Science.gov

Sample records for abc transport protein

  1. ABC Transport Proteins in Cardiovascular Disease-A Brief Summary.

    PubMed

    Schumacher, Toni; Benndorf, Ralf A

    2017-04-06

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters may play an important role in the pathogenesis of atherosclerotic vascular diseases due to their involvement in cholesterol homeostasis, blood pressure regulation, endothelial function, vascular inflammation, as well as platelet production and aggregation. In this regard, ABC transporters, such as ABCA1, ABCG5 and ABCG8, were initially found to be responsible for genetically-inherited syndromes like Tangier diseases and sitosterolemia. These findings led to the understanding of those transporter's function in cellular cholesterol efflux and thereby also linked them to atherosclerosis and cardiovascular diseases (CVD). Subsequently, further ABC transporters, i.e., ABCG1, ABCG4, ABCB6, ABCC1, ABCC6 or ABCC9, have been shown to directly or indirectly affect cellular cholesterol efflux, the inflammatory response in macrophages, megakaryocyte proliferation and thrombus formation, as well as vascular function and blood pressure, and may thereby contribute to the pathogenesis of CVD and its complications. Furthermore, ABC transporters, such as ABCB1, ABCC2 or ABCG2, may affect the safety and efficacy of several drug classes currently in use for CVD treatment. This review will give a brief overview of ABC transporters involved in the process of atherogenesis and CVD pathology. It also aims to briefly summarize the role of ABC transporters in the pharmacokinetics and disposition of drugs frequently used to treat CVD and CVD-related complications.

  2. Structural diversity of ABC transporters

    PubMed Central

    ter Beek, Josy; Guskov, Albert

    2014-01-01

    ATP-binding cassette (ABC) transporters form a large superfamily of ATP-dependent protein complexes that mediate transport of a vast array of substrates across membranes. The 14 currently available structures of ABC transporters have greatly advanced insight into the transport mechanism and revealed a tremendous structural diversity. Whereas the domains that hydrolyze ATP are structurally related in all ABC transporters, the membrane-embedded domains, where the substrates are translocated, adopt four different unrelated folds. Here, we review the structural characteristics of ABC transporters and discuss the implications of this structural diversity for mechanistic diversity. PMID:24638992

  3. Plant ABC Transporters

    PubMed Central

    Kang, Joohyun; Park, Jiyoung; Choi, Hyunju; Burla, Bo; Kretzschmar, Tobias; Lee, Youngsook; Martinoia, Enrico

    2011-01-01

    ABC transporters constitute one of the largest protein families found in all living organisms. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. The plant genome encodes for more than 100 ABC transporters, largely exceeding that of other organisms. In Arabidopsis, only 22 out of 130 have been functionally analyzed. They are localized in most membranes of a plant cell such as the plasma membrane, the tonoplast, chloroplasts, mitochondria and peroxisomes and fulfill a multitude of functions. Originally identified as transporters involved in detoxification processes, they have later been shown to be required for organ growth, plant nutrition, plant development, response to abiotic stresses, pathogen resistance and the interaction of the plant with its environment. To fulfill these roles they exhibit different substrate specifies by e.g. depositing surface lipids, accumulating phytate in seeds, and transporting the phytohormones auxin and abscisic acid. The aim of this review is to give an insight into the functions of plant ABC transporters and to show their importance for plant development and survival. PMID:22303277

  4. Harnessing Drug Resistance: Using ABC Transporter Proteins To Target Cancer Cells

    PubMed Central

    Leitner, Heather M.; Kachadourian, Remy; Day, Brian J.

    2007-01-01

    The ATP-binding cassette (ABC) class of proteins is one of the most functionally diverse transporter families found in biological systems. Although the abundance of ABC proteins varies between species, they are highly conserved in sequence and often demonstrate similar functions across prokaryotic and eukaryotic organisms. Beginning with a brief summary of the events leading to our present day knowledge of ABC transporters, the purpose of this review is to discuss the potential for utilizing ABC transporters as a means for cellular glutathione (GSH) modulation. GSH is one of the most abundant thiol antioxidants in cells. It is involved in cellular division, protein and DNA synthesis, maintenance of cellular redox status and xenobiotic metabolism. Cellular GSH levels are often altered in many disease states including cancer. Over the past two decades there has been considerable emphasis on methods to sensitize cancer cells to chemotherapeutics and ionization radiation therapy by GSH depletion. We contend that ABC transporters, particularly multi-drug resistant proteins (MRPs), may be used as therapeutic targets for applications aimed at modulation of GSH levels. This review will emphasize MRP-mediated modulation of intracellular GSH levels as a potential alternative and adjunctive approach for cancer therapy. PMID:17585883

  5. ABC transporters in adaptive immunity.

    PubMed

    Seyffer, Fabian; Tampé, Robert

    2015-03-01

    ABC transporters ubiquitously found in all kingdoms of life move a broad range of solutes across membranes. Crystal structures of four distinct types of ABC transport systems have been solved, shedding light on different conformational states within the transport process. Briefly, ATP-dependent flipping between inward- and outward-facing conformations allows directional transport of various solutes. The heterodimeric transporter associated with antigen processing TAP1/2 (ABCB2/3) is a crucial element of the adaptive immune system. The ABC transport complex shuttles proteasomal degradation products into the endoplasmic reticulum. These antigenic peptides are loaded onto major histocompatibility complex class I molecules and presented on the cell surface. We detail the functional modules of TAP, its ATPase and transport cycle, and its interaction with and modulation by other cellular components. In particular, we emphasize how viral factors inhibit TAP activity and thereby prevent detection of the infected host cell by cytotoxic T-cells. Merging functional details on TAP with structural insights from related ABC transporters refines the understanding of solute transport. Although human ABC transporters are extremely diverse, they still may employ conceptually related transport mechanisms. Appropriately, we delineate a working model of the transport cycle and how viral factors arrest TAP in distinct conformations. Deciphering the transport cycle of human ABC proteins is the major issue in the field. The defined peptidic substrate, various inhibitory viral factors, and its role in adaptive immunity provide unique tools for the investigation of TAP, making it an ideal model system for ABC transporters in general. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The ABCs of trans(porter) inhibition.

    PubMed

    Gaudet, Rachelle

    2008-08-01

    Transporter proteins mediate the import of nutrients and the export of toxins across biological membranes. A new crystal structure of a bacterial ABC transporter reveals an unexpected mechanism for transporter inhibition by its transported substrate.

  7. Bioinformatic survey of ABC transporters in dermatophytes.

    PubMed

    Gadzalski, Marek; Ciesielska, Anita; Stączek, Paweł

    2016-01-15

    ATP binding cassette (ABC) transporters constitute a very large and ubiquitous superfamily of membrane proteins. They are responsible for ATP hydrolysis driven translocation of countless substrates. Being a very old and diverse group of proteins present in all organisms they share a common feature, which is the presence of an evolutionary conservative nucleotide binding domain (NBD)--the engine that drives the transport. Another common domain is a transmembrane domain (TMD) which consists of several membrane-spanning helices. This part of protein is substrate-specific, thus it is much more variable. ABC transporters are known for driving drug efflux in many pathogens and cancer cells, therefore they are the subject of extensive studies. There are many examples of conferring a drug resistance phenotype in fungal pathogens by ABC transporters, however, little is known about these proteins in dermatophytes--a group of fungi causing superficial mycoses. So far only a single ABC transporter has been extensively studied in this group of pathogens. We analyzed available genomic sequences of seven dermatophyte species in order to provide an insight into dermatophyte ABC protein inventory. Phylogenetic studies of ABC transporter genes and their products were conducted and included ABC transporters of other fungi. Our results show that each dermatophyte genome studied possesses a great variety of ABC transporter genes. Detailed analysis of selected genes and their products indicates that relatively recent duplication of ABC transporter genes could lead to novel substrate specificity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. ABCdb: an ABC transporter database.

    PubMed

    Quentin, Y; Fichant, G

    2000-10-01

    We present the first release of a database devoted to the ATP-binding cassette (ABC) protein domains (ABCdb). The ABC proteins are involved in a wide variety of physiological processes in Archea, Bacteria and Eucaryota where they are encoded by large families of paralogous genes. The majority of ABC domains energize the transport of compounds across the membranes. In bacteria, ABC transporters are involved in the uptake of a wide range of molecules and in mechanisms of virulence and antibiotic resistance. In eukaryotes, most of them are involved in drug resistance and in human cells, many are associated with diseases. Sequence analysis reveals that members of the ABC superfamily can be organized into sub-families and suggests that they have diverged from common ancestral forms. In this release, ABCdb includes the inventory and assembly of the ABC transporter systems of completely sequenced genomes. In addition to the protein entries, the database comprises information on functional domains, sequence motifs, predicted trans-membrane segments, and signal peptides. It also includes a classification in sub-families of the ABC systems as well as a classification of the different partners of the systems. Evolutionary trees and specific sequence patterns are provided for each sub-family. The database is endowed with a powerful query system and it was interfaced with blastP2 program for similarity searches. ABCdb has been developed in the ACeDB format, a database system developed by Jean Thierry-Mieg and Richard Durbin. ABCdb can be accessed via the World Wide Web (http://ir2lcb.cnrs-mrs.fr/ABCdb/).

  9. A Vector System for ABC Transporter-Mediated Secretion and Purification of Recombinant Proteins in Pseudomonas Species

    PubMed Central

    Ryu, Jaewook; Lee, Ukjin; Park, Jiye; Yoo, Do-Hyun

    2014-01-01

    Pseudomonas fluorescens is an efficient platform for recombinant protein production. P. fluorescens has an ABC transporter secreting endogenous thermostable lipase (TliA) and protease, which can be exploited to transport recombinant proteins across the cell membrane. In this study, the expression vector pDART was constructed by inserting tliDEF, genes encoding the ABC transporter, along with the construct of the lipase ABC transporter recognition domain (LARD), into pDSK519, a widely used shuttle vector. When the gene for the target protein was inserted into the vector, the C-terminally fused LARD allowed it to be secreted through the ABC transporter into the extracellular medium. After secretion of the fused target protein, the LARD containing a hydrophobic C terminus enabled its purification through hydrophobic interaction chromatography (HIC) using a methyl-Sepharose column. Alkaline phosphatase (AP) and green fluorescent protein (GFP) were used to validate the expression, export, and purification of target proteins by the pDART system. Both proteins were secreted into the extracellular medium in P. fluorescens. In particular, AP was secreted in several Pseudomonas species with its enzymatic activity in extracellular media. Furthermore, purification of the target protein using HIC yielded some degree of AP and GFP purification, where AP was purified to almost a single product. The pDART system will provide greater convenience for the secretory production and purification of recombinant proteins in Gram-negative bacteria, such as Pseudomonas species. PMID:25548043

  10. ATP-binding cassette (ABC) transporters in caprine preantral follicles: gene and protein expression.

    PubMed

    Guerreiro, Denise Damasceno; de Lima, Laritza Ferreira; Mbemya, Gildas Tetaping; Maside, Carolina Mielgo; Miranda, André Marrocos; Tavares, Kaio César Simiano; Alves, Benner Geraldo; Faustino, Luciana Rocha; Smitz, Johan; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro

    2018-02-27

    The multidrug resistance proteins ABCB1, ABCC2 and ABCG2 are an energy-dependent efflux pump that functions in systemic detoxification processes. Physiologically expressed in a variety of tissues, most abundantly in the liver and intestinal epithelia, placenta, blood-brain barrier and various stem cells, until now, these pumps were not identified in goat ovarian tissue. Therefore, the aim of this study is to analyze ABCB1, ABCC2, and ABCG2 mRNA and protein expression in goat preantral follicles. Fragments (3 × 3 × 1 mm) from five pairs of ovary (n = 10) obtained from five goat were collected and immediately submitted to qPCR, Western blot, and immunofluorescence assay for mRNA detection and identification and localization of the ABC transporters, respectively. mRNA for ABCB1, ABCC2, and ABCG2 and the presence of their proteins were observed on ovarian tissue samples. Positive marks were observed for the three transport proteins in all follicular categories studied. However, the marks were primarily localized in the oocyte of primordial, transition and primary follicle categories. In conclusion, goat ovarian tissue expresses mRNA for the ABCB1, ABCC2 and ABCG2 transporters and the expression of these proteins in the preantral follicles is a follicle-dependent stage.

  11. Beyond Competitive Inhibition: Regulation of ABC Transporters by Kinases and Protein-Protein Interactions as Potential Mechanisms of Drug-Drug Interactions.

    PubMed

    Crawford, Rebecca R; Potukuchi, Praveen K; Schuetz, Erin G; Schuetz, John D

    2018-03-07

    ATP-binding cassette (ABC) transporters are transmembrane efflux transporters mediating the extrusion of an array of substrates ranging from amino acids and lipids to xenobiotics, and many therapeutic compounds, including anticancer drugs. The ABC transporters are also recognized as important contributors to pharmacokinetics, especially in drug-drug interactions and adverse drug effects. Drugs and xenobiotics, as well as pathological conditions, can influence the transcription of ABC transporters, or modify their activity or intracellular localization. Kinases can affect the aforementioned processes for ABC transporters as do protein interactions. In this review, we focus on the ABC transporters ABCB1, ABCB11, ABCC1, ABCC4 and ABCG2 and illustrate how kinases and protein-protein interactions affect these transporters. The clinical relevance of these factors is currently unknown, however these examples suggest that our understanding of drug-drug interactions will benefit from further knowledge of how kinases and protein-protein interactions affect ABC transporters. The American Society for Pharmacology and Experimental Therapeutics.

  12. The ABC transporters in Candidatus Liberibacter asiaticus

    PubMed Central

    Li, Wenlin; Cong, Qian; Pei, Jimin; Kinch, Lisa N; Grishin, Nick V

    2012-01-01

    Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a Gram-negative bacterium and the pathogen of Citrus Greening disease (Huanglongbing, HLB). As a parasitic bacterium, Ca. L. asiaticus harbors ABC transporters that play important roles in exchanging chemical compounds between Ca. L. asiaticus and its host. Here, we analyzed all the ABC transporter-related proteins in Ca. L. asiaticus. We identified 14 ABC transporter systems and predicted their structures and substrate specificities. In-depth sequence and structure analysis including multiple sequence alignment, phylogenetic tree reconstruction, and structure comparison further support their function predictions. Our study shows that this bacterium could use these ABC transporters to import metabolites (amino acids and phosphates) and enzyme cofactors (choline, thiamine, iron, manganese, and zinc), resist to organic solvent, heavy metal, and lipid-like drugs, maintain the composition of the outer membrane (OM), and secrete virulence factors. Although the features of most ABC systems could be deduced from the abundant experimental data on their orthologs, we reported several novel observations within ABC system proteins. Moreover, we identified seven nontransport ABC systems that are likely involved in virulence gene expression regulation, transposon excision regulation, and DNA repair. Our analysis reveals several candidates for further studies to understand and control the disease, including the type I virulence factor secretion system and its substrate that are likely related to Ca. L. asiaticus pathogenicity and the ABC transporter systems responsible for bacterial OM biosynthesis that are good drug targets. PMID:22807026

  13. Heme Assimilation in Schizosaccharomyces pombe Requires Cell-surface-anchored Protein Shu1 and Vacuolar Transporter Abc3.

    PubMed

    Mourer, Thierry; Normant, Vincent; Labbé, Simon

    2017-03-24

    The Schizosaccharomyces pombe shu1 + gene encodes a cell-surface protein required for assimilation of exogenous heme. In this study, shaving experiments showed that Shu1 is released from membrane preparations when spheroplast lysates are incubated with phosphoinositide-specific phospholipase C (PI-PLC). Shu1 cleavability by PI-PLC and its predicted hydropathy profile strongly suggested that Shu1 is a glycosylphosphatidylinositol-anchored protein. When heme biosynthesis is selectively blocked in hem1 Δ mutant cells, the heme analog zinc mesoporphyrin IX (ZnMP) first accumulates into vacuoles and then subsequently, within the cytoplasm in a rapid and Shu1-dependent manner. An HA 4 -tagged shu1 + allele that retained wild-type function localizes to the cell surface in response to low hemin concentrations, but under high hemin concentrations, Shu1-HA 4 re-localizes to the vacuolar membrane. Inactivation of abc3 + , encoding a vacuolar membrane transporter, results in hem1 Δ abc3 Δ mutant cells being unable to grow in the presence of hemin as the sole iron source. In hem1 Δ abc3 Δ cells, ZnMP accumulates primarily in vacuoles and does not sequentially accumulate in the cytosol. Consistent with a role for Abc3 as vacuolar hemin exporter, results with hemin-agarose pulldown assays showed that Abc3 binds to hemin. In contrast, an Abc3 mutant in which an inverted Cys-Pro motif had been replaced with Ala residues fails to bind hemin with high affinity. Taken together, these results show that Shu1 undergoes rapid hemin-induced internalization from the cell surface to the vacuolar membrane and that the transporter Abc3 participates in the mobilization of stored heme from the vacuole to the cytosol. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. 9-Deazapurines as Broad-Spectrum Inhibitors of the ABC Transport Proteins P-Glycoprotein, Multidrug Resistance-Associated Protein 1, and Breast Cancer Resistance Protein.

    PubMed

    Stefan, Katja; Schmitt, Sven Marcel; Wiese, Michael

    2017-11-09

    P-Glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1), and breast cancer resistance protein (BCRP, ABCG2) are the three major ABC transport proteins conferring resistance to many structurally diverse anticancer agents, leading to the phenomenon called multidrug resistance (MDR). Much effort has been put into the development of clinically useful compounds to reverse MDR. Broad-spectrum inhibitors of ABC transport proteins can be of great use in cancers that simultaneously coexpress two or three transporters. In this work, we continued our effort to generate new, potent, nontoxic, and multiply effective inhibitors of the three major ABC transporters. The best compound was active in a very low micromolar concentration range against all three transporters and restored sensitivity toward daunorubicin (P-gp and MRP1) and SN-38 (BCRP) in A2780/ADR (P-gp), H69AR (MRP1), and MDCK II BCRP (BCRP) cells. Additionally, the compound is a noncompetitive inhibitor of daunorubicin (MRP1), calcein AM (P-gp), and pheophorbide A (BCRP) transport.

  15. Yeast ABC proteins involved in multidrug resistance.

    PubMed

    Piecuch, Agata; Obłąk, Ewa

    2014-03-01

    Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects.

  16. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters.

    PubMed

    Baral, Bikash

    2017-01-01

    The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Host ABC transporter proteins may influence the efficacy of ivermectin and possibly have broader implications for the development of resistance in parasitic nematodes.

    PubMed

    Dooley, L A; Froese, E A; Chung, Y T; Burkman, E J; Moorhead, A R; Ardelli, B F

    2015-10-01

    ABC transporter proteins function to extrude compounds from the cell. These proteins present an obstacle for treatment and for overcoming drug resistance as they are expressed by both host and parasite, and function similarly. The contribution of host ABC proteins to drug efficacy was examined using ivermectin and a Brugia malayi model system. Parallel in vitro and in vivo experiments were conducted using equal concentrations of ivermectin. The motilities and fecundity of B. malayi exposed to ivermectin in vitro were significantly lower than those treated in vivo. The higher motilities were correlated with low concentrations of ivermectin in worms extracted from treated hosts. The expression of ABC proteins was significantly higher in worms treated in vitro compared to those treated in vivo as well as in gerbils treated with ivermectin than in non-treated controls. The results suggest that host ABC transporters may influence the efficacy of ivermectin. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. ABC transporters in fish species: a review

    PubMed Central

    Ferreira, Marta; Costa, Joana; Reis-Henriques, Maria A.

    2014-01-01

    ATP-binding cassette (ABC) proteins were first recognized for their role in multidrug resistance (MDR) in chemotherapeutic treatments, which is a major impediment for the successful treatment of many forms of malignant tumors in humans. These proteins, highly conserved throughout vertebrate species, were later related to cellular detoxification and accounted as responsible for protecting aquatic organisms from xenobiotic insults in the so-called multixenobiotic resistance mechanism (MXR). In recent years, research on these proteins in aquatic species has highlighted their importance in the detoxification mechanisms in fish thus it is necessary to continue these studies. Several transporters have been pointed out as relevant in the ecotoxicological context associated to the transport of xenobiotics, such as P-glycoproteins (Pgps), multidrug-resistance-associated proteins (MRPs 1-5) and breast cancer resistance associated protein (BCRP). In mammals, several nuclear receptors have been identified as mediators of phase I and II metabolizing enzymes and ABC transporters. In aquatic species, knowledge on co-regulation of the detoxification mechanism is scarce and needs to be addressed. The interaction of emergent contaminants that can act as chemosensitizers, with ABC transporters in aquatic organisms can compromise detoxification processes and have population effects and should be studied in more detail. This review intends to summarize the recent advances in research on MXR mechanisms in fish species, focusing in (1) regulation and functioning of ABC proteins; (2) cooperation with phase I and II biotransformation enzymes; and (3) ecotoxicological relevance and information on emergent pollutants with ability to modulate ABC transporters expression and activity. Several lines of evidence are clearly suggesting the important role of these transporters in detoxification mechanisms and must be further investigated in fish to underlay the mechanism to consider their use as

  19. Importance of ABC Transporters in Drug Development.

    PubMed

    Benadiba, Marcel; Maor, Yehoshua

    2016-01-01

    ATP-binding cassette (ABC) transporters are a huge family of ATP-dependent transmembrane proteins whose main function is exporting or importing substances or molecules through the cell membranes, plasma cell membrane, or inner membranes in organelles. They fulfill these functions by maintaining cell integrity, metabolism, and homeostasis. They are expressed in a variety of tissues as they transport numerous essential compounds including lipids and other signaling molecules. ABC transporters became widely studied since the discovery of their ability to carry a multitude of xenobiotics, including therapeutic drugs, and in light of the fact that they represent a hurdle for the treatment of resistant cancers. In contrast, the role of ABC transporters in neurological diseases like Alzheimer`s and Parkinson`s, depression, schizophrenia, and epilepsy remains controversial and their mechanism of action in these pathologies remains elusive, thus hindering the implementation of therapies aimed at modulating the functions of these transporters. To date, a number of natural and synthetic compounds are known to act as inhibitors, substrates, and even inducers of these transporters, being able to modulate their expression and/or function; however, their implication as therapeutic agents is far from reaching wide clinical utilization. This review highlights the importance of overcoming the challenges posed by ABC transporters in drug development.

  20. Current advances on ABC drug transporters in fish.

    PubMed

    Luckenbach, Till; Fischer, Stephan; Sturm, Armin

    2014-09-01

    Most members of the large ATP-binding cassette (ABC) gene family are transporters involved in substrate translocation across biological membranes. In eukaryotes, ABC proteins functioning as drug transporters are located in the plasma membrane and mediate the cellular efflux of a wide range of organic chemicals, with some transporters also transporting certain metals. As the enhanced expression of ABC drug transporters can confer multidrug resistance (MDR) to cancers and multixenobiotic resistance (MXR) to organisms from polluted habitats, these ABC family members are also referred to as MDR or MXR proteins. In mammals, ABC drug transporters show predominant expression in tissues involved in excretion or constituting internal or external body boundaries, where they facilitate the excretion of chemicals and their metabolites, and limit chemical uptake and penetration into "sanctuary" sites of the body. Available knowledge about ABC proteins is still limited in teleost fish, a large vertebrate group of high ecological and economic importance. Using transport activity measurements and immunochemical approaches, early studies demonstrated similarities in the tissue distribution of ABC drug transporters between teleosts and mammals, suggesting conserved roles of the transporters in the biochemical defence against toxicants. Recently, the availability of teleost genome assemblies has stimulated studies of the ABC family in this taxon. This review summarises the current knowledge regarding the genetics, functional properties, physiological function, and ecotoxicological relevance of teleostean ABC transporters. The available literature is reviewed with emphasis on recent studies addressing the tissue distribution, substrate spectrum, regulation, physiological function and phylogenetic origin of teleostean ABC transporters. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. ABC transporters in the CNS - an inventory.

    PubMed

    Hartz, A M S; Bauer, B

    2011-04-01

    In the present review we provide a summary of ATP-binding cassette (ABC) transporters in the central nervous system (CNS). Our review is focused on transporters of the ABC A, B, C, D, and G families that have been detected in the cells of the neurovascular unit/blood-brain barrier including brain capillary endothelial cells, pericytes, astrocytes, and neurons, as well as in other brain cells, such as microglia, oligodendrocytes, and choroid plexus epithelial cells. In this review, we provide an overview, organized by ABC family, of transporter expression, localization, and function. We summarize recent findings on ABC transporter regulation in the CNS and address the role of ABC transporters in CNS diseases including brain cancer, seizures/epilepsy, and Alzheimer's disease. Finally, we discuss new therapeutic strategies focused on ABC transporters in CNS disease.

  2. ATP binding and hydrolysis disrupt the high-affinity interaction between the heme ABC transporter HmuUV and its cognate substrate-binding protein.

    PubMed

    Qasem-Abdullah, Hiba; Perach, Michal; Livnat-Levanon, Nurit; Lewinson, Oded

    2017-09-01

    Using the energy of ATP hydrolysis, ABC transporters catalyze the trans-membrane transport of molecules. In bacteria, these transporters partner with a high-affinity substrate-binding protein (SBP) to import essential micronutrients. ATP binding by Type I ABC transporters (importers of amino acids, sugars, peptides, and small ions) stabilizes the interaction between the transporter and the SBP, thus allowing transfer of the substrate from the latter to the former. In Type II ABC transporters (importers of trace elements, e.g. vitamin B 12 , heme, and iron-siderophores) the role of ATP remains debatable. Here we studied the interaction between the Yersinia pestis ABC heme importer (HmuUV) and its partner substrate-binding protein (HmuT). Using real-time surface plasmon resonance experiments and interaction studies in membrane vesicles, we find that in the absence of ATP the transporter and the SBP tightly bind. Substrate in excess inhibits this interaction, and ATP binding by the transporter completely abolishes it. To release the stable docked SBP from the transporter hydrolysis of ATP is required. Based on these results we propose a mechanism for heme acquisition by HmuUV-T where the substrate-loaded SBP docks to the nucleotide-free outward-facing conformation of the transporter. ATP binding leads to formation of an occluded state with the substrate trapped in the trans-membrane translocation cavity. Subsequent ATP hydrolysis leads to substrate delivery to the cytoplasm, release of the SBP, and resetting of the system. We propose that other Type II ABC transporters likely share the fundamentals of this mechanism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of Halomonas elongata DSM 2581(T).

    PubMed

    Schweikhard, Eva S; Kuhlmann, Sonja I; Kunte, Hans-Jörg; Grammann, Katrin; Ziegler, Christine M

    2010-03-16

    The halophilic bacterium Halomonas elongata takes up the compatible solute ectoine via the osmoregulated TRAP transporter TeaABC. A fourth orf (teaD) is located adjacent to the teaABC locus that encodes a putative universal stress protein (USP). By RT-PCR experiments we proved a cotranscription of teaD along with teaABC. Deletion of teaD resulted in an enhanced uptake for ectoine by the transporter TeaABC and hence a negative activity regulation of TeaABC by TeaD. A transcriptional regulation via DNA binding could be excluded. ATP binding to native TeaD was shown by HPLC, and the crystal structure of TeaD was solved in complex with ATP to a resolution of 1.9 A by molecular replacement. TeaD forms a dimer-dimer complex with one ATP molecule bound to each monomer, which has a Rossmann-like alpha/beta overall fold. Our results reveal an ATP-dependent oligomerization of TeaD, which might have a functional role in the regulatory mechanism of TeaD. USP-encoding orfs, which are located adjacent to genes encoding for TeaABC homologues, could be identified in several other organisms, and their physiological role in balancing the internal cellular ectoine pool is discussed.

  4. Plant ABC proteins--a unified nomenclature and updated inventory.

    PubMed

    Verrier, Paul J; Bird, David; Burla, Bo; Dassa, Elie; Forestier, Cyrille; Geisler, Markus; Klein, Markus; Kolukisaoglu, Uner; Lee, Youngsook; Martinoia, Enrico; Murphy, Angus; Rea, Philip A; Samuels, Lacey; Schulz, Burkhard; Spalding, Edgar J; Yazaki, Kazufumi; Theodoulou, Frederica L

    2008-04-01

    The ABC superfamily comprises both membrane-bound transporters and soluble proteins involved in a broad range of processes, many of which are of considerable agricultural, biotechnological and medical potential. Completion of the Arabidopsis and rice genome sequences has revealed a particularly large and diverse complement of plant ABC proteins in comparison with other organisms. Forward and reverse genetics, together with heterologous expression, have uncovered many novel roles for plant ABC proteins, but this progress has been accompanied by a confusing proliferation of names for plant ABC genes and their products. A consolidated nomenclature will provide much-needed clarity and a framework for future research.

  5. ABC proteins protect the human body and maintain optimal health.

    PubMed

    Ueda, Kazumitsu

    2011-01-01

    Human MDR1, a multi-drug transporter gene, was isolated as the first of the eukaryote ATP Binding Cassette (ABC) proteins from a multidrug-resistant carcinoma cell line in 1986. To date, over 25 years, many ABC proteins have been found to play important physiological roles by transporting hydrophobic compounds. Defects in their functions cause various diseases, indicating that endogenous hydrophobic compounds, as well as water-soluble compounds, are properly transported by transmembrane proteins. MDR1 transports a large number of structurally unrelated drugs and is involved in their pharmacokinetics, and thus is a key factor in drug interaction. ABCA1, an ABC protein, eliminates excess cholesterol in peripheral cells by generating HDL. Because ABCA1 is a key molecule in cholesterol homeostasis, its function and expression are highly regulated. Eukaryote ABC proteins function on the body surface facing the outside and in organ pathways to adapt to the extracellular environment and protect the body to maintain optimal health.

  6. ABC transporters in megakaryopoiesis and platelet activity.

    PubMed

    Wang, Wei; Buitrago, Lorena; Wang, Ying

    2017-08-01

    ATP-binding cassette (ABC) is a family of transporters that facilitates the translocation of substrates across cell membrane using its ATPase subunit. These transporters have key roles in multidrug resistance, lipid homeostasis, antigen processing, immunity, cell proliferation and hematopoiesis. Some ABC transporters are selectively expressed on megakaryocyte progenitor, megakaryocyte and its cellular fragment platelet. However, the role of ABC transporters in hemostasis and thrombosis were not well explored until recently. Studies of both human genetic diseases and genetically-manipulated animal models have greatly improved our understanding of ABC transporters in regulating hematopoiesis particularly megakaryopoiesis and/or platelet activity. Human genome wide association studies (GWAS) have also unraveled the association between ABC transporters and thrombopoiesis in general population. Therefore, this review aims to summarize the recent advances in our understanding of how ABC transporters regulate megakaryopoiesis and platelet activity, the underlining mechanisms and their association with atherosclerosis and atherothrombosis. Last, the emerging therapeutic targets to slow down atherosclerosis development and prevent atherothrombosis via ABC transporters or downstream pathways will also be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. ABC transporter research: going strong 40 years on.

    PubMed

    Theodoulou, Frederica L; Kerr, Ian D

    2015-10-01

    In most organisms, ABC transporters constitute one of the largest families of membrane proteins. In humans, their functions are diverse and underpin numerous key physiological processes, as well as being causative factors in a number of clinically relevant pathologies. Advances in our understanding of these diseases have come about through combinations of genetic and protein biochemical investigations of these transporters and the power of in vitro and in vivo investigations is helping to develop genotype-phenotype understanding. However, the importance of ABC transporter research goes far beyond human biology; microbial ABC transporters are of great interest in terms of understanding virulence and drug resistance and industrial biotechnology researchers are exploring the potential of prokaryotic ABC exporters to increase the capacity of synthetic biology systems. Plant ABC transporters play important roles in transport of hormones, xenobiotics, metals and secondary metabolites, pathogen responses and numerous aspects of development, all of which are important in the global food security area. For 3 days in Chester, this Biochemical Society Focused Meeting brought together researchers with diverse experimental approaches and with different fundamental questions, all of which are linked by the commonality of ABC transporters. © 2015 Authors.

  8. Functional Dependence between Septal Protein SepJ from Anabaena sp. Strain PCC 7120 and an Amino Acid ABC-Type Uptake Transporter.

    PubMed

    Escudero, Leticia; Mariscal, Vicente; Flores, Enrique

    2015-08-01

    In the diazotrophic filaments of heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients, including some amino acids. In the model organism Anabaena sp. strain PCC 7120, the SepJ protein, composed of periplasmic and integral membrane (permease) sections, is located at the intercellular septa joining adjacent cells in the filament. The unicellular cyanobacterium Synechococcus elongatus strain PCC 7942 bears a gene, Synpcc7942_1024 (here designated dmeA), encoding a permease homologous to the SepJ permease domain. Synechococcus strains lacking dmeA or lacking dmeA and expressing Anabaena sepJ were constructed. The Synechococcus dmeA mutant showed a significant 22 to 32% decrease in the uptake of aspartate, glutamate, and glutamine, a phenotype that could be partially complemented by Anabaena sepJ. Synechococcus mutants of an ATP-binding-cassette (ABC)-type transporter for polar amino acids showed >98% decreased uptake of glutamate irrespective of the presence of dmeA or Anabaena sepJ in the same strain. Thus, Synechococcus DmeA or Anabaena SepJ is needed to observe full (or close to full) activity of the ABC transporter. An Anabaena sepJ deletion mutant was significantly impaired in glutamate and aspartate uptake, which also in this cyanobacterium requires the activity of an ABC-type transporter for polar amino acids. SepJ appears therefore to generally stimulate the activity of cyanobacterial ABC-type transporters for polar amino acids. Conversely, an Anabaena mutant of three ABC-type transporters for amino acids was impaired in the intercellular transfer of 5-carboxyfluorescein, a SepJ-related property. Our results unravel possible functional interactions in transport elements important for diazotrophic growth. Membrane transporters are essential for many aspects of cellular life, from uptake and export of substances in unicellular organisms to intercellular molecular exchange in

  9. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein

    PubMed Central

    Tay, Wee Tek; Mahon, Rod J.; Heckel, David G.; Walsh, Thomas K.; Downes, Sharon; James, William J.; Lee, Sui-Fai; Reineke, Annette; Williams, Adam K.; Gordon, Karl H. J.

    2015-01-01

    The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton) expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests) to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC) marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC) transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the detailed mode

  10. Structural basis for the mechanism of ABC transporters.

    PubMed

    Beis, Konstantinos

    2015-10-01

    The ATP-binding cassette (ABC) transporters are primary transporters that couple the energy stored in adenosine triphosphate (ATP) to the movement of molecules across the membrane. ABC transporters can be divided into exporters and importers; importers mediate the uptake of essential nutrients into cells and are found predominantly in prokaryotes whereas exporters transport molecules out of cells or into organelles and are found in all organisms. ABC exporters have been linked with multi-drug resistance in both bacterial and eukaryotic cells. ABC transporters are powered by the hydrolysis of ATP and transport their substrate via the alternating access mechanism, whereby the protein alternates between a conformation in which the substrate-binding site is accessible from the outside of the membrane, outward-facing and one in which it is inward-facing. In this mini-review, the structures of different ABC transporter types in different conformations are presented within the context of the alternating access mechanism and how they have shaped our current understanding of the mechanism of ABC transporters. © 2015 Authors; published by Portland Press Limited.

  11. ABC Transporters in Dictyostelium discoideum Development

    PubMed Central

    Miranda, Edward Roshan; Zhuchenko, Olga; Toplak, Marko; Santhanam, Balaji; Zupan, Blaz; Kuspa, Adam; Shaulsky, Gad

    2013-01-01

    ATP-binding cassette (ABC) transporters can translocate a broad spectrum of molecules across the cell membrane including physiological cargo and toxins. ABC transporters are known for the role they play in resistance towards anticancer agents in chemotherapy of cancer patients. There are 68 ABC transporters annotated in the genome of the social amoeba Dictyostelium discoideum. We have characterized more than half of these ABC transporters through a systematic study of mutations in their genes. We have analyzed morphological and transcriptional phenotypes for these mutants during growth and development and found that most of the mutants exhibited rather subtle phenotypes. A few of the genes may share physiological functions, as reflected in their transcriptional phenotypes. Since most of the abc-transporter mutants showed subtle morphological phenotypes, we utilized these transcriptional phenotypes to identify genes that are important for development by looking for transcripts whose abundance was unperturbed in most of the mutants. We found a set of 668 genes that includes many validated D. discoideum developmental genes. We have also found that abcG6 and abcG18 may have potential roles in intercellular signaling during terminal differentiation of spores and stalks. PMID:23967067

  12. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance

    PubMed Central

    Begicevic, Romana-Rea

    2017-01-01

    The efficacy of chemotherapy is one of the main challenges in cancer treatment and one of the major obstacles to overcome in achieving lasting remission and a definitive cure in patients with cancer is the emergence of cancer resistance. Indeed, drug resistance is ultimately accountable for poor treatment outcomes and tumour relapse. There are various molecular mechanisms involved in multidrug resistance, such as the change in the activity of membrane transporters primarily belonging to the ATP binding cassette (ABC) transporter family. In addition, it has been proposed that this common feature could be attributed to a subpopulation of slow-cycling cancer stem cells (CSCs), endowed with enhanced tumorigenic potential and multidrug resistance. CSCs are characterized by the overexpression of specific surface markers that vary in different cancer cell types. Overexpression of ABC transporters has been reported in several cancers and more predominantly in CSCs. While the major focus on the role played by ABC transporters in cancer is polarized by their involvement in chemoresistance, emerging evidence supports a more active role of these proteins, in which they release specific bioactive molecules in the extracellular milieu. This review will outline our current understanding of the role played by ABC transporters in CSCs, how their expression is regulated and how they support the malignant metabolic phenotype. To summarize, we suggest that the increased expression of ABC transporters in CSCs may have precise functional roles and provide the opportunity to target, particularly these cells, by using specific ABC transporter inhibitors. PMID:29117122

  13. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance.

    PubMed

    Begicevic, Romana-Rea; Falasca, Marco

    2017-11-08

    The efficacy of chemotherapy is one of the main challenges in cancer treatment and one of the major obstacles to overcome in achieving lasting remission and a definitive cure in patients with cancer is the emergence of cancer resistance. Indeed, drug resistance is ultimately accountable for poor treatment outcomes and tumour relapse. There are various molecular mechanisms involved in multidrug resistance, such as the change in the activity of membrane transporters primarily belonging to the ATP binding cassette (ABC) transporter family. In addition, it has been proposed that this common feature could be attributed to a subpopulation of slow-cycling cancer stem cells (CSCs), endowed with enhanced tumorigenic potential and multidrug resistance. CSCs are characterized by the overexpression of specific surface markers that vary in different cancer cell types. Overexpression of ABC transporters has been reported in several cancers and more predominantly in CSCs. While the major focus on the role played by ABC transporters in cancer is polarized by their involvement in chemoresistance, emerging evidence supports a more active role of these proteins, in which they release specific bioactive molecules in the extracellular milieu. This review will outline our current understanding of the role played by ABC transporters in CSCs, how their expression is regulated and how they support the malignant metabolic phenotype. To summarize, we suggest that the increased expression of ABC transporters in CSCs may have precise functional roles and provide the opportunity to target, particularly these cells, by using specific ABC transporter inhibitors.

  14. An inventory of the human ABC proteins.

    PubMed

    Klein, I; Sarkadi, B; Váradi, A

    1999-12-06

    Currently 30 human ABC proteins are represented by full sequences in various databases, and this paper provides a brief overview of these proteins. ABC proteins are composed of transmembrane domains (TMDs), and nucleotide binding domains (NBDs, or ATP-binding cassettes, ABSs). The arrangement of these domains, together with available membrane topology models of the family members, are presented. Based on their sequence similarity scores, the members of the human ABC protein family can be grouped into eight subfamilies. At present the MDR/TAP, the ALD, the MRP/CFTR, the ABC1, the White, the RNAseL inhibitor, the ANSA, and the GCN20 subfamilies are identified. Mutations of many human ABC proteins are known to be causative in inherited diseases, and a short description of the molecular pathology of these ABC gene-related genetic diseases is also provided.

  15. Alleviation of temperature-sensitive secretion defect of Pseudomonas fluorescens ATP-binding cassette (ABC) transporter, TliDEF, by a change of single amino acid in the ABC protein, TliD.

    PubMed

    Eom, Gyeong Tae; Oh, Joon Young; Park, Ji Hyun; Lim, Hye Jin; Lee, So Jeong; Kim, Eun Young; Choi, Ji-Eun; Jegal, Jonggeon; Song, Bong Keun; Yu, Ju-Hyun; Song, Jae Kwang

    2016-09-01

    An ABC transporter, TliDEF, from Pseudomonas fluorescens SIK W1, mediates the secretion of its cognate lipase, TliA, in a temperature-dependent secretion manner; the TliDEF-mediated secretion of TliA was impossible at the temperatures over 33°C. To isolate a mutant TliDEF capable of secreting TliA at 35°C, the mutagenesis of ABC protein (TliD) was performed. The mutated tliD library where a random point mutation was introduced by error-prone PCR was coexpressed with the wild-type tliE, tliF and tliA in Escherichia coli. Among approximately 10,000 colonies of the tliD library, we selected one colony that formed transparent halo on LB-tributyrin plates at 35°C. At the growth temperature of 35°C, the selected mutant TliD showed 1.75 U/ml of the extracellular lipase activity, while the wild-type TliDEF did not show any detectable lipase activity in the culture supernatant of E. coli. Moreover, the mutant TliD also showed higher level of TliA secretion than the wild-type TliDEF at other culture temperatures, 20°C, 25°C and 30°C. The mutant TliD had a single amino acid change (Ser287Pro) in the predicted transmembrane region in the membrane domain of TliD, implying that the corresponding region of TliD was important for causing the temperature-dependent secretion of TliDEF. These results suggested that the property of ABC transporter could be changed by the change of amino acid in the ABC protein. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Yeast ABC transporters in lipid trafficking.

    PubMed

    Prasad, Rajendra; Khandelwal, Nitesh Kumar; Banerjee, Atanu

    2016-08-01

    Throughout its evolution, the ATP-binding cassette (ABC) transporter superfamily has experienced a rapid expansion in its substrate repertoire and functions. Of the diverse functions that these pumps offer, their drug transport properties have attracted considerable attention primarily owing to their clinical significance. Despite this fact, emerging evidence suggests that physiological substrates of transporters also affect the overall functioning of an organism. Lipids, as substrates of ABC transporters, constitute one feature found in all representative groups of the living kingdom. Due to the importance of lipid species in the cellular physiology of an organism, their proper distribution within cells is crucial. This fact is well exemplified by the vast number of medical conditions that have been caused as a result of perturbations in ABC transporter-mediated lipid transport in higher organisms. In yeasts, apart from providing transport functions, ABC transporters also coordinate regulatory networks with lipids. This review focuses on yeast ABC transporters involved in the transport of lipids and briefly discusses the integration of their regulatory network with that of the lipid species. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Polymorphism in ABC transporter genes of Dirofilaria immitis.

    PubMed

    Mani, Thangadurai; Bourguinat, Catherine; Prichard, Roger K

    2017-08-01

    Dirofilaria immitis, a filarial nematode, causes dirofilariasis in dogs, cats and occasionally in humans. Prevention of the disease has been mainly by monthly use of the macrocyclic lactone (ML) endectocides during the mosquito transmission season. Recently, ML resistance has been confirmed in D. immitis and therefore, there is a need to find new classes of anthelmintics. One of the mechanisms associated with ML resistance in nematodes has been the possible role of ATP binding cassette (ABC) transporters in reducing drug concentrations at receptor sites. ABC transporters, mainly from sub-families B, C and G, may contribute to multidrug resistance (MDR) by active efflux of drugs out of the cell. Gene products of ABC transporters may thus serve as the targets for agents that may modulate susceptibility to drugs, by inhibiting drug transport. ABC transporters are believed to be involved in a variety of physiological functions critical to the parasite, such as sterol transport, and therefore may also serve as the target for drugs that can act as anthelmintics on their own. Knowledge of polymorphism in these ABC transporter genes in nematode parasites could provide useful information for the process of drug design. We have identified 15 ABC transporter genes from sub-families A, B, C and G, in D. immitis, by comparative genomic approaches and analyzed them for polymorphism. Whole genome sequencing data from four ML susceptible (SUS) and four loss of efficacy (LOE) pooled populations were used for single nucleotide polymorphism (SNP) genotyping. Out of 231 SNPs identified in those 15 ABC transporter genes, 89 and 75 of them were specific to the SUS or LOE populations, respectively. A few of the SNPs identified may affect gene expression, protein function, substrate specificity or resistance development and may be useful for transporter inhibitor/anthelmintic drug design, or in order to anticipate resistance development. Copyright © 2017 The Authors. Published by

  18. Downregulation of eIF4G by microRNA-503 enhances drug sensitivity of MCF-7/ADR cells through suppressing the expression of ABC transport proteins.

    PubMed

    Pan, Xia; Yang, Xiaoyan; Zang, Jinglei; Zhang, Si; Huang, Nan; Guan, Xinxin; Zhang, Jianhua; Wang, Zhihui; Li, Xi; Lei, Xiaoyong

    2017-06-01

    Overexpression of adenosine triphosphate-binding cassette (ABC) transport protein is emerging as a critical contributor to anticancer drug resistance. The eukaryotic translation initiation factor (eIF) 4F complex, the key modulator of mRNA translation, is regulated by the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway in anticancer drug-resistant tumors. The present study demonstrated the roles of ABC translation protein alterations in the acquisition of the Adriamycin (ADM)-resistant phenotype of MCF-7 human breast cells. Quantitative polymerase chain reaction and western blot analysis were applied to examine the differences in mRNA and protein levels, respectively. It was found that the expression of the ABC sub-family B member 1, ABC sub-family C member 1 and ABC sub-family G member 2 transport proteins were upregulated in MCF-7/ADR cells. An MTT assay was used to detect the cell viability, from the results MCF-7/ADR cells were less sensitive to ADM, tamoxifen (TAM) and taxol (TAX) treatment compared with MCF-7 cells. We predicted that the 3'-untranslated region of eukaryotic translation initiation factor 4-γ 1 (eIF4G) contains a potential miRNA binding site for microRNA (miR)-503 through using computational programs. These binding sites were confirmed by luciferase reporter assays. eIF4G mRNA degradation was accelerated in cells transfected with miR-503 mimics. Furthermore, it was demonstrated that eIF4G and ABC translation proteins were significantly downregulated in MCF-7/ADR cells after transfection with miR-503. It was found that miR-503 mimics could sensitize the cells to treatment with ADM, TAM and TAX. These findings demonstrated for the first time that eIF4G acted as a key factor in MCF-7/ADR cells, and may be an efficient agent for preventing and reversing multi-drug resistance in breast cancer.

  19. Live cell FRET microscopy: homo- and heterodimerization of two human peroxisomal ABC transporters, the adrenoleukodystrophy protein (ALDP, ABCD1) and PMP70 (ABCD3).

    PubMed

    Hillebrand, Merle; Verrier, Sophie E; Ohlenbusch, Andreas; Schäfer, Annika; Söling, Hans-Dieter; Wouters, Fred S; Gärtner, Jutta

    2007-09-14

    The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half-ATP-binding cassette (ABC) transporters in the mammalian peroxisome membrane. Mutations in the gene encoding ALDP result in a devastating neurodegenerative disorder, X-linked adrenoleukodystrophy (X-ALD) that is associated with elevated levels of very long chain fatty acids because of impaired peroxisomal beta-oxidation. The interactions of peroxisomal ABC transporters, their role in the peroxisomal membrane, and their functions in disease pathogenesis are poorly understood. Studies on ABC transporters revealed that half-transporters have to dimerize to gain functionality. So far, conflicting observations are described for ALDP. By the use of in vitro methods (yeast two-hybrid and immunoprecipitation assays) on the one hand, it was shown that ALDP can form homodimers as well as heterodimers with PMP70 and ALDR, while on the other hand, it was demonstrated that ALDP and PMP70 exclusively homodimerize. To circumvent the problems of artificial interactions due to biochemical sample preparation in vitro, we investigated protein-protein interaction of ALDP in its physiological environment by FRET microscopy in intact living cells. The statistical relevance of FRET data was determined in two different ways using probability distribution shift analysis and Kolmogorov-Smirnov statistics. We demonstrate in vivo that ALDP and PMP70 form homodimers as well as ALDP/PMP70 heterodimers where ALDP homodimers predominate. Using C-terminal deletion constructs of ALDP, we demonstrate that the last 87 C-terminal amino acids harbor the most important protein domain mediating these interactions, and that the N-terminal transmembrane region of ALDP has an additional stabilization effect on ALDP homodimers. Loss of ALDP homo- or heterodimerization is highly relevant for understanding the disease mechanisms of X-ALD.

  20. Diverse relations between ABC transporters and lipids: An overview.

    PubMed

    Neumann, Jennifer; Rose-Sperling, Dania; Hellmich, Ute A

    2017-04-01

    It was first discovered in 1992 that P-glycoprotein (Pgp, ABCB1), an ATP binding cassette (ABC) transporter, can transport phospholipids such as phosphatidylcholine, -ethanolamine and -serine as well as glucosylceramide and glycosphingolipids. Subsequently, many other ABC transporters were identified to act as lipid transporters. For substrate transport by ABC transporters, typically a classic, alternating access model with an ATP-dependent conformational switch between a high and a low affinity substrate binding site is evoked. Transport of small hydrophilic substrates can easily be imagined this way, as the molecule can in principle enter and exit the transporter in the same orientation. Lipids on the other hand need to undergo a 180° degree turn as they translocate from one membrane leaflet to the other. Lipids and lipidated molecules are highly diverse, so there may be various ways how to achieve their flipping and flopping. Nonetheless, an increase in biophysical, biochemical and structural data is beginning to shed some light on specific aspects of lipid transport by ABC transporters. In addition, there is now abundant evidence that lipids affect ABC transporter conformation, dynamics as well as transport and ATPase activity in general. In this review, we will discuss different ways in which lipids and ABC transporters interact and how lipid translocation may be achieved with a focus on the techniques used to investigate these processes. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station.

    PubMed

    Sippel, K H; Bacik, J; Quiocho, F A; Fisher, S Z

    2014-06-01

    Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP-phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4-) and dibasic (HPO4(2-)) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily.

  2. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station

    PubMed Central

    Sippel, K. H.; Bacik, J.; Quiocho, F. A.; Fisher, S. Z.

    2014-01-01

    Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP–phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4 −) and dibasic (HPO4 2−) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily. PMID:24915101

  3. Control of Insulin Granule Formation and Function by the ABC Transporters ABCG1 and ABCA1 and by Oxysterol Binding Protein OSBP.

    PubMed

    Hussain, Syed Saad; Harris, Megan T; Kreutzberger, Alex J B; Inouye, Candice M; Doyle, Catherine A; Castle, Anna M; Arvan, Peter; Castle, J David

    2018-03-14

    In pancreatic β cells, insulin granule membranes are enriched in cholesterol and are both recycled and newly generated. Cholesterol's role in supporting granule membrane formation and function is poorly understood. A TP b inding c assette transporters ABCG1 and ABCA1 regulate intracellular cholesterol and are important for insulin secretion. RNAi-induced depletion in cultured pancreatic β cells shows that ABCG1 is needed to stabilize newly made insulin granules against lysosomal degradation; ABCA1 is also involved but to a lesser extent. Both transporters are also required for optimum glucose-stimulated insulin secretion, likely via complementary roles. Exogenous cholesterol addition rescues knockdown-induced granule loss (ABCG1) and reduced secretion (both transporters). Another cholesterol transport protein, oxysterol binding protein (OSBP) appears to act proximally as a source of endogenous cholesterol for granule formation. Its knockdown caused similar defective stability of young granules and glucose-stimulated insulin secretion, neither of which were rescued with exogenous cholesterol. Dual knockdowns of OSBP and ABC transporters support their serial function in supplying and concentrating cholesterol for granule formation. OSBP knockdown also decreased proinsulin synthesis consistent with a proximal ER defect. Thus, membrane cholesterol distribution contributes to insulin homeostasis at production, packaging and export levels through the actions of OSBP and ABCs G1 and A1. © 2018 by The American Society for Cell Biology.

  4. Comparison of mechanistic transport cycle models of ABC exporters.

    PubMed

    Szöllősi, Dániel; Rose-Sperling, Dania; Hellmich, Ute A; Stockner, Thomas

    2018-04-01

    ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain." Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. A Drosophila ABC transporter regulates lifespan.

    PubMed

    Huang, He; Lu-Bo, Ying; Haddad, Gabriel G

    2014-12-01

    MRP4 (multidrug resistance-associated protein 4) is a member of the MRP/ABCC subfamily of ATP-binding cassette (ABC) transporters that are essential for many cellular processes requiring the transport of substrates across cell membranes. Although MRP4 has been implicated as a detoxification protein by transport of structurally diverse endogenous and xenobiotic compounds, including antivirus and anticancer drugs, that usually induce oxidative stress in cells, its in vivo biological function remains unknown. In this study, we investigate the biological functions of a Drosophila homolog of human MRP4, dMRP4. We show that dMRP4 expression is elevated in response to oxidative stress (paraquat, hydrogen peroxide and hyperoxia) in Drosophila. Flies lacking dMRP4 have a shortened lifespan under both oxidative and normal conditions. Overexpression of dMRP4, on the other hand, is sufficient to increase oxidative stress resistance and extend lifespan. By genetic manipulations, we demonstrate that dMRP4 is required for JNK (c-Jun NH2-terminal kinase) activation during paraquat challenge and for basal transcription of some JNK target genes under normal condition. We show that impaired JNK signaling is an important cause for major defects associated with dMRP4 mutations, suggesting that dMRP4 regulates lifespan by modulating the expression of a set of genes related to both oxidative resistance and aging, at least in part, through JNK signaling.

  6. Inventory, assembly and analysis of Bacillus subtilis ABC transport systems.

    PubMed

    Quentin, Y; Fichant, G; Denizot, F

    1999-04-02

    We have undertaken the inventory and assembly of the ATP binding cassette (ABC) transporter systems in the complete genome of Bacillus subtilis. We combined the identification of the three protein partners that compose an ABC transporter (nucleotide-binding domain, NBD; membrane spanning domain, MSD; and solute-binding protein, SBP) with constraints on the genetic organization. This strategy allowed the identification of 86 NBDs in 78 proteins, 103 MSD proteins and 37 SBPs. The analysis of transcriptional units allows the reconstruction of 59 ABC transporters, which include at least one NBD and one MSD. A particular class of five dimeric ATPases was not associated to MSD partners and is assumed to be involved either in macrolide resistance or regulation of translation elongation. In addition, we have detected five genes encoding ATPases without any gene coding for MSD protein in their neighborhood and 11 operons that encode only the membrane and solute-binding proteins. On the bases of similarities, three ATP-binding proteins are proposed to energize ten incomplete systems, suggesting that one ATPase may be recruited by more than one transporter. Finally, we estimate that the B. subtilis genome encodes for at least 78 ABC transporters that have been split in 38 importers and 40 extruders. The ABC systems have been further classified into 11 sub-families according to the tree obtained from the NBDs and the clustering of the MSDs and the SBPs. Comparisons with Escherichia coli show that the extruders are over-represented in B. subtilis, corresponding to an expansion of the sub-families of antibiotic and drug resistance systems. Copyright 1999 Academic Press.

  7. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    SciTech Connect

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate.more » The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.« less

  8. The Arabidopsis thaliana ABC protein superfamily, a complete inventory.

    PubMed

    Sánchez-Fernández, R; Davies, T G; Coleman, J O; Rea, P A

    2001-08-10

    We describe the first complete inventory of ATP-binding cassette (ABC) proteins from a multicellular organism, the model plant Arabidopsis thaliana. By the application of several search criteria, Arabidopsis was found to contain a total of 129 open reading frames (ORFs) capable of encoding ABC proteins, of which 103 possessed contiguous transmembrane spans and were identified as putative intrinsic membrane proteins. Fifty-two of the putative intrinsic membrane proteins contained at least two transmembrane domains (TMDs) and two nucleotide-binding folds (NBFs) and could be classified as belonging to one of five subfamilies of full-molecule transporters. The other 51 putative membrane proteins, all of which were half-molecule transporters, fell into five subfamilies. Of the remaining ORFs identified, all of which encoded proteins lacking TMDs, 11 could be classified into three subfamilies. There were no obvious homologs in other organisms for 15 of the ORFs which encoded a heterogeneous group of non-intrinsic ABC proteins (NAPs). Unrooted phylogenetic analyses substantiated the subfamily designations. Notable features of the Arabidopsis ABC superfamily was the presence of a large yeast-like PDR subfamily, and the absence of genes encoding bona fide cystic fibrosis transmembrane conductance regulator (CFTR), sulfonylurea receptor (SUR), and heavy metal tolerance factor 1 (HMT1) homologs. Arabidopsis was unusual in its large allocation of ORFs (a minimum of 0.5%) to members of the ABC protein superfamily.

  9. ABC transporters involved in export of cell surface glycoconjugates.

    PubMed

    Cuthbertson, Leslie; Kos, Veronica; Whitfield, Chris

    2010-09-01

    Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles.

  10. ABC transporters influence sensitivity of Brugia malayi to moxidectin and have potential roles in drug resistance.

    PubMed

    Stitt, L E; Tompkins, J B; Dooley, L A; Ardelli, B F

    2011-10-01

    Some ABC transporters play a significant role in human health and illness because they confer multidrug resistance (MDR) through their overexpression. Compounds that inhibit the drug efflux mechanism can improve efficacy or reverse resistance. Of the eight described ABC transporter subfamilies, those proteins conferring MDR in humans are in subfamilies A, B, C, and G. In nematodes, transporters in subfamilies B and C are suggested to confer resistance to ivermectin. The Brugia malayi ABC transporter superfamily was examined to assess their potential to influence sensitivity to moxidectin. There was an increase in expression of ABC transporters in subfamilies A, B, C, and G following treatment. Co-administration of moxidectin with inhibitors of ABC transporter function did not enhance sensitivity to moxidectin in males; however, sensitivity was significantly enhanced in females and microfilariae. The work suggests that ABC transporters influence sensitivity to moxidectin and have a potential role in drug resistance. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Streptomyces antibioticus contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily.

    PubMed

    Rodríguez, A M; Olano, C; Vilches, C; Méndez, C; Salas, J A

    1993-05-01

    Three different DNA fragments of an oleandomycin producer, Streptomyces antibioticus, conferring oleandomycin resistance were cloned in plasmid pIJ702 and expressed in Streptomyces lividans and in Streptomyces albus. These oleandomycin resistance determinants were designated as oleA (pOR400), oleB (pOR501) and oleC (pOR800). oleA and oleC are closely linked in the chromosome as they were both obtained together in two cosmid clones that were isolated from a genomic library. Sequencing of the oleC resistance determinant revealed four complete open reading frames (ORFs) and the C-terminal end of a fifth. The functions of orf1 and orf2 are unknown since they did not show significant similarity with other sequences in the data bases. The orf3 gene product has similarity with some proteins involved in iron and vitamin B12 uptake in bacteria. The orf4 gene product had a hydrophilic profile and showed important similarity with proteins containing typical ATP-binding domains characteristic of the ABC-transporter superfamily and involved in membrane transport and, particularly, with several genes conferring resistance to various macrolide antibiotics and anticancer drugs. The last gene, orf5, is translationally coupled to orf4 and codes for a hydrophobic polypeptide containing several transmembrane domains characteristic of integral membrane proteins. Subcloning and deletion experiments limited the resistance determinant to a 0.9 kb PstI-SphI fragment and only orf4 is included in this fragment. These results suggest that resistance to oleandomycin conferred by oleC (orf4) is probably due to an efflux transport system of the ABC-transporter superfamily.

  12. A putative amino acid ABC transporter substrate-binding protein, NMB1612, from Neisseria meningitidis, induces murine bactericidal antibodies against meningococci expressing heterologous NMB1612 proteins.

    PubMed

    Hung, Miao-Chiu; Humbert, María Victoria; Laver, Jay R; Phillips, Renee; Heckels, John E; Christodoulides, Myron

    2015-08-26

    The nmb1612 (NEIS1533) gene encoding the ~27-kDa putative amino acid ATP-binding cassette (ABC) transporter, periplasmic substrate-binding protein from Neisseria meningitidis serogroup B (MenB) strain MC58 was cloned and expressed in Escherichia coli, and the purified recombinant (r)NMB1612 was used for animal immunization studies. Immunization of mice with rNMB1612 adsorbed to Al(OH)3 and in liposomes with and without MPLA, induced antiserum with bactericidal activity in an assay using baby rabbit complement, against the homologous strain MC58 (encoding protein representative of Allele 62) and killed heterologous strains encoding proteins of three other alleles (representative of Alleles 1, 64 and 68), with similar SBA titres. However, strain MC58 was not killed (titre <4) in a human serum bactericidal assay (hSBA) using anti-rNMB1612 sera, although another strain (MC168) expressing the same protein was killed (median titres of 16-64 in the hSBA). Analysis of the NMB1612 amino acid sequences from 4351 meningococcal strains in the pubmlst.org/Neisseria database and a collection of 13 isolates from colonized individuals and from patients, showed that antibodies raised against rNMB1612 could potentially kill at least 72% of the MenB strains in the complete sequence database. For MenB disease occurring specifically in the UK from 2013 to 2015, >91% of the isolates causing disease in this recent period expressed NMB1612 protein encoded by Allele 1 and could be potentially killed by sera raised to the recombinant antigen in the current study. The NMB1612 protein was surface-accessible and expressed by different meningococcal strains. In summary, the properties of (i) NMB1612 protein conservation and expression, (ii) limited amino acid sequence variation between proteins encoded by different alleles, and (iii) the ability of a recombinant protein to induce cross-strain bactericidal antibodies, would all suggest a promising antigen for consideration for inclusion in new

  13. ABC Transporters and the Alzheimer's Disease Enigma.

    PubMed

    Wolf, Andrea; Bauer, Björn; Hartz, Anika M S

    2012-01-01

    Alzheimer's disease (AD) is considered the "disease of the twenty-first century." With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable. This represents an unmet need resulting in clinical, social, and economic problems. Over the last decade, a new AD research focus has emerged: ATP-binding cassette (ABC) transporters. In this article, we provide an overview of the ABC transporters ABCA1, ABCA2, P-glycoprotein (ABCB1), MRP1 (ABCC1), and BCRP (ABCG2), all of which are expressed in the brain and have been implicated in AD. We summarize recent findings on the role of these five transporters in AD, and discuss their potential to serve as therapeutic targets.

  14. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance.

    PubMed

    Dermauw, Wannes; Van Leeuwen, Thomas

    2014-02-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Diversity and evolution of ABC proteins in mycorrhiza-forming fungi.

    PubMed

    Kovalchuk, Andriy; Kohler, Annegret; Martin, Francis; Asiegbu, Fred O

    2015-12-28

    Transporter proteins are predicted to have an important role in the mycorrhizal symbiosis, due to the fact that this type of an interaction between plants and fungi requires a continuous nutrient and signalling exchange. ABC transporters are one of the large groups of transporter proteins found both in plants and in fungi. The crucial role of plant ABC transporters in the formation of the mycorrhizal symbiosis has been demonstrated recently. Some of the fungal ABC transporter-encoding genes are also induced during the mycorrhiza formation. However, no experimental evidences of the direct involvement of fungal ABC transporters in this process are available so far. To facilitate the identification of fungal ABC proteins with a potential role in the establishment of the mycorrhizal symbiosis, we have performed an inventory of the ABC protein-encoding genes in the genomes of 25 species of mycorrhiza-forming fungi. We have identified, manually annotated and curated more than 1300 gene models of putative ABC protein-encoding genes. Out of those, more than 1000 models are predicted to encode functional proteins, whereas about 300 models represent gene fragments or putative pseudogenes. We have also performed the phylogenetic analysis of the identified sequences. The sets of ABC proteins in the mycorrhiza-forming species were compared to the related saprotrophic or plant-pathogenic fungal species. Our results demonstrate the high diversity of ABC genes in the genomes of mycorrhiza-forming fungi. Via comparison of transcriptomics data from different species, we have identified candidate groups of ABC transporters that might have a role in the process of the mycorrhiza formation. Results of our inventory will facilitate the identification of fungal transporters with a role in the mycorrhiza formation. We also provide the first data on ABC protein-coding genes for the phylum Glomeromycota and for orders Pezizales, Atheliales, Cantharellales and Sebacinales, contributing to

  16. PET and SPECT Radiotracers to Assess Function and Expression of ABC Transporters in Vivo

    PubMed Central

    Mairinger, Severin; Erker, Thomas; Müller, Markus; Langer, Oliver

    2013-01-01

    Adenosine triphosphate-binding cassette (ABC) transporters, such as P-glycoprotein (Pgp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance-associated proteins (MRPs) are expressed in high concentrations at various physiological barriers (e.g. blood-brain barrier, blood-testis barrier, blood-tumor barrier), where they impede the tissue accumulation of various drugs by active efflux transport. Changes in ABC transporter expression and function are thought to be implicated in various diseases, such as cancer, epilepsy, Alzheimer’s and Parkinson’s disease. The availability of a non-invasive imaging method which allows for measuring ABC transporter function or expression in vivo would be of great clinical use in that it could facilitate the identification of those patients that would benefit from treatment with ABC transporter modulating drugs. To date three different kinds of imaging probes have been described to measure ABC transporters in vivo: i) radiolabelled transporter substrates ii) radiolabelled transporter inhibitors and iii) radiolabelled prodrugs which are enzymatically converted into transporter substrates in the organ of interest (e.g. brain). The design of new imaging probes to visualize efflux transporters is inter alia complicated by the overlapping substrate recognition pattern of different ABC transporter types. The present article will describe currently available ABC transporter radiotracers for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and critically discuss strengths and limitations of individual probes and their potential clinical applications. PMID:21434859

  17. Functional Expression and Characterization of Plant ABC Transporters in Xenopus laevis Oocytes for Transport Engineering Purposes.

    PubMed

    Xu, D; Veres, D; Belew, Z M; Olsen, C E; Nour-Eldin, H H; Halkier, B A

    2016-01-01

    Transport engineering in bioengineering is aimed at efficient export of the final product to reduce toxicity and feedback inhibition and to increase yield. The ATP-binding cassette (ABC) transporters with their highly diverse substrate specificity and role in cellular efflux are potentially suitable in transport engineering approaches, although their size and high number of introns make them notoriously difficult to clone. Here, we report a novel in planta "exon engineering" strategy for cloning of full-length coding sequence of ABC transporters followed by methods for biochemical characterization of ABC exporters in Xenopus oocytes. Although the Xenopus oocyte expression system is particularly suitable for expression of membrane proteins and powerful in screening for novel transporter activity, only few examples of successful expression of ABC transporter has been reported. This raises the question whether the oocytes system is suitable to express and characterize ABC transporters. Thus we have selected AtABCG25, previously characterized in insect cells as the exporter of commercially valuable abscisic acid-as case study for optimizing of characterization in Xenopus oocytes. The tools provided will hopefully contribute to more successful transport engineering in synthetic biology. © 2016 Elsevier Inc. All rights reserved.

  18. An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems

    PubMed Central

    Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Koumoto, Yasuko; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko

    2016-01-01

    Abstract A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming.1 Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming. PMID:26337543

  19. An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems.

    PubMed

    Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Koumoto, Yasuko; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko

    2016-01-01

    A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.

  20. Role of ABC transporters in trans-epithelial transport of vitamin K antagonists.

    PubMed

    Espana, Bernadette; Couturier, Solange; Prouillac, Caroline

    2017-01-01

    Vitamin K antagonists (VKAs) remain the oral anticoagulant of choice in venous thromboembolic disease. These drugs are characterized by a large inter-individual variability requiring frequent dose tailoring. Genetic polymorphisms for cytochrome CYP2C9 and VKORC1 explain some of the variability, especially in warfarin and acenocoumarol responses. The aim of this study was to assess, in cell models, the role of ABC transporters in the intestinal transfer of the main coumarin derivatives (warfarin, acenocoumarol) and indanedione derivatives (phenindione, fluindione). The results show a basal to apical polarized transport for fluindione, phenindione and acenocoumarol only. Experimental studies using specific inhibitors of transport protein demonstrate the implication of MRPs and BCRP proteins and to a lesser extent P-gp. Warfarin and acenocoumarol seem to be poor inhibitors of MRPs protein, whereas fluindione and phenindione have a slight or no effect. The regulation of the expression of ABC transporters by exposure to VKAs was also investigated in Caco-2 cells. The expression of mRNA P-gp, MRP1, MRP2 and BCRP was weakly or not modified after 24 h of VKAs exposure. In conclusion, the intestinal transfer of indanedione derivatives and acenocoumarol could be influenced by transport proteins of the ABC superfamily. Coumarin derivatives are poor inhibitors of these proteins and AVKs have a slight effect on the mRNA ABC transporter expression level. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Erlotinib antagonizes ABC transporters in acute myeloid leukemia.

    PubMed

    Lainey, Elodie; Sébert, Marie; Thépot, Sylvain; Scoazec, Marie; Bouteloup, Cyrielle; Leroy, Carole; De Botton, Stéphane; Galluzzi, Lorenzo; Fenaux, Pierre; Kroemer, Guido

    2012-11-01

    Erlotinib was originally developed as an epidermal growth factor receptor (EGFR)-specific inhibitor for the treatment of solid malignancies, yet also exerts significant EGFR-independent antileukemic effects in vitro and in vivo. The molecular mechanisms underlying the clinical antileukemic activity of erlotinib as a standalone agent have not yet been precisely elucidated. Conversely, in preclinical settings, erlotinib has been shown to inhibit the constitutive activation of SRC kinases and mTOR, as well as to synergize with the DNA methyltransferase inhibitor azacytidine (a reference therapeutic for a subset of leukemia patients) by promoting its intracellular accumulation. Here, we show that both erlotinib and gefitinib (another EGFR inhibitor) inhibit transmembrane transporters of the ATP-binding cassette (ABC) family, including P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP), also in acute myeloid leukemia (AML) cells that do not overexpress these pumps. Thus, inhibition of drug efflux by erlotinib and gefitinib selectively exacerbated (in a synergistic or additive fashion) the cytotoxic response of KG-1 cells to chemotherapeutic agents that are normally extruded by ABC transporters (e.g., doxorubicin and etoposide). Erlotinib limited drug export via ABC transporters by multiple mechanisms, including the downregulation of surface-exposed pumps and the modulation of their ATPase activity. The effects of erlotinib on drug efflux and its chemosensitization profile persisted in patient-derived CD34+ cells, suggesting that erlotinib might be particularly efficient in antagonizing leukemic (stem cell) subpopulations, irrespective of whether they exhibit or not increased drug efflux via ABC transporters.

  2. Erlotinib antagonizes ABC transporters in acute myeloid leukemia

    PubMed Central

    Lainey, Elodie; Sébert, Marie; Thépot, Sylvain; Scoazec, Marie; Bouteloup, Cyrielle; Leroy, Carole; De Botton, Stéphane; Galluzzi, Lorenzo; Fenaux, Pierre; Kroemer, Guido

    2012-01-01

    Erlotinib was originally developed as an epidermal growth factor receptor (EGFR)-specific inhibitor for the treatment of solid malignancies, yet also exerts significant EGFR-independent antileukemic effects in vitro and in vivo. The molecular mechanisms underlying the clinical antileukemic activity of erlotinib as a standalone agent have not yet been precisely elucidated. Conversely, in preclinical settings, erlotinib has been shown to inhibit the constitutive activation of SRC kinases and mTOR, as well as to synergize with the DNA methyltransferase inhibitor azacytidine (a reference therapeutic for a subset of leukemia patients) by promoting its intracellular accumulation. Here, we show that both erlotinib and gefitinib (another EGFR inhibitor) inhibit transmembrane transporters of the ATP-binding cassette (ABC) family, including P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP), also in acute myeloid leukemia (AML) cells that do not overexpress these pumps. Thus, inhibition of drug efflux by erlotinib and gefitinib selectively exacerbated (in a synergistic or additive fashion) the cytotoxic response of KG-1 cells to chemotherapeutic agents that are normally extruded by ABC transporters (e.g., doxorubicin and etoposide). Erlotinib limited drug export via ABC transporters by multiple mechanisms, including the downregulation of surface-exposed pumps and the modulation of their ATPase activity. The effects of erlotinib on drug efflux and its chemosensitization profile persisted in patient-derived CD34+ cells, suggesting that erlotinib might be particularly efficient in antagonizing leukemic (stem cell) subpopulations, irrespective of whether they exhibit or not increased drug efflux via ABC transporters. PMID:23095522

  3. Expression pattern of the human ABC transporters in pluripotent embryonic stem cells and in their derivatives.

    PubMed

    Erdei, Zsuzsa; Lőrincz, Réka; Szebényi, Kornélia; Péntek, Adrienn; Varga, Nóra; Likó, István; Várady, György; Szakács, Gergely; Orbán, Tamás I; Sarkadi, Balázs; Apáti, Agota

    2014-09-01

    ATP-binding cassette (ABC) transporters have key roles in various physiological functions as well as providing chemical defense and stress tolerance in human tissues. In this study, we have examined the expression pattern of all ABC proteins in pluripotent human embryonic stem cells (hESCs) and in their differentiated progenies. We paid special attention to the cellular expression and localization of multidrug transporter ABC proteins. Stem cell differentiation was carried out without chemical induction or cell sorting, and specialized cell types were separated mechanically. Cellular features regarding pluripotency and tissue identity, as well as ABC transporter expression were studied by flow cytomtery, immuno-microscopy, and qPCR-based low-density arrays. Pluripotent hESCs and differentiated cell types (cardiomyocytes, neuronal cells, and mesenchymal stem cells) were distinguished by morphology, immunostaining markers, and selected mRNA expression patterns. We found that the mRNA expression levels of the 48 human ABC proteins also clearly distinguished the pluripotent and the respective differentiated cell types. When multidrug and lipid transporter ABC protein expression was examined by using well characterized specific antibodies by flow cytometry and confocal microscopy, the protein expression data corresponded well to the mRNA expression results. Moreover, the cellular localization of these important human ABC transporter proteins could be established in the pluripotent and differentiated hESC derived samples. These studies provide valuable information regarding ABC protein expression in human stem cells and their differentiated offspring. The results may also help to obtain further information concerning the specialized cellular functions of selected ABC transporters. © 2014 Clinical Cytometry Society.

  4. A Critical View on ABC Transporters and Their Interacting Partners in Auxin Transport.

    PubMed

    Geisler, Markus; Aryal, Bibek; di Donato, Martin; Hao, Pengchao

    2017-10-01

    Different subclasses of ATP-binding cassette (ABC) transporters have been implicated in the transport of native variants of the phytohormone auxin. Here, the putative, individual roles of key members belonging to the ABCB, ABCD and ABCG families, respectively, are highlighted and the knowledge of their assumed expression and transport routes is reviewed and compared with their mutant phenotypes. Protein-protein interactions between ABC transporters and regulatory components during auxin transport are summarized and their importance is critically discussed. There is a focus on the functional interaction between members of the ABCB family and the FKBP42, TWISTED DWARF1, acting as a chaperone during plasma membrane trafficking of ABCBs. Further, the mode and relevance of functional ABCB-PIN interactions is diagnostically re-evaluated. A new nomenclature describing precisely the most likely ABCB-PIN interaction scenarios is suggested. Finally, available tools for the detection and prediction of ABC transporter interactomes are summarized and the potential of future ABC transporter interactome maps is highlighted. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. How heterogeneous is the involvement of ABC transporters against insecticides?

    PubMed

    Porretta, Daniele; Epis, Sara; Mastrantonio, Valentina; Ferrari, Marco; Bellini, Romeo; Favia, Guido; Urbanelli, Sandra

    2016-05-01

    Understanding the molecular mechanisms underlying cellular defense against xenobiotic compounds is a main research issue in medical and veterinary entomology, as insecticide/acaricide resistance is a major threat in the control of arthropods. ABC transporters are recognized as a component of the detoxifying mechanism in arthropods. We investigated the possible involvement of ABC transporters in defense to the organophosphate insecticide temephos in the malarial vector Anopheles stephensi. We performed bioassays on larvae of An. stephensi, using insecticide alone and in combination with ABC-transporter inhibitors, to assess synergism between these compounds. Next, we investigated the expression profiles of six ABC transporter genes in larvae exposed to temephos. Surprisingly, neither bioassays nor gene expression analyses provided any evidence for a major role of ABC transporters in defense against temephos in An. stephensi. We thus decided to review existing literature to generate a record of other studies that failed to reveal a role for ABC transporters against particular insecticides/acaricides. A review of the scientific literature led to the recovery of 569 papers about ABC transporters; among these, 50 involved arthropods, and 10 reported negative results. Our study on An. stephensi and accompanying literature review highlight the heterogeneity that exists in ABC transporter involvement in defense/resistance mechanisms in arthropods. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Environment sensing and response mediated by ABC transporters

    SciTech Connect

    Giuliani, Sarah E; Frank, Ashley M; Corgliano, Danielle M

    2011-01-01

    Abstract Background: Transporter proteins are one of an organism s primary interfaces with the environment. The expressed set of transporters mediates cellular metabolic capabilities and influences signal transduction pathways and regulatory networks. The functional annotation of most transporters is currently limited to general classification into families. The development of capabilities to map ligands with specific transporters would improve our knowledge of the function of these proteins, improve the annotation of related genomes, and facilitate predictions for their role in cellular responses to environmental changes. Results: To improve the utility of the functional annotation for ABC transporters, we expressed and purifiedmore » the set of solute binding proteins from Rhodopseudomonas palustris and characterized their ligand-binding specificity. Our approach utilized ligand libraries consisting of environmental and cellular metabolic compounds, and fluorescence thermal shift based high throughput ligand binding screens. This process resulted in the identification of specific binding ligands for approximately 64% of the purified and screened proteins. The collection of binding ligands is representative of common functionalities associated with many bacterial organisms as well as specific capabilities linked to the ecological niche occupied by R. palustris. Conclusion: The functional screen identified specific ligands that bound to ABC transporter periplasmic binding subunits from R. palustris. These assignments provide unique insight for the metabolic capabilities of this organism and are consistent with the ecological niche of strain isolation. This functional insight can be used to improve the annotation of related organisms and provides a route to evaluate the evolution of this important and diverse group of transporter proteins.« less

  7. Transcriptome-based identification of ABC transporters in the western tarnished plant bug lygus hesperus

    USDA-ARS?s Scientific Manuscript database

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic cle...

  8. Transcriptome-Based Identification of ABC Transporters in the Western Tarnished Plant Bug Lygus hesperus

    PubMed Central

    Hull, J. Joe; Chaney, Kendrick; Geib, Scott M.; Fabrick, Jeffrey A.; Brent, Colin S.; Walsh, Douglas; Lavine, Laura Corley

    2014-01-01

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic clearance. While ABC transporters have been extensively studied in vertebrates, less is known concerning this superfamily in insects, particularly hemipteran pests. We used RNA-Seq transcriptome sequencing to identify 65 putative ABC transporter sequences (including 36 full-length sequences) from the eight ABC subfamilies in the western tarnished plant bug (Lygus hesperus), a polyphagous agricultural pest. Phylogenetic analyses revealed clear orthologous relationships with ABC transporters linked to insecticide/xenobiotic clearance and indicated lineage specific expansion of the L. hesperus ABCG and ABCH subfamilies. The transcriptional profile of 13 LhABCs representative of the ABCA, ABCB, ABCC, ABCG, and ABCH subfamilies was examined across L. hesperus development and within sex-specific adult tissues. All of the transcripts were amplified from both reproductively immature and mature adults and all but LhABCA8 were expressed to some degree in eggs. Expression of LhABCA8 was spatially localized to the testis and temporally timed with male reproductive development, suggesting a potential role in sexual maturation and/or spermatozoa protection. Elevated expression of LhABCC5 in Malpighian tubules suggests a possible role in xenobiotic clearance. Our results provide the first transcriptome-wide analysis of ABC transporters in an agriculturally important hemipteran pest and, because ABC transporters are known to be important mediators of insecticidal resistance, will provide the basis for future biochemical and toxicological studies on the role of this protein family in insecticide resistance in Lygus species. PMID:25401762

  9. The predicted ABC transporter AbcEDCBA is required for type IV secretion system expression and lysosomal evasion by Brucella ovis.

    PubMed

    Silva, Teane M A; Mol, Juliana P S; Winter, Maria G; Atluri, Vidya; Xavier, Mariana N; Pires, Simone F; Paixão, Tatiane A; Andrade, Hélida M; Santos, Renato L; Tsolis, Renee M

    2014-01-01

    Brucella ovis is a major cause of reproductive failure in rams and it is one of the few well-described Brucella species that is not zoonotic. Previous work showed that a B. ovis mutant lacking a species-specific ABC transporterabcBA) was attenuated in mice and was unable to survive in macrophages. The aim of this study was to evaluate the role of this ABC transporter during intracellular survival of B. ovis. In HeLa cells, B. ovis WT was able to survive and replicate at later time point (48 hpi), whereas an ΔabcBA mutant was attenuated at 24 hpi. The reduced survival of the ΔabcBA mutant was associated with a decreased ability to exclude the lysosomal marker LAMP1 from its vacuolar membrane, suggesting a failure to establish a replicative niche. The ΔabcBA mutant showed a reduced abundance of the Type IV secretion system (T4SS) proteins VirB8 and VirB11 in both rich and acid media, when compared to WT B. ovis. However, mRNA levels of virB1, virB8, hutC, and vjbR were similar in both strains. These results support the notion that the ABC transporter encoded by abcEDCBA or its transported substrate acts at a post-transcriptional level to promote the optimal expression of the B. ovis T4SS within infected host cells.

  10. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance

    PubMed Central

    Joshi, Anand A.; Vaidya, Soniya S.; St-Pierre, Marie V.; Mikheev, Andrei M.; Desino, Kelly E.; Nyandege, Abner N.; Audus, Kenneth L.; Unadkat, Jashvant D.; Gerk, Phillip M.

    2017-01-01

    The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy. PMID:27644937

  11. ABC-B transporter genes in Dirofilaria immitis.

    PubMed

    Bourguinat, Catherine; Che, Hua; Mani, Thangadurai; Keller, Kathy; Prichard, Roger K

    2016-08-01

    Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchus contortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite. Copyright © 2016. Published by Elsevier Ltd.

  12. ABC transporters in the liver fluke Opisthorchis felineus.

    PubMed

    Mordvinov, Viatcheslav A; Ershov, Nikita I; Pirozhkova, Darya S; Pakharukov, Yuri V; Pakharukova, Maria Y

    2017-09-01

    ATP-binding cassette transporters (ABC transporters) are essential components of normal cellular physiological machinery in all eukaryotic and prokaryotic species, including parasites. Some ABC transporters, e.g., P-glycoproteins, are involved in the efflux of toxins and xenobiotics from the cell. At present, nothing is known about ABC transporter genes in epidemiologically important liver flukes from the Opisthorchiidae family, including European liver fluke Opisthorchis felineus. Opisthorchiasis caused by O. felineus is a serious public health problem on the territory of Russia and other Eastern European countries. ABC drug transporters are attractive objects of research on molecular markers of resistance and on ways to potentiate sensitivity to anthelmintics through suppression of the transporters themselves with specific inhibitors. Here we aimed at the identification of ABC transporters in the O. felineus transcriptome and identification of P-glycoproteins. In addition, our aim was to assess ABC transcript abundance in the RNA-seq data, to study the mRNA expression of P-glycoprotein genes by Droplet Digital PCR throughout the life cycle of O. felineus, and to test the gene induction in response to xenobiotics or anthelminthic agents. We found 23 nucleotide sequences encoding ABC transporters belonging to different subfamilies, including four sequences of P-glycoproteins. According to the transcript abundance in the RNA-seq data, one of P-glycoproteins (P4) has the highest expression among all ABC genes in the adult worm. P-glycoproteins showed substantially differential mRNA expression throughout the fluke life cycle, with high expression in the adult worms. Putative activity of P-glycoproteins as xenobiotic efflux pumps was found to be linked to the excretory system of O. felineus and to be inhibited by verapamil or tariquidar. Thus, ABC drug transporters in the liver fluke O. felineus are functionally active, indicating that ABC drug transporters are likely

  13. ABC multidrug transporters in schistosomes and other parasitic flatworms

    PubMed Central

    Greenberg, Robert M.

    2013-01-01

    Schistosomiasis, a neglected tropical disease affecting hundreds of millions, is caused by parasitic flatworms of the genus Schistosoma. Treatment and control of schistosomiasis relies almost exclusively on a single drug, praziquantel (PZQ), a dangerous situation for a disease of this magnitude. Though PZQ is highly effective overall, it has drawbacks, and reports of worms showing PZQ resistance, either induced in the laboratory or isolated from the field, are disconcerting. Multidrug transporters underlie multidrug resistance (MDR), a phenomenon in which resistance to a single drug is accompanied by unexpected cross-resistance to several structurally unrelated compounds. Some of the best studied multidrug transporters are members of the ancient and very large ATP-binding cassette (ABC) superfamily of efflux transporters. ABC multidrug transporters such as P-glycoprotein (Pgp; ABCB1) are also associated with drug resistance in parasites, including helminths such as schistosomes. In addition to their association with drug resistance, however, ABC transporters also function in a wide variety of physiological processes in metazoans. In this review, we examine recent studies that help define the role of schistosome ABC transporters in regulating drug susceptibility, and in normal schistosome physiology, including reproduction and excretory activity. We postulate that schistosome ABC transporters could be useful targets for compounds that enhance the effectiveness of current therapeutics as well as for agents that act as antischistosomals on their own. PMID:23474413

  14. Membrane vesicle ABC transporter assays for drug safety assessment.

    PubMed

    van Staden, Carlo J; Morgan, Ryan E; Ramachandran, Bharath; Chen, Yuan; Lee, Paul H; Hamadeh, Hisham K

    2012-11-01

    The use of plasma membrane vesicles that overexpress the bile salt export pump (BSEP) or multidrug resistance-associated protein 2, 3, or 4 (MRP2-4) with an in vitro vacuum filtration system offers a rapid and reliable means for screening drug candidates for their effects on transporter function in hepatocytes and thus their potential for causing drug-induced liver injury (DILI). Comparison of transporter activity in the presence and absence of ATP allows for determination of a specific assay window for each transporter. This window is used to determine the degree to which each test compound inhibits transporter activity. This assay battery is helpful for prioritizing and rank-ordering compounds within a chemical series with respect to each other and in the context of known inhibitors of transporter activity and/or liver injury. This model can be used to influence the drug development process at an early stage and provide rapid feedback regarding the selection of compounds for advancement to in vivo safety evaluations. A detailed protocol for the high-throughput assessment of ABC transporter function is provided, including specific recommendations for curve-fitting to help ensure consistent results.

  15. Genome organisation and expression profiling of ABC protein-encoding genes in Heterobasidion annosum s.l. complex.

    PubMed

    Baral, Bikash; Kovalchuk, Andriy; Asiegbu, Fred O

    2016-03-01

    Members of Heterobasidion annosum species complex are widely regarded as the most destructive fungal pathogens of conifer trees in the boreal and temperate zones of Northern hemisphere. To invade and colonise their host trees, Heterobasidion fungi must overcome components of host chemical defence, including terpenoid oleoresin and phenolic compounds. ABC transporters may play an important role in this process participating in the export of toxic host metabolites and maintaining their intracellular concentration below the critical level. We have identified and phylogenetically classified Heterobasidion genes encoding ABC transporters and closely related ABC proteins. The number of ABC proteins in the Heterobasidion genome is one of the lowest among analysed species of Agaricomycotina. Using quantitative RT-PCR, we have analysed transcriptional response of Heterobasidion ABC transporter-encoding genes to monoterpenes as well as their expression profile during growth on pine wood in comparison to the growth on defined media. Several ABC transporters were up-regulated during growth on pine wood. The ABC-transporter encoding gene ABCG1.1 was induced both during growth of H. annosum on pine wood and upon exposure to monoterpenes. Our experimental data demonstrate the differential responses of Heterobasidion ABC genes to growth conditions and chemical stressors. The presented results suggest a potential role of Heterobasidion ABC-G transporters in the resistance to the components of conifer chemical defence. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Tissue-specific transcript profiling for ABC transporters in the sequestering larvae of the phytophagous leaf beetle Chrysomela populi.

    PubMed

    Strauss, Anja S; Wang, Ding; Stock, Magdalena; Gretscher, René R; Groth, Marco; Boland, Wilhelm; Burse, Antje

    2014-01-01

    Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC) carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi. In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp). RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration. We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant-derived compounds and offer a basis for

  17. Tissue-Specific Transcript Profiling for ABC Transporters in the Sequestering Larvae of the Phytophagous Leaf Beetle Chrysomela populi

    PubMed Central

    Gretscher, René R.; Groth, Marco; Boland, Wilhelm; Burse, Antje

    2014-01-01

    Background Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC) carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi. Results In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp). RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration. Conclusion We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant

  18. The AbcA Transporter of Staphylococcus aureus Affects Cell Autolysis

    PubMed Central

    Schrader-Fischer, Gesine; Berger-Bächi, Brigitte

    2001-01-01

    Increased production of penicillin-binding protein PBP 4 is known to increase peptidoglycan cross-linking and contributes to methicillin resistance in Staphylococcus aureus. The pbp4 gene shares a 400-nucleotide intercistronic region with the divergently transcribed abcA gene, encoding an ATP-binding cassette transporter of unknown function. Our study revealed that methicillin stimulated abcA transcription but had no effects on pbp4 transcription. Analysis of abcA expression in mutants defective for global regulators showed that abcA is under the control of agr. Insertional inactivation of abcA by an erythromycin resistance determinant did not influence pbp4 transcription, nor did it alter resistance to methicillin and other cell wall-directed antibiotics. However, abcA mutants showed spontaneous partial lysis on plates containing subinhibitory concentrations of methicillin due to increased spontaneous autolysis. Since the autolytic zymograms of cell extracts were identical in mutants and parental strains, we postulate an indirect role of AbcA in control of autolytic activities and in protection of the cells against methicillin. PMID:11158733

  19. Key cytomembrane ABC transporters of Saccharomyces cerevisiae fail to improve the tolerance to D-limonene.

    PubMed

    Hu, Feifei; Liu, Jidong; Du, Guocheng; Hua, Zhaozhe; Zhou, Jingwen; Chen, Jian

    2012-08-01

    ATP-binding cassette transporters (ABC) are important detoxification proteins and were proposed to play important roles in monoterpene resistance in Saccharomyces cerevisiae. In this work, the transcriptional levels of typical ABC transporters of S. cerevisiae under 85 mg D-limonene/l were evaluated using real-time quantitative PCR. Only the transcriptional level of PDR5, YOR1 and PDR15 were upregulated but overexpression of these genes in S. cerevisiae failed to improve D-limonene tolerance suggesting that other mechanisms are involved in tolerance of yeast to monoterpenes.

  20. Regulation of ABC transporters blood-brain barrier: the good, the bad, and the ugly.

    PubMed

    Miller, David S

    2015-01-01

    The brain capillary endothelial cells that constitute the blood-brain barrier express multiple ABC transport proteins on the luminal, blood-facing, plasma membrane. These transporters function as ATP-driven efflux pumps for xenobiotics and endogenous metabolites. High expression of these ABC transporters at the barrier is a major obstacle to the delivery of therapeutics, including chemotherapeutics, to the CNS. Here, I review the signals that alter ABC transporter expression and transport function with an emphasis on P-glycoprotein, Mrp2, and breast cancer resistance protein (BCRP), the efflux transporters for which we have the most detailed picture of regulation. Recent work shows that transporter protein expression can be upregulated in response to inflammatory and oxidative stress, therapeutic drugs, diet, and persistent environmental pollutants; as a consequence, drug delivery to the brain is reduced (potentially bad and ugly). In contrast, basal transport activity of P-glycoprotein and BCRP can be reduced through complex signaling pathways that involve events in and on the brain capillary endothelial cells. Targeting these signaling events provides opportunities to rapidly and reversibly increase brain accumulation of drugs that are substrates for the transporters (potentially good). The clinical usefulness of targeting signaling to reduce efflux transporter activity and improve drug delivery to the CNS remains to be established. © 2015 Elsevier Inc. All rights reserved.

  1. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    PubMed

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans.

    PubMed

    Gaur, Manisha; Choudhury, Devapriya; Prasad, Rajendra

    2005-01-01

    The recent completion of the sequencing project of the opportunistic human pathogenic yeast, Candida albicans (http://www.ncbi.nlm.nih.gov/), led us to analyze and classify its ATP-binding cassette (ABC) proteins, which constitute one of the largest superfamilies of proteins. Some of its members are multidrug transporters responsible for the commonly encountered problem of antifungal resistance. TBLASTN searches together with domain analysis identified 81 nucleotide-binding domains, which belong to 51 different putative open reading frames. Considering that each allelic pair represents a single ABC protein of the Candida genome, the total number of putative members of this superfamily is 28. Domain organization, sequence-based analysis and self-organizing map-based clustering led to the classification of Candida ABC proteins into 6 distinct subfamilies. Each subfamily from C. albicans has an equivalent in Saccharomyces cerevisiae suggesting a close evolutionary relationship between the two yeasts. Our searches also led to the identification of a new motif to each subfamily in Candida that could be used to identify sequences from the corresponding subfamily in other organisms. It is hoped that the inventory of Candida ABC transporters thus created will provide new insights into the role of ABC proteins in antifungal resistance as well as help in the functional characterization of the superfamily of these proteins. 2005 S. Karger AG, Basel

  3. The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo

    PubMed Central

    Hyde, B B; Liesa, M; Elorza, A A; Qiu, W; Haigh, S E; Richey, L; Mikkola, H K; Schlaeger, T M; Shirihai, O S

    2012-01-01

    The mitochondrial transporter ATP binding cassette mitochondrial erythroid (ABC-me/ABCB10) is highly induced during erythroid differentiation by GATA-1 and its overexpression increases hemoglobin production rates in vitro. However, the role of ABC-me in erythropoiesis in vivo is unknown. Here we report for the first time that erythrocyte development in mice requires ABC-me. ABC-me−/− mice die at day 12.5 of gestation, showing nearly complete eradication of primitive erythropoiesis and lack of hemoglobinized cells at day 10.5. ABC-me−/− erythroid cells fail to differentiate because they exhibit a marked increase in apoptosis, both in vivo and ex vivo. Erythroid precursors are particularly sensitive to oxidative stress and ABC-me in the heart and its yeast ortholog multidrug resistance-like 1 have been shown to protect against oxidative stress. Thus, we hypothesized that increased apoptosis in ABC-me−/− erythroid precursors was caused by oxidative stress. Within this context, ABC-me deletion causes an increase in mitochondrial superoxide production and protein carbonylation in erythroid precursors. Furthermore, treatment of ABC-me−/− erythroid progenitors with the mitochondrial antioxidant MnTBAP (superoxide dismutase 2 mimetic) supports survival, ex vivo differentiation and increased hemoglobin production. Altogether, our findings demonstrate that ABC-me is essential for erythropoiesis in vivo. PMID:22240895

  4. Genome-wide identification of ATP-binding cassette (ABC) transporters and conservation of their xenobiotic transporter function in the monogonont rotifer (Brachionus koreanus).

    PubMed

    Jeong, Chang-Bum; Kim, Hui-Su; Kang, Hye-Min; Lee, Young Hwan; Zhou, Bingsheng; Choe, Joonho; Lee, Jae-Seong

    2017-03-01

    The ATP-binding cassette (ABC) transporter family is one of the largest gene family in animals, and members of this family are known to be involved in various biological processes due to their ability to transport a wide range of substrates across membranes using ATP cleavage-derived energy. We identified 61 ABC transporters in the genome of the monogonont rotifer Brachionus koreanus, and classified these into eight distinct subfamilies (A-H) by phylogenetic analysis. ABC transporters in the rotifer B. koreanus are comprised of 11 ABCA genes, 19 ABCB genes, 14 ABCC genes, 3 ABCD genes, 1 ABCE gene, 3 ABCF genes, 8 ABCG genes, and 2 ABCH genes. Extensive gene duplication and loss events in synteny were observed in several subfamilies. In particular, massive gene duplications of P-glycoproteins (P-gps), multidrug resistance proteins (MRPs), and Bk-Abcg-like proteins were observed. The ability of these B. koreanus proteins to function as multixenobiotic resistance (MXR) ABC transporters was validated using specific fluorescence substrates/inhibitors. The ABC transporter superfamily members identified in this study will be useful in future toxicological studies, and will facilitate comparative studies of the evolution of the ABC transporter superfamily in invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The human ABC transporter pseudogene family: Evidence for transcription and gene-pseudogene interference.

    PubMed

    Piehler, Armin P; Hellum, Marit; Wenzel, Jürgen J; Kaminski, Ellen; Haug, Kari Bente Foss; Kierulf, Peter; Kaminski, Wolfgang E

    2008-04-11

    Pseudogenes are an integral component of the human genome. Little attention, however, has so far been paid to the phenomenon that some pseudogenes are transcriptionally active. Recently, we demonstrated that the human ortholog of the rodent testis-specific ATP-binding cassette (ABC) transporter Abca17 is a ubiquitously transcribed pseudogene (ABCA17P). The aim of the present study was to establish a complete inventory of all ABC transporter pseudogenes in the human genome and to identify transcriptionally active ABC transporter pseudogenes. Moreover, we tested the hypothesis that a regulatory interdependency exists between ABC transporter pseudogenes and their parental protein coding equivalents. Systematic bioinformatic analysis revealed the existence of 22 ABC transporter pseudogenes within the human genome. We identified two clusters on chromosomes 15 and 16, respectively, which harbor almost half of all pseudogenes (n = 10). Available information from EST and mRNA databases and RT-PCR expression profiling indicate that a large portion of the ABC transporter pseudogenes (45%, n = 10) are transcriptionally active and some of them are expressed as alternative splice variants. We demonstrate that both pseudogenes of the pseudoxanthoma elasticum gene ABCC6, ABCC6P1 and ABCC6P2, are transcribed. ABCC6P1 and ABCC6 possess near-identical promoter sequences and their tissue-specific expression profiles are strikingly similar raising the possibility that they form a gene-pseudogene dual transcription unit. Intriguingly, targeted knockdown of the transcribed pseudogene ABCC6P1 resulted in a significant reduction of ABCC6 mRNA expression levels. The human genome contains a surprisingly small number of ABC transporter pseudogenes relative to other known gene families. They are unevenly distributed across the chromosomes. Importantly, a significant portion of the ABC transporter pseudogenes is transcriptionally active. The downregulation of ABCC6 mRNA levels by targeted

  6. Caught in the act: an ABC transporter on the move.

    PubMed

    Parcej, David; Tampé, Robert

    2007-09-01

    The latest structure of the vitamin B12 permease reported in Science by Hvorup and colleagues represents an unexpected, asymmetric state of an ABC transporter, and indicates that the translocation cycle may be even more complex than previously thought (Hvorup et al., 2007).

  7. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy.

    PubMed

    El-Awady, Raafat; Saleh, Ekram; Hashim, Amna; Soliman, Nehal; Dallah, Alaa; Elrasheed, Azza; Elakraa, Ghada

    2016-01-01

    Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. "Resistance to chemotherapy," however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux - a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed.

  8. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy

    PubMed Central

    El-Awady, Raafat; Saleh, Ekram; Hashim, Amna; Soliman, Nehal; Dallah, Alaa; Elrasheed, Azza; Elakraa, Ghada

    2017-01-01

    Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. “Resistance to chemotherapy,” however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux – a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed. PMID:28119610

  9. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice.

    PubMed

    Qin, Peng; Tu, Bin; Wang, Yuping; Deng, Luchang; Quilichini, Teagen D; Li, Ting; Wang, Hui; Ma, Bingtian; Li, Shigui

    2013-01-01

    In flowering plants, anther and pollen development is critical for male reproductive success. The anther cuticle and pollen exine play an essential role, and in many cereals, such as rice, orbicules/ubisch bodies are also thought to be important for pollen development. The formation of the anther cuticle, exine and orbicules is associated with the biosynthesis and transport of wax, cutin and sporopollenin components. Recently, progress has been made in understanding the biosynthesis of sporopollenin and cutin components in Arabidopsis and rice, but less is known about the mechanisms by which they are transported to the sites of deposition. Here, we report that the rice ATP-binding cassette (ABC) transporter, ABCG15, is essential for post-meiotic anther and pollen development, and is proposed to play a role in the transport of rice anther cuticle and sporopollenin precursors. ABCG15 is highly expressed in the tapetum at the young microspore stage, and the abcg15 mutant exhibits small, white anthers lacking mature pollen, lipidic cuticle, orbicules and pollen exine. Gas chromatography-mass spectrometry (GC-MS) analysis of the abcg15 anther cuticle revealed significant reductions in a number of wax components and aliphatic cutin monomers. The expression level of genes involved in lipid metabolism in the abcg15 mutant was significantly different from their levels in the wild type, possibly due to perturbations in the homeostasis of anther lipid metabolism. Our study provides new insights for understanding the molecular mechanism of the formation of the anther cuticle, orbicules and pollen wall, as well as the machinery for lipid metabolism in rice anthers.

  10. Role of ABC transporters in veterinary medicine: pharmaco-toxicological implications.

    PubMed

    Virkel, Guillermo; Ballent, Mariana; Lanusse, Carlos; Lifschitz, Adrian

    2018-01-31

    Unlike physicians, veterinary practitioners must deal with a number of animal species with crucial differences in anatomy, physiology and metabolism. Accordingly, the pharmacokinetic behaviour, the clinical efficacy and the adverse or toxic effects of drugs may differ across domestic animals. Moreover, the use of drugs in food-producing species may impose a risk for humans due to the generation of chemical residues in edible products, a major concern for public health and consumer's safety. As is clearly known in human beings, the ATP binding cassette (ABC) of transport proteins may influence the bioavailability and elimination of numerous drugs and other xenobiotics in domestic animals as well. A number of drugs, currently available in the veterinary market, are substrates of one or more transporters. Therefore, significant drug-drug interactions among ABC substrates may have unpredictable pharmaco-toxicological consequences in different species of veterinary interest. In this context, different investigations revealed the major relevance of P-gp and other transport proteins, like breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), in both companion and livestock animals. Undoubtedly, the discovery of the ABC transporters and the deep understanding of their physiological role in the different species introduced a new paradigm into the veterinary pharmacology. This review focus on the expression and function of the major transport proteins expressed in species of veterinary interest, and their impact in drug disposition, efficacy and toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. ATP-binding cassette (ABC) transporter expression and localization in sea urchin development.

    PubMed

    Shipp, Lauren E; Hamdoun, Amro

    2012-06-01

    ATP-binding cassette (ABC) transporters are membrane proteins that regulate intracellular concentrations of myriad compounds and ions. There are >100 ABC transporter predictions in the Strongylocentrotus purpuratus genome, including 40 annotated ABCB, ABCC, and ABCG "multidrug efflux" transporters. Despite the importance of multidrug transporters for protection and signaling, their expression patterns have not been characterized in deuterostome embryos. Sea urchin embryos expressed 20 ABCB, ABCC, and ABCG transporter genes in the first 58 hr of development, from unfertilized egg to early prism. We quantified transcripts of ABCB1a, ABCB4a, ABCC1, ABCC5a, ABCC9a, and ABCG2b, and found that ABCB1a mRNA was 10-100 times more abundant than other transporter mRNAs. In situ hybridization showed ABCB1a was expressed ubiquitously in embryos, while ABCC5a was restricted to secondary mesenchyme cells and their precursors. Fluorescent protein fusions showed localization of ABCB1a on apical cell surfaces, and ABCC5a on basolateral surfaces. Embryos use many ABC transporters with predicted functions in cell signaling, lysosomal and mitochondrial homeostasis, potassium channel regulation, pigmentation, and xenobiotic efflux. Detailed characterization of ABCB1a and ABCC5a revealed that they have different temporal and spatial gene expression profiles and protein localization patterns that correlate to their predicted functions in protection and development, respectively. Copyright © 2012 Wiley Periodicals, Inc.

  12. Apical ABC transporters and cancer chemotherapeutic drug disposition.

    PubMed

    Durmus, Selvi; Hendrikx, Jeroen J M A; Schinkel, Alfred H

    2015-01-01

    ATP-binding cassette (ABC) transporters are transmembrane efflux transporters that mediate cellular extrusion of a broad range of substrates ranging from amino acids, lipids, and ions to xenobiotics including many anticancer drugs. ABCB1 (P-GP) and ABCG2 (BCRP) are the most extensively studied apical ABC drug efflux transporters. They are highly expressed in apical membranes of many pharmacokinetically relevant tissues such as epithelial cells of the small intestine and endothelial cells of the blood capillaries in brain and testis, and in the placental maternal-fetal barrier. In these tissues, they have a protective function as they efflux their substrates back to the intestinal lumen or blood and thus restrict the intestinal uptake and tissue disposition of many compounds. This presents a major challenge for the use of many (anticancer) drugs, as most currently used anticancer drugs are substrates of these transporters. Herein, we review the latest findings on the role of apical ABC transporters in the disposition of anticancer drugs. We discuss that many new, rationally designed anticancer drugs are substrates of these transporters and that their oral availability and/or brain disposition are affected by this interaction. We also summarize studies that investigate the improvement of oral availability and brain disposition of many cytotoxic (e.g., taxanes) and rationally designed (e.g., tyrosine kinase inhibitor) anticancer drugs, using chemical inhibitors of these transporters. These findings provide a better understanding of the importance of apical ABC transporters in chemotherapy and may therefore advance translation of promising preclinical insights and approaches to clinical studies. © 2015 Elsevier Inc. All rights reserved.

  13. Hepatic ABC transporters and triglyceride metabolism.

    PubMed

    Parks, John S; Chung, Soonkyu; Shelness, Gregory S

    2012-06-01

    Elevated plasma triglyceride and reduced HDL concentrations are prominent features of metabolic syndrome and type 2 diabetes. Individuals with Tangier disease also have elevated plasma triglyceride concentrations and very low HDL, resulting from mutations in ATP-binding cassette transporter A1 (ABCA1), an integral membrane protein that facilitates nascent HDL particle assembly. Past studies attributed the inverse relationship between plasma HDL and triglyceride to intravascular lipid exchange and catabolic events. However, recent studies also suggest that hepatic signaling and lipid mobilization and secretion may explain how HDL affects plasma triglyceride concentrations. Hepatocyte-specific ABCA1 knockout mice have markedly reduced plasma HDL and a two-fold increase in triglyceride due to failure to assemble nascent HDL particles by hepatocytes, causing increased catabolism of HDL apolipoprotein A-I and increased hepatic production of triglyceride-enriched VLDL. In-vitro studies suggest that nascent HDL particles may induce signaling to decrease triglyceride secretion. Inhibition of microRNA 33 expression in nonhuman primates augments hepatic ABCA1, genes involved in fatty acid oxidation, and decreases expression of lipogenic genes, causing increased plasma HDL and decreased triglyceride levels. New evidence suggests potential mechanisms by which hepatic ABCA1-mediated nascent HDL formation regulates VLDL-triglyceride production and contributes to the inverse relationship between plasma HDL and triglyceride.

  14. Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci.

    PubMed

    Tian, Lixia; Song, Tianxue; He, Rongjun; Zeng, Yang; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2017-04-26

    ABC transporter superfamily is one of the largest and ubiquitous groups of proteins. Because of their role in detoxification, insect ABC transporters have gained more attention in recent years. In this study, we annotated ABC transporters from a newly sequenced sweetpotato whitefly genome. Bemisia tabaci Q biotype is an emerging global invasive species that has caused extensive damages to field crops as well as ornamental plants. A total of 55 ABC transporters containing all eight described subfamilies (A to H) were identified in the B. tabaci Q genome, including 8 ABCAs, 3 ABCBs, 6 ABCCs, 2 ABCDs, 1 ABCE, 3 ABCFs, 23 ABCGs and 9 ABCHs. In comparison to other species, subfamilies G and H in both phloem- and blood-sucking arthropods are expanded. The temporal expression profiles of these 55 ABC transporters throughout B. tabaci developmental stages and their responses to imidacloprid, a neonicotinoid insecticide, were investigated using RNA-seq analysis. Furthermore, the mRNA expression of 24 ABC transporters (44% of the total) representing all eight subfamilies was confirmed by the quantitative real-time PCR (RT-qPCR). Furthermore, mRNA expression levels estimated by RT-qPCR and RNA-seq analyses were significantly correlated (r = 0.684, p < 0.01). It is the first genome-wide analysis of the entire repertoire of ABC transporters in B. tabaci. The identification of these ABC transporters, their temporal expression profiles during B. tabaci development, and their response to a neonicotinoid insecticide lay the foundation for functional genomic understanding of their contribution to the invasiveness of B. tabaci.

  15. Evidence for an ABC-Type Riboflavin Transporter System in Pathogenic Spirochetes

    PubMed Central

    Deka, Ranjit K.; Brautigam, Chad A.; Biddy, Brent A.; Liu, Wei Z.; Norgard, Michael V.

    2013-01-01

    ABSTRACT Bacterial transporter proteins are involved in the translocation of many essential nutrients and metabolites. However, many of these key bacterial transport systems remain to be identified, including those involved in the transport of riboflavin (vitamin B2). Pathogenic spirochetes lack riboflavin biosynthetic pathways, implying reliance on obtaining riboflavin from their hosts. Using structural and functional characterizations of possible ligand-binding components, we have identified an ABC-type riboflavin transport system within pathogenic spirochetes. The putative lipoprotein ligand-binding components of these systems from three different spirochetes were cloned, hyperexpressed in Escherichia coli, and purified to homogeneity. Solutions of all three of the purified recombinant proteins were bright yellow. UV-visible spectra demonstrated that these proteins were likely flavoproteins; electrospray ionization mass spectrometry and thin-layer chromatography confirmed that they contained riboflavin. A 1.3-Å crystal structure of the protein (TP0298) encoded by Treponema pallidum, the syphilis spirochete, demonstrated that the protein’s fold is similar to the ligand-binding components of ABC-type transporters. The structure also revealed other salient details of the riboflavin binding site. Comparative bioinformatics analyses of spirochetal genomes, coupled with experimental validation, facilitated the discovery of this new ABC-type riboflavin transport system(s). We denote the ligand-binding component as riboflavin uptake transporter A (RfuA). Taken together, it appears that pathogenic spirochetes have evolved an ABC-type transport system (RfuABCD) for survival in their host environments, particularly that of the human host. PMID:23404400

  16. Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance.

    PubMed

    Mendoza-Cózatl, David G; Zhai, Zhiyang; Jobe, Timothy O; Akmakjian, Garo Z; Song, Won-Yong; Limbo, Oliver; Russell, Matthew R; Kozlovskyy, Volodymyr I; Martinoia, Enrico; Vatamaniuk, Olena K; Russell, Paul; Schroeder, Julian I

    2010-12-24

    Phytochelatins mediate tolerance to heavy metals in plants and some fungi by sequestering phytochelatin-metal complexes into vacuoles. To date, only Schizosaccharomyces pombe Hmt1 has been described as a phytochelatin transporter and attempts to identify orthologous phytochelatin transporters in plants and other organisms have failed. Furthermore, recent data indicate that the hmt1 mutant accumulates significant phytochelatin levels in vacuoles, suggesting that unidentified phytochelatin transporters exist in fungi. Here, we show that deletion of all vacuolar ABC transporters abolishes phytochelatin accumulation in S. pombe vacuoles and abrogates (35)S-PC(2) uptake into S. pombe microsomal vesicles. Systematic analysis of the entire S. pombe ABC transporter family identified Abc2 as a full-size ABC transporter (ABCC-type) that mediates phytochelatin transport into vacuoles. The S. pombe abc1 abc2 abc3 abc4 hmt1 quintuple and abc2 hmt1 double mutant show no detectable phytochelatins in vacuoles. Abc2 expression restores phytochelatin accumulation into vacuoles and suppresses the cadmium sensitivity of the abc quintuple mutant. A novel, unexpected, function of Hmt1 in GS-conjugate transport is also shown. In contrast to Hmt1, Abc2 orthologs are widely distributed among kingdoms and are proposed as the long-sought vacuolar phytochelatin transporters in plants and other organisms.

  17. ATP-binding cassette (ABC) proteins in aquatic invertebrates: Evolutionary significance and application in marine ecotoxicology.

    PubMed

    Jeong, Chang-Bum; Kim, Hui-Su; Kang, Hye-Min; Lee, Jae-Seong

    2017-04-01

    The ATP-binding cassette (ABC) protein superfamily is known to play a fundamental role in biological processes and is highly conserved across animal taxa. The ABC proteins function as active transporters for multiple substrates across the cellular membrane by ATP hydrolysis. As this superfamily is derived from a common ancestor, ABC genes have evolved via lineage-specific duplications through the process of adaptation. In this review, we summarized information about the ABC gene families in aquatic invertebrates, considering their evolution and putative functions in defense mechanisms. Phylogenetic analysis was conducted to examine the evolutionary significance of ABC gene families in aquatic invertebrates. Particularly, a massive expansion of multixenobiotic resistance (MXR)-mediated efflux transporters was identified in the absence of the ABCG2 (BCRP) gene in Ecdysozoa and Platyzoa, suggesting that a loss of Abcg2 gene occurred sporadically in these species during divergence of Protostome to Lophotrochozoa. Furthermore, in aquatic invertebrates, the ecotoxicological significance of MXR is discussed while considering the role of MXR-mediated efflux transporters in response to various environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. ABC Transporters and the Alzheimer’s Disease Enigma

    PubMed Central

    Wolf, Andrea; Bauer, Björn; Hartz, Anika M. S.

    2012-01-01

    Alzheimer’s disease (AD) is considered the “disease of the twenty-first century.” With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable. This represents an unmet need resulting in clinical, social, and economic problems. Over the last decade, a new AD research focus has emerged: ATP-binding cassette (ABC) transporters. In this article, we provide an overview of the ABC transporters ABCA1, ABCA2, P-glycoprotein (ABCB1), MRP1 (ABCC1), and BCRP (ABCG2), all of which are expressed in the brain and have been implicated in AD. We summarize recent findings on the role of these five transporters in AD, and discuss their potential to serve as therapeutic targets. PMID:22675311

  19. Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters

    PubMed Central

    Andreoletti, Pierre; Raas, Quentin; Gondcaille, Catherine; Cherkaoui-Malki, Mustapha; Trompier, Doriane; Savary, Stéphane

    2017-01-01

    The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues. PMID:28737695

  20. Novel Macrolide-Specific ABC-Type Efflux Transporter in Escherichia coli

    PubMed Central

    Kobayashi, Nobuyoshi; Nishino, Kunihiko; Yamaguchi, Akihito

    2001-01-01

    In the Escherichia coli genome, five putative open reading frame (ORF) clusters, mdlAB, ybjYZ, yddA, yojHI, and yhiH, have been assumed to be possible genes for ABC drug efflux transporters (I. T. Paulsen, M. K. Sliwinski, and M. H. Saier, Jr., J. Mol. Biol. 277:573–592, 1998). We cloned all of these ORFs in multicopy plasmids and investigated the drug resistance of drug-supersensitive host cells lacking constitutive multidrug efflux transporter genes acrAB. Among them, only ybjYZ gave significant erythromycin resistance and significantly decreased the accumulation of [14C]erythromycin. Therefore, ybjYZ was renamed macAB (macrolide-specific ABC-type efflux carrier). Plasmids carrying both the macA and -B genes conferred resistance against macrolides composed of 14- and 15-membered lactones but no or weak resistance against 16-membered ones. Neither of the two genes produced resistance alone. The DNA sequence suggests that MacB is an integral membrane protein with four transmembrane segments and one nucleotide-binding domain, while MacA belongs to a membrane fusion protein (MFP) family with a signal-like sequence at its N terminus. The expression of the histidine-tagged proteins confirmed that MacB is an integral membrane protein and MacA is a peripheral membrane protein. In addition, MacAB required TolC for its function in a way similar to that of most of the MFP-dependent transporters in E. coli. MacB is thus a novel ABC-type macrolide efflux transporter which functions by cooperating with the MFP MacA and the multifunctional outer membrane channel TolC. This is the first case of an experimentally identified ABC antibiotic efflux transporter in gram-negative organisms. PMID:11544226

  1. Putative ABC Transporter Responsible for Acetic Acid Resistance in Acetobacter aceti

    PubMed Central

    Nakano, Shigeru; Fukaya, Masahiro; Horinouchi, Sueharu

    2006-01-01

    Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid. PMID:16391084

  2. Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro; Horinouchi, Sueharu

    2006-01-01

    Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid.

  3. Know your ABCs: Characterization and gene expression dynamics of ABC transporters in the polyphagous herbivore Helicoverpa armigera.

    PubMed

    Bretschneider, Anne; Heckel, David G; Vogel, Heiko

    2016-05-01

    Polyphagous insect herbivores are adapted to many different secondary metabolites of their host plants. However, little is known about the role of ATP-binding cassette (ABC) transporters, a multigene family involved in detoxification processes. To study the larval response of the generalist Helicoverpa armigera (Lepidoptera) and the putative role of ABC transporters, we performed developmental assays on artificial diet supplemented with secondary metabolites from host plants (atropine-scopolamine, nicotine and tomatine) and non-host plants (taxol) in combination with a replicated RNAseq experiment. A maximum likelihood phylogeny identified the subfamily affiliations of the ABC transporter sequences. Larval performance was equal on the atropine-scopolamine diet and the tomatine diet. For the latter we could identify a treatment-specific upregulation of five ABC transporters in the gut. No significant developmental difference was detected between larvae fed on nicotine or taxol. This was also mirrored in the upregulation of five ABC transporters when fed on either of the two diets. The highest number of differentially expressed genes was recorded in the gut samples in response to feeding on secondary metabolites. Our results are consistent with the expectation of a general detoxification response in a polyphagous herbivore. This is the first study to characterize the multigene family of ABC transporters and identify gene expression changes across different developmental stages and tissues, as well as the impact of secondary metabolites in the agricultural pest H. armigera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  5. Cloning and Iron Transportation of Nucleotide Binding Domain of Cryptosporidium andersoni ATP-Binding Cassette (CaABC) Gene

    PubMed Central

    Wang, Ju-Hua; Xue, Xiu-Heng; Zhou, Jie; Fan, Cai-Yun; Xie, Qian-Qian; Wang, Pan

    2015-01-01

    Cryptosporidium andersoni ATP-binding cassette (CaABC) is an important membrane protein involved in substrate transport across the membrane. In this research, the nucleotide binding domain (NBD) of CaABC gene was amplified by PCR, and the eukaryotic expression vector of pEGFP-C1-CaNBD was reconstructed. Then, the recombinant plasmid of pEGFP-C1-CaNBD was transformed into the mouse intestinal epithelial cells (IECs) to study the iron transportation function of CaABC. The results indicated that NBD region of CaABC gene can significantly elevate the transport efficiency of Ca2+, Mg2+, K+, and HCO3- in IECs (P<0.05). The significance of this study is to find the ATPase inhibitors for NBD region of CaABC gene and to inhibit ATP binding and nutrient transport of CaABC transporter. Thus, C. andersoni will be killed by inhibition of nutrient uptake. This will open up a new way for treatment of cryptosporidiosis. PMID:26174828

  6. The ABC transporter proteins Pat1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae.

    PubMed Central

    Hettema, E H; van Roermund, C W; Distel, B; van den Berg, M; Vilela, C; Rodrigues-Pousada, C; Wanders, R J; Tabak, H F

    1996-01-01

    Peroxisomes of Saccharomyces cerevisiae are the exclusive site of fatty acid beta-oxidation. We have found that fatty acids reach the peroxisomal matrix via two independent pathways. The subcellular site of fatty acid activation varies with chain length of the substrate and dictates the pathway of substrate entry into peroxisomes. Medium-chain fatty acids are activated inside peroxisomes hby the acyl-CoA synthetase Faa2p. On the other hand, long-chain fatty acids are imported from the cytosolic pool of activated long-chain fatty acids via Pat1p and Pat2p, peroxisomal membrane proteins belonging to the ATP binding cassette transporter superfamily. Pat1p and Pat2p are the first examples of membrane proteins involved in metabolite transport across the peroxisomal membrane. Images PMID:8670886

  7. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    PubMed

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Copyright © 2016 Sharkey et al.

  8. Nucleotide-induced conformational dynamics in ABC transporters from structure-based coarse grained modelling.

    NASA Astrophysics Data System (ADS)

    Flechsig, Holger

    2016-02-01

    ATP-binding cassette (ABC) transporters are integral membrane proteins which mediate the exchange of diverse substrates across membranes powered by ATP molecules. Our understanding of their activity is still hampered since the conformational dynamics underlying the operation of such proteins cannot yet be resolved in detailed molecular dynamics studies. Here a coarse grained model which allows to mimic binding of nucleotides and follow subsequent conformational motions of full-length transporter structures in computer simulations is proposed and implemented. To justify its explanatory quality, the model is first applied to the maltose transporter system for which multiple conformations are known and we find that the model predictions agree remarkably well with the experimental data. For the MalK subunit the switching from open to the closed dimer configuration upon ATP binding is reproduced and, moreover, for the full-length maltose transporter, progression from inward-facing to the outward-facing state is correctly obtained. For the heme transporter HmuUV, for which only the free structure could yet be determined, the model was then applied to predict nucleotide-induced conformational motions. Upon binding of ATP-mimicking ligands the structure changed from a conformation in which the nucleotide-binding domains formed an open shape, to a conformation in which they were found in tight contact, while, at the same time, a pronounced rotation of the transmembrane domains was observed. This finding is supported by normal mode analysis, and, comparison with structural data of the homologous vitamin B12 transporter BtuCD suggests that the observed rotation mechanism may contribute a common functional aspect for this class of ABC transporters. Although in HmuuV noticeable rearrangement of essential transmembrane helices was detected, there are no indications from our simulations that ATP binding alone may facilitate propagation of substrate molecules in this transporter

  9. The role of ABCG-type ABC transporters in phytohormone transport.

    PubMed

    Borghi, Lorenzo; Kang, Joohyun; Ko, Donghwi; Lee, Youngsook; Martinoia, Enrico

    2015-10-01

    Plant hormones (phytohormones) integrate endogenous and exogenous signals thus synchronizing plant growth with environmental and developmental changes. Similar to animals, phytohormones have distinct source and target tissues, hence controlled transport and focused targeting are required for their functions. Many evidences accumulated in the last years about the regulation of long-distance and directional transport of phytohormones. ATP-binding cassette (ABC) transporters turned out to play major roles in routing phytohormones not only in the plant body but also towards the outer environment. The ABCG-type proteins ABCG25 and ABCG40 are high affinity abscisic acid (ABA) transporters. ABCG14 is highly co-expressed with cytokinin biosynthesis and is the major root-to-shoot cytokinin transporter. Pleiotropic drug resistance1 (PDR1) from Petunia hybrida transports strigolactones (SLs) from the root tip to the plant shoot but also outside to the rhizosphere, where SLs are the main attractants to mycorrhizal fungi. Last but not least, ABCG36 and ABCG37 possibly play a dual role in coumarine and IBA transport. © 2015 Authors.

  10. The role of ABCG-type ABC transporters in phytohormone transport

    PubMed Central

    Borghi, Lorenzo; Kang, Joohyun; Ko, Donghwi; Lee, Youngsook; Martinoia, Enrico

    2015-01-01

    Plant hormones (phytohormones) integrate endogenous and exogenous signals thus synchronizing plant growth with environmental and developmental changes. Similar to animals, phytohormones have distinct source and target tissues, hence controlled transport and focused targeting are required for their functions. Many evidences accumulated in the last years about the regulation of long-distance and directional transport of phytohormones. ATP-binding cassette (ABC) transporters turned out to play major roles in routing phytohormones not only in the plant body but also towards the outer environment. The ABCG-type proteins ABCG25 and ABCG40 are high affinity abscisic acid (ABA) transporters. ABCG14 is highly co-expressed with cytokinin biosynthesis and is the major root-to-shoot cytokinin transporter. Pleiotropic drug resistance1 (PDR1) from Petunia hybrida transports strigolactones (SLs) from the root tip to the plant shoot but also outside to the rhizosphere, where SLs are the main attractants to mycorrhizal fungi. Last but not least, ABCG36 and ABCG37 possibly play a dual role in coumarine and IBA transport. PMID:26517905

  11. Exploring conformational equilibria of a heterodimeric ABC transporter

    PubMed Central

    Timachi, M Hadi; Hutter, Cedric AJ; Hohl, Michael; Assafa, Tufa; Böhm, Simon; Mittal, Anshumali; Seeger, Markus A; Bordignon, Enrica

    2017-01-01

    ABC exporters pump substrates across the membrane by coupling ATP-driven movements of nucleotide binding domains (NBDs) to the transmembrane domains (TMDs), which switch between inward- and outward-facing (IF, OF) orientations. DEER measurements on the heterodimeric ABC exporter TM287/288 from Thermotoga maritima, which contains a non-canonical ATP binding site, revealed that in the presence of nucleotides the transporter exists in an IF/OF equilibrium. While ATP binding was sufficient to partially populate the OF state, nucleotide trapping in the pre- or post-hydrolytic state was required for a pronounced conformational shift. At physiologically high temperatures and in the absence of nucleotides, the NBDs disengage asymmetrically while the conformation of the TMDs remains unchanged. Nucleotide binding at the degenerate ATP site prevents complete NBD separation, a molecular feature differentiating heterodimeric from homodimeric ABC exporters. Our data suggest hydrolysis-independent closure of the NBD dimer, which is further stabilized as the consensus site nucleotide is committed to hydrolysis. DOI: http://dx.doi.org/10.7554/eLife.20236.001 PMID:28051765

  12. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58*

    PubMed Central

    Wichelecki, Daniel J.; Vetting, Matthew W.; Chou, Liyushang; Al-Obaidi, Nawar; Bouvier, Jason T.; Almo, Steven C.; Gerlt, John A.

    2015-01-01

    Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool. PMID:26472925

  13. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58.

    PubMed

    Wichelecki, Daniel J; Vetting, Matthew W; Chou, Liyushang; Al-Obaidi, Nawar; Bouvier, Jason T; Almo, Steven C; Gerlt, John A

    2015-11-27

    Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. ABC transporters: Regulation and association with multidrug resistance in hepatocellular carcinoma and colorectal carcinoma.

    PubMed

    Ceballos, María Paula; Rigalli, Juan Pablo; Cere, Lucila Ines; Semeniuk, Mariana; Catania, Viviana Alicia; Ruiz, Maria Laura

    2018-01-04

    For most cancers, the treatment of choice is still being chemotherapy despite of its severe adverse effects, systemic toxicity and limited efficacy due to the development of multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated with a decrease in drug concentration inside cancer cells, frequently due to an overexpression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) that limit the efficacy of chemotherapeutic drugs. The aim of this review is to compile information about transcriptional and post-transcriptional regulation of ABC transporters and discuss their role in mediating MDR in cancer cells. This review also focuses on drug resistance by ABC efflux transporters in cancer cells, particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some aspects of the chemotherapy failure and future directions to overcome this problem are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1.

    PubMed

    Srinivasan, Vasundara; Pierik, Antonio J; Lill, Roland

    2014-03-07

    The yeast mitochondrial ABC transporter Atm1, in concert with glutathione, functions in the export of a substrate required for cytosolic-nuclear iron-sulfur protein biogenesis and cellular iron regulation. Defects in the human ortholog ABCB7 cause the sideroblastic anemia XLSA/A. Here, we report the crystal structures of free and glutathione-bound Atm1 in inward-facing, open conformations at 3.06- and 3.38-angstrom resolution, respectively. The glutathione binding site includes a residue mutated in XLSA/A and is located close to the inner membrane surface in a large cavity. The two nucleotide-free adenosine 5'-triphosphate binding domains do not interact yet are kept in close vicinity through tight interaction of the two C-terminal α-helices of the Atm1 dimer. The resulting protein stabilization may be a common structural feature of all ABC exporters.

  16. ATP-Binding Cassette (ABC) Transporters of the Human Respiratory Tract Pathogen, Moraxella catarrhalis: Role in Virulence.

    PubMed

    Murphy, Timothy F; Brauer, Aimee L; Johnson, Antoinette; Kirkham, Charmaine

    2016-01-01

    Moraxella catarrhalis is a human respiratory tract pathogen that causes otitis media (middle ear infections) in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. In view of the huge global burden of disease caused by M. catarrhalis, the development of vaccines to prevent these infections and better approaches to treatment have become priorities. In previous work, we used a genome mining approach that identified three substrate binding proteins (SBPs) of ATP-binding cassette (ABC) transporters as promising candidate vaccine antigens. In the present study, we performed a comprehensive assessment of 19 SBPs of 15 ABC transporter systems in the M. catarrhalis genome by engineering knockout mutants and studying their role in assays that assess mechanisms of infection. The capacity of M. catarrhalis to survive and grow in the nutrient-limited and hostile environment of the human respiratory tract, including intracellular growth, account in part for its virulence. The results show that ABC transporters that mediate uptake of peptides, amino acids, cations and anions play important roles in pathogenesis by enabling M. catarrhalis to 1) grow in nutrient-limited conditions, 2) invade and survive in human respiratory epithelial cells and 3) persist in the lungs in a murine pulmonary clearance model. The knockout mutants of SBPs and ABC transporters showed different patterns of activity in the assay systems, supporting the conclusion that different SBPs and ABC transporters function at different stages in the pathogenesis of infection. These results indicate that ABC transporters are nutritional virulence factors, functioning to enable the survival of M catarrhalis in the diverse microenvironments of the respiratory tract. Based on the role of ABC transporters as virulence factors of M. catarrhalis, these molecules represent potential drug targets to eradicate the organism from the human respiratory tract.

  17. uptakes pentoses via a cut2-type ABC transporter and metabolizes them through the aldolase-independent Weimberg pathway.

    PubMed

    Wagner, Michaela; Shen, Lu; Albersmeier, Andreas; van der Kolk, Nienke; Kim, Sujin; Cha, Jaeho; Bräsen, Christopher; Kalinowski, Jörn; Siebers, Bettina; Albers, Sonja-Verena

    2017-11-17

    Sulfolobus spp. possess a great metabolic versatility and grow heterotrophically on various carbon sources such as different sugars and peptides. Known sugar transporters in Archaea predominantly belong to ABC transport systems. Although several ABC transporters for sugar uptake have been characterized in the crenarchaeon Sulfolobus solfataricus , only one homologue of these transporters, the maltose/maltooligomer transporter, could be identified in the closely related Sulfolobus acidocaldarius Comparison of the transcriptome of S. acidocaldarius grown on peptides alone and peptides in presence of D-xylose allowed for the identification of the ABC transporter for D-xylose and L-arabinose transport and to gain deeper insights into pentose catabolism under the respective growth conditions. The D-xylose/L-arabinose substrate binding protein (SBP) (Saci_2122) of the ABC transporter is unique in Archaea and shares more similarity to bacterial SBPs of the Carbohydrate Uptake Transporter-2 (CUT2) family than to any characterized archaeal one. The identified pentose transporter is the first CUT2 family ABC transporter analyzed in the domain of Archaea. Single gene deletion mutants of the ABC transporter subunits exemplified the importance of the transport system for D-xylose and L-arabinose uptake. Next to the transporter operon, enzymes of the aldolase-independent pentose catabolism branch were found to be upregulated in N-Z-Amine and D-xylose medium. The α-ketoglutarate semialdehyde dehydrogenase (KGSADH; Saci_1938) seemed not to be essential for growth on pentoses. However, the deletion mutant of the 2-keto-3-deoxyarabinoate/xylonate dehydratase (KDXD/KDAD; Saci_1939) was no longer able to catabolize D-xylose or L-arabinose suggesting the absence of the aldolase-dependent branch in S. acidocaldarius Importance Thermoacidophilic microorganisms are emerging model organisms for biotechnological applications as their optimal growth conditions resemble conditions used in

  18. Mycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth.

    PubMed

    Glass, Lisa N; Swapna, Ganduri; Chavadi, Sivagami Sundaram; Tufariello, JoAnn M; Mi, Kaixia; Drumm, Joshua E; Lam, TuKiet T; Zhu, Guofeng; Zhan, Chenyang; Vilchéze, Catherine; Arcos, Jesus; Chen, Yong; Bi, Lijun; Mehta, Simren; Porcelli, Steven A; Almo, Steve C; Yeh, Syun-Ru; Jacobs, William R; Torrelles, Jordi B; Chan, John

    2017-07-01

    We have previously shown that the Mycobacterium tuberculosis universal stress protein Rv2623 regulates mycobacterial growth and may be required for the establishment of tuberculous persistence. Here, yeast two-hybrid and affinity chromatography experiments have demonstrated that Rv2623 interacts with one of the two forkhead-associated domains (FHA I) of Rv1747, a putative ATP-binding cassette transporter annotated to export lipooligosaccharides. FHA domains are signaling protein modules that mediate protein-protein interactions to modulate a wide variety of biological processes via binding to conserved phosphorylated threonine (pT)-containing oligopeptides of the interactors. Biochemical, immunochemical and mass spectrometric studies have shown that Rv2623 harbors pT and specifically identified threonine 237 as a phosphorylated residue. Relative to wild-type Rv2623 (Rv2623WT), a mutant protein in which T237 has been replaced with a non-phosphorylatable alanine (Rv2623T237A) exhibits decreased interaction with the Rv1747 FHA I domain and diminished growth-regulatory capacity. Interestingly, compared to WT bacilli, an M. tuberculosis Rv2623 null mutant (ΔRv2623) displays enhanced expression of phosphatidyl-myo-inositol mannosides (PIMs), while the ΔRv1747 mutant expresses decreased levels of PIMs. Animal studies have previously shown that ΔRv2623 is hypervirulent, while ΔRv1747 is growth-attenuated. Collectively, these data have provided evidence that Rv2623 interacts with Rv1747 to regulate mycobacterial growth; and this interaction is mediated via the recognition of the conserved Rv2623 pT237-containing FHA-binding motif by the Rv1747 FHA I domain. The divergent aberrant PIM profiles and the opposing in vivo growth phenotypes of ΔRv2623 and ΔRv1747, together with the annotated lipooligosaccharide exporter function of Rv1747, suggest that Rv2623 interacts with Rv1747 to modulate mycobacterial growth by negatively regulating the activity of Rv1747; and that Rv

  19. Mycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth

    PubMed Central

    Tufariello, JoAnn M.; Mi, Kaixia; Zhu, Guofeng; Zhan, Chenyang; Vilchéze, Catherine; Arcos, Jesus; Chen, Yong; Bi, Lijun; Porcelli, Steven A.; Almo, Steve C.; Yeh, Syun-Ru; Jacobs, William R.; Torrelles, Jordi B.

    2017-01-01

    We have previously shown that the Mycobacterium tuberculosis universal stress protein Rv2623 regulates mycobacterial growth and may be required for the establishment of tuberculous persistence. Here, yeast two-hybrid and affinity chromatography experiments have demonstrated that Rv2623 interacts with one of the two forkhead-associated domains (FHA I) of Rv1747, a putative ATP-binding cassette transporter annotated to export lipooligosaccharides. FHA domains are signaling protein modules that mediate protein-protein interactions to modulate a wide variety of biological processes via binding to conserved phosphorylated threonine (pT)-containing oligopeptides of the interactors. Biochemical, immunochemical and mass spectrometric studies have shown that Rv2623 harbors pT and specifically identified threonine 237 as a phosphorylated residue. Relative to wild-type Rv2623 (Rv2623WT), a mutant protein in which T237 has been replaced with a non-phosphorylatable alanine (Rv2623T237A) exhibits decreased interaction with the Rv1747 FHA I domain and diminished growth-regulatory capacity. Interestingly, compared to WT bacilli, an M. tuberculosis Rv2623 null mutant (ΔRv2623) displays enhanced expression of phosphatidyl-myo-inositol mannosides (PIMs), while the ΔRv1747 mutant expresses decreased levels of PIMs. Animal studies have previously shown that ΔRv2623 is hypervirulent, while ΔRv1747 is growth-attenuated. Collectively, these data have provided evidence that Rv2623 interacts with Rv1747 to regulate mycobacterial growth; and this interaction is mediated via the recognition of the conserved Rv2623 pT237-containing FHA-binding motif by the Rv1747 FHA I domain. The divergent aberrant PIM profiles and the opposing in vivo growth phenotypes of ΔRv2623 and ΔRv1747, together with the annotated lipooligosaccharide exporter function of Rv1747, suggest that Rv2623 interacts with Rv1747 to modulate mycobacterial growth by negatively regulating the activity of Rv1747; and that Rv

  20. Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence.

    PubMed

    Khandelwal, Nitesh Kumar; Kaemmer, Philipp; Förster, Toni M; Singh, Ashutosh; Coste, Alix T; Andes, David R; Hube, Bernhard; Sanglard, Dominique; Chauhan, Neeraj; Kaur, Rupinder; d'Enfert, Christophe; Mondal, Alok Kumar; Prasad, Rajendra

    2016-06-01

    Among the several mechanisms that contribute to MDR (multidrug resistance), the overexpression of drug-efflux pumps belonging to the ABC (ATP-binding cassette) superfamily is the most frequent cause of resistance to antifungal agents. The multidrug transporter proteins Cdr1p and Cdr2p of the ABCG subfamily are major players in the development of MDR in Candida albicans Because several genes coding for ABC proteins exist in the genome of C. albicans, but only Cdr1p and Cdr2p have established roles in MDR, it is implicit that the other members of the ABC family also have alternative physiological roles. The present study focuses on an ABC transporter of C. albicans, Mlt1p, which is localized in the vacuolar membrane and specifically transports PC (phosphatidylcholine) into the vacuolar lumen. Transcriptional profiling of the mlt1∆/∆ mutant revealed a down-regulation of the genes involved in endocytosis, oxidoreductase activity, virulence and hyphal development. High-throughput MS-based lipidome analysis revealed that the Mlt1p levels affect lipid homoeostasis and thus lead to a plethora of physiological perturbations. These include a delay in endocytosis, inefficient sequestering of reactive oxygen species (ROS), defects in hyphal development and attenuated virulence. The present study is an emerging example where new and unconventional roles of an ABC transporter are being identified. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence

    PubMed Central

    Khandelwal, Nitesh Kumar; Kaemmer, Philipp; Förster, Toni M.; Singh, Ashutosh; Coste, Alix T.; Andes, David R.; Hube, Bernhard; Sanglard, Dominique; Chauhan, Neeraj; Kaur, Rupinder; d'Enfert, Christophe; Mondal, Alok Kumar; Prasad, Rajendra

    2016-01-01

    Among the several mechanisms that contribute to MDR (multidrug resistance), the overexpression of drug-efflux pumps belonging to the ABC (ATP-binding cassette) superfamily is the most frequent cause of resistance to antifungal agents. The multidrug transporter proteins Cdr1p and Cdr2p of the ABCG subfamily are major players in the development of MDR in Candida albicans. Because several genes coding for ABC proteins exist in the genome of C. albicans, but only Cdr1p and Cdr2p have established roles in MDR, it is implicit that the other members of the ABC family also have alternative physiological roles. The present study focuses on an ABC transporter of C. albicans, Mlt1p, which is localized in the vacuolar membrane and specifically transports PC (phosphatidylcholine) into the vacuolar lumen. Transcriptional profiling of the mlt1∆/∆ mutant revealed a down-regulation of the genes involved in endocytosis, oxidoreductase activity, virulence and hyphal development. High-throughput MS-based lipidome analysis revealed that the Mlt1p levels affect lipid homoeostasis and thus lead to a plethora of physiological perturbations. These include a delay in endocytosis, inefficient sequestering of reactive oxygen species (ROS), defects in hyphal development and attenuated virulence. The present study is an emerging example where new and unconventional roles of an ABC transporter are being identified. PMID:27026051

  2. Genome-Wide Identification, Characterization and Phylogenetic Analysis of 50 Catfish ATP-Binding Cassette (ABC) Transporter Genes

    PubMed Central

    Liu, Shikai; Li, Qi; Liu, Zhanjiang

    2013-01-01

    Background Although a large set of full-length transcripts was recently assembled in catfish, annotation of large gene families, especially those with duplications, is still a great challenge. Most often, complexities in annotation cause mis-identification and thereby much confusion in the scientific literature. As such, detailed phylogenetic analysis and/or orthology analysis are required for annotation of genes involved in gene families. The ATP-binding cassette (ABC) transporter gene superfamily is a large gene family that encodes membrane proteins that transport a diverse set of substrates across membranes, playing important roles in protecting organisms from diverse environment. Methodology/Principal Findings In this work, we identified a set of 50 ABC transporters in catfish genome. Phylogenetic analysis allowed their identification and annotation into seven subfamilies, including 9 ABCA genes, 12 ABCB genes, 12 ABCC genes, 5 ABCD genes, 2 ABCE genes, 4 ABCF genes and 6 ABCG genes. Most ABC transporters are conserved among vertebrates, though cases of recent gene duplications and gene losses do exist. Gene duplications in catfish were found for ABCA1, ABCB3, ABCB6, ABCC5, ABCD3, ABCE1, ABCF2 and ABCG2. Conclusion/Significance The whole set of catfish ABC transporters provide the essential genomic resources for future biochemical, toxicological and physiological studies of ABC drug efflux transporters. The establishment of orthologies should allow functional inferences with the information from model species, though the function of lineage-specific genes can be distinct because of specific living environment with different selection pressure. PMID:23696857

  3. An ABC Transporter Mutation Is Correlated with Insect Resistance to Bacillus thuringiensis Cry1Ac Toxin

    PubMed Central

    Gahan, Linda J.; Pauchet, Yannick; Vogel, Heiko; Heckel, David G.

    2010-01-01

    Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt–expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field. PMID:21187898

  4. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin.

    PubMed

    Gahan, Linda J; Pauchet, Yannick; Vogel, Heiko; Heckel, David G

    2010-12-16

    Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.

  5. Substrate binding by a bacterial ABC transporter involved in polysaccharide export

    SciTech Connect

    Cuthbertson, Leslie; Kimber, Matthew S.; Whitfield, Chris

    2008-04-02

    ATP-binding-cassette (ABC) transporters are responsible for the export of a wide variety of cell-surface glycoconjugates in both Gram-positive and Gram-negative bacteria. These include the O-antigenic polysaccharide (O-PS) portion of lipopolysaccharide, a crucial virulence determinant in Gram-negative pathogens. O-PSs are synthesized by one of two fundamentally different pathways. Escherichia coli O serotypes O8 and O9a provide the prototype systems for studying O-PS export via ABC transporters. The transporter is composed of the transmembrane component Wzm and the nucleotide-binding component Wzt. Although the N-terminal domain of Wzt is a conventional ABC protein, the C-terminal domain of Wzt (C-Wzt) is a unique structuralmore » element that determines the specificity of the transporter for either the O8 or O9a O-PS. We show here that the two domains of Wzt can function when expressed as separate polypeptides; both are essential for export. In vitro, C-Wzt binds its cognate O-PS by recognizing a residue located at the nonreducing end of the polymer. The crystal structure of C-WztO9a is reported here and reveals a {beta} sandwich with an immunoglobulin-like topology that contains the O-PS-binding pocket. Substrate interactions with nucleotide-binding domains have been demonstrated in an ABC exporter previously. However, to our knowledge substrate binding by a discrete, cytoplasmic accessory domain in an extended nucleotide-binding domain polypeptide has not previously been demonstrated. Elucidation of the substrate-recognition system involved in O-PS export provides insight into the mechanism that coordinates polymer biosynthesis, termination, and export.« less

  6. Whole-Transcriptome Survey of the Putative ATP-Binding Cassette (ABC) Transporter Family Genes in the Latex-Producing Laticifers of Hevea brasiliensis

    PubMed Central

    Zhiyi, Nie; Guijuan, Kang; Yu, Li; Longjun, Dai; Rizhong, Zeng

    2015-01-01

    The ATP-binding cassette (ABC) proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree). A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 ‘full-size’, 21 ‘half-size’ and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress) stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis. PMID:25615936

  7. Extracellular secretion of Pseudoalteromonas sp. cold-adapted esterase in Escherichia coli in the presence of Pseudoalteromonas sp. components of ABC transport system.

    PubMed

    Długołecka, Anna; Cieśliński, Hubert; Turkiewicz, Marianna; Białkowska, Aneta M; Kur, Józef

    2008-12-01

    Recently we described identification and characterization of GDSL esterase EstA from psychrotrophic bacterium Pseudoalteromonas sp. 643A. Attempts to obtain heterologous overexpression of this enzyme in Escherichia coli system were not satisfactory. The EstA protein was expressed as inclusion bodies, most of that were inactive after purification step, and the recovery of esterolytic activity was very low after refolding. Based on the sequence analysis we found that the esterase EstA gene is clustered with three genes encoding components of ABC transport system. These genes, designated abc1, abc2, and abc3 encode an ATP-binding protein (ABC1) and two permease proteins (ABC2 and ABC3). In present study, to obtain larger amounts of the active cold-adapted EstA esterase from Pseudoalteromonas sp. 643A, we designed a two-plasmid E. coli expression system where the gene encoding EstA enzyme was cloned into pET30b(+) expression vector and three genes encoding components of ABC transport system were cloned into pACYC-pBAD vector. It was shown that the created expression system was useful for extracellular production of active EstA enzyme which was purified from the culture medium. In the presence of all the three transporter proteins the secretion of EstA was at the highest level. When one or two of these components were missing, EstA secretion was also possible, but not so effective. It indicates that ABC2 and ABC3 proteins of Pseudoalteromonas sp. 643A could be replaced with their homologous proteins of E. coli.

  8. The Riboswitch Regulates a Thiamine Pyrophosphate ABC Transporter of the Oral Spirochete Treponema denticola ▿ †

    PubMed Central

    Bian, Jiang; Shen, Hongwu; Tu, Youbin; Yu, Aiming; Li, Chunhao

    2011-01-01

    Thiamine pyrophosphate (TPP), a biologically active form of thiamine (vitamin B1), is an essential cofactor in all living systems. Microorganisms either synthesize TPP via de novo biosynthesis pathways or uptake exogenous thiamine from the environment via specific transporters. The oral spirochete Treponema denticola is an important pathogen that is associated with human periodontal diseases. It lacks a de novo TPP biosynthesis pathway and needs exogenous TPP for growth, suggesting that it may obtain exogenous TPP via a thiamine transporter. In this study, we identified a gene cluster that encodes a TPP ABC transporter which consists of a TPP-binding protein (TDE0143), a transmembrane permease (TDE0144), and a cytosolic ATPase (TDE0145). Transcriptional and translational analyses showed that the genes encoding these three proteins are cotranscribed and form an operon (tbpABCTd) that is initiated by a σ70-like promoter. The expression level of this operon is negatively regulated by exogenous TPP and is mediated by a TPP-sensing riboswitch (Tdthi-box). Genetic and biochemical studies revealed that the TDE0143 deletion mutant (T. denticola ΔtbpA) had a decreased ability to transport exogenous TPP, and the mutant failed to grow when exogenous TPP was insufficient. These results taken together indicate that the tbpABCTd operon encodes an ABC transporter that is required for the uptake of exogenous TPP and that the expression of this operon is regulated by a TPP-binding riboswitch via a feedback inhibition mechanism. PMID:21622748

  9. Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC leucine/isoleucine/valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity.

    PubMed

    Trakhanov, Sergei; Vyas, Nand K; Luecke, Hartmut; Kristensen, David M; Ma, Jianpeng; Quiocho, Florante A

    2005-05-03

    The leucine/isoleucine/valine-binding protein (LIVBP or LivJ) serves as the primary high-affinity receptor of the Escherichia coli ABC-type transporter for the three aliphatic amino acids. The first structure of LIVBP determined previously without bound ligand showed a molecule comprised of two domains which are far apart and bisected by a wide open, solvent-accessible cleft. Here we report the crystal structures of another ligand-free state and three complexes with the aliphatic amino acids. In the present ligand-free structure, the two domains are farther apart. In the three very similar complex structures, the two domains are in close proximity, and each desolvated ligand is completely engulfed in the cleft and bound by both domains. The two different ligand-free structures, combined with those of the very similar ligand-bound structures, indicate the trajectory and backbone torsion angle changes of the hinges that accompany domain closure and play crucial functional roles. The amino acids are bound by polar and nonpolar interactions, occurring predominantly in one domain. Consistent with the protein specificity, the aliphatic side chains of the ligands lie in a hydrophobic pocket fully formed following domain or cleft closure. Comparison of the structures of LIVBP with several different binding proteins indicates no correlations between the magnitudes of the hinge-bending angles and the protein masses, the ligand sizes, or the number of segments connecting the two domains. Results of normal-mode analysis and molecular dynamics simulations are consistent with the trajectory and intrinsic flexibility of the interdomain hinges and the dominance of one domain in ligand binding in the open state.

  10. Investigation of the quaternary structure of an ABC transporter in living cells using spectrally resolved resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Singh, Deo Raj

    Forster resonance energy transfer (FRET) has become an important tool to study proteins inside living cells. It has been used to explore membrane protein folding and dynamics, determine stoichiometry and geometry of protein complexes, and measure the distance between two molecules. In this dissertation, we use a method based on FRET and optical micro-spectroscopy (OptiMiS) technology, developed in our lab, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of an ABC transporter in living cells. Specifically, the transporter we investigate originates from the pathogen Pseudomonas aeruginosa, which is a Gram-negative bacterium with several virulence factors, lipopolysaccharides being one of them. This pathogen coexpresses two unique forms of lipopolysaccharides on its surface, the A- and B-bands. The A-band polysaccharides, synthesized in the cytoplasm, are translocated into the periplasm through an ATP-binding-cassette (ABC) transporter consisting of a transmembranar protein, Wzm, and a nucleotide-binding protein, Wzt. In P. aeruginosa, all of the biochemical studies of A-band LPS are concentrated on the stages of the synthesis and ligation of polysaccharides (PSs), leaving the export stage involving ABC transporter unexplored. The mode of PS export through ABC transporters is still unknown. This difficulty is due to the lack of information about sub-unit composition and structure of this bi-component ABC transporter. Using the FRET-OptiMiS combination method developed by our lab, we found that Wzt forms a rhombus-shaped homo-tetramer which becomes a square upon co-expression with Wzm, and that Wzm forms a square-shaped homo-tetramer both in the presence and absence of Wzt. Based on these results, we propose a structural model for the double-tetramer complex formed by the bi-component ABC transporter in living cells. An understanding of the

  11. Epithelial-mesenchymal transition: potential regulator of ABC transporters in tumor progression.

    PubMed

    Jiang, Zong-Sheng; Sun, Yan-Zi; Wang, Shao-Ming; Ruan, Jun-Shan

    2017-01-01

    Epithelial-mesenchymal transition (EMT) can directly contribute to some malignant phenotypes of tumor cells including invasion, metastasis and resistance to chemotherapy. Although EMT is widely demonstrated to play a critical role in chemoresistance and metastasis, the potential signaling network between EMT and drug resistance is still unclear. The distribution of drugs in the internal and external environment of the tumor cells is tightly linked with ATP-binding cassette (ABC) transporters. Recent studies have shown that ABC transporters expression changed continuously during EMT. We believe that EMT is an important regulator of ABC transporters. In this review, we discuss how EMT regulates ABC transporters and their potential linkages. And we hope the knowledge of EMT and ABC transporters will offer more effective targets to experimental research.

  12. Downregulation of ABC Transporters in Non-neoplastic Tissues Confers Better Prognosis for Pancreatic and Colorectal Cancer Patients.

    PubMed

    Dvorak, Pavel; Hlavac, Viktor; Mohelnikova-Duchonova, Beatrice; Liska, Vaclav; Pesta, Martin; Soucek, Pavel

    2017-01-01

    Transport of a wide variety of substrates, including xenobiotics, is one of the main functions attributed to human ATP-binding cassette (ABC) proteins. Overexpression of ABC genes is considered to be an important mechanism facilitating the development of chemoresistance. Relationships between the expression levels of ABC genes in tumor tissues and established clinicopathological features were extensively studied previously. The current study tested our hypothesis that the expression levels of ABC genes in non-neoplastic (control) tissues also provide important information in relation to the relevant tumor progression. Expression levels of all human ABC genes (48 protein coding and one pseudogene), measured by qRT-PCR, were bioinformatically analyzed. The data originated from four independently collected cohorts covering three types of tumors - breast, colorectal and pancreatic carcinomas. ABC gene expression profiles (signatures) in non-neoplastic tissues (matched to tumor samples from three different tumor types) were characteristically clustered into three main types - those with the vast majority of the genes downregulated, upregulated or heterogeneously regulated. The clusters with mostly downregulated and upregulated genes were shown to possess significant relations to good and poor prognostic markers, respectively, in pancreatic and colorectal cancers. The present findings support the theory that the expression of ABC genes in non-neoplastic tissues can significantly contribute to tumor pathogenesis. Suggested multi-gene panels, consisting of the reduced number of ABC genes, have the potential to be implemented as new prognostic markers, which are especially urgent in pancreatic cancer. The results can also stimulate further primary research in carcinogenesis.

  13. Downregulation of ABC Transporters in Non-neoplastic Tissues Confers Better Prognosis for Pancreatic and Colorectal Cancer Patients

    PubMed Central

    Dvorak, Pavel; Hlavac, Viktor; Mohelnikova-Duchonova, Beatrice; Liska, Vaclav; Pesta, Martin; Soucek, Pavel

    2017-01-01

    Transport of a wide variety of substrates, including xenobiotics, is one of the main functions attributed to human ATP-binding cassette (ABC) proteins. Overexpression of ABC genes is considered to be an important mechanism facilitating the development of chemoresistance. Relationships between the expression levels of ABC genes in tumor tissues and established clinicopathological features were extensively studied previously. The current study tested our hypothesis that the expression levels of ABC genes in non-neoplastic (control) tissues also provide important information in relation to the relevant tumor progression. Expression levels of all human ABC genes (48 protein coding and one pseudogene), measured by qRT-PCR, were bioinformatically analyzed. The data originated from four independently collected cohorts covering three types of tumors - breast, colorectal and pancreatic carcinomas. ABC gene expression profiles (signatures) in non-neoplastic tissues (matched to tumor samples from three different tumor types) were characteristically clustered into three main types - those with the vast majority of the genes downregulated, upregulated or heterogeneously regulated. The clusters with mostly downregulated and upregulated genes were shown to possess significant relations to good and poor prognostic markers, respectively, in pancreatic and colorectal cancers. The present findings support the theory that the expression of ABC genes in non-neoplastic tissues can significantly contribute to tumor pathogenesis. Suggested multi-gene panels, consisting of the reduced number of ABC genes, have the potential to be implemented as new prognostic markers, which are especially urgent in pancreatic cancer. The results can also stimulate further primary research in carcinogenesis. PMID:28819395

  14. Characterisation of an ABC transporter of a resistant Candida glabrata clinical isolate

    PubMed Central

    Rocha, Debora Afonso Silva; de Sa, Leandro Figueira Reis; Pinto, Ana Carolina Cartagenes; Junqueira, Maria de Lourdes; da Silva, Emiliana Mandarano; Borges, Ronaldo Mohana; Ferreira-Pereira, Antonio

    2018-01-01

    BACKGROUND Candida glabrata ranks second in epidemiological surveillance studies, and is considered one of the main human yeast pathogens. Treatment of Candida infections represents a contemporary public health problem due to the limited availability of an antifungal arsenal, toxicity effects and increasing cases of resistance. C. glabrata presents intrinsic fluconazole resistance and is a significant concern in clinical practice and in hospital environments. OBJECTIVE The aim of this study was to characterise the azole resistance mechanism presented by a C. glabrata clinical isolate from a Brazilian university hospital. METHODS Azole susceptibility assays, chemosensitisation, flow cytometry and mass spectrometry were performed. FINDINGS Our study demonstrated extremely high resistance to all azoles tested: fluconazole, voriconazole, posaconazole and itraconazole. This isolate was chemosensitised by FK506, a classical inhibitor of ABC transporters related to azole resistance, and Rhodamine 6G extrusion was observed. A mass spectrometry assay confirmed the ABC protein identification suggesting the probable role of efflux pumps in this resistance phenotype. MAIN CONCLUSIONS This study emphasizes the importance of ABC proteins and their relation to the resistance mechanism in hospital environments and they may be an important target for the development of compounds able to unsettle drug extrusion. PMID:29412345

  15. Identification of ABC Transporter Genes of Fusarium graminearum with Roles in Azole Tolerance and/or Virulence

    PubMed Central

    Döll, Katharina; Karlovsky, Petr; Deising, Holger B.; Wirsel, Stefan G. R.

    2013-01-01

    Fusarium graminearum is a plant pathogen infecting several important cereals, resulting in substantial yield losses and mycotoxin contamination of the grain. Triazole fungicides are used to control diseases caused by this fungus on a worldwide scale. Our previous microarray study indicated that 15 ABC transporter genes were transcriptionally upregulated in response to tebuconazole treatment. Here, we deleted four ABC transporter genes in two genetic backgrounds of F. graminearum representing the DON (deoxynivalenol) and the NIV (nivalenol) trichothecene chemotypes. Deletion of FgABC3 and FgABC4 belonging to group I of ABC-G and to group V of ABC-C subfamilies of ABC transporters, respectively, considerably increased the sensitivity to the class I sterol biosynthesis inhibitors triazoles and fenarimol. Such effects were specific since they did not occur with any other fungicide class tested. Assessing the contribution of the four ABC transporters to virulence of F. graminearum revealed that, irrespective of their chemotypes, deletion mutants of FgABC1 (ABC-C subfamily group V) and FgABC3 were impeded in virulence on wheat, barley and maize. Phylogenetic context and analyses of mycotoxin production suggests that FgABC3 may encode a transporter protecting the fungus from host-derived antifungal molecules. In contrast, FgABC1 may encode a transporter responsible for the secretion of fungal secondary metabolites alleviating defence of the host. Our results show that ABC transporters play important and diverse roles in both fungicide resistance and pathogenesis of F. graminearum. PMID:24244413

  16. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells.

    PubMed

    Chen, Mingli; Yin, Huancai; Bai, Pengli; Miao, Peng; Deng, Xudong; Xu, Yingxue; Hu, Jun; Yin, Jian

    2016-07-15

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity of QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl2 at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd(2+) and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A Silent ABC Transporter Isolated from Streptomyces rochei F20 Induces Multidrug Resistance

    PubMed Central

    Fernández-Moreno, Miguel A.; Carbó, Lázaro; Cuesta, Trinidad; Vallín, Carlos; Malpartida, Francisco

    1998-01-01

    In the search for heterologous activators for actinorhodin production in Streptomyces lividans, 3.4 kb of DNA from Streptomyces rochei F20 (a streptothricin producer) were characterized. Subcloning experiments showed that the minimal DNA fragment required for activation was 0.4 kb in size. The activation is mediated by increasing the levels of transcription of the actII-ORF4 gene. Sequencing of the minimal activating fragment did not reveal any clues about its mechanism; nevertheless, it was shown to overlap the 3′ end of two convergent genes, one of whose translated products (ORF2) strongly resembles that of other genes belonging to the ABC transporter superfamily. Computer-assisted analysis of the 3.4-kb DNA sequence showed the 3′ terminus of an open reading frame (ORF), i.e., ORFA, and three complete ORFs (ORF1, ORF2, and ORFB). Searches in the databases with their respective gene products revealed similarities for ORF1 and ORF2 with ATP-binding proteins and transmembrane proteins, respectively, which are found in members of the ABC transporter superfamily. No similarities for ORFA and ORFB were found in the databases. Insertional inactivation of ORF1 and ORF2, their transcription analysis, and their cloning in heterologous hosts suggested that these genes were not expressed under our experimental conditions; however, cloning of ORF1 and ORF2 together (but not separately) under the control of an expressing promoter induced resistance to several chemically different drugs: oleandomycin, erythromycin, spiramycin, doxorubicin, and tetracycline. Thus, this genetic system, named msr, is a new bacterial multidrug ABC transporter. PMID:9696745

  18. Evidence that Bacterial ABC-Type Transporter Imports Free EDTA for Metabolism

    SciTech Connect

    Zhang, Hua; Herman, Jacob P.; Bolton, Harvey

    2007-11-01

    Ethylenediaminetetraacetic acid (EDTA), a common chelating agent, is becoming a major organic pollutant in the form of metal-EDTA complexes in surface waters, partly due to its recalcitrance to biodegradation. Even an EDTA-degrading bacterium BNC1 does not degrade stable metal-EDTA complexes. An ABC-type transporter was identified for possible uptake of EDTA because the transporter genes and EDTA monooxygenase gene were expressed in a single operon in BNC1. The ABC-type transporter had a periplasmic binding protein (EppA) that should confer the substrate specificity for the transporter; therefore, EppA was produced in Escherichia coli,purified, and characterized. EppA was shown to bind free EDTAmore » with a dissociation constant as low as 25 nM by using isothermal titration calorimetry. When unstable metal-EDTA complexes, e.g. MgEDTA2-, were added to the EppA solution, binding was also observed. However, experimental data and theoretical analysis only supported EppA binding of free EDTA. When stable metal-EDTA complexes, e.g. CuEDTA2-, are titrated into the EppA solution, no binding was observed. Since EDTA monooxygenase in the cytoplasm uses some of the stable metal-EDTA complexes as substrates, we suggest that the lack of EppA binding and EDTA uptake are responsible for the failure of BNC1 cells to degrade the stable complexes.« less

  19. Examining the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation.

    PubMed

    Chai, Amanda B; Ammit, Alaina J; Gelissen, Ingrid C

    2017-02-28

    Respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD) are characterised by excessive and persistent inflammation. Current treatments are often inadequate for symptom and disease control, and hence new therapies are warranted. Recent emerging research has implicated dyslipidaemia in pulmonary inflammation. Three ATP-binding cassette (ABC) transporters are found in the mammalian lung - ABCA1, ABCG1 and ABCA3 - that are involved in movement of cholesterol and phospholipids from lung cells. The aim of this review is to corroborate the current evidence for the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Here, we summarise results from murine knockout studies, human diseases associated with ABC transporter mutations, and in vitro studies. Disruption to ABC transporter activity results in lipid accumulation and elevated levels of inflammatory cytokines in lung tissue. Furthermore, these ABC-knockout mice exhibit signs of respiratory distress. ABC lipid transporters appear to have a crucial and protective role in the lung. However, our knowledge of the underlying molecular mechanisms for these benefits requires further attention. Understanding the relationship between cholesterol and inflammation in the lung, and the role that ABC transporters play in this may illuminate new pathways to target for the treatment of inflammatory lung diseases.

  20. Identification of ABC transporters acting in vitamin B12metabolism in Caenorhabditis elegans.

    PubMed

    McDonald, Megan K; Fritz, Julie-Anne; Jia, Dongxin; Scheuchner, Deborah; Snyder, Floyd F; Stanislaus, Avalyn; Curle, Jared; Li, Liang; Stabler, Sally P; Allen, Robert H; Mains, Paul E; Gravel, Roy A

    2017-12-01

    Vitamin B 12 (cobalamin, Cbl) is a micronutrient essential to human health. Cbl is not utilized as is but must go through complex subcellular and metabolic processing to generate two cofactor forms: methyl-Cbl for methionine synthase, a cytosolic enzyme; and adenosyl-Cbl for methylmalonyl-CoA mutase, a mitochondrial enzyme. Some 10-12 human genes have been identified responsible for the intracellular conversion of Cbl to cofactor forms, including genes that code for ATP-binding cassette (ABC) transporters acting at the lysosomal and plasma membranes. However, the gene for mitochondrial uptake is not known. We hypothesized that ABC transporters should be candidates for other uptake and efflux functions, including mitochondrial transport, and set out to screen ABC transporter mutants for blocks in Cbl utilization using the nematode roundworm Caenorhabditis elegans. Thirty-seven mutant ABC transporters were screened for the excretion of methylmalonic acid (MMA), which should result from loss of Cbl transport into the mitochondria. One mutant, wht-6, showed elevated MMA excretion and reduced [ 14 C]-propionate incorporation, pointing to a functional block in methylmalonyl-CoA mutase. In contrast, the wht-6 mutant appeared to have a normal cytosolic pathway based on analysis of cystathionine excretion, suggesting that cytosolic methionine synthase was functioning properly. Further, the MMA excretion in wht-6 could be partially reversed by including vitamin B 12 in the assay medium. The human ortholog of wht-6 is a member of the G family of ABC transporters. We propose wht-6 as a candidate for the transport of Cbl into mitochondria and suggest that a member of the corresponding ABCG family of ABC transporters has this role in humans. Our ABC transporter screen also revealed that mrp-1 and mrp-2 mutants excreted lower MMA than wild type, suggesting they were concentrating intracellular Cbl, consistent with the cellular efflux defect proposed for the mammalian MRP1 ABC

  1. An ABC transporter is required for alkaline stress and potassium transport regulation in Sinorhizobium meliloti.

    PubMed

    Lin, Dong Xu; Tang, Hui; Wang, En Tao; Chen, Wen Xin

    2009-04-01

    To understand the mechanisms of high-pH-induced protection in Sinorhizobium meliloti, a cDNA-amplified fragment length polymorphism analysis of S. meliloti cells grown in minimal medium under alkali stress was undertaken. This revealed that the first four genes of a seven-gene cluster encode the characteristic components of a putative sugar ATP-binding cassette (ABC) transporter. A functional study suggested that this putative sugar ABC transporter might play a role in potassium transport regulation, which we therefore designated supABCD. The transcription of three potassium uptake genes, trkH, kdpA and kup1, in S. meliloti is significantly attenuated in the supA mutant in the presence of potassium. The supA mutant was unable to grow at elevated levels of potassium. The expression of supA, as determined by beta-galactosidase activity, was shown to be induced by potassium but not by sodium.

  2. The Heterodimeric ABC Transporter EfrCD Mediates Multidrug Efflux in Enterococcus faecalis

    PubMed Central

    Hürlimann, Lea M.; Corradi, Valentina; Hohl, Michael; Bloemberg, Guido V.; Tieleman, D. Peter

    2016-01-01

    Nosocomial infections with Enterococcus faecalis are an emerging health problem. However, drug efflux pumps contributing to intrinsic drug resistance are poorly studied in this Gram-positive pathogen. In this study, we functionally investigated seven heterodimeric ABC transporters of E. faecalis that are annotated as drug efflux pumps. Deletion of ef0789-ef0790 on the chromosome of E. faecalis resulted in increased susceptibility to daunorubicin, doxorubicin, ethidium, and Hoechst 33342, and the corresponding transporter was named EfrCD. Unexpectedly, the previously described heterodimeric multidrug ABC transporter EfrAB contributes marginally to drug efflux in the endogenous context of E. faecalis. In contrast, heterologous expression in Lactococcus lactis revealed that EfrAB, EfrCD, and the product of ef2226-ef2227 (EfrEF) mediate the efflux of fluorescent substrates and confer resistance to multiple dyes and drugs, including fluoroquinolones. Four of seven transporters failed to exhibit drug efflux activity for the set of drugs and dyes tested, even upon overexpression in L. lactis. Since all seven transporters were purified as heterodimers after overexpression in L. lactis, a lack of drug efflux activity is not attributed to poor expression or protein aggregation. Reconstitution of the purified multidrug transporters EfrAB, EfrCD, and EfrEF in proteoliposomes revealed functional coupling between ATP hydrolysis and drug binding. Our analysis creates an experimental basis for the accurate prediction of drug efflux transporters and indicates that many annotated multidrug efflux pumps might be incapable of drug transport and thus might fulfill other physiological functions in the cell. PMID:27381387

  3. Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology.

    PubMed

    Lane, Thomas S; Rempe, Caroline S; Davitt, Jack; Staton, Margaret E; Peng, Yanhui; Soltis, Douglas Edward; Melkonian, Michael; Deyholos, Michael; Leebens-Mack, James H; Chase, Mark; Rothfels, Carl J; Stevenson, Dennis; Graham, Sean W; Yu, Jun; Liu, Tao; Pires, J Chris; Edger, Patrick P; Zhang, Yong; Xie, Yinlong; Zhu, Ying; Carpenter, Eric; Wong, Gane Ka-Shu; Stewart, C Neal

    2016-05-31

    The ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants. ABC transporters act to transport compounds across cellular membranes and are involved in a diverse range of biological processes. Thus, the applicability to biotechnology is vast, including cancer resistance in humans, drug resistance among vertebrates, and herbicide and other xenobiotic resistance in plants. In addition, plants appear to harbor the highest diversity of ABC transporter genes compared with any other group of organisms. This study applied transcriptome analysis to survey the kingdom-wide ABC transporter diversity in plants and suggest biotechnology applications of this diversity. We utilized sequence similarity-based informatics techniques to infer the identity of ABC transporter gene candidates from 1295 phylogenetically-diverse plant transcriptomes. A total of 97,149 putative (approximately 25 % were full-length) ABC transporter gene members were identified; each RNA-Seq library (plant sample) had 88 ± 30 gene members. As expected, simpler organisms, such as algae, had fewer unique members than vascular land plants. Differences were also noted in the richness of certain ABC transporter subfamilies. Land plants had more unique ABCB, ABCC, and ABCG transporter gene members on average (p < 0.005), and green algae, red algae, and bryophytes had significantly more ABCF transporter gene members (p < 0.005). Ferns had significantly fewer ABCA transporter gene members than all other plant groups (p < 0.005). We present a transcriptomic overview of ABC transporter gene members across all major plant groups. An increase in the number of gene family members present in the ABCB, ABCC, and ABCD transporter subfamilies may indicate an expansion of the ABC transporter superfamily among green land plants, which include all crop species. The striking difference between the number of ABCA subfamily transporter

  4. An ABC transporter encoding gene lndW confers resistance to landomycin E.

    PubMed

    Ostash, Iryna; Rebets, Yuriy; Ostash, Bohdan; Kobylyanskyy, Anton; Myronovskyy, Maksym; Nakamura, Tatsunosuke; Walker, Suzanne; Fedorenko, Victor

    2008-07-01

    Streptomyces globisporus 1912 produces a polyketide antibiotic landomycin E (LaE), which possesses anticancer activity. A 1.8 kb DNA fragment at the end of landomycin E biosynthetic gene cluster was sequenced. DNA sequence analysis of this fragment identified one complete open reading frame, designated lndW. The deduced sequence of lndW gene product revealed significant similarity to the ATP-binding domains of the ABC (ATP-binding protein cassette) superfamily of transport-related proteins. Knockout of lndW had no significant effect on resistance to LaE and its production. The expression of lndW in S. globisporus 1912 was proven via transcriptional fusion of lndW promoter to EGFP (enhanced green fluorescent protein). Overexpression of lndW in S. lividans TK24 conferred resistance to LaE. The mechanism of lndW function in LaE biosynthesis is discussed.

  5. Current Understanding of Interactions between Nanoparticles and ABC Transporters in Cancer Cells.

    PubMed

    Yin, Jian; Deng, Xudong; Zhang, Jie; Lin, Jun

    2018-03-14

    Adenosine triphosphate-binding cassette (ABC) transporters-mediated multidrug resistance (MDR) remains as a obstacle for effective cancer therapy. Nanoparticles (NPs)-based delivery systems are promising to overcome MDR, but only a few of them have been accepted for clinical treatment, due to characteristics such as insufficient transportation and potential toxicity. In this respect, mounting attention has been attracted towards interactions between NPs and ABC transporters, which hold a key role in the treatment of multidrug-resistant cancer and NP toxicity. In this review article, current knowledge on the involvement of ABC transporters in MDR and their inhibitors is provided. More importantly, recent literatures about the interactions between NPs and ABC transporters are summarized here. Organic and inorganic NPs inhibit the function of ABC transporters based on distinct mechanisms. The effects of organic NPs are caused by several excipients like surfactants, polymers, lipids and cyclodextrin, whereas inorganic NPs act as substrates of ABC transporters and competitively inhibit the efflux of drugs. Based on these interesting phenomena, a more thorough understanding of the specific mechanisms is necessary and essential in the hope to develop more efficient NPs to overcome MDR and decrease environmental toxicity of NPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. GxySBA ABC transporter of Agrobacterium tumefaciens and its role in sugar utilization and vir gene expression.

    PubMed

    Zhao, Jinlei; Binns, Andrew N

    2014-09-01

    Monosaccharides available in the extracellular milieu of Agrobacterium tumefaciens can be transported into the cytoplasm, or via the periplasmic sugar binding protein, ChvE, play a critical role in controlling virulence gene expression. The ChvE-MmsAB ABC transporter is involved in the utilization of a wide range of monosaccharide substrates but redundant transporters are likely given the ability of a chvE-mmsAB deletion strain to grow, albeit more slowly, in the presence of particular monosaccharides. In this study, a putative ABC transporter encoded by the gxySBA operon is identified and shown to be involved in the utilization of glucose, xylose, fucose, and arabinose, which are also substrates for the ChvE-MmsAB ABC transporter. Significantly, GxySBA is also shown to be the first characterized glucosamine ABC transporter. The divergently transcribed gene gxyR encodes a repressor of the gxySBA operon, the function of which can be relieved by a subset of the transported sugars, including glucose, xylose, and glucosamine, and this substrate-induced expression can be repressed by glycerol. Furthermore, deletion of the transporter can increase the sensitivity of the virulence gene expression system to certain sugars that regulate it. Collectively, the results reveal a remarkably diverse set of substrates for the GxySBA transporter and its contribution to the repression of sugar sensitivity by the virulence-controlling system, thereby facilitating the capacity of the bacterium to distinguish between the soil and plant environments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance.

    PubMed

    Bauer, B E; Wolfger, H; Kuchler, K

    1999-12-06

    Saccharomyces cerevisiae was the first eukaryotic organism whose complete genome sequence has been determined, uncovering the existence of numerous genes encoding proteins of the ATP-binding cassette (ABC) family. Fungal ABC proteins are implicated in a variety of cellular functions, ranging from clinical drug resistance development, pheromone secretion, mitochondrial function, peroxisome biogenesis, translation elongation, stress response to cellular detoxification. Moreover, some yeast ABC proteins are orthologues of human disease genes, which makes yeast an excellent model system to study the molecular mechanisms of ABC protein-mediated disease. This review provides a comprehensive discussion and update on the function and transcriptional regulation of all known ABC genes from yeasts, including those discovered in fungal pathogens.

  8. Phenotypic profiling of ABC transporter coding genes in Myxococcus xanthus

    PubMed Central

    Yan, Jinyuan; Bradley, Michael D.; Friedman, Jannice; Welch, Roy D.

    2014-01-01

    Information about a gene sometimes can be deduced by examining the impact of its mutation on phenotype. However, the genome-scale utility of the method is limited because, for nearly all model organisms, the majority of mutations result in little or no observable phenotypic impact. The cause of this is often attributed to robustness or redundancy within the genome, but that is only one plausible hypothesis. We examined a standard set of phenotypic traits, and applied statistical methods commonly used in the study of natural variants to an engineered mutant strain collection representing disruptions in 180 of the 192 ABC transporters within the bacterium Myxococcus xanthus. These strains display continuous variation in their phenotypic distributions, with a small number of “outlier” strains at both phenotypic extremes, and the majority within a confidence interval about the mean that always includes wild type. Correlation analysis reveals substantial pleiotropy, indicating that the traits do not represent independent variables. The traits measured in this study co-cluster with expression profiles, thereby demonstrating that these changes in phenotype correspond to changes at the molecular level, and therefore can be indirectly connected to changes in the genome. However, the continuous distributions, the pleiotropy, and the placement of wild type always within the confidence interval all indicate that this standard set of M. xanthus phenotypic assays is measuring a narrow range of partially overlapping traits that do not directly reflect fitness. This is likely a significant cause of the observed small phenotypic impact from mutation, and is unrelated to robustness and redundancy. PMID:25101061

  9. Multi-Drug Resistance ABC Transporter Inhibition Enhances Murine Ventral Prostate Stem/Progenitor Cell Differentiation.

    PubMed

    Samant, Mugdha D; Jackson, Courtney M; Felix, Carina L; Jones, Anthony J; Goodrich, David W; Foster, Barbara A; Huss, Wendy J

    2015-05-15

    Multi-drug resistance (MDR)-ATP binding cassette (ABC) transporters, ABCB1, ABCC1, and ABCG2 participate in the efflux of steroid hormones, estrogens, and androgens, which regulate prostate development and differentiation. The role of MDR-ABC efflux transporters in prostate epithelial proliferation and differentiation remains unclear. We hypothesized that MDR-ABC transporters regulate prostate differentiation and epithelium regeneration. Prostate epithelial differentiation was studied using histology, sphere formation assay, and prostate regeneration induced by cycles of repeated androgen withdrawal and replacement. Embryonic deletion of Abcg2 resulted in a decreased number of luminal cells in the prostate and increased sphere formation efficiency, indicating an imbalance in the prostate epithelial differentiation pattern. Decreased luminal cell number in the Abcg2 null prostate implies reduced differentiation. Enhanced sphere formation efficiency in Abcg2 null prostate cells implies activation of the stem/progenitor cells. Prostate regeneration was associated with profound activation of the stem/progenitor cells, indicating the role of Abcg2 in maintaining stem/progenitor cell pool. Since embryonic deletion of Abcg2 may result in compensation by other ABC transporters, pharmacological inhibition of MDR-ABC efflux was performed. Pharmacological inhibition of MDR-ABC efflux enhanced prostate epithelial differentiation in sphere culture and during prostate regeneration. In conclusion, Abcg2 deletion leads to activation of the stem/progenitor cells and enhances differentiating divisions; and pharmacological inhibition of MDR-ABC efflux leads to epithelial differentiation. Our study demonstrates for the first time that MDR-ABC efflux transporter inhibition results in enhanced prostate epithelial cell differentiation.

  10. Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function.

    PubMed

    Simpson, Brent W; Owens, Tristan W; Orabella, Matthew J; Davis, Rebecca M; May, Janine M; Trauger, Sunia A; Kahne, Daniel; Ruiz, Natividad

    2016-10-18

    The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB 2 FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB 2 FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. Lipopolysaccharide (LPS) is synthesized at the cytoplasmic membrane of Gram-negative bacteria and transported across several compartments to the cell surface, where it forms a barrier that protects these organisms from antibiotics. The LptB 2 FG proteins form an ATP-binding cassette (ABC) transporter that uses energy from ATP hydrolysis in the cytoplasm to facilitate extraction of LPS from the outer face of the

  11. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa.

    PubMed

    Chen, Lin; Duan, Kangmin

    2016-05-01

    Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Demonstration of Phosphoryl Group Transfer Indicates That the ATP-binding Cassette (ABC) Transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Exhibits Adenylate Kinase Activity*

    PubMed Central

    Randak, Christoph O.; Ver Heul, Amanda R.; Welsh, Michael J.

    2012-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane-spanning adenosine 5′-triphosphate (ATP)-binding cassette (ABC) transporter. ABC transporters and other nuclear and cytoplasmic ABC proteins have ATPase activity that is coupled to their biological function. Recent studies with CFTR and two nonmembrane-bound ABC proteins, the DNA repair enzyme Rad50 and a structural maintenance of chromosome (SMC) protein, challenge the model that the function of all ABC proteins depends solely on their associated ATPase activity. Patch clamp studies indicated that in the presence of physiologically relevant concentrations of adenosine 5′-monophosphate (AMP), CFTR Cl− channel function is coupled to adenylate kinase activity (ATP+AMP ⇆ 2 ADP). Work with Rad50 and SMC showed that these enzymes catalyze both ATPase and adenylate kinase reactions. However, despite the supportive electrophysiological results with CFTR, there are no biochemical data demonstrating intrinsic adenylate kinase activity of a membrane-bound ABC transporter. We developed a biochemical assay for adenylate kinase activity, in which the radioactive γ-phosphate of a nucleotide triphosphate could transfer to a photoactivatable AMP analog. UV irradiation could then trap the 32P on the adenylate kinase. With this assay, we discovered phosphoryl group transfer that labeled CFTR, thereby demonstrating its adenylate kinase activity. Our results also suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for adenylate kinase activity. These biochemical data complement earlier biophysical studies of CFTR and indicate that the ABC transporter CFTR can function as an adenylate kinase. PMID:22948143

  13. Demonstration of phosphoryl group transfer indicates that the ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) exhibits adenylate kinase activity.

    PubMed

    Randak, Christoph O; Ver Heul, Amanda R; Welsh, Michael J

    2012-10-19

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane-spanning adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter. ABC transporters and other nuclear and cytoplasmic ABC proteins have ATPase activity that is coupled to their biological function. Recent studies with CFTR and two nonmembrane-bound ABC proteins, the DNA repair enzyme Rad50 and a structural maintenance of chromosome (SMC) protein, challenge the model that the function of all ABC proteins depends solely on their associated ATPase activity. Patch clamp studies indicated that in the presence of physiologically relevant concentrations of adenosine 5'-monophosphate (AMP), CFTR Cl(-) channel function is coupled to adenylate kinase activity (ATP+AMP <==> 2 ADP). Work with Rad50 and SMC showed that these enzymes catalyze both ATPase and adenylate kinase reactions. However, despite the supportive electrophysiological results with CFTR, there are no biochemical data demonstrating intrinsic adenylate kinase activity of a membrane-bound ABC transporter. We developed a biochemical assay for adenylate kinase activity, in which the radioactive γ-phosphate of a nucleotide triphosphate could transfer to a photoactivatable AMP analog. UV irradiation could then trap the (32)P on the adenylate kinase. With this assay, we discovered phosphoryl group transfer that labeled CFTR, thereby demonstrating its adenylate kinase activity. Our results also suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for adenylate kinase activity. These biochemical data complement earlier biophysical studies of CFTR and indicate that the ABC transporter CFTR can function as an adenylate kinase.

  14. Implicating ABC Transporters in Insecticide Resistance: Research Strategies and a Decision Framework.

    PubMed

    Gott, Ryan C; Kunkel, Grace R; Zobel, Emily S; Lovett, Brian R; Hawthorne, David J

    2017-04-01

    Pest insects damage crops, transmit diseases, and are household nuisances. Historically, they have been controlled with insecticides, but overuse often leads to resistance to one or more of these chemicals. Insects gain resistance to insecticides through behavioral, metabolic, genetic, and physical mechanisms. One frequently overlooked strategy is through the use of ATP-binding cassette (ABC) transporters. ABC transporters, present in all domains of life, perform natural excretory functions, thus the exploitation of these transporters to excrete insecticides and contribute to resistance is highly plausible. Previous work has implicated ABC transporters in some cases of insecticide resistance. Proposed herein is a framework meant as a formal guide for more easily incorporating the analysis of ABC transporters into existing resistance monitoring using suggested simple research methods. This framework functions as a simple decision tree and its utility is demonstrated using case examples. Determining a role for ABC transporters in insecticide resistance would help to shape future resistance management plans and guide the design of new insecticides. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Enterococcus faecalis Uses a Phosphotransferase System Permease and a Host Colonization-Related ABC Transporter for Maltodextrin Uptake.

    PubMed

    Sauvageot, Nicolas; Mokhtari, Abdelhamid; Joyet, Philippe; Budin-Verneuil, Aurélie; Blancato, Víctor S; Repizo, Guillermo D; Henry, Céline; Pikis, Andreas; Thompson, John; Magni, Christian; Hartke, Axel; Deutscher, Josef

    2017-05-01

    Maltodextrin is a mixture of maltooligosaccharides, which are produced by the degradation of starch or glycogen. They are mostly composed of α-1,4- and some α-1,6-linked glucose residues. Genes presumed to code for the Enterococcus faecalis maltodextrin transporter were induced during enterococcal infection. We therefore carried out a detailed study of maltodextrin transport in this organism. Depending on their length (3 to 7 glucose residues), E. faecalis takes up maltodextrins either via MalT, a maltose-specific permease of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), or the ATP binding cassette (ABC) transporter MdxEFG-MsmX. Maltotriose, the smallest maltodextrin, is primarily transported by the PTS permease. A malT mutant therefore exhibits significantly reduced growth on maltose and maltotriose. The residual uptake of the trisaccharide is catalyzed by the ABC transporter, because a malT mdxF double mutant no longer grows on maltotriose. The trisaccharide arrives as maltotriose-6″-P in the cell. MapP, which dephosphorylates maltose-6'-P, also releases P i from maltotriose-6″-P. Maltotetraose and longer maltodextrins are mainly (or exclusively) taken up via the ABC transporter, because inactivation of the membrane protein MdxF prevents growth on maltotetraose and longer maltodextrins up to at least maltoheptaose. E. faecalis also utilizes panose and isopanose, and we show for the first time, to our knowledge, that in contrast to maltotriose, its two isomers are primarily transported via the ABC transporter. We confirm that maltodextrin utilization via MdxEFG-MsmX affects the colonization capacity of E. faecalis , because inactivation of mdxF significantly reduced enterococcal colonization and/or survival in kidneys and liver of mice after intraperitoneal infection. IMPORTANCE Infections by enterococci, which are major health care-associated pathogens, are difficult to treat due to their increasing resistance to clinically

  16. Enterococcus faecalis Uses a Phosphotransferase System Permease and a Host Colonization-Related ABC Transporter for Maltodextrin Uptake

    PubMed Central

    Sauvageot, Nicolas; Mokhtari, Abdelhamid; Joyet, Philippe; Budin-Verneuil, Aurélie; Blancato, Víctor S.; Repizo, Guillermo D.; Henry, Céline; Pikis, Andreas; Thompson, John; Magni, Christian

    2017-01-01

    ABSTRACT Maltodextrin is a mixture of maltooligosaccharides, which are produced by the degradation of starch or glycogen. They are mostly composed of α-1,4- and some α-1,6-linked glucose residues. Genes presumed to code for the Enterococcus faecalis maltodextrin transporter were induced during enterococcal infection. We therefore carried out a detailed study of maltodextrin transport in this organism. Depending on their length (3 to 7 glucose residues), E. faecalis takes up maltodextrins either via MalT, a maltose-specific permease of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), or the ATP binding cassette (ABC) transporter MdxEFG-MsmX. Maltotriose, the smallest maltodextrin, is primarily transported by the PTS permease. A malT mutant therefore exhibits significantly reduced growth on maltose and maltotriose. The residual uptake of the trisaccharide is catalyzed by the ABC transporter, because a malT mdxF double mutant no longer grows on maltotriose. The trisaccharide arrives as maltotriose-6″-P in the cell. MapP, which dephosphorylates maltose-6′-P, also releases Pi from maltotriose-6″-P. Maltotetraose and longer maltodextrins are mainly (or exclusively) taken up via the ABC transporter, because inactivation of the membrane protein MdxF prevents growth on maltotetraose and longer maltodextrins up to at least maltoheptaose. E. faecalis also utilizes panose and isopanose, and we show for the first time, to our knowledge, that in contrast to maltotriose, its two isomers are primarily transported via the ABC transporter. We confirm that maltodextrin utilization via MdxEFG-MsmX affects the colonization capacity of E. faecalis, because inactivation of mdxF significantly reduced enterococcal colonization and/or survival in kidneys and liver of mice after intraperitoneal infection. IMPORTANCE Infections by enterococci, which are major health care-associated pathogens, are difficult to treat due to their increasing resistance to

  17. Multiple ABC glucoside transporters mediate sugar-stimulated growth in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Nieves-Morión, Mercedes; Flores, Enrique

    2018-02-01

    Cyanobacteria are generally capable of photoautotrophic growth and are widely distributed on Earth. The model filamentous, heterocyst-forming strain Anabaena sp. PCC 7120 has long been considered as a strict photoautotroph but is now known to be able to assimilate fructose. We have previously described two components of ABC glucoside uptake transporters from Anabaena that are involved in uptake of the sucrose analog esculin: GlsC [a nucleotide-binding domain subunit (NBD)] and GlsP [a transmembrane component (TMD)]. Here, we created Anabaena mutants of genes encoding three further ABC transporter components needed for esculin uptake: GlsD (NBD), GlsQ (TMD) and GlsR (periplasmic substrate-binding protein). Phototrophic growth of Anabaena was significantly stimulated by sucrose, fructose and glucose. Whereas the glsC and glsD mutants were drastically hampered in sucrose-stimulated growth, the different gls mutants were generally impaired in sugar-dependent growth. Our results suggest the participation of Gls and other ABC transporters encoded in the Anabaena genome in sugar-stimulated growth. Additionally, Gls transporter components influence the function of septal junctions in the Anabaena filament. We suggest that mixotrophic growth is important in cyanobacterial physiology and may be relevant for the wide success of these organisms in diverse environments. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Structural Dynamics of the Heterodimeric ABC Transporter TM287/288 Induced by ATP and Substrate Binding.

    PubMed

    Furuta, Tadaomi; Sato, Yukiko; Sakurai, Minoru

    2016-12-06

    TM287/288 is a heterodimeric ATP-binding cassette (ABC) transporter, which harnesses the energy of ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) to transport a wide variety of molecules through the transmembrane domains (TMDs) by alternating inward- and outward-facing conformations. Here, we conducted multiple 100 ns molecular dynamics simulations of TM287/288 in different ATP- and substrate-bound states to elucidate the effects of ATP and substrate binding. As a result, the binding of two ATP molecules to the NBDs induced the formation of the consensus ATP-binding pocket (ABP2) or the NBD dimerization, whereas these processes did not occur in the presence of a single ATP molecule or when the protein was in its apo state. Moreover, binding of the substrate to the TMDs enhanced the formation of ABP2 through allosteric TMD-NBD communication. Furthermore, in the apo state, α-helical subdomains of the NBDs approached each other, acquiring a conformation with core half-pockets exposed to the solvent, appropriate for ATP binding. We propose a "core-exposed" model for this novel conformation found in the apo state of ABC transporters. These findings provide important insights into the structural dynamics of ABC transporters.

  19. The CydDC ABC transporter of Escherichia coli: new roles for a reductant efflux pump.

    PubMed

    Shepherd, Mark

    2015-10-01

    The CydDC complex of Escherichia coli is a heterodimeric ATP-binding cassette (ABC) transporter that exports cysteine and glutathione to the periplasm. These reductants are thought to modulate periplasmic redox poise, impacting upon the disulfide folding of periplasmic and secreted proteins involved in bacterial virulence. Diminished CydDC activity abolishes the assembly of functional bd-type respiratory oxidases and perturbs haem ligation during the assembly of c-type cytochromes. The focus herein is upon a newly-discovered interaction of the CydDC complex with a haem cofactor; haem has recently been shown to modulate CydDC activity and structural modelling reveals a potential haem-binding site on the periplasmic surface of the complex. These findings have important implications for future investigations into the potential roles for the CydDC-bound haem in redox sensing and tolerance to nitric oxide (NO). © 2015 Authors; published by Portland Press Limited.

  20. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance.

    PubMed

    Bugde, Piyush; Biswas, Riya; Merien, Fabrice; Lu, Jun; Liu, Dong-Xu; Chen, Mingwei; Zhou, Shufeng; Li, Yan

    2017-05-01

    Most disseminated cancers remain fatal despite the availability of a variety of conventional and novel treatments including surgery, chemotherapy, radiotherapy, immunotherapy, and biologically targeted therapy. A major factor responsible for the failure of chemotherapy in the treatment of cancer is the development of multidrug resistance (MDR). The overexpression of various ABC transporters in cancer cells can efficiently remove the anticancer drug from the cell, thus causing the drug to lose its effect. Areas covered: In this review, we summarised the ongoing research related to the mechanism, function, and regulation of ABC transporters. We integrated our current knowledge at different levels from molecular biology to clinical trials. We also discussed potential therapeutic strategies of targeting ABC transporters to reverse MDR in cancer cells. Expert opinion: Involvement of various ABC transporters to cancer MDR lays the foundation for developing tailored therapies that can overcome MDR. An ideal MDR reversal agent should have broad-spectrum ABC-transporter inhibitory activity, be potent, have good pharmacokinetics, have no trans-stimulation effects, and have low or no toxicity. Alternatively, nanotechnology-based drug delivery systems containing both the cytotoxic drug and reversing agent may represent a useful approach to reversing MDR with minimal off-target toxicity.

  1. Placental transfer of maraviroc in an ex vivo human cotyledon perfusion model and influence of ABC transporter expression.

    PubMed

    Vinot, C; Gavard, L; Tréluyer, J M; Manceau, S; Courbon, E; Scherrmann, J M; Declèves, X; Duro, D; Peytavin, G; Mandelbrot, L; Giraud, C

    2013-03-01

    Nowadays, antiretroviral therapy is recommended during pregnancy to prevent mother-to-child transmission of HIV. However, for many antiretroviral drugs, including maraviroc, a CCR5 antagonist, very little data exist regarding placental transfer. Besides, various factors may modulate this transfer, including efflux transporters belonging to the ATP-binding cassette (ABC) transporter superfamily. We investigated maraviroc placental transfer and the influence of ABC transporter expression on this transfer using the human cotyledon perfusion model. Term placentas were perfused ex vivo for 90 min with maraviroc (600 ng/ml) either in the maternal-to-fetal (n = 10 placentas) or fetal-to-maternal (n = 6 placentas) direction. Plasma concentrations were determined by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Fetal transfer rates (FTR) and clearance indexes (CLI) were calculated as ratios of fetal to maternal concentrations at steady state (mean values between 30 and 90 min) and ratios of FTR of maraviroc to that of antipyrine, respectively. ABC transporter gene expression levels were determined by quantitative reverse transcription (RT)-PCR and ABCB1 protein expression by Western blotting. For the maternal-to-fetal direction, the mean FTR and CLI were 8.0% ± 3.0 and 0.26 ± 0.07, respectively, whereas the mean CLI was 0.52 ± 0.23 for the fetal-to-maternal direction. We showed a significant inverse correlation between maraviroc CLI and ABCC2, ABCC10, and ABCC11 placental gene expression levels (P < 0.05). To conclude, we report a low maraviroc placental transfer probably involving ABC efflux transporters and thus in all likelihood associated with a limited fetal exposition. Nevertheless, these results would need to be supported by in vivo data obtained from paired maternal and cord blood samples.

  2. The Haemophilus influenzae hFbpABC Fe3+ Transporter: Analysis of the Membrane Permease and Development of a Gallium-Based Screen for Mutants▿

    PubMed Central

    Anderson, Damon S.; Adhikari, Pratima; Weaver, Katherine D.; Crumbliss, Alvin L.; Mietzner, Timothy A.

    2007-01-01

    The obligate human pathogen Haemophilus influenzae utilizes a siderophore-independent (free) Fe3+ transport system to obtain this essential element from the host iron-binding protein transferrin. The hFbpABC transporter is a binding protein-dependent ABC transporter that functions to shuttle (free) Fe3+ through the periplasm and across the inner membrane of H. influenzae. This investigation focuses on the structure and function of the hFbpB membrane permease component of the transporter, a protein that has eluded prior characterization. Based on multiple-sequence alignments between permease orthologs, a series of site-directed mutations targeted at residues within the two conserved permease motifs were generated. The hFbpABC transporter was expressed in a siderophore-deficient Escherichia coli background, and effects of mutations were analyzed using growth rescue and radiolabeled 55Fe3+ transport assays. Results demonstrate that mutation of the invariant glycine (G418A) within motif 2 led to attenuated transport activity, while mutation of the invariant glycine (G155A/V/E) within motif 1 had no discernible effect on activity. Individual mutations of well-conserved leucines (L154D and L417D) led to attenuated and null transport activities, respectively. As a complement to site-directed methods, a mutant screen based on resistance to the toxic iron analog gallium, an hFbpABC inhibitor, was devised. The screen led to the identification of several significant hFbpB mutations; V497I, I174F, and S475I led to null transport activities, while S146Y resulted in attenuated activity. Significant residues were mapped to a topological model of the hFbpB permease, and the implications of mutations are discussed in light of structural and functional data from related ABC transporters. PMID:17496104

  3. A subset of annular lipids is linked to the flippase activity of an ABC transporter.

    PubMed

    Bechara, Chérine; Nöll, Anne; Morgner, Nina; Degiacomi, Matteo T; Tampé, Robert; Robinson, Carol V

    2015-03-01

    Lipids are critical components of membranes that could affect the properties of membrane proteins, yet the precise compositions of lipids surrounding membrane-embedded protein complexes is often difficult to discern. Here we report that, for the heterodimeric ABC transporter TmrAB, the extent of delipidation can be controlled by timed exposure to detergent. We subsequently characterize the cohort of endogenous lipids that are extracted in contact with the membrane protein complex, and show that with prolonged delipidation the number of neutral lipids is reduced in favour of their negatively charged counterparts. We show that lipid A is retained by the transporter and that the extent of its binding decreases during the catalytic cycle, implying that lipid A release is linked to adenosine tri-phosphate hydrolysis. Together, these results enable us to propose that a subset of annular lipids is invariant in composition, with negatively charged lipids binding tightly to TmrAB, and imply a role for this exporter in glycolipid translocation.

  4. A subset of annular lipids is linked to the flippase activity of an ABC transporter

    NASA Astrophysics Data System (ADS)

    Bechara, Chérine; Nöll, Anne; Morgner, Nina; Degiacomi, Matteo T.; Tampé, Robert; Robinson, Carol V.

    2015-03-01

    Lipids are critical components of membranes that could affect the properties of membrane proteins, yet the precise compositions of lipids surrounding membrane-embedded protein complexes is often difficult to discern. Here we report that, for the heterodimeric ABC transporter TmrAB, the extent of delipidation can be controlled by timed exposure to detergent. We subsequently characterize the cohort of endogenous lipids that are extracted in contact with the membrane protein complex, and show that with prolonged delipidation the number of neutral lipids is reduced in favour of their negatively charged counterparts. We show that lipid A is retained by the transporter and that the extent of its binding decreases during the catalytic cycle, implying that lipid A release is linked to adenosine tri-phosphate hydrolysis. Together, these results enable us to propose that a subset of annular lipids is invariant in composition, with negatively charged lipids binding tightly to TmrAB, and imply a role for this exporter in glycolipid translocation.

  5. ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma.

    PubMed

    Dréan, Antonin; Rosenberg, Shai; Lejeune, François-Xavier; Goli, Larissa; Nadaradjane, Aravindan Arun; Guehennec, Jérémy; Schmitt, Charlotte; Verreault, Maïté; Bielle, Franck; Mokhtari, Karima; Sanson, Marc; Carpentier, Alexandre; Delattre, Jean-Yves; Idbaih, Ahmed

    2018-03-08

    ATP-binding cassette transporters (ABC transporters) regulate traffic of multiple compounds, including chemotherapeutic agents, through biological membranes. They are expressed by multiple cell types and have been implicated in the drug resistance of some cancer cells. Despite significant research in ABC transporters in the context of many diseases, little is known about their expression and clinical value in glioblastoma (GBM). We analyzed expression of 49 ABC transporters in both commercial and patient-derived GBM cell lines as well as from 51 human GBM tumor biopsies. Using The Cancer Genome Atlas (TCGA) cohort as a training dataset and our cohort as a validation dataset, we also investigated the prognostic value of these ABC transporters in newly diagnosed GBM patients, treated with the standard of care. In contrast to commercial GBM cell lines, GBM-patient derived cell lines (PDCL), grown as neurospheres in a serum-free medium, express ABC transporters similarly to parental tumors. Serum appeared to slightly increase resistance to temozolomide correlating with a tendency for an increased expression of ABCB1. Some differences were observed mainly due to expression of ABC transporters by microenvironmental cells. Together, our data suggest that the efficacy of chemotherapeutic agents may be misestimated in vitro if they are the targets of efflux pumps whose expression can be modulated by serum. Interestingly, several ABC transporters have prognostic value in the TCGA dataset. In our cohort of 51 GBM patients treated with radiation therapy with concurrent and adjuvant temozolomide, ABCA13 overexpression is associated with a decreased progression free survival in univariate (p < 0.01) and multivariate analyses including MGMT promoter methylation (p = 0.05) suggesting reduced sensitivity to temozolomide in ABCA13 overexpressing GBM. Expression of ABC transporters is: (i) detected in GBM and microenvironmental cells and (ii) better reproduced in GBM

  6. Energy Coupling Efficiency in the Type I ABC Transporter GlnPQ.

    PubMed

    Lycklama A Nijeholt, Jelger A; Vietrov, Ruslan; Schuurman-Wolters, Gea K; Poolman, Bert

    2018-03-16

    Solute transport via ATP binding cassette (ABC) importers involves receptor-mediated substrate binding, which is followed by ATP-driven translocation of the substrate across the membrane. How these steps are exactly initiated and coupled, and how much ATP it takes to complete a full transport cycle, are subject of debate. Here, we reconstitute the ABC importer GlnPQ in nanodiscs and in proteoliposomes and determine substrate-(in)dependent ATP hydrolysis and transmembrane transport. We determined the conformational states of the substrate-binding domains (SBDs) by single-molecule Förster resonance energy transfer measurements. We find that the basal ATPase activity (ATP hydrolysis in the absence of substrate) is mainly caused by the docking of the closed-unliganded state of the SBDs onto the transporter domain of GlnPQ and that, unlike glutamine, arginine binds both SBDs but does not trigger their closing. Furthermore, comparison of the ATPase activity in nanodiscs with glutamine transport in proteoliposomes shows that the stoichiometry of ATP per substrate is close to two. These findings help understand the mechanism of transport and the energy coupling efficiency in ABC transporters with covalently linked SBDs, which may aid our understanding of Type I ABC importers in general. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Antimony resistance during Visceral Leishmaniasis: A possible consequence of serial mutations in ABC transporters of Leishmania species

    PubMed Central

    Sinha, Sukrat; Sundaram, Shanthy; Kumar, Vijay; Tripathi, Ashutosh

    2011-01-01

    Visceral Leishmaniasis is a macrophage associated disorder for the treatment of which antimony based drugs like SAG and SSG were the first choice in the recent past. The clinical value of antimony therapy is now declined against VL because increasing cases of Sodium Antimony Gluconate (SAG) resistance have reached outstanding proportion in Bihar, India. Within this context we looked into the protein sequences of ABC transporters of Leishmania spp associated with Visceral Leishmaniasis that are known to play a crucial role in the development of multidrug resistance (MDR). Our studies consisting of ClustalW, Phylogeny and TCOFFEE have pinpointed that ABC transporters have enormously diverged during the process of evolution even within the identical species strains resulting in insignificant homology and subdued conservation amongst the aminoacid residues. Moreover these amino acid residues remain susceptible to mutations in evolutionary era as indicated by high frequency of variations by the variability studies. Hence we predict that during the process of evolution a series of frequent mutations might have led to changes in the ABC transporters favorable to effluxing the drug thereby making the Leishmania species prone to resistance against the efficient first line drug SAG, used for combating VL. This selection has made them to survive efficiently in the adverse circumstances of antimony based antileishmanial therapy regime. PMID:21584185

  8. Regulation of ABC transporters at the blood-brain barrier: new targets for CNS therapy.

    PubMed

    Hartz, Anika M S; Bauer, Björn

    2010-10-01

    Worldwide, more than one billion people are affected by CNS disorders. Despite the huge demand for treatments, existing drugs have limited or no efficacy for some neurological diseases, including brain cancer and certain epilepsies. Furthermore, no effective therapies are available at all for some common disorders of the central nervous system (CNS) such as Alzheimer's disease. ATP-binding cassette (ABC) transporters at the blood-brain barrier (BBB) have become increasingly important in the treatment and pathogenesis of CNS disorders. Here we highlight a novel strategy--targeting signaling pathways that control ABC transporters at the BBB--to protect the brain, improve brain drug delivery, and reduce CNS pathology.

  9. Inhibition of the Human ABC Efflux Transporters P-gp and ...

    EPA Pesticide Factsheets

    High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity.

  10. Chorioamnionitis Induces a Specific Signature of Placental ABC Transporters Associated with an Increase of miR-331-5p in the Human Preterm Placenta.

    PubMed

    do Imperio, Guinever Eustaquio; Bloise, Enrrico; Javam, Mohsen; Lye, Phetcharawan; Constantinof, Andrea; Dunk, Caroline; Dos Reis, Fernando Marcos; Lye, Stephen James; Gibb, William; Ortiga-Carvalho, Tania M; Matthews, Stephen Giles

    2018-01-01

    The ATP-binding cassette (ABC) transporters mediate drug biodisposition and immunological responses in the placental barrier. In vitro infective challenges alter expression of specific placental ABC transporters. We hypothesized that chorioamnionitis induces a distinct pattern of ABC transporter expression. Gene expression of 50 ABC transporters was assessed using TaqMan® Human ABC Transporter Array, in preterm human placentas without (PTD; n=6) or with histological chorioamnionitis (PTDC; n=6). Validation was performed using qPCR, immunohistochemistry and Western blot. MicroRNAs known to regulate P-glycoprotein (P-gp) were examined by qPCR. Up-regulation of ABCB9, ABCC2 and ABCF2 mRNA was detected in chorioamnionitis (p<0.05), whereas placental ABCB1 (P-gp; p=0.051) and ABCG2 (breast cancer resistance protein-BCRP) mRNA levels (p=0.055) approached near significant up-regulation. In most cases, the magnitude of the effect significantly correlated to the severity of inflammation. Upon validation, increased placental ABCB1 and ABCG2 mRNA levels (p<0.05) were observed. At the level of immunohistochemistry, while BCRP was increased (p<0.05), P-gp staining intensity was significantly decreased (p<0.05) in PTDC. miR-331-5p, involved in P-gp suppression, was upregulated in PTDC (p<0.01) and correlated to the grade of chorioamnionitis (p<0.01). Alterations in the expression of ABC transporters will likely lead to modified transport of clinically relevant compounds at the inflamed placenta. A better understanding of the potential role of these transporters in the events surrounding PTD may also enable new strategies to be developed for prevention and treatment of PTD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  11. Structural basis for antibacterial peptide self-immunity by the bacterial ABC transporter McjD.

    PubMed

    Bountra, Kiran; Hagelueken, Gregor; Choudhury, Hassanul G; Corradi, Valentina; El Omari, Kamel; Wagner, Armin; Mathavan, Indran; Zirah, Séverine; Yuan Wahlgren, Weixiao; Tieleman, D Peter; Schiemann, Olav; Rebuffat, Sylvie; Beis, Konstantinos

    2017-10-16

    Certain pathogenic bacteria produce and release toxic peptides to ensure either nutrient availability or evasion from the immune system. These peptides are also toxic to the producing bacteria that utilize dedicated ABC transporters to provide self-immunity. The ABC transporter McjD exports the antibacterial peptide MccJ25 in Escherichia coli Our previously determined McjD structure provided some mechanistic insights into antibacterial peptide efflux. In this study, we have determined its structure in a novel conformation, apo inward-occluded and a new nucleotide-bound state, high-energy outward-occluded intermediate state, with a defined ligand binding cavity. Predictive cysteine cross-linking in E. coli membranes and PELDOR measurements along the transport cycle indicate that McjD does not undergo major conformational changes as previously proposed for multi-drug ABC exporters. Combined with transport assays and molecular dynamics simulations, we propose a novel mechanism for toxic peptide ABC exporters that only requires the transient opening of the cavity for release of the peptide. We propose that shielding of the cavity ensures that the transporter is available to export the newly synthesized peptides, preventing toxic-level build-up. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  12. The uncoupled ATPase activity of the ABC transporter BtuC2D2 leads to a hysteretic conformational change, conformational memory, and improved activity.

    PubMed

    Livnat-Levanon, Nurit; I Gilson, Amy; Ben-Tal, Nir; Lewinson, Oded

    2016-02-22

    ABC transporters comprise a large and ubiquitous family of proteins. From bacteria to man they translocate solutes at the expense of ATP hydrolysis. Unlike other enzymes that use ATP as an energy source, ABC transporters are notorious for having high levels of basal ATPase activity: they hydrolyze ATP also in the absence of their substrate. It is unknown what are the effects of such prolonged and constant activity on the stability and function of ABC transporters or any other enzyme. Here we report that prolonged ATP hydrolysis is beneficial to the ABC transporter BtuC2D2. Using ATPase assays, surface plasmon resonance interaction experiments, and transport assays we observe that the constantly active transporter remains stable and functional for much longer than the idle one. Remarkably, during extended activity the transporter undergoes a slow conformational change (hysteresis) and gradually attains a hyperactive state in which it is more active than it was to begin with. This phenomenon is different from stabilization of enzymes by ligand binding: the hyperactive state is only reached through ATP hydrolysis, and not ATP binding. BtuC2D2 displays a strong conformational memory for this excited state, and takes hours to return to its basal state after catalysis terminates.

  13. Genome-wide identification of ATP-binding cassette (ABC) transporters and their roles in response to polycyclic aromatic hydrocarbons (PAHs) in the copepod Paracyclopina nana.

    PubMed

    Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Lee, Young Hwan; Kim, Hui-Su; Kim, Il-Chan; Lee, Jae-Seong

    2017-02-01

    The ATP-binding cassette (ABC) protein superfamily is one of the largest gene families and is highly conserved in all domains. The ABC proteins play roles in several biological processes, including multi-xenobiotic resistance (MXR), by functioning as transporters in the cellular membrane. They also mediate the cellular efflux of a wide range of substrates against concentration gradients. In this study, 37 ABC genes belonging to eight distinct subfamilies were identified in the marine copepod Paracyclopina nana and annotated based on a phylogenetic analysis. Also, the functions of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRPs), conferring MXR, were verified using fluorescent substrates and specific inhibitors. The activities of MXR-mediated ABC proteins and their transcriptional level were examined in response to polyaromatic hydrocarbons (PAHs), main components of the water-accommodated fraction. This study increases the understanding of the protective role of MXR in response to PAHs over the comparative evolution of ABC gene families. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Phosphorylation is required for the pathogen defense function of the Arabidopsis PEN3 ABC transporter

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in defense against multiple pathogens. Perception of PAMPs by pattern recognition receptors initiates recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whet...

  15. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance

    USDA-ARS?s Scientific Manuscript database

    Deoxynivalenol (DON) is a mycotoxin produced by Fusarium fungi which acts as a disease virulence factor, aiding fungal pathogenesis of cereals spikelets and spread of the economically important Fusarium head blight (FHB) disease. Previously, a fragment of a wheat ABC transporter gene was shown to be...

  16. Transmembrane Domain Single-Nucleotide Polymorphisms Impair Expression and Transport Activity of ABC Transporter ABCG2.

    PubMed

    Sjöstedt, Noora; van den Heuvel, Jeroen J M W; Koenderink, Jan B; Kidron, Heidi

    2017-08-01

    To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. The transport activity of the variants was tested in inside-out membrane vesicles from Sf9 insect and human derived HEK293 cells overexpressing ABCG2. Lucifer Yellow and estrone sulfate were used as probe substrates of activity. The expression levels and cellular localization of the variants was compared to the wild-type ABCG2 by western blotting and immunofluorescence microscopy. All studied variants of ABCG2 displayed markedly decreased transport in both Sf9-ABCG2 and HEK293-ABCG2 vesicles. Impaired transport could be explained for some variants by altered expression levels and cellular localization. Moreover, the destructive effect on transport activity of variants G406R, P480L, M515R and T542A is, to our knowledge, reported for the first time. These results indicate that the transmembrane region of ABCG2 is sensitive to amino acid substitution and that patients harboring these ABCG2 variant forms could suffer from unexpected pharmacokinetic events of ABCG2 substrate drugs or have an increased risk for diseases such as gout where ABCG2 is implicated.

  17. A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus.

    PubMed

    Olano, C; Rodríguez, A M; Méndez, C; Salas, J A

    1995-04-01

    A 3.2 kb Sstl-Sphl DNA fragment of Streptomyces antibioticus, an oleandomycin producer, conferring resistance to oleandomycin was sequenced and found to contain an open reading frame of 1710 bp (oleB). Its deduced gene product (OleB) showed a high degree of similarity with other proteins belonging to the ABC-transporter superfamily including the gene product of another oleandomycin-resistance gene (OleC). The OleB protein contains two ATP-binding domains, each of approximately 200 amino acids in length, and no hydrophobic transmembrane regions. Functional analysis of the oleB gene was carried out by deleting specific regions of the gene and assaying for oleandomycin resistance. These experiments showed that either the first or the second half of the gene containing only one ATP-binding domain was sufficient to confer resistance to oleandomycin. The gene oleB was expressed in Escherichia coli fused to a maltose-binding protein (MBP) using the pMal-c2 vector. The MBP-OleB hybrid protein was purified by affinity chromatography on an amylose resin and polyclonal antibodies were raised against the fusion protein. These were used to monitor the biosynthesis and physical location of OleB during growth. By Western analysis, the OleB protein was detected both in the soluble and in the membrane fraction and its synthesis paralleled oleandomycin biosynthesis. It was also shown that a Streptomyces albus strain, containing both a glycosyltransferase (OleD) able to inactivate oleandomycin and the OleB protein, was capable of glycosylating oleandomycin and secreting the inactive glycosylated molecule. It is proposed that OleB constitutes the secretion system by which oleandomycin or its inactive glycosylated form could be secreted by S. antibioticus.

  18. Topological studies of the membrane component of the OleC ABC transporter involved in oleandomycin resistance in Streptomyces antibioticus.

    PubMed

    Olano, C; Rodriguez, A M; Méndez, C; Salas, J A

    1996-10-01

    The OleC ABC transporter of Streptomyces antibioticus is constituted by an ATP-binding protein (OleC) and a hydrophobic protein (OleC5). Here we present experimental evidence demonstrating that the OleC5 protein is an integral membrane protein and we propose a topological model for its integration into the membrane. This model is based on the generation of hybrid proteins between different regions of OleC5 and a Escherichia coli beta-lactamase (BlaM) and the determination of the minimal inhibitory concentrations to ampicillin in these constructions. Fusions were generated both by cloning specific fragments of oleC5 and by creating ExoIII nested deletions of the gene. In the topological model proposed there will be six alpha-helix transmembrane regions, two cytoplasmic and four periplasmic loops and a hydrophobic linker domain.

  19. Multidrug ABC transporter Cdr1 of Candida albicans harbors specific and overlapping binding sites for human steroid hormones transport.

    PubMed

    Baghel, Pratima; Rawal, Manpreet Kaur; Khan, Mohammad Firoz; Sen, Sobhan; Siddiqui, Mohammed Haris; Chaptal, Vincent; Falson, Pierre; Prasad, Rajendra

    2017-10-01

    The present study examines the kinetics of steroids efflux mediated by the Candida drug resistance protein 1 (Cdr1p) and evaluates their interaction with the protein. We exploited our in-house mutant library for targeting the 252 residues forming the twelve transmembrane helices (TMHs) of Cdr1p. The screening revealed 65 and 58 residues critical for β-estradiol and corticosterone transport, respectively. Notably, up to 83% critical residues for corticosterone face the lipid interface compared to 54% for β-estradiol. Molecular docking identified a possible peripheral corticosterone-binding site made of 8/14 critical/non-critical residues between TMHs 3, 4 and 6. β-estradiol transport was severely hampered by alanine replacements of Cdr1p core residues involving TMHs 2, 5 and 8, in a binding site made of 10/14 critical residues mainly shared with rhodamine 6G with which it competes. By contrast, TMH11 was poorly impacted, although being part of the core domain. Finally, we observed the presence of several contiguous stretches of 3-5 critical residues in TMHs 2, 5 and 10 that points to a rotation motion of these helices during the substrate transport cycle. The selective structural arrangement of the steroid-binding pockets in the core region and at the lipid-TMD interface, which was never reported before, together with the possible rotation of some TMHs may be the structural basis of the drug-transport mechanism achieved by these type II ABC transporters. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Structural basis for the hydrolysis of ATP by a nucleotide binding subunit of an amino acid ABC transporter from Thermus thermophilus.

    PubMed

    Devi, Seenivasan Karthiga; Chichili, Vishnu Priyanka Reddy; Jeyakanthan, J; Velmurugan, D; Sivaraman, J

    2015-06-01

    ATP-binding cassette (ABC) transporters are a major family of small molecule transporter proteins, and their deregulation is associated with several diseases, including cancer. Here, we report the crystal structure of the nucleotide binding domain (NBD) of an amino acid ABC transporter from Thermus thermophilus (TTHA1159) in its apo form and as a complex with ADP along with functional studies. TTHA1159 is a putative arginine ABC transporter. The apo-TTHA1159 was crystallized in dimeric form, a hitherto unreported form of an apo NBD. Structural comparison of the apo and ADP-Mg(2+) complexes revealed that Phe14 of TTHA1159 undergoes a significant conformational change to accommodate ADP, and that the bound ADP interacts with the P-loop (Gly40-Thr45). Modeling of ATP-Mg(2+):TTHA1159 complex revealed that Gln86 and Glu164 are involved in water-mediated hydrogen bonding contacts and Asp163 in Mg(2+) ion-mediated hydrogen bonding contacts with the γ-phosphate of ATP, consistent with the findings of other ABC transporters. Mutational studies confirmed the necessity of each of these residues, and a comparison of the apo/ADP Mg(2+):TTHA1159 with its ATP-complex model suggests the likelihood of a key conformational change to the Gln86 side chain for ATP hydrolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    NASA Astrophysics Data System (ADS)

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; Abele, Rupert; Gaudet, Rachelle; Tampé, Robert

    2014-11-01

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the conserved aspartate, which coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. Our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.

  2. Estimation of Candida albicans ABC Transporter Behavior in Real-Time via Fluorescence.

    PubMed

    Szczepaniak, Joanna; Łukaszewicz, Marcin; Krasowska, Anna

    2015-01-01

    We present a fluorometric method for determining ABC transporter activity in the pathogenic fungus C. albicans during different growth phases and in response to glucose. The carbocyanine dye diS-C3(3) was previously used to monitor plasma membrane potentials and test the influence of surface-active compounds in membrane polarization. We used diS-C3(3) to show changes in fluorescence kinetics that reflect changes in the activity of ABC transporters in C. albicans growth. Cdr1-GFP fluorescence, revealed that Cdr1p relocates to the inside of the cell after the early-log growth phase. Addition of glucose to the cell suspension resulted in Cdr1p transporter expression in the CDR2-knockout strain. We confirmed the diS-C3(3) results by standard RT-PCR and Western blotting.

  3. pqiABC and yebST, Putative mce Operons of Escherichia coli, Encode Transport Pathways and Contribute to Membrane Integrity.

    PubMed

    Nakayama, Takayuki; Zhang-Akiyama, Qiu-Mei

    2017-01-01

    The membranes of single-cell organisms are crucial as the first line of defense. The outer membrane of Gram-negative bacteria is an asymmetric bilayer in which lipopolysaccharides (LPSs) and phospholipids are localized in the outer and inner leaflet, respectively. This asymmetry is important for membrane integrity. In Escherichia coli, the Mla transport pathway maintains this asymmetry by removing phospholipids from the outer leaflet. The MlaD component of this system is a mammalian cell entry (MCE) domain protein, and E. coli has two other MCE domain proteins of unknown function (PqiB and YebT). Here, we show that these two proteins are components of novel transport pathways that contribute to membrane integrity. The pqiAB operon is regulated by SoxS and RpoS. The yebST operon contains pqiAB homologues. Here, we found a third member of the pqi operon, ymbA (pqiC). A PqiB-PqiC complex bridges the inner and the outer membrane, and in other bacteria, pqiBC genes are located in operons together with transporter proteins. We show here that simultaneous deletion of pqiABC and yebST operons in an Δmla background rendered cells more sensitive to SDS-EDTA, and the SDS-EDTA sensitivity of mla mutants was rescued by additional copies of pqiABC We also found that the yebST operon was induced by a defect in LPS molecules. In conclusion, PqiABC and YebST are novel transport pathways related to the Mla transport pathway and important for membrane integrity. Membranes of bacteria are crucial for stress resistance. The composition of the E. coli outer membrane is asymmetric, with asymmetry maintained by the Mla ABC transport pathway. We propose that the stress-inducible pqiABC operon and homologous yebST operon, both of previously unknown function, encode transport pathway proteins related to the Mla transport pathway. Deletion of these operons rendered cells more sensitive to membrane stress, and additional copies of pqiABC suppressed the SDS-EDTA sensitivity of mla mutant

  4. The Role of ABC Proteins in Drug-Resistant Breast Cancer Cells

    DTIC Science & Technology

    2007-04-01

    responsible for causing malaria , codes for an ABC protein with high homology to human Pgp. This protein, known as P. falciparum multidrug resistance...mefloquine (A), quinine (B), chloroquine (C), and verapamil (D) profiles of wildtype (squares, solid line), Dd2 (triangles, dashed line), and 7G8 (circles

  5. Poloxamines display a multiple inhibitory activity of ATP-binding cassette (ABC) transporters in cancer cell lines.

    PubMed

    Cuestas, María L; Sosnik, Alejandro; Mathet, Verónica L

    2011-08-01

    Primary hepatocellular carcinoma is the third most common fatal cancer worldwide with more than 500,000 annual deaths. Approximately 40% of the patients with HCC showed tumoral overexpression of transmembrane proteins belonging to the ATP-binding cassette protein superfamily (ABC) which pump drugs out of cells. The overexpression of these efflux transporters confers on the cells a multiple drug resistance phenotype, which is considered a crucial cause of treatment refractoriness in patients with cancer. The aim of this study was to investigate the inhibitory effect of different concentrations of pH- and temperature-responsive X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamines, Tetronic, PEO-PPO) showing a wide range of molecular weights and EO/PO ratios on the functional activity of three different ABC proteins, namely P-glycoprotein (P-gp or MDR1), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein MRP1, in two human hepatocarcinoma cell lines, HepG2 and Huh7. First, the cytotoxicity of the different copolymers (at different concentrations) on both liver carcinoma cell lines was thoroughly evaluated by means of apoptosis analysis using annexin V and propidium iodide (PI). Thus, viable cells (AV-/PI-), early apoptotic cells (AV+/PI-) and late apoptotic cells (V-FITC+/PI+) were identified. Results pointed out copolymers of intermediate to high hydrophobicity and intermediate molecular weight (e.g., T904) as the most cytotoxic. Then, DiOC2, rhodamine 123 and vinblastine were used as differential substrates of these pumps. HeLa, an epithelial cell line of human cervical cancer that does not express P-gp, was used exclusively as a control and enabled the discerning between P-gp and MRP1 inhibition. Moderate to highly hydrophobic poloxamines T304, T904 and T1301 showed inhibitory activity against P-gp and BCRP but not against MRP1 in both hepatic cell lines. A remarkable dependence of this effect on the

  6. Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi

    NASA Astrophysics Data System (ADS)

    Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Urbanelli, Sandra; Sassera, Davide; De Marco, Leone; Mereghetti, Valeria; Montagna, Matteo; Ricci, Irene; Favia, Guido; Bandi, Claudio

    2014-12-01

    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABC gene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps.

  7. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    SciTech Connect

    Fuchs, Dominik; Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg; Daniel, Volker

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity ofmore » P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.« less

  8. ABC transporters and xenobiotic defense systems in early life stages of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Kropf, Christian; Segner, Helmut; Fent, Karl

    2016-01-01

    Embryos of oviparous fish, in contrast to (ovo) viviparous species, develop in the aquatic environment, and therefore need solute transport systems at their body surfaces for maintaining internal homeostasis and defending against potentially harmful substances. We hypothesized that solute transporters undergo changes in tissue distribution from the embryo to the larval stage. We therefore studied the mRNA profiles of eight ABC transporters (abcb1a, abcb1b, abcc1, abcc2, abcc3, abcc4, abcc5, abcg2) and three solute carriers (oatp1d, putative oatp2 putative, mate1) in different body regions (head, yolk sac epithelium, abdominal viscera, skin/muscles) of developing rainbow trout. Additionally, we investigated mRNA levels of phase I (cyp1a, cyp3a) and phase II (gstp, putative ugt1, putative ugt2) biotransformation enzymes. The study covered the developmental period from the eleuthero-embryo stage to the first-feeding larval stage (1-20days post-hatch, dph). At 1dph, transcripts of abcc2, abcc4, abcg2, cyp3a, gstp, putative mate1, and putative oatp2 occurred primarily in the yolk sac epithelium, whereas at later stages expression of these genes was predominantly observed in the abdominal viscera. The functional activity of ABC transporters in fish early life stages was assessed by rhodamine B accumulation assays. Finally, we investigated the potential impact of xenobiotics (clotrimazole, clofibric acid) on the ABC and biotransformation systems of trout early life stages. While clofibric acid had no effect, clotrimazole lead to an increased rhodamine B accumulation. The results provide evidence that the transition from the eleuthero-embryo to the larval stage is accompanied by a major alteration in tissue expression of ABC transporters. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants.

    PubMed Central

    Kölling, R; Hollenberg, C P

    1994-01-01

    We are investigating the transport and turnover of the multispanning membrane protein Ste6. The Ste6 protein is a member of the ABC-transporter family and is required for the secretion of the yeast mating pheromone a-factor. In contrast to the prevailing view that Ste6 is a plasma membrane protein, we found that Ste6 is mainly associated with internal membranes and not with the cell surface. Fractionation and immunofluorescence data are compatible with a Golgi localization of Ste6. Despite its mostly intracellular localization, the Ste6 protein is in contact with the cell surface, as demonstrated by the finding that Ste6 accumulates in the plasma membrane in endocytosis mutants. The Ste6 protein which accumulates in the plasma membrane in endocytosis mutants is ubiquitinated. Ste6 is thus the second protein in yeast besides MAT alpha 2 for which ubiquitination has been demonstrated. Ste6 is a very unstable protein (half-life 13 min) which is stabilized approximately 3-fold in a ubc4 ubc5 mutant, implicating the ubiquitin system in the degradation of Ste6. The strongest stabilizing effect on Ste6 is, however, observed in the vacuolar pep4 mutant (half-life > 2 h), suggesting that most of Ste6 is degraded in the vacuole. Secretory functions are required for efficient degradation of Ste6, indicating that Ste6 enters the secretory pathway and is transported to the vacuole by vesicular carriers. Images PMID:8045256

  10. Transport proteins promoting Escherichia coli pathogenesis

    PubMed Central

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  11. Transport proteins promoting Escherichia coli pathogenesis.

    PubMed

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Influence of detergents on the activity of the ABC transporter LmrA.

    PubMed

    Infed, Nacera; Hanekop, Nils; Driessen, Arnold J M; Smits, Sander H J; Schmitt, Lutz

    2011-09-01

    The ABC transporter LmrA from Lactococcus lactis has been intensively studied and a role in multidrug resistance was proposed. Here, we performed a comprehensive detergent screen to analyze the impact of detergents for a successful solubilization, purification and retention of functional properties of this ABC transporter. Our screen revealed the preference of LmrA for zwitterionic detergents. In detergent solution, LmrA purified with FC-16 was highly active with respect to ATPase activity, which could be stimulated by a substrate (rhodamine 123) of LmrA. Both, high ATPase activity and substrate stimulation were not detected for LmrA solubilized in DDM. Interestingly, reconstituted LmrA showed an opposite behavior, with a high basal ATPase activity and stimulation by rhodamine 123 for a DDM-reconstituted, but only low ATPase activity and no substrate stimulation for a FC-16 reconstituted sample. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Direct Observation of a Gate Tunable Band Gap in Electrical Transport in ABC-Trilayer Graphene

    NASA Astrophysics Data System (ADS)

    Khodkov, Tymofiy; Khrapach, Ivan; Craciun, Monica Felicia; Russo, Saverio

    2015-07-01

    Few layer graphene systems such as Bernal stacked bilayer and rhombohedral (ABC-) stacked trilayer offer the unique possibility to open an electric field tunable energy gap. To date, this energy gap has been experimentally confirmed in optical spectroscopy. Here we report the first direct observation of the electric field tunable energy gap in electronic transport experiments on doubly gated suspended ABC-trilayer graphene. From a systematic study of the non-linearities in current \\textit{versus} voltage characteristics and the temperature dependence of the conductivity we demonstrate that thermally activated transport over the energy-gap dominates the electrical response of these transistors. The estimated values for energy gap from the temperature dependence and from the current voltage characteristics follow the theoretically expected electric field dependence with critical exponent $3/2$. These experiments indicate that high quality few-layer graphene are suitable candidates for exploring novel tunable THz light sources and detectors.

  14. Iron and zinc regulate expression of a putative ABC metal transporter inCorynebacterium diphtheriae.

    PubMed

    Peng, Eric D; Oram, Diana M; Battistel, Marcos D; Lyman, Lindsey R; Freedberg, Darón I; Schmitt, Michael P

    2018-03-05

    Corynebacterium diphtheriae , a Gram-positive, aerobic bacterium, is the causative agent of diphtheria and cutaneous infections. While mechanisms required for heme iron acquisition are well known in C. diphtheriae , systems involved in the acquisition of other metals such as zinc and manganese remain poorly characterized. In this study, we identified a genetic region that encodes an ABC-type transporter ( iutBCD ) flanked by two genes ( iutA and iutE ) encoding putative substrate binding proteins of the cluster 9 family, a related group of transporters primarily associated with the import of Mn and Zn. We showed that IutA and IutE are both membrane proteins with comparable Mn and Zn binding ability. We demonstrated that the iutABCD genes are co-transcribed and repressed in response to iron by the iron-responsive repressor DtxR. Transcription of iutE was positively regulated in response to iron availability in a DtxR-dependent manner, and repressed in response to Zn by the Zn-dependent repressor Zur. Electrophoretic mobility shift assays showed that DtxR does not bind to the iutE upstream region, which indicates that DtxR regulation of iutE is indirect and that other regulatory factors controlled by DtxR are likely responsible for the iron-responsive regulation. Analysis of the iutE promoter region identified a 50-bp sequence at the 3' end of the iutD gene that is required for the DtxR-dependent and iron-responsive activation of the iutE gene. These findings indicate that transcription of iutE is controlled by a complex mechanism that involves multiple regulatory factors whose activity is impacted by both Zn and Fe. IMPORTANCE Vaccination against diphtheria prevents toxin-related symptoms, but does not inhibit bacterial colonization of the human host by the bacterium. Thus, Corynebacterium diphtheriae remains an important human pathogen that poses a significant health risk to unvaccinated individuals. The ability to acquire iron, zinc, and manganese is critical to

  15. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that

  16. Alzheimer’s and ABC transporters - new opportunities for diagnostics and treatment

    PubMed Central

    Pahnke, Jens; Langer, Oliver; Krohn, Markus

    2014-01-01

    Much has been said about the increasing number of demented patients and the main risk factor ‘age’. Frustratingly, we do not know the precise pattern and all modulating factors that provoke the pathologic changes in the brains of affected elderly. We have to diagnose early to be able to stop the progression of diseases that irreversibly destroy brain substance. Familiar AD cases have mislead some researchers for almost 20 years, which has unfortunately narrowed the scientific understanding and has, thus, lead to insufficient funding of independent approaches. Therefore, basic researchers hardly have been able to develop causative treatments and clinicians still do not have access to prognostic and early diagnostic tools. During the recent years it became clear that insufficient Aβ export, physiologically facilitated by the ABC transporter superfamily at the brain’s barriers, plays a fundamental role in disease initiation and progression. Furthermore, export mechanisms that are deficient in affected elderly are new targets for activation and, thus, treatment, but ideally also for prevention. In sporadic AD disturbed clearance of β-amyloid from the brain is so far the most important factor for its accumulation in the parenchyma and vessel walls. Here, we review findings about the contribution of ABC transporters and of the perivascular drainage/glymphatic system on β-amyloid clearance. We highlight their potential value for innovative early diagnostics using PET and describe recently described, effective ABC transporter-targeting agents as potential causative treatment for neurodegenerative proteopathies/dementias. PMID:24746857

  17. Alzheimer's and ABC transporters--new opportunities for diagnostics and treatment.

    PubMed

    Pahnke, Jens; Langer, Oliver; Krohn, Markus

    2014-12-01

    Much has been said about the increasing number of demented patients and the main risk factor 'age'. Frustratingly, we do not know the precise pattern and all modulating factors that provoke the pathologic changes in the brains of affected elderly. We have to diagnose early to be able to stop the progression of diseases that irreversibly destroy brain substance. Familiar AD cases have mislead some researchers for almost 20 years, which has unfortunately narrowed the scientific understanding and has, thus, lead to insufficient funding of independent approaches. Therefore, basic researchers hardly have been able to develop causative treatments and clinicians still do not have access to prognostic and early diagnostic tools. During the recent years it became clear that insufficient Aβ export, physiologically facilitated by the ABC transporter superfamily at the brain's barriers, plays a fundamental role in disease initiation and progression. Furthermore, export mechanisms that are deficient in affected elderly are new targets for activation and, thus, treatment, but ideally also for prevention. In sporadic AD disturbed clearance of β-amyloid from the brain is so far the most important factor for its accumulation in the parenchyma and vessel walls. Here, we review findings about the contribution of ABC transporters and of the perivascular drainage/glymphatic system on β-amyloid clearance. We highlight their potential value for innovative early diagnostics using PET and describe recently described, effective ABC transporter-targeting agents as potential causative treatment for neurodegenerative proteopathies/dementias. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The heme uptake process in Trypanosoma cruzi epimastigotes is inhibited by heme analogues and by inhibitors of ABC transporters.

    PubMed

    Cupello, Mauricio Peixoto; Souza, Cíntia Fernandes de; Buchensky, Celeste; Soares, Juliana Baptista Rocha Corrêa; Laranja, Gustavo Augusto Travassos; Coelho, Marsen Garcia Pinto; Cricco, Julia A; Paes, Marcia Cristina

    2011-12-01

    Heme (iron protoporphyrin IX) is an important molecule involved in many biological reactions, including oxygen transport, respiration, photosynthesis and drug detoxification. Trypanosoma cruzi parasites, the etiological agent of Chagas' disease, take up heme from the environment to supply their nutritional needs because they do not synthesize this cofactor. However, the mechanisms involved in heme transport across biological membranes are poorly understood. Indeed, in T. cruzi, no heme transporter has yet been characterized. In the present work, we evaluate the heme uptake processes by T. cruzi epimastigotes using fluorescent heme-analogues. Heme uptake decreased significantly when cells were pretreated with different concentrations of SnPPIX, PdMPIX or ZnMPIX, this observed competition suggests that they are taken up by the same transport system. We studied the growth behavior of epimastigotes using the same heme-analogues and the treatments with SnPPIX or PdMPIX impaired cell growth but when heme was added to the culture medium the observed inhibition was partially reversed. In addition, we tested how the heme uptake processes are affected by the presence of different transporter inhibitors. When the cells were treated with inhibitors and then incubated with heme, heme uptake decreased significantly for all treatments. These results constitute a strong indication for the existence of a protein associated with porphyrin transport in T. cruzi, possibly ATP-binding cassette transporters (ABC-transporter). Copyright © 2011 Elsevier B.V. All rights reserved.

  19. TetAB46, a predicted heterodimeric ABC transporter conferring tetracycline resistance in Streptococcus australis isolated from the oral cavity.

    PubMed

    Warburton, Philip J; Ciric, Lena; Lerner, Avigdor; Seville, Lorna A; Roberts, Adam P; Mullany, Peter; Allan, Elaine

    2013-01-01

    To identify the genes responsible for tetracycline resistance in a strain of Streptococcus australis isolated from pooled saliva from healthy volunteers in France. S. australis is a viridans Streptococcus, originally isolated from the oral cavity of children in Australia, and subsequently reported in the lungs of cystic fibrosis patients and as a cause of invasive disease in an elderly patient. Agar containing 2 mg/L tetracycline was used for the isolation of tetracycline-resistant organisms. A genomic library in Escherichia coli was used to isolate the tetracycline resistance determinant. In-frame deletions and chromosomal repair were used to confirm function. Antibiotic susceptibility was determined by agar dilution and disc diffusion assay. The tetracycline resistance determinant from S. australis FRStet12 was isolated from a genomic library in E. coli and DNA sequencing showed two open reading frames predicted to encode proteins with similarity to multidrug resistance-type ABC transporters. Both genes were required for tetracycline resistance (to both the naturally occurring and semi-synthetic tetracyclines) and they were designated tetAB(46). This is the first report of a predicted ABC transporter conferring tetracycline resistance in a member of the oral microbiota.

  20. Antibiotic Resistance ABC-F Proteins: Bringing Target Protection into the Limelight.

    PubMed

    Sharkey, Liam K R; O'Neill, Alex J

    2018-03-09

    Members of the ATP-binding cassette (ABC)-F protein subfamily collectively mediate resistance to a broader range of clinically important antibiotic classes than any other group of resistance proteins and are widespread in pathogenic bacteria. Following over 25 years' of controversy regarding the mechanism by which these proteins work, it has recently been established that they provide antibiotic resistance through the previously recognized but underappreciated phenomenon of target protection; they bind to the ribosome to effect the release of ribosome-targeted antibiotics, thereby rescuing the translation apparatus from antibiotic-mediated inhibition. Here we review the ABC-F resistance proteins with an emphasis on their mechanism of action, first exploring the history of the debate about how these proteins work and outlining our current state of knowledge and then considering key questions to be addressed in understanding the molecular detail of their function.

  1. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  2. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    EPA Science Inventory

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  3. Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts.

    PubMed

    Denecke, Shane; Fusetto, Roberto; Batterham, Philip

    2017-12-01

    ABC transporters have a well-established role in drug resistance, effluxing xenobiotics from cells and tissues within the organism. More recently, research has been dedicated to understanding the role insect ABC transporters play in insecticide toxicity, but progress in understanding the contribution of specific transporters has been hampered by the lack of functional genetic tools. Here, we report knockouts of three Drosophila melanogaster ABC transporter genes, Mdr49, Mdr50, and Mdr65, that are homologous to the well-studied mammalian ABCB1 (P-glycoprotein). Each knockout mutant was created in the same wild type background and tested against a panel of insecticides representing different chemical classes. Mdr65 knockouts were more susceptible to all neuroactive insecticides tested, but Mdr49 and Mdr50 knockouts showed increased susceptibility or resistance depending on the insecticide used. Mdr65 was chosen for further analysis. Calculation of LC 50 values for the Mdr65 knockout allowed the substrate specificity of this transporter to be examined. No obvious distinguishing structural features were shared among MDR65 substrates. A role for Mdr65 in insecticide transport was confirmed by testing the capacity of the knockout to synergize with the ABC inhibitor verapamil and by measuring the levels of insecticide retained in the body of knockout flies. These data unambiguously establish the influence of ABC transporters on the capacity of wild type D. melanogaster to tolerate insecticide exposure and suggest that both tissue and substrate specificity underpin this capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Application of Human Placental Villous Tissue Explants to Study ABC Transporter Mediated Efflux of 2,4-Dinitrophenyl-S-Glutathione

    PubMed Central

    Vaidya, Soniya S.; Walsh, Scott W.; Gerk, Phillip M.

    2011-01-01

    Objective The purpose of this study was to characterize the human term placental villous tissue explant culture model as a tool to study the formation and efflux of 1-chloro-2,4-dinitrobenzene (CDNB) conjugate 2,4-dinitrophenyl-S-glutathione (DNP-SG) as a model system for phase II metabolism and ATP-binding cassette (ABC) transporter-mediated cellular efflux. Methods Placental tissue samples were obtained after cesarean section following normal pregnancies (n=9). Cultured villous tissue was monitored up to 48 h to study the effect of time in culture on biochemical parameters, formation and efflux of DNP-SG in the absence or presence of ATPase inhibitor sodium orthovanadate and the protein expression of ABC transporters - multidrug resistance associated protein 2 (MRP2), P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and enzyme glutathione-S-transferase isoform P1-1 (GSTP1-1). Results Villous tissue structure, tissue viability and expression of BCRP, GSTP1-1 remained unchanged, while expression of MRP2, P-gp and total tissue glutathione decreased with time in culture. Tissue integrity was unchanged up to 24 h but declined at 48 h. However, DNP-SG formation, DNP-SG efflux, and the extent of inhibition of DNP-SG efflux by sodium orthovanadate showed only minor changes through 48 h. Sodium orthovanadate decreased DNP-SG efflux, consistent with inhibition of apical ABC transporters. Conclusion The results support the use of the cultured human term placental villous tissue explants model to study coordinated function of GSTP1-1 and apical ABC transporters in the formation and efflux of the model substrate DNP-SG. PMID:21342117

  5. Fatty acid transport proteins.

    PubMed

    Gimeno, Ruth E

    2007-06-01

    Fatty acid transport proteins are a family of proteins involved in fatty acid uptake and activation. This review summarizes recent progress in elucidating the function of fatty acid transport proteins. Recent experiments clearly establish FATP1 as a regulated fatty acid transporter in both adipose tissue and muscle with important roles in energy homeostasis, thermogenesis and insulin resistance. Knockout of FATP5 in mice show it to be a bifunctional protein required for both hepatic fatty acid uptake and bile acid reconjugation. The most striking phenotype of FATP4 deletion is a defect in skin homeostasis, which may be due to its very long chain acyl-coenzyme A synthetase activity. Fatty acid transport proteins are increasingly being recognized as multifunctional proteins that can mediate the uptake of fatty acids as well as catalyze the formation of coenzyme A derivatives using long-chain and very-long chain fatty acids, bile acids and bile acid precursors as substrates. Modulation of fatty acid transport protein function can result in altered energy homeostasis and insulin sensitivity, defective skin homeostasis, and altered bile acid metabolism. Both fatty acid uptake and enzymatic activity of fatty acid transport proteins likely contribute to these phenotypes. Future studies are needed to better understand the molecular mechanism of fatty acid transport protein function and the physiological role of FATP2, FATP3, and FATP6.

  6. Gene expression analysis of ABC transporters in a resistant Cooperia oncophora isolate following in vivo and in vitro exposure to macrocyclic lactones

    PubMed Central

    De Graef, J.; Demeler, J.; Skuce, P.; Mitreva, M.; von Samson-Himmelstjerna, G.; Vercruysse, J.; Claerebout, E.; Geldhof, P.

    2013-01-01

    SUMMARY Members of the ATP-binding cassette (ABC) transporter family (P-glycoproteins, Half-transporters and Multidrug Resistant Proteins) potentially play a role in the development of anthelmintic resistance. The aim of this study was to investigate the possible involvement of ABC transporters in anthelmintic resistance in the bovine parasite, Cooperia oncophora. Partial sequences of 15 members of the ABC transporter protein family were identified, by mining a transcriptome dataset combined with a degenerate PCR approach. Reverse transcriptase PCR showed that most of the ABC transporters identified were constitutively transcribed throughout the life cycle of C. oncophora. Constitutive differences in gene transcript levels between a susceptible and resistant isolate were only observed for Con-haf-9 and Con-mrp-1 in eggs of the resistant isolate, while no differences were observed in L3 or the adult life stage. Analysis of resistant adult worms, collected from calves 14 days after treatment with either ivermectin or moxidectin, showed a significant 3- to 5-fold increase in the transcript levels of Con-pgp-11 compared to non-exposed worms. Interestingly, a 4-fold transcriptional up-regulation of Con-pgp-11 was also observed in L3 of the resistant isolate, after in vitro exposure to different concentrations of ivermectin, whereas this effect was not observed in exposed L3 of the susceptible isolate. The results suggest that the worms of this particular resistant isolate have acquired the ability to up-regulateCon-pgp-11 upon exposure to macrocyclic lactones. Further work is needed to understand the genetic basis underpinning this process and the functional role of PGP-11. PMID:23279803

  7. Protein-protein interactions in the cyanobacterial KaiABC circadian clock

    SciTech Connect

    Egli, M.; Pattanayek, R.; Pattanayek, S.

    2008-01-10

    The discovery that the central oscillator of the cyanobacterial KaiABC circadian clock can be reconstituted in vitro by the protein components KaiA, KaiB and KaiC renders this biological timer a unique target for biochemical and structural studies. The oscillator can be monitored through changes in the KaiC phosphorylation status that is modulated by KaiA and KaiB. As the 24-h period of the recombinant clock remains unaltered as a result of modest variation of temperature, interactions between the three Kai proteins not only form the basis for rhythmic control of levels of KaiC phosphorylation but also provide temperature compensation. A profoundmore » understanding of how this biological timer works requires a dissection of the functions of, and interactions between, the three proteins. Three-dimensional structures of the individual Kai proteins have been determined, and the KaiA-KaiC complex has been studied using hybrid structural methods. This chapter provides an overview of progress in the characterization of the cyanobacterial circadian clock with an emphasis on structural aspects of individual Kai proteins and the binary KaiA-KaiC complex.« less

  8. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice.

    PubMed

    Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

  9. Transcriptional expression analysis of ABC efflux transporters and xenobiotic-metabolizing enzymes in the Chinese rare minnow.

    PubMed

    Yuan, Lilai; Lv, Biping; Zha, Jinmiao; Wang, Zijian

    2014-05-01

    In the present study, the cDNA fragments of five ABC transporter genes (ABCB1, ABCB11, ABCC1, ABCC2, and ABCG2) in the rare minnow were cloned, and their tissue-specific expression patterns were evaluated across eight rare minnow tissues (liver, gill, intestine, kidney, spleen, brain, skin, and muscle). Furthermore, the transcriptional effects on these ABC transporter genes and five xenobiotic-metabolizing enzyme genes (CYP1A, GSTm, GSTp1, GCLC, and UGT1a) were determined in the rare minnow liver after 12 days of pyrene exposure. Basal expression analysis showed that the tissues with high expression of the ABC transporters included the liver, kidney, and intestine. Moreover, the most highly expressed of the ABC genes were ABCB1 and ABCC2 in all eight of the tissues tested. The ABCB11 gene was almost exclusively expressed in the liver of the rare minnow, whereas ABCC1 and ABCG2 showed weak expression in all eight tissues compared to ABCB1 and ABCC2. Our results provide the first thorough examination of the expression patterns of toxicologically relevant ABC transporters in the rare minnow and serve as a necessary basis for further studies of these ABC transporters in fish. Furthermore, synergistic up-regulation of CYP1A, GSTp1, GCLC, UGT1a, and ABCC2 was observed in the rare minnow liver following pyrene exposure, while GSTm, ABCB1, ABCB11, ABCC1, and ABCG2 were not significantly affected (p < 0.05). The synergistic up-regulation of the xenobiotic-metabolizing enzymes and ABC transporters by pyrene suggests a possible involvement and cooperation of these genes in the detoxification process in rare minnows. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The ybiT Gene of Erwinia chrysanthemi Codes for a Putative ABC Transporter and Is Involved in Competitiveness against Endophytic Bacteria during Infection

    PubMed Central

    Llama-Palacios, Arancha; López-Solanilla, Emilia; Rodríguez-Palenzuela, Pablo

    2002-01-01

    We investigated the role in bacterial infection of a putative ABC transporter, designated ybiT, of Erwinia chrysanthemi AC4150. The deduced sequence of this gene showed amino acid sequence similarity with other putative ABC transporters of gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa, as well as structural similarity with proteins of Streptomyces spp. involved in resistance to macrolide antibiotics. The gene contiguous to ybiT, designated as pab (putative antibiotic biosynthesis) showed sequence similarity with Pseudomonas and Streptomyces genes involved in the biosynthesis of antibiotics. A ybiT mutant (BT117) was constructed by marker exchange. It retained full virulence in potato tubers and chicory leaves, but it showed reduced ability to compete in planta against the wild-type strain or against selected saprophytic bacteria. These results indicate that the ybiT gene plays a role in the in planta fitness of the bacteria. PMID:11916677

  11. Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis.

    PubMed

    Hirabayashi, Kei; Yuda, Eiki; Tanaka, Naoyuki; Katayama, Sumie; Iwasaki, Kenji; Matsumoto, Takashi; Kurisu, Genji; Outten, F Wayne; Fukuyama, Keiichi; Takahashi, Yasuhiro; Wada, Kei

    2015-12-11

    ATP-binding cassette (ABC)-type ATPases are chemomechanical engines involved in diverse biological pathways. Recent genomic information reveals that ABC ATPase domains/subunits act not only in ABC transporters and structural maintenance of chromosome proteins, but also in iron-sulfur (Fe-S) cluster biogenesis. A novel type of ABC protein, the SufBCD complex, functions in the biosynthesis of nascent Fe-S clusters in almost all Eubacteria and Archaea, as well as eukaryotic chloroplasts. In this study, we determined the first crystal structure of the Escherichia coli SufBCD complex, which exhibits the common architecture of ABC proteins: two ABC ATPase components (SufC) with function-specific components (SufB-SufD protomers). Biochemical and physiological analyses based on this structure provided critical insights into Fe-S cluster assembly and revealed a dynamic conformational change driven by ABC ATPase activity. We propose a molecular mechanism for the biogenesis of the Fe-S cluster in the SufBCD complex. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Molecular characterization of ABC transporters in marine ciliate, Euplotes crassus: Identification and response to cadmium and benzo[a]pyrene.

    PubMed

    Kim, Hokyun; Yim, Bora; Kim, Jisoo; Kim, Haeyeon; Lee, Young-Mi

    2017-11-30

    ATP-binding cassette (ABC) transporters participate in transporting various substances, including xenobiotics, in or out of cells. However, their genetic information and function in ciliates remain still unclear. In this study, we sequenced and characterized two ABC transporter genes (EcABCB and EcABCC), and investigated the effect of cadmium (Cd) and benzo[a]pyrene (B[a]P) on their function and gene expression, using efflux assay and real-time reverse transcription-polymerase chain reaction (qRT-PCR), respectively, in the marine ciliate, Euplotes crassus. Sequencing analysis and efflux assay showed that EcABCB and EcABCC are typical ABC transporters, possessing conserved function. Exposure to Cd (≥5mg/L) and B[a]P (≥50.5μg/L) enhanced accumulation of a substrate. A significant increase in the expression of EcABCB and EcABC mRNA was observed at lower concentration in response to Cd and B[a]P. Our findings indicate that Cd and B[a]P could inhibit the efflux function of ABC transporters, leading to cellular toxicity in the ciliate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Lysimachia foenum-graecum Herba Extract, a Novel Biopesticide, Inhibits ABC Transporter Genes and Mycelial Growth of Magnaporthe oryzae

    PubMed Central

    Lee, Youngjin

    2016-01-01

    To identify a novel biopesticide controlling rice blast disease caused by Magnaporthe oryzae, 700 plant extracts were evaluated for their inhibitory effects on mycelial growth of M. oryzae. The L. foenum-graecum Herba extract showed the lowest inhibition concentration (IC50) of 39.28 μg/ml, which is lower than the IC50 of blasticidin S (63.06 μg/ml), a conventional fungicide for rice blast disease. When treatments were combined, the IC50 of blasticidin S was dramatically reduced to 10.67 μg/ml. Since ABC transporter genes are involved in fungicide resistance of many organisms, we performed RT-PCR to investigate the transcriptional changes of 40 ABC transporter family genes of M. oryzae treated with the plant extract, blasticidin S, and tetrandrine, a recognized ABC transporter inhibitor. Four ABC transporter genes were prominently activated by blasticidin S treatment, but were suppressed by combinational treatment of blasticidin S with the plant extract, or with tetrandrine that didn’t show cellular toxicity by itself in this study. Mycelial death was detected via confocal microscopy at 24 h after plant extract treatment. Finally, subsequent rice field study revealed that the plant extract had high control efficacy of 63.3% and should be considered a biopesticide for rice blast disease. These results showed that extract of L. foenum graecum Herba suppresses M. oryzae ABC transporter genes inducing mycelial death and therefore may be a potent novel biopesticide. PMID:26889110

  14. Lysimachia foenum-graecum Herba Extract, a Novel Biopesticide, Inhibits ABC Transporter Genes and Mycelial Growth of Magnaporthe oryzae.

    PubMed

    Lee, Youngjin

    2016-02-01

    To identify a novel biopesticide controlling rice blast disease caused by Magnaporthe oryzae, 700 plant extracts were evaluated for their inhibitory effects on mycelial growth of M. oryzae. The L. foenum-graecum Herba extract showed the lowest inhibition concentration (IC50) of 39.28 μg/ml, which is lower than the IC50 of blasticidin S (63.06 μg/ml), a conventional fungicide for rice blast disease. When treatments were combined, the IC50 of blasticidin S was dramatically reduced to 10.67 μg/ml. Since ABC transporter genes are involved in fungicide resistance of many organisms, we performed RT-PCR to investigate the transcriptional changes of 40 ABC transporter family genes of M. oryzae treated with the plant extract, blasticidin S, and tetrandrine, a recognized ABC transporter inhibitor. Four ABC transporter genes were prominently activated by blasticidin S treatment, but were suppressed by combinational treatment of blasticidin S with the plant extract, or with tetrandrine that didn't show cellular toxicity by itself in this study. Mycelial death was detected via confocal microscopy at 24 h after plant extract treatment. Finally, subsequent rice field study revealed that the plant extract had high control efficacy of 63.3% and should be considered a biopesticide for rice blast disease. These results showed that extract of L. foenum graecum Herba suppresses M. oryzae ABC transporter genes inducing mycelial death and therefore may be a potent novel biopesticide.

  15. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    DOE PAGES

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; ...

    2014-11-07

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the converved aspartate, whichmore » coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. As a result, our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.« less

  16. Sulfadiazine resistance in Toxoplasma gondii: no involvement of overexpression or polymorphisms in genes of therapeutic targets and ABC transporters

    PubMed Central

    Doliwa, Christelle; Escotte-Binet, Sandie; Aubert, Dominique; Sauvage, Virginie; Velard, Frédéric; Schmid, Aline; Villena, Isabelle

    2013-01-01

    Several treatment failures have been reported for the treatment of toxoplasmic encephalitis, chorioretinitis, and congenital toxoplasmosis. Recently we found three Toxoplasma gondii strains naturally resistant to sulfadiazine and we developed in vitro two sulfadiazine resistant strains, RH-RSDZ and ME-49-RSDZ, by gradual pressure. In Plasmodium, common mechanisms of drug resistance involve, among others, mutations and/or amplification within genes encoding the therapeutic targets dhps and dhfr and/or the ABC transporter genes family. To identify genotypic and/or phenotypic markers of resistance in T. gondii, we sequenced and analyzed the expression levels of therapeutic targets dhps and dhfr, three ABC genes, two Pgp, TgABC.B1 and TgABC.B2, and one MRP, TgABC.C1, on sensitive strains compared to sulfadiazine resistant strains. Neither polymorphism nor overexpression was identified. Contrary to Plasmodium, in which mutations and/or overexpression within gene targets and ABC transporters are involved in antimalarial resistance, T. gondii sulfadiazine resistance is not related to these toxoplasmic genes studied. PMID:23707894

  17. Changes in metabolism affect expression of ABC transporters through ERK5 and depending on p53 status.

    PubMed

    Belkahla, Sana; Haq Khan, Abrar Ul; Gitenay, Delphine; Alexia, Catherine; Gondeau, Claire; Vo, Dang-Nghiem; Orecchioni, Stefania; Talarico, Giovanna; Bertolini, Francesco; Cartron, Guillaume; Hernandez, Javier; Daujat-Chavanieu, Martine; Allende-Vega, Nerea; Gonzalez, Martin Villalba

    2018-01-02

    Changes in metabolism require the efflux and influx of a diverse variety of metabolites. The ABC superfamily of transporters regulates the exchange of hundreds of substrates through the impermeable cell membrane. We show here that a metabolic switch to oxidative phosphorylation (OXPHOS), either by treating cells with dichloroacetate (DCA) or by changing the available substrates, reduced expression of ABCB1, ABCC1, ABCC5 and ABCG2 in wild-type p53-expressing cells. This metabolic change reduced histone changes associated to active promoters. Notably, DCA also inhibited expression of these genes in two animal models in vivo . In contrast, OXPHOS increased the expression of the same transporters in mutated (mut) or null p53-expressing cells. ABC transporters control the export of drugs from cancer cells and render tumors resistant to chemotherapy, playing an important role in multiple drug resistance (MDR). Wtp53 cells forced to perform OXPHOS showed impaired drug clearance. In contrast mutp53 cells increased drug clearance when performing OXPHOS. ABC transporter promoters contain binding sites for the transcription factors MEF2, NRF1 and NRF2 that are targets of the MAPK ERK5. OXPHOS induced expression of the MAPK ERK5. Decreasing ERK5 levels in wtp53 cells increased ABC expression whereas it inhibited expression in mutp53 cells. Our results showed that the ERK5/MEF2 pathway controlled ABC expression depending on p53 status.

  18. Changes in metabolism affect expression of ABC transporters through ERK5 and depending on p53 status

    PubMed Central

    Belkahla, Sana; Haq Khan, Abrar Ul; Gitenay, Delphine; Alexia, Catherine; Gondeau, Claire; Vo, Dang-Nghiem; Orecchioni, Stefania; Talarico, Giovanna; Bertolini, Francesco; Cartron, Guillaume; Hernandez, Javier; Daujat-Chavanieu, Martine; Allende-Vega, Nerea; Gonzalez, Martin Villalba

    2018-01-01

    Changes in metabolism require the efflux and influx of a diverse variety of metabolites. The ABC superfamily of transporters regulates the exchange of hundreds of substrates through the impermeable cell membrane. We show here that a metabolic switch to oxidative phosphorylation (OXPHOS), either by treating cells with dichloroacetate (DCA) or by changing the available substrates, reduced expression of ABCB1, ABCC1, ABCC5 and ABCG2 in wild-type p53-expressing cells. This metabolic change reduced histone changes associated to active promoters. Notably, DCA also inhibited expression of these genes in two animal models in vivo. In contrast, OXPHOS increased the expression of the same transporters in mutated (mut) or null p53-expressing cells. ABC transporters control the export of drugs from cancer cells and render tumors resistant to chemotherapy, playing an important role in multiple drug resistance (MDR). Wtp53 cells forced to perform OXPHOS showed impaired drug clearance. In contrast mutp53 cells increased drug clearance when performing OXPHOS. ABC transporter promoters contain binding sites for the transcription factors MEF2, NRF1 and NRF2 that are targets of the MAPK ERK5. OXPHOS induced expression of the MAPK ERK5. Decreasing ERK5 levels in wtp53 cells increased ABC expression whereas it inhibited expression in mutp53 cells. Our results showed that the ERK5/MEF2 pathway controlled ABC expression depending on p53 status. PMID:29416681

  19. Substrate and method dependent inhibition of three ABC-transporters (MDR1, BCRP, and MRP2).

    PubMed

    Pedersen, Jenny M; Khan, Elin K; Bergström, Christel A S; Palm, Johan; Hoogstraate, Janet; Artursson, Per

    2017-05-30

    Drug transport and drug-drug interactions (DDI) with human ABC transporters are generally investigated in mammalian cell lines or inverted membrane vesicles from insect cells (Sf9) overexpressing the transporter of interest. In this study, we instead used membrane vesicles from human embryonic kidney cells (HEK293) overexpressing wild type MDR1/Pgp (ABCB1), BCRP (ABCG2), and MRP2 (ABCC2) with the aim to study the concentration dependent inhibition of shared and prototypic probe substrates. We first investigated 15 substrates and identified estrone-17-beta-glucorinide (E17G) as shared substrate. Nine specific and general inhibitors were then studied using E17G and prototypic probe substrates. The results were compared with those previously obtained in Sf9 vesicles and cell lines of canine (MDCKII) and human (Saos-2) origin. For the majority of inhibitors, K i values differed <10-fold between E17G and probe substrates. Significant differences in K i values were observed for about one third of the inhibitors. The transport inhibition potencies in HEK293 vesicles were in good agreement with those obtained in Sf9 vesicles. Large differences were found in the inhibition potencies observed in the vesicular systems compared to the cellular systems. Nevertheless, the rank order correlations between the different experimental systems were generally good. Our study provides further information on substrate dependent inhibition of ABC-transporters, and suggests that simple ranking of compounds can be used as a tier one approach to bridge results obtained in different experimental systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Essential letters in the fungal alphabet: ABC and MFS transporters and their roles in survival and pathogenicity.

    PubMed

    Perlin, Michael H; Andrews, Jared; Toh, Su San

    2014-01-01

    Fungi depend heavily on their ability to exploit resources that may become available to them in their myriad of possible lifestyles. Whether this requires simple uptake of sugars as saprobes or competition for host-derived carbohydrates or peptides, fungi must rely on transporters that effectively allow the fungus to accumulate such nutrients from their environments. In other cases, fungi secrete compounds that facilitate their interactions with potential hosts and/or neutralize their competition. Finally, fungi that find themselves on the receiving end of insults, from hosts, competitors, or the overall environment are better served if they can get rid of such toxins or xenobiotics. In this chapter, we update studies on the most ubiquitous transporters, the ABC and MFS superfamilies. In addition, we discuss the importance of subsets of these proteins with particular relevance to plant pathogenic fungi. The availability of ever-increasing numbers of sequenced fungal genomes, combined with high-throughput methods for transcriptome analysis, provides insights previously inaccessible prior to the -omics era. As examples of such broader perspectives, we point to revelations about exploitive use of sugar transporters by plant pathogens, expansion of trichothecene efflux pumps in fungi that do not produce these mycotoxins, and the discovery of a fungal-specific oligopeptide transporter class that, so far, is overrepresented in the plant pathogenic fungi. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. YehZYXW of Escherichia coli Is a Low-Affinity, Non-Osmoregulatory Betaine-Specific ABC Transporter.

    PubMed

    Lang, Shenhui; Cressatti, Marisa; Mendoza, Kris E; Coumoundouros, Chelsea N; Plater, Samantha M; Culham, Doreen E; Kimber, Matthew S; Wood, Janet M

    2015-09-22

    Transporter-mediated osmolyte accumulation stimulates the growth of Escherichia coli in high-osmolality environments. YehZYXW was predicted to be an osmoregulatory transporter because (1) osmotic and stationary phase induction of yehZYXW is mediated by RpoS, (2) the Yeh proteins are homologous to the components of known osmoregulatory ABC transporters (e.g., ProU of E. coli), and (3) YehZ models based on the structures of periplasmic betaine-binding proteins suggested that YehZ retains key betaine-binding residues. The betaines choline-O-sulfate, glycine betaine, and dimethylsulfoniopropionate bound YehZ and ProX with millimolar and micromolar affinities, respectively, as determined by equilibrium dialysis and isothermal titration calorimetry. The crystal structure of the YehZ apoprotein, determined at 1.5 Å resolution (PDB ID: 4WEP ), confirmed its similarity to other betaine-binding proteins. Small and nonpolar residues in the hinge region of YehZ (e.g., Gly223) pack more closely than the corresponding residues in ProX, stabilizing the apoprotein. Betaines bound YehZ-Gly223Ser an order of magnitude more tightly than YehZ, suggesting that weak substrate binding in YehZ is at least partially due to apo state stabilization. Neither ProX nor YehZ bound proline. Assays based on osmoprotection or proline auxotrophy failed to detect YehZYXW-mediated uptake of proline, betaines, or other osmolytes. However, transport assays revealed low-affinity glycine betaine uptake, mediated by YehZYXW, that was inhibited at high salinity. Thus, YehZYXW is a betaine transporter that shares substrate specificity, but not an osmoregulatory function, with homologues like E. coli ProU. Other work suggests that yehZYXW may be an antivirulence locus whose expression promotes persistent, asymptomatic bacterial infection.

  2. Characterization of a novel domain ‘GATE’ in the ABC protein DrrA and its role in drug efflux by the DrrAB complex

    SciTech Connect

    Zhang, Han; Rahman, Sadia; Li, Wen

    2015-03-27

    A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homologmore » MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis. - Highlights: • A novel domain ‘GATE’ is identified in the ABC protein DrrA. • GATE shows high sequence and structural conservation among diverse ABC proteins. • GATE is located outside of the previously studied ATP binding and hydrolysis motifs. • Conserved GATE residues are critical for stability of DrrAB and for ATP catalysis.« less

  3. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio).

    PubMed

    Liu, Xiang; Li, Shangqi; Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A; Xu, Peng

    2016-01-01

    The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp.

  4. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio)

    PubMed Central

    Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A.

    2016-01-01

    The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp. PMID:27058731

  5. ABC Transporter Subfamily D: Distinct Differences in Behavior between ABCD1-3 and ABCD4 in Subcellular Localization, Function, and Human Disease.

    PubMed

    Kawaguchi, Kosuke; Morita, Masashi

    2016-01-01

    ATP-binding cassette (ABC) transporters are one of the largest families of membrane-bound proteins and transport a wide variety of substrates across both extra- and intracellular membranes. They play a critical role in maintaining cellular homeostasis. To date, four ABC transporters belonging to subfamily D have been identified. ABCD1-3 and ABCD4 are localized to peroxisomes and lysosomes, respectively. ABCD1 and ABCD2 are involved in the transport of long and very long chain fatty acids (VLCFA) or their CoA-derivatives into peroxisomes with different substrate specificities, while ABCD3 is involved in the transport of branched chain acyl-CoA into peroxisomes. On the other hand, ABCD4 is deduced to take part in the transport of vitamin B 12 from lysosomes into the cytosol. It is well known that the dysfunction of ABCD1 results in X-linked adrenoleukodystrophy, a severe neurodegenerative disease. Recently, it is reported that ABCD3 and ABCD4 are responsible for hepatosplenomegaly and vitamin B 12 deficiency, respectively. In this review, the targeting mechanism and physiological functions of the ABCD transporters are summarized along with the related disease.

  6. ABC Transporter Subfamily D: Distinct Differences in Behavior between ABCD1–3 and ABCD4 in Subcellular Localization, Function, and Human Disease

    PubMed Central

    2016-01-01

    ATP-binding cassette (ABC) transporters are one of the largest families of membrane-bound proteins and transport a wide variety of substrates across both extra- and intracellular membranes. They play a critical role in maintaining cellular homeostasis. To date, four ABC transporters belonging to subfamily D have been identified. ABCD1–3 and ABCD4 are localized to peroxisomes and lysosomes, respectively. ABCD1 and ABCD2 are involved in the transport of long and very long chain fatty acids (VLCFA) or their CoA-derivatives into peroxisomes with different substrate specificities, while ABCD3 is involved in the transport of branched chain acyl-CoA into peroxisomes. On the other hand, ABCD4 is deduced to take part in the transport of vitamin B12 from lysosomes into the cytosol. It is well known that the dysfunction of ABCD1 results in X-linked adrenoleukodystrophy, a severe neurodegenerative disease. Recently, it is reported that ABCD3 and ABCD4 are responsible for hepatosplenomegaly and vitamin B12 deficiency, respectively. In this review, the targeting mechanism and physiological functions of the ABCD transporters are summarized along with the related disease. PMID:27766264

  7. An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots.

    PubMed

    Dong, Jinsong; Piñeros, Miguel A; Li, Xiaoxuan; Yang, Haibing; Liu, Yu; Murphy, Angus S; Kochian, Leon V; Liu, Dong

    2017-02-13

    The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi deficiency. hps10 is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electrogenic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe 3+ in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe 3+ accumulation in roots and cause root growth to be insensitive to Pi deficiency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  8. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents.

    PubMed

    Beretta, Giovanni Luca; Cassinelli, Giuliana; Pennati, Marzia; Zuco, Valentina; Gatti, Laura

    2017-12-15

    Resistance to conventional and target specific antitumor drugs still remains one of the major cause of treatment failure and patience death. This condition often involves ATP-binding cassette (ABC) transporters that, by pumping the drugs outside from cancer cells, attenuate the potency of chemotherapeutics and negatively impact on the fate of anticancer therapy. In recent years, several tyrosine kinase inhibitors (TKIs) (e.g., imatinib, nilotinib, dasatinib, ponatinib, gefitinib, erlotinib, lapatinib, vandetanib, sunitinib, sorafenib) have been reported to interact with ABC transporters (e.g., ABCB1, ABCC1, ABCG2, ABCC10). This finding disclosed a very complex scenario in which TKIs may behave as substrates or inhibitors depending on the expression of specific pumps, drug concentration, affinity for transporters and types of co-administered agents. In this context, in-depth investigation on TKI chemosensitizing functions might provide a strong rationale for combining TKIs and conventional therapeutics in specific malignancies. The reposition of TKIs as antagonists of ABC transporters opens a new way towards anticancer therapy and clinical strategies aimed at counteracting drug resistance. This review will focus on some paradigmatic examples of the complex and not yet fully elucidated interaction between clinical available TKIs (e.g. BCR-ABL, EGFR, VEGFR inhibitors) with the main ABC transporters implicated in multidrug resistance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Molybdate transporter ModABC is important for Pseudomonas aeruginosa chronic lung infection.

    PubMed

    Périnet, Simone; Jeukens, Julie; Kukavica-Ibrulj, Irena; Ouellet, Myriam M; Charette, Steve J; Levesque, Roger C

    2016-01-12

    Mechanisms underlying the success of Pseudomonas aeruginosa in chronic lung infection among cystic fibrosis (CF) patients are poorly defined. The modA gene was previously linked to in vivo competitiveness of P. aeruginosa by a genetic screening in the rat lung. This gene encodes a subunit of transporter ModABC, which is responsible for extracellular uptake of molybdate. This compound is essential for molybdoenzymes, including nitrate reductases. Since anaerobic growth conditions are known to occur during CF chronic lung infection, inactivation of a molybdate transporter could inhibit proliferation through the inactivation of denitrification enzymes. Hence, we performed phenotypic characterization of a modA mutant strain obtained by signature-tagged mutagenesis (STM_modA) and assessed its virulence in vivo with two host models. The STM_modA mutant was in fact defective for anaerobic growth and unable to use nitrates in the growth medium for anaerobic respiration. Bacterial growth and nitrate usage were restored when the medium was supplemented with molybdate. Most significantly, the mutant strain showed reduced virulence compared to wild-type strain PAO1 according to a competitive index in the rat model of chronic lung infection and a predation assay with Dictyostelium discoideum amoebae. As the latter took place in aerobic conditions, the in vivo impact of the mutation in modA appears to extend beyond its effect on anaerobic growth. These results support the modABC-encoded transporter as important for the pathogenesis of P. aeruginosa, and suggest that enzymatic machinery implicated in anaerobic growth during chronic lung infection in CF merits further investigation as a potential target for therapeutic intervention.

  10. Structural and Functional Basis for Lipid Synergy on the Activity of the Antibacterial Peptide ABC Transporter McjD*

    PubMed Central

    Mehmood, Shahid; Corradi, Valentina; Choudhury, Hassanul G.; Hussain, Rohanah; Becker, Patrick; Axford, Danny; Zirah, Severine; Rebuffat, Sylvie; Tieleman, D. Peter; Robinson, Carol V.; Beis, Konstantinos

    2016-01-01

    The lipid bilayer is a dynamic environment that consists of a mixture of lipids with different properties that regulate the function of membrane proteins; these lipids are either annular, masking the protein hydrophobic surface, or specific lipids, essential for protein function. In this study, using tandem mass spectrometry, we have identified specific lipids associated with the Escherichia coli ABC transporter McjD, which translocates the antibacterial peptide MccJ25. Using non-denaturing mass spectrometry, we show that McjD in complex with MccJ25 survives the gas phase. Partial delipidation of McjD resulted in reduced ATPase activity and thermostability as shown by circular dichroism, both of which could be restored upon addition of defined E. coli lipids. We have resolved a phosphatidylglycerol lipid associated with McjD at 3.4 Å resolution, whereas molecular dynamic simulations carried out in different lipid environments assessed the binding of specific lipids to McjD. Combined, our data show a synergistic effect of zwitterionic and negatively charged lipids on the activity of McjD; the zwitterionic lipids provide structural stability to McjD, whereas the negatively charged lipids are essential for its function. PMID:27555327

  11. Human and Rat ABC Transporter Efflux of Bisphenol A and Bisphenol A Glucuronide: Interspecies Comparison and Implications for Pharmacokinetic Assessment

    EPA Science Inventory

    Significant interspecies differences exist between human and rodent with respect to absorption, distribution, and excretion of bisphenol A (BPA) and its primary metabolite, BPA-glucuronide (BPA-G). ATP-Binding Cassette (ABC) transporter enzymes play important roles in these physi...

  12. An ABC transporter controls export of a Drosophila germ cell attractant.

    PubMed

    Ricardo, Sara; Lehmann, Ruth

    2009-02-13

    Directed cell migration, which is critical for embryonic development, leukocyte trafficking, and cell metastasis, depends on chemoattraction. 3-hydroxy-3-methylglutaryl coenzyme A reductase regulates the production of an attractant for Drosophila germ cells that may itself be geranylated. Chemoattractants are commonly secreted through a classical, signal peptide-dependent pathway, but a geranyl-modified attractant would require an alternative pathway. In budding yeast, pheromones produced by a-cells are farnesylated and secreted in a signal peptide-independent manner, requiring the adenosine triphosphate-binding cassette (ABC) transporter Ste6p. Here we show that Drosophila germ cell migration uses a similar pathway, demonstrating that invertebrate germ cells, like yeast cells, are attracted to lipid-modified peptides. Components of this unconventional export pathway are highly conserved, suggesting that this pathway may control the production of similarly modified chemoattractants in organisms ranging from yeast to humans.

  13. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    PubMed

    Muir, Elizabeth; Raza, Mansoor; Ellis, Clare; Burnside, Emily; Love, Fiona; Heller, Simon; Elliot, Matthew; Daniell, Esther; Dasgupta, Debayan; Alves, Nuno; Day, Priscilla; Fawcett, James; Keynes, Roger

    2017-01-01

    There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for

  14. HOXB4 knockdown enhances the cytotoxic effect of paclitaxel and cisplatin by downregulating ABC transporters in ovarian cancer cells.

    PubMed

    Li, Ying; Sun, Jingli; Gao, Shaofeng; Hu, Heping; Xie, Pengmu

    2018-04-13

    Therapeutic effects of anti-cancer drugs for ovarian cancer were limited due to the rapid development of chemotherapy resistance. The aim of this study was to test whether knockdown of Homeobox B4 (HOXB4) enhanced the cytotoxic effect of paclitaxel and cisplatin in ovarian cancer cells. HOXB4 expressions at mRNA and protein levels were upregulated in Taxol-resistant A2780 (A2780/Taxol) and DDP-resistant SKOV-3 (SKOV-3/DDP) cells. HOXB4 knockdown enhanced the cytotoxic effects of Taxol and DDP in A2780/Taxol and SKOV-3/DDP cells, respectively. HOXB4 silencing suppressed the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and reduced the expression of ABCB1, ABCC1 and ABCG2 in ovarian cancer cells. PI3K inhibitor LY294002 or siRNA targeting Akt (si-Akt) treatment inhibited cell viability, decreased protein levels of ABCB1, ABCC1 and ABCG2, and increased LDH release in A2780/Taxol and SKOV-3/DDP cells. These findings revealed that HOXB4 knockdown enhanced the cytotoxic effects of Taxol and DDP by downregulating ABC transporters via inhibiting the PI3K/Akt pathway in ovarian cancer cells. Copyright © 2017. Published by Elsevier B.V.

  15. The ABC transporter Rv1272c of Mycobacterium tuberculosis enhances the import of long-chain fatty acids in Escherichia coli.

    PubMed

    Martin, Audrey; Daniel, Jaiyanth

    2018-02-05

    Mycobacterium tuberculosis (Mtb), which causes tuberculosis, is capable of accumulating triacylglycerol (TAG) by utilizing fatty acids from host cells. ATP-binding cassette (ABC) transporters are involved in transport processes in all organisms. Among the classical ABC transporters in Mtb none have been implicated in fatty acid import. Since the transport of fatty acids from the host cell is important for dormancy-associated TAG synthesis in the pathogen, mycobacterial ABC transporter(s) could potentially be involved in this process. Based on sequence identities with a bacterial ABC transporter that mediates fatty acid import for TAG synthesis, we identified Rv1272c, a hitherto uncharacterized ABC-transporter in Mtb that also shows sequence identities with a plant ABC transporter involved in fatty acid transport. We expressed Rv1272c in E. coli and show that it enhances the import of radiolabeled fatty acids. We also show that Rv1272c causes a significant increase in the metabolic incorporation of radiolabeled long-chain fatty acids into cardiolipin, a tetra-acylated phospholipid, and phosphatidylglycerol in E. coli. This is the first report on the function of Rv1272c showing that it displays a long-chain fatty acid transport function. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The ABC of Biofilm Drug Tolerance: the MerR-Like Regulator BrlR Is an Activator of ABC Transport Systems, with PA1874-77 Contributing to the Tolerance of Pseudomonas aeruginosa Biofilms to Tobramycin.

    PubMed

    Poudyal, Bandita; Sauer, Karin

    2018-02-01

    A hallmark of biofilms is their tolerance to killing by antimicrobial agents. In Pseudomonas aeruginosa , biofilm drug tolerance requires the c-di-GMP-responsive MerR transcriptional regulator BrlR. However, the mechanism by which BrlR mediates biofilm drug tolerance has not been elucidated. Here, we demonstrate that BrlR activates the expression of at least 7 ABC transport systems, including the PA1874-PA1875-PA1876-PA1877 (PA1874-77) operon, with chromatin immunoprecipitation and DNA binding assays confirming BrlR binding to the promoter region of PA1874-77. Insertional inactivation of the 7 ABC transport systems rendered P. aeruginosa PAO1 biofilms susceptible to tobramycin or norfloxacin. Susceptibility was linked to drug accumulation, with BrlR contributing to norfloxacin accumulation in a manner dependent on multidrug efflux pumps and the PA1874-77 ABC transport system. Inactivation of the respective ABC transport system, furthermore, eliminated the recalcitrance of biofilms to killing by tobramycin but not norfloxacin, indicating that drug accumulation is not linked to biofilm drug tolerance. Our findings indicate for the first time that BrlR, a MerR-type transcriptional activator, activates genes encoding several ABC transport systems, in addition to multiple multidrug efflux pump genes. Moreover, our data confirm a BrlR target contributing to drug tolerance, likely countering the prevailing dogma that biofilm tolerance arises from a multiplicity of factors. Copyright © 2018 American Society for Microbiology.

  17. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea.

    PubMed

    Shabani, Leila; Sabzalian, Mohammad R; Mostafavi pour, Sodabeh

    2016-01-01

    Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.

  18. In Vitro and Ex Vivo Model Systems to Measure ABC Transporter Activity at the Blood-Brain Barrier.

    PubMed

    de Wit, Nienke M; Kooij, Gijs; de Vries, Helga E

    2016-01-01

    With the aging population the occurrence of central nervous system diseases such as cancer, mental disorders and neurodegenerative diseases, is expected to increase and hence, the demand for effective drugs. However, the passage of drugs across the blood-brain barrier represents a major challenge in accomplishing efficient brain delivery of therapeutic agents. This highly efficient barrier is composed of a monolayer of capillary endothelial cells supported by pericytes and astrocytic end-feet, that together effectively shield the brain from the blood. The brain microvascular endothelial cells form a physical and metabolic barrier where paracellular and transcellular transport of molecules in and out of the brain is closely regulated, allowing nutrients to pass but preventing the entry of harmful neurotoxic substances, including drugs. For this purpose brain endothelial cells express efficient efflux pumps, such as ATP binding cassette (ABC) transporters, which limit the delivery of drugs into the brain. To treat the above-mentioned chronic central nervous system disorders, it is crucial to design compounds that can pass the blood-brain barrier and thus the ABC transporters. In order to achieve this, representative models of the blood-brain barrier with predictive validity are necessary. This review discusses the current in vitro and ex vivo model systems that are used to measure ABC transporter activity in order to study potential in vivo efficacy of blood-brain barrier-drug passage.

  19. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules.

    PubMed

    Masereeuw, Rosalinde; Russel, Frans G M

    2012-12-01

    The ATP-binding cassette transport proteins (ABC transporters) represent important determinants of drug excretion. Protective or excretory tissues where these transporters mediate substrate efflux include the kidney proximal tubule. Regulation of the transport proteins in this tissue requires elaborate signaling pathways, including genetic, epigenetic, nuclear receptor mediated, posttranscriptional gene regulation involving microRNAs, and non-genomic (kinases) pathways triggered by hormones and/or growth factors. This review discusses current knowledge on regulatory pathways for ABC transporters in kidney proximal tubules, with a main focus on P-glycoprotein, multidrug resistance proteins 2 and 4, and breast cancer resistance protein. Insight in these processes is of importance because variations in transporter activity due to certain (disease) conditions could lead to significant changes in drug efficacy or toxicity.

  20. Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin.

    PubMed

    Tanaka, Shiho; Endo, Haruka; Adegawa, Satomi; Iizuka, Ami; Imamura, Kazuhiro; Kikuta, Shingo; Sato, Ryoichi

    2017-12-01

    Because Bombyx mori ABC transporter C2 (BmABCC2) has 1000-fold higher potential than B. mori cadherin-like protein as a receptor for Bacillus thuringiensis Cry1Aa toxin (Tanaka et al., 2013), the gate-opening ability of the latent pore under six extracellular loops (ECLs) of BmABCC2 was expected to be the reason for its higher potential (Heckel, 2012). In this study, cell swelling assays in Sf9 cells showed that BmABCC2 mutants lacking substrate-excreting activity retained receptor activity, indicating that the gate-opening activity of BmABCC2 is not responsible for Cry1Aa toxicity. The analysis of 29 BmABCC2 mutants demonstrated that 770 DYWL 773 of ECL 4 comprise a putative binding site to Cry1Aa. This suggests that specific toxicity of Cry1Aa toxin to a restricted range of lepidopteran insects is dependent on conservation and variation in the amino acid residues around 770 DYWL 773 of ECL 4 in the ABCC2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Co-Induction of a Glutathione-S-transferase, a Glutathione Transporter and an ABC Transporter in Maize by Xenobiotics

    PubMed Central

    Liu, Zhiqian; Song, Xiaoyu; Li, Xuefeng; Wang, Chengju

    2012-01-01

    Glutathione conjugation reactions are one of the principal mechanisms that plants utilize to detoxify xenobiotics. The induction by four herbicides (2,4-D, atrazine, metolachlor and primisulfuron) and a herbicide safener (dichlormid) on the expression of three genes, ZmGST27, ZmGT1 and ZmMRP1, encoding respectively a glutathione-S-transferase, a glutathione transporter and an ATP-binding cassette (ABC) transporter was studied in maize. The results demonstrate that the inducing effect on gene expression varies with both chemicals and genes. The expression of ZmGST27 and ZmMRP1 was up-regulated by all five compounds, whereas that of ZmGT1 was increased by atrazine, metolachlor, primisulfuron and dichlormid, but not by 2,4-D. For all chemicals, the inducing effect was first detected on ZmGST27. The finding that ZmGT1 is activated alongside ZmGST27 and ZmMRP1 suggests that glutathione transporters are an important component in the xenobiotic detoxification system of plants. PMID:22792398

  2. Cytological and biochemical analysis of COF1, an Arabidopsis mutant of an ABC transporter gene.

    PubMed

    Ukitsu, Hiroki; Kuromori, Takashi; Toyooka, Kiminori; Goto, Yumi; Matsuoka, Ken; Sakuradani, Eiji; Shimizu, Sakayu; Kamiya, Asako; Imura, Yuko; Yuguchi, Masahiro; Wada, Takuji; Hirayama, Takashi; Shinozaki, Kazuo

    2007-11-01

    In transposon-tagged lines of Arabidopsis we found two new mutants, cof1-1 and cof1-2 (cuticular defect and organ fusion), that show the phenotype of wilting when grown in soil, organ fusion of rosette leaves and infertility. Toluidine blue testing and scanning electron microscopy observation revealed that these mutants had cuticular defects in the stems and adult leaves, but not in cotyledones. Transmission electron microscopy observation revealed thinner cuticle layers in the mutants, and cuticular materials interspersed between the two fused epidermal layers were observed in the mutant rosette leaves. These two mutants had a transposon insertion in the coding regions of WBC11, which was classified as a member of ABC transporter genes in Arabidopsis. WBC11 showed high sequence similarity to CER5 (also called WBC12), which was involved in cuticular lipid export. Gas chromatographic analysis revealed that C29 alkane extracted from the stem surface of cof1 mutants was reduced whereas C29 ketone was accumulated, which was different from the case of cer5 mutants. While cer5 mutants had fairly normal morphology, cof1 mutants had pleiotropic phenotypes so that COF1/WBC11 could have important roles different from those of CER5/WBC12. We also found that C29 alkane was accumulated in the intracellular extract of cof1 mutants, suggesting a function for WBC11 in the direct transport of lipid molecules. Pollen observation showed that mutant pollen grains were irregularly shaped. The function of COF1/WBC11 in lipid transport for the construction of cuticle layers and pollen coats for normal organ formation is discussed.

  3. Mutational analysis of the binding affinity and transport activity for N-acetylglucosamine of the novel ABC transporter Ngc in the chitin-degrader Streptomyces olivaceoviridis.

    PubMed

    Saito, A; Schrempf, H

    2004-06-01

    The highly differentiated bacterium Streptomyces olivaceoviridis efficiently hydrolyses chitin, a highly abundant natural polysaccharide, to low molecular weight products including N-acetylglucosamine (NAG) and N,N' -diacetylchitobiose (chitobiose). NAG is taken up by a PTS (phosphoenolpyruvate-dependent phosphotransferase system) which includes the PtsC2 protein, and via the ABC (ATP-binding cassette) transporter Ngc, which itself includes the substrate-binding protein NgcE. This is at present the only ABC transporter which is known to mediate specific uptake of NAG (K(m) 0.48 microM, V(max) 1.3 nmol/min/mg dry weight) and is competitively inhibited by chitobiose (K(i) 0.68 microM). The latter finding suggests that the Ngc system transports both NAG and chitobiose efficiently. To identify amino acid residues required for the function of NgcE, either the wild-type or one of several mutant forms of the ngcE gene was introduced into the strain S. olivaceoviridis DeltaNgcE/DeltaPtsC1/DeltaPtsC2, which lacks both functional transport systems for NAG, and chromosomal recombinants were selected. Based on the in vivo transport parameters of the recombinants, and the in vitro binding characteristics of the corresponding purified proteins, the following conclusions can be drawn. (1) Replacement of the C-terminally located residue Y396 by A (Y396A) has little effect on ligand-binding or transport parameters. The W395A mutation also induced little change in the substrate affinity in vitro, but it led in vivo to a marked increase (11 fold) in K(m), and enhanced V(max) (by 1.5 fold). (2) The amino acids Y201 and W280 both contribute (51% and 38%) to the ligand-binding capacity of NgcE. They are both very important for the in vivo function of the complete transport apparatus; strains expressing either Y201A or W280A show drastically (100 or 150 times) enhanced K(m) values. (3) The concomitant presence of either Y200 and W280 or Y201 and W280 is essential for the function of Ngc

  4. Rethinking Drug Treatment Approaches in ALS by Targeting ABC Efflux Transporters

    DTIC Science & Technology

    2014-12-01

    driven pharmacoresistance mediated by the multi-drug resistance (mdr) efflux transporter, P-glycoprotein (P-gp). These are proteins that are present at...the blood and spinal cord brain barrier whose function is to protect the brain from xenobiotics including drugs. These proteins actively pump out...cancer-resistant protein (BCRP), which we have shown are selectively upregu- lated at the blood-brain and spinal cord barrier (BBB/BSCB) in ALS mice and

  5. Detergent Screening and Purification of the Human Liver ABC Transporters BSEP (ABCB11) and MDR3 (ABCB4) Expressed in the Yeast Pichia pastoris

    PubMed Central

    Stindt, Jan; Smits, Sander H. J.; Schmitt, Lutz

    2013-01-01

    The human liver ATP-binding cassette (ABC) transporters bile salt export pump (BSEP/ABCB11) and the multidrug resistance protein 3 (MDR3/ABCB4) fulfill the translocation of bile salts and phosphatidylcholine across the apical membrane of hepatocytes. In concert with ABCG5/G8, these two transporters are responsible for the formation of bile and mutations within these transporters can lead to severe hereditary diseases. In this study, we report the heterologous overexpression and purification of human BSEP and MDR3 as well as the expression of the corresponding C-terminal GFP-fusion proteins in the yeast Pichia pastoris. Confocal laser scanning microscopy revealed that BSEP-GFP and MDR3-GFP are localized in the plasma membrane of P. pastoris. Furthermore, we demonstrate the first purification of human BSEP and MDR3 yielding ∼1 mg and ∼6 mg per 100 g of wet cell weight, respectively. By screening over 100 detergents using a dot blot technique, we found that only zwitterionic, lipid-like detergents such as Fos-cholines or Cyclofos were able to extract both transporters in sufficient amounts for subsequent functional analysis. For MDR3, fluorescence-detection size exclusion chromatography (FSEC) screens revealed that increasing the acyl chain length of Fos-Cholines improved monodispersity. BSEP purified in n-dodecyl-β-D-maltoside or Cymal-5 after solubilization with Fos-choline 16 from P. pastoris membranes showed binding to ATP-agarose. Furthermore, detergent-solubilized and purified MDR3 showed a substrate-inducible ATPase activity upon addition of phosphatidylcholine lipids. These results form the basis for further biochemical analysis of human BSEP and MDR3 to elucidate the function of these clinically relevant ABC transporters. PMID:23593265

  6. Polymorphisms in ABC transporter genes and concentrations of mercury in newborns--evidence from two Mediterranean birth cohorts.

    PubMed

    Llop, Sabrina; Engström, Karin; Ballester, Ferran; Franforte, Elisa; Alhamdow, Ayman; Pisa, Federica; Tratnik, Janja Snoj; Mazej, Datja; Murcia, Mario; Rebagliato, Marisa; Bustamante, Mariona; Sunyer, Jordi; Sofianou-Katsoulis, Alphaikaterini; Prasouli, Alexia; Antonopoulou, Eleni; Antoniadou, Ioanna; Nakou, Sheena; Barbone, Fabio; Horvat, Milena; Broberg, Karin

    2014-01-01

    The genetic background may influence methylmercury (MeHg) metabolism and neurotoxicity. ATP binding cassette (ABC) transporters actively transport various xenobiotics across biological membranes. To investigate the role of ABC polymorphisms as modifiers of prenatal exposure to MeHg. The study population consisted of participants (n = 1651) in two birth cohorts, one in Italy and Greece (PHIME) and the other in Spain (INMA). Women were recruited during pregnancy in Italy and Spain, and during the perinatal period in Greece. Total mercury concentrations were measured in cord blood samples by atomic absorption spectrometry. Maternal fish intake during pregnancy was determined from questionnaires. Polymorphisms (n = 5) in the ABC genes ABCA1, ABCB1, ABCC1 and ABCC2 were analysed in both cohorts. ABCB1 rs2032582, ABCC1 rs11075290, and ABCC2 rs2273697 modified the associations between maternal fish intake and cord blood mercury concentrations. The overall interaction coefficient between rs2032582 and log2-transformed fish intake was negative for carriers of GT (β = -0.29, 95%CI -0.47, -0.12) and TT (β = -0.49, 95%CI -0.71, -0.26) versus GG, meaning that for a doubling in fish intake of the mothers, children with the rs2032582 GG genotype accumulated 35% more mercury than children with TT. For rs11075290, the interaction coefficient was negative for carriers of TC (β = -0.12, 95%CI -0.33, 0.09), and TT (β = -0.28, 95%CI -0.51, -0.06) versus CC. For rs2273697, the interaction coefficient was positive when combining GA+AA (β = 0.16, 95%CI 0.01, 0.32) versus GG. The ABC transporters appear to play a role in accumulation of MeHg during early development.

  7. A Mutation within the Extended X Loop Abolished Substrate-induced ATPase Activity of the Human Liver ATP-binding Cassette (ABC) Transporter MDR3*

    PubMed Central

    Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz

    2015-01-01

    The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. PMID:25533467

  8. A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3.

    PubMed

    Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz

    2015-02-20

    The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. The High-Affinity Maltose/Trehalose ABC Transporter in the Extremely Thermophilic Bacterium Thermus thermophilus HB27 Also Recognizes Sucrose and Palatinose

    PubMed Central

    Silva, Zélia; Sampaio, Maria-Manuel; Henne, Anke; Böhm, Alex; Gutzat, Ruben; Boos, Winfried; da Costa, Milton S.; Santos, Helena

    2005-01-01

    We have studied the transport of trehalose and maltose in the thernophilic bacterium Thermus thermophilus HB27, which grows optimally in the range of 70 to 75°C. The Km values at 70°C were 109 nM for trehalose and 114 nM for maltose; also, a high Km (424 nM) was found for the uptake of sucrose. Competition studies showed that a single transporter recognizes trehalose, maltose, and sucrose, while d-galactose, d-fucose, l-rhamnose, l-arabinose, and d-mannose were not competitive inhibitors. In the recently published genome of T. thermophilus HB27, two gene clusters designated malEFG1 (TTC1627 to -1629) and malEFG2 (TTC1288 to -1286) and two monocistronic genes designated malK1 (TTC0211) and malK2 (TTC0611) are annotated as trehalose/maltose and maltose/maltodextrin transport systems, respectively. To find out whether any of these systems is responsible for the transport of trehalose, the malE1 and malE2 genes, lacking the sequence encoding the signal peptides, were expressed in Escherichia coli. The binding activity of pure recombinant proteins was analyzed by equilibrium dialysis. MalE1 was able to bind maltose, trehalose, and sucrose but not glucose or maltotetraose (Kd values of 103, 67, and 401 nM, respectively). Mutants with disruptions in either malF1 or malK1 were unable to grow on maltose, trehalose, sucrose, or palatinose, whereas mutants with disruption in malK2 or malF2 showed no growth defect on any of these sugars. Therefore, malEFG1 encodes the binding protein and the two transmembrane subunits of the trehalose/maltose/sucrose/palatinose ABC transporter, and malK1 encodes the ATP-binding subunit of this transporter. Despite the presence of an efficient transporter for trehalose, this compound was not used by HB27 for osmoprotection. MalE1 and MalE2 exhibited extremely high thermal stability: melting temperatures of 90°C for MalE1 and 105°C for MalE2 in the presence of 2.3 M guanidinium chloride. The latter protein did not bind any of the sugars

  10. The high-affinity maltose/trehalose ABC transporter in the extremely thermophilic bacterium Thermus thermophilus HB27 also recognizes sucrose and palatinose.

    PubMed

    Silva, Zélia; Sampaio, Maria-Manuel; Henne, Anke; Böhm, Alex; Gutzat, Ruben; Boos, Winfried; da Costa, Milton S; Santos, Helena

    2005-02-01

    We have studied the transport of trehalose and maltose in the thernophilic bacterium Thermus thermophilus HB27, which grows optimally in the range of 70 to 75 degrees C. The K(m) values at 70 degrees C were 109 nM for trehalose and 114 nM for maltose; also, a high K(m) (424 nM) was found for the uptake of sucrose. Competition studies showed that a single transporter recognizes trehalose, maltose, and sucrose, while d-galactose, d-fucose, l-rhamnose, l-arabinose, and d-mannose were not competitive inhibitors. In the recently published genome of T. thermophilus HB27, two gene clusters designated malEFG1 (TTC1627 to -1629) and malEFG2 (TTC1288 to -1286) and two monocistronic genes designated malK1 (TTC0211) and malK2 (TTC0611) are annotated as trehalose/maltose and maltose/maltodextrin transport systems, respectively. To find out whether any of these systems is responsible for the transport of trehalose, the malE1 and malE2 genes, lacking the sequence encoding the signal peptides, were expressed in Escherichia coli. The binding activity of pure recombinant proteins was analyzed by equilibrium dialysis. MalE1 was able to bind maltose, trehalose, and sucrose but not glucose or maltotetraose (K(d) values of 103, 67, and 401 nM, respectively). Mutants with disruptions in either malF1 or malK1 were unable to grow on maltose, trehalose, sucrose, or palatinose, whereas mutants with disruption in malK2 or malF2 showed no growth defect on any of these sugars. Therefore, malEFG1 encodes the binding protein and the two transmembrane subunits of the trehalose/maltose/sucrose/palatinose ABC transporter, and malK1 encodes the ATP-binding subunit of this transporter. Despite the presence of an efficient transporter for trehalose, this compound was not used by HB27 for osmoprotection. MalE1 and MalE2 exhibited extremely high thermal stability: melting temperatures of 90 degrees C for MalE1 and 105 degrees C for MalE2 in the presence of 2.3 M guanidinium chloride. The latter protein

  11. A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae

    PubMed Central

    2013-01-01

    Background The ABC (ATP-binding cassette) gene superfamily is widespread across all living species. The majority of ABC genes encode ABC transporters, which are membrane-spanning proteins capable of transferring substrates across biological membranes by hydrolyzing ATP. Although ABC transporters have often been associated with resistance to drugs and toxic compounds, within the Arthropoda ABC gene families have only been characterized in detail in several insects and a crustacean. In this study, we report a genome-wide survey and expression analysis of the ABC gene superfamily in the spider mite, Tetranychus urticae, a chelicerate ~ 450 million years diverged from other Arthropod lineages. T. urticae is a major agricultural pest, and is among of the most polyphagous arthropod herbivores known. The species resists a staggering array of toxic plant secondary metabolites, and has developed resistance to all major classes of pesticides in use for its control. Results We identified 103 ABC genes in the T. urticae genome, the highest number discovered in a metazoan species to date. Within the T. urticae ABC gene set, all members of the eight currently described subfamilies (A to H) were detected. A phylogenetic analysis revealed that the high number of ABC genes in T. urticae is due primarily to lineage-specific expansions of ABC genes within the ABCC, ABCG and ABCH subfamilies. In particular, the ABCC subfamily harbors the highest number of T. urticae ABC genes (39). In a comparative genomic analysis, we found clear orthologous relationships between a subset of T. urticae ABC proteins and ABC proteins in both vertebrates and invertebrates known to be involved in fundamental cellular processes. These included members of the ABCB-half transporters, and the ABCD, ABCE and ABCF families. Furthermore, one-to-one orthologues could be distinguished between T. urticae proteins and human ABCC10, ABCG5 and ABCG8, the Drosophila melanogaster sulfonylurea receptor and ecdysone

  12. Inventory and analysis of ATP-binding cassette (ABC) systems in Brugia malayi.

    PubMed

    Ardelli, B F; Stitt, L E; Tompkins, J B

    2010-07-01

    ABC systems are one of the largest described protein superfamilies. These systems have a domain organization that may contain 1 or more transmembrane domains (ABC_TM1F) and 1 or 2 ATP-binding domains (ABC_2). The functions (e.g., import, export and DNA repair) of these proteins distinguish the 3 classes of ABC systems. Mining and PCR-based cloning were used to identify 33 putative ABC systems from the Brugia malayi genome. There were 31 class 2 genes, commonly called ABC transporters, and 2 class 3 genes. The ABC transporters were divided into subfamilies. Three belonged to subfamily A, 16 to subfamily B, 5 to subfamily C, 1 to subfamily E and 3 to subfamilies F and G, respectively. None were placed in subfamilies D and H. Similar to other ABC systems, the ABC_2 domain of B. malayi genes was conserved and contained the Walker A and B motifs, the signature sequence/linker region and the switch region with the conserved histidine. The ABC_TM1F domain was less conserved. The relative abundance of ABC systems was quantified using real-time reverse transcription PCR and was significantly higher in female adults of B. malayi than in males and microfilaria, particularly those in subfamilies B and C, which are associated with drug resistance.

  13. Effect of the Deletion of qmoABC and the Promoter-Distal Gene Encoding a Hypothetical Protein on Sulfate Reduction in Desulfovibrio vulgaris Hildenborough▿ †

    PubMed Central

    Zane, Grant M.; Yen, Huei-che Bill; Wall, Judy D.

    2010-01-01

    The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved in this process, a deletion in Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo (quinone-interacting membrane-bound oxidoreductase) complex is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5′-phosphosulfate reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable to grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for the DVU0851 protein. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as the terminal electron acceptor. Complementation of the Δ(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking. PMID:20581180

  14. Enantioselective Induction of a Glutathione-S-Transferase, a Glutathione Transporter and an ABC Transporter in Maize by Metolachlor and Its (S)-Isomer

    PubMed Central

    Liu, Zhiqian; Song, Xiaoyu; Duan, Liusheng; Li, Xuefeng; Wang, Chengju

    2012-01-01

    The metabolism of chiral herbicides in plants remains poorly understood. Glutathione conjugation reactions are one of the principal mechanisms that plants utilize to detoxify xenobiotics. The induction by rac- and S-metolachlor of the expression of three genes, ZmGST27, ZmGT1 and ZmMRP1, encoding respectively a glutathione-S-transferase, a glutathione transporter and an ATP-binding cassette (ABC) transporter was studied in maize. The results demonstrate that the inducing effect of rac- and S-metolachlor on the expression of ZmGST27 and ZmGT1 is comparable. However, the inducing effect of rac-metolachlor on ZmMRP1 expression is more pronounced than that of S-metolachlor. Furthermore, vanadate, an ABC transporter inhibitor, could greatly reduce the difference in herbicidal activity between rac- and S-metolachlor. These results suggest that the ABC transporters may preferentially transport conjugates of rac-metolachlor, leading to a faster metabolism of the latter. Through comparing the expression of ZmGST27, ZmMRP1 and ZmGT1 after treatment by rac- and S-metolachlor, we provide novel insights into the metabolic processes of chiral herbicides in plants. PMID:23144728

  15. Transport of Proteins through Nanopores

    NASA Astrophysics Data System (ADS)

    Luan, Binquan

    In biological cells, a malfunctioned protein (such as misfolded or damaged) is degraded by a protease in which an unfoldase actively drags the protein into a nanopore-like structure and then a peptidase cuts the linearized protein into small fragments (i.e. a recycling process). Mimicking this biological process, many experimental studies have focused on the transport of proteins through a biological protein pore or a synthetic solid-state nanopore. Potentially, the nanopore-based sensors can provide a platform for interrogating proteins that might be disease-related or be targeted by a new drug molecule. The single-profile of a protein chain inside an extremely small nanopore might even permit the sequencing of the protein. Here, through all-atom molecular dynamics simulations, I will show various types of protein transport through a nanopore and reveal the nanoscale mechanics/energetics that plays an important role governing the protein transport.

  16. Effect of the deletion of qmoABC and the promoter distal gene encoding a hypothetical protein on sulfate-reduction in Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Zane, Grant M.; Yen, Huei-chi Bill; Wall, Judy D.

    2010-03-18

    The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved in this process, a deletion of Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo complex (quinone-interacting membrane-bound oxidoreductase) is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5?phosphosulfate (APS) reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable tomore » grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for DVU0851. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as terminal electron acceptor. Complementation of the D(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate-reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking.« less

  17. Evolutionary relationships of ATP-Binding Cassette (ABC) uptake porters

    PubMed Central

    2013-01-01

    Background The ATP-Binding Cassette (ABC) functional superfamily includes integral transmembrane exporters that have evolved three times independently, forming three families termed ABC1, ABC2 and ABC3, upon which monophyletic ATPases have been superimposed for energy-coupling purposes [e.g., J Membr Biol 231(1):1-10, 2009]. The goal of the work reported in this communication was to understand how the integral membrane constituents of ABC uptake transporters with different numbers of predicted or established transmembrane segments (TMSs) evolved. In a few cases, high resolution 3-dimensional structures were available, and in these cases, their structures plus primary sequence analyses allowed us to predict evolutionary pathways of origin. Results All of the 35 currently recognized families of ABC uptake proteins except for one (family 21) were shown to be homologous using quantitative statistical methods. These methods involved using established programs that compare native protein sequences with each other, after having compared each sequence with thousands of its own shuffled sequences, to gain evidence for homology. Topological analyses suggested that these porters contain numbers of TMSs ranging from four or five to twenty. Intragenic duplication events occurred multiple times during the evolution of these porters. They originated from a simple primordial protein containing 3 TMSs which duplicated to 6 TMSs, and then produced porters of the various topologies via insertions, deletions and further duplications. Except for family 21 which proved to be related to ABC1 exporters, they are all related to members of the previously identified ABC2 exporter family. Duplications that occurred in addition to the primordial 3 → 6 duplication included 5 → 10, 6 → 12 and 10 → 20 TMSs. In one case, protein topologies were uncertain as different programs gave discrepant predictions. It could not be concluded with certainty whether a 4 TMS ancestral

  18. Evolutionary relationships of ATP-Binding Cassette (ABC) uptake porters.

    PubMed

    Zheng, Wei Hao; Västermark, Åke; Shlykov, Maksim A; Reddy, Vamsee; Sun, Eric I; Saier, Milton H

    2013-05-06

    The ATP-Binding Cassette (ABC) functional superfamily includes integral transmembrane exporters that have evolved three times independently, forming three families termed ABC1, ABC2 and ABC3, upon which monophyletic ATPases have been superimposed for energy-coupling purposes [e.g., J Membr Biol 231(1):1-10, 2009]. The goal of the work reported in this communication was to understand how the integral membrane constituents of ABC uptake transporters with different numbers of predicted or established transmembrane segments (TMSs) evolved. In a few cases, high resolution 3-dimensional structures were available, and in these cases, their structures plus primary sequence analyses allowed us to predict evolutionary pathways of origin. All of the 35 currently recognized families of ABC uptake proteins except for one (family 21) were shown to be homologous using quantitative statistical methods. These methods involved using established programs that compare native protein sequences with each other, after having compared each sequence with thousands of its own shuffled sequences, to gain evidence for homology. Topological analyses suggested that these porters contain numbers of TMSs ranging from four or five to twenty. Intragenic duplication events occurred multiple times during the evolution of these porters. They originated from a simple primordial protein containing 3 TMSs which duplicated to 6 TMSs, and then produced porters of the various topologies via insertions, deletions and further duplications. Except for family 21 which proved to be related to ABC1 exporters, they are all related to members of the previously identified ABC2 exporter family. Duplications that occurred in addition to the primordial 3 → 6 duplication included 5 → 10, 6 → 12 and 10 → 20 TMSs. In one case, protein topologies were uncertain as different programs gave discrepant predictions. It could not be concluded with certainty whether a 4 TMS ancestral protein or a 5 TMS ancestral protein

  19. Iowa ABC connections.

    DOT National Transportation Integrated Search

    2015-06-01

    For several years the Iowa Department of Transportation (DOT), Iowa State University, the Federal Highway Administration, : and several Iowa counties have been working to develop accelerated bridge construction (ABC) concepts, details, and processes....

  20. Protein Intake and Mobility Limitation in Community-Dwelling Older Adults: the Health ABC Study.

    PubMed

    Houston, Denise K; Tooze, Janet A; Garcia, Katelyn; Visser, Marjolein; Rubin, Susan; Harris, Tamara B; Newman, Anne B; Kritchevsky, Stephen B

    2017-08-01

    The current Recommended Dietary Allowance (RDA) for protein is based on short-term nitrogen balance studies in young adults and may underestimate the amount needed to optimally preserve physical function in older adults. We examined the association between protein intake and the onset of mobility limitation over 6 years of follow-up in older adults in the Health ABC study. Prospective cohort study. Memphis, Tennessee and Pittsburgh, Pennsylvania. Community-dwelling, initially well-functioning adults aged 70-79 years (n = 1998). Protein intake (g/kg body weight/d) was calculated using an interviewer-administered 108-item food frequency questionnaire at baseline. Mobility limitation was assessed semi-annually and defined as reporting any difficulty walking one-quarter of a mile or climbing 10 steps on 2 consecutive 6-month contacts. The association between protein intake and incident mobility limitation was examined using Cox proportional hazard regression models adjusting for demographics, behavioral characteristics, chronic conditions, total energy intake, and height. Mean (SD) protein intake was 0.91 (0.38) g/kg body weight/d, with 43% reporting intakes less than the RDA (0.8 g/kg body weight/d). During 6 years of follow-up, 705 participants (35.3%) developed mobility limitations. Compared to participants in the upper tertile of protein intake (≥1.0 g/kg body weight/d), participants in the lower two tertiles of protein intake (<0.7 and 0.7 -<1.0 g/kg body weight/d) were at greater risk of developing mobility limitation over 6 years of follow-up (RR (95% CI): 1.86 (1.41-2.44) and 1.49 (1.20-1.84), respectively). Lower protein intake was associated with increased risk of mobility limitation in community-dwelling, initially well-functioning older adults. These results suggest that protein intakes of ≥1.0 g/kg body weight/d may be optimal for maintaining physical function in older adults. © 2017, Copyright the Authors Journal compilation © 2017, The American

  1. Membrane transporter proteins: a challenge for CNS drug development.

    PubMed

    Girardin, François

    2006-01-01

    Drug transporters are membrane proteins present in various tissues such as the lymphocytes, intestine, liver, kidney, testis, placenta, and central nervous system. These transporters play a significant role in drug absorption and distribution to organic systems, particularly if the organs are protected by blood-organ barriers, such as the blood-brain barrier or the maternal-fetal barrier. In contrast to neurotransmitters and receptor-coupled transporters or other modes of interneuronal transmission, drug transporters are not directly involved in specific neuronal functions, but provide global protection to the central nervous system. The lack of capillary fenestration, the low pinocytic activity and the tight junctions between brain capillary and choroid plexus endothelial cells represent further gatekeepers limiting the entrance of endogenous and exogenous compounds into the central nervous system. Drug transport is a result of the concerted action of efflux and influx pumps (transporters) located both in the basolateral and apical membranes of brain capillary and choroid plexus endothelial cells. By regulating efflux and influx of endogenous or exogenous substances, the blood-brain barrier and, to a lesser extent the blood-cerebrospinal barrier in the ventricles, represents the main interface between the central nervous system and the blood, i.e., the rest of the body. As drug distribution to organs is dependent on the affinity of a substrate for a specific transport system, membrane transporter proteins are increasingly recognized as a key determinant of drug disposition. Many drug transporters are members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter superfamily or the solute-linked carrier (SLC) class. The multidrug resistance protein MDR1 (ABCB1), also called P-glycoprotein, the multidrug resistance-associated proteins MRP1 (ABCC1) and MRP2 (ABCC2), and the breast cancer-resistance protein BCRP (ABCG2) are ATP-dependent efflux

  2. The TatBC complex of the Tat protein translocase in Escherichia coli and its transition to the substrate-bound TatABC complex.

    PubMed

    Behrendt, Jana; Brüser, Thomas

    2014-04-15

    The twin-arginine translocation (Tat) system serves to transport folded proteins across membranes of prokaryotes and plant plastids. In Escherichia coli, a complex consisting of multiple copies of TatB and TatC initiates the transport by binding the signal peptides of the Tat substrates. Using blue-native polyacrylamide gel electrophoresis, bands of TatBC-containing complexes can be detected at molecular masses of 440 and 580 kDa. We systematically analyzed the formation of Tat complexes with TatB or TatC variants that carried point mutations at selected positions. Several mutations resulted in specific disassembly patterns and alterations in the 440 kDa:580 kDa complex ratios. The 440 kDa complex contains only TatBC, whereas the 580 kDa complex consists of TatABC. Substrate binding results in a TatBC-Tat substrate complex at ~500 kDa and a TatABC-Tat substrate complex at ~600 kDa. Only the ~600 kDa complex was detected with nonrecombinant substrate levels and thus could be the physiologically most relevant species. The results suggest that some TatA is usually associated with TatBC, regardless of substrate binding.

  3. Expression of ABC Efflux transporters in placenta from women with insulin-managed diabetes.

    PubMed

    Anger, Gregory J; Cressman, Alex M; Piquette-Miller, Micheline

    2012-01-01

    Drug efflux transporters in the placenta can significantly influence the materno-fetal transfer of a diverse array of drugs and other xenobiotics. To determine if clinically important drug efflux transporter expression is altered in pregnancies complicated by gestational diabetes mellitus (GDM-I) or type 1 diabetes mellitus (T1DM-I), we compared the expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2) and the breast cancer resistance protein (BCRP) via western blotting and quantitative real-time polymerase chain reaction in samples obtained from insulin-managed diabetic pregnancies to healthy term-matched controls. At the level of mRNA, we found significantly increased expression of MDR1 in the GDM-I group compared to both the T1DM-I (p<0.01) and control groups (p<0.05). Significant changes in the placental protein expression of MDR1, MRP2, and BCRP were not detected (p>0.05). Interestingly, there was a significant, positive correlation observed between plasma hemoglobin A1c levels (a retrospective marker of glycemic control) and both BCRP protein expression (r = 0.45, p<0.05) and BCRP mRNA expression (r = 0.58, p<0.01) in the insulin-managed DM groups. Collectively, the data suggest that the expression of placental efflux transporters is not altered in pregnancies complicated by diabetes when hyperglycemia is managed; however, given the relationship between BCRP expression and plasma hemoglobin A1c levels it is plausible that their expression could change in poorly managed diabetes.

  4. Combined phylogeny and neighborhood analysis of the evolution of the ABC transporters conferring multiple drug resistance in hemiascomycete yeasts

    PubMed Central

    Seret, Marie-Line; Diffels, Julie F; Goffeau, André; Baret, Philippe V

    2009-01-01

    Background Pleiotropic Drug Resistant transporters (PDR) are members of the ATP-Binding Cassette (ABC) subfamily which export antifungals and other xenobiotics in fungi and plants. This subfamily of transmembrane transporters has nine known members in Saccharomyces cerevisiae. We have analyzed the complex evolution of the pleiotropic drug resistance proteins (Pdrp) subfamily where gene duplications and deletions occur independently in individual genomes. This study was carried out on 62 Pdrp from nine hemiascomycetous species, seven of which span 6 of the 14 clades of the Saccharomyces complex while the two others species, Debaryomyces hansenii and Yarrowia lipolytica, are further apart from an evolutive point of view. Results Combined phylogenetic and neighborhood analyses enabled us to identify five Pdrp clusters in the Saccharomyces complex. Three of them comprise orthologs of the Pdrp sensu stricto, Pdr5p, Pdr10p, Pdr12p, Pdr15p, Snq2p and YNR070wp. The evolutive pathway of the orthologs of Snq2 and YNR070w is particularly complex due to a tandem gene array in Eremothecium gossypii, Kluyveromyces lactis and Saccharomyces (Lachancea) kluyveri. This pathway and different cases of duplications and deletions were clarified by using a neighborhood analysis based on synteny. For the two distant species, Yarrowia lipolytica and Debaryomyces hansenii, no neighborhood evidence is available for these clusters and many homologs of Pdr5 and Pdr15 are phylogenetically assigned to species-based clusters. Two other clusters comprise the orthologs of the sensu lato Pdrp, Aus1p/Pdr11p and YOL075cp respectively. The evolutionary pathway of these clusters is simpler. Nevertheless, orthologs of these genes are missing in some species. Conclusion Numerous duplications were traced among the Hemiascomycetous Pdrp studied. The role of the Whole Genome Duplication (WGD) is sorted out and our analyses confirm the common ancestrality of Pdr5p and Pdr15p. A tandem gene array is observed

  5. Combined phylogeny and neighborhood analysis of the evolution of the ABC transporters conferring multiple drug resistance in hemiascomycete yeasts.

    PubMed

    Seret, Marie-Line; Diffels, Julie F; Goffeau, André; Baret, Philippe V

    2009-10-01

    Pleiotropic Drug Resistant transporters (PDR) are members of the ATP-Binding Cassette (ABC) subfamily which export antifungals and other xenobiotics in fungi and plants. This subfamily of transmembrane transporters has nine known members in Saccharomyces cerevisiae. We have analyzed the complex evolution of the pleiotropic drug resistance proteins (Pdrp) subfamily where gene duplications and deletions occur independently in individual genomes. This study was carried out on 62 Pdrp from nine hemiascomycetous species, seven of which span 6 of the 14 clades of the Saccharomyces complex while the two others species, Debaryomyces hansenii and Yarrowia lipolytica, are further apart from an evolutive point of view. Combined phylogenetic and neighborhood analyses enabled us to identify five Pdrp clusters in the Saccharomyces complex. Three of them comprise orthologs of the Pdrp sensu stricto, Pdr5p, Pdr10p, Pdr12p, Pdr15p, Snq2p and YNR070wp. The evolutive pathway of the orthologs of Snq2 and YNR070w is particularly complex due to a tandem gene array in Eremothecium gossypii, Kluyveromyces lactis and Saccharomyces (Lachancea) kluyveri. This pathway and different cases of duplications and deletions were clarified by using a neighborhood analysis based on synteny. For the two distant species, Yarrowia lipolytica and Debaryomyces hansenii, no neighborhood evidence is available for these clusters and many homologs of Pdr5 and Pdr15 are phylogenetically assigned to species-based clusters. Two other clusters comprise the orthologs of the sensu lato Pdrp, Aus1p/Pdr11p and YOL075cp respectively. The evolutionary pathway of these clusters is simpler. Nevertheless, orthologs of these genes are missing in some species. Numerous duplications were traced among the Hemiascomycetous Pdrp studied. The role of the Whole Genome Duplication (WGD) is sorted out and our analyses confirm the common ancestrality of Pdr5p and Pdr15p. A tandem gene array is observed in Eremothecium gossypii. One

  6. Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria

    SciTech Connect

    Herrou, Julien; Willett, Jonathan W.; Czyż, Daniel M.

    2016-12-19

    ABSTRACT Brucella abortusσ E1is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon,bab1_0223-bab1_0226, is among the most highly activated gene sets in the σ E1regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription ofyehZYXWis activated by the general stress sigma factor σ SinEnterobacteriaceae, which suggests a functional role for this transport systemmore » in bacterial stress response across the classesAlphaproteobacteriaandGammaproteobacteria. We present evidence thatB. abortusYehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σ E1-null strain. The solein vitrophenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li +ion concentrations. A crystal structure ofB. abortusYehZ revealed a class II periplasmic binding protein fold with significant structural homology toArchaeoglobus fulgidusProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers. IMPORTANCEBrucella abortusσ E1regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of

  7. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana.

    PubMed

    Stefanato, Francesca L; Abou-Mansour, Eliane; Buchala, Antony; Kretschmer, Matthias; Mosbach, Andreas; Hahn, Matthias; Bochet, Christian G; Métraux, Jean-Pierre; Schoonbeek, Henk-jan

    2009-05-01

    Arabidopsis thaliana is known to produce the phytoalexin camalexin in response to abiotic and biotic stress. Here we studied the mechanisms of tolerance to camalexin in the fungus Botrytis cinerea, a necrotrophic pathogen of A. thaliana. Exposure of B. cinerea to camalexin induces expression of BcatrB, an ABC transporter that functions in the efflux of fungitoxic compounds. B. cinerea inoculated on wild-type A. thaliana plants yields smaller lesions than on camalexin-deficient A. thaliana mutants. A B. cinerea strain lacking functional BcatrB is more sensitive to camalexin in vitro and less virulent on wild-type plants, but is still fully virulent on camalexin-deficient mutants. Pre-treatment of A. thaliana with UV-C leads to increased camalexin accumulation and substantial resistance to B. cinerea. UV-C-induced resistance was not seen in the camalexin-deficient mutants cyp79B2/B3, cyp71A13, pad3 or pad2, and was strongly reduced in ups1. Here we demonstrate that an ABC transporter is a virulence factor that increases tolerance of the pathogen towards a phytoalexin, and the complete restoration of virulence on host plants lacking this phytoalexin.

  8. Alkylrhodamines enhance the toxicity of clotrimazole and benzalkonium chloride by interfering with yeast pleiotropic ABC-transporters.

    PubMed

    Knorre, Dmitry A; Besedina, Elizaveta; Karavaeva, Iuliia E; Smirnova, Ekaterina A; Markova, Olga V; Severin, Fedor F

    2016-06-01

    ABC-transporters with broad substrate specificity are responsible for pathogenic yeast resistance to antifungal compounds. Here we asked whether highly hydrophobic chemicals with delocalized positive charge can be used to overcome the resistance. Such molecules efficiently penetrate the plasma membrane and accumulate inside the cells. We reasoned that these properties can convert an active efflux of the compounds into a futile cycle thus interfering with the extrusion of the antibiotics. To test this, we studied the effects of several alkylated rhodamines on the drug resistance of yeast Saccharomyces cerevisiae We found that octylrhodamine synergetically increases toxicity of Pdr5p substrate-clotrimazole, while the others were less effective. Next, we compared the contributions of three major pleiotropic ABC-transporters (Pdr5p, Yor1p, Snq2p) on the accumulation of the alkylated rhodamines. While all of the tested compounds were extruded by Pdr5p, Yor1p and Snq2p showed narrower substrate specificity. Interestingly, among the tested alkylated rhodamines, inactivation of Pdr5p had the strongest effect on the accumulation of octylrhodamine inside the cells, which is consistent with the fact that clotrimazole is a substrate of Pdr5p. As alkylated rhodamines were shown to be non-toxic on mice, our study makes them potential components of pharmacological antifungal compositions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Impaired mitochondrial energy production and ABC transporter function-A crucial interconnection in dementing proteopathies of the brain.

    PubMed

    Pahnke, Jens; Fröhlich, Christina; Krohn, Markus; Schumacher, Toni; Paarmann, Kristin

    2013-10-01

    Ageing is the main risk factor for the development of dementing neurodegenerative diseases (NDs) and it is accompanied by the accumulation of variations in mitochondrial DNA. The resulting tissue-specific alterations in ATP production and availability cause deteriorations of cerebral clearance mechanisms that are important for the removal of toxic peptides and its aggregates. ABC transporters were shown to be the most important exporter superfamily for toxic peptides, e.g. β-amyloid and α-synuclein. Their activity is highly dependent on the availability of ATP and forms a directed energy-exporter network, linking decreased mitochondrial function with highly impaired ABC transporter activity and disease progression. In this paper, we describe a network based on interactions between ageing, energy metabolism, regeneration, accumulation of toxic peptides and the development of proteopathies of the brain with a focus on Alzheimer's disease (AD). Additionally, we provide new experimental evidence for interactions within this network in regenerative processes in AD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Assays for Analyzing the Role of Transport Proteins in the Uptake and the Vectorial Transport of Substances Affecting Cell Viability.

    PubMed

    Taghikhani, Emir; Fromm, Martin F; König, Jörg

    2017-01-01

    Endogenous compounds, drugs, or other xenobiotics may affect cell viability. A prerequisite for intracellular cell damage is the uptake of such substances across the plasma membrane into cells. Furthermore, the subsequent transporter-mediated export out of cells may influence cell viability. Therefore, transport proteins mediating the uptake (uptake transporter) or export (export pumps) of substances in and out of cells are important determinants of cell viability. Uptake transporters mostly belong to the superfamily of solute carriers (SLC transporters), whereas export pumps are members of the ABC-transporter superfamily (ATP-binding cassette). Cell systems recombinantly overexpressing uptake transporters (single transfectants) or multiple-transfected cell models expressing simultaneously an uptake transporter together with an export pump (double transfectants) are important in vitro tools for analyzing protein-mediated transport of potentially cell toxic compounds.Here we describe different in vitro transport assays for the functional analysis of transport proteins. Using single-transfected HEK293 cells stably overexpressing an uptake transporter, substances can be tested as potential substrates (uptake assay) or potential transport inhibitors (inhibition assay) for the respective transport protein. Vectorial transport of substances with the uptake across the basolateral plasma membrane and the export across the apical membrane of polarized grown MDCKII cells can be analyzed using double-transfected cell models with the simultaneous overexpression of an uptake transport and an export pump in vectorial transport assays, thereby mimicking physiological transport processes, e.g., in liver or kidney.

  11. Investigating the dynamic nature of the ABC transporters: ABCB1 and MsbA as examples for the potential synergies of MD theory and EPR applications.

    PubMed

    Stockner, Thomas; Mullen, Anna; MacMillan, Fraser

    2015-10-01

    ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented. © 2015 Authors; published by Portland Press Limited.

  12. Inositol transport proteins.

    PubMed

    Schneider, Sabine

    2015-04-28

    The cyclic polyol myo-inositol is a key molecule in many different metabolic pathways among all organisms; in addition, it is fundamental for osmotic balance in the mammalian brain. This review sums up inositol transporters from eukaryotic organisms, elucidating their vital role in regulating the intracellular distribution and uptake of inositol. They can be divided into two groups according to their transport mechanisms: (1) sodium ion coupled inositol transporters that belong to the Solute Carrier Families 5 and 6-like Superfamily and, (2) proton coupled inositol symporters that are members of the Major Facilitator Superfamily. Intriguingly members of both families offer promising targets for medical treatment of a variety of diseases. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  14. Stubborn Contaminants: Influence of Detergents on the Purity of the Multidrug ABC Transporter BmrA

    PubMed Central

    Chaptal, Vincent; Reyes-Mejia, Gina Catalina; Sarwan, Jonathan; Falson, Pierre; Jault, Jean-Michel

    2014-01-01

    Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12) but not with Lauryldimethylamine-N-oxide (LDAO) or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli. PMID:25517996

  15. Stubborn contaminants: influence of detergents on the purity of the multidrug ABC transporter BmrA.

    PubMed

    Wiseman, Benjamin; Kilburg, Arnaud; Chaptal, Vincent; Reyes-Mejia, Gina Catalina; Sarwan, Jonathan; Falson, Pierre; Jault, Jean-Michel

    2014-01-01

    Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12) but not with Lauryldimethylamine-N-oxide (LDAO) or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli.

  16. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis

    PubMed Central

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S.; Bilalis, Dimitrios

    2016-01-01

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha−1) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532

  17. Genome-wide comparative analysis of ABC systems in the Bdellovibrio-and-like organisms

    PubMed Central

    Li, Nan; Chen, Huan; Williams, Henry N.

    2015-01-01

    Bdellovibrio -and-like organisms (BALOs) are gram-negative, predatory bacteria with wide variations in genome sizes and GC content and ecological habitats. The ATP-binding cassette (ABC) systems have been identified in several prokaryotes, fungi and plants and have a role in transport of materials in and out of cells and in cellular processes. However, knowledge of the ABC systems of BALOs remains obscure. A total of 269 putative ABC proteins were identified in BALOs. The genes encoding these ABC systems occupy nearly 1.3% of the gene content in freshwater Bdellovibrio strains and about 0.7% in their saltwater counterparts. The proteins found belong to 25 ABC system families based on their structural characteristics and functions. Among these, 16 families function as importers, 6 as exporters and 3 are involved in various cellular processes. Eight of these 25 ABC system families were deduced to be the core set of ABC systems conserved in all BALOs. All Bacteriovorax strains have 28 or less ABC systems. On the contrary, the freshwater Bdellovibrio strains have more ABC systems, typically around 51. In the genome of Bdellovibrio exovorus JSS (CP003537.1), 53 putative ABC systems were detected, representing the highest number among all the BALO genomes examined in this study. Unexpected high numbers of ABC systems involved in cellular processes were found in all BALOs. Phylogenetic analysis suggests that the majority of ABC proteins can be assigned into many separate families with high bootstrap supports (>50%). In this study, a general framework of sequence–structure–function connections for the ABC systems in BALOs was revealed providing novel insights for future investigations. PMID:25707746

  18. Genome-wide comparative analysis of ABC systems in the Bdellovibrio-and-like organisms.

    PubMed

    Li, Nan; Chen, Huan; Williams, Henry N

    2015-05-10

    Bdellovibrio-and-like organisms (BALOs) are gram-negative, predatory bacteria with wide variations in genome sizes and GC content and ecological habitats. The ATP-binding cassette (ABC) systems have been identified in several prokaryotes, fungi and plants and have a role in transport of materials in and out of cells and in cellular processes. However, knowledge of the ABC systems of BALOs remains obscure. A total of 269 putative ABC proteins were identified in BALOs. The genes encoding these ABC systems occupy nearly 1.3% of the gene content in freshwater Bdellovibrio strains and about 0.7% in their saltwater counterparts. The proteins found belong to 25 ABC system families based on their structural characteristics and functions. Among these, 16 families function as importers, 6 as exporters and 3 are involved in various cellular processes. Eight of these 25 ABC system families were deduced to be the core set of ABC systems conserved in all BALOs. All Bacteriovorax strains have 28 or less ABC systems. On the contrary, the freshwater Bdellovibrio strains have more ABC systems, typically around 51. In the genome of Bdellovibrio exovorus JSS (CP003537.1), 53 putative ABC systems were detected, representing the highest number among all the BALO genomes examined in this study. Unexpected high numbers of ABC systems involved in cellular processes were found in all BALOs. Phylogenetic analysis suggests that the majority of ABC proteins can be assigned into many separate families with high bootstrap supports (>50%). In this study, a general framework of sequence-structure-function connections for the ABC systems in BALOs was revealed providing novel insights for future investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Iowa ABC connections : [tech transfer summary].

    DOT National Transportation Integrated Search

    2015-06-01

    The Iowa Department of Transportation (DOT) and other organizations have : been developing accelerated bridge construction (ABC) concepts, details, and : processes, and Iowa has come to be viewed as a national leader in the area of : ABC. However, th...

  20. Construction of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette (ABC) transporters and analysis of their growth under stress conditions

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes is a foodborne pathogen that is difficult to eliminate since it can survive under multiple stress conditions such as low pH and low temperature. Understanding its survival under stress conditions is important to control this pathogen in food. ABC transporters have been shown...

  1. The expression of superoxide dismutase (SOD) and a putative ABC transporter permease is inversely correlated during biofilm formation in Listeria monocytogenes 4b G

    USDA-ARS?s Scientific Manuscript database

    Little is known about the molecular basis of biofilm formation in Listeria monocytogenes. The superoxide dismutase (SOD) of the deletion mutant of lm.G_1771 gene, which encodes for a putative ABC_transporter permease, is highly expressed in biofilm. In this study, the sod gene deletion mutant delta ...

  2. ABC drug transporter at the blood-brain barrier: effects on drug metabolism and drug response.

    PubMed

    Ebinger, Martin; Uhr, Manfred

    2006-08-01

    At the blood-brain barrier (BBB) many cellular and dynamic mechanisms influence the cerebral drug metabolism and the drug response. In this review, we focus mainly on the role P-glycoprotein (P-gp) plays at the BBB. This protein is a 170-kDa ATP-dependent drug transport protein, located in the apical membrane of endothelial cells. Utilizing ATP hydrolysis as an energy source, it exports molecules which attempt to pass through the cell membrane from the outside to the inside, protecting cells from toxins and a wide range of substances. We briefly summarize some of the currently available in vivo and in vitro methods to investigate P-gp and its substrates. Hitherto, no chemical characteristic has been discovered that clearly distinguishes substrates from non-substrates of P-gp. We discuss some examples of substrates stressing the diversity of drugs and endogenous substances that relate to P-gp either as a substrate, an inhibitor, an inducer or as a combination of the above. Finally, we discuss genetic polymorphisms of the genes encoding for P-gp and their effects on drug response.

  3. Relative Rates of Amino Acid Import via the ABC Transporter GlnPQ Determine the Growth Performance of Lactococcus lactis

    PubMed Central

    Fulyani, Faizah; Schuurman-Wolters, Gea K.; Slotboom, Dirk-Jan

    2015-01-01

    ABSTRACT The GlnPQ transporter from Lactococcus lactis has the remarkable feature of having two substrate-binding domains (SBDs) fused to the N terminus of the transmembrane domain (TMD), and thus four SBDs are present in the homodimeric complex. Although X-ray structures and ligand binding data are available for both SBDs, little is known of how different amino acids compete with each other for transport via GlnPQ. Here we show GlnPQ has a broader substrate specificity than previously thought, with the ability to take up asparagine, glutamine, and glutamic acid, albeit via different routes and with different affinities. Asparagine and glutamine compete with each other at the level of binding to SBD1 and SBD2 (with differences in dissociation constant), but at the same time SBD1 and SBD2 compete with each other at the level of interaction with the translocator domain (with differences in affinity constant and rate of transport). Although glutamine transport via SBD1 is outcompeted by physiological concentrations of asparagine, SBD2 ensures high rates of import of the essential amino acid glutamine. Taken together, this study demonstrates that even in the presence of competing asparagine concentrations, GlnPQ has a high capacity to transport glutamine, which matches the high needs of the cell for glutamine and glutamate. IMPORTANCE GlnPQ is an ATP-binding cassette (ABC) transporter for glutamine, glutamic acid, and asparagine. The system is essential in various Gram-positive bacteria, including L. lactis and several pathogens. Here we show how the amino acids compete with each other for binding to the multiple SBDs of GlnPQ and how these SBDs compete with each other for substrate delivery to the transporter. Overall, our results show that GlnPQ has evolved to transport diverse substrates via different paths and to optimally acquire the abundant and essential amino acid glutamine. PMID:26553850

  4. Validation of inhibitors of an ABC transporter required to transport lipopolysaccharide to the cell surface in Escherichia coli

    PubMed Central

    Sherman, David J.; Okuda, Suguru; Denny, William A.; Kahne, Daniel

    2013-01-01

    The presence of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) of Gram-negative bacteria creates a permeability barrier that prevents the entry of most currently available antibiotics. The seven lipopolysaccharide transport (Lpt) proteins involved in transporting and assembling this glycolipid are essential for growth and division in Escherichia coli; therefore, inhibiting their functions leads to cell death. LptB, the ATPase that provides energy for LPS transport and assembly, forms a complex with three other inner membrane (IM) components, LptC, F, and G. We demonstrate that inhibitors of pure LptB can also inhibit the full IM complex, LptBFGC, purified in detergent. We also compare inhibition of LptB and the LptBFGC complex with the antibiotic activity of these compounds. Our long-term goal is to develop tools to study inhibitors of LPS biogenesis that could serve as potentiators by disrupting the OM permeability barrier, facilitating entry of clinically used antibiotics not normally used to treat Gram-negative infections, or that can serve as antibiotics themselves. PMID:23665139

  5. Backbone NMR resonance assignments of the nucleotide binding domain of the ABC multidrug transporter LmrA from Lactococcus lactis in its ADP-bound state.

    PubMed

    Hellmich, Ute A; Duchardt-Ferner, Elke; Glaubitz, Clemens; Wöhnert, Jens

    2012-04-01

    LmrA from Lactococcus lactis is a multidrug transporter and a member of the ATP binding cassette (ABC) transporter family. ABC transporters consist of a transmembrane domain (TMD) and a nucleotide binding domain (NBD). The NBD contains the highly conserved signature motifs of this transporter superfamily. In the case of LmrA, the TMD and the NBD are expressed as a single polypeptide. LmrA catalyzes the extrusion of hydrophobic compounds including antibiotics from the cell membrane at the expense of ATP hydrolysis. ATP binds to the NBD, where binding and hydrolysis induce conformational changes that lead to the extrusion of the substrate via the TMD. Here, we report the (1)H, (13)C and (15)N backbone chemical shift assignments of the isolated 263 amino acid containing NBD of LmrA in its ADP bound state.

  6. SUT1-promoted sterol uptake involves the ABC transporter Aus1 and the mannoprotein Dan1 whose synergistic action is sufficient for this process

    PubMed Central

    2004-01-01

    Efficient sterol influx in the yeast Saccharomyces cerevisiae is restricted to anaerobiosis or to haem deficiency resulting from mutations. Constitutive expression of SUT1, an hypoxic gene encoding a transcriptional regulator, induces sterol uptake in aerobiosis. A genome-wide approach using DNA microarray was used to identify the mediators of SUT1 effects on aerobic sterol uptake. A total of 121 ORFs (open reading frames) were significantly and differentially expressed after SUT1 overexpression, 61 down-regulated and 60 up-regulated. Among these genes, the role of the putative ABC transporter (ATP-binding-cassette transporter) Aus1, and of the cell-wall mannoprotein Dan1, was characterized better. These two genes play an essential role in aerobic sterol uptake, since their deletion compromised the SUT1 effects, but individual overexpression of either of these genes in a wild-type background was not sufficient for this process. However, constitutive co-expression of AUS1 and DAN1 in a wild-type background resulted in sterol influx in aerobiosis. These results suggest that the corresponding proteins may act synergistically in vivo to promote sterol uptake. PMID:15035656

  7. Mutational Analysis of Cvab, an ABC Transporter Involved in the Secretion of Active Colicin V

    PubMed Central

    Tai, Phang C.

    2012-01-01

    CvaB is the central membrane transporter of the colicin V secretion system that belongs to an ATP-binding cassette superfamily. Previous data showed that the N-terminal and C-terminal domains of CvaB are essential for the function of CvaB. N-terminal domain of CvaB possesses Ca2+-dependent cysteine proteolytic activity, and two critical residues, Cys32 and His105, have been identified. In this study, we also identify Asp121 as being the third residue of the putative catalytic triad within the active site of the enzyme. The Asp121 mutants lose both their colicin V secretion activity and N-terminal proteolytic activity. The adjacent residue Pro122 also appears to play a critical role in the colicin V secretion. However, the reversal of the two residues D121P - P122D results in loss of activity. Based on molecular modeling and protein sequence alignment, several residues adjacent to the critical residues, Cys32 and His105, were also examined and characterized. Site-directed mutagenesis of Trp101, Asp102, Val108, Leu76, Gly77, and Gln26 indicate that the neighboring residues around the catalytic triad affect colicin V secretion. Several mutated CvaB proteins with defective secretion were also tested, including Asp121 and Pro122, and were found to be structurally stable. These results indicate that the residues surrounding the identified catalytic triad are functionally involved in the secretion of biologically active colicin V. PMID:22539970

  8. A Survey of the ATP-Binding Cassette (ABC) Gene Superfamily in the Salmon Louse (Lepeophtheirus salmonis).

    PubMed

    Carmona-Antoñanzas, Greta; Carmichael, Stephen N; Heumann, Jan; Taggart, John B; Gharbi, Karim; Bron, James E; Bekaert, Michaël; Sturm, Armin

    2015-01-01

    Salmon lice, Lepeophtheirus salmonis (Krøyer, 1837), are fish ectoparasites causing significant economic damage in the mariculture of Atlantic salmon, Salmo salar Linnaeus, 1758. The control of L. salmonis at fish farms relies to a large extent on treatment with anti-parasitic drugs. A problem related to chemical control is the potential for development of resistance, which in L. salmonis is documented for a number of drug classes including organophosphates, pyrethroids and avermectins. The ATP-binding cassette (ABC) gene superfamily is found in all biota and includes a range of drug efflux transporters that can confer drug resistance to cancers and pathogens. Furthermore, some ABC transporters are recognised to be involved in conferral of insecticide resistance. While a number of studies have investigated ABC transporters in L. salmonis, no systematic analysis of the ABC gene family exists for this species. This study presents a genome-wide survey of ABC genes in L. salmonis for which, ABC superfamily members were identified through homology searching of the L. salmonis genome. In addition, ABC proteins were identified in a reference transcriptome of the parasite generated by high-throughput RNA sequencing (RNA-seq) of a multi-stage RNA library. Searches of both genome and transcriptome allowed the identification of a total of 33 genes / transcripts coding for ABC proteins, of which 3 were represented only in the genome and 4 only in the transcriptome. Eighteen sequences were assigned to ABC subfamilies known to contain drug transporters, i.e. subfamilies B (4 sequences), C (11) and G (2). The results suggest that the ABC gene family of L. salmonis possesses fewer members than recorded for other arthropods. The present survey of the L. salmonis ABC gene superfamily will provide the basis for further research into potential roles of ABC transporters in the toxicity of salmon delousing agents and as potential mechanisms of drug resistance.

  9. A Survey of the ATP-Binding Cassette (ABC) Gene Superfamily in the Salmon Louse (Lepeophtheirus salmonis)

    PubMed Central

    Heumann, Jan; Taggart, John B.; Gharbi, Karim; Bron, James E.; Bekaert, Michaël; Sturm, Armin

    2015-01-01

    Salmon lice, Lepeophtheirus salmonis (Krøyer, 1837), are fish ectoparasites causing significant economic damage in the mariculture of Atlantic salmon, Salmo salar Linnaeus, 1758. The control of L. salmonis at fish farms relies to a large extent on treatment with anti-parasitic drugs. A problem related to chemical control is the potential for development of resistance, which in L. salmonis is documented for a number of drug classes including organophosphates, pyrethroids and avermectins. The ATP-binding cassette (ABC) gene superfamily is found in all biota and includes a range of drug efflux transporters that can confer drug resistance to cancers and pathogens. Furthermore, some ABC transporters are recognised to be involved in conferral of insecticide resistance. While a number of studies have investigated ABC transporters in L. salmonis, no systematic analysis of the ABC gene family exists for this species. This study presents a genome-wide survey of ABC genes in L. salmonis for which, ABC superfamily members were identified through homology searching of the L. salmonis genome. In addition, ABC proteins were identified in a reference transcriptome of the parasite generated by high-throughput RNA sequencing (RNA-seq) of a multi-stage RNA library. Searches of both genome and transcriptome allowed the identification of a total of 33 genes / transcripts coding for ABC proteins, of which 3 were represented only in the genome and 4 only in the transcriptome. Eighteen sequences were assigned to ABC subfamilies known to contain drug transporters, i.e. subfamilies B (4 sequences), C (11) and G (2). The results suggest that the ABC gene family of L. salmonis possesses fewer members than recorded for other arthropods. The present survey of the L. salmonis ABC gene superfamily will provide the basis for further research into potential roles of ABC transporters in the toxicity of salmon delousing agents and as potential mechanisms of drug resistance. PMID:26418738

  10. myo-Inositol and d-Ribose Ligand Discrimination in an ABC Periplasmic Binding Protein

    PubMed Central

    Herrou, Julien

    2013-01-01

    The periplasmic binding protein (PBP) IbpA mediates the uptake of myo-inositol by the IatP-IatA ATP-binding cassette transmembrane transporter. We report a crystal structure of Caulobacter crescentus IbpA bound to myo-inositol at 1.45 Å resolution. This constitutes the first structure of a PBP bound to inositol. IbpA adopts a type I PBP fold consisting of two α-β lobes that surround a central hinge. A pocket positioned between the lobes contains the myo-inositol ligand, which binds with submicromolar affinity (0.76 ± 0.08 μM). IbpA is homologous to ribose-binding proteins and binds d-ribose with low affinity (50.8 ± 3.4 μM). On the basis of IbpA and ribose-binding protein structures, we have designed variants of IbpA with inverted binding specificity for myo-inositol and d-ribose. Five mutations in the ligand-binding pocket are sufficient to increase the affinity of IbpA for d-ribose by 10-fold while completely abolishing binding to myo-inositol. Replacement of ibpA with these mutant alleles unable to bind myo-inositol abolishes C. crescentus growth in medium containing myo-inositol as the sole carbon source. Neither deletion of ibpA nor replacement of ibpA with the high-affinity ribose binding allele affected C. crescentus growth on d-ribose as a carbon source, providing evidence that the IatP-IatA transporter is specific for myo-inositol. This study outlines the evolutionary relationship between ribose- and inositol-binding proteins and provides insight into the molecular basis upon which these two related, but functionally distinct, classes of periplasmic proteins specifically bind carbohydrate ligands. PMID:23504019

  11. Evaluation of the in vitro expression of ATP binding-cassette (ABC) proteins in an Ixodes ricinus cell line exposed to ivermectin.

    PubMed

    Mangia, Carlo; Vismarra, Alice; Kramer, Laura; Bell-Sakyi, Lesley; Porretta, Daniele; Otranto, Domenico; Epis, Sara; Grandi, Giulio

    2016-04-18

    Ticks are among the most important vectors of pathogens causing human and animal disease. Acaricides are used to control tick infestation, although there are increasing reports of resistance. Recently, over-expression of ATP-binding cassette (ABC) transporter proteins (P-glycoproteins, PgP) has been implicated in resistance to the acaricide ivermectin in the ticks Rhipicephalus (Boophilus) microplus and Rhipicephalus sanguineus sensu lato. Ixodid tick cell lines have been used to investigate drug resistance mechanisms. The aim of the present study was to evaluate expression of several PgPs in the Ixodes ricinus-derived cell line IRE/CTVM19 and to determine modulation of expression following treatment with ivermectin. IRE/CTVM19 cells were treated with different concentrations of ivermectin (0, 11, 22 or 33 μM) and incubated for 10 days. Evaluation of viability and relative expression of ABCB1, ABCB6, ABCB8 and ABCB10 genes were carried out at day 10 post treatment. Cell viability ranged between 84% and 92% with no significant differences between untreated and treated cells. qRT-PCR showed that ABC pump expression was not significantly modulated by ivermectin treatment. Expression of the ABCB8 PgP subfamily revealed a biphasic trend, based on the ivermectin concentration. ABCB6 and ABCB10 gene expression was not modulated by ivermectin treatment and ABCB1 expression was not detected. This is the first report of PgP expression in an I. ricinus-derived tick cell line. Development of an in vitro model for the study of acaricide resistance mechanisms would greatly facilitate screening for drug resistance in ticks.

  12. Detoxification of Multiple Heavy Metals by a Half-Molecule ABC Transporter, HMT-1, and Coelomocytes of Caenorhabditis elegans

    PubMed Central

    Schwartz, Marc S.; Benci, Joseph L.; Selote, Devarshi S.; Sharma, Anuj K.; Chen, Andy G. Y.; Dang, Hope; Fares, Hanna; Vatamaniuk, Olena K.

    2010-01-01

    Background Developing methods for protecting organisms in metal-polluted environments is contingent upon our understanding of cellular detoxification mechanisms. In this regard, half-molecule ATP-binding cassette (ABC) transporters of the HMT-1 subfamily are required for cadmium (Cd) detoxification. HMTs have conserved structural architecture that distinguishes them from other ABC transporters and allows the identification of homologs in genomes of different species including humans. We recently discovered that HMT-1 from the simple, unicellular organism, Schizosaccharomyces pombe, SpHMT1, acts independently of phytochelatin synthase (PCS) and detoxifies Cd, but not other heavy metals. Whether HMTs from multicellular organisms confer tolerance only to Cd or also to other heavy metals is not known. Methodology/Principal Findings Using molecular genetics approaches and functional in vivo assays we showed that HMT-1 from a multicellular organism, Caenorhabditis elegans, functions distinctly from its S. pombe counterpart in that in addition to Cd it confers tolerance to arsenic (As) and copper (Cu) while acting independently of pcs-1. Further investigation of hmt-1 and pcs-1 revealed that these genes are expressed in different cell types, supporting the notion that hmt-1 and pcs-1 operate in distinct detoxification pathways. Interestingly, pcs-1 and hmt-1 are co-expressed in highly endocytic C. elegans cells with unknown function, the coelomocytes. By analyzing heavy metal and oxidative stress sensitivities of the coelomocyte-deficient C. elegans strain we discovered that coelomocytes are essential mainly for detoxification of heavy metals, but not of oxidative stress, a by-product of heavy metal toxicity. Conclusions/Significance We established that HMT-1 from the multicellular organism confers tolerance to multiple heavy metals and is expressed in liver-like cells, the coelomocytes, as well as head neurons and intestinal cells, which are cell types that are affected

  13. The role of peroxisomal ABC transporters in the mouse adrenal gland: the loss of Abcd2 (ALDR), Not Abcd1 (ALD), causes oxidative damage.

    PubMed

    Lu, Jyh-Feng; Barron-Casella, Emily; Deering, Rebecca; Heinzer, Ann K; Moser, Ann B; deMesy Bentley, Karen L; Wand, Gary S; C McGuinness, Martina; Pei, Zhengtong; Watkins, Paul A; Pujol, Aurora; Smith, Kirby D; Powers, James M

    2007-03-01

    X-linked adreno-leukodystrophy is a progressive, systemic peroxisomal disorder that primarily affects the adrenal cortex, as well as myelin and axons of the central nervous system. Marked phenotypic heterogeneity does not correlate with disease-causing mutations in ABCD1, which encodes a peroxisomal membrane protein that is a member of the ABC transmembrane transporter proteins. The precise physiological functions of ABCD1 and ABCD2, a closely related peroxisomal membrane half-transporter, are unknown. The abcd1 knockout mouse does not develop the inflammatory demyelination so typical and devastating in adreno-leukodystrophy, but it does display the same lamellae and lipid profiles in adrenocortical cells under the electron microscope as the human patients. The adrenocortical cells in the mouse also exhibit immunohistochemical evidence of oxidative stress at 12 weeks but no evidence of oxidative damage. To better understand the pathogenesis of this complex disease, we evaluate the adrenal lesion of the abcd1 knockout mouse as a function of normal aging, dietary or therapeutic manipulations, and abcd genotype. The loss of abcd2 causes oxidative stress in the adrenal at 12 weeks, as judged by increased immunoreactivity for the mitochondrial manganese superoxide dismutase, in both the inner cortex and medulla. The loss of abcd2 (n=20), but not abcd1 (n=27), results in the spontaneous and premature deposition of ceroid, a known end-product of oxidative damage, predominantly in adrenal medullary cells. These data indicate that the loss of abcd2 results in greater oxidative stress in murine adrenal cells than the loss of abcd1, providing a clue to its cellular function. We also find that the adrenocortical lesion of the abcd1 knockout mouse does not produce functional impairment at ten to nineteen months or overt hypocortisolism at any age, nor does it progress histologically; these and other data align this mouse model closer to human female heterozygotes than to male

  14. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  15. Characterization of a lactose-responsive promoter of ATP-binding cassette (ABC) transporter gene from Lactobacillus acidophilus 05-172.

    PubMed

    Zeng, Zhu; Zuo, Fanglei; Yu, Rui; Zhang, Bo; Ma, Huiqin; Chen, Shangwu

    2017-09-01

    A novel lactose-responsive promoter of the ATP-binding cassette (ABC) transporter gene Lba1680 of Lactobacillus acidophilus strain 05-172 isolated from a traditionally fermented dairy product koumiss was characterized. In L. acidophilus 05-172, expression of Lba1680 was induced by lactose, with lactose-induced transcription of Lba1680 being 6.1-fold higher than that induced by glucose. This is in contrast to L. acidophilus NCFM, a strain isolated from human feces, in which expression of Lba1680 and Lba1679 is induced by glucose. Both gene expression and enzyme activity assays in L. paracasei transformed with a vector containing the inducible Lba1680 promoter (PLba1680) of strain 05-172 and a heme-dependent catalase gene as reporter confirmed that PLba1680 is specifically induced by lactose. Its regulatory expression could not be repressed by glucose, and was independent of cAMP receptor protein. This lactose-responsive promoter might be used in the expression of functional genes in L. paracasei incorporated into a lactose-rich environment, such as dairy products. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The ABCs of membrane transporters in health and disease (SLC series): Introduction☆☆☆

    PubMed Central

    Hediger, Matthias A.; Clémençon, Benjamin; Burrier, Robert E.; Bruford, Elspeth A.

    2013-01-01

    The field of transport biology has steadily grown over the past decade and is now recognized as playing an important role in manifestation and treatment of disease. The SLC (solute carrier) gene series has grown to now include 52 families and 395 transporter genes in the human genome. A list of these genes can be found at the HUGO Gene Nomenclature Committee (HGNC) website (see www.genenames.org/genefamilies/SLC). This special issue features mini-reviews for each of these SLC families written by the experts in each field. The existing online resource for solute carriers, the Bioparadigms SLC Tables (www.bioparadigms.org), has been updated and significantly extended with additional information and cross-links to other relevant databases, and the nomenclature used in this database has been validated and approved by the HGNC. In addition, the Bioparadigms SLC Tables functionality has been improved to allow easier access by the scientific community. This introduction includes: an overview of all known SLC and “non-SLC” transporter genes; a list of transporters of water soluble vitamins; a summary of recent progress in the structure determination of transporters (including GLUT1/SLC2A1); roles of transporters in human diseases and roles in drug approval and pharmaceutical perspectives. PMID:23506860

  17. An ABC-Type Cobalt Transport System Is Essential for Growth of Sinorhizobium melilotiat Trace Metal Concentrations ▿ †

    PubMed Central

    Cheng, Jiujun; Poduska, Branislava; Morton, Richard A.; Finan, Turlough M.

    2011-01-01

    We report expression and mutant phenotypes for a gene cluster in Sinorhizobium meliloti, designated cbtJKL, that has been shown to encode an ABC-type cobalt transport system. Transcription of cbtJKLinitiated 384 nucleotides upstream from the cbtJtranslation start codon, and the resulting 5′ region contained a putative B12riboswitch. Expression of the cbtJKLgenes appeared to be controlled by (cobalt-loaded) cobalamin interacting at the B12riboswitch, since (i) a putative B12riboswitch was located within this large upstream region, (ii) cbtJtranscription was repressed upon addition of cobalt or vitamin B12, and (iii) deletions in the B12riboswitch resulted in constitutive cbtJKLtranscription. Insertion mutants in cbtJKLfailed to grow in LB medium, and growth was restored through the addition of cobalt but not other metals. This growth phenotype appeared to be due to the chelation of cobalt present in LB, and cbtJKLmutants also failed to grow in minimal medium containing the chelating agent EDTA unless the medium was supplemented with additional or excess cobalt. In uptake experiments, 57Co2+accumulation was high in wild-type cells expressing the cbtJKLgenes, whereas wild-type cells in which cbtJKLexpression was repressed showed reduced accumulation. In cbtJKLmutant cells, 57Co2+accumulation was reduced relative to that of the wild type, and presumably, this residual cobalt transport occurred via an alternate ion uptake system(s) that is not specific to cobalt. In symbiosis, the alternate system(s) appeared to mediate cobalt transport into bacteroid cells, as low cbtJKLexpression was detected in bacteroids and cbtJKLmutants formed N2-fixing nodules on alfalfa. PMID:21725018

  18. The ABC transporter BmrA from Bacillus subtilis is a functional dimer when in a detergent-solubilized state

    PubMed Central

    Ravaud, Stéphanie; Do Cao, Marie-Ange; Jidenko, Marie; Ebel, Christine; Le Maire, Marc; Jault, Jean-Michel; Di Pietro, Attilio; Haser, Richard; Aghajari, Nushin

    2006-01-01

    BmrA from Bacillus subtilis is a half-size ABC (ATP-binding cassette) transporter involved in multidrug resistance. Although its supramolecular organization has been investigated after reconstitution in a lipid bilayer environment, and shows a dimeric and possibly a tetrameric form, the precise quaternary structure in a detergent-solubilized state has never been addressed. In the present study, BmrA was purified from Escherichia coli membranes using an optimized purification protocol and different detergents. Furthermore, the ATPase activity of BmrA and the quantity of bound lipids and detergent were determined, and the oligomeric state was analysed using SEC (size-exclusion chromatography) and analytical ultracentrifugation. The activity and the quaternary structure of BmrA appeared to be strongly influenced by the type and concentration of the detergent used. SEC data showed that BmrA could be purified in a functional form in 0.05 and 0.01% DDM (n-dodecyl-β-D-maltoside) and was homogeneous and monodisperse with an Rs (Stokes radius) of 5.6 nm that is compatible with a dimer structure. Sedimentation-velocity and equilibrium experiments unequivocally supported that BmrA purified in DDM is a dimer and excluded the presence of other oligomeric states. These observations, which are discussed in relation to results obtained in proteoliposomes, also constitute an important first step towards crystallographic studies of BmrA structure. PMID:16405427

  19. Efflux in the Oral Metagenome: The Discovery of a Novel Tetracycline and Tigecycline ABC Transporter

    PubMed Central

    Reynolds, Liam J.; Roberts, Adam P.; Anjum, Muna F.

    2016-01-01

    Antibiotic resistance in human bacterial pathogens and commensals is threatening our ability to treat infections and conduct common medical procedures. As novel antibiotics are discovered and marketed it is important that we understand how resistance to them may arise and know what environments may act as reservoirs for such resistance genes. In this study a tetracycline and tigecycline resistant clone was identified by screening a human saliva metagenomic library in Escherichia coli EPI300 on agar containing 5 μg/ml tetracycline. Sequencing of the DNA insert present within the tetracycline resistant clone revealed it to contain a 7,765 bp fragment harboring novel ABC half transporter genes, tetAB(60). Mutagenesis studies performed on these genes confirmed that they were responsible for the tetracycline and tigecycline resistance phenotypes. Growth studies performed using E. coli EPI300 clones that harbored either the wild type, the mutated, or none of these genes indicated that there was a fitness cost associated with presence of these genes, with the isolate harboring both genes exhibiting a significantly slower growth than control strains. Given the emergence of E. coli strains that are sensitive only to tigecycline and doxycycline it is concerning that such a resistance mechanism has been identified in the human oral cavity. PMID:27999567

  20. Efflux in the Oral Metagenome: The Discovery of a Novel Tetracycline and Tigecycline ABC Transporter.

    PubMed

    Reynolds, Liam J; Roberts, Adam P; Anjum, Muna F

    2016-01-01

    Antibiotic resistance in human bacterial pathogens and commensals is threatening our ability to treat infections and conduct common medical procedures. As novel antibiotics are discovered and marketed it is important that we understand how resistance to them may arise and know what environments may act as reservoirs for such resistance genes. In this study a tetracycline and tigecycline resistant clone was identified by screening a human saliva metagenomic library in Escherichia coli EPI300 on agar containing 5 μg/ml tetracycline. Sequencing of the DNA insert present within the tetracycline resistant clone revealed it to contain a 7,765 bp fragment harboring novel ABC half transporter genes, tet AB(60). Mutagenesis studies performed on these genes confirmed that they were responsible for the tetracycline and tigecycline resistance phenotypes. Growth studies performed using E. coli EPI300 clones that harbored either the wild type, the mutated, or none of these genes indicated that there was a fitness cost associated with presence of these genes, with the isolate harboring both genes exhibiting a significantly slower growth than control strains. Given the emergence of E. coli strains that are sensitive only to tigecycline and doxycycline it is concerning that such a resistance mechanism has been identified in the human oral cavity.

  1. Curcumin inhibits the activity of ABCG2/BCRP1, a multidrug resistance-linked ABC drug transporter in mice

    PubMed Central

    Shukla, Suneet; Zaher, Hani; Hartz, Anika; Bauer, Björn; Ware, Joseph A.; Ambudkar, Suresh V.

    2009-01-01

    Purpose To evaluate the in vivo efficacy of curcumin as an inhibitor of the multidrug-resistance-linked ATP Binding Cassette (ABC) drug transporter, ABCG2. Methods Photoaffinity labeling with [125I]-iodoarylazidoprazosin was used to characterize the interaction of sulfasalazine, a substrate of the mouse ABCG2, with human ABCG2. In addition, the inhibitory effect of curcumin on ABCG2 was evaluated in brain capillaries from rats. Furthermore, the effect of curcumin on absorption of orally administered sulfasalazine in wild-type and abcg2-/- mice was also determined. Results Sulfasalazine interacted at the drug-substrate site(s) of human ABCG2. Curcumin inhibited ABCG2 activity at nanomolar concentrations at the rat blood-brain barrier in the ex vivo assay. Based on studies in wild type and abcg2-/- mice, we observed that oral curcumin increased Cmax and relative bioavailability of sulfasalazine by selectively inhibiting ABCG2 function. Conclusions This study validates our previous in vitro results with human ABCG2 (Mol. Cancer Ther. 2006; 5:1995-2006) and provides the first in vivo evidence for the inhibition by curcumin of ABCG2-mediated efflux of sulfasalazine in mice. Based on these studies, we propose that non-toxic concentrations of curcumin may be used to enhance drug exposure when the rate-limiting step of drug absorption and/or tissue distribution is impacted by ABCG2. PMID:18841445

  2. Transporter taxonomy - a comparison of different transport protein classification schemes.

    PubMed

    Viereck, Michael; Gaulton, Anna; Digles, Daniela; Ecker, Gerhard F

    2014-06-01

    Currently, there are more than 800 well characterized human membrane transport proteins (including channels and transporters) and there are estimates that about 10% (approx. 2000) of all human genes are related to transport. Membrane transport proteins are of interest as potential drug targets, for drug delivery, and as a cause of side effects and drug–drug interactions. In light of the development of Open PHACTS, which provides an open pharmacological space, we analyzed selected membrane transport protein classification schemes (Transporter Classification Database, ChEMBL, IUPHAR/BPS Guide to Pharmacology, and Gene Ontology) for their ability to serve as a basis for pharmacology driven protein classification. A comparison of these membrane transport protein classification schemes by using a set of clinically relevant transporters as use-case reveals the strengths and weaknesses of the different taxonomy approaches.

  3. ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3-O-Glucosides[W][OA

    PubMed Central

    Francisco, Rita Maria; Regalado, Ana; Ageorges, Agnès; Burla, Bo J.; Bassin, Barbara; Eisenach, Cornelia; Zarrouk, Olfa; Vialet, Sandrine; Marlin, Thérèse; Chaves, Maria Manuela; Martinoia, Enrico; Nagy, Réka

    2013-01-01

    Accumulation of anthocyanins in the exocarp of red grapevine (Vitis vinifera) cultivars is one of several events that characterize the onset of grape berry ripening (véraison). Despite our thorough understanding of anthocyanin biosynthesis and regulation, little is known about the molecular aspects of their transport. The participation of ATP binding cassette (ABC) proteins in vacuolar anthocyanin transport has long been a matter of debate. Here, we present biochemical evidence that an ABC protein, ABCC1, localizes to the tonoplast and is involved in the transport of glucosylated anthocyanidins. ABCC1 is expressed in the exocarp throughout berry development and ripening, with a significant increase at véraison (i.e., the onset of ripening). Transport experiments using microsomes isolated from ABCC1-expressing yeast cells showed that ABCC1 transports malvidin 3-O-glucoside. The transport strictly depends on the presence of GSH, which is cotransported with the anthocyanins and is sensitive to inhibitors of ABC proteins. By exposing anthocyanin-producing grapevine root cultures to buthionine sulphoximine, which reduced GSH levels, a decrease in anthocyanin concentration is observed. In conclusion, we provide evidence that ABCC1 acts as an anthocyanin transporter that depends on GSH without the formation of an anthocyanin-GSH conjugate. PMID:23723325

  4. Drosophila ABC Transporter DmHMT-1 Confers Tolerance to Cadmium.

    USDA-ARS?s Scientific Manuscript database

    Half molecule ATP-binding cassette transporters of the HMT1(heavy metal tolerance factor 1)subfamily are required for Cd2+ tolerance in Schizosaccharomyces pombe, Caenorhabditis elegans and Chlamydomonas reinhardtii, and have homologs in other species, including plants and humans. Based on studies i...

  5. Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.).

    PubMed

    Pang, Kaiyuan; Li, Yanjiao; Liu, Menghan; Meng, Zhaodong; Yu, Yanli

    2013-09-10

    The metabolic functions of ATP-binding cassette (or ABC) proteins, one of the largest families of proteins presented in all organisms, have been investigated in many protozoan, animal and plant species. To facilitate more systematic and complicated studies on maize ABC proteins in the future, we present the first complete inventory of these proteins, including 130 open reading frames (ORFs), and provide general descriptions of their classifications, basic structures, typical functions, evolution track analysis and expression profiles. The 130 ORFs were assigned to eight subfamilies based on their structures and homological features. Five of these subfamilies consist of 109 proteins, containing transmembrane domains (TM) performing as transporters. The rest three subfamilies contain 21 soluble proteins involved in various functions other than molecular transport. A comparison of ABC proteins among nine selected species revealed either convergence or divergence in each of the ABC subfamilies. Generally, plant genomes contain far more ABC genes than animal genomes. The expression profiles and evolution track of each maize ABC gene were further investigated, the results of which could provide clues for analyzing their functions. Quantitative real-time polymerase chain reaction experiments (PCR) were conducted to detect induced expression in select ABC genes under several common stresses. This investigation provides valuable information for future research on stress tolerance in plants and potential strategies for enhancing maize production under stressful conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Identification of MrtAB, an ABC transporter specifically required for Yersinia pseudotuberculosis to colonize the mesenteric lymph nodes.

    PubMed

    Crimmins, Gregory T; Mohammadi, Sina; Green, Erin R; Bergman, Molly A; Isberg, Ralph R; Mecsas, Joan

    2012-01-01

    A highly conserved virulence plasmid encoding a type III secretion system is shared by the three Yersinia species most pathogenic for mammals. Although factors encoded on this plasmid enhance the ability of Yersinia to thrive in their mammalian hosts, the loss of this virulence plasmid does not eliminate growth or survival in host organs. Most notably, yields of viable plasmid-deficient Yersinia pseudotuberculosis (Yptb) are indistinguishable from wild-type Yptb within mesenteric lymph nodes. To identify chromosomal virulence factors that allow for plasmid-independent survival during systemic infection of mice, we generated transposon insertions in plasmid-deficient Yptb, and screened a library having over 20,000 sequence-identified insertions. Among the previously uncharacterized loci, insertions in mrtAB, an operon encoding an ABC family transporter, had the most profound phenotype in a plasmid-deficient background. The absence of MrtAB, however, had no effect on growth in the liver and spleen of a wild type strain having an intact virulence plasmid, but caused a severe defect in colonization of the mesenteric lymph nodes. Although this result is consistent with lack of expression of the type III secretion system by Wt Yptb in the mesenteric lymph nodes, a reporter for YopE indicated that expression of the system was robust. We demonstrate that the ATPase activity of MrtB is required for growth in mice, indicating that transport activity is required for virulence. Indeed, MrtAB appears to function as an efflux pump, as the ATPase activity enhances resistance to ethidium bromide while increasing sensitivity to pyocyanin, consistent with export across the inner membrane.

  7. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).

    PubMed

    Shiono, Katsuhiro; Ando, Miho; Nishiuchi, Shunsaku; Takahashi, Hirokazu; Watanabe, Kohtaro; Nakamura, Motoaki; Matsuo, Yuichi; Yasuno, Naoko; Yamanouchi, Utako; Fujimoto, Masaru; Takanashi, Hideki; Ranathunge, Kosala; Franke, Rochus B; Shitan, Nobukazu; Nishizawa, Naoko K; Takamure, Itsuro; Yano, Masahiro; Tsutsumi, Nobuhiro; Schreiber, Lukas; Yazaki, Kazufumi; Nakazono, Mikio; Kato, Kiyoaki

    2014-10-01

    Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP-binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP-RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C(28) and C(30) fatty acids or ω-OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. ABC Transporter Genes from Streptomyces ghanaensis Moenomycin Biosynthetic Gene Cluster: Roles in Antibiotic Production and Export

    PubMed Central

    Ostash, Bohdan; Doud, Emma; Walker, Suzanne

    2013-01-01

    Streptomyces ghanaensis ATCC14672 produces antibiotic moenomycin A (MmA), which possesses strong antibacterial activity. The genetic control of MmA biosynthesis has been recently elucidated; nevertheless, little is known about the roles of two pairs of genes, moeX5-moeP5 and moeD5-moeJ5, coding for ATP-dependent transporter systems. Here we report that both gene pairs form transcriptional units actively expressed during MmA production phase. S. ghanaensis mutants deficient in either (one) or both transporter systems are characterized by a decreased ability to produce moenomycins, and the ΔmoeP5moeX5 mutant exported less moenomycins. However, even the quadruple S. ghanaensis mutant (ΔmoeD5moeJ5+ΔmoeX5moeP5) remains able to extrude significant amounts of moenomycin. Similar results were observed under conditions of heterologous expression of moe cluster. Transporter genes other than those located in moe cluster are likely to participate in moenomycin efflux. PMID:22717951

  9. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters.

    PubMed

    Bevers, Loes E; Hagedoorn, Peter-Leon; Krijger, Gerard C; Hagen, Wilfred R

    2006-09-01

    A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [K(D)] of 17 +/- 7 pM) and molybdate (K(D) of 11 +/- 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low K(D) values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein.

  10. Toxicological effects of particulate matter (PM2.5) on rats: Bioaccumulation, antioxidant alterations, lipid damage, and ABC transporter activity.

    PubMed

    Ribeiro, Joaquim de Paula; Kalb, Ana Cristina; Campos, Paula Peixoto; Cruz, Alex Rubén Huaman De La; Martinez, Pablo Elias; Gioda, Adriana; Souza, Marta Marques de; Gioda, Carolina Rosa

    2016-11-01

    Previous studies have demonstrated the harmful effects of atmospheric pollutants on cardiac systems because of the presence of particulate matter (PM), a complex mixture of numerous substances including trace metals. In this study, the toxicity of PM2.5 from two regions, rural (PM2.5 level of 8.5 ± 4.0 μg m(-3)) and industrial (PM2.5 level of 14.4 ± 4.1 μg m(-3)) in Brazil, was investigated through in vivo experiments in rats. Metal accumulation and biochemical responses were evaluated after rats were exposed to three different concentrations of PM2.5 in saline extract (10× dilution, 5× dilution, and concentrated). The experimental data showed the bioaccumulation of diverse trace metals in the hearts of groups exposed to PM2.5 from both regions. Furthermore, mobilization of the antioxidant defenses and an increase in lipid peroxidation of the cardiac tissue was observed in response to the industrial and rural area PM2.5. Glutathione-S-transferase activity was increased in groups exposed to the 5× and concentrated rural PM2.5. Additionally, ATP-binding cassette (ABC) transporter activity in the cardiac tissue exposed to PM2.5 was reduced in response to the 5× dilution of the rural and industrial region PM2.5. Histological analysis showed a decrease in the percentage of cardiac cells in the heart at all tested concentrations. The results indicate that exposure to different concentrations of PM2.5 from both sources causes biochemical and histological changes in the heart with consequent damage to biological structures; these factors can favor the development of cardiac diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Substrate binding stabilizes a pre-translocation intermediate in the ATP-binding cassette transport protein MsbA.

    PubMed

    Doshi, Rupak; van Veen, Hendrik W

    2013-07-26

    ATP-binding cassette (ABC) transporters belong to one of the largest protein superfamilies that expands from prokaryotes to man. Recent x-ray crystal structures of bacterial and mammalian ABC exporters suggest a common alternating access mechanism of substrate transport, which has also been biochemically substantiated. However, the current model does not yet explain the coupling between substrate binding and ATP hydrolysis that underlies ATP-dependent substrate transport. In our studies on the homodimeric multidrug/lipid A ABC exporter MsbA from Escherichia coli, we performed cysteine cross-linking, fluorescence energy transfer, and cysteine accessibility studies on two reporter positions, near the nucleotide-binding domains and in the membrane domains, for transporter embedded in a biological membrane. Our results suggest for the first time that substrate binding by MsbA stimulates the maximum rate of ATP hydrolysis by facilitating the dimerization of nucleotide-binding domains in a state, which is markedly distinct from the previously described nucleotide-free, inward-facing and nucleotide-bound, outward-facing conformations of ABC exporters and which binds ATP.

  12. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway

    USDA-ARS?s Scientific Manuscript database

    Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the dou...

  13. Glaucarubinone sensitizes KB cells to paclitaxel by inhibiting ABC transporters via ROS-dependent and p53-mediated activation of apoptotic signaling pathways

    PubMed Central

    Karthikeyan, Subburayan; Hoti, Sugeerappa Laxmanappa; Nazeer, Yasin; Hegde, Harsha Vasudev

    2016-01-01

    Multidrug resistance (MDR) is considered to be the major contributor to failure of chemotherapy in oral squamous cell carcinoma (SCC). This study was aimed to explore the effects and mechanisms of glaucarubinone (GLU), one of the major quassinoids from Simarouba glauca DC, in potentiating cytotoxicity of paclitaxel (PTX), an anticancer drug in KB cells. Our data showed that the administration of GLU pre-treatment significantly enhanced PTX anti-proliferative effect in ABCB1 over-expressing KB cells. The Rh 123 drug efflux studies revealed that there was a significant transport function inhibition by GLU-PTX treatment. Interestingly, it was also found that this enhanced anticancer efficacy of GLU was associated with PTX-induced cell arrest in the G2/M phase of cell cycle. Further, the combined treatment of GLU-PTX had significant decrease in the expression levels of P-gp, MRPs, and BCRP in resistant KB cells at both mRNA and protein levels. Furthermore, the combination treatments showed significant reactive oxygen species (ROS) production, chromatin condensation and reduced mitochondrial membrane potential in resistant KB cells. The results from DNA fragmentation analysis also demonstrated the GLU induced apoptosis in KB cells and its synergy with PTX. Importantly, GLU and/or PTX triggered apoptosis through the activation of pro-apoptotic proteins such as p53, Bax, and caspase-9. Our findings demonstrated for the first time that GLU causes cell death in human oral cancer cells via the ROS-dependent suppression of MDR transporters and p53-mediated activation of the intrinsic mitochondrial pathway of apoptosis. Additionally, the present study also focussed on investigation of the protective effect of GLU and combination drugs in human normal blood lymphocytes. Normal blood lymphocytes assay indicated that GLU is able to induce selective toxicity in cancer cells and in silico molecular docking studies support the choice of GLU as ABC inhibitor to enhance PTX efficacy

  14. Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera.

    PubMed

    Çakır, Birsen; Kılıçkaya, Ozan

    2013-01-01

    The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 "full-size," 41 "half-size," and 15 "soluble" putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.

  15. Whole-Genome Survey of the Putative ATP-Binding Cassette Transporter Family Genes in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2013-01-01

    The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera. PMID:24244377

  16. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion

    PubMed Central

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-01-01

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI: http://dx.doi.org/10.7554/eLife.08231.001 PMID:26182403

  17. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion.

    PubMed

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-07-16

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery.

  18. 3D cryo-electron reconstruction of BmrA, a bacterial multidrug ABC transporter in an inward-facing conformation and in a lipidic environment.

    PubMed

    Fribourg, Pierre Frederic; Chami, Mohamed; Sorzano, Carlos Oscar S; Gubellini, Francesca; Marabini, Roberto; Marco, Sergio; Jault, Jean-Michel; Lévy, Daniel

    2014-05-15

    ABC (ATP-binding cassette) membrane exporters are efflux transporters of a wide diversity of molecule across the membrane at the expense of ATP. A key issue regarding their catalytic cycle is whether or not their nucleotide-binding domains (NBDs) are physically disengaged in the resting state. To settle this controversy, we obtained structural data on BmrA, a bacterial multidrug homodimeric ABC transporter, in a membrane-embedded state. BmrA in the apostate was reconstituted in lipid bilayers forming a mixture of ring-shaped structures of 24 or 39 homodimers. Three-dimensional models of the ring-shaped structures of 24 or 39 homodimers were calculated at 2.3 nm and 2.5 nm resolution from cryo-electron microscopy, respectively. In these structures, BmrA adopts an inward-facing open conformation similar to that found in mouse P-glycoprotein structure with the NBDs separated by 3 nm. Both lipidic leaflets delimiting the transmembrane domains of BmrA were clearly resolved. In planar membrane sheets, the NBDs were even more separated. BmrA in an ATP-bound conformation was determined from two-dimensional crystals grown in the presence of ATP and vanadate. A projection map calculated at 1.6 nm resolution shows an open outward-facing conformation. Overall, the data are consistent with a mechanism of drug transport involving large conformational changes of BmrA and show that a bacterial ABC exporter can adopt at least two open inward conformations in lipid membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily

    PubMed Central

    Xiong, Jie; Feng, Jinmei; Yuan, Dongxia; Zhou, Jun; Miao, Wei

    2015-01-01

    The ATP binding cassette (ABC) transporters superfamily is one of the largest classes of membrane proteins. The core of the ABC transporter protein is composed of transmembrane domains (TMDs) and nucleotide binding domains (NBD). Eukaryotes ABC transporters are classified into seven main families (ABCA to ABCG) based on sequence similarity and domain organizations. With different domain number and domain organizations, eukaryote ABC transporters show diverse structures: the single structure (NBD or TMD), the ABC2 structure (NBD-NBD), the half structure (TMD-NBD or NBD-TMD) and the full structure (TMD-NBD-TMD-NBD or NBD-TMD-NBD-TMD). However, studies on how various ABC transporter gene structures evolved is still absent. Therefore, in this study, we comprehensively investigated the structural evolution of eukaryotic ABC transporters. The seven eukaryote ABC transporter families (A to G) fell into three groups: A&G group, B,C&D group and E&F group. There were at least four times the number of NBD and TMD fusion events in the origin of the half structure transporter. Two fusion modes were found in the full and ABC2 structure origination. Based on these findings, we present a putative structural evolutionary path of eukaryote ABC transporters that will increase our understanding on their origin, divergence and function. PMID:26577702

  20. The Saccharomyces cerevisiae Weak-Acid-Inducible ABC Transporter Pdr12 Transports Fluorescein and Preservative Anions from the Cytosol by an Energy-Dependent Mechanism

    PubMed Central

    Holyoak, Caroline D.; Bracey, Danielle; Piper, Peter W.; Kuchler, Karl; Coote, Peter J.

    1999-01-01

    Growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid results in the induction of the ATP-binding cassette (ABC) transporter Pdr12 in the plasma membrane (P. Piper, Y. Mahe, S. Thompson, R. Pandjaitan, C. Holyoak, R. Egner, M. Muhlbauer, P. Coote, and K. Kuchler, EMBO J. 17:4257–4265, 1998). Pdr12 appears to mediate resistance to water-soluble, monocarboxylic acids with chain lengths of from C1 to C7. Exposure to acids with aliphatic chain lengths greater than C7 resulted in no observable sensitivity of Δpdr12 mutant cells compared to the parent. Parent and Δpdr12 mutant cells were grown in the presence of sorbic acid and subsequently loaded with fluorescein. Upon addition of an energy source in the form of glucose, parent cells immediately effluxed fluorescein from the cytosol into the surrounding medium. In contrast, under the same conditions, cells of the Δpdr12 mutant were unable to efflux any of the dye. When both parent and Δpdr12 mutant cells were grown without sorbic acid and subsequently loaded with fluorescein, upon the addition of glucose no efflux of fluorescein was detected from either strain. Thus, we have shown that Pdr12 catalyzes the energy-dependent extrusion of fluorescein from the cytosol. Lineweaver-Burk analysis revealed that sorbic and benzoic acids competitively inhibited ATP-dependent fluorescein efflux. Thus, these data provide strong evidence that sorbate and benzoate anions compete with fluorescein for a putative monocarboxylate binding site on the Pdr12 transporter. PMID:10419965

  1. The ATP-Binding Cassette Proteins of the Deep-Branching Protozoan Parasite Trichomonas vaginalis

    PubMed Central

    Lawler, Karen; Self, Tim J.; Dyall, Sabrina D.; Kerr, Ian D.

    2012-01-01

    The ATP binding cassette (ABC) proteins are a family of membrane transporters and regulatory proteins responsible for diverse and critical cellular process in all organisms. To date, there has been no attempt to investigate this class of proteins in the infectious parasite Trichomonas vaginalis. We have utilized a combination of bioinformatics, gene sequence analysis, gene expression and confocal microscopy to investigate the ABC proteins of T. vaginalis. We demonstrate that, uniquely among eukaryotes, T. vaginalis possesses no intact full-length ABC transporters and has undergone a dramatic expansion of some ABC protein sub-families. Furthermore, we provide preliminary evidence that T. vaginalis is able to read through in-frame stop codons to express ABC transporter components from gene pairs in a head-to-tail orientation. Finally, with confocal microscopy we demonstrate the expression and endoplasmic reticulum localization of a number of T. vaginalis ABC transporters. PMID:22724033

  2. Multidrug Transporter ABCG2/Breast Cancer Resistance Protein Secretes Riboflavin (Vitamin B2) into Milk▿

    PubMed Central

    van Herwaarden, Antonius E.; Wagenaar, Els; Merino, Gracia; Jonker, Johan W.; Rosing, Hilde; Beijnen, Jos H.; Schinkel, Alfred H.

    2007-01-01

    The multidrug transporter breast cancer resistance protein (BCRP/ABCG2) is strongly induced in the mammary gland during pregnancy and lactation. We here demonstrate that BCRP is responsible for pumping riboflavin (vitamin B2) into milk, thus supplying the young with this important nutrient. In Bcrp1−/− mice, milk secretion of riboflavin was reduced >60-fold compared to that in wild-type mice. Yet, under laboratory conditions, Bcrp1−/− pups showed no riboflavin deficiency due to concomitant milk secretion of its cofactor flavin adenine dinucleotide, which was not affected. Thus, two independent secretion mechanisms supply vitamin B2 equivalents to milk. BCRP is the first active riboflavin efflux transporter identified in mammals and the first transporter shown to concentrate a vitamin into milk. BCRP activity elsewhere in the body protects against xenotoxins by reducing their absorption and mediating their excretion. Indeed, Bcrp1 activity increased excretion of riboflavin into the intestine and decreased its systemic availability in adult mice. Surprisingly, the paradoxical dual utilization of BCRP as a xenotoxin and a riboflavin pump is evolutionarily conserved among mammals as diverse as mice and humans. This study establishes the principle that an ABC transporter can transport a vitamin into milk and raises the possibility that other vitamins and nutrients are likewise secreted into milk by ABC transporters. PMID:17145775

  3. Water Transport Mediated by Other Membrane Proteins.

    PubMed

    Huang, Boyue; Wang, Hongkai; Yang, Baoxue

    2017-01-01

    Water transport through membrane is so intricate that there are still some debates. (Aquaporins) AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters , however, are also concerned in water homeotatsis. Urea transporter B (UT-B) has a single-channel water permeability that is similar to AQP1. Cystic fibrosis transmembrane conductance regulator (CFTR ) was initially thought as a water channel but now not believed to transport water directly. By cotranporters, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs .

  4. Identification of streptococcal groups A,B,C, and G by slide co-agglutination of antibody-sensitized protein A-containing staphylococci.

    PubMed

    Hahn, G; Nyberg, I

    1976-07-01

    A total of 98.7% of streptococci, groups A,B,C, and G, isolated from various sources was correctly identified by the co-agglutination technique. The active components in this technique are protein A-containing staphylococci coated with antibodies specific for group A,B,C, and G streptococci. A suspension of streptococci belonging to one of these four groups co-agglutinates with the antibody-sensitized staphylococci specific for this group. The technique is extremely rapid and simple and requires no special equipment. It should therefore be a valuable alternative to other techniques used in the grouping of streptococci and is shown here to be as reliable as the Lancefield technique.

  5. Monomeric erythrocyte band 3 protein transports anions.

    PubMed Central

    Lindenthal, S; Schubert, D

    1991-01-01

    The anion transport system of the human erythrocyte membrane was reconstituted in egg phosphatidylcholine membranes by using either the unmodified transport protein, band 3, or covalently crosslinked band 3 dimers. Unilamellar vesicles of a diameter of 32 +/- 3 nm were then isolated from the sample by passage through a French press and subsequent gel filtration. According to sedimentation equilibrium measurements, around 85% of the vesicles were devoid of protein. The remaining 15% contained either a single band 3 monomer or, when crosslinked band 3 protein was used, a single band 3 dimer. Vesicles containing either single monomers or single dimers showed a rapid, inhibitor-sensitive sulfate efflux, and the turnover numbers of band 3 for the inhibitor-sensitive flux component were identical in both systems. This shows that monomeric band 3 protein is able to transport anions and that dimerization of the protein does not change its transport activity. Images PMID:1862082

  6. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice.

    PubMed

    Bobrov, Alexander G; Kirillina, Olga; Fosso, Marina Y; Fetherston, Jacqueline D; Miller, M Clarke; VanCleave, Tiva T; Burlison, Joseph A; Arnold, William K; Lawrenz, Matthew B; Garneau-Tsodikova, Sylvie; Perry, Robert D

    2017-06-21

    A number of bacterial pathogens require the ZnuABC Zinc (Zn 2+ ) transporter and/or a second Zn 2+ transport system to overcome Zn 2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn 2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn 2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic plague while a ybtX mutant retains high virulence in both plague models. While sequestration of host Zn is a key nutritional immunity factor, excess Zn appears to have a significant antimicrobial role in controlling intracellular bacterial survival. Here, we demonstrate that ZntA, a Zn 2+ exporter, plays a role in resistance to Zn toxicity in vitro, but that a zntA zur double mutant retains high virulence in both pneumonic and bubonic plague models and survival in macrophages. We also confirm that Ybt does not directly bind Zn 2+ in vitro under the conditions tested. However, we detect a significant increase in Zn 2+ -binding ability of filtered supernatants from a Ybt + strain compared to those from a strain unable to produce the siderophore, supporting our previously published data that Ybt biosynthetic genes are involved in the production of a secreted Zn-binding molecule (zincophore). Our data suggest that Ybt or a modified Ybt participate in or promote Zn-binding activity in culture supernatants and is involved in Zn acquisition in Y. pestis.

  7. Structural Analysis of ABC-family Periplasmic Zinc Binding Protein Provides New Insights Into Mechanism of Ligand Uptake and Release

    PubMed Central

    Chandra, Beeram Ravi; Yogavel, M.; Sharma, Amit

    2007-01-01

    ATP-binding cassette superfamily of periplasmic metal transporters are known to be vital for maintaining ion homeostasis in several pathogenic and non-pathogenic bacteria. We have determined crystal structure of the high-affinity zinc transporter ZnuA from Escherichia coli at 1.8 Å resolution. This structure represents the first native (non-recombinant) protein structure of a periplasmic metal binding protein. ZnuA reveals numerous conformational features, which occur either in Zn2+ or in Mn2+ transporters, and presents a unique conformational state. A comprehensive comparison of ZnuA with other periplasmic ligand binding protein structures suggests vital mechanistic differences between bound and release states of metal transporters. The key new attributes in ZnuA include a C-domain disulfide bond, an extra α-helix proximal to the highly charged metal chelating mobile loop region, alternate conformations of secondary shell stabilizing residues at the metal binding site, and domain movements potentially controlled by salt bridges. Based on in-depth structural analyses of five metal binding transporters, we present here a mechanistic model termed as “partial domain slippage” for binding and release of Zn2+. PMID:17306297

  8. Water-mediated forces between the nucleotide binding domains generate the power stroke in an ABC transporter

    NASA Astrophysics Data System (ADS)

    Furukawa-Hagiya, Tomoka; Yoshida, Norio; Chiba, Shuntaro; Hayashi, Tomohiko; Furuta, Tadaomi; Sohma, Yoshiro; Sakurai, Minoru

    2014-11-01

    ATP binding cassette proteins shuttle a variety of molecules across cell membranes. The substrate transportation process is initiated by the ATP-driven dimerization of nucleotide binding domains (NBDs). Here, the integral-equation theory of liquids was applied to simulated NBD structures to analyze their dimerization process from the viewpoint of thermodynamics and the water-mediated interaction between the NBDs. It was found that a long-range hydration force of enthalpic origin drives the two NBDs to approach from a large separation. In the subsequent step, the water-mediated attraction of entropic origin brings about a structural adjustment between the two NBDs and their tighter contact.

  9. Regulation of cellular transport by klotho protein.

    PubMed

    Sopjani, Mentor; Rinnerthaler, Mark; Almilaji, Ahmad; Ahmeti, Salih; Dermaku-Sopjani, Miribane

    2014-01-01

    The antiaging protein of Klotho is a transmembrane protein mainly expressed in the kidney, parathyroid glands and choroid plexus of the brain. The Klotho protein exists in two forms, a full-length membrane form and a soluble secreted form. The extracellular domain of Klotho can be enzymatically cleaved off and released into the systemic circulation where it acts as β-glucuronidase and a hormone. Soluble Klotho can be found in the blood, cerebrospinal fluid, and the urine of mammals. Klotho deficiency results in early appearance of multiple age-related disorders and premature death, whereas overexpression of Klotho exerts the opposite effect. Klotho may influence cellular transport processes across the cell membrane by inhibiting calcitriol (1,25(OH) (2)D(3)), formation or by directly affecting transporter proteins, including ion channels, carriers and pumps. Accordingly, Klotho protein is a powerful regulator of transport mechanisms across the cell membrane. Klotho regulates diverse calcium and potassium ion channels, as well as several carriers including the Na(+)-coupled excitatory amino acid transporters EAAT3 and EAAT4, the Na(+)-coupled phosphate cotransporters, NaPi-IIa and NaPi-IIb, and a Na(+)/K(+)-ATPase. All those cellular transport regulations contribute in the aging suppressor role of Klotho. Future studies will help to determine if the Klotho protein regulates cell-surface expression of other transport proteins and is affecting underlying mechanisms.

  10. Probing the conformation of the resting state of a bacterial multidrug ABC transporter, BmrA, by a site-directed spin labeling approach

    PubMed Central

    Do Cao, Marie-Ange; Crouzy, Serge; Kim, Miyeon; Becchi, Michel; Cafiso, David S; Pietro, Attilio Di; Jault, Jean-Michel

    2009-01-01

    Previously published 3-D structures of a prototypic ATP-binding cassette (ABC) transporter, MsbA, have been recently corrected revealing large rigid-body motions possibly linked to its catalytic cycle. Here, a closely related multidrug bacterial ABC transporter, BmrA, was studied using site-directed spin labeling by focusing on a region connecting the transmembrane domain and the nucleotide-binding domain (NBD). Electron paramagnetic resonance (EPR) spectra of single spin-labeled cysteine mutants suggests that, in the resting state, this sub-domain essentially adopts a partially extended conformation, which is consistent with the crystal structures of MsbA and Sav1866. Interestingly, one of the single point mutants (Q333C) yielded an immobilized EPR spectrum that could arise from a direct interaction with a vicinal tyrosine residue. Inspection of different BmrA models pointed to Y408, within the NBD, as the putative interacting partner, and its mutation to a Phe residue indeed dramatically modified the EPR spectra of the spin labeled Q333C. Moreover, unlike the Y408F mutation, the Y408A mutation abolished both ATPase activity and drug transport of BmrA, suggesting that a nonpolar bulky residue is required at this position. The spatial proximity of Q333 and Y408 was also confirmed by formation of a disulfide bond when both Q333 and T407 (or S409) were replaced jointly by a cysteine residue. Overall, these results indicate that the two regions surrounding Q333 and Y408 are close together in the 3-D structure of BmrA and that residues within these two sub-domains are essential for proper functioning of this transporter. PMID:19479721

  11. Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana.

    PubMed

    Xi, Jing; Xu, Ping; Xiang, Cheng-Bin

    2012-03-01

    Paraquat is one of the most widely used herbicides in the world. However, no paraquat transporter has been isolated in plants. Here, we describe paraquat-tolerant mutant pqt24-1, isolated from an activation-tagging library on the basis of its tolerance to 2 μm paraquat in the seedling stage. Molecular analysis revealed that the T-DNA was inserted in the 13th exon of At1g66950, which encodes AtPDR11, a member of the ATP-binding cassette transporter superfamily. As a result, AtPDR11 was knocked out in the mutant. Loss-of-function mutations of AtPDR11 led to reduced paraquat accumulation in plant cells. In addition, the AtPDR11 protein was specifically localized in the plasmalemma, suggesting AtPDR11 as a potential transporter of paraquat. This conclusion was supported by kinetic analysis of paraquat import. Further studies showed that the transcript level of AtPDR11 could be strongly induced by paraquat and other abiotic stresses including H(2) O(2) , indicating possible up-regulation of AtPDR11 expression by oxidative stress signaling. Thus, our data suggest that paraquat is an opportunistic substrate of AtPDR11 and the enhanced paraquat tolerance of pqt24-1 is due to reduced uptake of paraquat into plant cells. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  12. ATP-binding and -hydrolysis activities of ALDP (ABCD1) and ALDRP (ABCD2), human peroxisomal ABC proteins, overexpressed in Sf21 cells.

    PubMed

    Morita, Masashi; Kurisu, Mikinori; Kashiwayama, Yoshinori; Yokota, Sadaki; Imanaka, Tsuneo

    2006-09-01

    The peroxisomal ATP-binding cassette (ABC) proteins, adrenoleukodystrophy protein (ALDP, ABCD1) and ALD-related protein (ALDRP, ABCD2), were expressed in Spodoptera frugiperda 21 (Sf21) insect cells using a baculovirus-mediated expression system. Immunoelectron microscopy and subcellular fractionation revealed that the overexpressed ALDP was distributed in various subcellular organelles including mitochondria, nucleus and peroxisomes. The ALDP was not extractable with Na(2)CO(3) treatment, suggesting that it integrated into membranes. ATPase activity was detected in the membrane fraction expressing ALDP. The nucleotide-binding capacities of the expressed ALDP were estimated by the binding to ATP- or ADP-agarose. ALDP exhibited an affinity to both ADP and ATP. In contrast, ALDRP exhibited an affinity to ADP but scarcely to ATP. The ALDP in the Sf21 membrane fraction was extracted with n-dodecyl-beta-maltoside and successively purified with a chelate column. The nucleotide-binding and ATPase activities of the purified ALDP were, however, not detected. It may be that certain membranous components are required for the activity. We demonstrate for the first time that the peroxisomal ABC proteins can be expressed in Sf21 membranes maintaining their nucleotide-binding abilities and ATPase activities, and the expressed proteins will be of use for further characterization.

  13. Combination of tenofovir and emtricitabine plus efavirenz: in vitro modulation of ABC transporter and intracellular drug accumulation.

    PubMed

    Bousquet, Laurence; Pruvost, Alain; Guyot, Anne-Cécile; Farinotti, Robert; Mabondzo, Aloïse

    2009-03-01

    Efflux proteins have been shown to greatly affect the uptake of antiretroviral drugs by cells and to hamper their access to the human immunodeficiency virus type 1 replication site. This study evaluated the factors that may lead to drug-drug interactions between emtricitabine (FTC), tenofovir (TFV), and efavirenz (EFV), including the modulation of efflux transporter expression and function. Peripheral blood mononuclear cells from healthy volunteers were used to determine whether or not an interaction between antiretroviral drugs and target cells occurred in any combination of FTC, TFV, EFV, FTC-TFV, TFV-EFV, or FTC-TFV-EFV. Following 20 h of treatment, intracellular drug concentrations were measured by liquid chromatography-tandem mass spectrometry. Efflux transporter functionality and inhibitor drug properties were assessed by measuring fluorescent dye efflux. ABCB1 (P-glycoprotein), ABCC 1 to 6 (multidrug resistance-associated protein), and OAT (organic anion transporter) expression in response to the treatments was quantified by semiquantitative real-time PCR. Cells treated with a double combination (FTC-TFV or TFV-EFV) or the triple combination (FTC-TFV-EFV) produced higher FTC and TFV intracellular concentrations than cells treated with FTC or TFV alone. However, no change in the EFV intracellular concentration was observed. FTC tended to induce abcc5 mRNA expression and EFV tended to induce abcc1 and abcc6 mRNA expression, whereas TFV tended to reduce mdr1, abcc1, abcc5, and abcc6 mRNA expression. Under these conditions, a decrease in the functionality of ABCC was observed, and this decrease was associated with the direct inhibitory actions of these drugs. This in vitro study reveals a benefit of the combination FTC-TFV-EFV in terms of the intracellular FTC and TFV concentrations and highlights the pharmacological mechanisms that lead to this effect.

  14. Combination of Tenofovir and Emtricitabine plus Efavirenz: In Vitro Modulation of ABC Transporter and Intracellular Drug Accumulation ▿

    PubMed Central

    Bousquet, Laurence; Pruvost, Alain; Guyot, Anne-Cécile; Farinotti, Robert; Mabondzo, Aloïse

    2009-01-01

    Efflux proteins have been shown to greatly affect the uptake of antiretroviral drugs by cells and to hamper their access to the human immunodeficiency virus type 1 replication site. This study evaluated the factors that may lead to drug-drug interactions between emtricitabine (FTC), tenofovir (TFV), and efavirenz (EFV), including the modulation of efflux transporter expression and function. Peripheral blood mononuclear cells from healthy volunteers were used to determine whether or not an interaction between antiretroviral drugs and target cells occurred in any combination of FTC, TFV, EFV, FTC-TFV, TFV-EFV, or FTC-TFV-EFV. Following 20 h of treatment, intracellular drug concentrations were measured by liquid chromatography-tandem mass spectrometry. Efflux transporter functionality and inhibitor drug properties were assessed by measuring fluorescent dye efflux. ABCB1 (P-glycoprotein), ABCC 1 to 6 (multidrug resistance-associated protein), and OAT (organic anion transporter) expression in response to the treatments was quantified by semiquantitative real-time PCR. Cells treated with a double combination (FTC-TFV or TFV-EFV) or the triple combination (FTC-TFV-EFV) produced higher FTC and TFV intracellular concentrations than cells treated with FTC or TFV alone. However, no change in the EFV intracellular concentration was observed. FTC tended to induce abcc5 mRNA expression and EFV tended to induce abcc1 and abcc6 mRNA expression, whereas TFV tended to reduce mdr1, abcc1, abcc5, and abcc6 mRNA expression. Under these conditions, a decrease in the functionality of ABCC was observed, and this decrease was associated with the direct inhibitory actions of these drugs. This in vitro study reveals a benefit of the combination FTC-TFV-EFV in terms of the intracellular FTC and TFV concentrations and highlights the pharmacological mechanisms that lead to this effect. PMID:19075072

  15. The feoABC Locus of Yersinia pestis Likely Has Two Promoters Causing Unique Iron Regulation

    PubMed Central

    O'Connor, Lauren; Fetherston, Jacqueline D.; Perry, Robert D.

    2017-01-01

    The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis Fur protein but to DNA sequences that regulate transcription. We have used truncations, alterations, and deletions of the feoA::lacZ reporter to assess the mechanism behind the failure of iron to repress transcription under aerobic conditions. These studies plus EMSAs and DNA sequence analysis have led to our proposal that the feoABC locus has two promoters: an upstream P1 promoter whose expression is relatively iron-independent but repressed under microaerobic conditions and the known downstream Fur-regulated P2 promoter. In addition, we have identified two regions that bind Y. pestis protein(s), although we have not identified these protein(s) or their function. Finally we used iron uptake assays to demonstrate that both FeoABC and YfeABCD transport ferrous iron in an energy-dependent manner and also use ferric iron as a substrate for uptake. PMID:28785546

  16. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development.

    PubMed

    Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia Ur; Liu, Liping; Qin, Yuan

    2017-01-01

    Pineapple ( Ananas comosus L .) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs , 20 ABCB s, 16 ABCCs , 2 ABCDs , one ABCEs , 5 ABCFs , 42 ABCGs and 9 ABCIs ). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4 , AcABCC7 , AcABCC9 , AcABCG26 , AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production.

  17. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development

    PubMed Central

    Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia ur; Liu, Liping; Qin, Yuan

    2017-01-01

    Pineapple (Ananas comosus L.) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs, 20 ABCBs, 16 ABCCs, 2 ABCDs, one ABCEs, 5 ABCFs, 42 ABCGs and 9 ABCIs). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4, AcABCC7, AcABCC9, AcABCG26, AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production. PMID:29312399

  18. Solitary BioY Proteins Mediate Biotin Transport into Recombinant Escherichia coli

    PubMed Central

    Finkenwirth, Friedrich; Kirsch, Franziska

    2013-01-01

    Energy-coupling factor (ECF) transporters form a large group of vitamin uptake systems in prokaryotes. They are composed of highly diverse, substrate-specific, transmembrane proteins (S units), a ubiquitous transmembrane protein (T unit), and homo- or hetero-oligomeric ABC ATPases. Biotin transporters represent a special case of ECF-type systems. The majority of the biotin-specific S units (BioY) is known or predicted to interact with T units and ABC ATPases. About one-third of BioY proteins, however, are encoded in organisms lacking any recognizable T unit. This finding raises the question of whether these BioYs function as transporters in a solitary state, a feature ascribed to certain BioYs in the past. To address this question in living cells, an Escherichia coli K-12 derivative deficient in biotin synthesis and devoid of its endogenous high-affinity biotin transporter was constructed as a reference strain. This organism is particularly suited for this purpose because components of ECF transporters do not naturally occur in E. coli K-12. The double mutant was viable in media containing either high levels of biotin or a precursor of the downstream biosynthetic path. Importantly, it was nonviable on trace levels of biotin. Eight solitary bioY genes of proteobacterial origin were individually expressed in the reference strain. Each of the BioYs conferred biotin uptake activity on the recombinants, which was inferred from uptake assays with [3H]biotin and growth of the cells on trace levels of biotin. The results underscore that solitary BioY transports biotin across the cytoplasmic membrane. PMID:23836870

  19. The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B.

    PubMed

    Cuív, Páraic O; Keogh, Damien; Clarke, Paul; O'Connell, Michael

    2008-12-01

    Sinorhizobium meliloti, the endosymbiont of Medicago sativa, can use haem compounds, including haemoglobin and leghaemoglobin, when growing in the free-living state. The components of the system involved in haem acquisition were confirmed to be ShmR, an outer membrane receptor, and HmuTUV, predicted to be an ABC transport system comprising a periplasmic protein, a permease and an ATPase respectively. The roles of HmuTUV in haem transport were confirmed in a heterologous expression system in Escherichia coli in conjunction with HasR, the outer membrane haem receptor of Serratia marcescens. hmuTUV mutants of S. meliloti showed a reduced capacity to acquire haem, suggesting the presence of a second haem acquisition system in the organism. S. meliloti can also acquire iron from xenosiderophores and the genes encoding the outer membrane receptors for ferrichrome and ferrioxamine B, fhuA1 and fhuA2, respectively, were identified. In light of this it is proposed that fhuA2 should be renamed foxA in the S. meliloti 1021 genome sequence. A siderophore reductase, FhuF, with the capacity to complement an E. coli ferrioxamine B reductase mutant, was identified encoded by a gene next to fhuA2. In the same transcriptional unit as fhuF the gene fhuP was identified and shown to encode a protein necessary for transport of ferrichrome and ferrioxamine B and predicted to be periplasmic. Interestingly, the remaining components of the transport system for the siderophores are HmuU and HmuV. Ferrichrome, ferrioxamine B and haem compounds therefore share components of the same transport system in S. meliloti.

  20. Quantitative evaluation of ABC transporter-mediated drug resistance based on the determination of the anticancer activity of camptothecin against breast cancer stem cells using TIRF.

    PubMed

    Arumugam, Parthasarathy; Song, Joon Myong

    2016-06-13

    Elevated expression of drug efflux pumps such as multidrug resistant protein-1 (MDR1/ABCB1) and multidrug resistance associated protein-1 (MRP1/ABCC1) in cancer stem cells (CSCs) among a bulky tumor cell population was attributed to drug resistance. For the first time, we have quantitatively evaluated the cytotoxic profile of camptothecin (CPT) against the CSC. In the present study, a Qdot based total internal reflection fluorescence (TIRF) detection system effectively interpreted that drug resistance to CPT was reduced in the CSC under ABCB1 inhibited conditions. This study revealed that quantitative finding of the EC50 value for apoptosis and necrosis in correlation with the ABC inhibitor and CSC population using TIRF could provide more details of the anti-cancer efficacy of chemotherapeutic agents.

  1. In vitro methanol production from methyl coenzyme M using the Methanosarcina barkeri MtaABC protein complex.

    PubMed

    Dong, Ming; Gonzalez, Tara D; Klems, Meghan M; Steinberg, Lisa M; Chen, Wilfred; Papoutsakis, Eleftherios T; Bahnson, Brian J

    2017-09-01

    Methanol:coenzyme M methyltransferase is an enzyme complex composed of three subunits, MtaA, MtaB, and MtaC, found in methanogenic archaea and is needed for their growth on methanol ultimately producing methane. MtaABC catalyzes the energetically favorable methyl transfer from methanol to coenzyme M to form methyl coenzyme M. Here we demonstrate that this important reaction for possible production of methanol from the anaerobic oxidation of methane can be reversed in vitro. To this effect, we have expressed and purified the Methanosarcina barkeri MtaABC enzyme, and developed an in vitro functional assay that demonstrates MtaABC can catalyze the energetically unfavorable (ΔG° = 27 kJ/mol) reverse reaction starting from methyl coenzyme M and generating methanol as a product. Demonstration of an in vitro ability of MtaABC to produce methanol may ultimately enable the anaerobic oxidation of methane to produce methanol and from methanol alternative fuel or fuel-precursor molecules. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1243-1249, 2017. © 2017 American Institute of Chemical Engineers.

  2. Single gold nanoparticle plasmonic spectroscopy for study of chemical-dependent efflux function of single ABC transporters of single live Bacillus subtilis cells.

    PubMed

    Browning, Lauren M; Lee, Kerry J; Cherukuri, Pavan K; Huang, Tao; Songkiatisak, Preeyaporn; Warren, Seth; Xu, Xiao-Hong Nancy

    2018-03-26

    ATP-binding cassette (ABC) membrane transporters serve as self-defense transport apparatus in many living organisms and they can selectively extrude a wide variety of substrates, leading to multidrug resistance (MDR). The detailed molecular mechanisms remain elusive. Single nanoparticle plasmonic spectroscopy highly depends upon their sizes, shapes, chemical and surface properties. In our previous studies, we have used the size-dependent plasmonic spectra of single silver nanoparticles (Ag NPs) to study the real-time efflux kinetics of the ABC (BmrA) transporter and MexAB-OprM transporter in single live cells (Gram-positive and Gram-negative bacterium), respectively. In this study, we prepared and used purified, biocompatible and stable (non-aggregated) gold nanoparticles (Au NPs) (12.4 ± 0.9 nm) to study the efflux kinetics of single BmrA membrane transporters of single live Bacillus subtillis cells, aiming to probe chemical dependent efflux functions of BmrA transporters and their potential chemical sensing capability. Similar to those observed using Ag NPs, accumulation of the intracellular Au NPs in single live cells (WT and ΔBmrA) highly depends upon the cellular expression of BmrA and the NP concentration (0.7 and 1.4 nM). The lower accumulation of intracellular Au NPs in WT (normal expression of BmrA) than ΔBmrA (deletion of bmrA) indicates that BmrA extrudes the Au NPs out of the WT cells. The accumulation of Au NPs in the cells increases with NP concentration, suggesting that the Au NPs most likely passively diffuse into the cells, similar to antibiotics. The result demonstrates that such small Au NPs can serve as imaging probes to study the efflux function of the BmrA membrane transporter in single live cells. Furthermore, the dependence of the accumulation rate of intracellular Au NPs in single live cells upon the expression of BmrA and the concentration of the NPs is about twice higher than that of the same sized Ag NPs. This interesting finding

  3. Structural basis for adenylate kinase activity in ABC ATPases.

    PubMed

    Lammens, Alfred; Hopfner, Karl-Peter

    2010-08-13

    ATP-binding cassette (ABC) enzymes are involved in diverse biological processes ranging from transmembrane transport to chromosome cohesion and DNA repair. They typically use ATP hydrolysis to conduct energy-dependent biological reactions. However, the cystic fibrosis transmembrane conductance regulator and the DNA repair protein Rad50 can also catalyze the adenylate kinase reaction (ATP+AMP<-->2ADP). To clarify and provide a mechanistic basis for the adenylate kinase activity of ABC enzymes, we report the crystal structure of the nucleotide-binding domain of the Pyrococcus furiosus structural maintenance of chromosome protein (pfSMC(nbd)) in complex with the adenylate kinase inhibitor P(1),P(5)-di(adenosine-5')pentaphosphate. We show that pfSMC(nbd) possesses reverse adenylate kinase activity. Our results suggest that in adenylate kinase reactions, ATP binds to its canonical binding site while AMP binds to the Q-loop glutamine and a hydration water of the Mg(2+) ion. Furthermore, mutational analysis indicates that adenylate kinase reaction occurs in the engaged pfSMC(nbd) dimer and requires the Signature motif for phosphate transfer. Our results explain how ATP hydrolysis and adenylate kinase reactions can be catalyzed by the same functional motifs within the structural framework of ABC enzymes. Thus, adenylate kinase activity is likely to be a latent activity in many ABC enzymes. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Drug-induced phototoxicity evoked by inhibition of human ABC transporter ABCG2: development of in vitro high-speed screening systems.

    PubMed

    Tamura, Ai; An, Ran; Hagiya, Yuichiro; Hoshijima, Kazuyuki; Yoshida, Takashi; Mikuriya, Kenta; Ishikawa, Toshihisa

    2008-03-01

    Photosensitivity depends on both genetic and environmental factors. Pheophorbide a, present in various plant-derived foods and food supplements, can be absorbed by the small intestine. Accumulation of pheophorbide a and porphyrins in the systemic blood circulation can result in phototoxic lesions on light-exposed skin. As the human ATP-binding cassette (ABC) transporter ABCG2 has been suggested to be critically involved in porphyrin-mediated photosensitivity, we aimed to develop in vitro screening systems for drug-induced phototoxicity. Functional impairment owing to inhibition of ABCG2 by drugs or its genetic polymorphisms can lead to the disruption of porphyrin homeostasis. This review article provides an overview on drug-induced photosensitivity, as well as our hypothesis on a potential role of ABCG2 in phototoxicity.

  5. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation.

    PubMed

    Teixeira, Miguel C; Godinho, Cláudia P; Cabrito, Tânia R; Mira, Nuno P; Sá-Correia, Isabel

    2012-07-27

    The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased ³H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic fermentation performance for sustainable bio

  6. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  7. Identification of residues in ABCG2 affecting protein trafficking and drug transport, using co-evolutionary analysis of ABCG sequences.

    PubMed

    Haider, Ameena J; Cox, Megan H; Jones, Natalie; Goode, Alice J; Bridge, Katherine S; Wong, Kelvin; Briggs, Deborah; Kerr, Ian D

    2015-07-17

    ABCG2 is an ABC (ATP-binding cassette) transporter with a physiological role in urate transport in the kidney and is also implicated in multi-drug efflux from a number of organs in the body. The trafficking of the protein and the mechanism by which it recognizes and transports diverse drugs are important areas of research. In the current study, we have made a series of single amino acid mutations in ABCG2 on the basis of sequence analysis. Mutant isoforms were characterized for cell surface expression and function. One mutant (I573A) showed disrupted glycosylation and reduced trafficking kinetics. In contrast with many ABC transporter folding mutations which appear to be 'rescued' by chemical chaperones or low temperature incubation, the I573A mutation was not enriched at the cell surface by either treatment, with the majority of the protein being retained in the endoplasmic reticulum (ER). Two other mutations (P485A and M549A) showed distinct effects on transport of ABCG2 substrates reinforcing the role of TM helix 3 in drug recognition and transport and indicating the presence of intracellular coupling regions in ABCG2. © 2015 Authors.

  8. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides.

    PubMed

    Zhou, Zongshan; Wu, Jianyuan; Wang, Meiyu; Zhang, Junxiang

    2017-09-01

    ATP-binding cassette (ABC) proteins are exclusively found in both prokaryotes and eukaryotes. In this study, we have characterized a gene from Glomerella leaf spot pathogen Colletotrichum gloeosporioides that encodes an ABC protein, whose function to date remains unknown. We designated this gene as CgABCF2. Deletion of CgABCF2 showed drastic reduction both growing rate and conidial production in C. gloeosporioides. The Δcgabcf2 mutant did not form the appressoria, lost the capability to infect apple and failed to form lesions on the wounded leaves and fruits. The C. gloeosporioides native CgABCF2 fully recovered defect of the Δcgabcf2 mutant. These data indicated that CgABCF2 was required for fungal development and invasion. The transcriptions of six pectolytic enzymes genes (CgPG1, CgPG2, pnl-1, pnl-2, pelA and pelB) significantly reduced in the Δcgabcf2 mutant, indicating that deletion of CgABCF2 impaired the fungal necrotrophic growth. In addition, CgABCF2 mediated sexual development through the positive regulation of the gene MAT1-2-1 expression. These results indicated that CgABCF2 underlies the complex process governing morphogenesis, sexual and asexual reproduction, appressorial formation and pathogenicity in C. gloeosporioides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Soliton/exciton transport in proteins.

    PubMed

    Sinkala, Zachariah

    2006-08-21

    The study of electron/proton transport in alpha-helix sections of proteins have illustrated the existence of soliton-like mechanisms. Recently, Ciblis and Cosic extended investigation to the existence of possible like soliton-type mechanisms in other parts of the protein. They used Quantum Hamiltonian analysis to investigate. In this paper, we investigate the same problem but we use Classical Hamiltonian analysis in our investigation.

  10. The domain II loops of Bacillus thuringiensis Cry1Aa form an overlapping interaction site for two Bombyx mori larvae functional receptors, ABC transporter C2 and cadherin-like receptor.

    PubMed

    Adegawa, Satomi; Nakama, Yui; Endo, Haruka; Shinkawa, Naoki; Kikuta, Shingo; Sato, Ryoichi

    2017-02-01

    Information about the receptor-interaction region of Cry toxins, insecticidal proteins produced by Bacillus thuringiensis, is needed to elucidate the mode of action of Cry toxins and improve their toxicity through protein engineering. We analyzed the interaction sites on Cry1Aa with ABC transporter C2 (ABCC2), one of the most important Cry1A toxin receptors. A competitive binding assay revealed that the Bombyx mori ABCC2 (BmABCC2) Cry1A binding site was the same as the BtR175 binding site, suggesting that the loop region of Cry1Aa domain II is a binding site. Next, we constructed several domain II loop mutant toxins and tested their binding affinity in an SPR analysis, and also performed a cell swelling assay to evaluate receptor-mediated cytotoxicity. Our results indicate that the loop regions required for BtR175 and BmABCC2 binding and the regions important for cytotoxicity partially overlap. Our results also suggest that receptor binding is necessary but not sufficient for cytotoxicity. This is the first report showing the region of interaction between ABCC2 and Cry1Aa and the cytotoxicity-relevant properties of the Cry1Aa domain II loop region. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Computation of Thermal Transport in a Protein

    NASA Astrophysics Data System (ADS)

    Leitner, David M.

    2003-03-01

    Calculation of the coefficient of thermal conductivity and thermal diffusivity for a protein will be discussed. Thermal transport coefficients are obtained by computing the proteinÂ's normal modes, their lifetimes, the speed of sound and mean free path. We find the thermal diffusivity of myoglobin at 300 K to be 14 Å^2 /ps, the same as the value for water. The thermal conductivity at 300 K is calculated to be 2.0 mW/cm K in the absence of solvent and somewhat higher for the solvated protein, about one-third the value for water.

  12. [Rab Proteins, Intracellular Transport and Cancer].

    PubMed

    Černochová, R; Nekulová, M; Holčaková, J

    Rab proteins are small monomeric enzymes which belong to the large Ras protein superfamily and allow hydrolysis of guanosine triphosphate (GTP) to guanosine (GDP). Up to now more than 60 proteins have been described that act primarily as regulators of intracellular transport. Rab GTPases are mostly located at the intracellular membranes, where they provide connections to motor proteins and to the cytoskeleton and control various steps of the traffic pathways including the formation and movement of vesicles or membrane fusion controlling secretion, endocytosis, recycling and degradation of proteins. Today, the deregulated expression of Rab protein is discussed in different types of malignancies. The number of identified diseases associated with mutations in Rab proteins or their cooperating partners increases and the evidence for the involvement of Rab to the human pathologies such as the immune failure, obesity and diabetes, Alzheimers disease or hereditary genetic diseases is growing. The malfunctions of Rab proteins caused by mutations or aberrant posttranslational modifications lead to changes in the protein and vesicle trafficking, which play a crucial role in the formation and development of cancer and the deregulation of Rab expression frequently influences the migration, invasion, proliferation and drug resistance of the tumor cells. This article summarizes the main functions of Rab proteins in the cells, describes the mechanism of their activity and focuses on the current knowledge about the roles of these GTPases in carcinogenesis.Key words: Rab GTPases - protein transport - carcinogenesisThis work was supported by the project MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 13. 5. 2016Accepted: 31. 5. 2016.

  13. The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2

    PubMed Central

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

    2008-01-01

    Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone, but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). They inhibited the binding of [125I]-Iodoarylazidoprazosin (IAAP), a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC50 values of 7.3 and 22.6 μM, respectively, but had no effect on the binding of this photoaffinity analog to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of this transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared to the control cells, suggesting that they are substrates of this transporter. Collectively, these data demonstrate for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function. PMID:18065489

  14. Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor

    PubMed Central

    2013-01-01

    Background Two of the largest fully sequenced prokaryotic genomes are those of the actinobacterium, Streptomyces coelicolor (Sco), and the δ-proteobacterium, Myxococcus xanthus (Mxa), both differentiating, sporulating, antibiotic producing, soil microbes. Although the genomes of Sco and Mxa are the same size (~9 Mbp), Sco has 10% more genes that are on average 10% smaller than those in Mxa. Results Surprisingly, Sco has 93% more identifiable transport proteins than Mxa. This is because Sco has amplified several specific types of its transport protein genes, while Mxa has done so to a much lesser extent. Amplification is substrate- and family-specific. For example, Sco but not Mxa has amplified its voltage-gated ion channels but not its aquaporins and mechano-sensitive channels. Sco but not Mxa has also amplified drug efflux pumps of the DHA2 Family of the Major Facilitator Superfamily (MFS) (49 versus 6), amino acid transporters of the APC Family (17 versus 2), ABC-type sugar transport proteins (85 versus 6), and organic anion transporters of several families. Sco has not amplified most other types of transporters. Mxa has selectively amplified one family of macrolid exporters relative to Sco (16 versus 1), consistent with the observation that Mxa makes more macrolids than does Sco. Conclusions Except for electron transport carriers, there is a poor correlation between the types of transporters found in these two organisms, suggesting that their solutions to differentiative and metabolic needs evolved independently. A number of unexpected and surprising observations are presented, and predictions are made regarding the physiological functions of recognizable transporters as well as the existence of yet to be discovered transport systems in these two important model organisms and their relatives. The results provide insight into the evolutionary processes by which two dissimilar prokaryotes evolved complexity, particularly through selective chromosomal gene

  15. Transport in technicolor: Mapping ATP-binding cassette transporters in sea urchin embryos

    PubMed Central

    Gökirmak, Tufan; Shipp, Lauren E.; Campanale, Joseph P.; Nicklisch, Sascha C.T.; Hamdoun, Amro

    2014-01-01

    One quarter of eukaryotic genes encode membrane proteins. These include nearly 1000 transporters that translocate nutrients, signaling molecules, and xenobiotics across membranes. While it is well appreciated that membrane transport is critical for development, the specific roles of many transporters have remained cryptic, in part because of their abundance and the diversity of their substrates. Multi-drug resistance ATP-binding cassette (ABC) efflux transporters are one example of cryptic membrane proteins. Although most organisms utilize these ABC transporters during embryonic development, many of these transporters have broad substrate specificity, and their developmental functions remain incompletely understood. Here, we review advances in our understanding of ABC transporters in sea urchin embryos, and methods developed to spatially and temporally map these proteins. These studies reveal that multifunctional transporters are required for signaling, homeostasis, and protection of the embryo, and shed light on how they are integrated into ancestral developmental pathways recapitulated in disease. PMID:25156004

  16. Oxygen and nitrate-dependent regulation of dmsABC operon expression in Escherichia coli: sites for Fnr and NarL protein interactions.

    PubMed

    Bearson, Shawn M D; Albrecht, Jeffrey A; Gunsalus, Robert P

    2002-06-12

    Escherichia coli, can respire anaerobically using dimethyl sulfoxide (DMSO) or trimethylamine-N-oxide (TMAO) as the terminal electron acceptor for anaerobic energy generation. Expression of the dmsABC genes that encode the membrane-associated DMSO/TMAO reductase is positively regulated during anaerobic conditions by the Fnr protein and negatively regulated by the NarL protein when nitrate is present. The regions of dmsA regulatory DNA required for Fnr and NarL interactions in response to anaerobiosis and nitrate, respectively, were examined. Mutations within the Fnr site that deviated from the wild type sequence, TTGATaccgAACAA, or that removed an entire half-site, either impaired or abolished the anaerobic activation of dmsA-lacZ expression. The region for phosphorylated NarL (NarL-phosphate) binding at the dmsA promoter was identified by DNase I and hydroxyl radical footprinting methods. A large 97 bp region that overlaps the Fnr and RNA polymerase recognition sites was protected by NarL-phosphate but not by the non-phosphorylated form of NarL. Hydroxyl radical footprinting analysis confirmed the NarL-phosphate DNase I protections of both dmsA strands and revealed 8-9 protected sites of 3-5 bp occurring at ten bp intervals that are offset by 3 bp in the 3' direction. These findings suggest that multiple molecules of phosphorylated NarL bind along one face of the DNA and may interfere with Fnr and/or RNA polymerase interactions at the dmsA regulatory region. The interplay of these transcription factors insures a hierarchical expression of the dmsABC genes when respiration of the preferred electron acceptors, oxygen and nitrate, is not possible.

  17. New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition.

    PubMed

    van der Schoor, Lori W E; Verkade, Henkjan J; Kuipers, Folkert; Jonker, Johan W

    2015-02-01

    For the elimination of environmental chemicals and metabolic waste products, the body is equipped with a range of broad specificity transporters that are present in excretory organs as well as in several epithelial blood-tissue barriers. ABCC2 and ABCC3 (also known as MRP2 and MRP3) mediate the transport of various conjugated organic anions, including many drugs, toxicants and endogenous compounds. This review focuses on the physiology of these transporters, their roles in drug disposition and how they affect drug sensitivity and toxicity. It also examines how ABCC2 and ABCC3 are coordinately regulated at the transcriptional level by members of the nuclear receptor (NR) family of ligand-modulated transcription factors and how this can be therapeutically exploited. Mutations in both ABCC2 and ABCC3 have been associated with changes in drug disposition, sensitivity and toxicity. A defect in ABCC2 is associated with Dubin-Johnson syndrome, a recessively inherited disorder characterized by conjugated hyperbilirubinemia. Pharmacological manipulation of the activity of these transporters can potentially improve the pharmacokinetics and thus therapeutic activity of substrate drugs but also affect the physiological function of these transporters and consequently ameliorate associated disease states.

  18. The ABC model of recombination reinterpreted: Impact on understanding carrier transport and efficiency droop in InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hopkins, M. A.; Allsopp, D. W. E.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J.

    2017-12-01

    The efficiency of light emitting diodes (LEDs) remains a topic of great contemporary interest due to their potential to reduce the amount of energy consumed in lighting. The current consensus is that electrons and holes distribute themselves through the emissive region by a drift-diffusion process which results in a highly non-uniform distribution of the light emission and can reduce efficiency. In this paper, the measured variations in the external quantum efficiency of a range of InGaN/GaN LEDs with different numbers of quantum wells (QWs) are shown to compare closely with the predictions of a revised ABC model, in which it is assumed that the electrically injected electrons and holes are uniformly distributed through the multi-quantum well (MQW) region, or nearly so, and hence carrier recombination occurs equally in all the quantum wells. The implications of the reported results are that drift-diffusion plays a far lesser role in cross-well carrier transport than previously thought; that the dominant cause of efficiency droop is intrinsic to the quantum wells and that reductions in the density of non-radiative recombination centers in the MQW would enable the use of more QWs and thereby reduce Auger losses by spreading carriers more evenly across a wider emissive region.

  19. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds

    PubMed Central

    Chen, Chiliang; Malek, Adel A.; Wargo, Matthew J.; Hogan, Deborah A.; Beattie, Gwyn A.

    2017-01-01

    Summary We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (Km, 2.6 μM) and, although it also binds betaine (Km, 24.2 μM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (Km, 24 μM) and the betaine-specific SBP BetX (Km, 0.6 μM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs. PMID:19919675

  20. Membrane porters of ATP-binding cassette transport systems are polyphyletic.

    PubMed

    Wang, Bin; Dukarevich, Maxim; Sun, Eric I; Yen, Ming Ren; Saier, Milton H

    2009-09-01

    The ATP-binding cassette (ABC) superfamily consists of both importers and exporters. These transporters have, by tradition, been classified according to the ATP hydrolyzing constituents, which are monophyletic. The evolutionary origins of the transmembrane porter proteins/domains are not known. Using five distinct computer programs, we here provide convincing statistical data suggesting that the transmembrane domains of ABC exporters are polyphyletic, having arisen at least three times independently. ABC1 porters arose by intragenic triplication of a primordial two-transmembrane segment (TMS)-encoding genetic element, yielding six TMS proteins. ABC2 porters arose by intragenic duplication of a dissimilar primordial three-TMS-encoding genetic element, yielding a distinctive protein family, nonhomologous to the ABC1 proteins. ABC3 porters arose by duplication of a primordial four-TMS-encoding genetic element, yielding either eight- or 10-TMS proteins. We assign each of 48 of the 50 currently recognized families of ABC exporters to one of the three evolutionarily distinct ABC types. Currently available high-resolution structural data for ABC porters are fully consistent with our findings. These results provide guides for future structural and mechanistic studies of these important transport systems.

  1. An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa.

    PubMed

    Casabona, Maria G; Silverman, Julie M; Sall, Khady M; Boyer, Frédéric; Couté, Yohann; Poirel, Jessica; Grunwald, Didier; Mougous, Joseph D; Elsen, Sylvie; Attree, Ina

    2013-02-01

    Pseudomonas aeruginosa is capable of injecting protein toxins into other bacterial cells through one of its three type VI secretion systems (T6SSs). The activity of this T6SS is tightly regulated on the posttranslational level by phosphorylation-dependent and -independent pathways. The phosphorylation-dependent pathway consists of a Threonine kinase/phosphatase pair (PpkA/PppA) that acts on a forkhead domain-containing protein, Fha1, and a periplasmic protein, TagR, that positively regulates PpkA. In the present work, we biochemically and functionally characterize three additional proteins of the phosphorylation-dependent regulatory cascade that controls T6S activation: TagT, TagS and TagQ. We show that similar to TagR, these proteins act upstream of the PpkA/PppA checkpoint and influence phosphorylation of Fha1 and, apparatus assembly and effector export. Localization studies demonstrate that TagQ is an outer membrane lipoprotein and TagR is associated with the outer membrane. Consistent with their homology to lipoprotein outer membrane localization (Lol) components, TagT and TagS form a stable inner membrane complex with ATPase activity. However, we find that outer membrane association of T6SS lipoproteins TagQ and TssJ1, and TagR, is unaltered in a ΔtagTS background. Notably, we found that TagQ is indispensible for anchoring of TagR to the outer membrane fraction. As T6S-dependent fitness of P. aeruginosa requires TagT, S, R and Q, we conclude that these proteins likely participate in a trans-membrane signalling pathway that promotes H1-T6SS activity under optimal environmental conditions. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. An ABC-transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa

    PubMed Central

    Casabona, Maria G.; Silverman, Julie M.; Sall, Khady M.; Boyer, Frédéric; Couté, Yohann; Poirel, Jessica; Grunwald, Didier; Mougous, Joseph D.; Elsen, Sylvie; Attree, Ina

    2012-01-01

    Pseudomonas aeruginosa is capable of injecting protein toxins into other bacterial cells through one of its three type VI secretion systems (T6SS). The activity of this T6SS is tightly regulated on the posttranslational level by phosphorylation-dependent and -independent pathways. The phosphorylation-dependent pathway consists of a Thr kinase/phosphatase pair (PpkA/PppA) that acts on a forkhead domain-containing protein Fha1, and a periplasmic protein, TagR, that positively regulates PpkA. In the present work, we biochemically and functionally characterize three additional proteins of the phosphorylation-dependent regulatory cascade that controls T6S activation: TagT, TagS and TagQ. We show that similar to TagR, these proteins act upstream of the PpkA/PppA checkpoint and influence phosphorylation of Fha1 and export of Hcp1 and Tse1. Localization studies demonstrate that TagQ is an outer membrane lipoprotein and TagR is associated with the outer membrane. Consistent with their homology to lipoprotein outer membrane localization (Lol) components, TagT and TagS form a stable inner membrane complex with ATPase activity. However, we find that outer membrane association of T6SS lipoproteins TagQ and TssJ1, and TagR, is unaltered in a ΔtagTS background. Notably, we found that TagQ is indispensible for anchoring of TagR to the outer membrane fraction. As T6S-dependent fitness of P. aeruginosa requires TagT, S, R and Q, we conclude that these proteins likely participate in a trans-membrane signaling pathway that promotes H1-T6SS activity under optimal environmental conditions. PMID:22765374

  3. Actin binding proteins, spermatid transport and spermiation*

    PubMed Central

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-Ho; Tang, Elizabeth I.; Han, Daishu; Lee, Will M.; Wong, Elissa W. P.; Cheng, C. Yan

    2014-01-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby entering the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come. PMID:24735648

  4. Structural basis of nanobody-mediated blocking of BtuF, the cognate substrate-binding protein of the Escherichia coli vitamin B12 transporter BtuCD.

    PubMed

    Mireku, S A; Sauer, M M; Glockshuber, R; Locher, K P

    2017-10-30

    Bacterial ABC importers catalyze the uptake of essential nutrients including transition metals and metal-containing co-factors. Recently, an IgG antibody targeting the external binding protein of the Staphylococcus aureus Mn(II) ABC importer was reported to inhibit transport activity and reduce bacterial cell growth. We here explored the possibility of using alpaca-derived nanobodies to inhibit the vitamin B12 transporter of Escherichia coli, BtuCD-F, as a model system by generating nanobodies against the periplasmic binding protein BtuF. We isolated six nanobodies that competed with B12 for binding to BtuF, with inhibition constants between 10 -6 and 10 -9  M. Kinetic characterization of the nanobody-BtuF interactions revealed dissociation half-lives between 1.6 and 6 minutes and fast association rates between 10 4 and 10 6  M -1 s -1 . For the tightest-binding nanobody, we observed a reduction of in vitro transport activity of BtuCD-F when an excess of nanobody over B12 was used. The structure of BtuF in complex with the most effective nanobody Nb9 revealed the molecular basis of its inhibitory function. The CDR3 loop of Nb9 reached into the substrate-binding pocket of BtuF, preventing both B12 binding and BtuCD-F complex formation. Our results suggest that nanobodies can mediate ABC importer inhibition, providing an opportunity for novel antibiotic strategies.

  5. Complement activation by ceramide transporter proteins.

    PubMed

    Bode, Gerard H; Losen, Mario; Buurman, Wim A; Veerhuis, Robert; Molenaar, Peter C; Steinbusch, Harry W M; De Baets, Marc H; Daha, Mohamed R; Martinez-Martinez, Pilar

    2014-02-01

    C1q is the initiator of the classical complement pathway and, as such, is essential for efficient opsonization and clearance of pathogens, altered self-structures, and apoptotic cells. The ceramide transporter protein (CERT) and its longer splicing isoform CERTL are known to interact with extracellular matrix components, such as type IV collagen, and with the innate immune protein serum amyloid P. In this article, we report a novel function of CERT in the innate immune response. Both CERT isoforms, when immobilized, were found to bind the globular head region of C1q and to initiate the classical complement pathway, leading to activation of C4 and C3, as well as generation of the membrane attack complex C5b-9. In addition, C1q was shown to bind to endogenous CERTL on the surface of apoptotic cells. These results demonstrate the role of CERTs in innate immunity, especially in the clearance of apoptotic cells.

  6. LABCG2, a New ABC Transporter Implicated in Phosphatidylserine Exposure, Is Involved in the Infectivity and Pathogenicity of Leishmania

    PubMed Central

    González-Rey, Elena; Delgado, Mario; Castanys, Santiago; Pérez-Victoria, José M.; Gamarro, Francisco

    2013-01-01

    Leishmaniasis is a neglected disease produced by the intracellular protozoan parasite Leishmania. In the present study, we show that LABCG2, a new ATP-binding cassette half-transporter (ABCG subfamily) from Leishmania, is involved in parasite virulence. Down-regulation of LABCG2 function upon expression of an inactive mutant version of this half-transporter (LABCG2K/M) is shown to reduce the translocation of short-chain analogues of phosphatidylserine (PS). This dominant-negative phenotype is specific for the headgroup of the phospholipid, as the movement of phospholipid analogues of phosphatidylcholine, phosphatidylethanolamine or sphingomyelin is not affected. In addition, promastigotes expressing LABCG2K/M expose less endogenous PS in the stationary phase than control parasites. Transient exposure of PS at the outer leaflet of the plasma membrane is known to be one of the mechanisms used by Leishmania to infect macrophages and to silence their immune response. Stationary phase/metacyclic promastigotes expressing LABCG2K/M are less infective for macrophages and show decreased pathogenesis in a mouse model of cutaneous leishmaniasis. Thus, mice infected with parasites expressing LABCG2K/M did not develop any lesion and showed significantly lower inflammation and parasite burden than mice infected with control parasites. Our results indicate that LABCG2 function is required for the externalization of PS in Leishmania promastigotes, a process that is involved in the virulence of the parasite. PMID:23638200

  7. Multiple Functions of Glutamate Uptake via Meningococcal GltT-GltM l-Glutamate ABC Transporter in Neisseria meningitidis Internalization into Human Brain Microvascular Endothelial Cells

    PubMed Central

    Yanagisawa, Tatsuo; Kim, Kwang Sik; Yokoyama, Shigeyuki; Ohnishi, Makoto

    2015-01-01

    We previously reported that Neisseria meningitidis internalization into human brain microvasocular endothelial cells (HBMEC) was triggered by the influx of extracellular l-glutamate via the GltT-GltM l-glutamate ABC transporter, but the underlying mechanism remained unclear. We found that the ΔgltT ΔgltM invasion defect in assay medium (AM) was alleviated in AM without 10% fetal bovine serum (FBS) [AM(−S)]. The alleviation disappeared again in AM(−S) supplemented with 500 μM glutamate. Glutamate uptake by the ΔgltT ΔgltM mutant was less efficient than that by the wild-type strain, but only upon HBMEC infection. We also observed that both GltT-GltM-dependent invasion and accumulation of ezrin, a key membrane-cytoskeleton linker, were more pronounced when N. meningitidis formed larger colonies on HBMEC under physiological glutamate conditions. These results suggested that GltT-GltM-dependent meningococcal internalization into HBMEC might be induced by the reduced environmental glutamate concentration upon infection. Furthermore, we found that the amount of glutathione within the ΔgltT ΔgltM mutant was much lower than that within the wild-type N. meningitidis strain only upon HBMEC infection and was correlated with intracellular survival. Considering that the l-glutamate obtained via GltT-GltM is utilized as a nutrient in host cells, l-glutamate uptake via GltT-GltM plays multiple roles in N. meningitidis internalization into HBMEC. PMID:26099588

  8. ABC transporters and the proteasome complex are implicated in susceptibility to Stevens-Johnson syndrome and toxic epidermal necrolysis across multiple drugs.

    PubMed

    Nicoletti, Paola; Bansal, Mukesh; Lefebvre, Celine; Guarnieri, Paolo; Shen, Yufeng; Pe'er, Itsik; Califano, Andrea; Floratos, Aris

    2015-01-01

    Stevens-Johnson syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) represent rare but serious adverse drug reactions (ADRs). Both are characterized by distinctive blistering lesions and significant mortality rates. While there is evidence for strong drug-specific genetic predisposition related to HLA alleles, recent genome wide association studies (GWAS) on European and Asian populations have failed to identify genetic susceptibility alleles that are common across multiple drugs. We hypothesize that this is a consequence of the low to moderate effect size of individual genetic risk factors. To test this hypothesis we developed Pointer, a new algorithm that assesses the aggregate effect of multiple low risk variants on a pathway using a gene set enrichment approach. A key advantage of our method is the capability to associate SNPs with genes by exploiting physical proximity as well as by using expression quantitative trait loci (eQTLs) that capture information about both cis- and trans-acting regulatory effects. We control for known bias-inducing aspects of enrichment based analyses, such as: 1) gene length, 2) gene set size, 3) presence of biologically related genes within the same linkage disequilibrium (LD) region, and, 4) genes shared among multiple gene sets. We applied this approach to publicly available SJS/TEN genome-wide genotype data and identified the ABC transporter and Proteasome pathways as potentially implicated in the genetic susceptibility of non-drug-specific SJS/TEN. We demonstrated that the innovative SNP-to-gene mapping phase of the method was essential in detecting the significant enrichment for those pathways. Analysis of an independent gene expression dataset provides supportive functional evidence for the involvement of Proteasome pathways in SJS/TEN cutaneous lesions. These results suggest that Pointer provides a useful framework for the integrative analysis of pharmacogenetic GWAS data, by increasing the power to detect aggregate effects

  9. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions

    PubMed Central

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W.; Browne, Tristan; Cox, Kevin; Paul, Andrew T.; Ko, Seung-Hyun B.; Mortensen, Joel E.; Lam, Joseph S.; Muruve, Daniel A.; Hassett, Daniel J.

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains. PMID:27064218

  10. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions.

    PubMed

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W; Browne, Tristan; Cox, Kevin; Paul, Andrew T; Ko, Seung-Hyun B; Mortensen, Joel E; Lam, Joseph S; Muruve, Daniel A; Hassett, Daniel J

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite ([Formula: see text], pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to [Formula: see text]. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to [Formula: see text], but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with [Formula: see text] plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM [Formula: see text], and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to [Formula: see text] in biofilms. [Formula: see text] sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, [Formula: see text] as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains.

  11. The ABC and AUSSAT.

    ERIC Educational Resources Information Center

    McGarritty, Ian

    1985-01-01

    Discusses the Australian Broadcasting Corporation's (ABC) utilization of the AUSSAT telecommunications satellite to extend its television and radio transmission range to reach remote Australian audiences; the satellite's program gathering and interchange capabilities; and ABC's generation of other benefits to offset cost of satellite services.…

  12. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays.

    PubMed

    Bezrutczyk, Margaret; Hartwig, Thomas; Horschman, Marc; Char, Si Nian; Yang, Jinliang; Yang, Bing; Frommer, Wolf B; Sosso, Davide

    2018-04-01

    Crop yield depends on efficient allocation of sucrose from leaves to seeds. In Arabidopsis, phloem loading is mediated by a combination of SWEET sucrose effluxers and subsequent uptake by SUT1/SUC2 sucrose/H + symporters. ZmSUT1 is essential for carbon allocation in maize, but the relative contribution to apoplasmic phloem loading and retrieval of sucrose leaking from the translocation path is not known. Here we analysed the contribution of SWEETs to phloem loading in maize. We identified three leaf-expressed SWEET sucrose transporters as key components of apoplasmic phloem loading in Zea mays L. ZmSWEET13 paralogues (a, b, c) are among the most highly expressed genes in the leaf vasculature. Genome-edited triple knock-out mutants were severely stunted. Photosynthesis of mutants was impaired and leaves accumulated high levels of soluble sugars and starch. RNA-seq revealed profound transcriptional deregulation of genes associated with photosynthesis and carbohydrate metabolism. Genome-wide association study (GWAS) analyses may indicate that variability in ZmSWEET13s correlates with agronomical traits, especifically flowering time and leaf angle. This work provides support for cooperation of three ZmSWEET13s with ZmSUT1 in phloem loading in Z. mays. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  13. A Plant Plasma Membrane ATP Binding Cassette–Type Transporter Is Involved in Antifungal Terpenoid Secretion

    PubMed Central

    Jasiński, Michal; Stukkens, Yvan; Degand, Hervé; Purnelle, Bénédicte; Marchand-Brynaert, Jacqueline; Boutry, Marc

    2001-01-01

    ATP binding cassette (ABC) transporters, which are found in all species, are known mainly for their ability to confer drug resistance. To date, most of the ABC transporters characterized in plants have been localized in the vacuolar membrane and are considered to be involved in the intracellular sequestration of cytotoxins. Working on the assumption that certain ABC transporters might be involved in defense metabolite secretion and their expression might be regulated by the concentration of these metabolites, we treated a Nicotiana plumbaginifolia cell culture with sclareolide, a close analog of sclareol, an antifungal diterpene produced at the leaf surface of Nicotiana spp; this resulted in the appearance of a 160-kD plasma membrane protein, which was partially sequenced. The corresponding cDNA (NpABC1) was cloned and shown to encode an ABC transporter. In vitro and in situ immunodetection showed NpABC1 to be localized in the plasma membrane. Under normal conditions, expression was found in the leaf epidermis. In cell culture and in leaf tissues, NpABC1 expression was strongly enhanced by sclareolide and sclareol. In parallel with NpABC1 induction, cells acquired the ability to excrete a labeled synthetic sclareolide derivative. These data suggest that NpABC1 is involved in the secretion of a secondary metabolite that plays a role in plant defense. PMID:11340184

  14. Organic anion transporting polypeptide 2B1 and breast cancer resistance protein interact in the transepithelial transport of steroid sulfates in human placenta.

    PubMed

    Grube, Markus; Reuther, Sebastian; Meyer Zu Schwabedissen, Henriette; Köck, Kathleen; Draber, Katrin; Ritter, Christoph A; Fusch, Christoph; Jedlitschky, Gabriele; Kroemer, Heyo K

    2007-01-01

    The human placenta has both protective and nurturing functions for the fetal organism. Uptake and elimination of xenobiotics and endogenous substances are facilitated by various transport proteins from the solute carrier (SLC) and ABC families, respectively. A functional interaction of uptake and elimination, which is a prerequisite for vectorial transport across cellular barriers, has not been described for placenta. In this study, we examined expression of organic anion transporter (OAT) 4 (SLC22A11), organic anion transporting polypeptide (OATP) 2B1 (SLCO2B1, OATP-B), and breast cancer resistance protein (BCRP) (ABCG2) in human placenta (n = 71) because all three proteins are involved in transmembranal transfer of estrone 3 sulfate (E3S; metabolic product) and dehydroepiandrosterone sulfate (DHEAS; precursor molecule). On the mRNA level, we found a significant correlation of OATP2B1 and BCRP (R(2) = 0.534; p < 0.01) but not between OAT4 and BCRP (R(2) = -0.104; p > 0.05). Localization studies confirmed basal expression of OATP2B1 and apical expression of BCRP. To study functional interactions between OATP2B1 and BCRP, we developed a Madin-Darby canine kidney cell model expressing both transport proteins simultaneously (OATP2B1 and BCRP in the basal and apical membrane, respectively). Using this cell model in a transwell system resulted in a significantly increased basal to apical transport of both E3S and DHEAS, when both transporters were expressed with no change of transfer in the apical to basal direction. Taken together, these data show the potential for a functional interaction of OATP2B1 and BCRP in transepithelial transport of steroid sulfates in human placenta.

  15. Identification of ABC transporter genes conferring combined pleuromutilin-lincosamide-streptogramin A resistance in bovine methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci.

    PubMed

    Wendlandt, Sarah; Kadlec, Kristina; Feßler, Andrea T; Schwarz, Stefan

    2015-06-12

    The aim of this study was to investigate the genetic basis of combined pleuromutilin-lincosamide-streptogramin A resistance in 26 unrelated methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) from dairy cows suffering from mastitis. The 26 pleuromutilin-resistant staphylococcal isolates were screened for the presence of the genes vga(A), vga(B), vga(C), vga(E), vga(E) variant, sal(A), vmlR, cfr, lsa(A), lsa(B), lsa(C), and lsa(E) by PCR. None of the 26 isolates carried the genes vga(B), vga(C), vga(E), vga(E) variant, vmlR, cfr, lsa(A), lsa(B), or lsa(C). Two Staphylococcus haemolyticus and single Staphylococcus xylosus, Staphylococcus lentus, and Staphylococcus hominis were vga(A)-positive. Twelve S. aureus, two Staphylococcus warneri, as well as single S. lentus and S. xylosus carried the lsa(E) gene. Moreover, single S. aureus, S. haemolyticus, S. xylosus, and Staphylococcus epidermidis were positive for both genes, vga(A) and lsa(E). The sal(A) gene was found in a single Staphylococcus sciuri. All ABC transporter genes were located in the chromosomal DNA, except for a plasmid-borne vga(A) gene in the S. epidermidis isolate. The genetic environment of the lsa(E)-positive isolates was analyzed using previously described PCR assays. Except for the S. warneri and S. xylosus, all lsa(E)-positive isolates harbored a part of the previously described enterococcal multiresistance gene cluster. This is the first report of the novel lsa(E) gene in the aforementioned bovine CoNS species. This is also the first identification of the sal(A) gene in a S. sciuri from a case of bovine mastitis. Moreover, the sal(A) gene was shown to also confer pleuromutilin resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems.

    PubMed

    Garcia, Olivier; Bouige, Philippe; Forestier, Cyrille; Dassa, Elie

    2004-10-08

    ATP-binding cassette (ABC) proteins constitute a large superfamily found in all kingdoms of living organisms. The recent completion of two draft sequences of the rice (Oryza sativa) genome allowed us to analyze and classify its ABC proteins and to compare to those in Arabidopsis thaliana. We identified a similar number of ABC proteins in rice and Arabidopsis (121 versus 120), despite the rice genome being more than three times the size of Arabidopsis. Both Arabidopsis and rice have representative members in all seven major subfamilies of ABC ATPases (A to G) commonly found in eukaryotes. This comparative analysis allowed the detection of 29 potential orthologous sequences in Arabidopsis and rice. However, plant share with prokaryotes a specific set of ABC systems that is not detected in animals. These ABC systems might be inherited from the cyanobacterial ancestor of chloroplasts. The present work provides the first complete inventory of rice ABC proteins and an updated inventory of those proteins in Arabidopsis.

  17. Inventory and comparative evolution of the ABC superfamily in the genomes of Phytophthora ramorum and Phytophthora sojae.

    PubMed

    Morris, Paul F; Phuntumart, Vipaporn

    2009-05-01

    Automated and manual annotation of the ATP binding cassette (ABC) superfamily in the Phytophthora ramorum and P. sojae genomes has identified 135 and 136 members, respectively, indicating that this family is comparable in size to the Arabidopsis thaliana and rice genomes, and significantly larger than that of two fungal pathogens, Fusarium graminearum and Magnaporthe grisea. The high level of synteny between these oomycete genomes extends to the ABC superfamily, where 108 orthologues were identified by phylogenetic analysis. The largest subfamilies include those most often associated with multidrug resistance. The P. ramorum genome contains 22 multidrug resistance-associated protein (MRP) genes and 49 pleiotropic drug resistance (PDR) genes, while P. sojae contains 20 MRP and 49 PDR genes. Tandem duplication events in the last common ancestor appear to account for much of the expansion of these subfamilies. Recent duplication events in the PDR and ABCG families in both the P. ramorum and the P. sojae genomes indicate that selective expansion of ABC transporters may still be occurring. In other kingdoms, subfamilies define both domain arrangements and proteins having a common phylogenetic origin, but this is not the case for several subfamilies in oomycetes. At least one ABCG type transporter is derived from a PDR transporter, while transporters in the ABCB-half family cluster with transporters from bacterial, plant, and metazoan genomes. Additional examples of transporters that appear to be derived from horizontal transfer events from bacterial genomes include components of transporters associated with iron uptake and DNA repair.

  18. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress.

    PubMed

    Saha, Jayita; Sengupta, Atreyee; Gupta, Kamala; Gupta, Bhaskar

    2015-02-01

    ATP-binding cassette (ABC) transporter is a large gene superfamily that utilizes the energy released from ATP hydrolysis for transporting myriad of substrates across the biological membranes. Although many investigations have been done on the structural and functional analysis of the ABC transporters in Oryza sativa, much less is known about molecular phylogenetic and global expression pattern of the complete ABC family in rice. In this study, we have carried out a comprehensive phylogenetic analysis constructing neighbor-joining and maximum-likelihood trees based on various statistical methods of different ABC protein subfamily of five plant lineages including Chlamydomonas reinhardtii (green algae), Physcomitrella patens (moss), Selaginella moellendorffii (lycophyte), Arabidopsis thaliana (dicot) and O. sativa (monocot) to explore the origin and evolutionary patterns of these ABC genes. We have identified several conserved motifs in nucleotide binding domain (NBD) of ABC proteins among all plant lineages during evolution. Amongst the different ABC protein subfamilies, 'ABCE' has not yet been identified in lower plant genomes (algae, moss and lycophytes). The result indicated that gene duplication and diversification process acted upon these genes as a major operative force creating new groups and subgroups and functional divergence during evolution. We have demonstrated that rice ABCI subfamily consists of only half size transporters that represented highly dynamic members showing maximum sequence variations among the other rice ABC subfamilies. The evolutionary and the expression analysis contribute to a deep insight into the evolution and diversity of rice ABC proteins and their roles in response to salt stress that facilitate our further understanding on rice ABC transporters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Luminescence resonance energy transfer spectroscopy of ATP-binding cassette proteins.

    PubMed

    Zoghbi, Maria E; Altenberg, Guillermo A

    2018-04-01

    The ATP-binding cassette (ABC) superfamily includes regulatory and transport proteins. Most human ABC exporters pump substrates out of cells using energy from ATP hydrolysis. Although major advances have been made toward understanding the molecular mechanism of ABC exporters, there are still many issues unresolved. During the last few years, luminescence resonance energy transfer has been used to detect conformational changes in real time, with atomic resolution, in isolated ABC nucleotide binding domains (NBDs) and full-length ABC exporters. NBDs are particularly interesting because they provide the power stroke for substrate transport. Luminescence resonance energy transfer (LRET) is a spectroscopic technique that can provide dynamic information with atomic-resolution of protein conformational changes under physiological conditions. Using LRET, it has been shown that NBD dimerization, a critical step in ABC proteins catalytic cycle, requires binding of ATP to two nucleotide binding sites. However, hydrolysis at just one of the sites can drive dissociation of the NBD dimer. It was also found that the NBDs of the bacterial ABC exporter MsbA reconstituted in a lipid bilayer membrane and studied at 37°C never separate as much as suggested by crystal structures. This observation stresses the importance of performing structural/functional studies of ABC exporters under physiologic conditions. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The yeast ATP-binding cassette (ABC) transporter Ycf1p enhances the recruitment of the soluble SNARE Vam7p to vacuoles for efficient membrane fusion.

    PubMed

    Sasser, Terry L; Lawrence, Gus; Karunakaran, Surya; Brown, Christopher; Fratti, Rutilio A

    2013-06-21

    The Saccharomyces cerevisiae vacuole contains five ATP-binding cassette class C (ABCC) transporters, including Ycf1p, a family member that was originally characterized as a Cd(2+) transporter. Ycf1p has also been found to physically interact with a wide array of proteins, including factors that regulate vacuole homeostasis. In this study, we examined the role of Ycf1p and other ABCC transporters in the regulation of vacuole homotypic fusion. We found that deletion of YCF1 attenuated in vitro vacuole fusion by up to 40% relative to wild-type vacuoles. Plasmid-expressed wild-type Ycf1p rescued the deletion phenotype; however, Ycf1p containing a mutation of the conserved Lys-669 to Met in the Walker A box of the first nucleotide-binding domain (Ycf1p(K669M)) was unable to complement the fusion defect of ycf1Δ vacuoles. This indicates that the ATPase activity of Ycf1p is required for its function in regulating fusion. In addition, we found that deleting YCF1 caused a striking decrease in vacuolar levels of the soluble SNARE Vam7p, whereas total cellular levels were not altered. The attenuated fusion of ycf1Δ vacuoles was rescued by the addition of recombinant Vam7p to in vitro experiments. Thus, Ycf1p contributes in the recruitment of Vam7p to the vacuole for efficient membrane fusion.

  1. Retinoid Binding Properties of Nucleotide Binding Domain 1 of the Stargardt Disease-associated ATP Binding Cassette (ABC) Transporter, ABCA4*

    PubMed Central

    Biswas-Fiss, Esther E.; Affet, Stephanie; Ha, Malissa; Biswas, Subhasis B.

    2012-01-01

    The retina-specific ATP binding cassette transporter, ABCA4 protein, is associated with a broad range of inherited macular degenerations, including Stargardt disease, autosomal recessive cone rod dystrophy, and fundus flavimaculatus. In order to understand its role in retinal transport in rod out segment discs, we have investigated the interactions of the soluble domains of ABCA4 with both 11-cis- and all-trans-retinal. Using fluorescence anisotropy-based binding analysis and recombinant polypeptides derived from the amino acid sequences of the four soluble domains of ABCA4, we demonstrated that the nucleotide binding domain 1 (NBD1) specifically bound 11-cis-retinal. Its affinity for all-trans-retinal was markedly reduced. Stargardt disease-associated mutations in this domain resulted in attenuation of 11-cis-retinal binding. Significant differences in 11-cis-retinal binding affinities were observed between NBD1 and other cytoplasmic and lumenal domains of ABCA4. The results suggest a possible role of ABCA4 and, in particular, the NBD1 domain in 11-cis-retinal binding. These results also correlate well with a recent report on the in vivo role of ABCA4 in 11-cis-retinal transport. PMID:23144455

  2. The Yeast ATP-binding Cassette (ABC) Transporter Ycf1p Enhances the Recruitment of the Soluble SNARE Vam7p to Vacuoles for Efficient Membrane Fusion*

    PubMed Central

    Sasser, Terry L.; Lawrence, Gus; Karunakaran, Surya; Brown, Christopher; Fratti, Rutilio A.

    2013-01-01

    The Saccharomyces cerevisiae vacuole contains five ATP-binding cassette class C (ABCC) transporters, including Ycf1p, a family member that was originally characterized as a Cd2+ transporter. Ycf1p has also been found to physically interact with a wide array of proteins, including factors that regulate vacuole homeostasis. In this study, we examined the role of Ycf1p and other ABCC transporters in the regulation of vacuole homotypic fusion. We found that deletion of YCF1 attenuated in vitro vacuole fusion by up to 40% relative to wild-type vacuoles. Plasmid-expressed wild-type Ycf1p rescued the deletion phenotype; however, Ycf1p containing a mutation of the conserved Lys-669 to Met in the Walker A box of the first nucleotide-binding domain (Ycf1pK669M) was unable to complement the fusion defect of ycf1Δ vacuoles. This indicates that the ATPase activity of Ycf1p is required for its function in regulating fusion. In addition, we found that deleting YCF1 caused a striking decrease in vacuolar levels of the soluble SNARE Vam7p, whereas total cellular levels were not altered. The attenuated fusion of ycf1Δ vacuoles was rescued by the addition of recombinant Vam7p to in vitro experiments. Thus, Ycf1p contributes in the recruitment of Vam7p to the vacuole for efficient membrane fusion. PMID:23658021

  3. ATP-binding cassette transporters in reproduction: a new frontier

    PubMed Central

    Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.

    2016-01-01

    breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus. PMID:26545808

  4. Structure of TatA paralog, TatE, suggests a structurally homogeneous form of Tat protein translocase that transports folded proteins of differing diameter.

    PubMed

    Baglieri, Jacopo; Beck, Daniel; Vasisht, Nishi; Smith, Corinne J; Robinson, Colin

    2012-03-02

    The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plant thylakoid membranes. Most current models for the translocation mechanism propose the coalescence of a substrate-binding TatABC complex with a separate TatA complex. In Escherichia coli, TatA complexes are widely believed to form the translocation pore, and the size variation of TatA has been linked to the transport of differently sized substrates. Here, we show that the TatA paralog TatE can substitute for TatA and support translocation of Tat substrates including AmiA, AmiC, and TorA. However, TatE is found as much smaller, discrete complexes. Gel filtration and blue native electrophoresis suggest sizes between ∼50 and 110 kDa, and single-particle processing of electron micrographs gives size estimates of 70-90 kDa. Three-dimensional models of the two principal TatE complexes show estimated diameters of 6-8 nm and potential clefts or channels of up to 2.5 nm diameter. The ability of TatE to support translocation of the 90-kDa TorA protein suggests alternative translocation models in which single TatA/E complexes do not contribute the bulk of the translocation channel. The homogeneity of both the TatABC and the TatE complexes further suggests that a discrete Tat translocase can translocate a variety of substrates, presumably through the use of a flexible channel. The presence and possible significance of double- or triple-ring TatE forms is discussed.

  5. ABC's of Being Smart

    ERIC Educational Resources Information Center

    Foster, Joanne

    2011-01-01

    Determining what giftedness is all about means focusing on many aspects of the individual. In this paper, the author focuses on letter D of the ABC's of being smart. She starts with specifics about giftedness (details), and then moves on to some ways of thinking (dispositions).

  6. Protein transport across the small intestine in food allergy.

    PubMed

    Reitsma, Marit; Westerhout, Joost; Wichers, Harry J; Wortelboer, Heleen M; Verhoeckx, Kitty C M

    2014-01-01

    In view of the imminent deficiency of protein sources for human consumption in the near future, new protein sources need to be identified. However, safety issues such as the risk of allergenicity are often a bottleneck, due to the absence of predictive, validated and accepted methods for risk assessment. The current strategy to assess the allergenic potential of proteins focuses mainly on homology, stability and cross-reactivity, although other factors such as intestinal transport might be of added value too. In this review, we present an overview of the knowledge of protein transport across the intestinal wall and the methods currently being used to measure this. A literature study reveals that protein transport in sensitised persons occurs para-cellularly with the involvement of mast cells, and trans-cellularly via enterocytes, while in non-sensitised persons micro-fold cells and enterocytes are considered most important. However, there is a lack of comparable systematic studies on transport of allergenic proteins. Knowledge of the multiple protein transport pathways and which model system can be useful to study these processes may be of added value in the risk assessment of food allergenicity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [Research progress in chondroitinase ABC].

    PubMed

    Li, Ye; Chen, Zhenya; Yuan, Qipeng

    2015-05-01

    As the components of proteoglycans, glycosaminoglycans (GAGs) are linear polysaccharides consisting of hexose and uronic acid units linked by β-1,3-glycosidic bond. GAGs mainly distribute in extracellular matrix and on cell surfaces. They guide many biological processes, such as proliferation of cells, transmission of signals and mediation of inflammation. Because of their large molecular weights, GAGs have limited biological functions in vitro. However, the appearance of chondroitinase ABC (ChSase ABC), which can lyse polysaccharides, solves the difficulties. Based on our work, we summarized the classification and the crystal structure of ChSase ABC, as well as other recent research progress on ChSase ABCs. The separation and purification methods of ChSase ABC and construction of engineering bacteria are illustrated. The stability and immobilization are also analyzed by taking account of the characterization of ChSase ABC. Finally, problems and future prospect of the ChSase ABC study are summarized.

  8. Biomimetic materials for protein storage and transport

    DOEpatents

    Firestone, Millicent A [Elmhurst, IL; Laible, Philip D [Villa Park, IL

    2012-05-01

    The invention provides a method for the insertion of protein in storage vehicles and the recovery of the proteins from the vehicles, the method comprising supplying isolated protein; mixing the isolated protein with a fluid so as to form a mixture, the fluid comprising saturated phospholipids, lipopolymers, and a surfactant; cycling the mixture between a first temperature and a second temperature; maintaining the mixture as a solid for an indefinite period of time; diluting the mixture in detergent buffer so as to disrupt the composition of the mixture, and diluting to disrupt the fluid in its low viscosity state for removal of the guest molecules by, for example, dialysis, filtering or chromatography dialyzing/filtering the emulsified solid.

  9. Placenta Copper Transport Proteins in Preeclampsia

    USDA-ARS?s Scientific Manuscript database

    Placental insufficiency underlying preeclampsia (PE) is associated with impaired placental angiogenesis. As copper (Cu) is essential to angiogenesis, we investigated differences in the expression of placental Cu transporters Menkes (ATP7A), Wilsons (ATP7B) and the Cu chaperone (CCS) for superoxide d...

  10. Lentivirus-mediated transfection of chondroitinase ABC gene without the bacterial leader sequence enables long-term secretion of functional chondroitinase ABC in human bone marrow stromal cells.

    PubMed

    Guo, Yang; Klüppel, Michael; Tang, Hao; Tan, Sheng; Zhang, Peidong; Chen, Zhenzhou

    2016-05-01

    To test the feasibility of secretion of functional chondroitinase ABC (ChABC), a bacterial enzyme that promotes axonal regeneration after spinal cord injury, from human bone marrow stromal cells (hBMSCs). A lentiviral-expression vector, Lenti6.3-ChABC-3F, carrying the ChABC-3F gene without the bacterial leader sequence (aa 1-24) was constructed. Transfection of these Lenti6.3-ChABC-3F lentivirus led to stable expression in and secrection of ChABC proteins from hBMSCs for at least ten passages in culture in vitro, which was demonstrated by QRT-PCR, immunostaining, western blotting and ELISA. Moreover, the secreted ChABC proteins exhibited similar functional activity as the commercially-available ChABC. The lentivirus-mediated transfection of chondroitinase ABC gene without the bacterial leader sequence induced substantial long-term secretion of functional ChABC in hBMSCs.

  11. Tritium Suicide Selection Identifies Proteins Involved in the Uptake and Intracellular Transport of Sterols in Saccharomyces cerevisiae▿

    PubMed Central

    Sullivan, David P.; Georgiev, Alexander; Menon, Anant K.

    2009-01-01

    Sterol transport between the plasma membrane (PM) and the endoplasmic reticulum (ER) occurs by a nonvesicular mechanism that is poorly understood. To identify proteins required for this process, we isolated Saccharomyces cerevisiae mutants with defects in sterol transport. We used Upc2-1 cells that have the ability to take up sterols under aerobic conditions and exploited the observation that intracellular accumulation of exogenously supplied [3H]cholesterol in the form of [3H]cholesteryl ester requires an intact PM-ER sterol transport pathway. Upc2-1 cells were mutagenized using a transposon library, incubated with [3H]cholesterol, and subjected to tritium suicide selection to isolate mutants with a decreased ability to accumulate [3H]cholesterol. Many of the mutants had defects in the expression and trafficking of Aus1 and Pdr11, PM-localized ABC transporters that are required for sterol uptake. Through characterization of one of the mutants, a new role was uncovered for the transcription factor Mot3 in controlling expression of Aus1 and Pdr11. A number of mutants had transposon insertions in the uncharacterized Ydr051c gene, which we now refer to as DET1 (decreased ergosterol transport). These mutants expressed Aus1 and Pdr11 normally but were severely defective in the ability to accumulate exogenously supplied cholesterol. The transport of newly synthesized sterols from the ER to the PM was also defective in det1Δ cells. These data indicate that the cytoplasmic protein encoded by DET1 is involved in intracellular sterol transport. PMID:19060182

  12. Mechanistic logic underlying the axonal transport of cytosolic proteins

    PubMed Central

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  13. The PIN-FORMED (PIN) protein family of auxin transporters

    PubMed Central

    2009-01-01

    Summary The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies. PMID:20053306

  14. The PIN-FORMED (PIN) protein family of auxin transporters.

    PubMed

    Krecek, Pavel; Skupa, Petr; Libus, Jirí; Naramoto, Satoshi; Tejos, Ricardo; Friml, Jirí; Zazímalová, Eva

    2009-01-01

    The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies.

  15. HIV-1 Tat Protein Enhances Expression and Function of Breast Cancer Resistance Protein.

    PubMed

    Zhou, Yancong; Zhang, Kun; Yin, Xiaojie; Nie, Qichang; Ma, Yonggang

    2016-01-01

    ATP binding cassette (ABC) transporters can transfer a variety of antiviral agents from the cytoplasm to body fluid, which results in a reduced intracellular concentration of the drugs. Proteins of HIV-1, e.g., Tat and gp120, altered some types of ABC transporter expression in brain microvascular endothelial cells and astrocytes. However, the effect of Tat on ABC transporters in T lymphocytes is unclear. In this study the status of breast cancer resistance protein (BCRP) in Tat expressing cell lines was examined with real-time PCR and flow cytometry. It was found that HIV-1 Tat protein upregulated BCRP expression and enhanced efflux mediated by BCRP significantly, which could inhibit antiviral drugs from entering infected cells and interfere with the therapeutic effect of HAART.

  16. Development of Fourth Generation ABC Inhibitors from Natural Products: A Novel Approach to Overcome Cancer Multidrug Resistance.

    PubMed

    Karthikeyan, Subburayan; Hoti, Sugeerappa Laxmanappa

    2015-01-01

    Multidrug resistance (MDR) in cancer caused due to overexpression of ABC drug transporters is a major problem in modern chemotherapy. Molecular investigations on MDR have revealed that the resistance is due to various transport proteins of the ABC superfamily which include Phosphoglycoprotein (P-gp/MDR1/ ABCB1), multidrug resistance-associated protein-1 (MRP1), and the breast cancer resistance protein (BCRP). They have been characterized functionally and are considered as major players in the development of MDR in cancer cells. These ATP-dependent transporter proteins cause MDR either by decreased uptake of the drug or increased efflux of the drug from the target organelles. Several MDR-reversing agents are being developed and are in various stages of clinical trials. The first three generations of ABC modulators such as quinine, verapamil, cyclosporine-A, tariquitor, PSC 833, LY335979, and GF120918 required to be administered in high doses to reverse MDR and were associated with adverse effects. Additionally, these modulators non-selectively inhibit ABC and adversely accumulate chemotherapeutic drugs in brain and kidney. Currently, research has stepped up towards reversing MDR by using natural products which exhibitted potential as chemosensitizers. Globally, there is a rich biodiversity of natural products which can be sourced for developing drugs. These products may provide more lead compounds with superior activity, foremost to the development of more effective therapies for MDR cancer cells. Here, we briefly review the status of natural products for reversing MDR modulators, and discuss the long term goal of MDR strategies in current clinical settings.

  17. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC.

    PubMed

    Nagakubo, Satoshi; Nishino, Kunihiko; Hirata, Takahiro; Yamaguchi, Akihito

    2002-08-01

    Overproduction of the response regulator BaeR confers resistance to novobiocin and bile salts in a DeltaacrAB mutant by stimulating drug exporter gene expression. The mdtABC (multidrug transporter ABC, formerly known as yegMNO) genes, which encode a resistance-nodulation-cell division (RND) drug efflux system, are responsible for resistance. The MdtABC system comprises the transmembrane MdtB/MdtC heteromultimer and MdtA membrane fusion protein. MdtAC also confers bile salt, but not novobiocin, resistance. This indicates that the evolution from an MdtC homomultimer to an MdtBC heteromultimer contributed to extend the drug resistance spectrum. A BLAST search suggested that such a heteromultimer-type RND exporter constitutes a unique family among gram-negative organisms.

  18. The Putative Response Regulator BaeR Stimulates Multidrug Resistance of Escherichia coli via a Novel Multidrug Exporter System, MdtABC

    PubMed Central

    Nagakubo, Satoshi; Nishino, Kunihiko; Hirata, Takahiro; Yamaguchi, Akihito

    2002-01-01

    Overproduction of the response regulator BaeR confers resistance to novobiocin and bile salts in a ΔacrAB mutant by stimulating drug exporter gene expression. The mdtABC (multidrug transporter ABC, formerly known as yegMNO) genes, which encode a resistance-nodulation-cell division (RND) drug efflux system, are responsible for resistance. The MdtABC system comprises the transmembrane MdtB/MdtC heteromultimer and MdtA membrane fusion protein. MdtAC also confers bile salt, but not novobiocin, resistance. This indicates that the evolution from an MdtC homomultimer to an MdtBC heteromultimer contributed to extend the drug resistance spectrum. A BLAST search suggested that such a heteromultimer-type RND exporter constitutes a unique family among gram-negative organisms. PMID:12107133

  19. Position-dependent Effects of Polylysine on Sec Protein Transport*

    PubMed Central

    Liang, Fu-Cheng; Bageshwar, Umesh K.; Musser, Siegfried M.

    2012-01-01

    The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or “pause sites,” were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport. PMID:22367204

  20. Recognition and Incision of Cr(III) Ligand-Conjugated DNA Adducts by the Nucleotide Excision Repair Proteins UvrABC: Importance of the Cr(III)–Purine Moiety in the Enzymatic Reaction

    PubMed Central

    Arakawa, Hirohumi

    2010-01-01

    Hexavalent chromium [Cr(VI)] is an ubiquitous environmental contaminant and a well-known etiological agent of human lung cancer. Inside human cells, Cr(VI) is reduced to Cr(III), which can conjugate with amino acids, ascorbic acids, and glutathiones in the cytoplasm. Conjugated and unconjugated Cr(III) can enter the nucleus to form adducts with DNA and electrostatically interact with the phosphate group of DNA. It has been found that in both human and Escherichia coli systems, Cr(III) ligand-conjugated DNA ternary adducts are efficiently repaired by the nucleotide excision repair (NER) pathway. In contrast, DNA adducts formed by unconjugated Cr(III) with DNA are repaired significantly less efficiently by the NER system. These results raise the possibility that the NER system repairs Cr(III) ligand-conjugated DNA adducts and biadducts such as Cr(III)–guanine–phosphate adducts but not Cr(III)–phosphate adducts. To test this hypothesis, we determined the cutting efficiency and the mode of cutting of DNA modified with tannin-conjugated Cr(III) by the E. coli NER enzymes UvrABC. Tannin compounds, gallic acid (GA), and ethyl gallate (EGA) can reduce Cr(VI) to Cr(III) to form Cr(III)–GA2 and Cr(III)–EGA2, respectively, which can interact with a single guanine or adenine base but not with the DNA phosphate backbone. We found that UvrABC is able to incise Cr(III)–GA2- and Cr(III)–EGA2-modified plasmid DNA, and the amount of incision increased as a function of tannin concentration used for modifications. In contrast, UvrABC nuclease does not incise GA- and EGA-modified plasmid DNA. Mapping the sequence specificity of Cr(III)–GA2– and Cr(III)–EGA2–DNA formation in the human p53 gene sequence by UvrABC nuclease cutting, we found that the sequence specificity for both adducts is the same but is much more selective than Cr(III)–guanine–DNA adducts. Together, these results suggest that NER proteins from E. coli recognize the purine–Cr(III) adduct but

  1. Inhibition of cholesterol absorption associated with a PPAR alpha-dependent increase in ABC binding cassette transporter A1 in mice.

    PubMed

    Knight, Brian L; Patel, Dilip D; Humphreys, Sandy M; Wiggins, David; Gibbons, Geoffrey F

    2003-11-01

    Dietary supplementation with the peroxisome proliferator-activated receptor alpha (PPAR alpha) ligand WY 14,643 gave rise to a 4- to 5-fold increase in the expression of mRNA for the ATP binding cassette transporter A1 (ABCA1) in the intestine of normal mice. There was no effect in the intestine of PPAR alpha-null mice. Consumption of a high-cholesterol diet also increased intestinal ABCA1 expression. The effects of WY 14,643 and the high-cholesterol diet were not additive. WY 14,643 feeding reduced intestinal absorption of cholesterol in the normal mice, irrespective of the dietary cholesterol concentration, and this resulted in lower diet-derived cholesterol and cholesteryl ester concentrations in plasma and liver. At each concentration of dietary cholesterol, there was a similar significant inverse correlation between intestinal ABCA1 mRNA content and the amount of cholesterol absorbed. The fibrate-induced changes in the intestines of the normal mice were accompanied by an increased concentration of the mRNA encoding the sterol-regulatory element binding protein-1c gene (SREBP-1c), a known target gene for the oxysterol receptor liver X receptor alpha (LXR alpha). There was a correlation between intestinal ABCA1 mRNA and SREBP-1c mRNA contents, but not between SREBP-1c mRNA content and cholesterol absorption. These results suggest that PPAR alpha influences cholesterol absorption through modulating ABCA1 activity in the intestine by a mechanism involving LXR alpha.

  2. Biosynthesis of Azorhizobium caulinodans Nod factors. Study of the activity of the NodABCS proteins by expression of the genes in Escherichia coli.

    PubMed

    Mergaert, P; D'Haeze, W; Geelen, D; Promé, D; Van Montagu, M; Geremia, R; Promé, J C; Holsters, M

    1995-12-08

    By in vitro and in vivo studies with Escherichia coli expressing different combinations of the nodABCS genes of Azorhizobium caulinodans, Nod factor intermediates were identified and their structures determined using mass spectrometry. Substrate-product relationships were studied by time course experiments, and the Nod factor biosynthetic pathway was partially resolved. E. coli strains, harboring nodA and/or nodB, did not produce Nod metabolites, whereas the strain expressing nodC produced chitooligosaccharides. Thus, the first committed step was the production of the carbohydrate backbone. Bacitracin and tunicamycin did not affect this step, suggesting that undecaprenyl pyrophosphate-linked intermediates were not involved. The second step was the deacetylation of chitooligosaccharides by NodB since the E. coli strain expressing nodBC produced chitooligosaccharides, deacetylated at the non-reducing end and since the NodC products were precursors of the NodBC products. A strain expressing nodBCS produced N-methylated oligosaccharides, whereas a strain expressing nodCS produced unmethylated oligosaccharides. Time course experiments showed that methylation occurred after deacetylation. Thus, NodS acted after NodB. The NodBCS metabolites were partially converted to lipo-chitooligosaccharides when the nodABCS genes were expressed, showing that NodA was involved in the acylation and acted after NodS.

  3. Ion transport across the biological membrane by computational protein design

    NASA Astrophysics Data System (ADS)

    Grigoryan, Gevorg

    The cellular membrane is impermeable to most of the chemicals the cell needs to take in or discard to survive. Therefore, transporters-a class of transmembrane proteins tasked with shuttling cargo chemicals in and out of the cell-are essential to all cellular life. From existing crystal structures, we know transporters to be complex machines, exquisitely tuned for specificity and controllability. But how could membrane-bound life have evolved if it needed such complex machines to exist first? To shed light onto this question, we considered the task of designing a transporter de novo. As our guiding principle, we took the ``alternating-access model''-a conceptual mechanism stating that transporters work by rocking between two conformations, each exposing the cargo-binding site to either the intra- or the extra-cellular environment. A computational design framework was developed to encode an anti-parallel four-helix bundle that rocked between two alternative states to orchestrate the movement of Zn(II) ions across the membrane. The ensemble nature of both states was accounted for using a free energy-based approach, and sequences were chosen based on predicted formation of the targeted topology in the membrane and bi-stability. A single sequence was prepared experimentally and shown to function as a Zn(II) transporter in lipid vesicles. Further, transport was specific to Zn(II) ions and several control peptides supported the underlying design principles. This included a mutant designed to retain all properties but with reduced rocking, which showed greatly depressed transport ability. These results suggest that early transporters could have evolved in the context of simple topologies, to be later tuned by evolution for improved properties and controllability. Our study also serves as an important advance in computational protein design, showing the feasibility of designing functional membrane proteins and of tuning conformational landscapes for desired function

  4. Transcriptional Regulation, Metal Binding Properties and Structure of Pden1597, an Unusual Zinc Transport Protein from Paracoccus denitrificans*

    PubMed Central

    Handali, Melody; Neupane, Durga P.; Roychowdhury, Hridindu; Yukl, Erik T.

    2015-01-01

    ATP-binding cassette (ABC) transporters of the cluster 9 family are ubiquitous among bacteria and essential for acquiring Zn2+ and Mn2+ from the environment or, in the case of pathogens, from the host. These rely on a substrate-binding protein (SBP) to coordinate the relevant metal with high affinity and specificity and subsequently release it to a membrane permease for translocation into the cytoplasm. Although a number of cluster 9 SBP structures have been determined, the structural attributes conferring Zn2+ or Mn2+ specificity remain ambiguous. Here we describe the gene expression profile, in vitro metal binding properties, and crystal structure of a new cluster 9 SBP from Paracoccus denitrificans we have called AztC. Although all of our results strongly indicate Zn2+ over Mn2+ specificity, the Zn2+ ion is coordinated by a conserved Asp residue only observed to date as a metal ligand in Mn2+-specific SBPs. The unusual sequence properties of this protein are shared among close homologues, including members from the human pathogens Klebsiella pneumonia and Enterobacter aerogenes, and would seem to suggest a subclass of Zn2+-specific transporters among the cluster 9 family. In any case, the unusual coordination environment of AztC expands the already considerable range of those available to Zn2+-specific SBPs and highlights the presence of a His-rich loop as the most reliable indicator of Zn2+ specificity. PMID:25787075

  5. Transcriptional regulation, metal binding properties and structure of Pden1597, an unusual zinc transport protein from Paracoccus denitrificans

    DOE PAGES

    Handali, Melody; Neupane, Durga P.; Roychowdhury, Hridindu; ...

    2015-03-18

    Here, ATP-binding cassette (ABC) transporters of the cluster 9 family are ubiquitous among bacteria and essential for acquiring Zn 2+ and Mn 2+ from the environment or, in the case of pathogens, from the host. These rely on a substrate-binding protein (SBP) to coordinate the relevant metal with high affinity and specificity and subsequently release it to a membrane permease for translocation into the cytoplasm. Although a number of cluster 9 SBP structures have been determined, the structural attributes conferring Zn 2+ or Mn 2+ specificity remain ambiguous. Here we describe the gene expression profile, in vitro metal binding properties,more » and crystal structure of a new cluster 9 SBP from Paracoccus denitrificans we have called AztC. Although all of our results strongly indicate Zn 2+ over Mn 2+ specificity, the Zn 2+ ion is coordinated by a conserved Asp residue only observed to date as a metal ligand in Mn 2+-specific SBPs. The unusual sequence properties of this protein are shared among close homologues, including members from the human pathogens Klebsiella pneumonia and Enterobacter aerogenes, and would seem to suggest a subclass of Zn 2+-specific transporters among the cluster 9 family. In any case, the unusual coordination environment of AztC expands the already considerable range of those available to Zn 2+-specific SBPs and highlights the presence of a His-rich loop as the most reliable indicator of Zn 2+ specificity.« less

  6. Effects of lipid environment on the conformational changes of an ABC importer

    PubMed Central

    Rice, Austin J; Alvarez, Frances JD; Davidson, Amy L; Pinkett, Heather W

    2014-01-01

    In order to shuttle substrates across the lipid bilayer, membrane proteins undergo a series of conformation changes that are influenced by protein structure, ligands, and the lipid environment. To test the effect of lipid on conformation change of the ABC transporter MolBC, EPR studies were conducted in lipids and detergents of variable composition. In both a detergent and lipid environment, MolBC underwent the same general conformation changes as detected by site-directed EPR spectroscopy. However, differences in activity and the details of the EPR analysis indicate conformational rigidity that is dependent on the lipid environment. From these observations, we conclude that native-like lipid mixtures provide the transporter with greater activity and conformational flexibility as well as technical advantages such as reconstitution efficiency and protein stability. PMID:24852576

  7. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    PubMed Central

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386

  8. ATP and AMP mutually influence their interaction with the ATP-binding cassette (ABC) adenylate kinase cystic fibrosis transmembrane conductance regulator (CFTR) at separate binding sites.

    PubMed

    Randak, Christoph O; Dong, Qian; Ver Heul, Amanda R; Elcock, Adrian H; Welsh, Michael J

    2013-09-20

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP &lrarr2; 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5'-triphosphate (8-N3-ATP) and 8-azidoadenosine 5'-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P(1),P(5)-di(adenosine-5') pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2.

  9. ABC's of Construction. Final Report.

    ERIC Educational Resources Information Center

    Greater Baton Rouge Chamber of Commerce, LA.

    The ABC's of Construction project was a demonstration project designed to integrate basic skills training with an industry-developed vocational-craft training program. The program was located at the central training facility of the Pelican Chapter of Associated Builders and Contractors (ABC), an organization made up of nearly 300 member companies…

  10. Do You Know Your ABC?

    ERIC Educational Resources Information Center

    Neale, Claire

    2013-01-01

    Within primary schools, the core subjects of literacy and numeracy are highly regarded, and rightly so, as children need to learn to read, write and be numerically literate. This means that all children learn their ABCs at an early age, But, what about the "other ABC"--"Airway, Breathing and Circulation?" Accidents and medical…

  11. Regulation of polar auxin transport by protein and lipid kinases

    PubMed Central

    Jaillais, Yvon

    2016-01-01

    The directional transport of auxin, known as polar auxin transport, allows asymmetric distribution of this hormone in different cells and tissues. This system creates local auxin maxima, minima and gradients that are instrumental in both organ initiation and shape determination. As such, polar auxin transport is crucial for all aspects of plant development but also for environmental interaction, notably in shaping plant architecture to its environment. Cell-to-cell auxin transport is mediated by a network of auxin carriers that are regulated at the transcriptional and post-translational levels. Here we review our current knowledge on some aspects of the ‘non-genomic’ regulation of auxin transport, putting an emphasis on how phosphorylation by protein and lipid kinases controls the polarity, intracellular trafficking, stability and activity of auxin carriers. We describe the role of several AGC kinases, including PINOID, D6PK and the blue light photoreceptor phot1, in phosphorylating auxin carriers from the PIN and ABCB families. We also highlight the function of some Receptor-Like Kinases (RLK) and two-component histidine kinase receptors in polar auxin transport, noticing that there are likely RLKs involved in coordinating auxin distribution yet to be discovered. In addition, we describe the emerging role of phospholipid phosphorylation in polarity establishment and intracellular trafficking of PIN proteins. We outline these various phosphorylation mechanisms in the context of primary and lateral root development, leaf cell shape acquisition as well as root gravitropism and shoot phototropism. PMID:27242371

  12. Rab proteins: The key regulators of intracellular vesicle transport

    SciTech Connect

    Bhuin, Tanmay; Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied bymore » cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.« less

  13. The Absence of the Transcription Factor Yrr1p, Identified from Comparative Genome Profiling, Increased Vanillin Tolerance Due to Enhancements of ABC Transporters Expressing, rRNA Processing and Ribosome Biogenesis in Saccharomyces cerevisiae.

    PubMed

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Shen, Yu; Bao, Xiaoming

    2017-01-01

    Enhancing the tolerance of Saccharomyces cerevisiae to inhibitors derived from lignocellulose is conducive to producing biofuel and chemicals using abundant lignocellulosic materials. Vanillin is a major type of phenolic inhibitor in lignocellulose hydrolysates for S. cerevisiae . In the present work, the factors beneficial to vanillin resistance in yeast were identified from the vanillin-resistant strain EMV-8, which was derived from strain NAN-27 by adaptive evolution. We found 450 SNPs and 44 genes with InDels in the vanillin-tolerant strain EMV-8 by comparing the genome sequences of EMV-8 and NAN-27. To investigate the effects of InDels, InDels were deleted in BY4741, respectively. We demonstrated that the deletion of YRR1 improved vanillin tolerance of strain. In the presence of 6 mM vanillin, deleting YRR1 increase the maximum specific growth rate and the vanillin consumption rate by 142 and 51%, respectively. The subsequent transcriptome analysis revealed that deleting YRR1 resulted in changed expression of over 200 genes in the presence of 5 mM vanillin. The most marked changes were the significant up-regulation of the dehydrogenase ADH7 , several ATP-binding cassette (ABC) transporters, and dozens of genes involved in ribosome biogenesis and rRNA processing. Coincidently, the crude enzyme solution of BY4741( yrr1 Δ) exhibited higher NADPH-dependent vanillin reduction activity than control. In addition, overexpressing the ABC transporter genes PDR5, YOR1 , and SNQ2 , as well as the RNA helicase gene DBP2 , increased the vanillin tolerance of strain. Interestingly, unlike the marked changes we mentioned above, under vanillin-free conditions, there are only limited transcriptional differences between wildtype and yrr1 Δ. This indicated that vanillin might act as an effector in Yrr1p-related regulatory processes. The new findings of the relationship between YRR1 and vanillin tolerance, as well as the contribution of rRNA processing and ribosome biogenesis to

  14. The Absence of the Transcription Factor Yrr1p, Identified from Comparative Genome Profiling, Increased Vanillin Tolerance Due to Enhancements of ABC Transporters Expressing, rRNA Processing and Ribosome Biogenesis in Saccharomyces cerevisiae

    PubMed Central

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Shen, Yu; Bao, Xiaoming

    2017-01-01

    Enhancing the tolerance of Saccharomyces cerevisiae to inhibitors derived from lignocellulose is conducive to producing biofuel and chemicals using abundant lignocellulosic materials. Vanillin is a major type of phenolic inhibitor in lignocellulose hydrolysates for S. cerevisiae. In the present work, the factors beneficial to vanillin resistance in yeast were identified from the vanillin-resistant strain EMV-8, which was derived from strain NAN-27 by adaptive evolution. We found 450 SNPs and 44 genes with InDels in the vanillin-tolerant strain EMV-8 by comparing the genome sequences of EMV-8 and NAN-27. To investigate the effects of InDels, InDels were deleted in BY4741, respectively. We demonstrated that the deletion of YRR1 improved vanillin tolerance of strain. In the presence of 6 mM vanillin, deleting YRR1 increase the maximum specific growth rate and the vanillin consumption rate by 142 and 51%, respectively. The subsequent transcriptome analysis revealed that deleting YRR1 resulted in changed expression of over 200 genes in the presence of 5 mM vanillin. The most marked changes were the significant up-regulation of the dehydrogenase ADH7, several ATP-binding cassette (ABC) transporters, and dozens of genes involved in ribosome biogenesis and rRNA processing. Coincidently, the crude enzyme solution of BY4741(yrr1Δ) exhibited higher NADPH-dependent vanillin reduction activity than control. In addition, overexpressing the ABC transporter genes PDR5, YOR1, and SNQ2, as well as the RNA helicase gene DBP2, increased the vanillin tolerance of strain. Interestingly, unlike the marked changes we mentioned above, under vanillin-free conditions, there are only limited transcriptional differences between wildtype and yrr1Δ. This indicated that vanillin might act as an effector in Yrr1p-related regulatory processes. The new findings of the relationship between YRR1 and vanillin tolerance, as well as the contribution of rRNA processing and ribosome biogenesis to

  15. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    PubMed Central

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  16. TaAbc1, a Member of Abc1-Like Family Involved in Hypersensitive Response against the Stripe Rust Fungal Pathogen in Wheat

    PubMed Central

    Wang, Xiaojing; Wang, Xiaojie; Duan, Yinghui; Yin, Shuining; Zhang, Hongchang; Huang, Li; Kang, Zhensheng

    2013-01-01

    To search for genes involved in wheat (Triticum aestivum L.) defense response to the infection of stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst), we identified and cloned a new wheat gene similar to the genes in the Abc1-like gene family. The new gene, designated as TaAbc1, encodes a 717-amino acid, 80.35 kD protein. The TaAbc1 protein contains two conserved domains shared by Abc1-like proteins, two trans-membrane domains at the C-terminal, and a 36-amino acid chloroplast targeting presequence at the N-terminal. Characterization of TaAbc1 expression revealed that gene expression was tissue-specific and could be up-regulated by biotic agents (e.g., stripe rust pathogen) and/or by an abiotic stress like wounding. High-fold induction was associated with the hypersensitive response (HR) triggered only by avirulent stripe rust pathotypes, suggesting that TaAbc1 is a rust-pathotype specific HR-mediator. Down-regulating TaAbc1 reduced HR but not the overall resistance level in Suwon11 to CYR23, suggesting TaAbc1 was involved in HR against stripe rust, but overall host resistance is not HR-dependent. PMID:23527058

  17. Convective-diffusive transport in protein crystal growth

    NASA Astrophysics Data System (ADS)

    Lin, H.; Rosenberger, F.; Alexander, J. I. D.; Nadarajah, A.

    1995-05-01

    Particular interest in the role of convection in protein crystallization has arisen since some protein single crystals of improved structural quality have been obtained under reduced gravity conditions. We have numerically modeled the time-dependent diffusive-convective transport in an isothermal protein crystal growth system at standard and zero gravity (1 g and 0 g). In the 2D model used, a rectangular crystal of fixed dimensions 400 μm × 600 μm is positioned at the bottom of a 1 mm high and 6 mm wide growth cell. The aqueous solution contains protein and precipitant. For the dependence of the crystal growth rate on interfacial supersaturation, experimental data for lysozyme are used. The repartitioning of water and precipitant at the growing interface is based on experimental segregation data for lysozyme: NaCl, and on complete rejection for a fictitious system in which lysozyme and precipitant have the same diffusivity. The results show that even in the small cell employed, protein concentration nonuniformities and gravity-driven solutal convection can be significant. The calculated convection velocities are of the same order of magnitude as those found in earlier experiments. As expected, convective transport enhances the growth rates. However, even when diffusion dominates mass transport, i.e. at 0 g, lysozyme crystal growth remains kinetically limited. Irrespective of the diffusivity of the precipitant, due to the low growth rates, the precipitant distribution in the solution remains rather uniform even at 0 g, unless strong coupling between precipitant and protein fluxes is assumed. The salt distribution in the crystal is predicted to be non-uniform at both 1 g and 0 g, as a consequence of protein depletion in the solution.

  18. Expression and putative role of mitochondrial transport proteins in cancer.

    PubMed

    Lytovchenko, Oleksandr; Kunji, Edmund R S

    2017-08-01

    Cancer cells undergo major changes in energy and biosynthetic metabolism. One of them is the Warburg effect, in which pyruvate is used for fermentation rather for oxidative phosphorylation. Another major one is their increased reliance on glutamine, which helps to replenish the pool of Krebs cycle metabolites used for other purposes, such as amino acid or lipid biosynthesis. Mitochondria are central to these alterations, as the biochemical pathways linking these processes run through these organelles. Two membranes, an outer and inner membrane, surround mitochondria, the latter being impermeable to most organic compounds. Therefore, a large number of transport proteins