Lipid A transporter MsbA from Escherichia coli suggest a role for nucleotide as the fundamental source of free energy. These models involve cycling between conformations with inward- and outward-facing substrate-binding sites in response to engagement and hydrolysis of ATP at the nucleotide-binding domains. Here we report that MsbA also utilizes another major energy currency in the cell by coupling substrate transport to a transmembrane electrochemical proton gradient. The dependence of ATP-dependent transport on proton coupling, and the stimulation of MsbA-ATPase by the chemical proton gradient highlight the functional integration of both forms of metabolic energy. These findings introduce ion coupling as a new parameter in the mechanism of this homodimeric ABC transporter. PMID:27499013

  4. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa.

    PubMed

    Chen, Lin; Duan, Kangmin

    2016-05-01

    Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell.

  5. Implicating ABC Transporters in Insecticide Resistance: Research Strategies and a Decision Framework.

    PubMed

    Gott, Ryan C; Kunkel, Grace R; Zobel, Emily S; Lovett, Brian R; Hawthorne, David J

    2017-02-28

    Pest insects damage crops, transmit diseases, and are household nuisances. Historically, they have been controlled with insecticides, but overuse often leads to resistance to one or more of these chemicals. Insects gain resistance to insecticides through behavioral, metabolic, genetic, and physical mechanisms. One frequently overlooked strategy is through the use of ATP-binding cassette (ABC) transporters. ABC transporters, present in all domains of life, perform natural excretory functions, thus the exploitation of these transporters to excrete insecticides and contribute to resistance is highly plausible. Previous work has implicated ABC transporters in some cases of insecticide resistance. Proposed herein is a framework meant as a formal guide for more easily incorporating the analysis of ABC transporters into existing resistance monitoring using suggested simple research methods. This framework functions as a simple decision tree and its utility is demonstrated using case examples. Determining a role for ABC transporters in insecticide resistance would help to shape future resistance management plans and guide the design of new insecticides.

  6. CpABC, a Cryptosporidium parvum ATP-binding cassette protein at the host–parasite boundary in intracellular stages

    PubMed Central

    Perkins, Margaret E.; Riojas, Ynolde A.; Wu, Teresa W.; Le Blancq, Sylvie M.

    1999-01-01

    The intracellular parasite Cryptosporidium parvum develops inside a vacuole at the apex of its epithelial host cell. The developing parasite is separated from the host cell cytoplasm by a zone of attachment that consists of an extensively folded membranous structure known as the feeder organelle. It has been proposed that the feeder organelle is the site of regulation of transport of nutrients and drugs into the parasite. In this report, we localize an ≈200-kDa integral membrane protein, CpABC, from Cryptosporidium parvum to the host–parasite boundary, possibly the feeder organelle. The predicted amino acid sequence of CpABC has significant structural similarity with the cystic fibrosis conductance regulator and the multidrug resistance protein subfamily of ATP-binding cassette proteins. This is an example of a parasite-encoded transport protein localized at the parasite–host interface of an intracellular protozoan. PMID:10318953

  7. A New ABC Half-Transporter in Leishmania major Is Involved in Resistance to Antimony

    PubMed Central

    Manzano, J. I.; García-Hernández, R.; Castanys, S.

    2013-01-01

    The characterization of ABCI4, a new intracellular ATP-binding cassette (ABC) half-transporter in Leishmania major, is described. We show that ABCI4 is involved in heavy metal export, thereby conferring resistance to Pentostam, to Sb(III), and to As(III) and Cd(II). Parasites overexpressing ABCI4 showed a lower mitochondrial toxic effect of antimony by decreasing reactive oxygen species production and maintained higher values of both the mitochondrial electrochemical potential and total ATP levels with respect to controls. The ABCI4 half-transporter forms homodimers as determined by a coimmunoprecipitation assay. A combination of subcellular localization studies under a confocal microscope and a surface biotinylation assay using parasites expressing green fluorescent protein- and FLAG-tagged ABCI4 suggests that the transporter presents a dual localization in both mitochondria and the plasma membrane. Parasites overexpressing ABCI4 present an increased replication in mouse peritoneal macrophages. We have determined that porphyrins are substrates for ABCI4. Consequently, the overexpression of ABCI4 confers resistance to some toxic porphyrins, such as zinc-protoporphyrin, due to the lower accumulation resulting from a significant efflux, as determined using the fluorescent zinc-mesoporphyrin, a validated heme analog. In addition, ABCI4 has a significant ability to efflux thiol after Sb(III) incubation, thus meaning that ABCI4 could be considered to be a potential thiol-X-pump that is able to recognize metal-conjugated thiols. In summary, we have shown that this new ABC transporter is involved in drug sensitivity to antimony and other compounds by efflux as conjugated thiol complexes. PMID:23716044

  8. Enterococcus faecalis Uses a Phosphotransferase System Permease and a Host Colonization-Related ABC Transporter for Maltodextrin Uptake.

    PubMed

    Sauvageot, Nicolas; Mokhtari, Abdelhamid; Joyet, Philippe; Budin-Verneuil, Aurélie; Blancato, Víctor S; Repizo, Guillermo D; Henry, Céline; Pikis, Andreas; Thompson, John; Magni, Christian; Hartke, Axel; Deutscher, Josef

    2017-05-01

    Maltodextrin is a mixture of maltooligosaccharides, which are produced by the degradation of starch or glycogen. They are mostly composed of α-1,4- and some α-1,6-linked glucose residues. Genes presumed to code for the Enterococcus faecalis maltodextrin transporter were induced during enterococcal infection. We therefore carried out a detailed study of maltodextrin transport in this organism. Depending on their length (3 to 7 glucose residues), E. faecalis takes up maltodextrins either via MalT, a maltose-specific permease of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), or the ATP binding cassette (ABC) transporter MdxEFG-MsmX. Maltotriose, the smallest maltodextrin, is primarily transported by the PTS permease. A malT mutant therefore exhibits significantly reduced growth on maltose and maltotriose. The residual uptake of the trisaccharide is catalyzed by the ABC transporter, because a malT mdxF double mutant no longer grows on maltotriose. The trisaccharide arrives as maltotriose-6″-P in the cell. MapP, which dephosphorylates maltose-6'-P, also releases Pi from maltotriose-6″-P. Maltotetraose and longer maltodextrins are mainly (or exclusively) taken up via the ABC transporter, because inactivation of the membrane protein MdxF prevents growth on maltotetraose and longer maltodextrins up to at least maltoheptaose. E. faecalis also utilizes panose and isopanose, and we show for the first time, to our knowledge, that in contrast to maltotriose, its two isomers are primarily transported via the ABC transporter. We confirm that maltodextrin utilization via MdxEFG-MsmX affects the colonization capacity of E. faecalis, because inactivation of mdxF significantly reduced enterococcal colonization and/or survival in kidneys and liver of mice after intraperitoneal infection.IMPORTANCE Infections by enterococci, which are major health care-associated pathogens, are difficult to treat due to their increasing resistance to clinically

  9. Isolation and characterization of the ATP-binding cassette (ABC) transporter system genes from loofah witches' broom phytoplasma.

    PubMed

    Huang, Chun-Lin; Ho, Kuo-Chieh

    2007-10-01

    A clone containing a 3903 bp EcoRI-restriction fragment was obtained from a lambda(ZAP) genomic library of loofah witches' broom (LfWB) phytoplasma by plaque hybridization using a PCR fragment as a probe. Sequence analysis revealed that this fragment contained three open reading frames (ORFs). The deduced amino acid sequences of ORF 1 and ORF 2 showed a high homology with the ATP-binding proteins of the ABC transporter system genes of prokaryotes and eukaryotes, and encoded proteins with a molecular mass of 36 and 30 kDa, respectively. Based on amino acid sequence similarity, secondary structure, hydrophilicity and a signal peptide sequence at the N-terminus, we predicted that ORF 3 might encode a specific solute-binding prolipoprotein of the ABC transporter system with a molecular mass of 62 kDa. The cleavage site of this prolipoprotein signal peptide was similar to those of gram-positive bacteria. In addition to nutrient uptake, ABC transporter systems of bacteria also play a role in signal transduction, drug-resistance and perhaps virulence. The possible implications of the system to the survival and the pathogenesis of phytoplasma were discussed.

  10. Functional Characterization of Candida albicans ABC Transporter Cdr1p

    PubMed Central

    Shukla, Suneet; Saini, Preeti; Smriti; Jha, Sudhakar; Ambudkar, Suresh V.; Prasad, Rajendra

    2003-01-01

    In view of the importance of Candida drug resistance protein (Cdr1p) in azole resistance, we have characterized it by overexpressing it as a green fluorescent protein (GFP)-tagged fusion protein (Cdr1p-GFP). The overexpressed Cdr1p-GFP in Saccharomyces cerevisiae is shown to be specifically labeled with the photoaffinity analogs iodoarylazidoprazosin (IAAP) and azidopine, which have been used to characterize the drug-binding sites on mammalian drug-transporting P-glycoproteins. While nystatin could compete for the binding of IAAP, miconazole specifically competed for azidopine binding, suggesting that IAAP and azidopine bind to separate sites on Cdr1p. Cdr1p was subjected to site-directed mutational analysis. Among many mutant variants of Cdr1p, the phenotypes of F774A and ΔF774 were particularly interesting. The analysis of GFP-tagged mutant variants of Cdr1p revealed that a conserved F774, in predicted transmembrane segment 6, when changed to alanine showed increased binding of both photoaffinity analogues, while its deletion (ΔF774), as revealed by confocal microscopic analyses, led to mislocalization of the protein. The mislocalized ΔF774 mutant Cdr1p could be rescued to the plasma membrane as a functional transporter by growth in the presence of a Cdr1p substrate, cycloheximide. Our data for the first time show that the drug substrate-binding sites of Cdr1p exhibit striking similarities with those of mammalian drug-transporting P-glycoproteins and despite differences in topological organization, the transmembrane segment 6 in Cdr1p is also a major contributor to drug substrate-binding site(s). PMID:14665469

  11. Structural Dynamics of the Heterodimeric ABC Transporter TM287/288 Induced by ATP and Substrate Binding.

    PubMed

    Furuta, Tadaomi; Sato, Yukiko; Sakurai, Minoru

    2016-12-06

    TM287/288 is a heterodimeric ATP-binding cassette (ABC) transporter, which harnesses the energy of ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) to transport a wide variety of molecules through the transmembrane domains (TMDs) by alternating inward- and outward-facing conformations. Here, we conducted multiple 100 ns molecular dynamics simulations of TM287/288 in different ATP- and substrate-bound states to elucidate the effects of ATP and substrate binding. As a result, the binding of two ATP molecules to the NBDs induced the formation of the consensus ATP-binding pocket (ABP2) or the NBD dimerization, whereas these processes did not occur in the presence of a single ATP molecule or when the protein was in its apo state. Moreover, binding of the substrate to the TMDs enhanced the formation of ABP2 through allosteric TMD-NBD communication. Furthermore, in the apo state, α-helical subdomains of the NBDs approached each other, acquiring a conformation with core half-pockets exposed to the solvent, appropriate for ATP binding. We propose a "core-exposed" model for this novel conformation found in the apo state of ABC transporters. These findings provide important insights into the structural dynamics of ABC transporters.

  12. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation

    PubMed Central

    Mendiondo, Guillermina M.; Medhurst, Anne; van Roermund, Carlo W.; Zhang, Xuebin; Devonshire, Jean; Scholefield, Duncan; Fernández, José; Axcell, Barry; Ramsay, Luke; Waterham, Hans R.; Waugh, Robbie; Theodoulou, Frederica L.; Holdsworth, Michael J.

    2014-01-01

    In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ. PMID:24913629

  13. Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: Evaluation of current strategies

    PubMed Central

    Wu, Chung-Pu; Calcagno, Anna Maria; Ambudkar, Suresh V.

    2008-01-01

    Overexpression of ATP-binding cassette (ABC) drug transporters that actively efflux a variety of amphipathic compounds can cause multidrug resistance (MDR) in cancer cells, which is a major obstacle in the success of cancer chemotherapy. The development of synthetic small molecule compounds or the identification of natural products that block ABC transporter-mediated efflux has been the conventional approach used to combat MDR. The strategy of using chemosensitizers, however, has not been successful in clinical cancer chemotherapy. Therefore, alternative approaches to identify or to synthesize compounds that can induce selective toxicity in cancer cells overexpressing one or more ABC transporters have been undertaken. This review summarizes the recent advances in identifying strategies to restore sensitivity to chemotherapeutics in multidrug resistant cancer cells. PMID:19079736

  14. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox).

    PubMed

    Szakács, Gergely; Váradi, András; Ozvegy-Laczka, Csilla; Sarkadi, Balázs

    2008-05-01

    ATP binding cassette (ABC) drug transporters play an important role in cancer drug resistance, protection against xenobiotics, and in general in the passage of drugs through cellular and tissue barriers. This review explores how human ABC transporters modulate the pharmacological effects of various drugs, and how this predictable ADME-TOX modulation can be used during the process of drug discovery and development. We provide a description of the relevant human ABC drug transporters and review the models and assay systems that can be applied for the analysis of their expected drug interactions. The use of the in vitro, in vivo, in silico models, their combination, and the emerging clinical information are evaluated with respect to their potential application in early drug screening.

  15. A subset of annular lipids is linked to the flippase activity of an ABC transporter.

    PubMed

    Bechara, Chérine; Nöll, Anne; Morgner, Nina; Degiacomi, Matteo T; Tampé, Robert; Robinson, Carol V

    2015-03-01

    Lipids are critical components of membranes that could affect the properties of membrane proteins, yet the precise compositions of lipids surrounding membrane-embedded protein complexes is often difficult to discern. Here we report that, for the heterodimeric ABC transporter TmrAB, the extent of delipidation can be controlled by timed exposure to detergent. We subsequently characterize the cohort of endogenous lipids that are extracted in contact with the membrane protein complex, and show that with prolonged delipidation the number of neutral lipids is reduced in favour of their negatively charged counterparts. We show that lipid A is retained by the transporter and that the extent of its binding decreases during the catalytic cycle, implying that lipid A release is linked to adenosine tri-phosphate hydrolysis. Together, these results enable us to propose that a subset of annular lipids is invariant in composition, with negatively charged lipids binding tightly to TmrAB, and imply a role for this exporter in glycolipid translocation.

  16. A subset of annular lipids is linked to the flippase activity of an ABC transporter

    NASA Astrophysics Data System (ADS)

    Bechara, Chérine; Nöll, Anne; Morgner, Nina; Degiacomi, Matteo T.; Tampé, Robert; Robinson, Carol V.

    2015-03-01

    Lipids are critical components of membranes that could affect the properties of membrane proteins, yet the precise compositions of lipids surrounding membrane-embedded protein complexes is often difficult to discern. Here we report that, for the heterodimeric ABC transporter TmrAB, the extent of delipidation can be controlled by timed exposure to detergent. We subsequently characterize the cohort of endogenous lipids that are extracted in contact with the membrane protein complex, and show that with prolonged delipidation the number of neutral lipids is reduced in favour of their negatively charged counterparts. We show that lipid A is retained by the transporter and that the extent of its binding decreases during the catalytic cycle, implying that lipid A release is linked to adenosine tri-phosphate hydrolysis. Together, these results enable us to propose that a subset of annular lipids is invariant in composition, with negatively charged lipids binding tightly to TmrAB, and imply a role for this exporter in glycolipid translocation.

  17. H-loop histidine catalyzes ATP hydrolysis in the E. coli ABC-transporter HlyB.

    PubMed

    Zhou, Yan; Ojeda-May, Pedro; Pu, Jingzhi

    2013-10-14

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters form a family of molecular motor proteins that couple ATP hydrolysis to substrate translocation across cell membranes. Each nucleotide binding domain of ABC-transporters contains a highly conserved H-loop histidine residue, whose precise mechanistic role in motor functions has remained elusive. By using combined quantum mechanical and molecular mechanical (QM/MM) calculations, we showed that the conserved H-loop residue H662 in E. coli HlyB, a bacterial ABC-transporter, can act first as a general acid and then as a general base to facilitate proton transfer in ATP hydrolysis. Without the assistance of H662, direct proton transfer from the lytic water to ATP results in a substantially higher barrier height. Our findings suggest that the essential function of the H-loop residue H662 is to provide a "chemical linchpin" that shuttles protons between reactants through a relay mechanism, thereby catalyzing ATP hydrolysis in HlyB.

  18. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deoxynivalenol (DON) is a mycotoxin produced by Fusarium fungi which acts as a disease virulence factor, aiding fungal pathogenesis of cereals spikelets and spread of the economically important Fusarium head blight (FHB) disease. Previously, a fragment of a wheat ABC transporter gene was shown to be...

  19. The uncoupled ATPase activity of the ABC transporter BtuC2D2 leads to a hysteretic conformational change, conformational memory, and improved activity

    PubMed Central

    Livnat-Levanon, Nurit; I. Gilson, Amy; Ben-Tal, Nir; Lewinson, Oded

    2016-01-01

    ABC transporters comprise a large and ubiquitous family of proteins. From bacteria to man they translocate solutes at the expense of ATP hydrolysis. Unlike other enzymes that use ATP as an energy source, ABC transporters are notorious for having high levels of basal ATPase activity: they hydrolyze ATP also in the absence of their substrate. It is unknown what are the effects of such prolonged and constant activity on the stability and function of ABC transporters or any other enzyme. Here we report that prolonged ATP hydrolysis is beneficial to the ABC transporter BtuC2D2. Using ATPase assays, surface plasmon resonance interaction experiments, and transport assays we observe that the constantly active transporter remains stable and functional for much longer than the idle one. Remarkably, during extended activity the transporter undergoes a slow conformational change (hysteresis) and gradually attains a hyperactive state in which it is more active than it was to begin with. This phenomenon is different from stabilization of enzymes by ligand binding: the hyperactive state is only reached through ATP hydrolysis, and not ATP binding. BtuC2D2 displays a strong conformational memory for this excited state, and takes hours to return to its basal state after catalysis terminates. PMID:26905293

  20. Genome-wide identification of ATP-binding cassette (ABC) transporters and their roles in response to polycyclic aromatic hydrocarbons (PAHs) in the copepod Paracyclopina nana.

    PubMed

    Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Lee, Young Hwan; Kim, Hui-Su; Kim, Il-Chan; Lee, Jae-Seong

    2017-02-01

    The ATP-binding cassette (ABC) protein superfamily is one of the largest gene families and is highly conserved in all domains. The ABC proteins play roles in several biological processes, including multi-xenobiotic resistance (MXR), by functioning as transporters in the cellular membrane. They also mediate the cellular efflux of a wide range of substrates against concentration gradients. In this study, 37 ABC genes belonging to eight distinct subfamilies were identified in the marine copepod Paracyclopina nana and annotated based on a phylogenetic analysis. Also, the functions of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRPs), conferring MXR, were verified using fluorescent substrates and specific inhibitors. The activities of MXR-mediated ABC proteins and their transcriptional level were examined in response to polyaromatic hydrocarbons (PAHs), main components of the water-accommodated fraction. This study increases the understanding of the protective role of MXR in response to PAHs over the comparative evolution of ABC gene families.

  1. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    NASA Astrophysics Data System (ADS)

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; Abele, Rupert; Gaudet, Rachelle; Tampé, Robert

    2014-11-01

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the conserved aspartate, which coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. Our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.

  2. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance

    PubMed Central

    Shukla, Suneet; Chen, Zhe-Sheng; Ambudkar, Suresh V.

    2012-01-01

    Tyrosine kinases (TKs) are involved in key signaling events/pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Deregulated activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to inhibit specific kinases whose constitutive activity results in specific cancer types. These TKIs have been found to demonstrate effective anticancer activity and some of them have been approved by the Food and Drug Administration for clinical use or are in clinical trials. However, these targeted therapeutic agents are also transported by ATP-binding cassette (ABC) transporters, resulting in altered pharmacokinetics or development of resistance to these drugs in cancer patients. This review covers the recent findings on the interactions of clinically important TKIs with ABC drug transporters. Future research efforts in the development of novel TKIs with specific targets, seeking improved activity, should consider these underlying causes of resistance to TKIs in cancer cells. PMID:22325423

  3. Estimation of Candida albicans ABC Transporter Behavior in Real-Time via Fluorescence

    PubMed Central

    Szczepaniak, Joanna; Łukaszewicz, Marcin; Krasowska, Anna

    2015-01-01

    We present a fluorometric method for determining ABC transporter activity in the pathogenic fungus C. albicans during different growth phases and in response to glucose. The carbocyanine dye diS-C3(3) was previously used to monitor plasma membrane potentials and test the influence of surface-active compounds in membrane polarization. We used diS-C3(3) to show changes in fluorescence kinetics that reflect changes in the activity of ABC transporters in C. albicans growth. Cdr1-GFP fluorescence, revealed that Cdr1p relocates to the inside of the cell after the early-log growth phase. Addition of glucose to the cell suspension resulted in Cdr1p transporter expression in the CDR2-knockout strain. We confirmed the diS-C3(3) results by standard RT-PCR and Western blotting. PMID:26696990

  4. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis.

    PubMed Central

    Choudhuri, Baisakhee Saha; Bhakta, Sanjib; Barik, Rajib; Basu, Joyoti; Kundu, Manikuntala; Chakrabarti, Parul

    2002-01-01

    The genes encoding ATP-binding cassette (ABC) transporters occupy 2.5% of the genome of Mycobacterium tuberculosis. However, none of these putative ABC transporters has been characterized so far. We describe the development of expression systems for simultaneous expression of the ATP-binding protein DrrA and the membrane integral protein DrrB which together behave as a functional doxorubicin efflux pump. Doxorubicin uptake in Escherichia coli or Mycobacterium smegmatis expressing DrrAB was inhibited by reserpine, an inhibitor of ABC transporters. The localization of DrrA to the membrane depended on the simultaneous expression of DrrB. ATP binding was positively regulated by doxorubicin and daunorubicin. At the same time, DrrB appeared to be sensitive to proteolysis when expressed alone in the absence of DrrA. Simultaneous expression of the two polypeptides was essential to obtain a functional doxorubicin efflux pump. Expression of DrrAB in E. coli conferred 8-fold increased resistance to ethidium bromide, a cationic compound. 2',7'-bis-(2-Carboxyethyl)-5(6)-carboxyfluorescein (BCECF), a neutral compound, also behaved as a substrate of the reconstituted efflux pump. When expressed in M. smegmatis, DrrAB conferred resistance to a number of clinically relevant, structurally unrelated antibiotics. The resistant phenotype could be reversed by verapamil and reserpine, two potent inhibitors of ABC transporters. PMID:12057006

  5. The High-Affinity E. Coli Methionine ABC Transporter: Structure And Allosteric Regulation

    SciTech Connect

    Kadaba, N.S.; Kaiser, J.T.; Johnson, E.; Lee, A.; Rees, D.C.

    2009-05-18

    The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.

  6. Identification of a meningococcal L-glutamate ABC transporter operon essential for growth in low-sodium environments.

    PubMed

    Monaco, Caterina; Talà, Adelfia; Spinosa, Maria Rita; Progida, Cinzia; De Nitto, Eleanna; Gaballo, Antonio; Bruni, Carmelo B; Bucci, Cecilia; Alifano, Pietro

    2006-03-01

    GdhR is a meningococcal transcriptional regulator that was previously shown to positively control the expression of gdhA, encoding the NADP-specific L-glutamate dehydrogenase (NADP-GDH), in response to the growth phase and/or to the carbon source. In this study we used reverse transcriptase-PCR-differential display (to identify additional GdhR-regulated genes. The results indicated that GdhR, in addition to NADP-GDH, controls the expression of a number of genes involved in glucose catabolism by the Entner-Doudoroff pathway and in l-glutamate import by an unknown ABC transport system. The genes encoding the putative periplasmic substrate-binding protein (NMB1963) and the permease (NMB1965) of the ABC transporter were genetically inactivated. Uptake experiments demonstrated an impairment of L-glutamate import in the NMB1965-defective mutant in the absence or in the presence of a low sodium ion concentration. In contrast, at a sodium ion concentration above 60 mM, the uptake defect disappeared, possibly because the activity of a sodium-driven secondary transporter became predominant. Indeed, the NMB1965-defective mutant was unable to grow at a low sodium ion concentration (<20 mM) in a chemically defined medium containing L-glutamate and four other amino acids that supported meningococcal growth, but it grew when the sodium ion concentration was raised to higher values (>60 mM). The same growth phenotype was observed in the NMB1963-defective mutant. Cell invasion and intracellular persistence assays and expression data during cell invasion provided evidence that the l-glutamate ABC transporter, tentatively named GltT, was critical for meningococcal adaptation in the low-sodium intracellular environment.

  7. The two-component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis

    PubMed Central

    Zhang, Yongshu; Whiteley, Marvin; Kreth, Jens; Lei, Yu; Khammanivong, Ali; Evavold, Jamie N.; Fan, Jingyuan; Herzberg, Mark C.

    2009-01-01

    The putative two-component system BfrAB is involved in Streptococcus gordonii biofilm development. Here, we provide evidence that BfrAB regulates the expression of bfrCD and bfrEFG, which encode two ABC transporters, and bfrH, which encodes a CAAX amino-terminal protease family protein. BfrC and BfrE are ATP-binding proteins and BfrD, BfrF and BfrG are homologous membrane- spanning polypeptides. Similarly, BfrABss, the BfrAB homologous system in S. sanguinis controls the expression of two bfrCD-homologous operons (bfrCDss and bfrXYss), a bfrH-homologous gene (bfrH1ss) and another CAAX amino- terminal protease family protein gene (bfrH2ss). Furthermore, we demonstrate that the purified BfrA DNA-binding domain from S. gordonii binds to the promoter regions of bfrCD, bfrEFG, bfrH, bfrCDss, bfrXYss, and bfrH1ss in vitro. Finally, we show that the BfrA DNA-binding domain recognizes a conserved DNA motif with a consensuses sequence of TTTCTTTAGAAATATTTTAGAATT. These data suggest, therefore, that S. gordonii BfrAB could control biofilm formation by regulating multiple ABC-transporter systems. PMID:19118357

  8. Carbohydrate kinase (RhaK)-dependent ABC transport of rhamnose in Rhizobium leguminosarum demonstrates genetic separation of kinase and transport activities.

    PubMed

    Rivers, Damien; Oresnik, Ivan J

    2013-08-01

    In Rhizobium leguminosarum the ABC transporter responsible for rhamnose transport is dependent on RhaK, a sugar kinase that is necessary for the catabolism of rhamnose. This has led to a working hypothesis that RhaK has two biochemical functions: phosphorylation of its substrate and affecting the activity of the rhamnose ABC transporter. To address this hypothesis, a linker-scanning random mutagenesis of rhaK was carried out. Thirty-nine linker-scanning mutations were generated and mapped. Alleles were then systematically tested for their ability to physiologically complement kinase and transport activity in a strain carrying an rhaK mutation. The rhaK alleles generated could be divided into three classes: mutations that did not affect either kinase or transport activity, mutations that eliminated both transport and kinase activity, and mutations that affected transport activity but not kinase activity. Two genes of the last class (rhaK72 and rhaK73) were found to have similar biochemical phenotypes but manifested different physiological phenotypes. Whereas rhaK72 conferred a slow-growth phenotype when used to complement rhaK mutants, the rhaK73 allele did not complement the inability to use rhamnose as a sole carbon source. To provide insight to how these insertional variants might be affecting rhamnose transport and catabolism, structural models of RhaK were generated based on the crystal structure of related sugar kinases. Structural modeling suggests that both rhaK72 and rhaK73 affect surface-exposed residues in two distinct regions that are found on one face of the protein, suggesting that this protein's face may play a role in protein-protein interaction that affects rhamnose transport.

  9. Evolution of mal ABC transporter operons in the Thermococcales and Thermotogales

    PubMed Central

    2008-01-01

    Background The mal genes that encode maltose transporters have undergone extensive lateral transfer among ancestors of the archaea Thermococcus litoralis and Pyrococcus furiosus. Bacterial hyperthermophiles of the order Thermotogales live among these archaea and so may have shared in these transfers. The genome sequence of Thermotoga maritima bears evidence of extensive acquisition of archaeal genes, so its ancestors clearly had the capacity to do so. We examined deep phylogenetic relationships among the mal genes of these hyperthermophiles and their close relatives to look for evidence of shared ancestry. Results We demonstrate that the two maltose ATP binding cassette (ABC) transporter operons now found in Tc. litoralis and P. furiosus (termed mal and mdx genes, respectively) are not closely related to one another. The Tc. litoralis and P. furiosus mal genes are most closely related to bacterial mal genes while their respective mdx genes are archaeal. The genes of the two mal operons in Tt. maritima are not related to genes in either of these archaeal operons. They are highly similar to one another and belong to a phylogenetic lineage that includes mal genes from the enteric bacteria. A unique domain of the enteric MalF membrane spanning proteins found also in these Thermotogales MalF homologs supports their relatively close relationship with these enteric proteins. Analyses of genome sequence data from other Thermotogales species, Fervidobacterium nodosum, Thermosipho melanesiensis, Thermotoga petrophila, Thermotoga lettingae, and Thermotoga neapolitana, revealed a third apparent mal operon, absent from the published genome sequence of Tt. maritima strain MSB8. This third operon, mal3, is more closely related to the Thermococcales' bacteria-derived mal genes than are mal1 and mal2. F. nodosum, Ts. melanesiensis, and Tt. lettingae have only one of the mal1-mal2 paralogs. The mal2 operon from an unknown species of Thermotoga appears to have been horizontally

  10. Poloxamines display a multiple inhibitory activity of ATP-binding cassette (ABC) transporters in cancer cell lines.

    PubMed

    Cuestas, María L; Sosnik, Alejandro; Mathet, Verónica L

    2011-08-01

    Primary hepatocellular carcinoma is the third most common fatal cancer worldwide with more than 500,000 annual deaths. Approximately 40% of the patients with HCC showed tumoral overexpression of transmembrane proteins belonging to the ATP-binding cassette protein superfamily (ABC) which pump drugs out of cells. The overexpression of these efflux transporters confers on the cells a multiple drug resistance phenotype, which is considered a crucial cause of treatment refractoriness in patients with cancer. The aim of this study was to investigate the inhibitory effect of different concentrations of pH- and temperature-responsive X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamines, Tetronic, PEO-PPO) showing a wide range of molecular weights and EO/PO ratios on the functional activity of three different ABC proteins, namely P-glycoprotein (P-gp or MDR1), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein MRP1, in two human hepatocarcinoma cell lines, HepG2 and Huh7. First, the cytotoxicity of the different copolymers (at different concentrations) on both liver carcinoma cell lines was thoroughly evaluated by means of apoptosis analysis using annexin V and propidium iodide (PI). Thus, viable cells (AV-/PI-), early apoptotic cells (AV+/PI-) and late apoptotic cells (V-FITC+/PI+) were identified. Results pointed out copolymers of intermediate to high hydrophobicity and intermediate molecular weight (e.g., T904) as the most cytotoxic. Then, DiOC2, rhodamine 123 and vinblastine were used as differential substrates of these pumps. HeLa, an epithelial cell line of human cervical cancer that does not express P-gp, was used exclusively as a control and enabled the discerning between P-gp and MRP1 inhibition. Moderate to highly hydrophobic poloxamines T304, T904 and T1301 showed inhibitory activity against P-gp and BCRP but not against MRP1 in both hepatic cell lines. A remarkable dependence of this effect on the

  11. LC-MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line.

    PubMed

    Pelkonen, Laura; Sato, Kazuki; Reinisalo, Mika; Kidron, Heidi; Tachikawa, Masanori; Watanabe, Michitoshi; Uchida, Yasuo; Urtti, Arto; Terasaki, Tetsuya

    2017-02-14

    The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier between neural retina and choroid. The RPE has several important vision supporting functions, such as transport mechanisms that may also modify pharmacokinetics in the posterior eye segment. Expression of plasma membrane transporters in the RPE cells has not been quantitated. The aim of this study was to characterize and compare transporter protein expression in the ARPE19 cell line and hfRPE (human fetal RPE) cells by using quantitative targeted absolute proteomics (QTAP). Among 41 studied transporters, 16 proteins were expressed in hfRPE and 13 in ARPE19 cells. MRP1, MRP5, GLUT1, 4F2hc, TAUT, CAT1, LAT1, and MATE1 proteins were detected in both cell lines within 4-fold differences. MPR7, OAT2 and RFC1 were detected in the hfRPE cells, but their expression levels were below the limit of quantification in ARPE19 cells. PCFT was detected in both studied cell lines, but the expression was over 4-fold higher in hfRPE cells. MCT1, MCT4, MRP4, and Na(+)/K(+) ATPase were upregulated in the ARPE19 cell line showing over 4-fold differences in the quantitative expression values. Expression levels of 25 transporters were below the limit of quantification in both cell models. In conclusion, we present the first systematic and quantitative study on transporter protein expression in the plasma membranes of ARPE19 and hfRPE cells. Overall, transporter expression in the ARPE19 and hfRPE cells correlated well and the absolute expression levels were similar, but not identical. The presented quantitative expression levels could be a useful basis for further studies on drug permeation in the outer blood-retinal barrier.

  12. Identification and characterization of an iron ABC transporter operon in Gluconacetobacter diazotrophicus Pal 5.

    PubMed

    Urzúa, Lucia Soto; Vázquez-Candanedo, Ada P; Sánchez-Espíndola, Adriana; Ramírez, Carlos Ávila; Baca, Beatriz E

    2013-06-01

    Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane. We have cloned and sequenced the genes coding for the components of the iron ABC-type acquisition system of G. diazotrophicus. Sequence analysis revealed three ORFs, (feuA, feuB, and feuC) organized as an operon and encoding polypeptides of 346 (38 kDa), 342 (34.2 kDa), and 240 (26 kDa) amino acids, respectively. The deduced translation products of the feu operon showed similarity with a periplasmic solute-binding protein (FeuA), permease (FeuB), and ATPase (FeuC) involved in Fe transport. The role of FeuB in the survival of G. diazotrophicus under iron depletion was evaluated by comparing the ability of wild-type and FeuB-Km(R) -mutant strains in a medium without iron supplementation and in a medium containing 2, 2'-dipyridyl (DP). Growth of the mutant was affected in the medium containing DP. The operon was expressed at higher levels in cells depleted for iron than in those that contained the metal. A decrease in nitrogenase activity was observed with the FeuB-Km(R) -mutant strain that with the wild-type under iron deficiency conditions, suggesting that the Feu operon play role in Fe nutrition of G. diazotrophicus.

  13. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    SciTech Connect

    Fuchs, Dominik; Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard; Naujokat, Cord

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  14. Role of ABC transporters in fluoropyrimidine-based chemotherapy response.

    PubMed

    Nies, Anne T; Magdy, Tarek; Schwab, Matthias; Zanger, Ulrich M

    2015-01-01

    Since over 50 years, 5-fluorouracil (5-FU) is in use as backbone of chemotherapy treatment regimens for a wide range of cancers including colon, breast, and head and neck carcinomas. However, drug resistance and severe toxicities such as mucositis, diarrhea, neutropenia, and vomiting in up to 40% of treated patients often lead to dose limitation or treatment discontinuation. Because the oral bioavailability of 5-FU is unpredictable and highly variable, 5-FU is commonly administered intravenously. To overcome medical complications and inconvenience associated with intravenous administration, the oral prodrugs capecitabine and tegafur have been developed. Both fluoropyrimidines are metabolically converted intracellularly to 5-FU, which then needs metabolic activation to exert its damaging activity on RNA and DNA. The low response rates of 10-15% of 5-FU monotherapy can be improved by combination regimens of infusional 5-FU and leucovorin together with oxaliplatin (FOLFOX) or irinotecan (FOLFIRI), thereby increasing response rates to 30-40%. The impact of metabolizing enzymes in the development of fluoropyrimidine toxicity and resistance has been studied in great detail. In addition, membrane drug transporters, which are critical determinants of intracellular drug concentrations, may play a role in occurrence of toxicity and development of resistance against fluoropyrimidine-based therapy as well. This review therefore summarizes current knowledge on the role of drug transporters with particular focus on ATP-binding cassette transporters in fluoropyrimidine-based chemotherapy response.

  15. Alzheimer's and ABC transporters--new opportunities for diagnostics and treatment.

    PubMed

    Pahnke, Jens; Langer, Oliver; Krohn, Markus

    2014-12-01

    Much has been said about the increasing number of demented patients and the main risk factor 'age'. Frustratingly, we do not know the precise pattern and all modulating factors that provoke the pathologic changes in the brains of affected elderly. We have to diagnose early to be able to stop the progression of diseases that irreversibly destroy brain substance. Familiar AD cases have mislead some researchers for almost 20 years, which has unfortunately narrowed the scientific understanding and has, thus, lead to insufficient funding of independent approaches. Therefore, basic researchers hardly have been able to develop causative treatments and clinicians still do not have access to prognostic and early diagnostic tools. During the recent years it became clear that insufficient Aβ export, physiologically facilitated by the ABC transporter superfamily at the brain's barriers, plays a fundamental role in disease initiation and progression. Furthermore, export mechanisms that are deficient in affected elderly are new targets for activation and, thus, treatment, but ideally also for prevention. In sporadic AD disturbed clearance of β-amyloid from the brain is so far the most important factor for its accumulation in the parenchyma and vessel walls. Here, we review findings about the contribution of ABC transporters and of the perivascular drainage/glymphatic system on β-amyloid clearance. We highlight their potential value for innovative early diagnostics using PET and describe recently described, effective ABC transporter-targeting agents as potential causative treatment for neurodegenerative proteopathies/dementias.

  16. ABC transporters in CSCs membranes as a novel target for treating tumor relapse

    PubMed Central

    Zinzi, Laura; Contino, Marialessandra; Cantore, Mariangela; Capparelli, Elena; Leopoldo, Marcello; Colabufo, Nicola A.

    2014-01-01

    CSCs are responsible for the high rate of recurrence and chemoresistance of different types of cancer. The current antineoplastic agents able to inhibit bulk replicating cancer cells and radiation treatment are not efficacious toward CSCs since this subpopulation has several intrinsic mechanisms of resistance. Among these mechanisms, the expression of ATP-Binding Cassette (ABC) transporters family and the activation of different signaling pathways (such as Wnt/β-catenin signaling, Hedgehog, Notch, Akt/PKB) are reported. Therefore, considering ABC transporters expression on CSCs membranes, compounds able to modulate MDR could induce cytotoxicity in these cells disclosing an exciting and alternative strategy for targeting CSCs in tumor therapy. The next challenge in the cure of cancer relapse may be a multimodal strategy, an approach where specific CSCs targeting drugs exert simultaneously the ability to circumvent tumor drug resistance (ABC transporters modulation) and cytotoxic activity toward CSCs and the corresponding differentiated tumor cells. The efficacy of suggested multimodal strategy could be probed by using several scaffolds active toward MDR pumps on CSCs isolated by tumor specimens. PMID:25071581

  17. Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937.

    PubMed

    Hugouvieux-Cotte-Pattat, N; Blot, N; Reverchon, S

    2001-09-01

    The bacterium Erwinia chrysanthemi, which causes soft rot disease on various plants, is able to use pectin as a carbon source for growth. Knowledge of the critical step in pectin catabolism which allows the entry of pectic oligomers into the cells is scarce. We report here the first example of a transport system involved in the uptake of pectic oligomers. The TogMNAB transporter of E. chrysanthemi is a member of the ATP-binding cassette (ABC) superfamily. TogM and TogN are homologous to the inner membrane components, TogA exhibits the signature of ABC ATPases and TogB shows similarity with periplasmic ligand-binding proteins. The TogMNAB transporter is a new member of the carbohydrate uptake transporter-1 family (CUT1, TC no. 3.1.1), which is specialized in the transport of complex sugars. The four genes, togM, togN, togA and togB, are apparently co-transcribed in a large operon which also includes the pectate lyase gene pelW. The transcription of the tog operon is induced in the presence of pectic derivatives and is affected by catabolite repression. It is controlled by the KdgR repressor and the CRP activator. The TogMNAB system is able to provide Escherichia coli with the ability to transport oligogalacturonides. In E. chrysanthemi, the TogMNAB system seems to play a major role in switching on the induction of pectin catabolism. TogB also acts as a specific receptor for chemotaxis towards oligogalacturonides. The decreased capacity of maceration of a togM mutant indicates the importance of transport and/or attraction of oligogalacturonides for E. chrysanthemi pathogenicity.

  18. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that

  19. Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes.

    PubMed

    Vajrala, Neeraja; Sayavedra-Soto, Luis A; Bottomley, Peter J; Arp, Daniel J

    2010-11-01

    Nitrosomonas europaea has a single three-gene operon (nitABC) encoding an iron ABC transporter system (NitABC). Phylogenetic analysis clustered the subunit NitB with Fe(3+)-ABC transporter permease components from other organisms. The N. europaea strain deficient in nitB (nitB::kan) grew well in either Fe-replete or Fe-limited media and in Fe-limited medium containing the catecholate-type siderophore, enterobactin or the citrate-based dihydroxamate-type siderophore, aerobactin. However, the nitB::kan mutant strain was unable to grow in Fe-limited media containing either the hydroxamate-type siderophores, ferrioxamine and ferrichrome or the mixed-chelating type siderophore, pyoverdine. Exposure of N. europaea cells to a ferrichrome analog coupled to the fluorescent moiety naphthalic diimide (Fhu-NI) led to increase in fluorescence in the wild type but not in nitB::kan mutant cells. Spheroplasts prepared from N. europaea wild type exposed to Fhu-NI analog retained the fluorescence, while spheroplasts of the nitB::kan mutant were not fluorescent. NitABC transports intact Fe(3+)-ferrichrome complex into the cytoplasm and is an atypical ABC type iron transporter for Fe(3+) bound to ferrioxamine, ferrichrome or pyoverdine siderophores into the cytoplasm. The mechanisms to transport iron in either the Fe(3+) or Fe(2+) forms or Fe(3+) associated with enterobactin or aerobactin siderophores into the cell across the cytoplasmic membrane are as yet undetermined.

  20. The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML.

    PubMed

    Gabrielsen, Christina; Brede, Dag A; Hernández, Pablo E; Nes, Ingolf F; Diep, Dzung B

    2012-06-01

    We generated and characterized a series of spontaneous mutants of Lactococcus lactis IL1403 with average 6- to 11-fold-lowered sensitivities to the circular bacteriocin garvicin ML (GarML). Carbohydrate fermentation assays highlighted changes in carbohydrate metabolism, specifically loss of the ability to metabolize starch and maltose, in these mutants. PCR and sequencing showed that a 13.5-kb chromosomal deletion encompassing 12 open reading frames, mainly involved in starch and maltose utilization, had spontaneously occurred in the GarML-resistant mutants. Growth experiments revealed a correlation between sensitivity to GarML and carbon catabolite repression (CCR); i.e., sensitivity to GarML increased significantly when wild-type cells were grown on maltose and galactose as sole carbohydrates, an effect which was alleviated by the presence of glucose. Among the genes deleted in the mutants were malEFG, which encode a CCR-regulated membrane-bound maltose ABC transporter. The complementation of mutants with these three genes recovered normal sensitivity to the bacteriocin, suggesting an essential role of the maltose ABC transporter in the antimicrobial activity of GarML. This notion was supported by the fact that the level of sensitivity to GarML was dose dependent, increasing with higher expression levels of malEFG over a 50-fold range. To our knowledge, this is the first time a specific protein complex has been demonstrated to be involved in sensitivity to a circular bacteriocin.

  1. Structural Features of the ATP-Binding Cassette (ABC) Transporter ABCA3

    PubMed Central

    Paolini, Alessandro; Baldassarre, Antonella; Del Gaudio, Ilaria; Masotti, Andrea

    2015-01-01

    In this review we reported and discussed the structural features of the ATP-Binding Cassette (ABC) transporter ABCA3 and how the use of bioinformatics tools could help researchers to obtain a reliable structural model of this important transporter. In fact, a model of ABCA3 is still lacking and no crystallographic structures (of the transporter or of its orthologues) are available. With the advent of next generation sequencing, many disease-causing mutations have been discovered and many more will be found in the future. In the last few years, ABCA3 mutations have been reported to have important pediatric implications. Thus, clinicians need a reliable structure to locate relevant mutations of this transporter and make genotype/phenotype correlations of patients affected by ABCA3-related diseases. In conclusion, we strongly believe that the model preliminarily generated by these novel bioinformatics tools could be the starting point to obtain more refined models of the ABCA3 transporter. PMID:26295388

  2. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  3. The Crystal Structure of the YknZ Extracellular Domain of ABC Transporter YknWXYZ from Bacillus amyloliquefaciens

    PubMed Central

    Wang, Lulu; Jiang, Rui; Jin, Xiaoling; Liu, Jing; Fan, Shengdi; Quan, Chun-Shan; Ha, Nam-Chul

    2016-01-01

    Bacillus possesses the peptide toxin Sporulation-Delaying Protein (SDP), which can kill cells within a biofilm to support continued growth, thereby delaying the onset of biofilm sporulation. The four-component transporter YknWXYZ acts as a major SDP efflux pump to protect cells against the endogenous SDP toxin, for which YknYZ is a non-canonical ATP-binding cassette (ABC)-type transporter. YknYZ consists of the following two components: (1) an individual protein (YknY) and (2) a respective permease (YknZ). To date, the crystal structure, molecular function, and mechanism of action of the integral membrane protein YknZ remain to be elucidated. In this study, to characterize the structural and biochemical roles of YknZ in the functional assembly of YknWXYZ, we predicted and overexpressed the YknZ extracellular domain. We determined the crystal structure of B. amyloliquefaciens YknZ at a resolution of 2.0 Å. The structure revealed that the YknZ extracellular region exhibits significant structural similarity with the MacB periplasmic domain, which is a non-canonical ABC-type transporter in the tripartite macrolide-specific efflux pump in Gram-negative bacteria. We also found that the YknZ extracellular domain can directly bind to an extracellular component of YknX. This structural and biochemical study provides insights into the assembly of YknWXYZ, which may be relevant to understanding cannibalistic peptide toxin resistance in Bacillus and controlling bacterial growth. PMID:27243566

  4. Spin Labeling Studies of Transmembrane Signaling and Transport: Applications to Phototaxis, ABC Transporters and Symporters.

    PubMed

    Klare, Johann P; Steinhoff, Heinz-Jürgen

    2015-01-01

    Membrane proteins still represent a major challenge for structural biologists. This chapter will focus on the application of continuous wave and pulsed EPR spectroscopy on spin-labeled membrane proteins. Site-directed spin labeling EPR spectroscopy has evolved as a powerful tool to study the structure and dynamics of proteins, especially membrane proteins, as this method works largely independently of the size and complexity of the biological system under investigation. This chapter describes applications of this technique to three different systems: the archaeal photoreceptor/-transducer complex SRII/HtrII as an example for transmembrane signaling and two transport systems, the histidine ATP-binding cassette transporter HisQMP, and the sodium-proline symporter PutP.

  5. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    NASA Astrophysics Data System (ADS)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  6. An ABC Transporter Is Required for Secretion of Peptide Sex Pheromones in Enterococcus faecalis

    PubMed Central

    Varahan, Sriram; Harms, Nathan; Gilmore, Michael S.; Tomich, John M.

    2014-01-01

    ABSTRACT Enterococci are leading causes of hospital-acquired infection in the United States and continue to develop resistances to new antibiotics. Many Enterococcus faecalis isolates harbor pheromone-responsive plasmids that mediate horizontal transfer of even large blocks of chromosomal genes, resulting in hospital-adapted strains over a quarter of whose genomes consist of mobile elements. Pheromones to which the donor cells respond derive from lipoprotein signal peptides. Using a novel bacterial killing assay dependent on the presence of sex pheromones, we screened a transposon mutant library for functions that relate to the production and/or activity of the effector pheromone. Here we describe a previously uncharacterized, but well-conserved, ABC transporter that contributes to pheromone production. Using three distinct pheromone-dependent mating systems, we show that mutants defective in expressing this transporter display a 5- to 6-order-of-magnitude reduction in conjugation efficiency. In addition, we demonstrate that the ABC transporter mutant displays an altered biofilm architecture, with a significant reduction in biofilm biomass compared to that of its isogenic parent, suggesting that pheromone activity also influences biofilm development. The conservation of this peptide transporter across the Firmicutes suggests that it may also play an important role in cell-cell communication in other species within this important phylum. PMID:25249282

  7. Role of ABC and Solute Carrier Transporters in the Placental Transport of Lamivudine

    PubMed Central

    Ceckova, Martina; Reznicek, Josef; Ptackova, Zuzana; Cerveny, Lukas; Müller, Fabian; Kacerovsky, Marian; Fromm, Martin F.; Glazier, Jocelyn D.

    2016-01-01

    Lamivudine is one of the antiretroviral drugs of choice for the prevention of mother-to-child transmission (MTCT) in HIV-positive women. In this study, we investigated the relevance of drug efflux transporters P-glycoprotein (P-gp) (MDR1 [ABCB1]), BCRP (ABCG2), MRP2 (ABCC2), and MATE1 (SLC47A1) for the transmembrane transport and transplacental transfer of lamivudine. We employed in vitro accumulation and transport experiments on MDCK cells overexpressing drug efflux transporters, in situ-perfused rat term placenta, and vesicular uptake in microvillous plasma membrane (MVM) vesicles isolated from human term placenta. MATE1 significantly accelerated lamivudine transport in MATE1-expressing MDCK cells, whereas no transporter-driven efflux of lamivudine was observed in MDCK-MDR1, MDCK-MRP2, and MDCK-BCRP monolayers. MATE1-mediated efflux of lamivudine appeared to be a low-affinity process (apparent Km of 4.21 mM and Vmax of 5.18 nmol/mg protein/min in MDCK-MATE1 cells). Consistent with in vitro transport studies, the transplacental clearance of lamivudine was not affected by P-gp, BCRP, or MRP2. However, lamivudine transfer across dually perfused rat placenta and the uptake of lamivudine into human placental MVM vesicles revealed pH dependency, indicating possible involvement of MATE1 in the fetal-to-maternal efflux of the drug. To conclude, placental transport of lamivudine does not seem to be affected by P-gp, MRP2, or BCRP, but a pH-dependent mechanism mediates transport of lamivudine in the fetal-to-maternal direction. We suggest that MATE1 might be, at least partly, responsible for this transport. PMID:27401571

  8. Natural variation in an ABC transporter gene associated with seed size evolution in tomato species.

    PubMed

    Orsi, Cintia Hotta; Tanksley, Steven D

    2009-01-01

    Seed size is a key determinant of evolutionary fitness in plants and is a trait that often undergoes tremendous changes during crop domestication. Seed size is most often quantitatively inherited, and it has been shown that Sw4.1 is one of the most significant quantitative trait loci (QTLs) underlying the evolution of seed size in the genus Solanum-especially in species related to the cultivated tomato. Using a combination of genetic, developmental, molecular, and transgenic techniques, we have pinpointed the cause of the Sw4.1 QTL to a gene encoding an ABC transporter gene. This gene exerts its control on seed size, not through the maternal plant, but rather via gene expression in the developing zygote. Phenotypic effects of allelic variation at Sw4.1 are manifested early in seed development at stages corresponding to the rapid deposition of starch and lipids into the endospermic cells. Through synteny, we have identified the Arabidopsis Sw4.1 ortholog. Mutagenesis has revealed that this ortholog is associated with seed length variation and fatty acid deposition in seeds, raising the possibility that the ABC transporter may modulate seed size variation in other species. Transcription studies show that the ABC transporter gene is expressed not only in seeds, but also in other tissues (leaves and roots) and, thus, may perform functions in parts of the plants other than developing seeds. Cloning and characterization of the Sw4.1 QTL gives new insight into how plants change seed during evolution and may open future opportunities for modulating seed size in crop plants for human purposes.

  9. Gene expression analysis of ABC transporters in a resistant Cooperia oncophora isolate following in vivo and in vitro exposure to macrocyclic lactones.

    PubMed

    De Graef, J; Demeler, J; Skuce, P; Mitreva, M; Von Samson-Himmelstjerna, G; Vercruysse, J; Claerebout, E; Geldhof, P

    2013-04-01

    Members of the ATP-binding cassette (ABC) transporter family (P-glycoproteins, Half-transporters and Multidrug Resistant Proteins) potentially play a role in the development of anthelmintic resistance. The aim of this study was to investigate the possible involvement of ABC transporters in anthelmintic resistance in the bovine parasite, Cooperia oncophora. Partial sequences of 15 members of the ABC transporter protein family were identified, by mining a transcriptome dataset combined with a degenerate PCR approach. Reverse transcriptase PCR showed that most of the ABC transporters identified were constitutively transcribed throughout the life cycle of C. oncophora. Constitutive differences in gene transcript levels between a susceptible and resistant isolate were only observed for Con-haf-9 and Con-mrp-1 in eggs of the resistant isolate, while no differences were observed in L3 or the adult life stage. Analysis of resistant adult worms, collected from calves 14 days after treatment with either ivermectin or moxidectin, showed a significant 3- to 5-fold increase in the transcript levels of Con-pgp-11 compared to non-exposed worms. Interestingly, a 4-fold transcriptional up-regulation of Con-pgp-11 was also observed in L3 of the resistant isolate, after in vitro exposure to different concentrations of ivermectin, whereas this effect was not observed in exposed L3 of the susceptible isolate. The results suggest that the worms of this particular resistant isolate have acquired the ability to up-regulate Con-pgp-11 upon exposure to macrocyclic lactones. Further work is needed to understand the genetic basis underpinning this process and the functional role of PGP-11.

  10. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    DOE PAGES

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; ...

    2014-11-07

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the converved aspartate, whichmore » coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. As a result, our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.« less

  11. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    SciTech Connect

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; Abele, Rupert; Gaudet, Rachelle; Tampé, Robert

    2014-11-07

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the converved aspartate, which coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. As a result, our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.

  12. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    EPA Science Inventory

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  13. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    PubMed Central

    Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556

  14. Transport proteins promoting Escherichia coli pathogenesis.

    PubMed

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies.

  15. Transport proteins promoting Escherichia coli pathogenesis

    PubMed Central

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  16. The role of CAPS buffer in expanding the crystallization space of the nucleotide-binding domain of the ABC transporter haemolysin B from Escherichia coli.

    PubMed

    Zaitseva, Jelena; Holland, I Barry; Schmitt, Lutz

    2004-06-01

    Nucleotide-binding domains (NBDs), which are roughly 27 kDa in size, are conserved components of the large family of ABC (ATP-binding cassette) transporters, which includes importers and exporters. NBDs, or ABC-ATPases, supply energy for the translocation of a vast range of substrates across biological membranes. Despite their hydrophilic sequence, many NBDs readily associate in some way with membranes but demonstrate extreme instability in solution upon separation from the complete transporter. Conditions that stabilized the purified ABC domain of the Escherichia coli haemolysin A (HlyA) transporter were developed. This allowed the screening of unlimited crystallization conditions in the presence of different substrates, the performance of reproducible functional assays and the protection of 50 mg ml(-1) protein from precipitation on ice for months. As a result, it became possible to obtain crystals of HlyB-NBD in the presence of ADP and ATP that were suitable for X-ray analysis. Although the focus of these investigations was placed on HlyB-NBD, the strategy described here can be directly transferred to other proteins that display instability in solution.

  17. Sulfadiazine resistance in Toxoplasma gondii: no involvement of overexpression or polymorphisms in genes of therapeutic targets and ABC transporters

    PubMed Central

    Doliwa, Christelle; Escotte-Binet, Sandie; Aubert, Dominique; Sauvage, Virginie; Velard, Frédéric; Schmid, Aline; Villena, Isabelle

    2013-01-01

    Several treatment failures have been reported for the treatment of toxoplasmic encephalitis, chorioretinitis, and congenital toxoplasmosis. Recently we found three Toxoplasma gondii strains naturally resistant to sulfadiazine and we developed in vitro two sulfadiazine resistant strains, RH-RSDZ and ME-49-RSDZ, by gradual pressure. In Plasmodium, common mechanisms of drug resistance involve, among others, mutations and/or amplification within genes encoding the therapeutic targets dhps and dhfr and/or the ABC transporter genes family. To identify genotypic and/or phenotypic markers of resistance in T. gondii, we sequenced and analyzed the expression levels of therapeutic targets dhps and dhfr, three ABC genes, two Pgp, TgABC.B1 and TgABC.B2, and one MRP, TgABC.C1, on sensitive strains compared to sulfadiazine resistant strains. Neither polymorphism nor overexpression was identified. Contrary to Plasmodium, in which mutations and/or overexpression within gene targets and ABC transporters are involved in antimalarial resistance, T. gondii sulfadiazine resistance is not related to these toxoplasmic genes studied. PMID:23707894

  18. Sulfadiazine resistance in Toxoplasma gondii: no involvement of overexpression or polymorphisms in genes of therapeutic targets and ABC transporters.

    PubMed

    Doliwa, Christelle; Escotte-Binet, Sandie; Aubert, Dominique; Sauvage, Virginie; Velard, Frédéric; Schmid, Aline; Villena, Isabelle

    2013-01-01

    Several treatment failures have been reported for the treatment of toxoplasmic encephalitis, chorioretinitis, and congenital toxoplasmosis. Recently we found three Toxoplasma gondii strains naturally resistant to sulfadiazine and we developed in vitro two sulfadiazine resistant strains, RH-R(SDZ) and ME-49-R(SDZ), by gradual pressure. In Plasmodium, common mechanisms of drug resistance involve, among others, mutations and/or amplification within genes encoding the therapeutic targets dhps and dhfr and/or the ABC transporter genes family. To identify genotypic and/or phenotypic markers of resistance in T. gondii, we sequenced and analyzed the expression levels of therapeutic targets dhps and dhfr, three ABC genes, two Pgp, TgABC.B1 and TgABC.B2, and one MRP, TgABC.C1, on sensitive strains compared to sulfadiazine resistant strains. Neither polymorphism nor overexpression was identified. Contrary to Plasmodium, in which mutations and/or overexpression within gene targets and ABC transporters are involved in antimalarial resistance, T. gondii sulfadiazine resistance is not related to these toxoplasmic genes studied.

  19. ABC Transporter Required for Intercellular Transfer of Developmental Signals in a Heterocystous Cyanobacterium

    PubMed Central

    Videau, Patrick; Rivers, Orion S.; Higa, Kelly C.

    2015-01-01

    ABSTRACT In the filamentous cyanobacterium Anabaena, patS and hetN encode peptide-derived signals with many of the properties of morphogens. These signals regulate the formation of a periodic pattern of heterocysts by lateral inhibition of differentiation. Here we show that intercellular transfer of the patS- and hetN-dependent developmental signals from heterocysts to vegetative cells requires HetC, a predicted ATP-binding cassette transporter (ABC transporter). Relative to the wild type, in a hetC mutant differentiation resulted in a reduced number of heterocysts that were incapable of nitrogen fixation, but deletion of patS or hetN restored heterocyst number and function in a hetC background. These epistasis results suggest that HetC is necessary for conferring self-immunity to the inhibitors on differentiating cells. Nine hours after induction of differentiation, HetC was required for neither induction of transcription of patS nor intercellular transfer of the patS-encoded signal to neighboring cells. Conversely, in strains lacking HetC, the patS- and hetN-encoded signals were not transferred from heterocyst cells to adjacent vegetative cells. The results support a model in which the patS-dependent signal is initially transferred between vegetative cells in a HetC-independent fashion, but some time before morphological differentiation of heterocysts is complete, transfer of both signals transitions to a HetC-dependent process. IMPORTANCE How chemical cues that regulate pattern formation in multicellular organisms move from one cell to another is a central question in developmental biology. In this study, we show that an ABC transporter, HetC, is necessary for transport of two developmental signals between different types of cells in a filamentous cyanobacterium. ABC transporters are found in organisms as diverse as bacteria and humans and, as the name implies, are often involved in the transport of molecules across a cellular membrane. The activity of HetC was

  20. Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants.

    PubMed

    Mentewab, Ayalew; Stewart, C Neal

    2005-09-01

    Selectable markers of bacterial origin such as the neomycin phosphotransferase type II gene, which can confer kanamycin resistance to transgenic plants, represent an invaluable tool for plant engineering. However, since all currently used antibiotic-resistance genes are of bacterial origin, there have been concerns about horizontal gene transfer from transgenic plants back to bacteria, which may result in antibiotic resistance. Here we characterize a plant gene, Atwbc19, the gene that encodes an Arabidopsis thaliana ATP binding cassette (ABC) transporter and confers antibiotic resistance to transgenic plants. The mechanism of resistance is novel, and the levels of resistance achieved are comparable to those attained through expression of bacterial antibiotic-resistance genes in transgenic tobacco using the CaMV 35S promoter. Because ABC transporters are endogenous to plants, the use of Atwbc19 as a selectable marker in transgenic plants may provide a practical alternative to current bacterial marker genes in terms of the risk for horizontal transfer of resistance genes.

  1. The ABC Transporter ABCG1 Is Required for Suberin Formation in Potato Tuber Periderm[W

    PubMed Central

    Landgraf, Ramona; Smolka, Ulrike; Altmann, Simone; Eschen-Lippold, Lennart; Senning, Melanie; Sonnewald, Sophia; Weigel, Benjamin; Frolova, Nadezhda; Strehmel, Nadine; Hause, Gerd; Scheel, Dierk; Böttcher, Christoph; Rosahl, Sabine

    2014-01-01

    The lipid biopolymer suberin plays a major role as a barrier both at plant-environment interfaces and in internal tissues, restricting water and nutrient transport. In potato (Solanum tuberosum), tuber integrity is dependent on suberized periderm. Using microarray analyses, we identified ABCG1, encoding an ABC transporter, as a gene responsive to the pathogen-associated molecular pattern Pep-13. Further analyses revealed that ABCG1 is expressed in roots and tuber periderm, as well as in wounded leaves. Transgenic ABCG1-RNAi potato plants with downregulated expression of ABCG1 display major alterations in both root and tuber morphology, whereas the aerial part of the ABCG1-RNAi plants appear normal. The tuber periderm and root exodermis show reduced suberin staining and disorganized cell layers. Metabolite analyses revealed reduction of esterified suberin components and hyperaccumulation of putative suberin precursors in the tuber periderm of RNA interference plants, suggesting that ABCG1 is required for the export of suberin components. PMID:25122151

  2. Essential letters in the fungal alphabet: ABC and MFS transporters and their roles in survival and pathogenicity.

    PubMed

    Perlin, Michael H; Andrews, Jared; Toh, Su San

    2014-01-01

    Fungi depend heavily on their ability to exploit resources that may become available to them in their myriad of possible lifestyles. Whether this requires simple uptake of sugars as saprobes or competition for host-derived carbohydrates or peptides, fungi must rely on transporters that effectively allow the fungus to accumulate such nutrients from their environments. In other cases, fungi secrete compounds that facilitate their interactions with potential hosts and/or neutralize their competition. Finally, fungi that find themselves on the receiving end of insults, from hosts, competitors, or the overall environment are better served if they can get rid of such toxins or xenobiotics. In this chapter, we update studies on the most ubiquitous transporters, the ABC and MFS superfamilies. In addition, we discuss the importance of subsets of these proteins with particular relevance to plant pathogenic fungi. The availability of ever-increasing numbers of sequenced fungal genomes, combined with high-throughput methods for transcriptome analysis, provides insights previously inaccessible prior to the -omics era. As examples of such broader perspectives, we point to revelations about exploitive use of sugar transporters by plant pathogens, expansion of trichothecene efflux pumps in fungi that do not produce these mycotoxins, and the discovery of a fungal-specific oligopeptide transporter class that, so far, is overrepresented in the plant pathogenic fungi.

  3. Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis*

    PubMed Central

    Hirabayashi, Kei; Yuda, Eiki; Tanaka, Naoyuki; Katayama, Sumie; Iwasaki, Kenji; Matsumoto, Takashi; Kurisu, Genji; Outten, F. Wayne; Fukuyama, Keiichi; Takahashi, Yasuhiro; Wada, Kei

    2015-01-01

    ATP-binding cassette (ABC)-type ATPases are chemomechanical engines involved in diverse biological pathways. Recent genomic information reveals that ABC ATPase domains/subunits act not only in ABC transporters and structural maintenance of chromosome proteins, but also in iron-sulfur (Fe-S) cluster biogenesis. A novel type of ABC protein, the SufBCD complex, functions in the biosynthesis of nascent Fe-S clusters in almost all Eubacteria and Archaea, as well as eukaryotic chloroplasts. In this study, we determined the first crystal structure of the Escherichia coli SufBCD complex, which exhibits the common architecture of ABC proteins: two ABC ATPase components (SufC) with function-specific components (SufB-SufD protomers). Biochemical and physiological analyses based on this structure provided critical insights into Fe-S cluster assembly and revealed a dynamic conformational change driven by ABC ATPase activity. We propose a molecular mechanism for the biogenesis of the Fe-S cluster in the SufBCD complex. PMID:26472926

  4. Cerebral ABC transporter-common mechanisms may modulate neurodegenerative diseases and depression in elderly subjects.

    PubMed

    Pahnke, Jens; Fröhlich, Christina; Paarmann, Kristin; Krohn, Markus; Bogdanovic, Nenad; Årsland, Dag; Winblad, Bengt

    2014-11-01

    In elderly subjects, depression and dementia often coincide but the actual reason is currently unknown. Does a causal link exist or is it just a reactive effect of the knowledge to suffer from dementia? The ABC transporter superfamily may represent a causal link between these mental disorders. Since the transporters ABCB1 and ABCC1 have been discovered as major β-amyloid-exporting molecules at the blood-brain barrier and ABCC1 was found to be directly activated by St. John's wort (SJW), depression and dementia certainly share an important pathophysiologic link. It was recognized that herbal anti-depressant formulations made from SJW are at least as effective for the treatment of unipolar depression in old age as classical pharmacotherapy, while having fewer side effects (Cochrane reports, 2008). SJW is known to activate various metabolizing and transport systems in the body, with cytochrome P450 enzymes and ABC transporters being most important. Does the treatment of depression in elderly subjects using pharmacological compounds or phytomedical extracts target a mechanism that also accounts for peptide storage in Alzheimer's disease and perhaps other proteopathies of the brain? In this review we summarize recent data that point to a common mechanism and present the first promising causal treatment results of demented elderly subjects with distinct SJW extracts. Insufficient trans-barrier clearance may indeed present a common problem in all the proteopathies of the brain where toxic peptides are deposited in a location-specific manner. Thus, activation of efflux molecules holds promise for future treatment of this large group of devastating disorders.

  5. YehZYXW of Escherichia coli Is a Low-Affinity, Non-Osmoregulatory Betaine-Specific ABC Transporter.

    PubMed

    Lang, Shenhui; Cressatti, Marisa; Mendoza, Kris E; Coumoundouros, Chelsea N; Plater, Samantha M; Culham, Doreen E; Kimber, Matthew S; Wood, Janet M

    2015-09-22

    Transporter-mediated osmolyte accumulation stimulates the growth of Escherichia coli in high-osmolality environments. YehZYXW was predicted to be an osmoregulatory transporter because (1) osmotic and stationary phase induction of yehZYXW is mediated by RpoS, (2) the Yeh proteins are homologous to the components of known osmoregulatory ABC transporters (e.g., ProU of E. coli), and (3) YehZ models based on the structures of periplasmic betaine-binding proteins suggested that YehZ retains key betaine-binding residues. The betaines choline-O-sulfate, glycine betaine, and dimethylsulfoniopropionate bound YehZ and ProX with millimolar and micromolar affinities, respectively, as determined by equilibrium dialysis and isothermal titration calorimetry. The crystal structure of the YehZ apoprotein, determined at 1.5 Å resolution (PDB ID: 4WEP ), confirmed its similarity to other betaine-binding proteins. Small and nonpolar residues in the hinge region of YehZ (e.g., Gly223) pack more closely than the corresponding residues in ProX, stabilizing the apoprotein. Betaines bound YehZ-Gly223Ser an order of magnitude more tightly than YehZ, suggesting that weak substrate binding in YehZ is at least partially due to apo state stabilization. Neither ProX nor YehZ bound proline. Assays based on osmoprotection or proline auxotrophy failed to detect YehZYXW-mediated uptake of proline, betaines, or other osmolytes. However, transport assays revealed low-affinity glycine betaine uptake, mediated by YehZYXW, that was inhibited at high salinity. Thus, YehZYXW is a betaine transporter that shares substrate specificity, but not an osmoregulatory function, with homologues like E. coli ProU. Other work suggests that yehZYXW may be an antivirulence locus whose expression promotes persistent, asymptomatic bacterial infection.

  6. Optimized Purification of a Heterodimeric ABC Transporter in a Highly Stable Form Amenable to 2-D Crystallization

    PubMed Central

    Galián, Carmen; Manon, Florence; Dezi, Manuela; Torres, Cristina; Ebel, Christine; Lévy, Daniel; Jault, Jean-Michel

    2011-01-01

    Optimized protocols for achieving high-yield expression, purification and reconstitution of membrane proteins are required to study their structure and function. We previously reported high-level expression in Escherichia coli of active BmrC and BmrD proteins from Bacillus subtilis, previously named YheI and YheH. These proteins are half-transporters which belong to the ABC (ATP-Binding Cassette) superfamily and associate in vivo to form a functional transporter able to efflux drugs. In this report, high-yield purification and functional reconstitution were achieved for the heterodimer BmrC/BmrD. In contrast to other detergents more efficient for solubilizing the transporter, dodecyl-ß-D-maltoside (DDM) maintained it in a drug-sensitive and vanadate-sensitive ATPase-competent state after purification by affinity chromatography. High amounts of pure proteins were obtained which were shown either by analytical ultracentrifugation or gel filtration to form a monodisperse heterodimer in solution, which was notably stable for more than one month at 4°C. Functional reconstitution using different lipid compositions induced an 8-fold increase of the ATPase activity (kcat∼5 s−1). We further validated that the quality of the purified BmrC/BmrD heterodimer is suitable for structural analyses, as its reconstitution at high protein densities led to the formation of 2-D crystals. Electron microscopy of negatively stained crystals allowed the calculation of a projection map at 20 Å resolution revealing that BmrC/BmrD might assemble into oligomers in a lipidic environment. PMID:21602923

  7. PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones.

    PubMed

    Boncoeur, Emilie; Durmort, Claire; Bernay, Benoît; Ebel, Christine; Di Guilmi, Anne Marie; Croizé, Jacques; Vernet, Thierry; Jault, Jean-Michel

    2012-10-02

    All bacterial multidrug ABC transporters have been shown to work as either homodimers or heterodimers. Two possibly linked genes, patA and patB from Streptococcus pneumococcus, that encode half-ABC transporters have been shown previously to be involved in fluoroquinolone resistance. We showed that the ΔpatA, ΔpatB, or ΔpatA/ΔpatB mutant strains were more sensitive to unstructurally related compounds, i.e., ethidium bromide or fluoroquinolones, than the wild-type R6 strain. Inside-out vesicles prepared from Escherichia coli expressing PatA and/or PatB transported Hoechst 33342, a classical substrate of multidrug transporters, only when both PatA and PatB were coexpressed. This transport was inhibited either by orthovanadate or by reserpine, and mutation of the conserved Walker A lysine residue of either PatA or PatB fully abrogated Hoechst 33342 transport. PatA, PatB, and the PatA/PatB heterodimer were purified from detergent-solubilized E. coli membrane preparations. Protein dimers were identified in all cases, albeit in different proportions. In contrast to the PatA/PatB heterodimers, homodimers of PatA or PatB failed to show a vanadate-sensitive ATPase activity. Thus, PatA and PatB need to interact together to make a functional drug efflux transporter, and they work only as heterodimers.

  8. ABC Transporter Subfamily D: Distinct Differences in Behavior between ABCD1–3 and ABCD4 in Subcellular Localization, Function, and Human Disease

    PubMed Central

    2016-01-01

    ATP-binding cassette (ABC) transporters are one of the largest families of membrane-bound proteins and transport a wide variety of substrates across both extra- and intracellular membranes. They play a critical role in maintaining cellular homeostasis. To date, four ABC transporters belonging to subfamily D have been identified. ABCD1–3 and ABCD4 are localized to peroxisomes and lysosomes, respectively. ABCD1 and ABCD2 are involved in the transport of long and very long chain fatty acids (VLCFA) or their CoA-derivatives into peroxisomes with different substrate specificities, while ABCD3 is involved in the transport of branched chain acyl-CoA into peroxisomes. On the other hand, ABCD4 is deduced to take part in the transport of vitamin B12 from lysosomes into the cytosol. It is well known that the dysfunction of ABCD1 results in X-linked adrenoleukodystrophy, a severe neurodegenerative disease. Recently, it is reported that ABCD3 and ABCD4 are responsible for hepatosplenomegaly and vitamin B12 deficiency, respectively. In this review, the targeting mechanism and physiological functions of the ABCD transporters are summarized along with the related disease. PMID:27766264

  9. An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots.

    PubMed

    Dong, Jinsong; Piñeros, Miguel A; Li, Xiaoxuan; Yang, Haibing; Liu, Yu; Murphy, Angus S; Kochian, Leon V; Liu, Dong

    2017-02-13

    The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi deficiency. hps10 is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electrogenic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe(3+) in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe(3+) accumulation in roots and cause root growth to be insensitive to Pi deficiency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.

  10. ABC transporters, CYP1A and GSTα gene transcription patterns in developing stages of the Nile tilapia (Oreochromis niloticus).

    PubMed

    Costa, Joana; Reis-Henriques, Maria Armanda; Castro, L Filipe C; Ferreira, Marta

    2012-09-15

    In fish, some ABC transporters are implicated in a multixenobiotic resistance (MXR) mechanism to deal with the presence of xenobiotics, by effluxing them, or their metabolites, from inside the cells. These efflux transporters have been considered an integral part of cellular detoxification pathways, acting in coordination with phase I and II detoxification enzymes. However, the full characterization of this detoxification system is still incomplete, especially during the developmental stages of aquatic organisms, which are particularly sensitive periods to the presence of anthropogenic contamination. The goal of this study was to evaluate the mRNA expression dynamics of putatively important MXR proteins (ABCB1b, ABCB11, ABCC1, ABCC2 and ABCG2a) and phase I (CYP1A) and II (GSTα) biotransformation enzymes, during the embryonic and larval developments of the specie Oreochromis niloticus (Nile tilapia). Our results showed that ABCB1b, ABCC1, CYP1A and GSTα transcripts are maternally transmitted. Transcripts for ABCB11, ABCC2 and ABCG2a were only detected after the pharyngula period, which precedes a highly sensitive stage in the embryonic development, the hatching. This study has shown, for the first time, very distinct expression patterns of genes encoding for proteins involved in protection mechanisms against pollutants during the development of Nile tilapia. Moreover, the temporal pattern of gene expression suggests that increased intrinsic protection levels are required at specific developmental stages.

  11. An ABC transporter controls export of a Drosophila germ cell attractant.

    PubMed

    Ricardo, Sara; Lehmann, Ruth

    2009-02-13

    Directed cell migration, which is critical for embryonic development, leukocyte trafficking, and cell metastasis, depends on chemoattraction. 3-hydroxy-3-methylglutaryl coenzyme A reductase regulates the production of an attractant for Drosophila germ cells that may itself be geranylated. Chemoattractants are commonly secreted through a classical, signal peptide-dependent pathway, but a geranyl-modified attractant would require an alternative pathway. In budding yeast, pheromones produced by a-cells are farnesylated and secreted in a signal peptide-independent manner, requiring the adenosine triphosphate-binding cassette (ABC) transporter Ste6p. Here we show that Drosophila germ cell migration uses a similar pathway, demonstrating that invertebrate germ cells, like yeast cells, are attracted to lipid-modified peptides. Components of this unconventional export pathway are highly conserved, suggesting that this pathway may control the production of similarly modified chemoattractants in organisms ranging from yeast to humans.

  12. Characterization of a novel domain ‘GATE’ in the ABC protein DrrA and its role in drug efflux by the DrrAB complex

    SciTech Connect

    Zhang, Han; Rahman, Sadia; Li, Wen; Fu, Guoxing; Kaur, Parjit

    2015-03-27

    A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homolog MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis. - Highlights: • A novel domain ‘GATE’ is identified in the ABC protein DrrA. • GATE shows high sequence and structural conservation among diverse ABC proteins. • GATE is located outside of the previously studied ATP binding and hydrolysis motifs. • Conserved GATE residues are critical for stability of DrrAB and for ATP catalysis.

  13. Comparison of Cytotoxicity and Inhibition of Membrane ABC Transporters Induced by MWCNTs with Different Length and Functional Groups.

    PubMed

    Yu, Jing; Liu, Su; Wu, Bing; Shen, Zhuoyan; Cherr, Gary N; Zhang, Xu-Xiang; Li, Mei

    2016-04-05

    Experimental studies indicate that multiwalled carbon nanotubes (MWCNTs) have the potential to induce cytotoxicity. However, the reports are often inconsistent and even contradictory. Additionally, adverse effects of MWCNTs at low concentration are not well understood. In this study, we systemically compared adverse effects of six MWCNTs including pristine MWCNTs, hydroxyl-MWCNTs and carboxyl-MWCNTs of two different lengths (0.5-2 μm and 10-30 μm) on human hepatoma cell line HepG2. Results showed that MWCNTs induced cytotoxicity by increasing reactive oxygen species (ROS) generation and damaging cell function. Pristine short MWCNTs induced higher cytotoxicity than pristine long MWCNTs. Functionalization increased cytotoxicity of long MWCNTs, but reduced cytotoxicity of short MWCNTs. Further, our results indicated that the six MWCNTs, at nontoxic concentration, might not be environmentally safe as they inhibited ABC transporters' efflux capabilities. This inhibition was observed even at very low concentrations, which were 40-1000 times lower than their effective concentrations on cytotoxicity. The inhibition of ABC transporters significantly increased cytotoxicity of arsenic, a known substrate of ABC transporters, indicating a chemosensitizing effect of MWCNTs. Plasma membrane damage was likely the mechanism by which the six MWCNTs inhibited ABC transporter activity. This study provides insight into risk assessments of low levels of MWCNTs in the environment.

  14. Human and Rat ABC Transporter Efflux of Bisphenol A and Bisphenol A Glucuronide: Interspecies Comparison and Implications for Pharmacokinetic Assessment

    EPA Science Inventory

    Significant interspecies differences exist between human and rodent with respect to absorption, distribution, and excretion of bisphenol A (BPA) and its primary metabolite, BPA-glucuronide (BPA-G). ATP-Binding Cassette (ABC) transporter enzymes play important roles in these physi...

  15. ABC AND SLC TRANSPORTER EXPRESSION AND POT SUBSTRATE CHRACTERIZATION ACROSS THE HUMAN CMEC/D3 BLOOD-BRAIN BARRIER CELL LINE

    PubMed Central

    Carl, Stephen M.; Lindley, David J.; Couraud, Pierre O.; Weksler, Babette B.; Romero, Ignacio; Mowery, Stephanie A.; Knipp, Gregory T.

    2010-01-01

    Purpose Initial studies indicate that the newly developed hCMEC/D3 cell line may prove to be a useful model for studying the physiology of the human blood-brain barrier (BBB) endothelium. The purpose of this study was to assess the mRNA expression of several ABC and SLC transporters, with an emphasis on the Proton-Coupled Oligopeptide Transporter Superfamily (POT) transporters in this immortalized BBB cell model. The transport kinetics of POT-substrates was also evaluated. Methods The hCMEC/D3 cell line was maintained in a modified EGM-2 medium in collagenated culture flasks and passaged every 3–4 days at approximately 85%–95% confluence. Messenger RNA (mRNA) expression of a variety of ABC and SLC transporters was evaluated using qRT-PCR arrays, while additional qRT-PCR primers were designed to assess the expression of POT members. The transport kinetics of mannitol and urea were utilized to quantitatively estimate the intercellular pore radius, while POT substrate transport was also determined to assess the suitability of the cell model from a drug screening perspective. Optimization of the cell line was attempted by culturing with on laminin and fibronectin enhanced collagen and in the presence of excess Ca2+. Results HCMEC/D3 cells express both hPHT1 and hPHT2, while little to no expression of either hPepT1 or hPepT2 was observed. The relative expression of other ABC and SLC transporters is discussed. While POT substrate transport does suggest suitability for BBB drug permeation screening, the relative intercellular pore radius was estimated at 19Å, significantly larger than that approximated in vivo. Culturing with extracellular matrix proteins did not alter mannitol permeability. Conclusion These studies characterized this relevant human hCMEC/D3 BBB cell line with respect to both the relative mRNA expression of various ABC and SLC transporters, and its potential utility as an in vitro screening tool for brain permeation. Additional studies are required

  16. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching.

    PubMed

    Kretzschmar, Tobias; Kohlen, Wouter; Sasse, Joelle; Borghi, Lorenzo; Schlegel, Markus; Bachelier, Julien B; Reinhardt, Didier; Bours, Ralph; Bouwmeester, Harro J; Martinoia, Enrico

    2012-03-07

    Strigolactones were originally identified as stimulators of the germination of root-parasitic weeds that pose a serious threat to resource-limited agriculture. They are mostly exuded from roots and function as signalling compounds in the initiation of arbuscular mycorrhizae, which are plant-fungus symbionts with a global effect on carbon and phosphate cycling. Recently, strigolactones were established to be phytohormones that regulate plant shoot architecture by inhibiting the outgrowth of axillary buds. Despite their importance, it is not known how strigolactones are transported. ATP-binding cassette (ABC) transporters, however, are known to have functions in phytohormone translocation. Here we show that the Petunia hybrida ABC transporter PDR1 has a key role in regulating the development of arbuscular mycorrhizae and axillary branches, by functioning as a cellular strigolactone exporter. P. hybrida pdr1 mutants are defective in strigolactone exudation from their roots, resulting in reduced symbiotic interactions. Above ground, pdr1 mutants have an enhanced branching phenotype, which is indicative of impaired strigolactone allocation. Overexpression of Petunia axillaris PDR1 in Arabidopsis thaliana results in increased tolerance to high concentrations of a synthetic strigolactone, consistent with increased export of strigolactones from the roots. PDR1 is the first known component in strigolactone transport, providing new opportunities for investigating and manipulating strigolactone-dependent processes.

  17. Water-transporting proteins.

    PubMed

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity.

  18. Structure of the nucleotide-binding domain of a dipeptide ABC transporter reveals a novel iron-sulfur cluster-binding domain.

    PubMed

    Li, Xiaolu; Zhuo, Wei; Yu, Jie; Ge, Jingpeng; Gu, Jinke; Feng, Yue; Yang, Maojun; Wang, Linfang; Wang, Na

    2013-02-01

    Dipeptide permease (Dpp), which belongs to an ABC transport system, imports peptides consisting of two or three L-amino acids from the matrix to the cytoplasm in microbes. Previous studies have indicated that haem competes with dipeptides to bind DppA in vitro and in vivo and that the Dpp system can also translocate haem. Here, the crystal structure of DppD, the nucleotide-binding domain (NBD) of the ABC-type dipeptide/oligopeptide/nickel-transport system from Thermoanaerobacter tengcongensis, bound with ATP, Mg(2+) and a [4Fe-4S] iron-sulfur cluster is reported. The N-terminal domain of DppD shares a similar structural fold with the NBDs of other ABC transporters. Interestingly, the C-terminal domain of DppD contains a [4Fe-4S] cluster. The UV-visible absorbance spectrum of DppD was consistent with the presence of a [4Fe-4S] cluster. A search with DALI revealed that the [4Fe-4S] cluster-binding domain is a novel structural fold. Structural analysis and comparisons with other ABC transporters revealed that this iron-sulfur cluster may act as a mediator in substrate (dipeptide or haem) binding by electron transfer and may regulate the transport process in Dpp ABC transport systems. The crystal structure provides a basis for understanding the properties of ABC transporters and will be helpful in investigating the functions of NBDs in the regulation of ABC transporter activity.

  19. Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.

    PubMed

    Henrich, Alexander; Kuhlmann, Nora; Eck, Alexander W; Krämer, Reinhard; Seibold, Gerd M

    2013-06-01

    The Gram-positive Corynebacterium glutamicum efficiently metabolizes maltose by a pathway involving maltodextrin and glucose formation by 4-α-glucanotransferase, glucose phosphorylation by glucose kinases, and maltodextrin degradation via maltodextrin phosphorylase and α-phosphoglucomutase. However, maltose uptake in C. glutamicum has not been investigated. Interestingly, the presence of maltose in the medium causes increased expression of ptsG in C. glutamicum by an unknown mechanism, although the ptsG-encoded glucose-specific EII permease of the phosphotransferase system itself is not required for maltose utilization. We identified the maltose uptake system as an ABC transporter encoded by musK (cg2708; ATPase subunit), musE (cg2705; substrate binding protein), musF (cg2704; permease), and musG (cg2703; permease) by combination of data obtained from characterization of maltose uptake and reanalyses of transcriptome data. Deletion of the mus gene cluster in C. glutamicum Δmus abolished maltose uptake and utilization. Northern blotting and reverse transcription-PCR experiments revealed that musK and musE are transcribed monocistronically, whereas musF and musG are part of an operon together with cg2701 (musI), which encodes a membrane protein of unknown function with no homologies to characterized proteins. Characterization of growth and [(14)C]maltose uptake in the musI insertion strain C. glutamicum IMcg2701 showed that musI encodes a novel essential component of the maltose ABC transporter of C. glutamicum. Finally, ptsG expression during cultivation on different carbon sources was analyzed in the maltose uptake-deficient strain C. glutamicum Δmus. Indeed, maltose uptake by the novel ABC transport system MusEFGK2I is required for the positive effect of maltose on ptsG expression in C. glutamicum.

  20. ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles

    PubMed Central

    Strauss, Anja S; Peters, Sven; Boland, Wilhelm; Burse, Antje

    2013-01-01

    Plant-herbivore interactions dominate the planet’s terrestrial ecology. When it comes to host–plant specialization, insects are among the most versatile evolutionary innovators, able to disarm multiple chemical plant defenses. Sequestration is a widespread strategy to detoxify noxious metabolites, frequently for the insect’s own benefit against predation. In this study, we describe the broad-spectrum ATP-binding cassette transporter CpMRP of the poplar leaf beetle, Chrysomela populi as the first candidate involved in the sequestration of phytochemicals in insects. CpMRP acts in the defensive glands of the larvae as a pacemaker for the irreversible shuttling of pre-selected metabolites from the hemolymph into defensive secretions. Silencing CpMRP in vivo creates a defenseless phenotype, indicating its role in the secretion process is crucial. In the defensive glands of related leaf beetle species, we identified sequences similar to CpMRP and assume therefore that exocrine gland-based defensive strategies, evolved by these insects to repel their enemies, rely on ABC transporters as a key element. DOI: http://dx.doi.org/10.7554/eLife.01096.001 PMID:24302568

  1. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea.

    PubMed

    Shabani, Leila; Sabzalian, Mohammad R; Mostafavi pour, Sodabeh

    2016-01-01

    Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.

  2. Co-Induction of a Glutathione-S-transferase, a Glutathione Transporter and an ABC Transporter in Maize by Xenobiotics

    PubMed Central

    Liu, Zhiqian; Song, Xiaoyu; Li, Xuefeng; Wang, Chengju

    2012-01-01

    Glutathione conjugation reactions are one of the principal mechanisms that plants utilize to detoxify xenobiotics. The induction by four herbicides (2,4-D, atrazine, metolachlor and primisulfuron) and a herbicide safener (dichlormid) on the expression of three genes, ZmGST27, ZmGT1 and ZmMRP1, encoding respectively a glutathione-S-transferase, a glutathione transporter and an ATP-binding cassette (ABC) transporter was studied in maize. The results demonstrate that the inducing effect on gene expression varies with both chemicals and genes. The expression of ZmGST27 and ZmMRP1 was up-regulated by all five compounds, whereas that of ZmGT1 was increased by atrazine, metolachlor, primisulfuron and dichlormid, but not by 2,4-D. For all chemicals, the inducing effect was first detected on ZmGST27. The finding that ZmGT1 is activated alongside ZmGST27 and ZmMRP1 suggests that glutathione transporters are an important component in the xenobiotic detoxification system of plants. PMID:22792398

  3. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1α

    PubMed Central

    Arnason, Terra; Harkness, Troy

    2015-01-01

    Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDR cancers before clinical failure has the potential to offer new approaches to fighting MDR cancer. PMID:26501324

  4. A novel gene amplification causes upregulation of the PatAB ABC transporter and fluoroquinolone resistance in Streptococcus pneumoniae.

    PubMed

    Baylay, Alison J; Ivens, Alasdair; Piddock, Laura J V

    2015-01-01

    Overexpression of the ABC transporter genes patA and patB confers efflux-mediated fluoroquinolone resistance in Streptococcus pneumoniae and is also linked to pneumococcal stress responses. Although upregulation of patAB has been observed in many laboratory mutants and clinical isolates, the regulatory mechanisms controlling expression of these genes are unknown. In this study, we aimed to identify the cause of high-level constitutive overexpression of patAB in M184, a multidrug-resistant mutant of S. pneumoniae R6. Using a whole-genome transformation and sequencing approach, we identified a novel duplication of a 9.2-kb region of the M184 genome which included the patAB genes. This duplication did not affect growth and was semistable with a low segregation rate. The expression levels of patAB in M184 were much higher than those that could be fully explained by doubling of the gene dosage alone, and inactivation of the first copy of patA had no effect on multidrug resistance. Using a green fluorescent protein reporter system, increased patAB expression was ascribed to transcriptional read-through from a tRNA gene upstream of the second copy of patAB. This is the first report of a large genomic duplication causing antibiotic resistance in S. pneumoniae and also of a genomic duplication causing antibiotic resistance by a promoter switching mechanism.

  5. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells

    PubMed Central

    Boddupalli, Chandra Sekhar; Nair, Shiny; Gray, Simon M.; Nowyhed, Heba N.; Verma, Rakesh; Gibson, Joanna A.; Abraham, Clara; Narayan, Deepak; Vasquez, Juan; Hedrick, Catherine C.; Dhodapkar, Kavita M.; Kaech, Susan M.; Dhodapkar, Madhav V.

    2016-01-01

    Immune surveillance in tissues is mediated by a long-lived subset of tissue-resident memory T cells (Trm cells). A putative subset of tissue-resident long-lived stem cells is characterized by the ability to efflux Hoechst dyes and is referred to as side population (SP) cells. Here, we have characterized a subset of SP T cells (Tsp cells) that exhibit a quiescent (G0) phenotype in humans and mice. Human Trm cells in the gut and BM were enriched in Tsp cells that were predominantly in the G0 stage of the cell cycle. Moreover, in histone 2B-GFP mice, the 2B-GFP label was retained in Tsp cells, indicative of a slow-cycling phenotype. Human Tsp cells displayed a distinct gene-expression profile that was enriched for genes overexpressed in Trm cells. In mice, proteins encoded by Tsp signature genes, including nuclear receptor subfamily 4 group A member 1 (NR4A1) and ATP-binding cassette (ABC) transporters, influenced the function and differentiation of Trm cells. Responses to adoptive transfer of human Tsp cells into immune-deficient mice and plerixafor therapy suggested that human Tsp cell mobilization could be manipulated as a potential cellular therapy. These data identify a distinct subset of human T cells with a quiescent/slow-cycling phenotype, propensity for tissue enrichment, and potential to mobilize into circulation, which may be harnessed for adoptive cellular therapy. PMID:27617863

  6. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1.

    PubMed

    Arnason, Terra; Harkness, Troy

    2015-10-16

    Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDRcancers before clinical failure has the potential to offer new approaches to fightingMDRcancer.

  7. An Arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to Escherichia coli.

    PubMed

    Burris, Kellie; Mentewab, Ayalew; Ripp, Steven; Stewart, C Neal

    2008-03-01

    Concerns have been raised about potential horizontal gene transfer (HGT) of antibiotic resistance markers (ARMs) from transgenic plants to bacteria of medical and environmental importance. All ARMs used in transgenic plants have been bacterial in origin, but it has been recently shown that an Arabidopsis thaliana ABC transporter, Atwbc19, confers kanamycin resistance when overexpressed in transgenic plants. Atwbc19 was evaluated for its ability to transfer kanamycin resistance to Escherichia coli, a kanamycin-sensitive model bacterium, under simulated HGT, staged by subcloning Atwbc19 under the control of a bacterial promoter, genetically transforming to kanamycin-sensitive bacteria, and assessing if resistance was conferred as compared with bacteria harbouring nptII, the standard kanamycin resistance gene used to produce transgenic plants. NptII provided much greater resistance than Atwbc19 and was significantly different from the no-plasmid control at low concentrations. Atwbc19 was not significantly different from the no-plasmid control at higher concentrations. Even though HGT risks are considered low with nptII, Atwbc19 should have even lower risks, as its encoded protein is possibly mistargeted in bacteria.

  8. A Two-Component System Regulates the Expression of an ABC Transporter for Xylo-Oligosaccharides in Geobacillus stearothermophilus▿

    PubMed Central

    Shulami, Smadar; Zaide, Galia; Zolotnitsky, Gennady; Langut, Yael; Feld, Geoff; Sonenshein, Abraham L.; Shoham, Yuval

    2007-01-01

    Geobacillus stearothermophilus T-6 utilizes an extensive and highly regulated hemicellulolytic system. The genes comprising the xylanolytic system are clustered in a 39.7-kb chromosomal segment. This segment contains a 6-kb transcriptional unit (xynDCEFG) coding for a potential two-component system (xynDC) and an ATP-binding cassette (ABC) transport system (xynEFG). The xynD promoter region contains a 16-bp inverted repeat resembling the operator site for the xylose repressor, XylR. XylR was found to bind specifically to this sequence, and binding was efficiently prevented in vitro in the presence of xylose. The ABC transport system was shown to comprise an operon of three genes (xynEFG) that is transcribed from its own promoter. The nonphosphorylated fused response regulator, His6-XynC, bound to a 220-bp fragment corresponding to the xynE operator. DNase I footprinting analysis showed four protected zones that cover the −53 and the +34 regions and revealed direct repeat sequences of a GAAA-like motif. In vitro transcriptional assays and quantitative reverse transcription-PCR demonstrated that xynE transcription is activated 140-fold in the presence of 1.5 μM XynC. The His6-tagged sugar-binding lipoprotein (XynE) of the ABC transporter interacted with different xylosaccharides, as demonstrated by isothermal titration calorimetry. The change in the heat capacity of binding (ΔCp) for XynE with xylotriose suggests a stacking interaction in the binding site that can be provided by a single Trp residue and a sugar moiety. Taken together, our data show that XynEFG constitutes an ABC transport system for xylo-oligosaccharides and that its transcription is negatively regulated by XylR and activated by the response regulator XynC, which is part of a two-component sensing system. PMID:17142383

  9. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism.

    PubMed

    Reilman, Ewoud; Mars, Ruben A T; van Dijl, Jan Maarten; Denham, Emma L

    2014-10-01

    Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology, we demonstrate a temporally controlled transcriptional activation of the bmrCD genes in response to antibiotics that target protein synthesis. Intriguingly, bmrCD expression only occurs during the late-exponential and stationary growth stages, irrespective of the timing of the antibiotic challenge. We show that this is due to tight transcriptional control by the transition state regulator AbrB. Moreover, our results show that the bmrCD genes are co-transcribed with bmrB (yheJ), a small open reading frame immediately upstream of bmrC that harbors three alternative stem-loop structures. These stem-loops are apparently crucial for antibiotic-induced bmrCD transcription. Importantly, the antibiotic-induced bmrCD expression requires translation of bmrB, which implies that BmrB serves as a regulatory leader peptide. Altogether, we demonstrate for the first time that a ribosome-mediated transcriptional attenuation mechanism can control the expression of a multidrug ABC transporter.

  10. Hedgehog signaling regulates drug sensitivity by targeting ABC transporters ABCB1 and ABCG2 in epithelial ovarian cancer.

    PubMed

    Chen, Yi; Bieber, Marcia M; Teng, Nelson N H

    2014-08-01

    A major challenge of successful chemotherapy in ovarian cancer is overcoming intrinsic or acquired multi-drug resistance caused by active drug efflux mediated by ATP-binding cassette (ABC) transporters. Regulation of these transporters in ovarian cancer is poorly understood. We have found that abnormal expression of the hedgehog (Hh) signaling pathway transcription factor Gli1 is involved in the regulation of ABC transporters ABCB1 and ABCG2 in ovarian cancer. Hh is a known regulator of cancer cell proliferation and differentiation in several other types of invasive and metastatic malignancies. Our work has demonstrated that Gli1 is abnormally activated in a portion of ovarian cancers. Inhibition of Gli1 expression decreases ABCB1 and ABCG2 gene expression levels and enhances the response of ovarian cancer cells to certain chemotherapeutic drugs. The underlying mechanism is a direct association of Gli1 with a specific consensus sequence located in the promoter region of ABCB1 and ABCG2 genes. This study provides new understanding of ABC gene regulation by Hh signaling pathway, which may lead to the identification of new markers to detect and to anticipate ovarian cancer chemotherapy drug sensitivity.

  11. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain

    PubMed Central

    Song, Won-Yong; Yamaki, Tomohiro; Yamaji, Naoki; Ko, Donghwi; Jung, Ki-Hong; Fujii-Kashino, Miho; An, Gynheung; Martinoia, Enrico; Lee, Youngsook; Ma, Jian Feng

    2014-01-01

    Arsenic (As) is a chronic poison that causes severe skin lesions and cancer. Rice (Oryza sativa L.) is a major dietary source of As; therefore, reducing As accumulation in the rice grain and thereby diminishing the amount of As that enters the food chain is of critical importance. Here, we report that a member of the Oryza sativa C-type ATP-binding cassette (ABC) transporter (OsABCC) family, OsABCC1, is involved in the detoxification and reduction of As in rice grains. We found that OsABCC1 was expressed in many organs, including the roots, leaves, nodes, peduncle, and rachis. Expression was not affected when plants were exposed to low levels of As but was up-regulated in response to high levels of As. In both the basal nodes and upper nodes, which are connected to the panicle, OsABCC1 was localized to the phloem region of vascular bundles. Furthermore, OsABCC1 was localized to the tonoplast and conferred phytochelatin-dependent As resistance in yeast. Knockout of OsABCC1 in rice resulted in decreased tolerance to As, but did not affect cadmium toxicity. At the reproductive growth stage, the As content was higher in the nodes and in other tissues of wild-type rice than in those of OsABCC1 knockout mutants, but was significantly lower in the grain. Taken together, our results indicate that OsABCC1 limits As transport to the grains by sequestering As in the vacuoles of the phloem companion cells of the nodes in rice. PMID:25331872

  12. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain.

    PubMed

    Song, Won-Yong; Yamaki, Tomohiro; Yamaji, Naoki; Ko, Donghwi; Jung, Ki-Hong; Fujii-Kashino, Miho; An, Gynheung; Martinoia, Enrico; Lee, Youngsook; Ma, Jian Feng

    2014-11-04

    Arsenic (As) is a chronic poison that causes severe skin lesions and cancer. Rice (Oryza sativa L.) is a major dietary source of As; therefore, reducing As accumulation in the rice grain and thereby diminishing the amount of As that enters the food chain is of critical importance. Here, we report that a member of the Oryza sativa C-type ATP-binding cassette (ABC) transporter (OsABCC) family, OsABCC1, is involved in the detoxification and reduction of As in rice grains. We found that OsABCC1 was expressed in many organs, including the roots, leaves, nodes, peduncle, and rachis. Expression was not affected when plants were exposed to low levels of As but was up-regulated in response to high levels of As. In both the basal nodes and upper nodes, which are connected to the panicle, OsABCC1 was localized to the phloem region of vascular bundles. Furthermore, OsABCC1 was localized to the tonoplast and conferred phytochelatin-dependent As resistance in yeast. Knockout of OsABCC1 in rice resulted in decreased tolerance to As, but did not affect cadmium toxicity. At the reproductive growth stage, the As content was higher in the nodes and in other tissues of wild-type rice than in those of OsABCC1 knockout mutants, but was significantly lower in the grain. Taken together, our results indicate that OsABCC1 limits As transport to the grains by sequestering As in the vacuoles of the phloem companion cells of the nodes in rice.

  13. Function and frustration of multi-drug ABC exporter protein and design of model proteins for drug delivery using protein hydration thermodynamics.

    PubMed

    Urry, Dan W; Urry, Kelley D; Szaflarski, Witold; Nowicki, Michal; Zabel, Maciej

    2009-01-01

    The mechanism is presented whereby simultaneous hydrolysis of two molecules of ATP in the ATP-binding cassette (ABC) exporter protein, Sav 1866, opens a transmembrane channel to pump drug out of the cell and confers drug resistance, e.g., gives rise to methicillin resistant Staphylococcus aureus, MRSA. The proposed mechanism suggests pharmaceutical design strategies for overloading the capacity of two molecules of ATP to open access to the channel for export. Structural homology of Staphylococcus aureus, Sav 1866, to human P-glyco-protein and MRP2, suggests a similar mechanism could be relevant to human carcinoma cells. The transport mechanism utilizes two thermodynamic quantities -DeltaG(HA), the change in Gibbs free energy for hydrophobic association, and DeltaG(ap), an apolar-polar repulsive free energy for hydration, derived from studies on designed elastic-contractile model proteins (ECMPs). These quantities also allow design of remarkably biocompatible ECMPs as drug delivery vehicles with remarkable control of release profiles and of ECMPs that provide the means of developing pharmaceuticals for blocking multi-drug resistance.

  14. Role of the Oligopeptide Permease ABC Transporter of Moraxella catarrhalis in Nutrient Acquisition and Persistence in the Respiratory Tract

    PubMed Central

    Jones, Megan M.; Johnson, Antoinette; Koszelak-Rosenblum, Mary; Kirkham, Charmaine; Brauer, Aimee L.; Malkowski, Michael G.

    2014-01-01

    Moraxella catarrhalis is a strict human pathogen that causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults, resulting in significant worldwide morbidity and mortality. M. catarrhalis has a growth requirement for arginine; thus, acquiring arginine is important for fitness and survival. M. catarrhalis has a putative oligopeptide permease ABC transport operon (opp) consisting of five genes (oppB, oppC, oppD, oppF, and oppA), encoding two permeases, two ATPases, and a substrate binding protein. Thermal shift assays showed that the purified recombinant substrate binding protein OppA binds to peptides 3 to 16 amino acid residues in length regardless of the amino acid composition. A mutant in which the oppBCDFA gene cluster is knocked out showed impaired growth in minimal medium where the only source of arginine came from a peptide 5 to 10 amino acid residues in length. Whether methylated arginine supports growth of M. catarrhalis is important in understanding fitness in the respiratory tract because methylated arginine is abundant in host tissues. No growth of wild-type M. catarrhalis was observed in minimal medium in which arginine was present only in methylated form, indicating that the bacterium requires l-arginine. An oppA knockout mutant showed marked impairment in its capacity to persist in the respiratory tract compared to the wild type in a mouse pulmonary clearance model. We conclude that the Opp system mediates both uptake of peptides and fitness in the respiratory tract. PMID:25156736

  15. A Mutation within the Extended X Loop Abolished Substrate-induced ATPase Activity of the Human Liver ATP-binding Cassette (ABC) Transporter MDR3*

    PubMed Central

    Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz

    2015-01-01

    The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. PMID:25533467

  16. A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3.

    PubMed

    Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz

    2015-02-20

    The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain.

  17. Enantioselective induction of a glutathione-S-transferase, a glutathione transporter and an ABC transporter in maize by Metolachlor and its (S)-isomer.

    PubMed

    Pang, Sen; Ran, Zhaojin; Liu, Zhiqian; Song, Xiaoyu; Duan, Liusheng; Li, Xuefeng; Wang, Chengju

    2012-01-01

    The metabolism of chiral herbicides in plants remains poorly understood. Glutathione conjugation reactions are one of the principal mechanisms that plants utilize to detoxify xenobiotics. The induction by rac- and S-metolachlor of the expression of three genes, ZmGST27, ZmGT1 and ZmMRP1, encoding respectively a glutathione-S-transferase, a glutathione transporter and an ATP-binding cassette (ABC) transporter was studied in maize. The results demonstrate that the inducing effect of rac- and S-metolachlor on the expression of ZmGST27 and ZmGT1 is comparable. However, the inducing effect of rac-metolachlor on ZmMRP1 expression is more pronounced than that of S-metolachlor. Furthermore, vanadate, an ABC transporter inhibitor, could greatly reduce the difference in herbicidal activity between rac- and S-metolachlor. These results suggest that the ABC transporters may preferentially transport conjugates of rac-metolachlor, leading to a faster metabolism of the latter. Through comparing the expression of ZmGST27, ZmMRP1 and ZmGT1 after treatment by rac- and S-metolachlor, we provide novel insights into the metabolic processes of chiral herbicides in plants.

  18. Enantioselective Induction of a Glutathione-S-Transferase, a Glutathione Transporter and an ABC Transporter in Maize by Metolachlor and Its (S)-Isomer

    PubMed Central

    Liu, Zhiqian; Song, Xiaoyu; Duan, Liusheng; Li, Xuefeng; Wang, Chengju

    2012-01-01

    The metabolism of chiral herbicides in plants remains poorly understood. Glutathione conjugation reactions are one of the principal mechanisms that plants utilize to detoxify xenobiotics. The induction by rac- and S-metolachlor of the expression of three genes, ZmGST27, ZmGT1 and ZmMRP1, encoding respectively a glutathione-S-transferase, a glutathione transporter and an ATP-binding cassette (ABC) transporter was studied in maize. The results demonstrate that the inducing effect of rac- and S-metolachlor on the expression of ZmGST27 and ZmGT1 is comparable. However, the inducing effect of rac-metolachlor on ZmMRP1 expression is more pronounced than that of S-metolachlor. Furthermore, vanadate, an ABC transporter inhibitor, could greatly reduce the difference in herbicidal activity between rac- and S-metolachlor. These results suggest that the ABC transporters may preferentially transport conjugates of rac-metolachlor, leading to a faster metabolism of the latter. Through comparing the expression of ZmGST27, ZmMRP1 and ZmGT1 after treatment by rac- and S-metolachlor, we provide novel insights into the metabolic processes of chiral herbicides in plants. PMID:23144728

  19. Expression, purification and structural properties of ABC transporter ABCA4 and its individual domains

    PubMed Central

    Tsybovsky, Yaroslav; Palczewski, Krzysztof

    2014-01-01

    ABCA4 is a member of the A subfamily of ATP-binding cassette transporters that consists of large integral membrane proteins implicated in inherited human diseases. ABCA4 assists in the clearance of N-retinylidene-phosphatidylethanolamine, a potentially toxic by-product of the visual cycle formed in photoreceptors during light perception. Structural and functional studies of this protein have been hindered by its large size, membrane association, and domain complexity. Although mammalian, insect and bacterial systems have been used for expression of ABCA4 and its individual domains, the structural relevance of resulting proteins to the native transporter has yet to be established. We produced soluble domains of ABCA4 in E. coli and S. cerevisiae and the full-length transporter in HEK293 cells. Electron microscopy and size exclusion chromatography were used to assess the conformational homogeneity and structure of these proteins. We found that isolated ABCA4 domains formed large, heterogeneous oligomers cross-linked with non-specific disulphide bonds. Incomplete folding of cytoplasmic domain 2 was proposed based on fluorescence spectroscopy results. In contrast, full-length human ABCA4 produced in mammalian cells was found structurally equivalent to the native protein obtained from bovine photoreceptors. These findings offer recombinantly expressed full-length ABCA4 as an appropriate object for future detailed structural and functional characterization. PMID:24583180

  20. Effect of the deletion of qmoABC and the promoter-distal gene encoding a hypothetical protein on sulfate reduction in Desulfovibrio vulgaris Hildenborough.

    PubMed

    Zane, Grant M; Yen, Huei-che Bill; Wall, Judy D

    2010-08-01

    The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved in this process, a deletion in Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo (quinone-interacting membrane-bound oxidoreductase) complex is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5'-phosphosulfate reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable to grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for the DVU0851 protein. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as the terminal electron acceptor. Complementation of the Delta(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking.

  1. Evaluation of current methods used to analyze the expression profiles of ABC transporters yields an improved drug-discovery database

    PubMed Central

    Orina, Josiah N.; Calcagno, Anna Maria; Wu, Chung-Pu; Varma, Sudhir; Shih, Joanna; Lin, Min; Eichler, Gabriel; Weinstein, John N.; Pommier, Yves; Ambudkar, Suresh V.; Gottesman, Michael M.; Gillet, Jean-Pierre

    2009-01-01

    The development of multidrug resistance (MDR) to chemotherapy remains a major challenge in the treatment of cancer. Resistance exists against every effective anti-cancer drug and can develop by multiple mechanisms. These mechanisms can act individually or synergistically, leading to multidrug resistance (MDR), in which the cell becomes resistant to a variety of structurally and mechanistically unrelated drugs in addition to the drug initially administered. Although extensive work has been done to characterize MDR mechanisms in vitro, the translation of this knowledge to the clinic has not been successful. Therefore, identifying genes and mechanisms critical to the development of MDR in vivo and establishing a reliable method for analyzing highly homologous genes from small amounts of tissue is fundamental to achieving any significant enhancement in our understanding of multidrug resistance mechanisms and could lead to treatments designed to circumvent it. In this study, we use a previously established database that allows the identification of lead compounds in the early stages of drug discovery that are not ABC transporter substrates. We believe this can serve as a model for appraising the accuracy and sensitivity of current methods used to analyze the expression profiles of ABC transporters. We found two platforms to be superior methods for the analysis of expression profiles of highly homologous gene superfamilies. This study also led to an improved database by revealing previously unidentified substrates for ABCB1, ABCC1 and ABCG2, transporters that contribute to multidrug resistance. PMID:19584229

  2. Macrophage apolipoprotein A-I expression protects against atherosclerosis in ApoE-deficient mice and up-regulates ABC transporters.

    PubMed

    Su, Yan Ru; Ishiguro, Hiroyuki; Major, Amy S; Dove, Dwayne E; Zhang, Wenwu; Hasty, Alyssa H; Babaev, Vladimir R; Linton, MacRae F; Fazio, Sergio

    2003-10-01

    The antiatherogenic effect of high-density lipoprotein (HDL) and its major protein component apolipoprotein A-I (apoA-I) has been largely attributed to their key roles in reverse cholesterol transport (RCT) and cellular cholesterol efflux. Substantial evidence shows that overexpression of human apoA-I reduces atherosclerosis in animal models. However, it is uncertain whether this protection is due to an increase in plasma HDL level or to a local effect in the artery wall. To test the hypothesis that expression of human apoA-I in macrophages can promote RCT in the artery wall, we used a retroviral construct expressing human apoA-I cDNA (MFG-HAI) to transduce ApoE(-/-) bone marrow cells and then transplanted these cells into ApoE(-/-) mice with preexisting atherosclerosis. ApoE(-/-) mice reconstituted with MFG-HAI marrow had a significant reduction (30%) in atherosclerotic lesions in the proximal aorta compared to control mice that received marrow expressing MFG parental virus. Peritoneal macrophages isolated from MFG-HAI mice showed a four- to fivefold increase in mRNA expression levels of both ATP-binding cassette (ABC) A1 and ABCG1 compared to controls. Our data demonstrate that gene transfer-mediated expression of human apoA-I in macrophages can compensate in part for apoE deficiency and delay the progression of atherosclerotic lesions by stimulating ABC-dependent cholesterol efflux and RCT.

  3. The Efflux Pump Inhibitor Reserpine Selects Multidrug-Resistant Streptococcus pneumoniae Strains That Overexpress the ABC Transporters PatA and PatB▿ †

    PubMed Central

    Garvey, Mark I.; Piddock, Laura J. V.

    2008-01-01

    One way to combat multidrug-resistant microorganisms is the use of efflux pump inhibitors (EPIs). Spontaneous mutants resistant to the EPI reserpine selected from Streptococcus pneumoniae NCTC 7465 and R6 at a frequency suggestive of a single mutational event were also multidrug resistant. No mutations in pmrA (which encodes the efflux protein PmrA) were detected, and the expression of pmrA was unaltered in all mutants. In the reserpine-resistant multidrug-resistant mutants, the overexpression of both patA and patB, which encode ABC transporters, was associated with accumulation of low concentrations of antibiotics and dyes. The addition of sodium orthovanadate, an inhibitor of ABC efflux pumps, or the insertional inactivation of either gene restored wild-type antibiotic susceptibility and wild-type levels of accumulation. Only when patA was insertionally inactivated were both multidrug resistance and reserpine resistance lost. Strains in which patA was insertionally inactivated grew significantly more slowly than the wild type. These data indicate that the overexpression of both patA and patB confers multidrug resistance in S. pneumoniae but that only patA is involved in reserpine resistance. The selection of reserpine-resistant multidrug-resistant pneumococci has implications for analogous systems in other bacteria or in cancer. PMID:18362193

  4. The abcEDCBA-Encoded ABC Transporter and the virB Operon-Encoded Type IV Secretion System of Brucella ovis Are Critical for Intracellular Trafficking and Survival in Ovine Monocyte-Derived Macrophages

    PubMed Central

    Macedo, Auricelio A.; Silva, Ana P. C.; Mol, Juliana P. S.; Costa, Luciana F.; Garcia, Luize N. N.; Araújo, Marcio S.; Martins Filho, Olindo A.; Paixão, Tatiane A.; Santos, Renato L.

    2015-01-01

    Brucella ovis infection is associated with epididymitis, orchitis and infertility in rams. Most of the information available on B. ovis and host cell interaction has been generated using murine macrophages or epithelial cell lines, but the interaction between B. ovis and primary ovine macrophages has not been studied. The aim of this study was to evaluate the role of the B. ovis abcEDCBA-encoded ABC transporter and the virB operon-encoded Type IV Secretion System (T4SS) during intracellular survival of B. ovis in ovine peripheral blood monocyte-derived macrophages. ΔabcBA and ΔvirB2 mutant strains were unable to survive in the intracellular environment when compared to the WT B. ovis at 48 hours post infection (hpi). In addition, these mutant strains cannot exclude the lysosomal marker LAMP1 from its vacuolar membrane, and their vacuoles do not acquire the endoplasmic reticulum marker calreticulin, which takes place in the WT B. ovis containing vacuole. Higher levels of nitric oxide production were observed in macrophages infected with WT B. ovis at 48 hpi when compared to macrophages infected with the ΔabcBA or ΔvirB2 mutant strains. Conversely, higher levels of reactive oxygen species were detected in macrophages infected with the ΔabcBA or ΔvirB2 mutant strains at 48 hpi when compared to macrophages infected with the WT strain. Our results demonstrate that B. ovis is able to persist and multiply in ovine macrophages, while ΔabcBA and ΔvirB2 mutations prevent intracellular multiplication, favor phagolysosome fusion, and impair maturation of the B. ovis vacuole towards an endoplasmic reticulum-derived compartment. PMID:26366863

  5. Induction of CYP1A and ABC transporters in European sea bass (Dicentrarchus labrax) upon 2,3,7,8-TCDD waterborne exposure.

    PubMed

    Della Torre, Camilla; Mariottini, Michela; Vannuccini, Maria Luisa; Trisciani, Anna; Marchi, Davide; Corsi, Ilaria

    2014-08-01

    The aim of this study was to characterize the responsiveness of CYP1A and ABC transport proteins in European Sea bass (Dicentrarchus labrax) waterborne exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) (46 pg/L) for 24 h and 7 days. Genes modulation (abcb1, abcc1-2, cyp1a), EROD activity were investigated in liver and 2,3,7,8-TCDD bioconcentration in liver and muscle. TCDD induced significantly cyp1a gene expression and EROD activity at 24 h and 7 d. A significant up-regulation of abcb1 was also observed but only after 7 days. No modulation of abcc1 and abcc2 genes was observed. Waterborne TCDD exposure was able to induce CYP1A and abcb1 encoding for P-glycoprotein in juvenile of European sea bass.

  6. Effect of the deletion of qmoABC and the promoter distal gene encoding a hypothetical protein on sulfate-reduction in Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Zane, Grant M.; Yen, Huei-chi Bill; Wall, Judy D.

    2010-03-18

    The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved in this process, a deletion of Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo complex (quinone-interacting membrane-bound oxidoreductase) is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5?phosphosulfate (APS) reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable to grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for DVU0851. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as terminal electron acceptor. Complementation of the D(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate-reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking.

  7. The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development.

    PubMed Central

    Guo, D; Bowden, M G; Pershad, R; Kaplan, H B

    1996-01-01

    A wild-type sasA locus is critical for Myxococcus xanthus multicellular development. Mutations in the sasA locus cause defective fruiting body formation, reduce sporulation, and restore developmental expression of the early A-signal-dependent gene 4521 in the absence of A signal. The wild-type sasA locus has been located on a 14-kb cloned fragment of the M. xanthus chromosome. The nucleotide sequence of a 7-kb region containing the complete sasA locus was determined. Three open reading frames encoded by the genes, designated rfbA, B and C were identified. The deduced amino acid sequences of rfbA and rfbB show identity to the integral membrane domains and ATPase domains, respectively, of the ATP-binding cassette (ABC) transporter family. The highest identities are to a set of predicted ABC transporters required for the biosynthesis of lipopolysaccharide O-antigen in certain gram-negative bacteria. The rfbC gene encodes a predicted protein of 1,276 amino acids. This predicted protein contains a region of 358 amino acids that is 33.8% identical to the Yersinia enterocolitica O3 rfbH gene product, which is also required for O-antigen biosynthesis. Immunoblot analysis revealed that the sasA1 mutant, which was found to encode a nonsense codon in the beginning of rfbA, produced less O-antigen than sasA+ strains. These data indicate that the sasA locus is required for the biosynthesis of O-antigen and, when mutated, results in A-signal-independent expression of 4521. PMID:8626291

  8. Variation and evolution of the ABC transporter genes ABCB1, ABCC1, ABCG2, ABCG5 and ABCG8: implication for pharmacogenetics and disease.

    PubMed

    Silverton, Latoya; Dean, Michael; Moitra, Karobi

    2011-01-01

    The ATP-binding cassette (ABC) transporter genes are ubiquitous in the genomes of all vertebrates. Some of these transporters play a key role in xenobiotic defense and are endowed with the capacity to efflux harmful toxic substances. A major role in the evolution of the vertebrate ABC genes is played by gene duplication. Multiple gene duplication and deletion events have been identified in ABC genes, resulting in either gene birth or gene death indicating that the process of gene evolution is still ongoing in this group of transporters. Additionally, polymorphisms in these genes are linked to variations in expression, function, drug disposition and drug response. Single nucleotide polymorphisms in the ABC genes may be considered as markers of individual risk for adverse drug reactions or susceptibility to complex diseases as they can uniquely influence the quality and quantity of gene product. As the ABC genes continue to evolve, globalization will yield additional migration and racial admixtures that will have far reaching implications for the pharmacogenetics of this unique family of transporters in the context of human health.

  9. The ABC transporter YejABEF is required for resistance to antimicrobial peptides and the virulence of Brucella melitensis

    PubMed Central

    Wang, Zhen; Bie, Pengfei; Cheng, Jie; Lu, Lin; Cui, Buyun; Wu, Qingmin

    2016-01-01

    The ability to resist the killing effects of host antimicrobial peptides (AMPs) plays a vital role in the virulence of pathogens. The Brucella melitensis NI genome has a gene cluster that encodes ABC transport. In this study, we constructed yejA1, yejA2, yejB, yejE, yejF, and whole yej operon deletion mutants, none of which exhibited discernible growth defect in TSB or minimal medium. Unlike their parental strain, the mutants showed a significantly increased sensitivity to acidic stress. The NIΔyejE and NIΔyejABEF mutants were also more sensitive than B. melitensis NI to polymyxin B, and the expression of yej operon genes was induced by polymyxin B. Moreover, cell and mouse infection assays indicated that NIΔyejE and NIΔyejABEF have restricted invasion and replication abilities inside macrophages and are rapidly cleared from the spleens of infected mice. These findings indicate that the ABC transporter YejABEF is required for the virulence of Brucella, suggesting that resistance to host antimicrobials is a key mechanism for Brucella to persistently survive in vivo. This study provided insights that led us to further investigate the potential correlation of AMP resistance with the mechanisms of immune escape and persistent infection by pathogens. PMID:27550726

  10. Alkylrhodamines enhance the toxicity of clotrimazole and benzalkonium chloride by interfering with yeast pleiotropic ABC-transporters.

    PubMed

    Knorre, Dmitry A; Besedina, Elizaveta; Karavaeva, Iuliia E; Smirnova, Ekaterina A; Markova, Olga V; Severin, Fedor F

    2016-06-01

    ABC-transporters with broad substrate specificity are responsible for pathogenic yeast resistance to antifungal compounds. Here we asked whether highly hydrophobic chemicals with delocalized positive charge can be used to overcome the resistance. Such molecules efficiently penetrate the plasma membrane and accumulate inside the cells. We reasoned that these properties can convert an active efflux of the compounds into a futile cycle thus interfering with the extrusion of the antibiotics. To test this, we studied the effects of several alkylated rhodamines on the drug resistance of yeast Saccharomyces cerevisiae We found that octylrhodamine synergetically increases toxicity of Pdr5p substrate-clotrimazole, while the others were less effective. Next, we compared the contributions of three major pleiotropic ABC-transporters (Pdr5p, Yor1p, Snq2p) on the accumulation of the alkylated rhodamines. While all of the tested compounds were extruded by Pdr5p, Yor1p and Snq2p showed narrower substrate specificity. Interestingly, among the tested alkylated rhodamines, inactivation of Pdr5p had the strongest effect on the accumulation of octylrhodamine inside the cells, which is consistent with the fact that clotrimazole is a substrate of Pdr5p. As alkylated rhodamines were shown to be non-toxic on mice, our study makes them potential components of pharmacological antifungal compositions.

  11. Function of the Caenorhabditis elegans ABC Transporter PGP-2 in the Biogenesis of a Lysosome-related Fat Storage Organelle

    PubMed Central

    Schroeder, Lena K.; Kremer, Susan; Kramer, Maxwell J.; Currie, Erin; Kwan, Elizabeth; Watts, Jennifer L.; Lawrenson, Andrea L.

    2007-01-01

    Caenorhabditis elegans gut granules are intestine specific lysosome-related organelles with birefringent and autofluorescent contents. We identified pgp-2, which encodes an ABC transporter, in screens for genes required for the proper formation of gut granules. pgp-2(−) embryos mislocalize birefringent material into the intestinal lumen and are lacking in acidified intestinal V-ATPase–containing compartments. Adults without pgp-2(+) function similarly lack organelles with gut granule characteristics. These cellular phenotypes indicate that pgp-2(−) animals are defective in gut granule biogenesis. Double mutant analysis suggests that pgp-2(+) functions in parallel with the AP-3 adaptor complex during gut granule formation. We find that pgp-2 is expressed in the intestine where it functions in gut granule biogenesis and that PGP-2 localizes to the gut granule membrane. These results support a direct role of an ABC transporter in regulating lysosome biogenesis. Previously, pgp-2(+) activity has been shown to be necessary for the accumulation of Nile Red–stained fat in C. elegans. We show that gut granules are sites of fat storage in C. elegans embryos and adults. Notably, levels of triacylglycerides are relatively normal in animals defective in the formation of gut granules. Our results provide an explanation for the loss of Nile Red–stained fat in pgp-2(−) animals as well as insight into the specialized function of this lysosome-related organelle. PMID:17202409

  12. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana.

    PubMed

    Stefanato, Francesca L; Abou-Mansour, Eliane; Buchala, Antony; Kretschmer, Matthias; Mosbach, Andreas; Hahn, Matthias; Bochet, Christian G; Métraux, Jean-Pierre; Schoonbeek, Henk-jan

    2009-05-01

    Arabidopsis thaliana is known to produce the phytoalexin camalexin in response to abiotic and biotic stress. Here we studied the mechanisms of tolerance to camalexin in the fungus Botrytis cinerea, a necrotrophic pathogen of A. thaliana. Exposure of B. cinerea to camalexin induces expression of BcatrB, an ABC transporter that functions in the efflux of fungitoxic compounds. B. cinerea inoculated on wild-type A. thaliana plants yields smaller lesions than on camalexin-deficient A. thaliana mutants. A B. cinerea strain lacking functional BcatrB is more sensitive to camalexin in vitro and less virulent on wild-type plants, but is still fully virulent on camalexin-deficient mutants. Pre-treatment of A. thaliana with UV-C leads to increased camalexin accumulation and substantial resistance to B. cinerea. UV-C-induced resistance was not seen in the camalexin-deficient mutants cyp79B2/B3, cyp71A13, pad3 or pad2, and was strongly reduced in ups1. Here we demonstrate that an ABC transporter is a virulence factor that increases tolerance of the pathogen towards a phytoalexin, and the complete restoration of virulence on host plants lacking this phytoalexin.

  13. The ABC transporter YejABEF is required for resistance to antimicrobial peptides and the virulence of Brucella melitensis.

    PubMed

    Wang, Zhen; Bie, Pengfei; Cheng, Jie; Lu, Lin; Cui, Buyun; Wu, Qingmin

    2016-08-23

    The ability to resist the killing effects of host antimicrobial peptides (AMPs) plays a vital role in the virulence of pathogens. The Brucella melitensis NI genome has a gene cluster that encodes ABC transport. In this study, we constructed yejA1, yejA2, yejB, yejE, yejF, and whole yej operon deletion mutants, none of which exhibited discernible growth defect in TSB or minimal medium. Unlike their parental strain, the mutants showed a significantly increased sensitivity to acidic stress. The NIΔyejE and NIΔyejABEF mutants were also more sensitive than B. melitensis NI to polymyxin B, and the expression of yej operon genes was induced by polymyxin B. Moreover, cell and mouse infection assays indicated that NIΔyejE and NIΔyejABEF have restricted invasion and replication abilities inside macrophages and are rapidly cleared from the spleens of infected mice. These findings indicate that the ABC transporter YejABEF is required for the virulence of Brucella, suggesting that resistance to host antimicrobials is a key mechanism for Brucella to persistently survive in vivo. This study provided insights that led us to further investigate the potential correlation of AMP resistance with the mechanisms of immune escape and persistent infection by pathogens.

  14. Expression and splicing of ABC and SLC transporters in the human blood-brain barrier measured with RNAseq.

    PubMed

    Suhy, Adam M; Webb, Amy; Papp, Audrey C; Geier, Ethan G; Sadee, Wolfgang

    2017-02-07

    The blood-brain barrier (BBB) expresses numerous membrane transporters that supply needed nutrients to the central nervous system (CNS), consisting mostly of solute carriers (SLC transporters), or remove unwanted substrates via extrusion pumps through the action of ATP binding cassette (ABC) transporters. Previous work has identified many BBB transporters using hybridization arrays or qRT-PCR, using targeted probes. Here we have performed next-generation sequencing of the transcriptome (RNAseq) extracted from cerebral cortex tissues and brain microvessel endothelial cells (BMEC) obtained from two donors. The same RNA samples had previously been measured for transporter expression using qRT-PCR (Geier et al., 2013), yielding similar expression levels for overlapping mRNAs (R=0.66, p<0.001). RNAseq confirms a number of transporters highly enriched in BMECs (e.g., ABCB1, ABCG2, SLCO2B1, and SLC47A1), but also detects novel BMEC transporters. Multiple splice isoforms detected by RNAseq are either robustly enriched or depleted in BMECs, indicating differential RNA processing in the BBB. The Complete RNAseq data are publically available (GSE94064).

  15. Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function

    PubMed Central

    Simpson, Brent W.; Owens, Tristan W.; Orabella, Matthew J.; Davis, Rebecca M.; May, Janine M.; Trauger, Sunia A.

    2016-01-01

    ABSTRACT The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB2FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB2FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. PMID:27795402

  16. Learning the ABC of oral fungal drug resistance.

    PubMed

    Cannon, R D; Holmes, A R

    2015-12-01

    ATP-binding cassette (ABC) proteins are ubiquitous in prokaryotes and eukaryotes. They are involved in energy-dependent transport of molecules across membranes. ABC proteins are often promiscuous transporters that can translocate a variety of substrates. In oral fungi, especially in Candida species, they have been implicated as major contributors to the high-level azole resistance of clinical isolates from infections that do not respond to drug therapy. Although this is predominantly due to efflux of azoles from the cells, ABC proteins can contribute to fungal drug resistance in other ways as well. Cells in biofilms are notoriously resistant to antifungal agents. ABC proteins can contribute to this resistance through the efflux of drugs. Biofilms are complex communities of myriad microorganisms which, to survive in such a milieu, need to communicate with, and respond to, other microorganisms and their products. ABC proteins are involved in the secretion of fungal mating factors and quorum sensing molecules. These molecules affect biofilm structure and behavior that can result in increased drug resistance. Hence, ABC proteins make multiple contributions to oral fungal drug resistance through a variety of responses to environmental signals.

  17. Computational characterization of TTHA0379: A potential glycerophosphocholine binding protein of Ugp ATP-binding cassette transporter.

    PubMed

    Chandravanshi, Monika; Gogoi, Prerana; Kanaujia, Shankar Prasad

    2016-11-05

    For the de novo biosynthesis of phospholipids, byproducts such as sn-glycerol-3-phosphate (G3P) and glycerophosphocholine (GPC) of glycerophospholipid metabolic pathway are imported inside the cell by an ATP-binding cassette (ABC) transporter known as UgpABCE. Of which, UgpA and UgpE constitutes the transmembrane domains (TMDs), UgpC forms the dimer of ATP-hydrolyzing component and UgpB is the periplasmic substrate binding protein. Structurally, UgpABCE transporter displays similarity to the maltose ABC transporter of Escherichia coli; thus, has been grouped into the CUT1 (Carbohydrate Uptake Transporter-1) family of bacterial ABC transporters. Being a member of CUT1 family, several Ugp (Uptake glycerol phosphate) protein sequences in biological database(s) exhibit sequence and structure similarity to sugar ABC transporters and have been annotated as sugar binding proteins; one of such proteins is TTHA0379 from Thermus thermophilus HB8. Here, in this study, we used computational method(s) to distinguish UgpB and sugar binding proteins based on their primary and tertiary structure features. A comprehensive analysis of these proteins indicates that they are evolutionarily related to each other having common conserved features at their primary and tertiary structure levels. However, they display differences at their active sites owing to the dissimilarity in their ligand preferences. In addition, phylogenetic analysis of TTHA0379 along with UgpB and sugar binding proteins reveals that both the groups of proteins forms two distinct clades and TTHA0379 groups with UgpB proteins. Furthermore, analysis of the ligand binding pocket shows that all the essential features of glycerophosphocholine binding protein i.e. UgpB, are conserved in TTHA0379 as well. Combining these features, here, we designate TTHA0379 to be a GPC binding protein.

  18. Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate.

    PubMed

    Maruyama, Yukie; Itoh, Takafumi; Kaneko, Ai; Nishitani, Yu; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2015-09-01

    The acidic polysaccharide alginate represents a promising marine biomass for the microbial production of biofuels, although the molecular and structural characteristics of alginate transporters remain to be clarified. In Sphingomonas sp. A1, the ATP-binding cassette transporter AlgM1M2SS is responsible for the import of alginate across the cytoplasmic membrane. Here, we present the substrate-transport characteristics and quaternary structure of AlgM1M2SS. The addition of poly- or oligoalginate enhanced the ATPase activity of reconstituted AlgM1M2SS coupled with one of the periplasmic solute-binding proteins, AlgQ1 or AlgQ2. External fluorescence-labeled oligoalginates were specifically imported into AlgM1M2SS-containing proteoliposomes in the presence of AlgQ2, ATP, and Mg(2+). The crystal structure of AlgQ2-bound AlgM1M2SS adopts an inward-facing conformation. The interaction between AlgQ2 and AlgM1M2SS induces the formation of an alginate-binding tunnel-like structure accessible to the solvent. The translocation route inside the transmembrane domains contains charged residues suitable for the import of acidic saccharides.

  19. Inhibition of the Human ABC Efflux Transporters P-gp and BCRP by the BDE-47 Hydroxylated Metabolite 6-OH-BDE-47: Considerations for Human Exposure.

    PubMed

    Marchitti, Satori A; Mazur, Christopher S; Dillingham, Caleb M; Rawat, Swati; Sharma, Anshika; Zastre, Jason; Kenneke, John F

    2017-01-01

    High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [((3)H)-paclitaxel and ((3)H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity. These findings suggest that some effects previously attributed to BDE-47 in biological systems may actually be due to 6-OH-BDE-47. Considerations for human exposure are discussed.

  20. Ligands of Thermophilic ABC Transporters Encoded in a Newly Sequenced Genomic Region of Thermotoga maritima MSB8 Screened by Differential Scanning Fluorimetry ▿ †

    PubMed Central

    Boucher, Nathalie; Noll, Kenneth M.

    2011-01-01

    The chromosome of Thermotoga maritima strain MSB8 was found to have an 8,870-bp region that is not present in its published sequence. The isolate that was sequenced by The Institute for Genomic Research (TIGR) in 1999 is apparently a laboratory variant of the isolate deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSM 3109) in 1986. This newly sequenced region from the DSMZ culture was located between TM1848 (cbp, cellobiose phosphorylase) and TM1847 (the 3′ end of a truncated ROK regulator). The new region contained seven genes: a beta glucosidase gene (bglA), three trehalose ABC transporter genes (treEFG), three xylose ABC transporter genes (xylE2F2K2), and the 5′ end of a gene encoding the ROK regulator TM1847. We present a new differential scanning fluorimetry method using a low pH that was necessary to screen potential ligands of these exceptionally thermostable periplasmic substrate-binding proteins. This method showed that trehalose, sucrose, and glucose stabilized TreE, and their binding was confirmed by measuring changes in intrinsic fluorescence upon ligand binding. Binding constants of 0.024 μM, 0.300 μM, and 56.78 μM at 60°C, respectively, were measured. XylE2 ligands were similarly determined and xylose, glucose, and fucose bound with Kd (dissociation constant) values of 0.042 μM, 0.059 μM, and 1.436 μM, respectively. Since there is no discernible phenotypic difference between the TIGR isolate and the DSMZ isolate despite the variance in their genomes, we propose that they be called genomovars: T. maritima MSB8 genomovar TIGR and T. maritima MSB8 genomovar DSM 3109, respectively. PMID:21764944

  1. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis

    PubMed Central

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S.; Bilalis, Dimitrios

    2016-01-01

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha−1) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532

  2. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis.

    PubMed

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S; Bilalis, Dimitrios

    2016-04-20

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha(-1)) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance.

  3. Effect of costunolide and dehydrocostus lactone on cell cycle, apoptosis, and ABC transporter expression in human soft tissue sarcoma cells.

    PubMed

    Kretschmer, Nadine; Rinner, Beate; Stuendl, Nicole; Kaltenegger, Heike; Wolf, Elisabeth; Kunert, Olaf; Boechzelt, Herbert; Leithner, Andreas; Bauer, Rudolf; Lohberger, Birgit

    2012-11-01

    Human soft tissue sarcomas represent a rare group of malignant tumours that frequently exhibit chemotherapeutic resistance and increased metastatic potential following unsuccessful treatment. In this study, we investigated the effects of costunolide and dehydrocostus lactone, which have been isolated from Saussurea lappa using activity-guided isolation, on three soft tissue sarcoma cell lines of various origins. The effects on cell proliferation, cell cycle distribution, apoptosis induction, and ABC transporter expression were analysed. Both compounds inhibited cell viability dose- and time-dependently. IC50 values ranged from 6.2 µg/mL to 9.8 µg/mL. Cells treated with costunolide showed no changes in cell cycle, little in caspase 3/7 activity, and low levels of cleaved caspase-3 after 24 and 48 h. Dehydrocostus lactone caused a significant reduction of cells in the G1 phase and an increase of cells in the S and G2/M phase. Moreover, it led to enhanced caspase 3/7 activity, cleaved caspase-3, and cleaved PARP indicating apoptosis induction. In addition, the influence of costunolide and dehydrocostus lactone on the expression of ATP binding cassette transporters related to multidrug resistance (ABCB1/MDR1, ABCC1/MRP1, and ABCG2/BCRP1) was examined using real-time RT-PCR. The expressions of ABCB1/MDR1 and ABCG2/BCRP1 in liposarcoma and synovial sarcoma cells were significantly downregulated by dehydrocostus lactone. Our data demonstrate for the first time that dehydrocostus lactone affects cell viability, cell cycle distribution and ABC transporter expression in soft tissue sarcoma cell lines. Furthermore, it led to caspase 3/7 activity as well as caspase-3 and PARP cleavage, which are indicators of apoptosis. Therefore, this compound may be a promising lead candidate for the development of therapeutic agents against drug-resistant tumours.

  4. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat.

    PubMed

    Krattinger, Simon G; Lagudah, Evans S; Spielmeyer, Wolfgang; Singh, Ravi P; Huerta-Espino, Julio; McFadden, Helen; Bossolini, Eligio; Selter, Liselotte L; Keller, Beat

    2009-03-06

    Agricultural crops benefit from resistance to pathogens that endures over years and generations of both pest and crop. Durable disease resistance, which may be partial or complete, can be controlled by several genes. Some of the most devastating fungal pathogens in wheat are leaf rust, stripe rust, and powdery mildew. The wheat gene Lr34 has supported resistance to these pathogens for more than 50 years. Lr34 is now shared by wheat cultivars around the world. Here, we show that the LR34 protein resembles adenosine triphosphate-binding cassette transporters of the pleiotropic drug resistance subfamily. Alleles of Lr34 conferring resistance or susceptibility differ by three genetic polymorphisms. The Lr34 gene, which functions in the adult plant, stimulates senescence-like processes in the flag leaf tips and edges.

  5. The C-terminal half of UvrC protein is sufficient to reconstitute (A)BC excinuclease

    SciTech Connect

    Lin, J.J.; Sancar, A. )

    1991-08-01

    The UvrC protein is one of three subunits of the Escherichia coli repair enzyme (A)BC excinuclease. This subunit is thought to have at least one of the active sites for nucleophilic attack on the phosphodiester bonds of damaged DNA. To localize the active site, mutant UvrC proteins were constructed by linker-scanning and deletion mutagenesis. In vivo studies revealed that the C-terminal 314 amino acids of the 610-amino acid UvrC protein were sufficient to confer UV resistance to cells lacking the uvrC gene. The portion of the uvrC gene encoding the C-terminal half of the protein was fused to the 3{prime} end of the E. coli malE gene (which encodes maltose binding protein), and the fusion protein MBP-C314C was purified and characterized. The fusion protein, in combination with UvrA and UvrB subunits, reconstituted the excinuclease activity that incised the eighth phosphodiester bond 5{prime} and the fourth phosphodiester bond 3{prime} to a psoralen-thymine adduct. These results suggest that the C-terminal 314 amino acids of UvrC constitute a functional domain capable of interacting with the UvrB-damaged DNA complex and of inducing the two phosphodiester bond incisions characteristic of (A)BC excinuclease.

  6. RNA-Seq Analysis of the Effect of Kanamycin and the ABC Transporter AtWBC19 on Arabidopsis thaliana Seedlings Reveals Changes in Metal Content

    PubMed Central

    Mentewab, Ayalew; Matheson, Kinnari; Adebiyi, Morayo; Robinson, Shanice; Elston, Brianna

    2014-01-01

    Plants are exposed to antibiotics produced by soil microorganisms, but little is known about their responses at the transcriptional level. Likewise, few endogenous mechanisms of antibiotic resistance have been reported. The Arabidopsis thaliana ATP Binding Cassette (ABC) transporter AtWBC19 (ABCG19) is known to confer kanamycin resistance, but the exact mechanism of resistance is not well understood. Here we examined the transcriptomes of control seedlings and wbc19 mutant seedlings using RNA-seq analysis. Exposure to kanamycin indicated changes in the organization of the photosynthetic apparatus, metabolic fluxes and metal uptake. Elemental analysis showed a 60% and 80% reduction of iron uptake in control and wbc19 mutant seedlings respectively, upon exposure to kanamycin. The drop in iron content was accompanied by the upregulation of the gene encoding for FERRIC REDUCTION OXIDASE 6 (FRO6) in mutant seedlings but not by the differential expression of other transport genes known to be induced by iron deficiency. In addition, wbc19 mutants displayed a distinct expression profile in the absence of kanamycin. Most notably the expression of several zinc ion binding proteins, including ZINC TRANSPORTER 1 PRECURSOR (ZIP1) was increased, suggesting abnormal zinc uptake. Elemental analysis confirmed a 50% decrease of zinc content in wbc19 mutants. Thus, the antibiotic resistance gene WBC19 appears to also have a role in zinc uptake. PMID:25310285

  7. RNA-seq analysis of the effect of kanamycin and the ABC transporter AtWBC19 on Arabidopsis thaliana seedlings reveals changes in metal content.

    PubMed

    Mentewab, Ayalew; Matheson, Kinnari; Adebiyi, Morayo; Robinson, Shanice; Elston, Brianna

    2014-01-01

    Plants are exposed to antibiotics produced by soil microorganisms, but little is known about their responses at the transcriptional level. Likewise, few endogenous mechanisms of antibiotic resistance have been reported. The Arabidopsis thaliana ATP Binding Cassette (ABC) transporter AtWBC19 (ABCG19) is known to confer kanamycin resistance, but the exact mechanism of resistance is not well understood. Here we examined the transcriptomes of control seedlings and wbc19 mutant seedlings using RNA-seq analysis. Exposure to kanamycin indicated changes in the organization of the photosynthetic apparatus, metabolic fluxes and metal uptake. Elemental analysis showed a 60% and 80% reduction of iron uptake in control and wbc19 mutant seedlings respectively, upon exposure to kanamycin. The drop in iron content was accompanied by the upregulation of the gene encoding for FERRIC REDUCTION OXIDASE 6 (FRO6) in mutant seedlings but not by the differential expression of other transport genes known to be induced by iron deficiency. In addition, wbc19 mutants displayed a distinct expression profile in the absence of kanamycin. Most notably the expression of several zinc ion binding proteins, including ZINC TRANSPORTER 1 PRECURSOR (ZIP1) was increased, suggesting abnormal zinc uptake. Elemental analysis confirmed a 50% decrease of zinc content in wbc19 mutants. Thus, the antibiotic resistance gene WBC19 appears to also have a role in zinc uptake.

  8. Construction of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette (ABC) transporters and analysis of their growth under stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes is a foodborne pathogen that is difficult to eliminate since it can survive under multiple stress conditions such as low pH and low temperature. Understanding its survival under stress conditions is important to control this pathogen in food. ABC transporters have been shown...

  9. The expression of superoxide dismutase (SOD) and a putative ABC transporter permease is inversely correlated during biofilm formation in Listeria monocytogenes 4b G

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the molecular basis of biofilm formation in Listeria monocytogenes. The superoxide dismutase (SOD) of the deletion mutant of lm.G_1771 gene, which encodes for a putative ABC_transporter permease, is highly expressed in biofilm. In this study, the sod gene deletion mutant delta ...

  10. The ABC transporter ATR1 is necessary for efflux of the toxin cercosporin in the fungus Cercospora nicotianae.

    PubMed

    Amnuaykanjanasin, Alongkorn; Daub, Margaret E

    2009-02-01

    The Cercospora nicotianae mutant deficient for the CRG1 transcription factor has marked reductions in both resistance and biosynthesis of the toxin cercosporin. We cloned and sequenced full-length copies of two genes, ATR1 and CnCFP, previously identified from a subtractive library between the wild type (WT) and a crg1 mutant. ATR1 is an ABC transporter gene and has an open reading frame (ORF) of 4368bp with one intron. CnCFP encodes a MFS transporter with homology to Cercospora kikuchii CFP, previously implicated in cercosporin export, and has an ORF of 1975bp with three introns. Disruption of ATR1 indicated atr1-null mutants had dramatic reductions in cercosporin production (25% and 20% of WT levels) in solid and liquid cultures, respectively. The ATR1 disruptants also showed moderately higher sensitivity to cercosporin. Constitutive expression of ATR1 in the crg1 mutant restored cercosporin biosynthesis and moderately increased resistance. In contrast, CnCFP overexpression in the mutant did not restore toxin production, however, it moderately enhanced toxin resistance. The results together indicate ATR1 acts as a cercosporin efflux pump in this fungus and plays a partial role in resistance.

  11. A Survey of the ATP-Binding Cassette (ABC) Gene Superfamily in the Salmon Louse (Lepeophtheirus salmonis)

    PubMed Central

    Heumann, Jan; Taggart, John B.; Gharbi, Karim; Bron, James E.; Bekaert, Michaël; Sturm, Armin

    2015-01-01

    Salmon lice, Lepeophtheirus salmonis (Krøyer, 1837), are fish ectoparasites causing significant economic damage in the mariculture of Atlantic salmon, Salmo salar Linnaeus, 1758. The control of L. salmonis at fish farms relies to a large extent on treatment with anti-parasitic drugs. A problem related to chemical control is the potential for development of resistance, which in L. salmonis is documented for a number of drug classes including organophosphates, pyrethroids and avermectins. The ATP-binding cassette (ABC) gene superfamily is found in all biota and includes a range of drug efflux transporters that can confer drug resistance to cancers and pathogens. Furthermore, some ABC transporters are recognised to be involved in conferral of insecticide resistance. While a number of studies have investigated ABC transporters in L. salmonis, no systematic analysis of the ABC gene family exists for this species. This study presents a genome-wide survey of ABC genes in L. salmonis for which, ABC superfamily members were identified through homology searching of the L. salmonis genome. In addition, ABC proteins were identified in a reference transcriptome of the parasite generated by high-throughput RNA sequencing (RNA-seq) of a multi-stage RNA library. Searches of both genome and transcriptome allowed the identification of a total of 33 genes / transcripts coding for ABC proteins, of which 3 were represented only in the genome and 4 only in the transcriptome. Eighteen sequences were assigned to ABC subfamilies known to contain drug transporters, i.e. subfamilies B (4 sequences), C (11) and G (2). The results suggest that the ABC gene family of L. salmonis possesses fewer members than recorded for other arthropods. The present survey of the L. salmonis ABC gene superfamily will provide the basis for further research into potential roles of ABC transporters in the toxicity of salmon delousing agents and as potential mechanisms of drug resistance. PMID:26418738

  12. myo-Inositol and d-Ribose Ligand Discrimination in an ABC Periplasmic Binding Protein

    PubMed Central

    Herrou, Julien

    2013-01-01

    The periplasmic binding protein (PBP) IbpA mediates the uptake of myo-inositol by the IatP-IatA ATP-binding cassette transmembrane transporter. We report a crystal structure of Caulobacter crescentus IbpA bound to myo-inositol at 1.45 Å resolution. This constitutes the first structure of a PBP bound to inositol. IbpA adopts a type I PBP fold consisting of two α-β lobes that surround a central hinge. A pocket positioned between the lobes contains the myo-inositol ligand, which binds with submicromolar affinity (0.76 ± 0.08 μM). IbpA is homologous to ribose-binding proteins and binds d-ribose with low affinity (50.8 ± 3.4 μM). On the basis of IbpA and ribose-binding protein structures, we have designed variants of IbpA with inverted binding specificity for myo-inositol and d-ribose. Five mutations in the ligand-binding pocket are sufficient to increase the affinity of IbpA for d-ribose by 10-fold while completely abolishing binding to myo-inositol. Replacement of ibpA with these mutant alleles unable to bind myo-inositol abolishes C. crescentus growth in medium containing myo-inositol as the sole carbon source. Neither deletion of ibpA nor replacement of ibpA with the high-affinity ribose binding allele affected C. crescentus growth on d-ribose as a carbon source, providing evidence that the IatP-IatA transporter is specific for myo-inositol. This study outlines the evolutionary relationship between ribose- and inositol-binding proteins and provides insight into the molecular basis upon which these two related, but functionally distinct, classes of periplasmic proteins specifically bind carbohydrate ligands. PMID:23504019

  13. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  14. Protective effect of a DNA vaccine containing an open reading frame with homology to an ABC-type transporter present in the genomic island 3 of Brucella abortus in BALB/c mice.

    PubMed

    Riquelme-Neira, Roberto; Retamal-Díaz, Angello; Acuña, Francisca; Riquelme, Pablo; Rivera, Alejandra; Sáez, Darwin; Oñate, Angel

    2013-08-12

    The immunogenicity of a DNA vaccine containing an open reading frame (ORF) of genomic island 3 (GI-3), specific for Brucella abortus and Brucella melitensis, has been examined. Intramuscular injection of plasmid DNA carrying the open reading frame with homology to an ABC-type transporter (pV278a) into BALB/c mice elicited both humoral and cellular immune responses. Mice injected with pV278a had a dominant immunoglobulin G2a (IgG2a) response. This DNA vaccine elicited a T-cell-proliferative response and induced significant levels of interferon gamma (INF-γ) upon restimulation with recombinant 278a protein. Upon stimulation with an appropriate recombinant protein or crude Brucella protein, the vaccine did not induce IL-4, suggesting a typical T-helper (TH1) response. Furthermore, the vaccine induced protection in BALB/c mice when challenged with the virulent strain Brucella abortus 2308. Taken together, these data suggest that DNA vaccination offers an improved delivery of the homologous of an ABC-type transporter antigen, and provides the first evidence of a protective effect of this antigen in the construction of vaccines against B. abortus.

  15. Differential expression of peroxidase and ABC transporter as the key regulatory components for degradation of azo dyes by Penicillium oxalicum SAR-3.

    PubMed

    Saroj, Samta; Kumar, Karunesh; Prasad, Manoj; Singh, R P

    2014-12-01

    Fungal species are potential dye decomposers since these secrete spectra of extracellular enzymes involved in catabolism. However, cellular mechanisms underlying azo dye catalysis and detoxification are incompletely understood and obscure. A potential strain designated as Penicillium oxalicum SAR-3 demonstrated broad-spectrum catabolic ability of different azo dyes. A forward suppression subtractive hybridization (SSH) cDNA library of P. oxalicum SAR-3 constructed in presence and absence of azo dye Acid Red 183 resulted in identification of 183 unique expressed sequence tags (ESTs) which were functionally classified into 12 functional categories. A number of novel genes that affect specifically organic azo dye degradation were discovered. Although the ABC transporters and peroxidases emerged as prominent hot spot for azo dye detoxification, we also identified a number of proteins that are more proximally related to stress-responsive gene expression. Majority of the ESTs (29.5%) were grouped as hypothetical/unknown indicating the presence of putatively novel genes. Analysis of few ESTs through quantitative real-time reverse transcription polymerase chain reaction revealed their possible role in AR183 degradation. The ESTs identified in the SSH library provide a novel insight on the transcripts that are expressed in P. oxalicum strain SAR-3 in response to AR183.

  16. Efflux in the Oral Metagenome: The Discovery of a Novel Tetracycline and Tigecycline ABC Transporter

    PubMed Central

    Reynolds, Liam J.; Roberts, Adam P.; Anjum, Muna F.

    2016-01-01

    Antibiotic resistance in human bacterial pathogens and commensals is threatening our ability to treat infections and conduct common medical procedures. As novel antibiotics are discovered and marketed it is important that we understand how resistance to them may arise and know what environments may act as reservoirs for such resistance genes. In this study a tetracycline and tigecycline resistant clone was identified by screening a human saliva metagenomic library in Escherichia coli EPI300 on agar containing 5 μg/ml tetracycline. Sequencing of the DNA insert present within the tetracycline resistant clone revealed it to contain a 7,765 bp fragment harboring novel ABC half transporter genes, tetAB(60). Mutagenesis studies performed on these genes confirmed that they were responsible for the tetracycline and tigecycline resistance phenotypes. Growth studies performed using E. coli EPI300 clones that harbored either the wild type, the mutated, or none of these genes indicated that there was a fitness cost associated with presence of these genes, with the isolate harboring both genes exhibiting a significantly slower growth than control strains. Given the emergence of E. coli strains that are sensitive only to tigecycline and doxycycline it is concerning that such a resistance mechanism has been identified in the human oral cavity. PMID:27999567

  17. Inactivation of the ABC transporter ATPase gene in Brucella abortus strain 2308 attenuated the virulence of the bacteria.

    PubMed

    Zhang, Min; Han, Xiangan; Liu, Haiwen; Tian, Mingxing; Ding, Chan; Song, Jun; Sun, Xiaoqing; Liu, Zongping; Yu, Shengqing

    2013-06-28

    Brucella abortus is a Gram-negative, facultative intracellular bacterial pathogen of human and other animals. Brucella lipopolysaccharide has been identified as an important virulence factor. In this study, the ABC transporter ATPase gene (BAB1_0542) of B. abortus strain S2308 was inactivated by deleting a 446-bp fragment from the gene, thereby generating the mutant strain, S2308ΔATP. Real time PCR analysis confirmed the inactivation of this gene with no polar effect on the transcription of adjacent genes on the chromosome. The mutant was identified as a rough phenotype strain using heat agglutination test and crystal violet staining. The mutant strain had a different growth rate in Tryptic Soy Broth (TSB), compared to the wild type S2308 strain. Moreover, the mutant strain showed attenuated virulence in vitro and in vivo in RAW264.7 macrophages and Balb/c mice, respectively. Complementation of the mutant strain recovered the smooth phenotype of the bacteria and the complemented strain C2308ΔATP survived for more than four weeks in Balb/c mice, comparable to wild type strain S2308. Furthermore, immunization with the mutant strain protected mice from virulent strain challenge, which suggests the potential for the mutant strain S2308ΔATP as a future vaccine candidate. MHC I, MHC II and co-stimulatory molecule expression levels in mice following infection of S2308ΔATP and S2308 were also investigated.

  18. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management.

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-09-03

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management.

  19. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management

    PubMed Central

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-01-01

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management. PMID:26333918

  20. Drosophila ABC Transporter DmHMT-1 Confers Tolerance to Cadmium.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Half molecule ATP-binding cassette transporters of the HMT1(heavy metal tolerance factor 1)subfamily are required for Cd2+ tolerance in Schizosaccharomyces pombe, Caenorhabditis elegans and Chlamydomonas reinhardtii, and have homologs in other species, including plants and humans. Based on studies i...

  1. Formation of a Chloride-conducting State in the Maltose ATP-binding Cassette (ABC) Transporter.

    PubMed

    Carlson, Michael L; Bao, Huan; Duong, Franck

    2016-06-03

    ATP-binding cassette transporters use an alternating access mechanism to move substrates across cellular membranes. This mode of transport ensures the selective passage of molecules while preserving membrane impermeability. The crystal structures of MalFGK2, inward- and outward-facing, show that the transporter is sealed against ions and small molecules. It has yet to be determined whether membrane impermeability is maintained when MalFGK2 cycles between these two conformations. Through the use of a mutant that resides in intermediate conformations close to the transition state, we demonstrate that not only is chloride conductance occurring, but also to a degree large enough to compromise cell viability. Introduction of mutations in the periplasmic gate lead to the formation of a channel that is quasi-permanently open. MalFGK2 must therefore stay away from these ion-conducting conformations to preserve the membrane barrier; otherwise, a few mutations that increase access to the ion-conducting states are enough to convert an ATP-binding cassette transporter into a channel.

  2. Bacteriophage-mediated Glucosylation Can Modify Lipopolysaccharide O-Antigens Synthesized by an ATP-binding Cassette (ABC) Transporter-dependent Assembly Mechanism.

    PubMed

    Mann, Evan; Ovchinnikova, Olga G; King, Jerry D; Whitfield, Chris

    2015-10-16

    Lysogenic bacteriophages may encode enzymes that modify the structures of lipopolysaccharide O-antigen glycans, altering the structure of the bacteriophage receptor and resulting in serotype conversion. This can enhance virulence and has implications for antigenic diversity and vaccine development. Side chain glucosylation is a common modification strategy found in a number of bacterial species. To date, glucosylation has only been observed in O-antigens synthesized by Wzy-dependent pathways, one of the two most prevalent O-antigen synthesis systems. Here we exploited a heterologous system to study the glucosylation potential of a model O-antigen produced in an ATP-binding cassette (ABC) transporter-dependent system. Although O-antigen production is cryptic in Escherichia coli K-12, because of a mutation in the synthesis genes, it possesses a prophage glucosylation cluster, which modifies the GlcNAc residue in an α-l-Rha-(1→3)-d-GlcNAc motif found in the original O16 antigen. Raoultella terrigena ATCC 33257 produces an O-antigen possessing the same disaccharide motif, but its assembly uses an ABC transporter-dependent system. E. coli harboring the R. terrigena O-antigen biosynthesis genes produced an O-antigen displaying reduced reactivity toward antisera raised against the native R. terrigena repeat structure, indicative of an altered chemical structure. Structural determination using NMR revealed the addition of glucose side chains to the repeat units. O-antigen modification was dependent on a functional ABC transporter, consistent with modification in the periplasm, and was eliminated by deletion of the glucosylation genes from the E. coli chromosome, restoring native level antisera sensitivity and structure. There are therefore no intrinsic mechanistic barriers for bacteriophage-mediated O-antigen glucosylation in ABC transporter-dependent pathways.

  3. Identification of ABC transporter genes in gonad tissue of two Mediterranean sea urchin species: black, Arbacia lixula L., and rocky, Paracentrotus lividus L.

    PubMed

    Bošnjak, Ivana; Zaja, Roko; Klobučar, Roberta Sauerborn; Šver, Lidija; Franekić, Jasna; Smital, Tvrtko

    2013-10-01

    Multixenobiotic resistance (MXR) represents an important cellular detoxification mechanism in aquatic organisms as it provides them robustness toward natural and man-made contaminants. Several ABC transporters have major roles in the MXR phenotype - P-gp/ABCB1, MRP1-3/ABCC1-3 and BCRP/ABCG2. In this study, we identified the presence of ABC transporters involved in the MXR mechanism of Arbacia lixula and Paracentrotus lividus. AlABCB1/P-gp, AlABCC3/MRP3, AlABCC9/SUR-like and AlABCG-like transcripts were identified in A. lixula; and PlABCC1/P-gp, PlABCC3/MRP3, PlABCC5/MRP5, and PlABCC9/SUR-like transcripts in P. lividus. For each of the new partial sequences, we performed detailed phylogenetic and identity analysis as a first step toward full characterization and understanding of the ecotoxicological role of these ABC transporters.

  4. Rethinking Drug Treatment Approaches in ALS by Targeting ABC Efflux Transporters

    DTIC Science & Technology

    2012-10-01

    disease  progression,  and  found  that   chronic  treatment  with  either   the...down   disease  progression  as  reported.     In  addition  to  evaluating  the  toxicity  of   chronic  Elacridar...far underestimated issue of disease -driven pharmacoresistance mediated by the multi-drug resistance (mdr) efflux transporter, P-glycoprotein

  5. CLC transport proteins in plants.

    PubMed

    Zifarelli, G; Pusch, M

    2010-05-17

    Nitrate compartmentalization in intracellular organelles has been long recognized as critical for plant physiology but the molecular identity of the proteins involved remained unclear for a long time. In Arabidopsis thaliana, AtClC-a has been recently shown to be a NO(3)(-)/H(+) antiporter critical for nitrate transport into the vacuoles. AtClC-a is a member of the CLC protein family, whose animal and bacterial members, comprising both channels and H(+)-coupled antiporters, have been previously implicated exclusively in Cl(-) transport. Despite the different NO(3)(-) over Cl(-) selectivity of AtClC-a compared to the other CLC antiporters, it has similar transport properties. Other CLC homologues have been cloned in Arabidopsis, tobacco, rice and soybean.

  6. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    SciTech Connect

    Bagaria, A.; Swaminathan, S.; Kumaran, D.; Burley, S. K.

    2011-04-01

    The ATP-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and non-transport related processes such as translation of RNA and DNA repair. Typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP) and Ribose binding protein (RBP). Each of these proteins consists of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations have been reported and so for MBP. The closed/active form of the protein interacts with the integral membrane component of the system in both transport and chemotaxis. Herein, we report 1.9{angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound to

  7. β-Cyclodextrins Decrease Cholesterol Release and ABC-Associated Transporter Expression in Smooth Muscle Cells and Aortic Endothelial Cells

    PubMed Central

    Coisne, Caroline; Hallier-Vanuxeem, Dorothée; Boucau, Marie-Christine; Hachani, Johan; Tilloy, Sébastien; Bricout, Hervé; Monflier, Eric; Wils, Daniel; Serpelloni, Michel; Parissaux, Xavier; Fenart, Laurence; Gosselet, Fabien

    2016-01-01

    -CDs can significantly reduce the cellular cholesterol content of cells forming atherosclerotic lesions and can subsequently modulate the expression of ABC transporters involved in RCT. The use of methylated β-CDs would represent a valuable and efficient tool to interfere with atherosclerosis pathogenesis in patients, nonetheless their mode of action still needs further investigations to be fully understood and finely controlled at the cellular level. PMID:27252658

  8. The Differential Binding of Antipsychotic Drugs to the ABC Transporter P-Glycoprotein Predicts Cannabinoid-Antipsychotic Drug Interactions.

    PubMed

    Brzozowska, Natalia I; de Tonnerre, Erik J; Li, Kong M; Wang, Xiao Suo; Boucher, Aurelie A; Callaghan, Paul D; Kuligowski, Michael; Wong, Alex; Arnold, Jonathon C

    2017-03-29

    Cannabis use increases rates of psychotic relapse and treatment failure in schizophrenia patients. Clinical studies suggest that cannabis use reduces the efficacy of antipsychotic drugs, but there has been no direct demonstration of this in a controlled study. The present study demonstrates that exposure to the principal phytocannabinoid, Δ(9)-tetrahydrocannabinol (THC), reverses the neurobehavioral effects of the antipsychotic drug risperidone in mice. THC exposure did not influence D2 and 5-HT2A receptor binding, the major targets of antipsychotic action, but it lowered the brain concentrations of risperidone and its active metabolite, 9-hydroxy risperidone. As risperidone and its active metabolite are excellent substrates of the ABC transporter P-glycoprotein (P-gp), we hypothesized that THC might increase P-gp expression at the blood-brain barrier (BBB) and thus enhance efflux of risperidone and its metabolite from brain tissue. We confirmed that the brain disposition of risperidone and 9-hydroxy risperidone is strongly influenced by P-gp, as P-gp knockout mice displayed greater brain concentrations of these drugs than wild-type mice. Furthermore, we demonstrated that THC exposure increased P-gp expression in various brain regions important to risperidone's antipsychotic action. We then showed that THC exposure did not influence the neurobehavioral effects of clozapine. Clozapine shares a very similar antipsychotic mode of action to risperidone, but unlike risperidone is not a P-gp substrate. Our results imply that clozapine or non-P-gp substrate antipsychotic drugs may be better first-line treatments for schizophrenia patients with a history of cannabis use.Neuropsychopharmacology advance online publication, 29 March 2017; doi:10.1038/npp.2017.50.

  9. Expression Patterns of ABC Transporter Genes in Fluconazole-Resistant Candida glabrata.

    PubMed

    Gohar, Atefeh Abdollahi; Badali, Hamid; Shokohi, Tahereh; Nabili, Mojtaba; Amirrajab, Nasrin; Moazeni, Maryam

    2017-04-01

    Clinical management of fungal diseases is compromised by the emergence of antifungal drug resistance in fungi, which leads to elimination of available drug classes as treatment options. An understanding of antifungal resistance at molecular level is, therefore, essential for the development of strategies to combat the resistance. This study presents the assessment of molecular mechanisms associated with fluconazole resistance in clinical Candida glabrata isolates originated from Iran. Taking seven distinct fluconazole-resistant C. glabrata isolates, real-time PCRs were performed to evaluate the alternations in the regulation of the genes involved in drug efflux including CgCDR1, CgCDR2, CgSNQ2, and CgERG11. Gain-of-function (GOF) mutations in CgPDR1 alleles were determined by DNA sequencing. Cross-resistance to fluconazole, itraconazole, and voriconazole was observed in 2.5 % of the isolates. In the present study, six amino acid substitutions were identified in CgPdr1, among which W297R, T588A, and F575L were previously reported, whereas D243N, H576Y, and P915R are novel. CgCDR1 overexpression was observed in 57.1 % of resistant isolates. However, CgCDR2 was not co-expressed with CgCDR1. CgSNQ2 was upregulated in 71.4 % of the cases. CgERG11 overexpression does not seem to be associated with azole resistance, except for isolates that exhibited azole cross-resistance. The pattern of efflux pump gene upregulation was associated with GOF mutations observed in CgPDR1. These results showed that drug efflux mediated by adenosine-5-triphosphate (ATP)-binding cassette transporters, especially CgSNQ2 and CgCDR1, is the predominant mechanism of fluconazole resistance in Iranian isolates of C. glabrata. Since some novel GOF mutations were found here, this study also calls for research aimed at investigating other new GOF mutations to reveal the comprehensive understanding about efflux-mediated resistance to azole antifungal agents.

  10. Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.).

    PubMed

    Pang, Kaiyuan; Li, Yanjiao; Liu, Menghan; Meng, Zhaodong; Yu, Yanli

    2013-09-10

    The metabolic functions of ATP-binding cassette (or ABC) proteins, one of the largest families of proteins presented in all organisms, have been investigated in many protozoan, animal and plant species. To facilitate more systematic and complicated studies on maize ABC proteins in the future, we present the first complete inventory of these proteins, including 130 open reading frames (ORFs), and provide general descriptions of their classifications, basic structures, typical functions, evolution track analysis and expression profiles. The 130 ORFs were assigned to eight subfamilies based on their structures and homological features. Five of these subfamilies consist of 109 proteins, containing transmembrane domains (TM) performing as transporters. The rest three subfamilies contain 21 soluble proteins involved in various functions other than molecular transport. A comparison of ABC proteins among nine selected species revealed either convergence or divergence in each of the ABC subfamilies. Generally, plant genomes contain far more ABC genes than animal genomes. The expression profiles and evolution track of each maize ABC gene were further investigated, the results of which could provide clues for analyzing their functions. Quantitative real-time polymerase chain reaction experiments (PCR) were conducted to detect induced expression in select ABC genes under several common stresses. This investigation provides valuable information for future research on stress tolerance in plants and potential strategies for enhancing maize production under stressful conditions.

  11. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    SciTech Connect

    A Bagaria; D Kumaran; S Burley; S Swaminathan

    2011-12-31

    The APT-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and nontransport related processes such as translation of RNA and DNA repair. typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport, and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP), and Ribose binding protein (RBP). Each of these proteins consits of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations hafve been reported and so for MBP. The closed/active form of the protein interacts with the ingral membrane component of the system in both transport and chemotaxis. Herein, they report 1.9 {angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound

  12. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots.

    PubMed

    Moons, Ann

    2003-10-23

    Little is known about the role of pleiotropic drug resistance (PDR)-type ATP-binding (ABC) proteins in plant responses to environmental stresses. We characterised ospdr9, which encodes a rice ABC protein with a reverse (ABC-TMS(6))(2) configuration. Polyethylene glycol and the heavy metals Cd (20 microM) and Zn (30 microM) rapidly and markedly induced ospdr9 in roots of rice seedlings. Hypoxic stress also induced ospdr9 in rice roots, salt stress induced ospdr9 at low levels but cold and heat shock had no effect. The plant growth regulator jasmonic acid, the auxin alpha-naphthalene acetic acid and the cytokinin 6-benzylaminopurine triggered ospdr9 expression. The antioxidants dithiothreitol and ascorbic acid rapidly and markedly induced ospdr9 in rice roots; the strong oxidant hydrogen peroxide also induced ospdr9 but at three times lower levels. The results suggested that redox changes may be involved in the abiotic stress response regulation of ospdr9 in rice roots.

  13. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  14. Glaucarubinone sensitizes KB cells to paclitaxel by inhibiting ABC transporters via ROS-dependent and p53-mediated activation of apoptotic signaling pathways

    PubMed Central

    Karthikeyan, Subburayan; Hoti, Sugeerappa Laxmanappa; Nazeer, Yasin; Hegde, Harsha Vasudev

    2016-01-01

    Multidrug resistance (MDR) is considered to be the major contributor to failure of chemotherapy in oral squamous cell carcinoma (SCC). This study was aimed to explore the effects and mechanisms of glaucarubinone (GLU), one of the major quassinoids from Simarouba glauca DC, in potentiating cytotoxicity of paclitaxel (PTX), an anticancer drug in KB cells. Our data showed that the administration of GLU pre-treatment significantly enhanced PTX anti-proliferative effect in ABCB1 over-expressing KB cells. The Rh 123 drug efflux studies revealed that there was a significant transport function inhibition by GLU-PTX treatment. Interestingly, it was also found that this enhanced anticancer efficacy of GLU was associated with PTX-induced cell arrest in the G2/M phase of cell cycle. Further, the combined treatment of GLU-PTX had significant decrease in the expression levels of P-gp, MRPs, and BCRP in resistant KB cells at both mRNA and protein levels. Furthermore, the combination treatments showed significant reactive oxygen species (ROS) production, chromatin condensation and reduced mitochondrial membrane potential in resistant KB cells. The results from DNA fragmentation analysis also demonstrated the GLU induced apoptosis in KB cells and its synergy with PTX. Importantly, GLU and/or PTX triggered apoptosis through the activation of pro-apoptotic proteins such as p53, Bax, and caspase-9. Our findings demonstrated for the first time that GLU causes cell death in human oral cancer cells via the ROS-dependent suppression of MDR transporters and p53-mediated activation of the intrinsic mitochondrial pathway of apoptosis. Additionally, the present study also focussed on investigation of the protective effect of GLU and combination drugs in human normal blood lymphocytes. Normal blood lymphocytes assay indicated that GLU is able to induce selective toxicity in cancer cells and in silico molecular docking studies support the choice of GLU as ABC inhibitor to enhance PTX efficacy

  15. ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3-O-Glucosides[W][OA

    PubMed Central

    Francisco, Rita Maria; Regalado, Ana; Ageorges, Agnès; Burla, Bo J.; Bassin, Barbara; Eisenach, Cornelia; Zarrouk, Olfa; Vialet, Sandrine; Marlin, Thérèse; Chaves, Maria Manuela; Martinoia, Enrico; Nagy, Réka

    2013-01-01

    Accumulation of anthocyanins in the exocarp of red grapevine (Vitis vinifera) cultivars is one of several events that characterize the onset of grape berry ripening (véraison). Despite our thorough understanding of anthocyanin biosynthesis and regulation, little is known about the molecular aspects of their transport. The participation of ATP binding cassette (ABC) proteins in vacuolar anthocyanin transport has long been a matter of debate. Here, we present biochemical evidence that an ABC protein, ABCC1, localizes to the tonoplast and is involved in the transport of glucosylated anthocyanidins. ABCC1 is expressed in the exocarp throughout berry development and ripening, with a significant increase at véraison (i.e., the onset of ripening). Transport experiments using microsomes isolated from ABCC1-expressing yeast cells showed that ABCC1 transports malvidin 3-O-glucoside. The transport strictly depends on the presence of GSH, which is cotransported with the anthocyanins and is sensitive to inhibitors of ABC proteins. By exposing anthocyanin-producing grapevine root cultures to buthionine sulphoximine, which reduced GSH levels, a decrease in anthocyanin concentration is observed. In conclusion, we provide evidence that ABCC1 acts as an anthocyanin transporter that depends on GSH without the formation of an anthocyanin-GSH conjugate. PMID:23723325

  16. Transporter taxonomy - a comparison of different transport protein classification schemes.

    PubMed

    Viereck, Michael; Gaulton, Anna; Digles, Daniela; Ecker, Gerhard F

    2014-06-01

    Currently, there are more than 800 well characterized human membrane transport proteins (including channels and transporters) and there are estimates that about 10% (approx. 2000) of all human genes are related to transport. Membrane transport proteins are of interest as potential drug targets, for drug delivery, and as a cause of side effects and drug–drug interactions. In light of the development of Open PHACTS, which provides an open pharmacological space, we analyzed selected membrane transport protein classification schemes (Transporter Classification Database, ChEMBL, IUPHAR/BPS Guide to Pharmacology, and Gene Ontology) for their ability to serve as a basis for pharmacology driven protein classification. A comparison of these membrane transport protein classification schemes by using a set of clinically relevant transporters as use-case reveals the strengths and weaknesses of the different taxonomy approaches.

  17. Binding and inhibition of drug transport proteins by heparin: a potential drug transporter modulator capable of reducing multidrug resistance in human cancer cells.

    PubMed

    Chen, Yunliang; Scully, Michael; Petralia, Gloria; Kakkar, Ajay

    2014-01-01

    A major problem in cancer treatment is the development of resistance to chemotherapeutic agents, multidrug resistance (MDR), associated with increased activity of transmembrane drug transporter proteins which impair cytotoxic treatment by rapidly removing the drugs from the targeted cells. Previously, it has been shown that heparin treatment of cancer patients undergoing chemotherapy increases survival. In order to determine whether heparin is capable reducing MDR and increasing the potency of chemotherapeutic drugs, the cytoxicity of a number of agents toward four cancer cell lines (a human enriched breast cancer stem cell line, two human breast cancer cell lines, MCF-7 and MDA-MB-231, and a human lung cancer cell line A549) was tested in the presence or absence of heparin. Results demonstrated that heparin increased the cytotoxicity of a range of chemotherapeutic agents. This effect was associated with the ability of heparin to bind to several of the drug transport proteins of the ABC and non ABC transporter systems. Among the ABC system, heparin treatment caused significant inhibition of the ATPase activity of ABCG2 and ABCC1, and of the efflux function observed as enhanced intracellular accumulation of specific substrates. Doxorubicin cytoxicity, which was enhanced by heparin treatment of MCF-7 cells, was found to be under the control of one of the major non-ABC transporter proteins, lung resistance protein (LRP). LRP was also shown to be a heparin-binding protein. These findings indicate that heparin has a potential role in the clinic as a drug transporter modulator to reduce multidrug resistance in cancer patients.

  18. A multi-species indirect ELISA for detection of non-structural protein 3ABC specific antibodies to foot-and-mouth disease virus.

    PubMed

    Hosamani, M; Basagoudanavar, S H; Tamil Selvan, R P; Das, Varsha; Ngangom, Pravina; Sreenivasa, B P; Hegde, Raveendra; Venkataramanan, R

    2015-04-01

    Reliable diagnostic tests that are able to distinguish infected from vaccinated animals are a critical component of regional control programs for foot-and-mouth disease (FMD) in the affected countries. Non-structural protein (NSP) serology based on the 3ABC protein has been widely used for this purpose, and several kits are commercially available worldwide. This report presents the development of a 3ABC-antigen-based indirect ELISA, employing a peroxidase-conjugated protein G secondary antibody that can detect antibodies from multiple species. Recombinant 3ABC protein was expressed in insect cells and purified using affinity column chromatography. Using this protein, an indirect ELISA was developed and validated for the detection of NSP antibodies in serum samples collected from animals with different status of FMD. Diagnostic sensitivity and specificity were found to be 95.8 (95 % CI: 92.8-97.8) and 97.45 % (95 % CI: 94.8-99.0), respectively. The in-house ELISA compared well with the commercially available prioCHECK FMDV NS-FMD kit, with a high agreement between the tests, as determined by the kappa coefficient, which was 0.87. The in-house ELISA showed higher sensitivity for detecting vaccinated and subsequently infected animals, when compared to the reference test. Both of the tests were able to detect NSP antibodies as early as 7-8 days after experimental infection.

  19. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the dou...

  20. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters.

    PubMed

    Bevers, Loes E; Hagedoorn, Peter-Leon; Krijger, Gerard C; Hagen, Wilfred R

    2006-09-01

    A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [K(D)] of 17 +/- 7 pM) and molybdate (K(D) of 11 +/- 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low K(D) values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein.

  1. Water-mediated forces between the nucleotide binding domains generate the power stroke in an ABC transporter

    NASA Astrophysics Data System (ADS)

    Furukawa-Hagiya, Tomoka; Yoshida, Norio; Chiba, Shuntaro; Hayashi, Tomohiko; Furuta, Tadaomi; Sohma, Yoshiro; Sakurai, Minoru

    2014-11-01

    ATP binding cassette proteins shuttle a variety of molecules across cell membranes. The substrate transportation process is initiated by the ATP-driven dimerization of nucleotide binding domains (NBDs). Here, the integral-equation theory of liquids was applied to simulated NBD structures to analyze their dimerization process from the viewpoint of thermodynamics and the water-mediated interaction between the NBDs. It was found that a long-range hydration force of enthalpic origin drives the two NBDs to approach from a large separation. In the subsequent step, the water-mediated attraction of entropic origin brings about a structural adjustment between the two NBDs and their tighter contact.

  2. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion.

    PubMed

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-07-16

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery.

  3. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion

    PubMed Central

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-01-01

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI: http://dx.doi.org/10.7554/eLife.08231.001 PMID:26182403

  4. The Role of ABC Proteins in Drug-Resistant Breast Cancer Cells

    DTIC Science & Technology

    2007-04-01

    and a biotin acceptor domain) under control of the alcohol oxidase promoter (Figure 2). Upon methanol induction, the yeast expressed high levels of...as native cDNA. Therefore, we backtranslated the protein into a nucleotide sequence codon-optimized for expression in Pichia pastoris yeast. Yeast

  5. Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera.

    PubMed

    Çakır, Birsen; Kılıçkaya, Ozan

    2013-01-01

    The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 "full-size," 41 "half-size," and 15 "soluble" putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.

  6. Combination of tenofovir and emtricitabine plus efavirenz: in vitro modulation of ABC transporter and intracellular drug accumulation.

    PubMed

    Bousquet, Laurence; Pruvost, Alain; Guyot, Anne-Cécile; Farinotti, Robert; Mabondzo, Aloïse

    2009-03-01

    Efflux proteins have been shown to greatly affect the uptake of antiretroviral drugs by cells and to hamper their access to the human immunodeficiency virus type 1 replication site. This study evaluated the factors that may lead to drug-drug interactions between emtricitabine (FTC), tenofovir (TFV), and efavirenz (EFV), including the modulation of efflux transporter expression and function. Peripheral blood mononuclear cells from healthy volunteers were used to determine whether or not an interaction between antiretroviral drugs and target cells occurred in any combination of FTC, TFV, EFV, FTC-TFV, TFV-EFV, or FTC-TFV-EFV. Following 20 h of treatment, intracellular drug concentrations were measured by liquid chromatography-tandem mass spectrometry. Efflux transporter functionality and inhibitor drug properties were assessed by measuring fluorescent dye efflux. ABCB1 (P-glycoprotein), ABCC 1 to 6 (multidrug resistance-associated protein), and OAT (organic anion transporter) expression in response to the treatments was quantified by semiquantitative real-time PCR. Cells treated with a double combination (FTC-TFV or TFV-EFV) or the triple combination (FTC-TFV-EFV) produced higher FTC and TFV intracellular concentrations than cells treated with FTC or TFV alone. However, no change in the EFV intracellular concentration was observed. FTC tended to induce abcc5 mRNA expression and EFV tended to induce abcc1 and abcc6 mRNA expression, whereas TFV tended to reduce mdr1, abcc1, abcc5, and abcc6 mRNA expression. Under these conditions, a decrease in the functionality of ABCC was observed, and this decrease was associated with the direct inhibitory actions of these drugs. This in vitro study reveals a benefit of the combination FTC-TFV-EFV in terms of the intracellular FTC and TFV concentrations and highlights the pharmacological mechanisms that lead to this effect.

  7. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk.

    PubMed

    van Herwaarden, Antonius E; Wagenaar, Els; Merino, Gracia; Jonker, Johan W; Rosing, Hilde; Beijnen, Jos H; Schinkel, Alfred H

    2007-02-01

    The multidrug transporter breast cancer resistance protein (BCRP/ABCG2) is strongly induced in the mammary gland during pregnancy and lactation. We here demonstrate that BCRP is responsible for pumping riboflavin (vitamin B(2)) into milk, thus supplying the young with this important nutrient. In Bcrp1(-/-) mice, milk secretion of riboflavin was reduced >60-fold compared to that in wild-type mice. Yet, under laboratory conditions, Bcrp1(-/-) pups showed no riboflavin deficiency due to concomitant milk secretion of its cofactor flavin adenine dinucleotide, which was not affected. Thus, two independent secretion mechanisms supply vitamin B(2) equivalents to milk. BCRP is the first active riboflavin efflux transporter identified in mammals and the first transporter shown to concentrate a vitamin into milk. BCRP activity elsewhere in the body protects against xenotoxins by reducing their absorption and mediating their excretion. Indeed, Bcrp1 activity increased excretion of riboflavin into the intestine and decreased its systemic availability in adult mice. Surprisingly, the paradoxical dual utilization of BCRP as a xenotoxin and a riboflavin pump is evolutionarily conserved among mammals as diverse as mice and humans. This study establishes the principle that an ABC transporter can transport a vitamin into milk and raises the possibility that other vitamins and nutrients are likewise secreted into milk by ABC transporters.

  8. AtSIA1 AND AtOSA1: two Abc1 proteins involved in oxidative stress responses and iron distribution within chloroplasts.

    PubMed

    Manara, Anna; DalCorso, Giovanni; Leister, Dario; Jahns, Peter; Baldan, Barbara; Furini, Antonella

    2014-01-01

    The Abc1 protein kinases are a large family of functionally diverse proteins with multiple roles in the regulation of respiration and oxidative stress tolerance. A functional characterization was carried out for AtSIA1, an Arabidopsis thaliana Abc1-like protein, focusing on its potential redundancy with its homolog AtOSA1. Both proteins are located within chloroplasts, even if a different subplastidial localization seems probable. The comparison of atsia1 and atosa1 mutants, atsia1/atosa1 double mutant and wild-type plants revealed a reduction in plastidial iron-containing proteins of the Cytb6 f complex in the mutants. Iron uptake from soil is not hampered in mutant lines, suggesting that AtSIA1 and AtOSA1 affect iron distribution within the chloroplast. Mutants accumulated more ferritin and superoxide, and showed reduced tolerance to reactive oxygen species (ROS), potentially indicating a basal role in oxidative stress. The mutants produced higher concentrations of plastochromanol and plastoquinones than wild-type plants, but only atsia1 plants developed larger plastoglobules and contained higher concentrations of α- and γ-tocopherol and VTE1. Taken together, these data suggest that AtSIA1 and AtOSA1 probably act in signaling pathways that influence responses to ROS production and oxidative stress.

  9. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.).

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-04-01

    Biopesticides or transgenic crops based on Cry toxins from the soil bacterium Bacillus thuringiensis (Bt) effectively control agricultural insect pests. The sustainable use of Bt biopesticides and Bt crops is threatened, however, by the development of Cry resistance in the target pests. The diamondback moth, Plutella xylostella (L.), is the first pest that developed resistance to a Bt biopesticide in the field, and a recent study has shown that the resistance of P. xylostella to Cry1Ac is caused by a mutation in an ATP-binding cassette (ABC) transporter gene (ABCC2). In this study, we report that down-regulation of a novel ABC transporter gene from ABCG subfamily (Pxwhite) is associated with Cry1Ac resistance in P. xylostella. The full-length cDNA sequence of Pxwhite was cloned and analyzed. Spatial-temporal expression detection revealed that Pxwhite was expressed in all tissues and developmental stages, and highest expressed in Malpighian tubule tissue and in egg stage. Sequence variation analysis of Pxwhite indicated the absence of constant non-synonymous mutations between susceptible and resistant strains, whereas midgut transcript analysis showed that Pxwhite was remarkably reduced in all resistant strains and further reduced when larvae of the moderately resistant SZ-R strain were subjected to selection with Cry1Ac toxin. Furthermore, RNA interference (RNAi)-mediated suppression of Pxwhite gene expression significantly reduced larval susceptibility to Cry1Ac toxin, and genetic linkage analysis confirmed that down-regulation of Pxwhite gene is tightly linked to Cry1Ac resistance in P. xylostella. To our knowledge, this is the first report indicating that Pxwhite gene is involved in Cry1Ac resistance in P. xylostella.

  10. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  11. SLC27 fatty acid transport proteins.

    PubMed

    Anderson, Courtney M; Stahl, Andreas

    2013-01-01

    The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.

  12. The ABC-Type Multidrug Resistance Transporter LmrCD Is Responsible for an Extrusion-Based Mechanism of Bile Acid Resistance in Lactococcus lactis▿

    PubMed Central

    Zaidi, Arsalan Haseeb; Bakkes, Patrick J.; Lubelski, Jacek; Agustiandari, Herfita; Kuipers, Oscar P.; Driessen, Arnold J. M.

    2008-01-01

    Upon prolonged exposure to cholate and other toxic compounds, Lactococcus lactis develops a multidrug resistance phenotype that has been attributed to an elevated expression of the heterodimeric ABC-type multidrug transporter LmrCD. To investigate the molecular basis of bile acid resistance in L. lactis and to evaluate the contribution of efflux-based mechanisms in this process, the drug-sensitive L. lactis NZ9000 ΔlmrCD strain was challenged with cholate. A resistant strain was obtained that, compared to the parental strain, showed (i) significantly improved resistance toward several bile acids but not to drugs, (ii) morphological changes, and (iii) an altered susceptibility to antimicrobial peptides. Transcriptome and transport analyses suggest that the acquired resistance is unrelated to elevated transport activity but, instead, results from a multitude of stress responses, changes to the cell envelope, and metabolic changes. In contrast, wild-type cells induce the expression of lmrCD upon exposure to cholate, whereupon the cholate is actively extruded from the cells. Together, these data suggest a central role for an efflux-based mechanism in bile acid resistance and implicate LmrCD as the main system responsible in L. lactis. PMID:18790870

  13. Arabidopsis flower development--of protein complexes, targets, and transport.

    PubMed

    Becker, Annette; Ehlers, Katrin

    2016-03-01

    Tremendous progress has been achieved over the past 25 years or more of research on the molecular mechanisms of floral organ identity, patterning, and development. While collections of floral homeotic mutants of Antirrhinum majus laid the foundation already at the beginning of the previous century, it was the genetic analysis of these mutants in A. majus and Arabidopsis thaliana that led to the development of the ABC model of floral organ identity more than 20 years ago. This intuitive model kick-started research focused on the genetic mechanisms regulating flower development, using mainly A. thaliana as a model plant. In recent years, interactions among floral homeotic proteins have been elucidated, and their direct and indirect target genes are known to a large extent. Here, we provide an overview over the advances in understanding the molecular mechanism orchestrating A. thaliana flower development. We focus on floral homeotic protein complexes, their target genes, evidence for their transport in floral primordia, and how these new results advance our view on the processes downstream of floral organ identity, such as organ boundary formation or floral organ patterning.

  14. The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2

    PubMed Central

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

    2008-01-01

    Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone, but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). They inhibited the binding of [125I]-Iodoarylazidoprazosin (IAAP), a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC50 values of 7.3 and 22.6 μM, respectively, but had no effect on the binding of this photoaffinity analog to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of this transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared to the control cells, suggesting that they are substrates of this transporter. Collectively, these data demonstrate for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function. PMID:18065489

  15. Electrophysiological characterization of membrane transport proteins.

    PubMed

    Grewer, Christof; Gameiro, Armanda; Mager, Thomas; Fendler, Klaus

    2013-01-01

    Active transport in biological membranes has been traditionally studied using a variety of biochemical and biophysical techniques, including electrophysiology. This review focuses on aspects of electrophysiological methods that make them particularly suited for the investigation of transporter function. Two major approaches to electrical recording of transporter activity are discussed: (a) artificial planar lipid membranes, such as the black lipid membrane and solid supported membrane, which are useful for studies on bacterial transporters and transporters of intracellular compartments, and (b) patch clamp and voltage clamp techniques, which investigate transporters in native cellular membranes. The analytical power of these methods is highlighted by several examples of mechanistic studies of specific membrane proteins, including cytochrome c oxidase, NhaA Na(+)/H(+) exchanger, ClC-7 H(+)/Cl(-) exchanger, glutamate transporters, and neutral amino acid transporters. These examples reveal the wealth of mechanistic information that can be obtained when electrophysiological methods are used in combination with rapid perturbation approaches.

  16. A Transcriptional Regulator and ABC Transporters Link Stress Tolerance, (p)ppGpp, and Genetic Competence in Streptococcus mutans▿ †

    PubMed Central

    Seaton, Kinda; Ahn, Sang-Joon; Sagstetter, Ann M.; Burne, Robert A.

    2011-01-01

    Streptococcus mutans, a primary agent of dental caries, has three (p)ppGpp synthases: RelA, which is required for a mupirocin-induced stringent response; RelP, which produces (p)ppGpp during exponential growth and is regulated by the RelRS two-component system; and RelQ. Transcription of relPRS and a gene cluster (SMu0835 to SMu0837) located immediately upstream was activated in cells grown with aeration and during a stringent response, respectively. Bioinformatic analysis predicted that SMu0836 and SMu0837 encode ABC exporters, which we designated rcrPQ (rel competence-related) genes, respectively. SMu0835 (rcrR) encodes a MarR family transcriptional regulator. Reverse transcriptase PCR (RT-PCR) and quantitative RT-PCR analysis showed that RcrR functions as an autogenous negative regulator of the expression of the rcrRPQ operon. A mutant in which a polar insertion replaced the SMu836 gene (Δ836polar) grew more slowly and had final yields that were lower than those of the wild-type strain. Likewise, the Δ836polar strain had an impaired capacity to form biofilms, grew poorly at pH 5.5, and was more sensitive to oxidative stressors. Optimal expression of rcrPQ required RelP and vice versa. Replacement of rcrR with a nonpolar antibiotic resistance marker (Δ835np), which leads to overexpression of rcrPQ, yielded a strain that was not transformable with exogenous DNA. Transcriptional analysis revealed that the expression of comYA and comX was dramatically altered in the Δ835np and Δ836polar mutants. Collectively, the data support the suggestion that the rcrRPQ gene products play a critical role in physiologic homeostasis and stress tolerance by linking (p)ppGpp metabolism, acid and oxidative stress tolerance, and genetic competence. PMID:21148727

  17. Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA

    PubMed Central

    Miyakoshi, Masatoshi; Chao, Yanjie; Vogel, Jörg

    2015-01-01

    There is an expanding list of examples by which one mRNA can posttranscriptionally influence the expression of others. This can involve RNA sponges that sequester regulatory RNAs of mRNAs in the same regulon, but the underlying molecular mechanism of such mRNA cross talk remains little understood. Here, we report sponge-mediated mRNA cross talk in the posttranscriptional network of GcvB, a conserved Hfq-dependent small RNA with one of the largest regulons known in bacteria. We show that mRNA decay from the gltIJKL locus encoding an amino acid ABC transporter generates a stable fragment (SroC) that base-pairs with GcvB. This interaction triggers the degradation of GcvB by RNase E, alleviating the GcvB-mediated mRNA repression of other amino acid-related transport and metabolic genes. Intriguingly, since the gltIJKL mRNA itself is a target of GcvB, the SroC sponge seems to enable both an internal feed-forward loop to activate its parental mRNA in cis and activation of many trans-encoded mRNAs in the same pathway. Disabling this mRNA cross talk affects bacterial growth when peptides are the sole carbon and nitrogen sources. PMID:25630703

  18. The Half-Size ABC Transporter FOLDED PETALS 2/ABCG13 Is Involved in Petal Elongation through Narrow Spaces in Arabidopsis thaliana Floral Buds.

    PubMed

    Takeda, Seiji; Iwasaki, Akira; Tatematsu, Kiyoshi; Okada, Kiyotaka

    2014-08-15

    Flowers are vital for attracting pollinators to plants and in horticulture for humans. Petal morphogenesis is a central process of floral development. Petal development can be divided into three main processes: the establishment of organ identity in a concentric pattern, primordia initiation at fixed positions within a whorl, and morphogenesis, which includes petal elongation through the narrow spaces within the bud. Here, we show that the FOLDED PETALS 2 (FOP2) gene, encoding a member of the half-size ATP binding cassette (ABC) transporter family ABCG13, is involved in straight elongation of petals in Arabidopsis thaliana. In fop2 mutants, flowers open with folded petals, instead of straight-elongated ones found in the wild type. The epicuticular nanoridge structures are absent in many abaxial epidermal cells of fop2 petals, and surgical or genetic generation of space in young fop2 buds restores the straight elongation of petals, suggesting that the physical contact of sepals and petals causes the petal folding. Similar petal folding has been reported in the fop1 mutant, and the petals of fop2 fop1 double mutants resemble those of both the fop1 and fop2 single mutants, although the epidermal structure and permeability of the petal surface is more affected in fop2. Our results suggest that synthesis and transport of cutin or wax in growing petals play an important role for their smooth elongation through the narrow spaces of floral buds.

  19. EHD proteins: key conductors of endocytic transport.

    PubMed

    Naslavsky, Naava; Caplan, Steve

    2011-02-01

    Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently less was known about the four mammalian dynamin-like C-terminal Eps15 homology domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field.

  20. MiR-106b~25 cluster regulates multidrug resistance in an ABC transporter-independent manner via downregulation of EP300.

    PubMed

    Hu, Yunhui; Li, Kaiyong; Asaduzzaman, Muhammad; Cuella, Raquel; Shi, Hui; Raguz, Selina; Coombes, Raoul Charles; Zhou, Yuan; Yagüe, Ernesto

    2016-02-01

    MicroRNA (miR)-106b~25 cluster regulates bypass of doxorubicin and γ-radiation induced senescence by downregulation of the E-cadherin transcriptional activator EP300. We asked whether upregulation of miR-106~25 cluster generates cells with a truly multidrug resistant (MDR) phenotype and whether this is due to upregulation of the ATP-binding cassette (ABC) transporter P-glycoprotein. We used minimally transformed mammary epithelial breast cancer cells (MTMECs) in which the miR-106b~25 cluster was experimentally upregulated by lentiviral transfection or in which hairpins targeting either EP300 or E-cadherin mRNAs have been expressed with lentiviruses. We find that overexpression of miR-106b~25 cluster led to the generation of MDR MTMECs (resistant to etoposide, colchicine and paclitaxel). Paclitaxel resistance was also studied after experimental downregulation of EP300 or E-cadherin. However none of these cells overexpressed P-glycoprotein or where able to efflux a fluorescent derivative of paclitaxel, making this phenotype drug-transporter independent. Paclitaxel treatment in MTMECs led to an increase in early apoptotic cells (Annexin V-positive), activation of caspase-9 and increase in the proportion of cells at the G2/M phase of the cell cycle. However, MTMEC overexpressing miR-106b~25 cluster, or with EP300 or E-cadherin downregulated, showed less activation of apoptosis, caspase-9 and caspase-3/-7 activities. Thus, miR-106b~25 cluster controls transporter-independent MDR by apoptosis evasion via downregulation of EP300.

  1. Overexpression of patA and patB, which encode ABC transporters, is associated with fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae.

    PubMed

    Garvey, Mark I; Baylay, Alison J; Wong, Ryan L; Piddock, Laura J V

    2011-01-01

    Fifty-seven clinical isolates of Streptococcus pneumoniae were divided into four groups based on their susceptibilities to the fluoroquinolones ciprofloxacin and norfloxacin and the dyes ethidium bromide and acriflavine. Comparative reverse transcription-PCR was used to determine the level of expression of the genes patA and patB, which encode putative ABC transporters. Overexpression was observed in 14 of the 15 isolates that were resistant to both fluoroquinolones and dyes and in only 3 of 24 of those resistant to fluoroquinolones only. Isolates overexpressing patA and patB accumulated significantly less of the fluorescent dye Hoechst 33342 than wild-type isolates, suggesting that PatA and PatB are involved in efflux. Inactivation of patA and patB by in vitro mariner mutagenesis conferred hypersusceptibility to ethidium bromide and acriflavine in all isolates tested and lowered the MICs of ciprofloxacin in the patAB-overproducing and/or fluoroquinolone-resistant isolates. These data represent the first observation of overexpression of patA and patB in clinical isolates and show that PatA and PatB play a clinically relevant role in fluoroquinolone resistance.

  2. Functional and Structural Characterization of Polysaccharide Co-polymerase Proteins Required for Polymer Export in ATP-binding Cassette Transporter-dependent Capsule Biosynthesis Pathways*

    PubMed Central

    Larue, Kane; Ford, Robert C.; Willis, Lisa M.; Whitfield, Chris

    2011-01-01

    Neisseria meningitidis serogroup B and Escherichia coli K1 bacteria produce a capsular polysaccharide (CPS) that is composed of α2,8-linked polysialic acid (PSA). Biosynthesis of PSA in these bacteria occurs via an ABC (ATP-binding cassette) transporter-dependent pathway. In N. meningitidis, export of PSA to the surface of the bacterium requires two proteins that form an ABC transporter (CtrC and CtrD) and two additional proteins, CtrA and CtrB, that are proposed to form a cell envelope-spanning export complex. CtrA is a member of the outer membrane polysaccharide export (OPX) family of proteins, which are proposed to form a pore to mediate export of CPSs across the outer membrane. CtrB is an inner membrane protein belonging to the polysaccharide co-polymerase (PCP) family. PCP proteins involved in other bacterial polysaccharide assembly systems form structures that extend into the periplasm from the inner membrane. There is currently no structural information available for PCP or OPX proteins involved in an ABC transporter-dependent CPS biosynthesis pathway to support their proposed roles in polysaccharide export. Here, we report cryo-EM images of purified CtrB reconstituted into lipid bilayers. These images contained molecular top and side views of CtrB and showed that it formed a conical oligomer that extended ∼125 Å from the membrane. This structure is consistent with CtrB functioning as a component of an envelope-spanning complex. Cross-complementation of CtrA and CtrB in E. coli mutants with defects in genes encoding the corresponding PCP and OPX proteins show that PCP-OPX pairs require interactions with their cognate partners to export polysaccharide. These experiments add further support for the model of an ABC transporter-PCP-OPX multiprotein complex that functions to export CPS across the cell envelope. PMID:21454677

  3. Cellular localization and effects of ectopically expressed hepatitis A virus proteins 2B, 2C, 3A and their intermediates 2BC, 3AB and 3ABC.

    PubMed

    Seggewiß, Nicole; Kruse, Hedi Verena; Weilandt, Rebecca; Domsgen, Erna; Dotzauer, Andreas; Paulmann, Dajana

    2016-04-01

    In the course of hepatitis A virus (HAV) infections, the seven nonstructural proteins and their intermediates are barely detectable. Therefore, little is known about their functions and mechanisms of action. Ectopic expression of the presumably membrane-associated proteins 2B, 2C, 3A and their intermediates 2BC, 3AB and 3ABC allowed the intracellular localization of these proteins and their possible function during the replication cycle of HAV to be investigated. In this study, we used rhesus monkey kidney cells, which are commonly used for cell culture experiments, and human liver cells, which are the natural target cells. We detected specific associations of these proteins with distinct membrane compartments and the cytoskeleton, different morphological alterations of the respective structures, and specific effects on cellular functions. Besides comparable findings in both cell lines used with regard to localization and effects of the proteins examined, we also found distinct differences. The data obtained identify so far undocumented interactions with and effects of the HAV proteins investigated on cellular components, which may reflect unknown aspects of the interaction of HAV with the host cell, for example the modification of the ERGIC (ER-Golgi intermediate compartment) structure, an interaction with lipid droplets and lysosomes, and inhibition of the classical secretory pathway.

  4. Transport in technicolor: Mapping ATP-binding cassette transporters in sea urchin embryos

    PubMed Central

    Gökirmak, Tufan; Shipp, Lauren E.; Campanale, Joseph P.; Nicklisch, Sascha C.T.; Hamdoun, Amro

    2014-01-01

    One quarter of eukaryotic genes encode membrane proteins. These include nearly 1000 transporters that translocate nutrients, signaling molecules, and xenobiotics across membranes. While it is well appreciated that membrane transport is critical for development, the specific roles of many transporters have remained cryptic, in part because of their abundance and the diversity of their substrates. Multi-drug resistance ATP-binding cassette (ABC) efflux transporters are one example of cryptic membrane proteins. Although most organisms utilize these ABC transporters during embryonic development, many of these transporters have broad substrate specificity, and their developmental functions remain incompletely understood. Here, we review advances in our understanding of ABC transporters in sea urchin embryos, and methods developed to spatially and temporally map these proteins. These studies reveal that multifunctional transporters are required for signaling, homeostasis, and protection of the embryo, and shed light on how they are integrated into ancestral developmental pathways recapitulated in disease. PMID:25156004

  5. Two separate modules of the conserved regulatory RNA AbcR1 address multiple target mRNAs in and outside of the translation initiation region

    PubMed Central

    Overlöper, Aaron; Kraus, Alexander; Gurski, Rosemarie; Wright, Patrick R; Georg, Jens; Hess, Wolfgang R; Narberhaus, Franz

    2014-01-01

    The small RNA AbcR1 regulates the expression of ABC transporters in the plant pathogen Agrobacterium tumefaciens, the plant symbiont Sinorhizobium meliloti, and the human pathogen Brucella abortus. A combination of proteomic and bioinformatic approaches suggested dozens of AbcR1 targets in A. tumefaciens. Several of these newly discovered targets are involved in the uptake of amino acids, their derivatives, and sugars. Among the latter is the periplasmic sugar-binding protein ChvE, a component of the virulence signal transduction system. We examined 16 targets and their interaction with AbcR1 in close detail. In addition to the previously described mRNA interaction site of AbcR1 (M1), the CopraRNA program predicted a second functional module (M2) as target-binding site. Both M1 and M2 contain single-stranded anti-SD motifs. Using mutated AbcR1 variants, we systematically tested by band shift experiments, which sRNA region is responsible for mRNA binding and gene regulation. On the target site, we find that AbcR1 interacts with some mRNAs in the translation initiation region and with others far into their coding sequence. Our data show that AbcR1 is a versatile master regulator of nutrient uptake systems in A. tumefaciens and related bacteria. PMID:24921646

  6. Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk.

    PubMed

    Ishikawa, Toshihisa; Aw, Wanping; Kaneko, Kiyoko

    2013-11-04

    In mammals, excess purine nucleosides are removed from the body by breakdown in the liver and excretion from the kidneys. Uric acid is the end product of purine metabolism in humans. Two-thirds of uric acid in the human body is normally excreted through the kidney, whereas one-third undergoes uricolysis (decomposition of uric acid) in the gut. Elevated serum uric acid levels result in gout and could be a risk factor for cardiovascular disease and diabetes. Recent studies have shown that human ATP-binding cassette transporter ABCG2 plays a role of renal excretion of uric acid. Two non-synonymous single nucleotide polymorphisms (SNPs), i.e., 421C>A (major) and 376C>T (minor), in the ABCG2 gene result in impaired transport activity, owing to ubiquitination-mediated proteosomal degradation and truncation of ABCG2, respectively. These genetic polymorphisms are associated with hyperuricemia and gout. Allele frequencies of those SNPs are significantly higher in Asian populations than they are in African and Caucasian populations. A rapid and isothermal genotyping method has been developed to detect the SNP 421C>A, where one drop of peripheral blood is sufficient for the detection. Development of simple genotyping methods would serve to improve prevention and early therapeutic intervention for high-risk individuals in personalized healthcare.

  7. The fbpABC Operon Is Required for Ton-Independent Utilization of Xenosiderophores by Neisseria gonorrhoeae Strain FA19▿

    PubMed Central

    Strange, Heather R.; Zola, Tracey A.; Cornelissen, Cynthia Nau

    2011-01-01

    Neisseria gonorrhoeae produces no known siderophores but can employ host-derived, iron-binding proteins, including transferrin and lactoferrin, as iron sources. Given the propensity of this pathogen to hijack rather than synthesize iron-sequestering molecules, we hypothesized that the ability to use siderophores produced by other bacteria, or xenosiderophores, may also play a role in the survival of the gonococcus. Among a panel of diverse siderophores, only the catecholate xenosiderophores enterobactin and salmochelin promoted growth of gonococcal strain FA19. Surprisingly, the internalization pathway was independent of TonB or any of the TonB-dependent transporters. Xenosiderophore-mediated growth was similarly independent of the pilin-extruding secretin formed by PilQ and of the hydrophobic-agent efflux system composed of MtrCDE. The fbpABC operon encodes a periplasmic-binding-protein-dependent ABC transport system that enables the gonococcus to transport iron into the cell subsequent to outer membrane translocation. We hypothesized that the FbpABC proteins, required for ferric iron transport from transferrin and lactoferrin, might also contribute to the utilization of xenosiderophores as iron sources. We created mutants that conditionally expressed FbpABC from an IPTG-inducible promoter. We determined that expression of FbpABC was required for growth of gonococcal strain FA19 in the presence of enterobactin and salmochelin. The monomeric component of enterobactin, dihydroxybenzoylserine (DHBS), and the S2 form of salmochelin specifically promoted FbpABC-dependent growth of FA19. This study demonstrated that the gonococcal FbpABC transport system is required for utilization of some xenosiderophores as iron sources and that growth promotion by these ferric siderophores can occur in the absence of TonB or individual TonB-dependent transporters. PMID:21041493

  8. Computation of Thermal Transport in a Protein

    NASA Astrophysics Data System (ADS)

    Leitner, David M.

    2003-03-01

    Calculation of the coefficient of thermal conductivity and thermal diffusivity for a protein will be discussed. Thermal transport coefficients are obtained by computing the proteinÂ's normal modes, their lifetimes, the speed of sound and mean free path. We find the thermal diffusivity of myoglobin at 300 K to be 14 Å^2 /ps, the same as the value for water. The thermal conductivity at 300 K is calculated to be 2.0 mW/cm K in the absence of solvent and somewhat higher for the solvated protein, about one-third the value for water.

  9. ABC transporters and the proteasome complex are implicated in susceptibility to Stevens-Johnson syndrome and toxic epidermal necrolysis across multiple drugs.

    PubMed

    Nicoletti, Paola; Bansal, Mukesh; Lefebvre, Celine; Guarnieri, Paolo; Shen, Yufeng; Pe'er, Itsik; Califano, Andrea; Floratos, Aris

    2015-01-01

    Stevens-Johnson syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) represent rare but serious adverse drug reactions (ADRs). Both are characterized by distinctive blistering lesions and significant mortality rates. While there is evidence for strong drug-specific genetic predisposition related to HLA alleles, recent genome wide association studies (GWAS) on European and Asian populations have failed to identify genetic susceptibility alleles that are common across multiple drugs. We hypothesize that this is a consequence of the low to moderate effect size of individual genetic risk factors. To test this hypothesis we developed Pointer, a new algorithm that assesses the aggregate effect of multiple low risk variants on a pathway using a gene set enrichment approach. A key advantage of our method is the capability to associate SNPs with genes by exploiting physical proximity as well as by using expression quantitative trait loci (eQTLs) that capture information about both cis- and trans-acting regulatory effects. We control for known bias-inducing aspects of enrichment based analyses, such as: 1) gene length, 2) gene set size, 3) presence of biologically related genes within the same linkage disequilibrium (LD) region, and, 4) genes shared among multiple gene sets. We applied this approach to publicly available SJS/TEN genome-wide genotype data and identified the ABC transporter and Proteasome pathways as potentially implicated in the genetic susceptibility of non-drug-specific SJS/TEN. We demonstrated that the innovative SNP-to-gene mapping phase of the method was essential in detecting the significant enrichment for those pathways. Analysis of an independent gene expression dataset provides supportive functional evidence for the involvement of Proteasome pathways in SJS/TEN cutaneous lesions. These results suggest that Pointer provides a useful framework for the integrative analysis of pharmacogenetic GWAS data, by increasing the power to detect aggregate effects

  10. Identification of ABC transporter genes conferring combined pleuromutilin-lincosamide-streptogramin A resistance in bovine methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci.

    PubMed

    Wendlandt, Sarah; Kadlec, Kristina; Feßler, Andrea T; Schwarz, Stefan

    2015-06-12

    The aim of this study was to investigate the genetic basis of combined pleuromutilin-lincosamide-streptogramin A resistance in 26 unrelated methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) from dairy cows suffering from mastitis. The 26 pleuromutilin-resistant staphylococcal isolates were screened for the presence of the genes vga(A), vga(B), vga(C), vga(E), vga(E) variant, sal(A), vmlR, cfr, lsa(A), lsa(B), lsa(C), and lsa(E) by PCR. None of the 26 isolates carried the genes vga(B), vga(C), vga(E), vga(E) variant, vmlR, cfr, lsa(A), lsa(B), or lsa(C). Two Staphylococcus haemolyticus and single Staphylococcus xylosus, Staphylococcus lentus, and Staphylococcus hominis were vga(A)-positive. Twelve S. aureus, two Staphylococcus warneri, as well as single S. lentus and S. xylosus carried the lsa(E) gene. Moreover, single S. aureus, S. haemolyticus, S. xylosus, and Staphylococcus epidermidis were positive for both genes, vga(A) and lsa(E). The sal(A) gene was found in a single Staphylococcus sciuri. All ABC transporter genes were located in the chromosomal DNA, except for a plasmid-borne vga(A) gene in the S. epidermidis isolate. The genetic environment of the lsa(E)-positive isolates was analyzed using previously described PCR assays. Except for the S. warneri and S. xylosus, all lsa(E)-positive isolates harbored a part of the previously described enterococcal multiresistance gene cluster. This is the first report of the novel lsa(E) gene in the aforementioned bovine CoNS species. This is also the first identification of the sal(A) gene in a S. sciuri from a case of bovine mastitis. Moreover, the sal(A) gene was shown to also confer pleuromutilin resistance.

  11. Multiple Functions of Glutamate Uptake via Meningococcal GltT-GltM l-Glutamate ABC Transporter in Neisseria meningitidis Internalization into Human Brain Microvascular Endothelial Cells

    PubMed Central

    Yanagisawa, Tatsuo; Kim, Kwang Sik; Yokoyama, Shigeyuki; Ohnishi, Makoto

    2015-01-01

    We previously reported that Neisseria meningitidis internalization into human brain microvasocular endothelial cells (HBMEC) was triggered by the influx of extracellular l-glutamate via the GltT-GltM l-glutamate ABC transporter, but the underlying mechanism remained unclear. We found that the ΔgltT ΔgltM invasion defect in assay medium (AM) was alleviated in AM without 10% fetal bovine serum (FBS) [AM(−S)]. The alleviation disappeared again in AM(−S) supplemented with 500 μM glutamate. Glutamate uptake by the ΔgltT ΔgltM mutant was less efficient than that by the wild-type strain, but only upon HBMEC infection. We also observed that both GltT-GltM-dependent invasion and accumulation of ezrin, a key membrane-cytoskeleton linker, were more pronounced when N. meningitidis formed larger colonies on HBMEC under physiological glutamate conditions. These results suggested that GltT-GltM-dependent meningococcal internalization into HBMEC might be induced by the reduced environmental glutamate concentration upon infection. Furthermore, we found that the amount of glutathione within the ΔgltT ΔgltM mutant was much lower than that within the wild-type N. meningitidis strain only upon HBMEC infection and was correlated with intracellular survival. Considering that the l-glutamate obtained via GltT-GltM is utilized as a nutrient in host cells, l-glutamate uptake via GltT-GltM plays multiple roles in N. meningitidis internalization into HBMEC. PMID:26099588

  12. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions

    PubMed Central

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W.; Browne, Tristan; Cox, Kevin; Paul, Andrew T.; Ko, Seung-Hyun B.; Mortensen, Joel E.; Lam, Joseph S.; Muruve, Daniel A.; Hassett, Daniel J.

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains. PMID:27064218

  13. 75 FR 49549 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Surface Transportation Board ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of exemption... operation of this trackage in FD 35356, ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line...

  14. Genome-Wide Identification, Evolution, and Expression Analysis of the ATP-Binding Cassette Transporter Gene Family in Brassica rapa

    PubMed Central

    Yan, Chao; Duan, Weike; Lyu, Shanwu; Li, Ying; Hou, Xilin

    2017-01-01

    ATP-binding cassette (ABC) proteins can act as transporters of different substrates across biological membranes by hydrolyzing ATP. However, little information is available about ABC transporters in Brassica rapa, an important leafy vegetable. In the present study, we carried out genome-wide identification, characterization and molecular evolution analyses of ABC gene family in B. rapa and 9 other plant species. A total of 179 B. rapa ABC genes (BraABCs) were identified. Among them, 173 BraABCs were identified on 10 chromosomes. Based on phylogenetic analysis and domain organization, the BraABC family could be grouped into eight subfamilies. BraABCs in the same subfamily showed similar motif composition and exon-intron organization. Common and unique cis-elements involved in the transcriptional regulation were also identified in the promoter regions of BraABCs. Tissue-expression analysis of BraABCs demonstrated their diverse spatiotemporal expression profiles. Influences of the whole genome triplication (WGT) on the evolution of BraABCs were studied in detail. BraABCs were preferentially retained compared with their neighboring genes during diploidization after WGT. Synteny analysis identified 76 pairs of syntenic BraABC paralogs among the three subgenomes of B. rapa, and 10 paralog pairs underwent positive selection with ω (= Ka/Ks) ratios greater than 1. Analyses of the expression patterns of syntenic BraABC paralogs pairs across five tissues and under stress treatments revealed their functional conservation, sub-functionalization, neo-functionalization and pseudogenization during evolution. Our study presents a comprehensive overview of the ABC gene family in B. rapa and will be helpful for the further functional study of BraABCs in plant growth, development, and stress responses. PMID:28367152

  15. Transport and proofreading of proteins by the twin-arginine translocation (Tat) system in bacteria.

    PubMed

    Robinson, Colin; Matos, Cristina F R O; Beck, Daniel; Ren, Chao; Lawrence, Janna; Vasisht, Nishi; Mendel, Sharon

    2011-03-01

    The twin-arginine translocation (Tat) system operates in plant thylakoid membranes and the plasma membranes of most free-living bacteria. In bacteria, it is responsible for the export of a number of proteins to the periplasm, outer membrane or growth medium, selecting substrates by virtue of cleavable N-terminal signal peptides that contain a key twin-arginine motif together with other determinants. Its most notable attribute is its ability to transport large folded proteins (even oligomeric proteins) across the tightly sealed plasma membrane. In Gram-negative bacteria, TatABC subunits appear to carry out all of the essential translocation functions in the form of two distinct complexes at steady state: a TatABC substrate-binding complex and separate TatA complex. Several studies favour a model in which these complexes transiently coalesce to generate the full translocase. Most Gram-positive organisms possess an even simpler "minimalist" Tat system which lacks a TatB component and contains, instead, a bifunctional TatA component. These Tat systems may involve the operation of a TatAC complex together with a separate TatA complex, although a radically different model for TatAC-type systems has also been proposed. While bacterial Tat systems appear to require the presence of only a few proteins for the actual translocation event, there is increasing evidence for the operation of ancillary components that carry out sophisticated "proofreading" activities. These activities ensure that redox proteins are only exported after full assembly of the cofactor, thereby avoiding the futile export of apo-forms. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.

  16. Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica

    PubMed Central

    Shitan, Nobukazu; Bazin, Ingrid; Dan, Kazuyuki; Obata, Kazuaki; Kigawa, Koji; Ueda, Kazumitsu; Sato, Fumihiko; Forestier, Cyrille; Yazaki, Kazufumi

    2003-01-01

    Alkaloids comprise one of the largest groups of plant secondary metabolites. Berberine, a benzylisoquinoline alkaloid, is preferentially accumulated in the rhizome of Coptis japonica, a ranunculaceous plant, whereas gene expression for berberine biosynthetic enzymes has been observed specifically in root tissues, which suggests that berberine synthesized in the root is transported to the rhizome, where there is high accumulation. We recently isolated a cDNA encoding a multidrug-resistance protein (MDR)-type ATP-binding cassette (ABC) transporter (Cjmdr1) from berberine-producing cultured C. japonica cells, which is highly expressed in the rhizome. Functional analysis of Cjmdr1 by using a Xenopus oocyte expression system showed that CjMDR1 transported berberine in an inward direction, resulting in a higher accumulation of berberine in Cjmdr1-injected oocytes than in the control. Typical inhibitors of ABC proteins, such as vanadate, nifedipine, and glibenclamide, as well as ATP depletion, clearly inhibited this CjMDR1-dependent berberine uptake, suggesting that CjMDR1 functioned as an ABC transporter. Conventional membrane separation methods showed that CjMDR1 was localized in the plasma membrane of C. japonica cells. In situ hybridization indicated that Cjmdr1 mRNA was expressed preferentially in xylem tissues of the rhizome. These findings strongly suggest that CjMDR1 is involved in the translocation of berberine from the root to the rhizome. PMID:12524452

  17. The yellow fluorescent protein (YFP-H) mouse reveals neuroprotection as a novel mechanism underlying Chondroitinase ABC-mediated repair following spinal cord injury

    PubMed Central

    Carter, Lucy M.; Starkey, Michelle L.; Akrimi, Sonia F.; Davies, Meirion; McMahon, Stephen B.; Bradbury, Elizabeth J.

    2012-01-01

    Chondroitinase ABC (ChABC) represents a promising therapeutic strategy for the treatment of spinal cord injury due to its potent effects on restoring function to spinal injured adult mammals. However, there is limited mechanistic insight as to the underlying effects of ChABC treatment, where the effects are mediated, and which signalling pathways are involved in ChABC-mediated repair. Here we utilise a transgenic (YFP-H) mouse to demonstrate that cortical layer V projection neurons undergo severe atrophy four weeks following thoracic dorsal column injury and that ChABC is neuroprotective for these neurons following ICV infusion. ChABC also prevented cell atrophy following localised delivery to the spinal cord, suggesting a possible retrograde neuroprotective effect mediated at the injury site. Furthermore, neuroprotection of corticospinal cell somata coincided with increased axonal sprouting in the spinal cord. In addition, Western blot analysis of a number of kinases important in survival and growth signalling revealed a significant increase in phosphorylated ERK1 at the spinal injury site following in vivo ChABC treatment, indicating that activated ERK may play a role in downstream repair processes following ChABC treatment. Total forms of PKC and AKT were also elevated, indicating that modification of the glial scar by ChABC promotes long-lasting signalling changes at the lesion site. Thus, using the YFP-H mouse as a novel tool to study degenerative changes and repair following spinal cord injury we demonstrate, for the first time, that ChABC treatment regulates multiple signalling cascades at the injury site and exerts protective effects on axotomised corticospinal projection neurons. PMID:19109493

  18. RecQ helicase acts before RuvABC, RecG and XerC proteins during recombination in recBCD sbcBC mutants of Escherichia coli.

    PubMed

    Buljubašić, Maja; Zahradka, Davor; Zahradka, Ksenija

    2013-12-01

    The RecQ helicase is required by the RecF recombination pathway that is operative in recBC(D) sbcB sbcC(D) mutants of Escherichia coli. Genetic data suggest that RecQ participates in resection of DNA ends during initiation of recombination. In vitro, RecQ can unwind a variety of DNA substrates, including recombination intermediates such as D-loops and Holliday junctions. However, its potential role in processing of recombination intermediates during the late stage of the RecF pathway has not been genetically tested. Here we studied the effect of a recQ mutation on transductional recombination and DNA repair after γ-irradiation in ΔrecBCD ΔsbcB sbcC strains deficient for RuvABC, RecG and XerC proteins. RuvABC and RecG proteins process recombination intermediates in the late stage of recombination, whereas XerC is required to resolve chromosome dimers formed upon recombination. Our results do not reveal any substantial synergistic effect between the recQ mutation, on one hand, and ruvABC, recG and xerC mutations on the other. In addition, the recQ mutation suppresses chromosome segregation defects in γ-irradiated ruvABC recG and xerC mutants. These results suggest that RecQ acts upstream of RuvABC, RecG and XerC proteins, a finding that is compatible with its primary role in initiation of the RecF recombination pathway.

  19. Encapsulated Brucella ovis Lacking a Putative ATP-Binding Cassette TransporterabcBA) Protects against Wild Type Brucella ovis in Rams

    PubMed Central

    Silva, Ana Patrícia C.; Macêdo, Auricélio A.; Costa, Luciana F.; Rocha, Cláudia E.; Garcia, Luize N. N.; Farias, Jade R. D.; Gomes, Priscilla P. R.; Teixeira, Gustavo C.; Fonseca, Kessler W. J.; Maia, Andréa R. F.; Neves, Gabriela G.; Romão, Everton L.; Silva, Teane M. A.; Mol, Juliana P. S.; Oliveira, Renata M.; Araújo, Márcio S. S.; Nascimento, Ernane F.; Martins-Filho, Olindo A.; Brandão, Humberto M.; Paixão, Tatiane A.; Santos, Renato L.

    2015-01-01

    This study aimed to evaluate protection induced by the vaccine candidate B. ovis ΔabcBA against experimental challenge with wild type B. ovis in rams. Rams were subcutaneously immunized with B. ovis ΔabcBA encapsulated with sterile alginate or with the non encapsulated vaccine strain. Serum, urine, and semen samples were collected during two months after immunization. The rams were then challenged with wild type B. ovis (ATCC25840), and the results were compared to non immunized and experimentally challenged rams. Immunization, particularly with encapsulated B. ovis ΔabcBA, prevented infection, secretion of wild type B. ovis in the semen and urine, shedding of neutrophils in the semen, and the development of clinical changes, gross and microscopic lesions induced by the wild type B. ovis reference strain. Collectively, our data indicates that the B. ovis ΔabcBA strain is an exceptionally good vaccine strain for preventing brucellosis caused by B. ovis infection in rams. PMID:26317399

  20. Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters.

    PubMed

    Leslie, E M; Deeley, R G; Cole, S P

    2001-10-05

    The 190 kDa multidrug resistance protein 1 (MRP1/ABCC1) is a founding member of a subfamily of the ATP binding cassette (ABC) superfamily of transport proteins and was originally identified on the basis of its elevated expression in multidrug resistant lung cancer cells. In addition to its ability to confer resistance in tumour cells, MRP1 is ubiquitously expressed in normal tissues and is a primary active transporter of GSH, glucuronate and sulfate conjugated and unconjugated organic anions of toxicological relevance. Substrates include lipid peroxidation products, herbicides, tobacco specific nitrosamines, mycotoxins, heavy metals, and natural product and antifolate anti-cancer agents. MRP1 also transports unmodified xenobiotics but often requires GSH to do so. Active efflux is generally an important aspect of cellular detoxification since it prevents the accumulation of conjugated and unconjugated compounds that have the potential to be directly toxic. The related transporters MRP2 and MRP3 have overlapping substrate specificities with MRP1 but different tissue distributions, and evidence that they also have chemoprotective functions are discussed. Finally, MRP homologues have been described in other species including yeast and nematodes. Those isolated from the vascular plant Arabidopsis thaliana (AtMRPs) decrease the cytoplasmic concentration of conjugated toxins through sequestration in vacuoles and are implicated in providing herbicide resistance to plants.

  1. Cellular Cholesterol Transport Proteins in Diabetic Nephropathy

    PubMed Central

    Tsun, Joseph G. S.; Yung, Susan; Chau, Mel K. M.; Shiu, Sammy W. M.; Chan, Tak Mao; Tan, Kathryn C. B.

    2014-01-01

    Background Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy. Methods Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes. Results ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters. Conclusion Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy. PMID:25181357

  2. Actin binding proteins, spermatid transport and spermiation*

    PubMed Central

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-Ho; Tang, Elizabeth I.; Han, Daishu; Lee, Will M.; Wong, Elissa W. P.; Cheng, C. Yan

    2014-01-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby entering the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come. PMID:24735648

  3. Phylogenetic profiles of all membrane transport proteins

    PubMed Central

    Weiner, January; Kooij, Taco W.A.

    2016-01-01

    In order to combat the on-going malaria epidemic, discovery of new drug targets remains vital. Proteins that are essential to survival and specific to malaria parasites are key candidates. To survive within host cells, the parasites need to acquire nutrients and dispose of waste products across multiple membranes. Additionally, like all eukaryotes, they must redistribute ions and organic molecules between their various internal membrane bound compartments. Membrane transport proteins mediate all of these processes and are considered important mediators of drug resistance as well as drug targets in their own right. Recently, using advanced experimental genetic approaches and streamlined life cycle profiling, we generated a large collection of Plasmodium berghei gene deletion mutants and assigned essential gene functions, highlighting potential targets for prophylactic, therapeutic, and transmission-blocking anti-malarial drugs. Here, we present a comprehensive orthology assignment of all Plasmodium falciparum putative membrane transport proteins and provide a detailed overview of the associated essential gene functions obtained through experimental genetics studies in human and murine model parasites. Furthermore, we discuss the phylogeny of selected potential drug targets identified in our functional screen. We extensively discuss the results in the context of the functional assignments obtained using gene targeting available to date. PMID:28357319

  4. A Plant Plasma Membrane ATP Binding Cassette–Type Transporter Is Involved in Antifungal Terpenoid Secretion

    PubMed Central

    Jasiński, Michal; Stukkens, Yvan; Degand, Hervé; Purnelle, Bénédicte; Marchand-Brynaert, Jacqueline; Boutry, Marc

    2001-01-01

    ATP binding cassette (ABC) transporters, which are found in all species, are known mainly for their ability to confer drug resistance. To date, most of the ABC transporters characterized in plants have been localized in the vacuolar membrane and are considered to be involved in the intracellular sequestration of cytotoxins. Working on the assumption that certain ABC transporters might be involved in defense metabolite secretion and their expression might be regulated by the concentration of these metabolites, we treated a Nicotiana plumbaginifolia cell culture with sclareolide, a close analog of sclareol, an antifungal diterpene produced at the leaf surface of Nicotiana spp; this resulted in the appearance of a 160-kD plasma membrane protein, which was partially sequenced. The corresponding cDNA (NpABC1) was cloned and shown to encode an ABC transporter. In vitro and in situ immunodetection showed NpABC1 to be localized in the plasma membrane. Under normal conditions, expression was found in the leaf epidermis. In cell culture and in leaf tissues, NpABC1 expression was strongly enhanced by sclareolide and sclareol. In parallel with NpABC1 induction, cells acquired the ability to excrete a labeled synthetic sclareolide derivative. These data suggest that NpABC1 is involved in the secretion of a secondary metabolite that plays a role in plant defense. PMID:11340184

  5. 75 FR 11991 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of...

  6. The Structure of a Cyanobacterial Bicarbonate Transport Protein, CmpA

    SciTech Connect

    Koropatkin, Nicole M.; Koppenaal, David W.; Pakrasi, Himadri B.; Smith, Thomas J.

    2007-01-26

    Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of the food chain by fixing carbon and nitrogen into cellular biomass. To compensate for the low selectivity of Rubisco for CO₂ over O₂, Cyanobacteria have developed highly efficient CO₂concentrating machinery of which the ABC transport system CmpABCD from Synechocystis PCC 6803 is one component. Here we describe the structure of the bicarbonate binding protein, CmpA, in the absence and presence of bicarbonate and carbonic acid. CmpA is highly homologous to the nitrate transport protein, NrtA. CmpA binds carbonic acid at the entrance to the ligand-binding pocket whereas bicarbonate binds in nearly an identical location compared to nitrate binding to NrtA. Unexpectedly, bicarbonate binding is accompanied by a metal ion, identified as Ca²⁺ via inductively coupled plasma optical emission spectrometry. The binding of bicarbonate and metal is highly cooperative and suggests that CmpA co-transports bicarbonate and calcium.

  7. The FlxABCD-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough.

    PubMed

    Ramos, Ana Raquel; Grein, Fabian; Oliveira, Gonçalo P; Venceslau, Sofia S; Keller, Kimberly L; Wall, Judy D; Pereira, Inês A C

    2015-07-01

    Flavin-based electron bifurcation (FBEB) is an important mechanism for the energy metabolism of anaerobes. A new family of NADH dehydrogenases, the flavin oxidoreductase (FlxABCD, previously called FloxABCD), was proposed to perform FBEB in sulphate-reducing organisms coupled with heterodisulfide reductase (HdrABC). We found that the hdrABC-flxABCD gene cluster is widespread among anaerobic bacteria, pointing to a general and important role in their bioenergetics. In this work, we studied FlxABCD of Desulfovibrio vulgaris Hildenborough. The hdr-flx genes are part of the same transcriptional unit and are increased in transcription during growth in ethanol-sulfate, and to a less extent during pyruvate fermentation. Two mutant strains were generated: one where expression of the hdr-flx genes was interrupted and another lacking the flxA gene. Both strains were unable to grow with ethanol-sulfate, whereas growth was restored in a flxA-complemented strain. The mutant strains also produced very reduced amounts of ethanol compared with the wild type during pyruvate fermentation. Our results show that in D. vulgaris, the FlxABCD-HdrABC proteins are essential for NADH oxidation during growth on ethanol, probably involving a FBEB mechanism that leads to reduction of ferredoxin and the small protein DsrC, while in fermentation they operate in reverse, reducing NAD(+) for ethanol production.

  8. Gene expression profiling of cytochromes P450, ABC transporters and their principal transcription factors in the amygdala and prefrontal cortex of alcoholics, smokers and drug-free controls by qRT-PCR.

    PubMed

    Toselli, Francesca; de Waziers, Isabelle; Dutheil, Mary; Vincent, Marc; Wilce, Peter A; Dodd, Peter R; Beaune, Philippe; Loriot, Marie-Anne; Gillam, Elizabeth M J

    2015-01-01

    1. Ethanol consumption and smoking alter the expression of certain drug-metabolizing enzymes and transporters, potentially influencing the tissue-specific effects of xenobiotics. 2. Amygdala (AMG) and prefrontal cortex (PFC) are brain regions that modulate the effects of alcohol and smoking, yet little is known about the expression of cytochrome P450 enzymes (P450s) and ATP-binding cassette (ABC) transporters in these tissues. 3. Here, we describe the first study on the expression of 19 P450s, their redox partners, three ABC transporters and four related transcription factors in the AMG and PFC of smokers and alcoholics by quantitative RT-PCR. 4. CYP1A1, CYP1B1, CYP2B6, CYP2C8, CYP2C18, CYP2D6, CYP2E1, CYP2J2, CYP2S1, CYP2U1, CYP4X1, CYP46, adrenodoxin and NADPH-P450 reductase, ABCB1, ABCG2, ABCA1, and transcription factors aryl hydrocarbon receptor AhR and proliferator-activated receptor α were quantified in both areas. CYP2A6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, adrenodoxin reductase and the nuclear receptors pregnane X receptor and constitutive androstane receptor were detected but below the limit of quantification. CYP1A2 and CYP2W1 were not detected. 5. Adrenodoxin expression was elevated in all case groups over controls, and smokers showed a trend toward higher CYP1A1 and CYP1B1 expression. 6. Our study shows that most xenobiotic-metabolizing P450s and associated redox partners, transporters and transcription factors are expressed in human AMG and PFC.

  9. ABC's of Being Smart

    ERIC Educational Resources Information Center

    Foster, Joanne

    2011-01-01

    Determining what giftedness is all about means focusing on many aspects of the individual. In this paper, the author focuses on letter D of the ABC's of being smart. She starts with specifics about giftedness (details), and then moves on to some ways of thinking (dispositions).

  10. 1968 ABC Summer Program.

    ERIC Educational Resources Information Center

    Kerr, Frances M.; Russell, Valerie E.

    A talent development project at Mount Holyoke College, part of A Better Chance (ABC)-Independent Schools Talent Search program, was offered during the summer of 1968 to 71 disadvantaged high school students from 13 states. Major aims of the program were to help these students with college potential to strengthen their academic skills and…

  11. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress.

    PubMed

    Saha, Jayita; Sengupta, Atreyee; Gupta, Kamala; Gupta, Bhaskar

    2015-02-01

    ATP-binding cassette (ABC) transporter is a large gene superfamily that utilizes the energy released from ATP hydrolysis for transporting myriad of substrates across the biological membranes. Although many investigations have been done on the structural and functional analysis of the ABC transporters in Oryza sativa, much less is known about molecular phylogenetic and global expression pattern of the complete ABC family in rice. In this study, we have carried out a comprehensive phylogenetic analysis constructing neighbor-joining and maximum-likelihood trees based on various statistical methods of different ABC protein subfamily of five plant lineages including Chlamydomonas reinhardtii (green algae), Physcomitrella patens (moss), Selaginella moellendorffii (lycophyte), Arabidopsis thaliana (dicot) and O. sativa (monocot) to explore the origin and evolutionary patterns of these ABC genes. We have identified several conserved motifs in nucleotide binding domain (NBD) of ABC proteins among all plant lineages during evolution. Amongst the different ABC protein subfamilies, 'ABCE' has not yet been identified in lower plant genomes (algae, moss and lycophytes). The result indicated that gene duplication and diversification process acted upon these genes as a major operative force creating new groups and subgroups and functional divergence during evolution. We have demonstrated that rice ABCI subfamily consists of only half size transporters that represented highly dynamic members showing maximum sequence variations among the other rice ABC subfamilies. The evolutionary and the expression analysis contribute to a deep insight into the evolution and diversity of rice ABC proteins and their roles in response to salt stress that facilitate our further understanding on rice ABC transporters.

  12. Intrinsic and extrinsic negative regulators of nuclear protein transport processes

    PubMed Central

    Sekimoto, Toshihiro; Yoneda, Yoshihiro

    2012-01-01

    The nuclear–cytoplasmic protein transport is a critical process in cellular events. The identification of transport signals (nuclear localization signal and nuclear export signal) and their receptors has facilitated our understanding of this expanding field. Nuclear transport must be appropriately regulated to deliver proteins through the nuclear pore when their functions are required in the nucleus, and to export them into the cytoplasm when they are not needed in the nucleus. Altered nuclear transport processes have been observed in stressed cells, which would change gene expressions. Some viruses interfere with nuclear transport in host cells to evade immune defense. Moreover, certain transport factors negatively regulate nuclear protein transport in cells. Understanding the regulatory mechanisms of nuclear–cytoplasmic trafficking not only provides important information about cellular processes, but also is of use for developing specific inhibitors for transport pathways. PMID:22672474

  13. The LZT proteins; the LIV-1 subfamily of zinc transporters.

    PubMed

    Taylor, Kathryn M; Nicholson, Robert I

    2003-04-01

    Zinc is an essential ion for cells with a vital role to play in controlling the cellular processes of the cell, such as growth, development and differentiation. Specialist proteins called zinc transporters control the level of intracellular zinc in cells. In mammals, the ZIP family of zinc transporters has a pivotal role in maintaining the correct level of intracellular zinc by their ability to transport zinc into cells from outside, although they may also transport metal ions other than zinc. There are now recognised to be four subfamilies of the ZIP transporters, including the recently discovered LIV-1 subfamily which has similarity to the oestrogen-regulated gene LIV-1, previously implicated in metastatic breast cancer. We call this new subfamily LZT, for LIV-1 subfamily of ZIP zinc Transporters. Here we document current knowledge of this previously uncharacterised group of proteins, which includes the KE4 proteins. LZT proteins are similar to ZIP transporters in secondary structure and ability to transport metal ions across the plasma membrane or intracellular membranes. However, LZT proteins have a unique motif (HEXPHEXGD) with conserved proline and glutamic acid residues, unprecedented in other zinc transporters. The localisation of LZT proteins to lamellipodiae mirrors cellular location of the membrane-type matrix metalloproteases. These differences to other zinc transporters may be consistent with an alternative role for LZT proteins in cells, particularly in diseases such as cancer.

  14. Pharmacological correction of misfolding of ABC proteins☆

    PubMed Central

    Rudashevskaya, Elena L.; Stockner, Thomas; Trauner, Michael; Freissmuth, Michael; Chiba, Peter

    2014-01-01

    The endoplasmic reticulum (ER) quality control system distinguishes between correctly and incorrectly folded proteins to prevent processing of aberrantly folded conformations along the secretory pathway. Non-synonymous mutations can lead to misfolding of ABC proteins and associated disease phenotypes. Specific phenotypes may at least partially be corrected by small molecules, so-called pharmacological chaperones. Screening for folding correctors is expected to open an avenue for treatment of diseases such as cystic fibrosis and intrahepatic cholestasis. PMID:25027379

  15. Characterization of mammalian glucose transport proteins using photoaffinity labeling techniques

    SciTech Connect

    Wadzinski, B.E.

    1989-01-01

    A carrier-free radioiodinated phenylazide derivative of forskolin, 3-iodo-4-azidophenethylamido-7-O-succinyl-deacetyl-forskolin (({sup 125}I)IAPS-forskolin), has been shown to be a highly selective photoaffinity probe for the human erythrocyte glucose transported and the glucose transport proteins found in several mammalian tissues and cultured cells where the glucose transport protein is present at a low concentration. The photoincorporation of ({sup 125}I)IAPS-forskolin into these glucose transporters was blocked by D- (but not L-) glucose, cytochalasin B, and forskolin. In addition to labeling the mammalian glucose transport proteins, ({sup 125}I)IAPS-forskolin also labeled the L-arabinose transporter from E. coli. In muscle and adipose tissues, glucose transport is markedly increased in response to insulin. ({sup 125}I)IAPS-forskolin was shown to selectivity tag the glucose transporter in membranes derived from these cells. In addition, the covalent derivatization of the transport protein in subcellular fractions of the adipocyte has provided a means to study the hormonal regulation of glucose transport. ({sup 125}I)IAPS-forskolin has also been used to label the purified human erythrocyte glucose transporter. The site of insertion has therefore been localized by analysis of the radiolabeled peptides which were produced following chemical and proteolytic digestion of the labeled transport protein.

  16. Proteins involved in vesicular transport and membrane fusion.

    PubMed

    Waters, M G; Griff, I C; Rothman, J E

    1991-08-01

    In the past year, new information about proteins involved in vesicular transport has been plentiful. Particularly noteworthy are the complementary findings that Sec17p is required for vesicle consumption in endoplasmic reticulum-to-Golgi transport in yeast and that an analogous activity in mammalian cells, termed SNAP, is required for transport from the cis to the medial cisternae of the Golgi apparatus.

  17. eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells

    PubMed Central

    Yeh, Johannes T.-H.; Nam, Kwangho; Yeh, Joshua T.-H.; Perrimon, Norbert

    2017-01-01

    The absorption, distribution, metabolism and excretion (ADME) of metabolites and toxic organic solutes are orchestrated by the ATP-binding cassette (ABC) transporters and the organic solute carrier family (SLC) proteins. A large number of ABC and SLC transpoters exist; however, only a small number have been well characterized. To facilitate the analysis of these transporters, which is important for drug safety and physiological studies, we developed a sensitive genetically encoded bilirubin (BR)-inducible fluorescence sensor (eUnaG) to detect transporter-coupled influx/efflux of organic compounds. This sensor can be used in live cells to measure transporter activity, as excretion of BR depends on ABC and SLC transporters. Applying eUnaG in functional RNAi screens, we characterize l(2)03659 as a Drosophila multidrug resistant-associated ABC transporter. PMID:28176814

  18. ATP-binding cassette transporters in reproduction: a new frontier

    PubMed Central

    Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.

    2016-01-01

    breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus. PMID:26545808

  19. Interactions of mefloquine with ABC proteins, MRP1 (ABCC1) and MRP4 (ABCC4), that are present in human red cell membranes

    PubMed Central

    Wu, Chung-Pu; Klokouzas, Antonios; Hladky, Stephen B.; Ambudkar, Suresh V.; Barrand, Margery A.

    2005-01-01

    Human erythrocyte membranes express the multidrug resistance-associated proteins, MRP1, MRP4 and MRP5, that collectively can efflux oxidised glutathione, glutathione conjugates and cyclic nucleotides. It is already known that the quinoline derivative, MK-571, is a potent inhibitor of MRP-mediated transport. We here examine whether the quinoline-based antimalarial drugs, amodiaquine, chloroquine, mefloquine, primaquine, quinidine and quinine, also interact with erythrocyte MRPs with consequences for their access to the intracellular parasites or for efflux of oxidised glutathione from infected cells. Using inside-out vesicles prepared from human erythrocytes we have shown that mefloquine and MK-571 inhibit transport of 3 μM [3H]DNP-SG known to be mediated by MRP1 (IC50 127 μM and 1.1 μM respectively) and of 3.3 μM [3H]cGMP thought but not proven to be mediated primarily by MRP4 (IC50 21 μM and 0.41 μM). They also inhibited transport in membrane vesicles prepared from tumour cells expressing MRP1 or MRP4 and blocked calcein efflux from MRP1 overexpressing cells and BCECF efflux from MRP4 overexpressing cells. Both stimulated ATPase activity in membranes prepared from MRP1 and MRP4 overexpressing cells and inhibited activity stimulated by quercetin or PGE1 respectively. Neither inhibited [α-32P]8-azidoATP binding confirming that the interactions are not at the ATP binding site. These results demonstrate that mefloquine and MK-571 both inhibit transport of other substrates and stimulate ATPase activity and thus may themselves be substrates for transport. But at concentrations achieved clinically mefloquine is unlikely to affect the MRP1-mediated transport of GSSG across the erythrocyte membrane. PMID:16004972

  20. In vitro reassembly of the ribose ATP-binding cassette transporter reveals a distinct set of transport complexes.

    PubMed

    Clifton, Matthew C; Simon, Michael J; Erramilli, Satchal K; Zhang, Huide; Zaitseva, Jelena; Hermodson, Mark A; Stauffacher, Cynthia V

    2015-02-27

    Bacterial ATP-binding cassette (ABC) importers are primary active transporters that are critical for nutrient uptake. Based on structural and functional studies, ABC importers can be divided into two distinct classes, type I and type II. Type I importers follow a strict alternating access mechanism that is driven by the presence of the substrate. Type II importers accept substrates in a nucleotide-free state, with hydrolysis driving an inward facing conformation. The ribose transporter in Escherichia coli is a tripartite complex consisting of a cytoplasmic ATP-binding cassette protein, RbsA, with fused nucleotide binding domains; a transmembrane domain homodimer, RbsC2; and a periplasmic substrate binding protein, RbsB. To investigate the transport mechanism of the complex RbsABC2, we probed intersubunit interactions by varying the presence of the substrate ribose and the hydrolysis cofactors, ATP/ADP and Mg(2+). We were able to purify a full complex, RbsABC2, in the presence of stable, transition state mimics (ATP, Mg(2+), and VO4); a RbsAC complex in the presence of ADP and Mg(2+); and a heretofore unobserved RbsBC complex in the absence of cofactors. The presence of excess ribose also destabilized complex formation between RbsB and RbsC. These observations suggest that RbsABC2 shares functional traits with both type I and type II importers, as well as possessing unique features, and employs a distinct mechanism relative to other ABC transporters.

  1. Do You Know Your ABC?

    ERIC Educational Resources Information Center

    Neale, Claire

    2013-01-01

    Within primary schools, the core subjects of literacy and numeracy are highly regarded, and rightly so, as children need to learn to read, write and be numerically literate. This means that all children learn their ABCs at an early age, But, what about the "other ABC"--"Airway, Breathing and Circulation?" Accidents and medical…

  2. Functional interplay between the ATP binding cassette Msr(D) protein and the membrane facilitator superfamily Mef(E) transporter for macrolide resistance in Escherichia coli.

    PubMed

    Nunez-Samudio, Virginia; Chesneau, Olivier

    2013-04-01

    Macrolides have wide clinical applications in the treatment of community-acquired respiratory tract infections, among which streptococci are the most frequent causative agents. An active efflux-based mechanism of macrolide resistance, referred to as the M phenotype in streptococcal isolates, has been associated with the presence of mef genes that encode a subset of major facilitator superfamily (MFS) transporters like Mef(E). An msr(D) gene, adjacent to and co-transcribed with mef in the presence of erythromycin, has also been implicated in drug efflux, but its role remains elusive. Msr(D) belongs to the ATP binding cassette (ABC) proteins and harbors two fused nucleotide-binding domains with no membrane-spanning domains. The present work indicates that the major resistance traits of the M phenotype in Escherichia coli may be due to Msr(D) and not to Mef(E). Fluorescence microscopy using Mef(E) tagged with GFP linked low efficacy of the chimera in conferring macrolide resistance with improper subcellular localization. The active role of Msr(D) in directing Mef(E)-GFP to the cell poles was demonstrated, as was synergistic effect in terms of levels of resistance when both proteins were expressed. A trans-dominant negative mutation within ABC Msr(D) affecting MFS Mef(E) strongly suggests that both proteins can interact in vivo, and such a physical interaction was supported in vitro. This is the first reported example of a functional interplay between an ABC component and an MFS transporter. The direct involvement of Msr(D) in the efflux of macrolides remains to be demonstrated.

  3. The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter

    PubMed Central

    Benedet, Mattia; Falchi, Federica A.; Puccio, Simone; Di Benedetto, Cristiano; Peano, Clelia; Polissi, Alessandra

    2016-01-01

    The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in γ-Proteobacteria. LptBFG constitute the IM ABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable ΔlptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptFSupC). In complementation tests, lptFSupC mutants suppress lethality of both ΔlptC and lptC conditional expression mutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine. PMID:27529623

  4. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.

    PubMed

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  5. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    SciTech Connect

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  6. ABC and IFC: Modules Detection Method for PPI Network

    PubMed Central

    Lei, Xiujuan; Tian, Jianfang

    2014-01-01

    Many clustering algorithms are unable to solve the clustering problem of protein-protein interaction (PPI) networks effectively. A novel clustering model which combines the optimization mechanism of artificial bee colony (ABC) with the fuzzy membership matrix is proposed in this paper. The proposed ABC-IFC clustering model contains two parts: searching for the optimum cluster centers using ABC mechanism and forming clusters using intuitionistic fuzzy clustering (IFC) method. Firstly, the cluster centers are set randomly and the initial clustering results are obtained by using fuzzy membership matrix. Then the cluster centers are updated through different functions of bees in ABC algorithm; then the clustering result is obtained through IFC method based on the new optimized cluster center. To illustrate its performance, the ABC-IFC method is compared with the traditional fuzzy C-means clustering and IFC method. The experimental results on MIPS dataset show that the proposed ABC-IFC method not only gets improved in terms of several commonly used evaluation criteria such as precision, recall, and P value, but also obtains a better clustering result. PMID:24991575

  7. The Absence of the Transcription Factor Yrr1p, Identified from Comparative Genome Profiling, Increased Vanillin Tolerance Due to Enhancements of ABC Transporters Expressing, rRNA Processing and Ribosome Biogenesis in Saccharomyces cerevisiae

    PubMed Central

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Shen, Yu; Bao, Xiaoming

    2017-01-01

    Enhancing the tolerance of Saccharomyces cerevisiae to inhibitors derived from lignocellulose is conducive to producing biofuel and chemicals using abundant lignocellulosic materials. Vanillin is a major type of phenolic inhibitor in lignocellulose hydrolysates for S. cerevisiae. In the present work, the factors beneficial to vanillin resistance in yeast were identified from the vanillin-resistant strain EMV-8, which was derived from strain NAN-27 by adaptive evolution. We found 450 SNPs and 44 genes with InDels in the vanillin-tolerant strain EMV-8 by comparing the genome sequences of EMV-8 and NAN-27. To investigate the effects of InDels, InDels were deleted in BY4741, respectively. We demonstrated that the deletion of YRR1 improved vanillin tolerance of strain. In the presence of 6 mM vanillin, deleting YRR1 increase the maximum specific growth rate and the vanillin consumption rate by 142 and 51%, respectively. The subsequent transcriptome analysis revealed that deleting YRR1 resulted in changed expression of over 200 genes in the presence of 5 mM vanillin. The most marked changes were the significant up-regulation of the dehydrogenase ADH7, several ATP-binding cassette (ABC) transporters, and dozens of genes involved in ribosome biogenesis and rRNA processing. Coincidently, the crude enzyme solution of BY4741(yrr1Δ) exhibited higher NADPH-dependent vanillin reduction activity than control. In addition, overexpressing the ABC transporter genes PDR5, YOR1, and SNQ2, as well as the RNA helicase gene DBP2, increased the vanillin tolerance of strain. Interestingly, unlike the marked changes we mentioned above, under vanillin-free conditions, there are only limited transcriptional differences between wildtype and yrr1Δ. This indicated that vanillin might act as an effector in Yrr1p-related regulatory processes. The new findings of the relationship between YRR1 and vanillin tolerance, as well as the contribution of rRNA processing and ribosome biogenesis to

  8. The ABCs of plasmid replication and segregation.

    PubMed

    Pinto, Uelinton M; Pappas, Katherine M; Winans, Stephen C

    2012-11-01

    To ensure faithful transmission of low-copy plasmids to daughter cells, these plasmids must replicate once per cell cycle and distribute the replicated DNA to the nascent daughter cells. RepABC family plasmids are found exclusively in alphaproteobacteria and carry a combined replication and partitioning locus, the repABC cassette, which is also found on secondary chromosomes in this group. RepC and a replication origin are essential for plasmid replication, and RepA, RepB and the partitioning sites distribute the replicons to predivisional cells. Here, we review our current understanding of the transcriptional and post-transcriptional regulation of the Rep proteins and of their functions in plasmid replication and partitioning.

  9. Identification of immunodominant proteins from Mannheimia haemolytica and Histophilus somni by an immunoproteomic approach

    PubMed Central

    Alvarez, Angel H.; Gutiérrez-Ortega, Abel; Hernández-Gutiérrez, Rodolfo

    2015-01-01

    Mannheimia haemolytica and Histophilus somni are frequently isolated from diseased cattle with bovine respiratory disease (BRD). They compromise animal lung function and the immune responses generated are not sufficient to limit infection. Identification of specific immunogenic antigens for vaccine development represents a great challenge. Immunogenic proteins were identified by immunoproteomic approach with sera from cattle immunized with a commercial cellular vaccine of M. haemolytica and H. somni. Proteins of M. haemolytica were identified as solute ABC transporter, iron-binding protein, and hypothetical protein of capsular biosynthesis. Histophilus somni proteins correspond to porin, amino acid ABC transporter, hypothetical outer membrane protein, cysteine synthase, and outer membrane protein P6. Although these antigens share strong similarities with other proteins from animal pathogens, the ABC system proteins have been associated with virulence and these proteins could be considered as potential vaccine candidates for BRD. PMID:26424916

  10. Protein transport across the small intestine in food allergy.

    PubMed

    Reitsma, Marit; Westerhout, Joost; Wichers, Harry J; Wortelboer, Heleen M; Verhoeckx, Kitty C M

    2014-01-01

    In view of the imminent deficiency of protein sources for human consumption in the near future, new protein sources need to be identified. However, safety issues such as the risk of allergenicity are often a bottleneck, due to the absence of predictive, validated and accepted methods for risk assessment. The current strategy to assess the allergenic potential of proteins focuses mainly on homology, stability and cross-reactivity, although other factors such as intestinal transport might be of added value too. In this review, we present an overview of the knowledge of protein transport across the intestinal wall and the methods currently being used to measure this. A literature study reveals that protein transport in sensitised persons occurs para-cellularly with the involvement of mast cells, and trans-cellularly via enterocytes, while in non-sensitised persons micro-fold cells and enterocytes are considered most important. However, there is a lack of comparable systematic studies on transport of allergenic proteins. Knowledge of the multiple protein transport pathways and which model system can be useful to study these processes may be of added value in the risk assessment of food allergenicity.

  11. Placenta Copper Transport Proteins in Preeclampsia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Placental insufficiency underlying preeclampsia (PE) is associated with impaired placental angiogenesis. As copper (Cu) is essential to angiogenesis, we investigated differences in the expression of placental Cu transporters Menkes (ATP7A), Wilsons (ATP7B) and the Cu chaperone (CCS) for superoxide d...

  12. Biomimetic materials for protein storage and transport

    DOEpatents

    Firestone, Millicent A [Elmhurst, IL; Laible, Philip D [Villa Park, IL

    2012-05-01

    The invention provides a method for the insertion of protein in storage vehicles and the recovery of the proteins from the vehicles, the method comprising supplying isolated protein; mixing the isolated protein with a fluid so as to form a mixture, the fluid comprising saturated phospholipids, lipopolymers, and a surfactant; cycling the mixture between a first temperature and a second temperature; maintaining the mixture as a solid for an indefinite period of time; diluting the mixture in detergent buffer so as to disrupt the composition of the mixture, and diluting to disrupt the fluid in its low viscosity state for removal of the guest molecules by, for example, dialysis, filtering or chromatography dialyzing/filtering the emulsified solid.

  13. A molecular understanding of ATP-dependent solute transport by multidrug resistance-associated protein MRP1.

    PubMed

    Chang, Xiu-bao

    2007-03-01

    Over a million new cases of cancers are diagnosed each year in the United States and over half of these patients die from these devastating diseases. Thus, cancers cause a major public health problem in the United States and worldwide. Chemotherapy remains the principal mode to treat many metastatic cancers. However, occurrence of cellular multidrug resistance (MDR) prevents efficient killing of cancer cells, leading to chemotherapeutic treatment failure. Numerous mechanisms of MDR exist in cancer cells, such as intrinsic or acquired MDR. Overexpression of ATP-binding cassette (ABC) drug transporters, such as P-glycoprotein (P-gp or ABCB1), breast cancer resistance protein (BCRP or ABCG2) and/or multidrug resistance-associated protein (MRP1 or ABCC1), confers an acquired MDR due to their capabilities of transporting a broad range of chemically diverse anticancer drugs. In addition to their roles in MDR, there is substantial evidence suggesting that these drug transporters have functions in tissue defense. Basically, these drug transporters are expressed in tissues important for absorption, such as in lung and gut, and for metabolism and elimination, such as in liver and kidney. In addition, these drug transporters play an important role in maintaining the barrier function of many tissues including blood-brain barrier, blood-cerebral spinal fluid barrier, blood-testis barrier and the maternal-fetal barrier. Thus, these ATP-dependent drug transporters play an important role in the absorption, disposition and elimination of the structurally diverse array of the endobiotics and xenobiotics. In this review, the molecular mechanism of ATP-dependent solute transport by MRP1 will be addressed.

  14. Sequencing proteins with transverse ionic transport

    NASA Astrophysics Data System (ADS)

    Boynton, Paul; di Ventra, Massimiliano

    2015-03-01

    De novo protein sequencing is essential for understanding cellular processes that govern the function of living organisms. By obtaining the order of the amino acids that composes a given protein one can determine both its secondary and tertiary structures through protein structure prediction, which is used to create models for protein aggregation diseases such as Alzheimer's Disease. Mass spectrometry is the current technique of choice for de novo sequencing, but because some amino acids have the same mass the sequence cannot be completely determined in many cases. In this paper we propose a new technique for de novo protein sequencing that involves translocating a polypeptide through a synthetic nanochannel and measuring the ionic current of each amino acid through an intersecting perpendicular nanochannel, similar to that proposed in for DNA sequencing. Indeed, we find that the distribution of ionic currents for each of the 20 proteinogenic amino acids encoded by eukaryotic genes is statistically distinct, showing this technique's potential for de novo protein sequencing.

  15. The calcium channel blockers, 1,4-dihydropyridines, are substrates of the multidrug resistance-linked ABC drug transporter, ABCG2.

    PubMed

    Shukla, Suneet; Robey, Robert W; Bates, Susan E; Ambudkar, Suresh V

    2006-07-25

    The human ATP-binding cassette transporter, ABCG2, confers resistance to multiple chemotherapeutic agents and also affects the bioavailability of different drugs. [(125)I]Iodoarylazidoprazosin (IAAP) and [(3)H]azidopine were used for photoaffinity labeling of ABCG2 in this study. We show here for the first time that both of these photoaffinity analogues are transport substrates for ABCG2 and that [(3)H]azidopine can also be used to photolabel both wild-type R482-ABCG2 and mutant T482-ABCG2. We further used these assays to screen for potential substrates or modulators of ABCG2 and observed that 1,4-dihydropyridines such as nicardipine and nifedipine, which are clinically used as antihypertensive agents, inhibited the photolabeling of ABCG2 with [(125)I]IAAP and [(3)H]azidopine as well as the transport of these photoaffinity analogues by ABCG2. Furthermore, [(3)H]nitrendipine and bodipy-Fl-dihydropyridine accumulation assays showed that these compounds are transported by ABCG2. These dihydropyridines also inhibited the efflux of the known ABCG2 substrates, mitoxantrone and pheophorbide-a, from ABCG2-overexpressing cells, and nicardipine was more potent in inhibiting this transport. Both nicardipine and nifedipine stimulated the ATPase activity of ABCG2, and the nifedipine-stimulated activity was inhibited by fumitremorgin C, suggesting that these agents might interact at the same site on the transporter. In addition, nontoxic concentrations of dihydropyridines increased the sensitivity of ABCG2-expressing cells to mitoxantrone by 3-5-fold. In aggregate, results from the photoaffinity labeling and efflux assays using [(125)I]IAAP and [(3)H]azidopine demonstrate that 1,4-dihydropyridines are substrates of ABCG2 and that these photolabels can be used to screen new substrates and/or inhibitors of this transporter.

  16. The Sec translocon mediated protein transport in prokaryotes and eukaryotes.

    PubMed

    Denks, Kärt; Vogt, Andreas; Sachelaru, Ilie; Petriman, Narcis-Adrian; Kudva, Renuka; Koch, Hans-Georg

    2014-01-01

    Protein transport via the Sec translocon represents an evolutionary conserved mechanism for delivering cytosolically-synthesized proteins to extra-cytosolic compartments. The Sec translocon has a three-subunit core, termed Sec61 in Eukaryotes and SecYEG in Bacteria. It is located in the endoplasmic reticulum of Eukaryotes and in the cytoplasmic membrane of Bacteria where it constitutes a channel that can be activated by multiple partner proteins. These partner proteins determine the mechanism of polypeptide movement across the channel. During SRP-dependent co-translational targeting, the ribosome threads the nascent protein directly into the Sec channel. This pathway is in Bacteria mainly dedicated for membrane proteins but in Eukaryotes also employed by secretory proteins. The alternative pathway, leading to post-translational translocation across the Sec translocon engages an ATP-dependent pushing mechanism by the motor protein SecA in Bacteria and a ratcheting mechanism by the lumenal chaperone BiP in Eukaryotes. Protein transport and biogenesis is also assisted by additional proteins at the lateral gate of SecY/Sec61α and in the lumen of the endoplasmic reticulum or in the periplasm of bacterial cells. The modular assembly enables the Sec complex to transport a vast array of substrates. In this review we summarize recent biochemical and structural information on the prokaryotic and eukaryotic Sec translocons and we describe the remarkably complex interaction network of the Sec complexes.

  17. Expression and putative role of mitochondrial transport proteins in cancer.

    PubMed

    Lytovchenko, Oleksandr; Kunji, Edmund R S

    2017-03-22

    Cancer cells undergo major changes in energy and biosynthetic metabolism. One of them is the Warburg effect, in which pyruvate is used for fermentation rather for oxidative phosphorylation. Another major one is their increased reliance on glutamine, which helps to replenish the pool of Krebs cycle metabolites used for other purposes, such as amino acid or lipid biosynthesis. Mitochondria are central to these alterations, as the biochemical pathways linking these processes run through these organelles. Two membranes, an outer and inner membrane, surround mitochondria, the latter being impermeable to most organic compounds. Therefore, a large number of transport proteins are needed to link the biochemical pathways of the cytosol and mitochondrial matrix. Since the transport steps are relatively slow, it is expected that many of these transport steps are altered when cells become cancerous. In this review, changes in expression and regulation of these transport proteins are discussed as well as the role of the transported substrates.

  18. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR.

    PubMed

    Terán, Wilson; Felipe, Antonia; Segura, Ana; Rojas, Antonia; Ramos, Juan-Luis; Gallegos, María-Trinidad

    2003-10-01

    Pseudomonas putida is well known for its metabolic capabilities, but recently, it has been shown to exhibit resistance to a wide range of antibiotics. In P. putida DOT-T1E, the TtgABC efflux pump, which has a broad substrate specificity, extrudes antibiotics such as ampicillin, carbenicillin, tetracycline, nalidixic acid, and chloramphenicol. We have analyzed the expression of the ttgABC efflux pump operon and its regulatory gene, ttgR, in response to several structurally unrelated antibiotics at the transcriptional level and investigated the role of the TtgR protein in this process. ttgABC and ttgR are expressed in vivo at a moderate basal level, which increases in the presence of hydrophobic antibiotics like chloramphenicol and tetracycline. In vitro experiments show that, in the absence of inducers, TtgR binds to a palindromic operator site which overlaps both ttgABC and ttgR promoters and dissociates from it in the presence of chloramphenicol and tetracycline. These results suggest that the TtgR repressor is able to bind to structurally different antibiotics, which allows induction of TtgABC multidrug efflux pump expression in response to these antimicrobial agents. This is the first case in which the expression of a drug transporter of the resistance-nodulation-division family has been shown to be regulated directly by antibiotics.

  19. IFT-Cargo Interactions and Protein Transport in Cilia.

    PubMed

    Lechtreck, Karl F

    2015-12-01

    The motile and sensory functions of cilia and flagella are indispensable for human health. Cilia assembly requires a dedicated protein shuttle, intraflagellar transport (IFT), a bidirectional motility of multi-megadalton protein arrays along ciliary microtubules. IFT functions as a protein carrier delivering hundreds of distinct proteins into growing cilia. IFT-based protein import and export continue in fully grown cilia and are required for ciliary maintenance and sensing. Large ciliary building blocks might depend on IFT to move through the transition zone, which functions as a ciliary gate. Smaller, freely diffusing proteins, such as tubulin, depend on IFT to be concentrated or removed from cilia. As I discuss here, recent work provides insights into how IFT interacts with its cargoes and how the transport is regulated.

  20. FK520 interacts with the discrete intrahelical amino acids of multidrug transporter Cdr1 protein and acts as antagonist to selectively chemosensitize azole-resistant clinical isolates of Candida albicans.

    PubMed

    Nim, Shweta; Rawal, Manpreet K; Prasad, Rajendra

    2014-06-01

    FK520, a homolog of antifungal FK506, displays fungicidal synergism with azoles in Candida albicans and inhibits drug efflux mediated by ABC multidrug transporter. This study establishes the molecular basis of interaction of FK520 with Cdr1 protein, which is one of the major ABC multidrug transporters of C. albicans. For this, we have exploited an in-house library of Cdr1 protein consisting of 252 mutant variants where the entire primary structure of the two transmembrane domains comprising of 12 transmembrane helices was subjected to alanine scanning. With these mutant variants of Cdr1 protein, we could identify the critical amino acids of the transporter protein, which if replaced with alanine, not only abrogated FK520-dependent competitive inhibition of drug efflux but simultaneously decreased susceptibility to azoles. Notably, the replacement of most of the residues with alanine was inconsequential; however, there were close to 13% mutant variants, which showed abrogation of drug efflux and reversal of fungicidal synergy with azoles. Of note, all the intrahelical residues of Cdr1 protein, which abrogated inhibitor's ability to block the efflux and reversed fungicidal synergy, were common. Taken together, our results provide evidence of cross-talk of FK520 with Cdr1 by interacting with the select intrahelical residues of the protein to chemosensitize isolates of Candida.

  1. Direct observation of electrogenic NH4+ transport in ammonium transport (Amt) proteins

    PubMed Central

    Wacker, Tobias; Garcia-Celma, Juan J.; Lewe, Philipp; Andrade, Susana L. A.

    2014-01-01

    Ammonium transport (Amt) proteins form a ubiquitous family of integral membrane proteins that specifically shuttle ammonium across membranes. In prokaryotes, archaea, and plants, Amts are used as environmental NH4+ scavengers for uptake and assimilation of nitrogen. In the eukaryotic homologs, the Rhesus proteins, NH4+/NH3 transport is used instead in acid–base and pH homeostasis in kidney or NH4+/NH3 (and eventually CO2) detoxification in erythrocytes. Crystal structures and variant proteins are available, but the inherent challenges associated with the unambiguous identification of substrate and monitoring of transport events severely inhibit further progress in the field. Here we report a reliable in vitro assay that allows us to quantify the electrogenic capacity of Amt proteins. Using solid-supported membrane (SSM)-based electrophysiology, we have investigated the three Amt orthologs from the euryarchaeon Archaeoglobus fulgidus. Af-Amt1 and Af-Amt3 are electrogenic and transport the ammonium and methylammonium cation with high specificity. Transport is pH-dependent, with a steep decline at pH values of ∼5.0. Despite significant sequence homologies, functional differences between the three proteins became apparent. SSM electrophysiology provides a long-sought-after functional assay for the ubiquitous ammonium transporters. PMID:24958855

  2. An ABC transporter, OsABCG26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice.

    PubMed

    Chang, Zhenyi; Chen, Zhufeng; Yan, Wei; Xie, Gang; Lu, Jiawei; Wang, Na; Lu, Qiqing; Yao, Nan; Yang, Guangzhe; Xia, Jixing; Tang, Xiaoyan

    2016-12-01

    Wax, cutin and sporopollenin are essential components for the formation of the anther cuticle and the pollen exine, respectively. Their lipid precursors are synthesized by secretory tapetal cells and transported to the anther and microspore surface for deposition. However, the molecular mechanisms involved in the formation of the anther cuticle and pollen exine are poorly understood in rice. Here, we characterized a rice male sterile mutant osabcg26. Molecular cloning and sequence analysis revealed a point mutation in the gene encoding an ATP binding cassette transporter G26 (OsABCG26). OsABCG26 was specifically expressed in the anther and pistil. Cytological analysis revealed defects in tapetal cells, lipidic Ubisch bodies, pollen exine, and anther cuticle in the osabcg26 mutant. Expression of some key genes involved in lipid metabolism and transport, such as UDT1, WDA1, CYP704B2, OsABCG15, OsC4 and OsC6, was significantly altered in osabcg26 anther, possibly due to a disturbance in the homeostasis of anther lipid metabolism and transport. Additionally, wild-type pollen tubes showed a growth defect in osabcg26 pistils, leading to low seed setting in osabcg26 cross-pollinated with the wild-type pollen. These results indicated that OsABCG26 plays an important role in anther cuticle and pollen exine formation and pollen-pistil interactions in rice.

  3. The PIN-FORMED (PIN) protein family of auxin transporters

    PubMed Central

    2009-01-01

    Summary The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies. PMID:20053306

  4. Mechanistic logic underlying the axonal transport of cytosolic proteins

    PubMed Central

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  5. Conformational plasticity of the type I maltose ABC importer.

    PubMed

    Böhm, Simon; Licht, Anke; Wuttge, Steven; Schneider, Erwin; Bordignon, Enrica

    2013-04-02

    ATP-binding cassette (ABC) transporters couple the translocation of solutes across membranes to ATP hydrolysis. Crystal structures of the Escherichia coli maltose importer (MalFGK2) in complex with its substrate binding protein (MalE) provided unprecedented insights in the mechanism of substrate translocation, leaving the MalE-transporter interactions still poorly understood. Using pulsed EPR and cross-linking methods we investigated the effects of maltose and MalE on complex formation and correlated motions of the MalK2 nucleotide-binding domains (NBDs). We found that both substrate-free (open) and liganded (closed) MalE interact with the transporter with similar affinity in all nucleotide states. In the apo-state, binding of open MalE occurs via the N-lobe, leaving the C-lobe disordered, but upon maltose binding, closed MalE associates tighter to the transporter. In both cases the NBDs remain open. In the presence of ATP, the transporter binds both substrate-free and liganded MalE, both inducing the outward-facing conformation trapped in the crystal with open MalE at the periplasmic side and NBDs tightly closed. In contrast to ATP, ADP-Mg(2+) alone is sufficient to induce a semiopen conformation in the NBDs. In this nucleotide-driven state, the transporter binds both open and closed MalE with slightly different periplasmic configurations. We also found that dissociation of MalE is not a required step for substrate translocation since a supercomplex with MalE cross-linked to MalG retains the ability to hydrolyze ATP and to transport maltose. These features of MalE-MalFGK2 interactions highlight the conformational plasticity of the maltose importer, providing insights into the ATPase stimulation by unliganded MalE.

  6. The ABCs of Sex Ed.

    ERIC Educational Resources Information Center

    Sroka, Stephen R.

    2002-01-01

    Cites statistics on extent of sexually transmitted diseases and pregnancies among adolescents; describes ideological dispute over how to teach sex education; advocates teaching the ABCs of sex education: Abstinence, Be Monogamous, and Condoms. (PKP)

  7. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis.

    PubMed

    Brunetti, Patrizia; Zanella, Letizia; De Paolis, Angelo; Di Litta, Davide; Cecchetti, Valentina; Falasca, Giuseppina; Barbieri, Maurizio; Altamura, Maria Maddalena; Costantino, Paolo; Cardarelli, Maura

    2015-07-01

    The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC-Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC-Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2.

  8. Extra domains in secondary transport carriers and channel proteins.

    PubMed

    Barabote, Ravi D; Tamang, Dorjee G; Abeywardena, Shannon N; Fallah, Neda S; Fu, Jeffrey Yu Chung; Lio, Jeffrey K; Mirhosseini, Pegah; Pezeshk, Ronnie; Podell, Sheila; Salampessy, Marnae L; Thever, Mark D; Saier, Milton H

    2006-10-01

    "Extra" domains in members of the families of secondary transport carrier and channel proteins provide secondary functions that expand, amplify or restrict the functional nature of these proteins. Domains in secondary carriers include TrkA and SPX domains in DASS family members, DedA domains in TRAP-T family members (both of the IT superfamily), Kazal-2 and PDZ domains in OAT family members (of the MF superfamily), USP, IIA(Fru) and TrkA domains in ABT family members (of the APC superfamily), ricin domains in OST family members, and TrkA domains in AAE family members. Some transporters contain highly hydrophilic domains consisting of multiple repeat units that can also be found in proteins of dissimilar function. Similarly, transmembrane alpha-helical channel-forming proteins contain unique, conserved, hydrophilic domains, most of which are not found in carriers. In some cases the functions of these domains are known. They may be ligand binding domains, phosphorylation domains, signal transduction domains, protein/protein interaction domains or complex carbohydrate-binding domains. These domains mediate regulation, subunit interactions, or subcellular targeting. Phylogenetic analyses show that while some of these domains are restricted to closely related proteins derived from specific organismal types, others are nearly ubiquitous within a particular family of transporters and occur in a tremendous diversity of organisms. The former probably became associated with the transporters late in the evolutionary process; the latter probably became associated with the carriers much earlier. These domains can be located at either end of the transporter or in a central region, depending on the domain and transporter family. These studies provide useful information about the evolution of extra domains in channels and secondary carriers and provide novel clues concerning function.

  9. Position-dependent effects of polylysine on Sec protein transport.

    PubMed

    Liang, Fu-Cheng; Bageshwar, Umesh K; Musser, Siegfried M

    2012-04-13

    The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or "pause sites," were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport.

  10. Anchors aweigh: protein localization and transport mediated by transmembrane domains.

    PubMed

    Cosson, Pierre; Perrin, Jackie; Bonifacino, Juan S

    2013-10-01

    The transmembrane domains (TMDs) of integral membrane proteins have emerged as major determinants of intracellular localization and transport in the secretory and endocytic pathways. Unlike sorting signals in cytosolic domains, TMD sorting determinants are not conserved amino acid sequences but physical properties such as the length and hydrophilicity of the transmembrane span. The underlying sorting machinery is still poorly characterized, but several mechanisms have been proposed, including TMD recognition by transmembrane sorting receptors and partitioning into membrane lipid domains. Here we review the nature of TMD sorting determinants and how they may dictate transmembrane protein localization and transport.

  11. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1

    PubMed Central

    Klappe, Karin; Dijkhuis, Anne-Jan; Hummel, Ina; vanDam, Annie; Ivanova, Pavlina T.; Milne, Stephen B.; Myers, David S.; Brown, H. Alex; Permentier, Hjalmar; Kok, Jan W.

    2013-01-01

    We show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal amounts of protein, cholesterol and phospholipid, whereas the classical DRM/lipid raft markers Src, caveolin-1 and flotillin display the same gradient distribution. DRMs/detergent-free lipid rafts themselves are severely depleted of sphingolipids. The fatty acid profile of the remaining sphingolipids as well as that of the glycerophospholipids shows several differences compared with control, most prominently an increase in highly saturated C16 species. The glycerophospholipid headgroup composition is unchanged in sphingolipid-depleted cells and cell-derived detergent-free lipid rafts. Sphingolipid depletion does not alter the localization of MRP1 (multidrug-resistance-related protein 1) in DRMs/detergent-free lipid rafts or MRP1-mediated efflux of carboxyfluorescein. We conclude that extensive sphingolipid depletion does not affect lipid raft integrity in two cell lines and does not affect the function of the lipid-raft-associated protein MRP1. PMID:20604746

  12. Anion transport by the cochlear motor protein prestin.

    PubMed

    Schänzler, Michael; Fahlke, Christoph

    2012-01-15

    Prestin is a member of the SLC26 solute carrier family and functions as a motor protein in cochlear outer hair cells. While other SLC26 homologues were demonstrated to transport a wide variety of anions, no electrogenic transport activity has been assigned so far to mammalian prestin. We here use heterologous expression in mammalian cells, patch clamp recordings and measurements of expression levels of individual cells to study anion transport by rat prestin. We demonstrated that cells expressing rat prestin exhibit SCN(-) currents that are proportional to the number of prestin molecules. Variation of the SCN(-) concentration resulted in changes of the current reversal potential that obey the Nernst equation indicating that SCN(-) transport is not stoichiometrically coupled to other anions. Application of external SCN(-) causes large increases of anion currents, but only minor changes in non-linear charge movements suggesting that only a very small percentage of prestin molecules function as SCN(-) transporters under these conditions. Unitary current amplitudes are below the resolution limit of noise analysis and thus much smaller than expected for pore-mediated anion transport. A comparison with a non-mammalian prestin from D. rerio - recently shown to function as Cl(-)/SO(4)(2-) antiporter - and an SLC26 anion channel, human SLC26A7, revealed that SCN(-) transport is conserved in these distinct members of the SLC26 family. We conclude that mammalian prestin is capable of mediating electrogenic anion transport and suggest that SLC26 proteins converting membrane voltage oscillations into conformational changes and those functioning as channels or transporters share certain transport capabilities.

  13. Transcriptional regulation, metal binding properties and structure of Pden1597, an unusual zinc transport protein from Paracoccus denitrificans

    DOE PAGES

    Handali, Melody; Neupane, Durga P.; Roychowdhury, Hridindu; ...

    2015-03-18

    Here, ATP-binding cassette (ABC) transporters of the cluster 9 family are ubiquitous among bacteria and essential for acquiring Zn2+ and Mn2+ from the environment or, in the case of pathogens, from the host. These rely on a substrate-binding protein (SBP) to coordinate the relevant metal with high affinity and specificity and subsequently release it to a membrane permease for translocation into the cytoplasm. Although a number of cluster 9 SBP structures have been determined, the structural attributes conferring Zn2+ or Mn2+ specificity remain ambiguous. Here we describe the gene expression profile, in vitro metal binding properties, and crystal structure ofmore » a new cluster 9 SBP from Paracoccus denitrificans we have called AztC. Although all of our results strongly indicate Zn2+ over Mn2+ specificity, the Zn2+ ion is coordinated by a conserved Asp residue only observed to date as a metal ligand in Mn2+-specific SBPs. The unusual sequence properties of this protein are shared among close homologues, including members from the human pathogens Klebsiella pneumonia and Enterobacter aerogenes, and would seem to suggest a subclass of Zn2+-specific transporters among the cluster 9 family. In any case, the unusual coordination environment of AztC expands the already considerable range of those available to Zn2+-specific SBPs and highlights the presence of a His-rich loop as the most reliable indicator of Zn2+ specificity.« less

  14. Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB.

    PubMed

    Tikhonova, Elena B; Devroy, Vishakha K; Lau, Sze Yi; Zgurskaya, Helen I

    2007-02-01

    Periplasmic membrane fusion proteins (MFPs) are essential components of the type I protein secretion systems and drug efflux pumps in Gram-negative bacteria. Previous studies suggested that MFPs connect the inner and outer membrane components of the transport systems and by this means co-ordinate the transfer of substrates across the two membranes. In this study, we purified and reconstituted the macrolide transporter MacAB from Escherichia coli. Here, MacA is a periplasmic MFP and MacB is an ABC-type transporter. Similar to other MFP-dependent transporters from E. coli, the in vivo function of MacAB requires the outer membrane channel TolC. The purified MacB displayed a basal ATPase activity in detergent micelles. This activity conformed to Michaelis-Menten kinetics but was unresponsive to substrates or accessory proteins. Upon reconstitution into proteoliposomes, the ATPase activity of MacB was strictly dependent on MacA. The catalytic efficiency of MacAB ATPase was more than 45-fold higher than the activity of MacB alone. Both the N- and C-terminal regions of MacA were essential for this activity. MacA stimulated MacB ATPase only in phospholipid bilayers and did not need the presence of macrolides. Our results suggest that MacA is a functional subunit of the MacB transporter.

  15. Charge transport in disordered films of non-redox proteins

    NASA Astrophysics Data System (ADS)

    Pompa, P. P.; Della Torre, A.; del Mercato, L. L.; Chiuri, R.; Bramanti, A.; Calabi, F.; Maruccio, G.; Cingolani, R.; Rinaldi, R.

    2006-07-01

    Electrical conduction in solid state disordered multilayers of non-redox proteins is demonstrated by two-terminal transport experiments at the nanoscale and by scanning tunneling microscopy (STM/STS experiments). We also show that the conduction of the biomolecular films can be modulated by means of a gate field. These results may lead to the implementation of protein-based three-terminal nanodevices and open important new perspectives for a wide range of bioelectronic/biosensing applications.

  16. Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect.

    PubMed

    Xiao, Yutao; Liu, Kaiyu; Zhang, Dandan; Gong, Lingling; He, Fei; Soberón, Mario; Bravo, Alejandra; Tabashnik, Bruce E; Wu, Kongming

    2016-02-01

    Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. Recent efforts to delay pest adaptation to Bt crops focus primarily on combinations of two or more Bt toxins that kill the same pest, but this approach is often compromised because resistance to one Bt toxin causes cross-resistance to others. Thus, integration of Bt toxins with alternative controls that do not exhibit such cross-resistance is urgently needed. The ideal scenario of negative cross-resistance, where selection for resistance to a Bt toxin increases susceptibility to alternative controls, has been elusive. Here we discovered that selection of the global crop pest, Helicoverpa armigera, for >1000-fold resistance to Bt toxin Cry1Ac increased susceptibility to abamectin and spineotram, insecticides derived from the soil bacteria Streptomyces avermitilis and Saccharopolyspora spinosa, respectively. Resistance to Cry1Ac did not affect susceptibility to the cyclodiene, organophospate, or pyrethroid insecticides tested. Whereas previous work demonstrated that the resistance to Cry1Ac in the strain analyzed here is conferred by a mutation disrupting an ATP-binding cassette protein named ABCC2, the new results show that increased susceptibility to abamectin is genetically linked with the same mutation. Moreover, RNAi silencing of HaABCC2 not only decreased susceptibility to Cry1Ac, it also increased susceptibility to abamectin. The mutation disrupting ABCC2 reduced removal of abamectin in live larvae and in transfected Hi5 cells. The results imply that negative cross-resistance occurs because the wild type ABCC2 protein plays a key role in conferring susceptibility to Cry1Ac and in decreasing susceptibility to abamectin. The negative cross-resistance between a Bt toxin and other bacterial insecticides reported here may facilitate more sustainable pest control.

  17. Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect

    PubMed Central

    Zhang, Dandan; Gong, Lingling; He, Fei; Soberón, Mario; Bravo, Alejandra; Tabashnik, Bruce E.; Wu, Kongming

    2016-01-01

    Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. Recent efforts to delay pest adaptation to Bt crops focus primarily on combinations of two or more Bt toxins that kill the same pest, but this approach is often compromised because resistance to one Bt toxin causes cross-resistance to others. Thus, integration of Bt toxins with alternative controls that do not exhibit such cross-resistance is urgently needed. The ideal scenario of negative cross-resistance, where selection for resistance to a Bt toxin increases susceptibility to alternative controls, has been elusive. Here we discovered that selection of the global crop pest, Helicoverpa armigera, for >1000-fold resistance to Bt toxin Cry1Ac increased susceptibility to abamectin and spineotram, insecticides derived from the soil bacteria Streptomyces avermitilis and Saccharopolyspora spinosa, respectively. Resistance to Cry1Ac did not affect susceptibility to the cyclodiene, organophospate, or pyrethroid insecticides tested. Whereas previous work demonstrated that the resistance to Cry1Ac in the strain analyzed here is conferred by a mutation disrupting an ATP-binding cassette protein named ABCC2, the new results show that increased susceptibility to abamectin is genetically linked with the same mutation. Moreover, RNAi silencing of HaABCC2 not only decreased susceptibility to Cry1Ac, it also increased susceptibility to abamectin. The mutation disrupting ABCC2 reduced removal of abamectin in live larvae and in transfected Hi5 cells. The results imply that negative cross-resistance occurs because the wild type ABCC2 protein plays a key role in conferring susceptibility to Cry1Ac and in decreasing susceptibility to abamectin. The negative cross-resistance between a Bt toxin and other bacterial insecticides reported here may facilitate more sustainable pest control. PMID:26872031

  18. Characterization of the mmsAB-araD1 (gguABC) genes of Agrobacterium tumefaciens.

    PubMed

    Zhao, Jinlei; Binns, Andrew N

    2011-12-01

    The chvE-gguABC operon plays a critical role in both virulence and sugar utilization through the activities of the periplasmic ChvE protein, which binds to a variety of sugars. The roles of the GguA, GguB, and GguC are not known. While GguA and GguB are homologous to bacterial ABC transporters, earlier genetic analysis indicated that they were not necessary for utilization of sugars as the sole carbon source. To further examine this issue, in-frame deletions were constructed separately for each of the three genes. Our growth analysis clearly indicated that GguA and GguB play a role in sugar utilization and strongly suggests that GguAB constitute an ABC transporter with a wide range of substrates, including L-arabinose, D-fucose, D-galactose, D-glucose, and D-xylose. Site-directed mutagenesis showed that a Walker A motif was vital to the function of GguA. We therefore propose renaming gguAB as mmsAB, for multiple monosaccharide transport. A gguC deletion affected growth only on L-arabinose medium, suggesting that gguC encodes an enzyme specific to L-arabinose metabolism, and this gene was renamed araD1. Results from bioinformatics and experimental analyses indicate that Agrobacterium tumefaciens uses a pathway involving nonphosphorylated intermediates to catabolize L-arabinose via an L-arabinose dehydrogenase, AraA(At), encoded at the Atu1113 locus.

  19. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein.

    PubMed

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V; Xia, Di

    2016-08-01

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space group P1), with unit-cell parameters a = 40.67, b = 44.91, c = 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  20. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein

    SciTech Connect

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V.; Xia, Di

    2016-07-27

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  1. Regulation of polar auxin transport by protein and lipid kinases

    PubMed Central

    Jaillais, Yvon

    2016-01-01

    The directional transport of auxin, known as polar auxin transport, allows asymmetric distribution of this hormone in different cells and tissues. This system creates local auxin maxima, minima and gradients that are instrumental in both organ initiation and shape determination. As such, polar auxin transport is crucial for all aspects of plant development but also for environmental interaction, notably in shaping plant architecture to its environment. Cell-to-cell auxin transport is mediated by a network of auxin carriers that are regulated at the transcriptional and post-translational levels. Here we review our current knowledge on some aspects of the ‘non-genomic’ regulation of auxin transport, putting an emphasis on how phosphorylation by protein and lipid kinases controls the polarity, intracellular trafficking, stability and activity of auxin carriers. We describe the role of several AGC kinases, including PINOID, D6PK and the blue light photoreceptor phot1, in phosphorylating auxin carriers from the PIN and ABCB families. We also highlight the function of some Receptor-Like Kinases (RLK) and two-component histidine kinase receptors in polar auxin transport, noticing that there are likely RLKs involved in coordinating auxin distribution yet to be discovered. In addition, we describe the emerging role of phospholipid phosphorylation in polarity establishment and intracellular trafficking of PIN proteins. We outline these various phosphorylation mechanisms in the context of primary and lateral root development, leaf cell shape acquisition as well as root gravitropism and shoot phototropism. PMID:27242371

  2. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.

    PubMed

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude

    2013-09-12

    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.

  3. Multiple ATP-binding cassette transporters are involved in insecticide resistance in the small brown planthopper, Laodelphax striatellus.

    PubMed

    Sun, H; Pu, J; Chen, F; Wang, J; Han, Z

    2017-03-16

    ATP-binding cassette (ABC) transporters are membrane-bound proteins involved in the movement of various substrates, including drugs and insecticides, across the lipid membrane. Demonstration of the role of human ABC transporters in multidrug resistance has led to speculation that they might be an important mechanism controlling the fate of insecticides in insects. However, the role of ABC transporters in insects remains largely unknown. The small brown planthopper, Laodelphax striatellus Fallén, has developed resistance to most of the insecticides used for its control. Our goals were to identify the ABC transporters in La. striatellus and to examine their involvement in resistance mechanisms, using related strains resistant to chlorpyrifos, deltamethrin and imidacloprid, compared with the susceptible strain. Based on the transcriptome of La. striatellus, 40 full-length ABC transporters belonging to the ABCA-ABCH subfamilies were identified. Quantitative PCR revealed that over 20% of genes were significantly up-regulated in different resistant strains, and eight genes from the ABCB/C/D/G subfamilies were up-regulated in all three resistant strains, compared with the susceptible strain. Furthermore, synergism studies showed verapamil significantly enhanced insecticide toxicity in various resistant strains but not in the susceptible strain. These results suggest that ABC transporters might be involved in resistance to multiple insecticides in La. striatellus.

  4. INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate.

    PubMed

    Moser von Filseck, Joachim; Čopič, Alenka; Delfosse, Vanessa; Vanni, Stefano; Jackson, Catherine L; Bourguet, William; Drin, Guillaume

    2015-07-24

    In eukaryotic cells, phosphatidylserine (PS) is synthesized in the endoplasmic reticulum (ER) but is highly enriched in the plasma membrane (PM), where it contributes negative charge and to specific recruitment of signaling proteins. This distribution relies on transport mechanisms whose nature remains elusive. Here, we found that the PS transporter Osh6p extracted phosphatidylinositol 4-phosphate (PI4P) and exchanged PS for PI4P between two membranes. We solved the crystal structure of Osh6p:PI4P complex and demonstrated that the transport of PS by Osh6p depends on PI4P recognition in vivo. Finally, we showed that the PI4P-phosphatase Sac1p, by maintaining a PI4P gradient at the ER/PM interface, drove PS transport. Thus, PS transport by oxysterol-binding protein-related protein (ORP)/oxysterol-binding homology (Osh) proteins is fueled by PI4P metabolism through PS/PI4P exchange cycles.

  5. Carotenoid binding to proteins: Modeling pigment transport to lipid membranes.

    PubMed

    Reszczynska, Emilia; Welc, Renata; Grudzinski, Wojciech; Trebacz, Kazimierz; Gruszecki, Wieslaw I

    2015-10-15

    Carotenoid pigments play numerous important physiological functions in human organism. Very special is a role of lutein and zeaxanthin in the retina of an eye and in particular in its central part, the macula lutea. In the retina, carotenoids can be directly present in the lipid phase of the membranes or remain bound to the protein-pigment complexes. In this work we address a problem of binding of carotenoids to proteins and possible role of such structures in pigment transport to lipid membranes. Interaction of three carotenoids, beta-carotene, lutein and zeaxanthin with two proteins: bovine serum albumin and glutathione S-transferase (GST) was investigated with application of molecular spectroscopy techniques: UV-Vis absorption, circular dichroism and Fourier transform infrared spectroscopy (FTIR). Interaction of pigment-protein complexes with model lipid bilayers formed with egg yolk phosphatidylcholine was investigated with application of FTIR, Raman imaging of liposomes and electrophysiological technique, in the planar lipid bilayer models. The results show that in all the cases of protein and pigment studied, carotenoids bind to protein and that the complexes formed can interact with membranes. This means that protein-carotenoid complexes are capable of playing physiological role in pigment transport to biomembranes.

  6. Rab proteins: The key regulators of intracellular vesicle transport

    SciTech Connect

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  7. Improvement of proteolytic and oxidative stability of Chondroitinase ABC I by cosolvents.

    PubMed

    Nazari-Robati, Mahdieh; Golestani, Abolfazl; Asadikaram, GholamReza

    2016-10-01

    Recently, utilization of the enzyme Chondroitinase ABC I (cABC I) has received considerable attention in treatment of spinal cord injury. cABC I removes chondroitin sulfate proteoglycans which are inhibitory to axon growth and enhances nerve regeneration. Therefore, determination of cABC I resistance to proteolysis and oxidation provides valuable information for optimizing its clinical application. In this work, proteolytic stability of cABC I to trypsin and chymotrypsin as well as its oxidative resistance to H2O2 was measured. Moreover, the effect of cosolvents glycerol, sorbitol and trehalose on cABC I proteolytic and oxidative stability was determined. The results indicated that cABC I is highly susceptible to proteolysis and oxidation. Comparison of proteolytic patterns demonstrated a high degree of similarity which confirmed the exposure of specific regions of cABC I to proteolysis. However, proteolytic degradation was significantly reduced in the presence of cosolvents. In addition, cosolvents decreased the rate of both cABC I proteolytic and oxidative inactivation. Notably, the degree of stabilization provided by these cosolvents varied greatly. These findings indicated the high potential of cosolvents in protein stabilization to proteolysis and oxidative inactivation.

  8. Involvement of SirABC in Iron-Siderophore Import in Staphylococcus aureus

    PubMed Central

    Dale, Suzanne E.; Sebulsky, M. Tom; Heinrichs, David E.

    2004-01-01

    Staphylococcus aureus SirA was previously identified as a lipoprotein, and SirB and SirC are thought to encode the transmembrane domains of an ABC transporter. Sir proteins show similarity to iron-siderophore transporters in several bacteria. Here, we show that the iron-regulated sirABC operon is divergently transcribed from the sbn operon that encodes enzymes involved in the synthesis of staphylobactin, a recently described siderophore produced by S. aureus. Mutation of either sirA or sirB increased the resistance of iron-starved S. aureus to streptonigrin and resulted in compromised growth in iron-restricted, but not iron-rich, media. We also demonstrated that sirA and sirB mutants are compromised in the ability to transport iron complexed to staphylobactin but are not compromised for uptake of other iron complexes, such as ferric hydroxamates, ferric enterobactin, or ferric citrate. SirA- and SirB-deficient S. aureus, however, retain the ability to produce staphylobactin. Moreover, we found that transcription from the sbn operon was increased, relative to the wild type, in both sirA and sirB knockout strains, likely in response to an increased level of iron starvation in these cells. These results provide evidence of a role for these proteins in iron import in S. aureus and for full fitness of the bacterium in iron-restricted environments and demonstrate a function for S. aureus genes encoding proteins involved in the transport of an endogenously produced siderophore. PMID:15576785

  9. MntABC and MntH Contribute to Systemic Staphylococcus aureus Infection by Competing with Calprotectin for Nutrient Manganese

    PubMed Central

    Kehl-Fie, Thomas E.; Zhang, Yaofang; Moore, Jessica L.; Farrand, Allison J.; Hood, M. Indriati; Rathi, Subodh; Chazin, Walter J.; Caprioli, Richard M.

    2013-01-01

    During infection, vertebrates limit access to manganese and zinc, starving invading pathogens, such as Staphylococcus aureus, of these essential metals in a process termed “nutritional immunity.” The manganese and zinc binding protein calprotectin is a key component of the nutrient-withholding response, and mice lacking this protein do not sequester manganese from S. aureus liver abscesses. One potential mechanism utilized by S. aureus to minimize host-imposed manganese and zinc starvation is the expression of the metal transporters MntABC and MntH. We performed transcriptional analyses of both mntA and mntH, which revealed increased expression of both systems in response to calprotectin treatment. MntABC and MntH compete with calprotectin for manganese, which enables S. aureus growth and retention of manganese-dependent superoxide dismutase activity. Loss of MntABC and MntH results in reduced staphylococcal burdens in the livers of wild-type but not calprotectin-deficient mice, suggesting that these systems promote manganese acquisition during infection. During the course of these studies, we observed that metal content and the importance of calprotectin varies between murine organs, and infection leads to profound changes in the anatomical distribution of manganese and zinc. In total, these studies provide insight into the mechanisms utilized by bacteria to evade host-imposed nutrient metal starvation and the critical importance of restricting manganese availability during infection. PMID:23817615

  10. Rab proteins: the key regulators of intracellular vesicle transport.

    PubMed

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.

  11. Modelling Transcapillary Transport of Fluid and Proteins in Hemodialysis Patients

    PubMed Central

    Pietribiasi, Mauro; Waniewski, Jacek; Załuska, Alicja; Załuska, Wojciech; Lindholm, Bengt

    2016-01-01

    Background The kinetics of protein transport to and from the vascular compartment play a major role in the determination of fluid balance and plasma refilling during hemodialysis (HD) sessions. In this study we propose a whole-body mathematical model describing water and protein shifts across the capillary membrane during HD and compare its output to clinical data while evaluating the impact of choosing specific values for selected parameters. Methods The model follows a two-compartment structure (vascular and interstitial space) and is based on balance equations of protein mass and water volume in each compartment. The capillary membrane was described according to the three-pore theory. Two transport parameters, the fractional contribution of large pores (αLP) and the total hydraulic conductivity (LpS) of the capillary membrane, were estimated from patient data. Changes in the intensity and direction of individual fluid and solute flows through each part of the transport system were analyzed in relation to the choice of different values of small pores radius and fractional conductivity, lymphatic sensitivity to hydraulic pressure, and steady-state interstitial-to-plasma protein concentration ratio. Results The estimated values of LpS and αLP were respectively 10.0 ± 8.4 mL/min/mmHg (mean ± standard deviation) and 0.062 ± 0.041. The model was able to predict with good accuracy the profiles of plasma volume and serum total protein concentration in most of the patients (average root-mean-square deviation < 2% of the measured value). Conclusions The applied model provides a mechanistic interpretation of fluid transport processes induced by ultrafiltration during HD, using a minimum of tuned parameters and assumptions. The simulated values of individual flows through each kind of pore and lymphatic absorption rate yielded by the model may suggest answers to unsolved questions on the relative impact of these not-measurable quantities on total vascular refilling and

  12. Human Immunodeficiency Virus Protease Inhibitors Serve as Substrates for Multidrug Transporter Proteins MDR1 and MRP1 but Retain Antiviral Efficacy in Cell Lines Expressing These Transporters

    PubMed Central

    Srinivas, Ranga V.; Middlemas, David; Flynn, Pat; Fridland, Arnold

    1998-01-01

    The human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs)—saquinavir, ritonavir, nelfinavir, and indinavir—interact with the ABC-type multidrug transporter proteins MDR1 and MRP1 in CEM T-lymphocytic cell lines. Calcein fluorescence was significantly enhanced in MDR1+ CEM/VBL100 and MRP1+ CEM/VM-1-5 cells incubated in the presence of various HIV PIs and calcein acetoxymethyl ester. HIV PIs also enhanced the cytotoxic activity of doxorubicin, a known substrate for MDR1 and MRP1, in both VBL100 and VM-1-5 CEM lines. Saquinavir, ritonavir, and nelfinavir enhanced doxorubicin toxicity in CEM/VBL100 cells by approximately three- to sevenfold. Saquinavir and ritonavir also enhanced doxorubicin toxicity in CEM/VM-1-5 cells. HIV-1 replication was effectively inhibited by the various PIs in all of the cell lines, and the 90% inhibitory concentration for a given compound was comparable between the different cell types. Therefore, overexpression of MDR1 or MRP1 by T lymphocytes is not likely to limit the antiviral efficacy of HIV PI therapy. PMID:9835508

  13. Non-equivalent roles of two periplasmic subunits in the function and assembly of triclosan pump TriABC from Pseudomonas aeruginosa.

    PubMed

    Weeks, Jon W; Nickels, Logan M; Ntreh, Abigail T; Zgurskaya, Helen I

    2015-10-01

    In Gram-negative bacteria, multidrug efflux transporters function in complexes with periplasmic membrane fusion proteins (MFPs) that enable antibiotic efflux across the outer membrane. In this study, we analyzed the function, composition and assembly of the triclosan efflux transporter TriABC-OpmH from Pseudomonas aeruginosa. We report that this transporter possesses a surprising substrate specificity that encompasses not only triclosan but the detergent SDS, which are often used together in antibacterial soaps. These two compounds interact antagonistically in a TriABC-dependent manner and negate antibacterial properties of each other. Unlike other efflux pumps that rely on a single MFP for their activities, two different MFPs, TriA and TriB, are required for triclosan/SDS resistance mediated by TriABC-OpmH. We found that analogous mutations in the α-helical hairpin and membrane proximal domains of TriA and TriB differentially affect triclosan efflux and assembly of the complex. Furthermore, our results show that TriA and TriB function as a dimer, in which TriA is primarily responsible for stabilizing interactions with the outer membrane channel, whereas TriB is important for the stimulation of the transporter. We conclude that MFPs are engaged into complexes as asymmetric dimers, in which each protomer plays a specific role.

  14. The ABCs of Student Engagement

    ERIC Educational Resources Information Center

    Parsons, Seth A.; Nuland, Leila Richey; Parsons, Allison Ward

    2014-01-01

    Student engagement is an important consideration for teachers and administrators because it is explicitly associated with achievement. What the authors call the ABC's of engagement they outline as: Affective engagement, Behavioral engagement, and Cognitive engagement. They also present "Three Things Every Teacher Needs to Know about…

  15. Golgi localized barley MTP8 proteins facilitate Mn transport.

    PubMed

    Pedas, Pai; Schiller Stokholm, Michaela; Hegelund, Josefine Nymark; Ladegård, Anne Hald; Schjoerring, Jan Kofod; Husted, Søren

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF) family in the cereal species barley (Hordeum vulgare). Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP) are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species.

  16. Yarrowia lipolytica vesicle-mediated protein transport pathways

    PubMed Central

    Swennen, Dominique; Beckerich, Jean-Marie

    2007-01-01

    Background Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. Results We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii). These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO) encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular transport shows that 40% of Y

  17. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter

    PubMed Central

    Alvarez, Frances Joan D.; Orelle, Cédric; Huang, Yan; Bajaj, Ruchika; Everly, R. Michael; Klug, Candice S.; Davidson, Amy L.

    2015-01-01

    Summary MalFGK2 is an ATP-binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose-binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide-binding subunits (MalK dimer). This MBP-stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance (EPR) spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose-bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi-open MalK dimer. Maltose-bound MBP promotes the transition to the semi-open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi-open MalK2 conformation by maltose-bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi-open conformation, from which it can proceed to hydrolyze ATP. PMID:26268698

  18. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter.

    PubMed

    Alvarez, Frances Joan D; Orelle, Cédric; Huang, Yan; Bajaj, Ruchika; Everly, R Michael; Klug, Candice S; Davidson, Amy L

    2015-12-01

    MalFGK2 is an ATP-binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose-binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide-binding subunits (MalK dimer). This MBP-stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose-bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi-open MalK dimer. Maltose-bound MBP promotes the transition to the semi-open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi-open MalK2 conformation by maltose-bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi-open conformation, from which it can proceed to hydrolyze ATP.

  19. Fluctuation driven active molecular transport in passive channel proteins

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  20. Control of protein trafficking by reversible masking of transport signals

    PubMed Central

    Abraham, Omer; Gotliv, Karnit; Parnis, Anna; Boncompain, Gaelle; Perez, Franck; Cassel, Dan

    2016-01-01

    Systems that allow the control of protein traffic between subcellular compartments have been valuable in elucidating trafficking mechanisms. Most current approaches rely on ligand or light-controlled dimerization, which results in either retardation or enhancement of the transport of a reporter. We developed an alternative approach for trafficking regulation that we term “controlled unmasking of targeting elements” (CUTE). Regulated trafficking is achieved by reversible masking of the signal that directs the reporter to its target organelle, relying on the streptavidin–biotin system. The targeting signal is generated within or immediately after a 38–amino acid streptavidin-binding peptide (SBP) that is appended to the reporter. The binding of coexpressed streptavidin to SBP causes signal masking, whereas addition of biotin causes complex dissociation and triggers protein transport to the target organelle. We demonstrate the application of this approach to the control of nuclear and peroxisomal protein import and the generation of biotin-dependent trafficking through the endocytic and COPI systems. By simultaneous masking of COPI and endocytic signals, we were able to generate a synthetic pathway for efficient transport of a reporter from the plasma membrane to the endoplasmic reticulum. PMID:26941332

  1. The ABC transporter HrtAB confers resistance to hemin toxicity and is regulated in a hemin-dependent manner by the ChrAS two-component system in Corynebacterium diphtheriae.

    PubMed

    Bibb, Lori A; Schmitt, Michael P

    2010-09-01

    Corynebacterium diphtheriae, the causative agent of the severe respiratory disease diphtheria, utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. Because of the toxicity of high levels of hemin and iron, these compounds are often tightly regulated in bacterial systems. In this report, we identify and characterize the C. diphtheriae hrtAB genes, which encode a putative ABC type transporter involved in conferring resistance to the toxic effects of hemin. Deletion of the hrtAB genes in C. diphtheriae produced increased sensitivity to hemin, which was complemented by a plasmid harboring the cloned hrtAB locus. The HrtAB system was not involved in the uptake and use of hemin as an iron source. The hrtAB genes are located on the C. diphtheriae genome upstream from the chrSA operon, which encodes a previously characterized two-component signal transduction system that regulates gene expression in a heme-dependent manner. The hrtB promoter is activated by the ChrAS system in the presence of hemin or hemoglobin, and mutations in the chrSA genes abolish heme-activated expression from the hrtB promoter. It was also observed that transcription from the hrtB promoter is reduced in a dtxR deletion mutant, suggesting that DtxR is required for optimal expression of hrtAB. Previous studies proposed that the ChrS sensor kinase may be responsive to an environmental signal, such as hemin. We show that specific point mutations in the ChrS N-terminal transmembrane domain result in a reduced ability to activate the hrtB promoter in the presence of a heme source, suggesting that this putative sensor region is essential for the detection of a signal produced in response to hemin exposure. This study shows that the HrtAB system is required for protection from hemin toxicity and that expression of the hrtAB genes is regulated by the ChrAS two-component system. This study demonstrates a direct correlation between the detection of heme or a heme

  2. Functional domains of the fatty acid transport proteins: studies using protein chimeras.

    PubMed

    DiRusso, Concetta C; Darwis, Dina; Obermeyer, Thomas; Black, Paul N

    2008-03-01

    Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.

  3. Hydrophobic interaction chromatography of proteins. IV. Protein adsorption capacity and transport in preparative mode.

    PubMed

    To, Brian C S; Lenhoff, Abraham M

    2011-01-21

    The adsorption isotherms of four model proteins (lysozyme, α-lactalbumin, ovalbumin, and BSA) on eight commercial phenyl hydrophobic interaction chromatography media were measured. The isotherms were softer than those usually seen in ion-exchange chromatography of proteins, and the static capacities of the media were lower, ranging from 30 to 110 mg/mL, depending on the ammonium sulfate concentration and the protein and adsorbent types. The protein-accessible surface area appears to be the main factor determining the binding capacity, and little correlation was seen with the protein affinities of the adsorbents. Breakthrough experiments showed that the dynamic capacities of the adsorbents at 10% breakthrough were 20-80% of the static capacities, depending on adsorbent type. Protein diffusivities in the adsorbents were estimated from batch uptake experiments using the pore diffusion and homogeneous diffusion models. Protein transport was affected by the adsorbent pore structures. Apparent diffusivities were higher at lower salt concentrations and column loadings, suggesting that adsorbed proteins may retard intraparticle protein transport. The diffusivities estimated from the batch uptake experiments were used to predict column breakthrough behavior. Analytical solutions developed for ion-exchange systems were able to provide accurate predictions for lysozyme breakthrough but not for ovalbumin. Impurities in the ovalbumin solutions used for the breakthrough experiments may have affected the ovalbumin uptake and led to the discrepancies between the predictions and the experimental results.

  4. The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium.

    PubMed

    Karlinsey, Joyce E; Maguire, Michael E; Becker, Lynne A; Crouch, Marie-Laure V; Fang, Ferric C

    2010-11-01

    The phage shock protein (Psp) system is induced by extracytoplasmic stress and thought to be important for the maintenance of proton motive force. We investigated the contribution of PspA to Salmonella virulence. A pspA deletion mutation significantly attenuates the virulence of Salmonella enterica serovar Typhimurium following intraperitoneal inoculation of C3H/HeN (Ity(r) ) mice. PspA was found to be specifically required for virulence in mice expressing the natural resistance-associated macrophage protein 1 (Nramp1) (Slc11a1) divalent metal transporter, which restricts microbial growth by limiting the availability of essential divalent metals within the phagosome. Salmonella competes with Nramp1 by expressing multiple metal uptake systems including the Nramp-homologue MntH, the ABC transporter SitABCD and the ZIP family transporter ZupT. PspA was found to facilitate Mn(2+) transport by MntH and SitABCD, as well as Zn(2+) and Mn(2+) transport by ZupT. In vitro uptake of (54) Mn(2+) by MntH and ZupT was reduced in the absence of PspA. Transport-deficient mutants exhibit reduced viability in the absence of PspA when grown under metal-limited conditions. Moreover, the ZupT transporter is required for Salmonella enterica serovar Typhimurium virulence in Nramp1-expressing mice. We propose that PspA promotes Salmonella virulence by maintaining proton motive force, which is required for the function of multiple transporters mediating bacterial divalent metal acquisition during infection.

  5. Evidence for rotational contribution to protein-facilitated proton transport.

    PubMed Central

    Gros, G; Lavalette, D; Moll, W; Gros, H; Amand, B; Pochon, F

    1984-01-01

    Two modes of molecular motion of carrier molecules can, in principle, lead to a facilitated transport of a substrate: translational and rotational diffusion. In the present study, which deals with the mechanism of the facilitated diffusion of H+ and O2 in solutions of earthworm hemoglobin, examples for both types of facilitation are presented. Only translational, not rotational, diffusion of earthworm hemoglobin appears to lead to a facilitated O2 flux. In contrast, substantial facilitated H+ fluxes of comparable size arise from rotational diffusion as well as from translational diffusion of this large protein. This is derived from measurements of facilitated H+ and O2 fluxes in earthworm hemoglobin solutions and determinations of the rotational and translational diffusion coefficients of earthworm hemoglobin with the help of a theoretical treatment of facilitated diffusion by rotational carrier diffusion. H+ transport by rotational protein diffusion appears to be a case where the often-postulated mechanism of facilitated transport by rotation of a carrier lends itself to experimental verification. Images PMID:6324213

  6. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins.

    PubMed

    Young, J D; Yao, S Y M; Sun, L; Cass, C E; Baldwin, S A

    2008-07-01

    1. The human (h) SLC29 family of integral membrane proteins is represented by four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterized family member, hENT1. They belong to the widely distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporter proteins. 2. A predicted topology of eleven transmembrane helices has been experimentally confirmed for hENT1. The best-characterized members of the family, hENT1 and hENT2, possess similar broad permeant selectivities for purine and pyrimidine nucleosides, but hENT2 also efficiently transports nucleobases. hENT3 has a similar broad permeant selectivity for nucleosides and nucleobases and appears to function in intracellular membranes, including lysosomes. 3. hENT4 is uniquely selective for adenosine, and also transports a variety of organic cations. hENT3 and hENT4 are pH sensitive, and optimally active under acidic conditions. ENTs, including those in parasitic protozoa, function in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis and, in humans, are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. 4. By regulating the concentration of adenosine available to cell surface receptors, mammalian ENTs additionally influence physiological processes ranging from cardiovascular activity to neurotransmission.

  7. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle.

    PubMed

    Reidy, P T; Walker, D K; Dickinson, J M; Gundermann, D M; Drummond, M J; Timmerman, K L; Cope, M B; Mukherjea, R; Jennings, K; Volpi, E; Rasmussen, B B

    2014-06-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P < 0.05). However, the ingestion of the protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P < 0.05). Postexercise myofibrillar protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein.

  8. An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1.

    PubMed

    Helms, Hans Christian; Hersom, Maria; Kuhlmann, Louise Borella; Badolo, Lasina; Nielsen, Carsten Uhd; Brodin, Birger

    2014-09-01

    Efflux transporters of the ATP-binding cassette superfamily including breast cancer resistance protein (Bcrp/Abcg2), P-glycoprotein (P-gp/Abcb1) and multidrug resistance-associated proteins (Mrp's/Abcc's) are expressed in the blood-brain barrier (BBB). The aim of this study was to investigate if a bovine endothelial/rat astrocyte in vitro BBB co-culture model displayed polarized transport of known efflux transporter substrates. The co-culture model displayed low mannitol permeabilities of 0.95 ± 0.1 · 10(-6) cm·s(-1) and high transendothelial electrical resistances of 1,177 ± 101 Ω·cm(2). Bidirectional transport studies with (3)H-digoxin, (3)H-estrone-3-sulphate and (3)H-etoposide revealed polarized transport favouring the brain-to-blood direction for all substrates. Steady state efflux ratios of 2.5 ± 0.2 for digoxin, 4.4 ± 0.5 for estrone-3-sulphate and 2.4 ± 0.1 for etoposide were observed. These were reduced to 1.1 ± 0.08, 1.4 ± 0.2 and 1.5 ± 0.1, by addition of verapamil (digoxin), Ko143 (estrone-3-sulphate) or zosuquidar + reversan (etoposide), respectively. Brain-to-blood permeability of all substrates was investigated in the presence of the efflux transporter inhibitors verapamil, Ko143, zosuquidar, reversan and MK 571 alone or in combinations. Digoxin was mainly transported via P-gp, estrone-3-sulphate via Bcrp and Mrp's and etoposide via P-gp and Mrp's. The expression of P-gp, Bcrp and Mrp-1 was confirmed using immunocytochemistry. The findings indicate that P-gp, Bcrp and at least one isoform of Mrp are functionally expressed in our bovine/rat co-culture model and that the model is suitable for investigations of small molecule transport.

  9. Thermally activated charge transport in microbial protein nanowires

    NASA Astrophysics Data System (ADS)

    Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma

    2016-03-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.

  10. Thermally activated charge transport in microbial protein nanowires.

    PubMed

    Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma

    2016-03-24

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.

  11. Thermally activated charge transport in microbial protein nanowires

    PubMed Central

    Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  12. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  13. TTC26/DYF13 is an intraflagellar transport protein required for transport of motility-related proteins into flagella.

    PubMed

    Ishikawa, Hiroaki; Ide, Takahiro; Yagi, Toshiki; Jiang, Xue; Hirono, Masafumi; Sasaki, Hiroyuki; Yanagisawa, Haruaki; Wemmer, Kimberly A; Stainier, Didier Yr; Qin, Hongmin; Kamiya, Ritsu; Marshall, Wallace F

    2014-01-01

    Cilia/flagella are assembled and maintained by the process of intraflagellar transport (IFT), a highly conserved mechanism involving more than 20 IFT proteins. However, the functions of individual IFT proteins are mostly unclear. To help address this issue, we focused on a putative IFT protein TTC26/DYF13. Using live imaging and biochemical approaches we show that TTC26/DYF13 is an IFT complex B protein in mammalian cells and Chlamydomonas reinhardtii. Knockdown of TTC26/DYF13 in zebrafish embryos or mutation of TTC26/DYF13 in C. reinhardtii, produced short cilia with abnormal motility. Surprisingly, IFT particle assembly and speed were normal in dyf13 mutant flagella, unlike in other IFT complex B mutants. Proteomic and biochemical analyses indicated a particular set of proteins involved in motility was specifically depleted in the dyf13 mutant. These results support the concept that different IFT proteins are responsible for different cargo subsets, providing a possible explanation for the complexity of the IFT machinery. DOI: http://dx.doi.org/10.7554/eLife.01566.001.

  14. Interaction between the motor protein prestin and the transporter protein VAPA.

    PubMed

    Sengupta, Soma; Miller, Katharine K; Homma, Kazuaki; Edge, Roxanne; Cheatham, Mary Ann; Dallos, Peter; Zheng, Jing

    2010-07-01

    Prestin is the motor protein responsible for cochlear outer hair cell (OHC) somatic electromotility. Eliminating this abundant basolateral membrane protein not only causes loss of frequency selectivity and hearing sensitivity, but also leads to OHC death. A membrane-based yeast two-hybrid approach was used to screen an OHC-enriched cDNA (complementary Deoxyribonucleic Acid) library in order to identify prestin-associated proteins. Several proteins were recognized as potential prestin partners, including vesicle-associated membrane protein associated protein A (VAPA or VAP-33). VAPA is an integral membrane protein that plays an important role in membrane trafficking, endoplasmic reticulum homeostasis, and the stress-signaling system. The connection between VAPA and prestin was confirmed through co-immunoprecipitation experiments. This new finding prompted the investigation of the interaction between VAPA and prestin in outer hair cells. By comparing VAPA expression between wild-type OHCs and OHCs derived from prestin-knockout mice, we found that VAPA is expressed in OHCs and the quantity of VAPA expressed is related to the presence of prestin. In other words, less VAPA protein is found in OHCs lacking prestin. Thus, prestin appears to modify the expression of VAPA protein in OHCs. Intriguingly, more prestin protein appears at the plasma membrane when VAPA is co-expressed with prestin. These data suggest that VAPA could be involved in prestin's transportation inside OHCs and may facilitate the targeting of this abundant OHC protein to the plasma membrane.

  15. Slowing of the axonal transport of neurofilament proteins during development

    SciTech Connect

    Hoffman, P.N.; Lasek, R.J.; Griffin, J.W.; Price, D.L.

    1983-08-01

    We examined age-dependent changes in neurofilament transport in motor axons of the rat sciatic nerve. SDS-PAGE and gel fluorography confirmed that the distribution of labeled neurofilament triplet protein coincides with the major slow component a (SCa) wave in these neurons. The velocity of neurofilament transport was calculated on the basis of the location of the 50th percentile of radioactivity in this wave 33 days after motor neurons were labeled by the intraspinal administration of (/sup 3/H)leucine and (/sup 3/H)lysine. Overall, the velocity fell from 1.95 mm/day at 3 weeks of age to 1.12 mm/day at 20 weeks. Between 3 and 10 weeks, it fell at a 6-fold higher rate (0.096 mm/day/week) than between 10 and 20 weeks (0.016 mm/day/week). We also found a marked change in the shape of the slow component wave during development. It appeared to consist of several overlapping peaks moving at slightly different velocities in animals 10 weeks of age or less as compared to a single slower moving peak at 20 weeks. We propose that the velocity of slow axonal transport reflects the level of maturation of the neuron, and that the presence of several overlapping peaks of transported radioactivity in the sciatic nerve of younger animals reflects the presence of several populations of motor axons at different stages of development. We also discuss the relationship between changes in the velocity of neurofilament transport and alterations in the composition of the cytoskeleton that occur as the axon grows in caliber during postnatal development.

  16. In Vitro Reassembly of the Ribose ATP-binding Cassette Transporter Reveals a Distinct Set of Transport Complexes*

    PubMed Central

    Clifton, Matthew C.; Simon, Michael J.; Erramilli, Satchal K.; Zhang, Huide; Zaitseva, Jelena; Hermodson, Mark A.; Stauffacher, Cynthia V.

    2015-01-01

    Bacterial ATP-binding cassette (ABC) importers are primary active transporters that are critical for nutrient uptake. Based on structural and functional studies, ABC importers can be divided into two distinct classes, type I and type II. Type I importers follow a strict alternating access mechanism that is driven by the presence of the substrate. Type II importers accept substrates in a nucleotide-free state, with hydrolysis driving an inward facing conformation. The ribose transporter in Escherichia coli is a tripartite complex consisting of a cytoplasmic ATP-binding cassette protein, RbsA, with fused nucleotide binding domains; a transmembrane domain homodimer, RbsC2; and a periplasmic substrate binding protein, RbsB. To investigate the transport mechanism of the complex RbsABC2, we probed intersubunit interactions by varying the presence of the substrate ribose and the hydrolysis cofactors, ATP/ADP and Mg2+. We were able to purify a full complex, RbsABC2, in the presence of stable, transition state mimics (ATP, Mg2+, and VO4); a RbsAC complex in the presence of ADP and Mg2+; and a heretofore unobserved RbsBC complex in the absence of cofactors. The presence of excess ribose also destabilized complex formation between RbsB and RbsC. These observations suggest that RbsABC2 shares functional traits with both type I and type II importers, as well as possessing unique features, and employs a distinct mechanism relative to other ABC transporters. PMID:25533465

  17. Protein-based microhydraulic transport for controllable actuation

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Leo, Donald J.

    2006-03-01

    Plants have the ability to develop large mechanical force from chemical energy available with bio-fuels. The energy released by the cleavage of a terminal phosphate ion during the hydrolysis of a bio- fuel assists the transport of ions and fluids in cellular homeostasis. Materials that develop pressure and hence strain similar to the response of plants to an external stimuli are classified as nastic materials. Calculations for controlled actuation of an active material inspired by biological transport mechanism demonstrated the feasibility of developing such a material with actuation energy densities on the order of 100 kJ/m 3. The mathematical model for a simplified proof of concept actuator referred to as micro hydraulic actuator uses ion transporters extracted from plants reconstituted on a synthetic bilayer lipid membrane (BLM). Thermodynamic model of the concept actuator predicted the ability to develop 5 percent normalized deformation in thickness of the micro- hydraulic actuator. Controlled fluid transport through AtSUT4 (Proton-sucrose co-transporter from Arabidopsis thaliana) reconstituted on a 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-L- Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2-Oleoyl-sn-Glycero-3- Phosphoethanolamine (POPE) BLM on a porous lead silicate glass plate (50μm with 61μm pitch) was driven by proton gradient. Bulk fluid flux of 1.2 μl/min was observed for each microliter of AtSUT4 transporter suspension (16.6 mg/ml in pH7.0 medium) reconstituted on the BLM. The flux rate is observed to be dependent on the concentration of sucrose present in pH4 buffer. Flux rate of 10 μl/min is observed for 5 mM sucrose in the first 10 minutes. The observed flux scales linearly with BLM area and the amount of proteins reconstituted on the lipid membrane. This article details the next step in the development of the micro hydraulic actuator - fluid transport driven by exergonic Adenosine triphosphate (ATP) hydrolysis reaction in the presence of ATP

  18. The ABC daycare disaster of Hermosillo, Mexico.

    PubMed

    Greenhalgh, David G; Chang, Philip; Maguina, Pirko; Combs, Elena; Sen, Soman; Palmieri, Tina L

    2012-01-01

    On June 5, 2009, the ABC Daycare facility in Hermosillo, Mexico, caught on fire with an estimated 142 children and 6 adult caregivers inside. The purpose of this article is to describe the factors contributing to the disaster including care of the survivors, tertiary burn center triage, patient transport, and treatment for this international mass casualty event. Finally, the results of an investigation performed by the Mexican Government are reviewed. A summary of the Mexican Government's investigation of the circumstances of fire and an examination of prevention lapses in other Mexican daycare centers was obtained from their public Web site. The demographic and clinical characteristics of the children transported to the burn center were obtained from the patients' medical records and transport data sheets. The ABC Daycare had many fire safety breaches that contributed to the severity of the tragedy. Twenty-nine children died at the scene and more than 35 children were hospitalized throughout Mexico. A total of 12 children were transported to two Shriners Hospitals, 9 to Sacramento, and 3 to Cincinnati. The mean age of patients sent to the Shriners Hospitals was 2.9 ± 0.16 years (2-4 years), with 5 being male and 7 female. The mean duration between injury and arrival was 9.2 ± 2.1 days, the burn size was 43.0 ± 6.8% TBSA (6.5-80%), and there were 3.75 operations per patient. Four had fourth-degree burns requiring finger amputations (2), flaps to cover bone (1), or a through-knee amputation (1). Ten patients were admitted to the intensive care unit, and nine patients (seven with inhalation injury) required mechanical ventilation for a mean of 23.6 ± 10.3 days. All the surviving children were discharged after a mean length of stay of 45.9 ± 8.7 days. In the first year postinjury, seven children were readmitted a total of 11 times for reconstructive surgery, wound care, or rehabilitation. Ultimately, a total of 49 children died. A review of other daycare centers

  19. Transport of the Pathogenic Prion Protein through Landfill Materials

    PubMed Central

    Jacobson, Kurt H.; Lee, Seunghak; McKenzie, Debbie; Benson, Craig H.; Pedersen, Joel A.

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrPTSE) is the major, if not sole, component of the infectious agent. Recent TSE outbreaks in domesticated and wild animal populations has created the need for safe and effective disposal of large quantities of potentially infected materials. Here, we report the results of a study to evaluate the potential for transport of PrPTSE derived from carcasses and associated wastes in a municipal solid waste (MSW) landfill. Column experiments were conducted to evaluate PrPTSE transport in quartz sand, two fine-textured burial soils currently used in landfill practice, a green waste residual material (a potential burial material), and fresh and aged MSW. PrPTSE was retained by quartz sand and the fine-textured burial soils, with no detectable PrPTSE eluted over more than 40 pore volumes. In contrast, PrPTSE was more mobile in MSW and green waste residual. Transport parameters were estimated from the experimental data and used to model PrPTSE migration in a MSW landfill. To the extent that the PrPTSE used mimics that released from decomposing carcasses, burial of CWD-infected materials at MSW landfills could provide secure containment of PrPTSE provided reasonable burial strategies (e.g., encasement in soil) are used. PMID:19368208

  20. Catalytic Mechanism of the Maltose Transporter Hydrolyzing ATP.

    PubMed

    Huang, Wenting; Liao, Jie-Lou

    2016-01-12

    We use quantum mechanical and molecular mechanical (QM/MM) simulations to study ATP hydrolysis catalyzed by the maltose transporter. This protein is a prototypical member of a large family that consists of ATP-binding cassette (ABC) transporters. The ABC proteins catalyze ATP hydrolysis to perform a variety of biological functions. Despite extensive research efforts, the precise molecular mechanism of ATP hydrolysis catalyzed by the ABC enzymes remains elusive. In this work, the reaction pathway for ATP hydrolysis in the maltose transporter is evaluated using a QM/MM implementation of the nudged elastic band method without presuming reaction coordinates. The potential of mean force along the reaction pathway is obtained with an activation free energy of 19.2 kcal/mol in agreement with experiments. The results demonstrate that the reaction proceeds via a dissociative-like pathway with a trigonal bipyramidal transition state in which the cleavage of the γ-phosphate P-O bond occurs and the O-H bond of the lytic water molecule is not yet broken. Our calculations clearly show that the Walker B glutamate as well as the switch histidine stabilizes the transition state via electrostatic interactions rather than serving as a catalytic base. The results are consistent with biochemical and structural experiments, providing novel insight into the molecular mechanism of ATP hydrolysis in the ABC proteins.

  1. Repair of psoralen crosslinks in Escherichia coli: In vitro studies with the RecA protein and (A)BC excinuclease

    SciTech Connect

    Cheng, S.

    1990-05-01

    RecA,a key protein for recombination in Escherichia coli (E. Coli), was utilized to insert short psoralen-monoadducted oligonucleotides into a duplex plasmid molecule through a variation of the homologous pairing reaction. Covalent psoralen crosslinks could then be formed between the oligonucleotide and its complement within the plasmid. The efficiency of the overall process was found to depend upon the nucleoside triphosphate cofactor, the extent of homology, oligonucleotide length, and psoralen location. Deproteinized complexes were also observed to retain a certain degree of unwinding of the plasmid due to the crosslinked oligonucleotides. These three-stranded complexes were used as model substrates for the study of the action mechanism of excinuclease, the enzyme responsible for nucleotide excision repair in E. coli. 290 refs., 24 figs.

  2. Transporters in human platelets: physiologic function and impact for pharmacotherapy.

    PubMed

    Jedlitschky, Gabriele; Greinacher, Andreas; Kroemer, Heyo K

    2012-04-12

    Platelets store signaling molecules (eg, serotonin and ADP) within their granules. Transporters mediate accumulation of these molecules in platelet granules and, on platelet activation, their translocation across the plasma membrane. The balance between transporter-mediated uptake and elimination of signaling molecules and drugs in platelets determines their intracellular concentrations and effects. Several members of the 2 major transporter families, ATP-binding cassette (ABC) transporters and solute carriers (SLCs), have been identified in platelets. An example of an ABC transporter is MRP4 (ABCC4), which facilitates ADP accumulation in dense granules. MRP4 is a versatile transporter, and various additional functions have been proposed, notably lipid mediator release and a role in aspirin resistance. Several other ABC proteins have been detected in platelets with functions in glutathione and lipid homeostasis. The serotonin transporter (SERT, SLC6A4) in the platelet plasma membrane represents a well-characterized example of the SLC family. Moreover, recent experiments indicate expression of OATP2B1 (SLCO2B1), a high affinity transporter for certain statins, in platelets. Changes in transporter localization and expression can affect platelet function and drug sensitivity. This review summarizes available data on the physiologic and pharmacologic role of transporters in platelets.

  3. Role of ABCB1, ABCG2, ABCC2 and ABCC5 transporters in placental passage of zidovudine.

    PubMed

    Neumanova, Zuzana; Cerveny, Lukas; Ceckova, Martina; Staud, Frantisek

    2016-01-01

    Zidovudine (AZT) is one of the most frequently used antiretroviral drugs in prevention of perinatal transmission of HIV. However, safety concerns on AZT use in pregnancy still persist as severe side effects are associated with AZT exposure in children. In our study we aimed to contribute to current knowledge on AZT transplacental transport and to evaluate potential involvement of the main human drug efflux ATP-binding cassette (ABC) transporters, p-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2) and multidrug resistance-associated proteins 2 and 5 (ABCC2 and ABCC5) in the disposition of AZT between mother and fetus. In order to elucidate this issue we investigated the effect of selected ABC transporters on AZT transepithelial transport across MDCKII cell monolayers. In addition we used the in situ method of dually perfused rat term placenta to further study the role of ABC transporters in AZT transplacental transport. In vitro studies revealed significant effect of ABCB1 and ABCG2 on AZT transport which was subsequently confirmed also on organ level. Lamivudine, an antiretroviral agent commonly co-administered with AZT, did not affect ABC transporter-mediated AZT transfer.

  4. Ligands and receptors: common theme in insect storage protein transport.

    PubMed

    Burmester, T; Scheller, K

    1999-10-01

    The passage of macromolecules through biological membranes is an essential process for all multicellular organisms. Insects have developed a mechanism different from that known for all other eukaryotes investigated so far. This review discusses the function and evolution of this mechanism. Insect pupae do not feed during metamorphosis. Therefore they depend on material that has been accumulated during the larval life. At the end of this period, shortly before pupariation, a rise in titer of ecdysteroid hormones induces the incorporation of a large fraction of storage proteins (hexamerins) from the body fluid into the fat body cells. The transport of hexamerins across the cell-membrane is mediated by a specific ecdysteroid-controlled receptor. It is synthesized as a precursor protein that is subsequently processed into the active receptor. This receptor protein is very unusual because it is closely related to its own hexamerin ligand. Sequence comparison shows that the hexamerins and hexamerin receptors diverged early in insect evolution and derive from a common hemocyanin ancestor.

  5. Dephosphorylation of the Core Clock Protein KaiC in the Cyanobacterial KaiABC Circadian Oscillator Proceeds via an ATP Synthase Mechanism

    SciTech Connect

    Egli, Martin; Mori, Tetsuya; Pattanayek, Rekha; Xu, Yao; Qin, Ximing; Johnson, Carl H.

    2014-10-02

    The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro from three proteins, KaiA, KaiB, and KaiC in the presence of ATP, to tick in a temperature-compensated manner. KaiC, the central cog of this oscillator, forms a homohexamer with 12 ATP molecules bound between its N- and C-terminal domains and exhibits unusual properties. Both the N-terminal (CI) and C-terminal (CII) domains harbor ATPase activity, and the subunit interfaces between CII domains are the sites of autokinase and autophosphatase activities. Hydrolysis of ATP correlates with phosphorylation at threonine and serine sites across subunits in an orchestrated manner, such that first T432 and then S431 are phosphorylated, followed by dephosphorylation of these residues in the same order. Although structural work has provided insight into the mechanisms of ATPase and kinase, the location and mechanism of the phosphatase have remained enigmatic. From the available experimental data based on a range of approaches, including KaiC crystal structures and small-angle X-ray scattering models, metal ion dependence, site-directed mutagenesis (i.e., E318, the general base), and measurements of the associated clock periods, phosphorylation patterns, and dephosphorylation courses as well as a lack of sequence motifs in KaiC that are typically associated with known phosphatases, we hypothesized that KaiCII makes use of the same active site for phosphorylation and dephosphorlyation. We observed that wild-type KaiC (wt-KaiC) exhibits an ATP synthase activity that is significantly reduced in the T432A/S431A mutant. We interpret the first observation as evidence that KaiCII is a phosphotransferase instead of a phosphatase and the second that the enzyme is capable of generating ATP, both from ADP and P{sub i} (in a reversal of the ATPase reaction) and from ADP and P-T432/P-S431 (dephosphorylation). This new concept regarding the mechanism of dephosphorylation is also supported by the

  6. Expression, purification and characterization of GAPDH-ChSase ABC I from Proteus vulgaris in Escherichia coli.

    PubMed

    Li, Ye; Chen, Zhenya; Zhou, Zhao; Yuan, Qipeng

    2016-12-01

    Chondroitinases (ChSases) are a family of polysaccharide lyases that can depolymerize high molecular weight chondroitin sulfate (CS) and dermatan sulfate (DS). In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is stably expressed in different cells like normal cells and cancer cells and the expression is relatively insensitive to experimental conditions, was expressed as a fusion protein with ChSase ABC I. Results showed that the expression level and enzyme activity of GAPDH-ChSase ABC I were about 2.2 and 3.0 times higher than those of ChSase ABC I. By optimization of fermentation conditions, higher productivity of ChSase ABC I was achieved as 880 ± 61 IU/g wet cell weight compared with the reported ones. The optimal temperature and pH of GAPDH-ChSase ABC I were 40 °C and 7.5, respectively. GAPDH-ChSase ABC I had a kcat/Km of 131 ± 4.1 L/μmol s and the catalytic efficiency was decreased as compared to ChSase ABC I. The relative activity of GAPDH-ChSase ABC I remained 89% after being incubated at 30 °C for 180 min and the thermostability of ChSase ABC I was enhanced by GAPDH when it was incubated at 30, 35, 40 and 45 °C.

  7. Cholesterol transport in steroid biosynthesis: Role of protein-protein interactions and implications in disease states

    PubMed Central

    Rone, Malena B.; Fan, Jinjiang; Papadopoulos, Vassilios

    2009-01-01

    The transfer of cholesterol from the outer to the inner mitochondrial membrane is the rate-limiting step in hormone-induced steroid formation. To ensure that this step is achieved efficiently, free cholesterol must accumulate in excess at the outer mitochondrial membrane and then be transferred to the inner membrane. This is accomplished through a series of steps that involve various intracellular organelles, including lysosomes and lipid droplets, and proteins such as the translocator protein (18 kDa, TSPO) and steroidogenic acute regulatory (StAR) proteins. TSPO, previously known as the peripheral-type benzodiazepine receptor, is a high-affinity drug- and cholesterol-binding mitochondrial protein. StAR is a hormone-induced mitochondria-targeted protein that has been shown to initiate cholesterol transfer into mitochondria. Through the assistance of proteins such as the cAMP-dependent protein kinase regulatory subunit Iα (PKA-RIα) and the PKA-Rlα TSPO-associated acyl-coenzyme A binding domain containing 3 (ACBD3) protein, PAP7, cholesterol is transferred to and docked at the outer mitochondrial membrane. The TSPO-dependent import of StAR into mitochondria, and the association of TSPO with the outer/inner mitochondrial membrane contact sites, drives the intramitochondrial cholesterol transfer and subsequent steroid formation. The focus of this review is on (i) the intracellular pathways and protein-protein interactions involved in cholesterol transport and steroid biosynthesis and (ii) the roles and interactions of these proteins in endocrine pathologies and neurological diseases where steroid synthesis plays a critical role. PMID:19286473

  8. Transport of the Pathogenic Prion Protein through Soils

    PubMed Central

    Jacobson, Kurt H.; Lee, Seunghak; Somerville, Robert A.; McKenzie, Debbie; Benson, Craig H.; Pedersen, Joel A.

    2011-01-01

    Transmissible spongiform encephalopathies (TSEs) are progressive neurodegenerative diseases and include bovine spongiform encephalopathy of cattle, chronic wasting disease (CWD) of deer and elk, scrapie in sheep and goats, and Creutzfeldt-Jakob disease in humans. An abnormally folded form of the prion protein (designated PrPTSE) is typically associated with TSE infectivity and may constitute the major, if not sole, component of the infectious agent. Transmission of CWD and scrapie is mediated in part by an environmental reservoir of infectivity. Soil appears to be a plausible candidate for this reservoir. TSE agent transport through soil is expected to influence the accessibility of the pathogen to animals after deposition and must be understood to assess the risks associated with burial of infected carcasses. We report results of saturated column experiments designed to evaluate PrPTSE transport through five soils with relatively high sand or silt contents. Protease-treated TSE-infected brain homogenate was used as a model for PrPTSE present in decomposing infected tissue. Synthetic rainwater was used as the eluent. PrPTSE was retained by all five soils; no detectable PrPTSE was eluted over more than 40 pore volumes of flow. Lower bound apparent attachment coefficients were estimated for each soil. Our results suggest that TSE agent released from decomposing tissues would remain near the site of initial deposition. In the case of infected carcasses deposited on the land surface, this may result in local sources of infectivity to other animals. PMID:20830901

  9. Transport effects on the kinetics of protein-surface binding.

    PubMed Central

    Balgi, G; Leckband, D E; Nitsche, J M

    1995-01-01

    A detailed model is presented for protein binding to active surfaces, with application to the binding of avidin molecules to a biotin-functionalized fiber optic sensor in experiments reported by S. Zhao and W. M. Reichert (American Chemical Society Symposium Series 493, 1992). Kinetic data for binding in solution are used to assign an intrinsic catalytic rate coefficient k to the biotin-avidin pair, deconvoluted from transport and electrostatic factors via application of coagulation theory. This intrinsic chemical constant is built into a reaction-diffusion analysis of surface binding where activity is restricted to localized sites (representing immobilized biotin molecules). The analysis leads to an effective catalytic rate coefficient keff characterizing the active surface. Thereafter, solution of the transport problem describing absorption of avidin molecules by the macroscopic sensor surface leads to predictions of the avidin flux, which are found to be in good agreement with the experimental data. The analysis suggests the following conclusions. 1) Translational diffusion limitations are negligible for avidin-biotin binding in solution owing to the small (kinetically limiting) value k = 0.00045 m/s. 2) The sparse distribution of biotin molecules and the presence of a repulsive hydration force produce an effective surface-average catalytic rate coefficient keff of order 10(-7) m/s, much smaller than k. 3) Avidin binding to the fiber optic sensor occurs in an intermediate regime where the rate is influenced by both kinetics and diffusion. Images FIGURE 1 FIGURE 3 PMID:7647232

  10. Active Transport of Nanomaterials Using Motor Proteins -Final Report

    SciTech Connect

    Hess, Henry

    2005-09-01

    During the six months of funding we have focused first on the completion of the research begun at the University of Washington in the previous funding cycle. Specifically, we developed a method to polymerize oriented networks of microtubules on lithographically patterned surfaces (M.S. thesis Robert Doot). The properties of active transport have been studied detail, yielding insights into the dispersion mechanisms (Nitta et al.). The assembly of multifunctional structures with a microtubule core has been investigated (Ramachandran et al.). Isaac Luria (B.S. in physics, U. of Florida 2005) worked on the directed assembly of nanoscale, non-equilibrium structures as a summer intern. He is now a graduate student in my group at the University of Florida. T. Nitta and H. Hess: Dispersion in Active Transport by Kinesin-Powered Molecular Shuttles, Nano Letters, 5, 1337-1342 (2005) S. Ramachandran, K.-H. Ernst, G. D. Bachand, V. Vogel, H. Hess*: Selective Loading of Kinesin-Powered Molecular Shuttles with Protein Cargo and its Application to Biosensing, submitted to Small (2005)

  11. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis.

    PubMed

    Minamino, Tohru; Morimoto, Yusuke V; Kinoshita, Miki; Aldridge, Phillip D; Namba, Keiichi

    2014-12-22

    For self-assembly of the bacterial flagellum, a specific protein export apparatus utilizes ATP and proton motive force (PMF) as the energy source to transport component proteins to the distal growing end. The export apparatus consists of a transmembrane PMF-driven export gate and a cytoplasmic ATPase complex composed of FliH, FliI and FliJ. The FliI(6)FliJ complex is structurally similar to the α(3)β(3)γ complex of F(O)F(1)-ATPase. FliJ allows the gate to efficiently utilize PMF to drive flagellar protein export but it remains unknown how. Here, we report the role of ATP hydrolysis by the FliI(6)FliJ complex. The export apparatus processively transported flagellar proteins to grow flagella even with extremely infrequent or no ATP hydrolysis by FliI mutation (E211D and E211Q, respectively). This indicates that the rate of ATP hydrolysis is not at all coupled with the export rate. Deletion of FliI residues 401 to 410 resulted in no flagellar formation although this FliI deletion mutant retained 40% of the ATPase activity, suggesting uncoupling between ATP hydrolysis and activation of the gate. We propose that infrequent ATP hydrolysis by the FliI6FliJ ring is sufficient for gate activation, allowing processive translocation of export substrates for efficient flagellar assembly.

  12. The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies.

    PubMed

    Joshi, Madhumita V; Mann, Stefan G; Antelmann, Haike; Widdick, David A; Fyans, Joanna K; Chandra, Govind; Hutchings, Matthew I; Toth, Ian; Hecker, Michael; Loria, Rosemary; Palmer, Tracy

    2010-07-01

    Summary Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathway resulted in pleiotropic phenotypes including slower growth rate and increased permeability of the cell envelope. Comparison of the extracellular proteome of the wild type and DeltatatC strains identified 73 predicted secretory proteins that were present in reduced amounts in the tatC mutant strain, and 47 Tat substrates were verified using a Tat reporter assay. The DeltatatC strain was almost completely avirulent on Arabidopsis seedlings and was delayed in attaching to the root tip relative to the wild-type strain. Genes encoding 14 candidate Tat substrates were individually inactivated, and seven of these mutants were reduced in virulence compared with the wild-type strain. We conclude that the Tat pathway secretes multiple proteins that are required for full virulence.

  13. An ABC for decision making*

    PubMed Central

    Garcia, Luiz Henrique Costa; Ferreira, Bruna Cortez

    2015-01-01

    The present study was aimed at proposing a systematic evaluation of cranial computed tomography, identifying the main aspects to be analyzed in order to facilitate the decision making process regarding diagnosis and management in emergency settings. The present descriptive study comprised a literature review at the following databases: Access Medicine and Access Emergency Medicine (McGraw- Hill Education); British Medical Journal Evidence Center; UptoDate; Bireme; PubMed; Lilacs; SciELO; ProQuest; Micromedex (Thomson Reuters); Embase. Once the literature review was completed, the authors identified the main diseases with tomographic repercussions and proposed the present system to evaluate cranial computed tomography images. An easy-to-memorize ABC system will facilitate the decision making in emergency settings, as it covers the main diseases encountered by intensivists and emergency physicians, and provides a sequential guidance about anatomical structures to be investigated as well as their respective alterations. PMID:25987751

  14. An ABC for decision making.

    PubMed

    Garcia, Luiz Henrique Costa; Ferreira, Bruna Cortez

    2015-01-01

    The present study was aimed at proposing a systematic evaluation of cranial computed tomography, identifying the main aspects to be analyzed in order to facilitate the decision making process regarding diagnosis and management in emergency settings. The present descriptive study comprised a literature review at the following databases: Access Medicine and Access Emergency Medicine (McGraw- Hill Education); British Medical Journal Evidence Center; UptoDate; Bireme; PubMed; Lilacs; SciELO; ProQuest; Micromedex (Thomson Reuters); Embase. Once the literature review was completed, the authors identified the main diseases with tomographic repercussions and proposed the present system to evaluate cranial computed tomography images. An easy-to-memorize ABC system will facilitate the decision making in emergency settings, as it covers the main diseases encountered by intensivists and emergency physicians, and provides a sequential guidance about anatomical structures to be investigated as well as their respective alterations.

  15. Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges.

    PubMed

    Eriksen, Jacob; Jørgensen, Trine Nygaard; Gether, Ulrik

    2010-04-01

    The dopamine transporter (DAT) plays a key role in regulating dopaminergic signalling in the brain by mediating rapid clearance of dopamine from the synaptic clefts. The psychostimulatory actions of cocaine and amphetamine are primarily the result of a direct interaction of these compounds with DAT leading to attenuated dopamine clearance and for amphetamine even increased dopamine release. In the last decade, intensive efforts have been directed towards understanding the molecular and cellular mechanisms governing the activity and availability of DAT in the plasma membrane of the pre-synaptic neurons. This has led to the identification of a plethora of different kinases, receptors and scaffolding proteins that interact with DAT and hereby either modulate the catalytic activity of the transporter or regulate its trafficking and degradation. Several new tools for studying DAT regulation in live cells have also recently become available such as fluorescently tagged cocaine analogues and fluorescent substrates. Here we review the current knowledge about the role of protein-protein interactions in DAT regulation as well as we describe the most recent methodological developments that have been established to overcome the challenges associated with the study of DAT in endogenous systems.

  16. Transport proteins and acute phase reactant proteins in children with sickle cell anemia.

    PubMed Central

    Warrier, R. P.; Kuvibidila, S.; Gordon, L.; Humbert, J.

    1994-01-01

    Transport proteins, acute-phase reactant proteins (APRP), hematology, and anthropometry were studied in 34 sickle cell disease (SCD) children (20 boys, 14 girls) and 27 controls without growth deficits (13 boys, 14 girls) [corrected]. The age range was 1/2 to 16 1/2 years. Weight deficits (< 80%) by Waterlow's classification were observed in 41% of SCD boys and 25% of SCD girls, and height deficits (< 90%) were observed in 25% SCD boys and 25% girls. Mean white blood cell counts were significantly higher (P < .001) and hematocrit and hemoglobin (Hb) lower (P < .005) in SCD children than in controls. Although both groups had similar mean levels of albumin, transferrin, and APRP, SCD children had significantly lower mean levels of retinol-binding protein (RBP) (P < .001) and retinol-prealbumin (P < .001). Retinol-binding protein levels were abnormal in 18 (53%) SCD children and in only 23% controls (chi 2 = 14.06; P < 0.005); transferrin levels were abnormal in 20% of SCD children and in none of the controls. Children with SC and SF Hb phenotype had normal mean levels of RBP, whereas those with S beta thal and SS phenotype had levels below normal. Growth-retarded children by weight and height had reduced mean levels of RBP and prealbumin compared with growth-normal SCD children. The implication of primary protein-energy malnutrition on growth retardation in SCD children is under study. PMID:7512147

  17. Synthesis and modulation properties of imidazo[4,5-b]pyridin-7-one and indazole-4,7-dione derivatives towards the Cryptosporidium parvum CpABC3 transporter.

    PubMed

    Zeinyeh, Waël; Xia, Hexue; Lawton, Philippe; Radix, Sylvie; Marminon, Christelle; Nebois, Pascal; Walchshofer, Nadia

    2010-06-01

    The syntheses of new N-polysubstituted imidazo[4,5-b]pyridine-7-one (IP, 5 and 8a-8f) and indazole-4,7-dione (ID, 9 and 10) derivatives are described. The binding affinity of IP and ID towards the recombinant Nucleotide Binding Domain NBD1 of Cryptosporidium parvum CpABC3 was evaluated by intrinsic fluorescence quenching. IP induced a moderate quenching of the intrinsic fluorescence of H6-NBD1 whereas IDs 9 and 10 showed a binding affinity comparable to the ATP analogue TNP-ATP. In addition, 8d, 8e and 10 were shown to be competitive inhibitors of the ATPase activity, but with low affinity. These compounds could thus act like some flavonoid derivatives, which can partly overlap both the nucleotide-binding site and the adjacent hydrophobic steroid-binding region of mammalian P-glycoproteins.

  18. CodABC: a computational framework to coestimate recombination, substitution, and molecular adaptation rates by approximate Bayesian computation.

    PubMed

    Arenas, Miguel; Lopes, Joao S; Beaumont, Mark A; Posada, David

    2015-04-01

    The estimation of substitution and recombination rates can provide important insights into the molecular evolution of protein-coding sequences. Here, we present a new computational framework, called "CodABC," to jointly estimate recombination, substitution and synonymous and nonsynonymous rates from coding data. CodABC uses approximate Bayesian computation with and without regression adjustment and implements a variety of codon models, intracodon recombination, and longitudinal sampling. CodABC can provide accurate joint parameter estimates from recombining coding sequences, often outperforming maximum-likelihood methods based on more approximate models. In addition, CodABC allows for the inclusion of several nuisance parameters such as those representing codon frequencies, transition matrices, heterogeneity across sites or invariable sites. CodABC is freely available from http://code.google.com/p/codabc/, includes a GUI, extensive documentation and ready-to-use examples, and can run in parallel on multicore machines.

  19. CodABC: A Computational Framework to Coestimate Recombination, Substitution, and Molecular Adaptation Rates by Approximate Bayesian Computation

    PubMed Central

    Arenas, Miguel; Lopes, Joao S.; Beaumont, Mark A.; Posada, David

    2015-01-01

    The estimation of substitution and recombination rates can provide important insights into the molecular evolution of protein-coding sequences. Here, we present a new computational framework, called “CodABC,” to jointly estimate recombination, substitution and synonymous and nonsynonymous rates from coding data. CodABC uses approximate Bayesian computation with and without regression adjustment and implements a variety of codon models, intracodon recombination, and longitudinal sampling. CodABC can provide accurate joint parameter estimates from recombining coding sequences, often outperforming maximum-likelihood methods based on more approximate models. In addition, CodABC allows for the inclusion of several nuisance parameters such as those representing codon frequencies, transition matrices, heterogeneity across sites or invariable sites. CodABC is freely available from http://code.google.com/p/codabc/, includes a GUI, extensive documentation and ready-to-use examples, and can run in parallel on multicore machines. PMID:25577191

  20. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum

    PubMed Central

    Martin, Rowena E; Henry, Roselani I; Abbey, Janice L; Clements, John D; Kirk, Kiaran

    2005-01-01

    Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen. PMID:15774027

  1. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    PubMed Central

    2012-01-01

    Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769

  2. The ABC`s of nuclear science workshop

    SciTech Connect

    McMahn, P.; Carlock, M.S.; Mattis, H.; Norman, E.; Seaborg, G.

    1997-12-31

    Over the last several years the Contemporary Physics Education Project (CPEP) has developed two wall charts which illustrate contemporary aspects of particle and plasma physics for high school and undergraduate students. We are now working with CPEP on the development of a similar chart for nuclear science. This chart will illustrate the basics of nuclear science coupled with the exciting research which is being done in this field. This workshop will explore the wall chart, along with materials and experiments that have been developed to accompany it. The set of experiments have been developed by high school teachers, chemists, and physicists working together, and include experiments such as, {open_quotes}the ABCs of Nuclear Science,{close_quotes} and experiments exploring the various kinds of radioactive decay, radioactivity in common household products, half-live measurements, radiography, etc. Teachers who join the project as chart field testers will receive a poster size chart and accompanying materials free of charge. The materials also include a video about cosmic rays has also been produced for the classroom.

  3. Yeast and Mammals Utilize Similar Cytosolic Components to Drive Protein Transport through the Golgi Complex

    NASA Astrophysics Data System (ADS)

    Dunphy, William G.; Pfeffer, Suzanne R.; Clary, Douglas O.; Wattenberg, Binks W.; Glick, Benjamin S.; Rothman, James E.

    1986-03-01

    Vesicular transport between successive compartments of the mammalian Golgi apparatus has recently been reconstituted in a cell-free system. In addition to ATP, transport requires both membrane-bound and cytosolic proteins. Here we report that the cytosol fraction from yeast will efficiently substitute for mammalian cytosol. Mammalian cytosol contains several distinct transport factors, which we have distinguished on the basis of gel filtration and ion-exchange chromatography. Yeast cytosol appears to contain the same collection of transport factors. Resolved cytosol factors from yeast and mammals complement each other in a synergistic manner. These findings suggest that the molecular mechanisms of intracellular protein transport have been conserved throughout evolution. Moreover, this hybrid cell-free system will enable the application of yeast genetics to the identification and isolation of cytosolic proteins that sustain intracellular protein transport.

  4. Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein

    PubMed Central

    Xie, Jiuyong; Lee, Ji-Ann; Kress, Tracy L.; Mowry, Kimberly L.; Black, Douglas L.

    2003-01-01

    The heterogeneous nuclear ribonucleoprotein particle (hnRNP) proteins play important roles in mRNA processing in eukaryotes, but little is known about how they are regulated by cellular signaling pathways. The polypyrimidine-tract binding protein (PTB, or hnRNP I) is an important regulator of alternative pre-mRNA splicing, of viral RNA translation, and of mRNA localization. Here we show that the nucleo-cytoplasmic transport of PTB is regulated by the 3′,5′-cAMP-dependent protein kinase (PKA). PKA directly phosphorylates PTB on conserved Ser-16, and PKA activation in PC12 cells induces Ser-16 phosphorylation. PTB carrying a Ser-16 to alanine mutation accumulates normally in the nucleus. However, export of this mutant protein from the nucleus is greatly reduced in heterokaryon shuttling assays. Conversely, hyperphosphorylation of PTB by coexpression with the catalytic subunit of PKA results in the accumulation of PTB in the cytoplasm. This accumulation is again specifically blocked by the S16A mutation. Similarly, in Xenopus oocytes, the phospho-Ser-16-PTB is restricted to the cytoplasm, whereas the non-Ser-16-phosphorylated PTB is nuclear. Thus, direct PKA phosphorylation of PTB at Ser-16 modulates the nucleo-cytoplasmic distribution of PTB. This phosphorylation likely plays a role in the cytoplasmic function of PTB. PMID:12851456

  5. The ABC's of Cultural Understanding and Communication.

    ERIC Educational Resources Information Center

    Schmidt, Patricia R.

    1998-01-01

    Reports the impressions of 20 preservice and inservice teachers as they experienced the "ABC's of Cultural Understanding and Communication" model, a program to promote cultural sensitivity among teachers. Insights these teachers gained are discussed. (SLD)

  6. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats.

    PubMed

    Chen, Xin-ran; Liao, Song-jie; Ye, Lan-xiang; Gong, Qiong; Ding, Qiao; Zeng, Jin-sheng; Yu, Jian

    2014-01-16

    Focal cerebral infarction causes secondary damage in the ipsilateral ventroposterior thalamic nucleus (VPN). Chondroitin sulfate proteoglycans (CSPGs) are a family of putative inhibitory components, and its degradation by chondroitinase ABC (ChABC) promotes post-injury neurogenesis. This study investigated the role of ChABC in the primary and secondary injury post stroke in hypertension. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), and were subjected to continuous intra-infarct infusion of ChABC (0.12 U/d for 7 days) 24 h later. Neurological function was evaluated by a modified neurologic severity score. Neurons were counted in the peri-infarct region and the ipsilateral VPN 8 and 14 days after MCAO by Nissl staining and NeuN labeling. The expressions of CSPGs, growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were detected with immunofluorescence or Western blotting. The intra-infarct infusion of ChABC, by degrading accumulated CSPGs, rescued neuronal loss and increased the levels of GAP-43 and SYN in both the ipsilateral cortex and VPN, indicating enhancd neuron survival as well as augmented axonal growth and synaptic plasticity, eventually improving overall neurological function. The study demonstrated that intra-infarct ChABC infusion could salvage the brain from both primary and secondary injury by the intervention on the neuroinhibitory environment post focal cerebral infarction.

  7. Downregulation of Critical Oncogenes by the Selective SK2 Inhibitor ABC294640 Hinders Prostate Cancer Progression

    PubMed Central

    Schrecengost, Randy S.; Keller, Staci N.; Schiewer, Matthew J.; Knudsen, Karen E.; Smith, Charles D.

    2015-01-01

    The bioactive sphingolipid sphingosine-1-phosphate (S1P) drives several hallmark processes of cancer, making the enzymes that synthesize S1P, i.e. sphingosine kinase 1 and 2 (SK1 and SK2), important molecular targets for cancer drug development. ABC294640 is a first-in-class SK2 small-molecule inhibitor that effectively inhibits cancer cell growth in vitro and in vivo. Given that AR and Myc are two of the most widely implicated oncogenes in prostate cancer (PCa), and that sphingolipids impact signaling by both proteins, the therapeutic potential for using ABC294640 in the treatment of PCa was evaluated. This study demonstrates that ABC294640 abrogates signaling pathways requisite for PCa growth and proliferation. Key findings validate that ABC294640 treatment of early stage and advanced PCa models downregulate Myc and AR expression and activity. This corresponds with significant inhibition of growth, proliferation, and cell cycle progression. Finally, oral administration of ABC294640 was found to dramatically impede xenograft tumor growth. Together, these pre-clinical findings support the hypotheses that SK2 activity is required for PCa function and that ABC294640 represents a new pharmacological agent for treatment of early stage and aggressive PCa. PMID:26271487

  8. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes

    PubMed Central

    1992-01-01

    Using indirect immunofluorescence we have examined the effects of reagents which inhibit the function of ras-related rab small GTP- binding proteins and heterotrimeric G alpha beta gamma proteins in ER to Golgi transport. Export from the ER was inhibited by an antibody towards rab1B and an NH2-terminal peptide which inhibits ARF function (Balch, W. E., R. A. Kahn, and R. Schwaninger. 1992. J. Biol. Chem. 267:13053-13061), suggesting that both of these small GTP-binding proteins are essential for the transport vesicle formation. Export from the ER was also potently inhibited by mastoparan, a peptide which mimics G protein binding regions of seven transmembrane spanning receptors activating and uncoupling heterotrimeric G proteins from their cognate receptors. Consistent with this result, purified beta gamma subunits inhibited the export of VSV-G from the ER suggesting an initial event in transport vesicle assembly was regulated by a heterotrimeric G protein. In contrast, incubation in the presence of GTP gamma S or AIF(3-5) resulted in the accumulation of transported protein in different populations of punctate pre-Golgi intermediates distributed throughout the cytoplasm of the cell. Finally, a peptide which is believed to antagonize the interaction of rab proteins with putative downstream effector molecules inhibited transport at a later step preceding delivery to the cis Golgi compartment, similar to the site of accumulation of transported protein in the absence of NSF or calcium (Plutner, H., H. W. Davidson, J. Saraste, and W. E. Balch. 1992. J. Cell Biol. 119:1097-1116). These results are consistent with the hypothesis that multiple GTP-binding proteins including a heterotrimeric G protein(s), ARF and rab1 differentially regulate steps in the transport of protein between early compartments of the secretory pathway. The concept that G protein-coupled receptors gate the export of protein from the ER is discussed. PMID:1447289

  9. Transport of organelles by elastically coupled motor proteins.

    PubMed

    Bhat, Deepak; Gopalakrishnan, Manoj

    2016-07-01

    Motor-driven intracellular transport is a complex phenomenon where multiple motor proteins simultaneously attached on to a cargo engage in pulling activity, often leading to tug-of-war, displaying bidirectional motion. However, most mathematical and computational models ignore the details of the motor-cargo interaction. A few studies have focused on more realistic models of cargo transport by including elastic motor-cargo coupling, but either restrict the number of motors and/or use purely phenomenological forms for force-dependent hopping rates. Here, we study a generic model in which N motors are elastically coupled to a cargo, which itself is subjected to thermal noise in the cytoplasm and to an additional external applied force. The motor-hopping rates are chosen to satisfy detailed balance with respect to the energy of elastic stretching. With these assumptions, an (N + 1) -variable master equation is constructed for dynamics of the motor-cargo complex. By expanding the hopping rates to linear order in fluctuations in motor positions, we obtain a linear Fokker-Planck equation. The deterministic equations governing the average quantities are separated out and explicit analytical expressions are obtained for the mean velocity and diffusion coefficient of the cargo. We also study the statistical features of the force experienced by an individual motor and quantitatively characterize the load-sharing among the cargo-bound motors. The mean cargo velocity and the effective diffusion coefficient are found to be decreasing functions of the stiffness. While the increase in the number of motors N does not increase the velocity substantially, it decreases the effective diffusion coefficient which falls as 1/N asymptotically. We further show that the cargo-bound motors share the force exerted on the cargo equally only in the limit of vanishing elastic stiffness; as stiffness is increased, deviations from equal load sharing are observed. Numerical simulations agree with

  10. Axonal transport of proteins. A new view using in vivo covalent labeling

    PubMed Central

    1980-01-01

    The injection of [2,3-3H]N-succinimidyl propionate ([3H]N-SP) into the rat sciatic nerve was used to covalently label both intra- and extra- axonal proteins. While extra-axonal proteins (e.g., myelin proteins) remained in the injection site, the intra-axonal proteins were transported in both the anterograde and retrograde directions. The mobile labeled proteins appeared to move by normal axonal transport processes because: (a) autoradiographic studies showed that they were localized exclusively within the axon at considerable distances from the injection site, (b) specific and identifiable proteins (by SDS gel electrophoresis) moved at expected rates in the anterograde direction, and (c) an entirely different profile of proteins moved in the anterograde vs. retrograde direction. This novel experimental approach to axonal transport, which is independent of de novo protein synthesis, provided a unique view of slow anterograde transport, and particularly of retrograde transport of endogenous proteins. A large quantity of a 68,000 mol wt proteins, moving at approximately 3-6 mm/day, dominated the retograde transport profile. [3H]N-SP, therefore, represents a new and unique "vital stain" which may find many applications in cell biology. PMID:6154709

  11. Integrated regulation of motor-driven organelle transport by scaffolding proteins.

    PubMed

    Fu, Meng-meng; Holzbaur, Erika L F

    2014-10-01

    Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment.

  12. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds.

    PubMed

    Xu, Xiu-Hong; Zhao, Hai-Jun; Liu, Qing-Long; Frank, Thomas; Engel, Karl-Heinz; An, Gynheung; Shu, Qing-Yao

    2009-06-01

    Phytic acid (PA, myo-inositol 1,2,3,4,5,6-hexakisphosphate) is important to the nutritional quality of cereal and legume seeds. PA and its salts with micronutrient cations, such as iron and zinc, cannot be digested by humans and non-ruminant animals, and hence may affect food/feed nutritional value and cause P pollution of groundwater from animal waste. We previously developed a set of low phytic acid (LPA) rice mutant lines with the aim of increasing the nutritional quality of rice. Two of these lines, Os-lpa-XS110-2 (homozygous non-lethal) Os-lpa-XS110-3 (homozygous lethal), contain two mutant alleles of a LPA gene (hereafter XS-lpa2-1 and XS-lpa2-2, respectively). In this study, we mapped the XS-lpa2-1 gene to a region on chromosome 3 between microsatellite markers RM14360 and RM1332, where the rice orthologue (OsMRP5) of the maize lpa1 gene is located. Sequence analysis of the OsMRP5 gene revealed a single base pair change (C/G-T/A transition) in the sixth exon of XS-lpa2-1 and a 5-bp deletion in the first exon of XS-lpa2-2. OsMRP5 is expressed in both vegetative tissues and developing seeds, and the two mutations do not change the level of RNA transcription. A T-DNA insertion line, 4A-02500, in which OsMRP5 was disrupted, also showed the same high inorganic phosphorus phenotype as Os-lpa-XS110-3 and appeared to be homozygous lethal. PA is significantly reduced in Os-lpa-XS110-2 (~20%) and in 4A-02500 (~90%) seeds compared with their wild type lines, and no PA was detected in Os-lpa-XS110-3 using HPLC analysis. This evidence indicates that the OsMRP5 gene plays an important role in PA metabolism in rice seeds.

  13. T versus D in the MTCXXC motif of copper transport proteins plays a role in directional metal transport.

    PubMed

    Niemiec, Moritz S; Dingeldein, Artur P G; Wittung-Stafshede, Pernilla

    2014-08-01

    To avoid toxicity and control levels of metal ions, organisms have developed specific metal transport systems. In humans, the cytoplasmic Cu chaperone Atox1 delivers Cu to metal-binding domains of ATP7A/B in the Golgi, for incorporation into Cu-dependent proteins. The Cu-binding motif in Atox1, as well as in target Cu-binding domains of ATP7A/B, consists of a MX1CXXC motif where X1 = T. The same motif, with X1 = D, is found in metal-binding domains of bacterial zinc transporters, such as ZntA. The Asp is proposed to stabilize divalent over monovalent metals in the binding site, although metal selectivity in vivo appears predominantly governed by protein-protein interactions. To probe the role of T versus D at the X1 position for Cu transfer in vitro, we created MDCXXC variants of Atox1 and the fourth metal-binding domain of ATP7B, WD4. We find that the mutants bind Cu like the wild-type proteins, but when mixed, in contrast to the wild-type pair, the mutant pair favors Cu-dependent hetero-dimers over directional Cu transport from Atox1 to WD4. Notably, both wild-type and mutant proteins can bind Zn in the absence of competing reducing agents. In presence of zinc, hetero-complexes are strongly favored for both protein pairs. We propose that T is conserved in this motif of Cu-transport proteins to promote directional metal transfer toward ATP7B, without formation of energetic sinks. The ability of both Atox1 and WD4 to bind zinc ions may not be a problem in vivo due to the presence of specific transport chains for Cu and Zn ions.

  14. Specific transport of target molecules by motor proteins in microfluidic channels.

    PubMed

    Tarhan, Mehmet C; Yokokawa, Ryuji; Morin, Fabrice O; Fujita, Hiroyuki

    2013-06-03

    Direct transport powered by motor proteins can alleviate the challenges presented by miniaturization of microfluidic systems. There have been several recent attempts to build motor-protein-driven transport systems based on simple capturing or transport mechanisms. However, to achieve a multifunctional device for practical applications, a more complex sorting/transport system should be realized. Herein, the proof of concept of a sorting device employing selective capture of distinct target molecules and transport of the sorted molecules to different predefined directions is presented. By combining the bottom-up functionality of biological systems with the top-down handling capabilities of micro-electromechanical systems technology, highly selective molecular recognition and motor-protein-based transport is integrated in a microfluidic channel network.

  15. Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos.

    PubMed

    Zhao, Chengtian; Malicki, Jarema

    2011-05-20

    Cilia are required for the development and function of many organs. Efficient transport of protein cargo along ciliary axoneme is necessary to sustain these processes. Despite its importance, the mode of interaction between the intraflagellar ciliary transport (IFT) mechanism and its cargo proteins remains poorly understood. Our studies demonstrate that IFT particle components, and a Meckel-Gruber syndrome 1 (MKS1)-related, B9 domain protein, B9d2, bind each other and contribute to the ciliary localization of Inversin (Nephrocystin 2). B9d2, Inversin, and Nephrocystin 5 support, in turn, the transport of a cargo protein, Opsin, but not another photoreceptor ciliary transmembrane protein, Peripherin. Interestingly, the components of this mechanism also contribute to the formation of planar cell polarity in mechanosensory epithelia. These studies reveal a molecular mechanism that mediates the transport of selected ciliary cargos and is of fundamental imp