Science.gov

Sample records for abc transporter family

  1. Transcriptomic insights on the ABC transporter gene family in the salmon louse Caligus rogercresseyi.

    PubMed

    Valenzuela-Muñoz, Valentina; Sturm, Armin; Gallardo-Escárate, Cristian

    2015-04-09

    ATP-binding cassette (ABC) protein family encode for membrane proteins involved in the transport of various biomolecules through the cellular membrane. These proteins have been identified in all taxa and present important physiological functions, including the process of insecticide detoxification in arthropods. For that reason the ectoparasite Caligus rogercresseyi represents a model species for understanding the molecular underpinnings involved in insecticide drug resistance. llumina sequencing was performed using sea lice exposed to 2 and 3 ppb of deltamethrin and azamethiphos. Contigs obtained from de novo assembly were annotated by Blastx. RNA-Seq analysis was performed and validated by qPCR analysis. From the transcriptome database of C. rogercresseyi, 57 putative members of ABC protein sequences were identified and phylogenetically classified into the eight subfamilies described for ABC transporters in arthropods. Transcriptomic profiles for ABC proteins subfamilies were evaluated throughout C. rogercresseyi development. Moreover, RNA-Seq analysis was performed for adult male and female salmon lice exposed to the delousing drugs azamethiphos and deltamethrin. High transcript levels of the ABCB and ABCC subfamilies were evidenced. Furthermore, SNPs mining was carried out for the ABC proteins sequences, revealing pivotal genomic information. The present study gives a comprehensive transcriptome analysis of ABC proteins from C. rogercresseyi, providing relevant information about transporter roles during ontogeny and in relation to delousing drug responses in salmon lice. This genomic information represents a valuable tool for pest management in the Chilean salmon aquaculture industry.

  2. [The ABC transporters of Saccharomyces cerevisiae].

    PubMed

    Wawrzycka, Donata

    2011-01-01

    The ABC transporters (ATP Binding Cassette) compose one of the bigest protein family with the great medical, industrial and economical impact. They are found in all organism from bacteria to man. ABC proteins are responsible for resistance of microorganism to antibiotics and fungicides and multidrug resistance of cancer cells. Mutations in ABC transporters genes cause seriuos deseases like cystic fibrosis, adrenoleucodystrophy or ataxia. Transport catalized by ABC proteins is charged with energy from the ATP hydrolysis. The ABC superfamily contains transporters, canals, receptors. Analysis of the Saccharomyces cerevisiae genome allowed to distinguish 30 potential ABC proteins which are classified into 6 subfamilies. The structural and functional similarity of the yeast and human ABC proteins allowes to use the S. cerevisiae as a model organism for ABC transporters characterisation. In this work the present state of knowleadge on yeast S. cerevisiae ABC proteins was summarised.

  3. Catalytic and transport cycles of ABC exporters.

    PubMed

    Al-Shawi, Marwan K

    2011-09-07

    ABC (ATP-binding cassette) transporters are arguably the most important family of ATP-driven transporters in biology. Despite considerable effort and advances in determining the structures and physiology of these transporters, their fundamental molecular mechanisms remain elusive and highly controversial. How does ATP hydrolysis by ABC transporters drive their transport function? Part of the problem in answering this question appears to be a perceived need to formulate a universal mechanism. Although it has been generally hoped and assumed that the whole superfamily of ABC transporters would exhibit similar conserved mechanisms, this is proving not to be the case. Structural considerations alone suggest that there are three overall types of coupling mechanisms related to ABC exporters, small ABC importers and large ABC importers. Biochemical and biophysical characterization leads us to the conclusion that, even within these three classes, the catalytic and transport mechanisms are not fully conserved, but continue to evolve. ABC transporters also exhibit unusual characteristics not observed in other primary transporters, such as uncoupled basal ATPase activity, that severely complicate mechanistic studies by established methods. In this chapter, I review these issues as related to ABC exporters in particular. A consensus view has emerged that ABC exporters follow alternating-access switch transport mechanisms. However, some biochemical data suggest that alternating catalytic site transport mechanisms are more appropriate for fully symmetrical ABC exporters. Heterodimeric and asymmetrical ABC exporters appear to conform to simple alternating-access-type mechanisms.

  4. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective

    PubMed Central

    Greene, Nicholas P.; Kaplan, Elise; Crow, Allister; Koronakis, Vassilis

    2018-01-01

    The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking. PMID:29892271

  5. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective.

    PubMed

    Greene, Nicholas P; Kaplan, Elise; Crow, Allister; Koronakis, Vassilis

    2018-01-01

    The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.

  6. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters.

    PubMed

    Baral, Bikash

    2017-01-01

    The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. ABC Transporters Involved in Export of Cell Surface Glycoconjugates

    PubMed Central

    Cuthbertson, Leslie; Kos, Veronica; Whitfield, Chris

    2010-01-01

    Summary: Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles. PMID:20805402

  8. An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins.

    PubMed

    Varmanen, P; Rantanen, T; Palva, A

    1996-12-01

    A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.

  9. An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems.

    PubMed

    Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Koumoto, Yasuko; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko

    2016-01-01

    A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.

  10. Diversity in ABC transporters: Type I, II and III importers

    PubMed Central

    Rice, Austin J.; Park, Aekyung

    2014-01-01

    ATP-binding cassette transporters are multi-subunit membrane pumps that transport substrates across membranes. While significant in the transport process, transporter architecture exhibits a range of diversity that we are only beginning to recognize. This divergence may provide insight into the mechanisms of substrate transport and homeostasis. Until recently, ABC importers have been classified into two types, but with the emergence of energy-coupling factor (ECF) transporters there are potentially three types of ABC importers. In this review, we summarize an expansive body of research on the three types of importers with an emphasis on the basics that underlie ABC importers, such as structure, subunit composition and mechanism. PMID:25155087

  11. ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi.

    PubMed

    Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Comandatore, Francesco; Sassera, Davide; Rossi, Paolo; Cafarchia, Claudia; Otranto, Domenico; Favia, Guido; Genchi, Claudio; Bandi, Claudio; Urbanelli, Sandra

    2014-07-29

    Proteins from the ABC family (ATP-binding cassette) represent the largest known group of efflux pumps, responsible for transporting specific molecules across lipid membranes in both prokaryotic and eukaryotic organisms. In arthropods they have been shown to play a role in insecticide defense/resistance. The presence of ABC transporters and their possible association with insecticide transport have not yet been investigated in the mosquito Anopheles stephensi, the major vector of human malaria in the Middle East and South Asian regions. Here we investigated the presence and role of ABCs in transport of permethrin insecticide in a susceptible strain of this mosquito species. To identify ABC transporter genes we obtained a transcriptome from untreated larvae of An. stephensi and then compared it with the annotated transcriptome of Anopheles gambiae. To analyse the association between ABC transporters and permethrin we conducted bioassays with permethrin alone and in combination with an ABC inhibitor, and then we investigated expression profiles of the identified genes in larvae exposed to permethrin. Bioassays showed an increased mortality of mosquitoes when permethrin was used in combination with the ABC-transporter inhibitor. Genes for ABC transporters were detected in the transcriptome, and five were selected (AnstABCB2, AnstABCB3, AnstABCB4, AnstABCmember6 and AnstABCG4). An increased expression in one of them (AnstABCG4) was observed in larvae exposed to the LD50 dose of permethrin. Contrary to what was found in other insect species, no up-regulation was observed in the AnstABCB genes. Our results show for the first time the involvement of ABC transporters in larval defense against permethrin in An. stephensi and, more in general, confirm the role of ABC transporters in insecticide defense. The differences observed with previous studies highlight the need of further research as, despite the growing number of studies on ABC transporters in insects, the

  12. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance.

    PubMed

    Joshi, Anand A; Vaidya, Soniya S; St-Pierre, Marie V; Mikheev, Andrei M; Desino, Kelly E; Nyandege, Abner N; Audus, Kenneth L; Unadkat, Jashvant D; Gerk, Phillip M

    2016-12-01

    The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.

  13. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance

    PubMed Central

    Joshi, Anand A.; Vaidya, Soniya S.; St-Pierre, Marie V.; Mikheev, Andrei M.; Desino, Kelly E.; Nyandege, Abner N.; Audus, Kenneth L.; Unadkat, Jashvant D.; Gerk, Phillip M.

    2017-01-01

    The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy. PMID:27644937

  14. Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology.

    PubMed

    Lane, Thomas S; Rempe, Caroline S; Davitt, Jack; Staton, Margaret E; Peng, Yanhui; Soltis, Douglas Edward; Melkonian, Michael; Deyholos, Michael; Leebens-Mack, James H; Chase, Mark; Rothfels, Carl J; Stevenson, Dennis; Graham, Sean W; Yu, Jun; Liu, Tao; Pires, J Chris; Edger, Patrick P; Zhang, Yong; Xie, Yinlong; Zhu, Ying; Carpenter, Eric; Wong, Gane Ka-Shu; Stewart, C Neal

    2016-05-31

    The ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants. ABC transporters act to transport compounds across cellular membranes and are involved in a diverse range of biological processes. Thus, the applicability to biotechnology is vast, including cancer resistance in humans, drug resistance among vertebrates, and herbicide and other xenobiotic resistance in plants. In addition, plants appear to harbor the highest diversity of ABC transporter genes compared with any other group of organisms. This study applied transcriptome analysis to survey the kingdom-wide ABC transporter diversity in plants and suggest biotechnology applications of this diversity. We utilized sequence similarity-based informatics techniques to infer the identity of ABC transporter gene candidates from 1295 phylogenetically-diverse plant transcriptomes. A total of 97,149 putative (approximately 25 % were full-length) ABC transporter gene members were identified; each RNA-Seq library (plant sample) had 88 ± 30 gene members. As expected, simpler organisms, such as algae, had fewer unique members than vascular land plants. Differences were also noted in the richness of certain ABC transporter subfamilies. Land plants had more unique ABCB, ABCC, and ABCG transporter gene members on average (p < 0.005), and green algae, red algae, and bryophytes had significantly more ABCF transporter gene members (p < 0.005). Ferns had significantly fewer ABCA transporter gene members than all other plant groups (p < 0.005). We present a transcriptomic overview of ABC transporter gene members across all major plant groups. An increase in the number of gene family members present in the ABCB, ABCC, and ABCD transporter subfamilies may indicate an expansion of the ABC transporter superfamily among green land plants, which include all crop species. The striking difference between the number of ABCA subfamily transporter

  15. ABC-B transporter genes in Dirofilaria immitis.

    PubMed

    Bourguinat, Catherine; Che, Hua; Mani, Thangadurai; Keller, Kathy; Prichard, Roger K

    2016-08-01

    Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchus contortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite. Copyright © 2016. Published by Elsevier Ltd.

  16. Transcriptome-Based Identification of ABC Transporters in the Western Tarnished Plant Bug Lygus hesperus

    PubMed Central

    Hull, J. Joe; Chaney, Kendrick; Geib, Scott M.; Fabrick, Jeffrey A.; Brent, Colin S.; Walsh, Douglas; Lavine, Laura Corley

    2014-01-01

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic clearance. While ABC transporters have been extensively studied in vertebrates, less is known concerning this superfamily in insects, particularly hemipteran pests. We used RNA-Seq transcriptome sequencing to identify 65 putative ABC transporter sequences (including 36 full-length sequences) from the eight ABC subfamilies in the western tarnished plant bug (Lygus hesperus), a polyphagous agricultural pest. Phylogenetic analyses revealed clear orthologous relationships with ABC transporters linked to insecticide/xenobiotic clearance and indicated lineage specific expansion of the L. hesperus ABCG and ABCH subfamilies. The transcriptional profile of 13 LhABCs representative of the ABCA, ABCB, ABCC, ABCG, and ABCH subfamilies was examined across L. hesperus development and within sex-specific adult tissues. All of the transcripts were amplified from both reproductively immature and mature adults and all but LhABCA8 were expressed to some degree in eggs. Expression of LhABCA8 was spatially localized to the testis and temporally timed with male reproductive development, suggesting a potential role in sexual maturation and/or spermatozoa protection. Elevated expression of LhABCC5 in Malpighian tubules suggests a possible role in xenobiotic clearance. Our results provide the first transcriptome-wide analysis of ABC transporters in an agriculturally important hemipteran pest and, because ABC transporters are known to be important mediators of insecticidal resistance, will provide the basis for future biochemical and toxicological studies on the role of this protein family in insecticide resistance in Lygus species. PMID:25401762

  17. Comparison of mechanistic transport cycle models of ABC exporters.

    PubMed

    Szöllősi, Dániel; Rose-Sperling, Dania; Hellmich, Ute A; Stockner, Thomas

    2018-04-01

    ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain." Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Harnessing Drug Resistance: Using ABC Transporter Proteins To Target Cancer Cells

    PubMed Central

    Leitner, Heather M.; Kachadourian, Remy; Day, Brian J.

    2007-01-01

    The ATP-binding cassette (ABC) class of proteins is one of the most functionally diverse transporter families found in biological systems. Although the abundance of ABC proteins varies between species, they are highly conserved in sequence and often demonstrate similar functions across prokaryotic and eukaryotic organisms. Beginning with a brief summary of the events leading to our present day knowledge of ABC transporters, the purpose of this review is to discuss the potential for utilizing ABC transporters as a means for cellular glutathione (GSH) modulation. GSH is one of the most abundant thiol antioxidants in cells. It is involved in cellular division, protein and DNA synthesis, maintenance of cellular redox status and xenobiotic metabolism. Cellular GSH levels are often altered in many disease states including cancer. Over the past two decades there has been considerable emphasis on methods to sensitize cancer cells to chemotherapeutics and ionization radiation therapy by GSH depletion. We contend that ABC transporters, particularly multi-drug resistant proteins (MRPs), may be used as therapeutic targets for applications aimed at modulation of GSH levels. This review will emphasize MRP-mediated modulation of intracellular GSH levels as a potential alternative and adjunctive approach for cancer therapy. PMID:17585883

  19. ABC transporters and immunity: mechanism of self-defense.

    PubMed

    Hinz, Andreas; Tampé, Robert

    2012-06-26

    The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.

  20. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development

    PubMed Central

    Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia ur; Liu, Liping; Qin, Yuan

    2017-01-01

    Pineapple (Ananas comosus L.) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs, 20 ABCBs, 16 ABCCs, 2 ABCDs, one ABCEs, 5 ABCFs, 42 ABCGs and 9 ABCIs). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4, AcABCC7, AcABCC9, AcABCG26, AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production. PMID:29312399

  1. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development.

    PubMed

    Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia Ur; Liu, Liping; Qin, Yuan

    2017-01-01

    Pineapple ( Ananas comosus L .) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs , 20 ABCB s, 16 ABCCs , 2 ABCDs , one ABCEs , 5 ABCFs , 42 ABCGs and 9 ABCIs ). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4 , AcABCC7 , AcABCC9 , AcABCG26 , AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production.

  2. ABC transporter activity linked to radiation resistance and molecular subtype in pediatric medulloblastoma

    PubMed Central

    2013-01-01

    Background Resistance to radiation treatment remains a major clinical problem for patients with brain cancer. Medulloblastoma is the most common malignant brain tumor of childhood, and occurs in the cerebellum. Though radiation treatment has been critical in increasing survival rates in recent decades, the presence of resistant cells in a substantial number of medulloblastoma patients leads to relapse and death. Methods Using the established medulloblastoma cell lines UW228 and Daoy, we developed a novel model system to enrich for and study radiation tolerant cells early after radiation exposure. Using fluorescence-activated cell sorting, dead cells and cells that had initiated apoptosis were removed, allowing surviving cells to be investigated before extensive proliferation took place. Results Isolated surviving cells were tumorigenic in vivo and displayed elevated levels of ABCG2, an ABC transporter linked to stem cell behavior and drug resistance. Further investigation showed another family member, ABCA1, was also elevated in surviving cells in these lines, as well as in early passage cultures from pediatric medulloblastoma patients. We discovered that the multi-ABC transporter inhibitors verapamil and reserpine sensitized cells from particular patients to radiation, suggesting that ABC transporters have a functional role in cellular radiation protection. Additionally, verapamil had an intrinsic anti-proliferative effect, with transient exposure in vitro slowing subsequent in vivo tumor formation. When expression of key ABC transporter genes was assessed in medulloblastoma tissue from 34 patients, levels were frequently elevated compared with normal cerebellum. Analysis of microarray data from independent cohorts (n = 428 patients) showed expression of a number of ABC transporters to be strongly correlated with certain medulloblastoma subtypes, which in turn are associated with clinical outcome. Conclusions ABC transporter inhibitors are already being

  3. ABCdb: an online resource for ABC transporter repertories from sequenced archaeal and bacterial genomes.

    PubMed

    Fichant, Gwennaele; Basse, Marie-Jeanne; Quentin, Yves

    2006-03-01

    The ATP-binding cassette (ABC) transporters are one of the major classes of active transporters. They are widespread in archaea, bacteria, and eukaryota, indicating that they have arisen early in evolution. They are involved in many essential physiological processes, but the majority import or export a wide variety of compounds across cellular membranes. These systems share a common architecture composed of four (exporters) or five (importers) domains. To identify and reconstruct functional ABC transporters encoded by archaeal and bacterial genomes, we have developed a bioinformatic strategy. Cross-reference to the transport classification system is used to predict the type of compound transported. A high quality of annotation is achieved by manual verification of the predictions. However, in order to face the rapid increase in the number of published genomes, we also include analyses of genomes issuing directly from the automated strategy. Querying the database (http://www-abcdb.biotoul.fr) allows to easily retrieve ABC transporter repertories and related data. Additional query tools have been developed for the analysis of the ABC family from both functional and evolutionary perspectives.

  4. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio).

    PubMed

    Liu, Xiang; Li, Shangqi; Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A; Xu, Peng

    2016-01-01

    The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp.

  5. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio)

    PubMed Central

    Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A.

    2016-01-01

    The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp. PMID:27058731

  6. The interaction of gut microbes with host ABC transporters

    PubMed Central

    Mercado-Lubo, Regino

    2010-01-01

    ATP binding cassette (ABC) transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, secretion and toxicity of xenobiotics. In addition to their essential function in drug resistance, there is also emerging evidence documenting the important role ABC transporters play in tissue defense. In this respect, the gastrointestinal tract represents a critical vanguard of defense against oral exposure of drugs while at the same time functions as a physical barrier between the lumenal contents (including bacteria) and the intestinal epithelium. Given emerging evidence suggesting that multidrug resistance protein (MDR) plays an important role in host-bacterial interactions in the gastrointestinal tract, this review will discuss the interplay between MDR of the intestinal epithelial cell barrier and gut microbes in health and disease. In particular, we will explore host-microbe interactions involving three apically restricted ABC transporters of the intestinal epithelium; P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2) and cystic fibrosis transmembrane regulator (CFTR). PMID:21327038

  7. Structure of a Type-1 Secretion System ABC Transporter.

    PubMed

    Morgan, Jacob L W; Acheson, Justin F; Zimmer, Jochen

    2017-03-07

    Type-1 secretion systems (T1SSs) represent a widespread mode of protein secretion across the cell envelope in Gram-negative bacteria. The T1SS is composed of an inner-membrane ABC transporter, a periplasmic membrane-fusion protein, and an outer-membrane porin. These three components assemble into a complex spanning both membranes and providing a conduit for the translocation of unfolded polypeptides. We show that ATP hydrolysis and assembly of the entire T1SS complex is necessary for protein secretion. Furthermore, we present a 3.15-Å crystal structure of AaPrtD, the ABC transporter found in the Aquifex aeolicus T1SS. The structure suggests a substrate entry window just above the transporter's nucleotide binding domains. In addition, highly kinked transmembrane helices, which frame a narrow channel not observed in canonical peptide transporters, are likely involved in substrate translocation. Overall, the AaPrtD structure supports a polypeptide transport mechanism distinct from alternating access. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Applying the Post-Modern Double ABC-X Model to Family Food Insecurity

    ERIC Educational Resources Information Center

    Hutson, Samantha; Anderson, Melinda; Swafford, Melinda

    2015-01-01

    This paper develops the argument that using the Double ABC-X model in family and consumer sciences (FCS) curricula is a way to educate nutrition and dietetics students regarding a family's perceptions of food insecurity. The Double ABC-X model incorporates ecological theory as a basis to explain family stress and the resulting adjustment and…

  9. Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters

    PubMed Central

    Andreoletti, Pierre; Raas, Quentin; Gondcaille, Catherine; Cherkaoui-Malki, Mustapha; Trompier, Doriane; Savary, Stéphane

    2017-01-01

    The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues. PMID:28737695

  10. Sulfadiazine resistance in Toxoplasma gondii: no involvement of overexpression or polymorphisms in genes of therapeutic targets and ABC transporters

    PubMed Central

    Doliwa, Christelle; Escotte-Binet, Sandie; Aubert, Dominique; Sauvage, Virginie; Velard, Frédéric; Schmid, Aline; Villena, Isabelle

    2013-01-01

    Several treatment failures have been reported for the treatment of toxoplasmic encephalitis, chorioretinitis, and congenital toxoplasmosis. Recently we found three Toxoplasma gondii strains naturally resistant to sulfadiazine and we developed in vitro two sulfadiazine resistant strains, RH-RSDZ and ME-49-RSDZ, by gradual pressure. In Plasmodium, common mechanisms of drug resistance involve, among others, mutations and/or amplification within genes encoding the therapeutic targets dhps and dhfr and/or the ABC transporter genes family. To identify genotypic and/or phenotypic markers of resistance in T. gondii, we sequenced and analyzed the expression levels of therapeutic targets dhps and dhfr, three ABC genes, two Pgp, TgABC.B1 and TgABC.B2, and one MRP, TgABC.C1, on sensitive strains compared to sulfadiazine resistant strains. Neither polymorphism nor overexpression was identified. Contrary to Plasmodium, in which mutations and/or overexpression within gene targets and ABC transporters are involved in antimalarial resistance, T. gondii sulfadiazine resistance is not related to these toxoplasmic genes studied. PMID:23707894

  11. Identification of ABC Transporter Genes of Fusarium graminearum with Roles in Azole Tolerance and/or Virulence

    PubMed Central

    Döll, Katharina; Karlovsky, Petr; Deising, Holger B.; Wirsel, Stefan G. R.

    2013-01-01

    Fusarium graminearum is a plant pathogen infecting several important cereals, resulting in substantial yield losses and mycotoxin contamination of the grain. Triazole fungicides are used to control diseases caused by this fungus on a worldwide scale. Our previous microarray study indicated that 15 ABC transporter genes were transcriptionally upregulated in response to tebuconazole treatment. Here, we deleted four ABC transporter genes in two genetic backgrounds of F. graminearum representing the DON (deoxynivalenol) and the NIV (nivalenol) trichothecene chemotypes. Deletion of FgABC3 and FgABC4 belonging to group I of ABC-G and to group V of ABC-C subfamilies of ABC transporters, respectively, considerably increased the sensitivity to the class I sterol biosynthesis inhibitors triazoles and fenarimol. Such effects were specific since they did not occur with any other fungicide class tested. Assessing the contribution of the four ABC transporters to virulence of F. graminearum revealed that, irrespective of their chemotypes, deletion mutants of FgABC1 (ABC-C subfamily group V) and FgABC3 were impeded in virulence on wheat, barley and maize. Phylogenetic context and analyses of mycotoxin production suggests that FgABC3 may encode a transporter protecting the fungus from host-derived antifungal molecules. In contrast, FgABC1 may encode a transporter responsible for the secretion of fungal secondary metabolites alleviating defence of the host. Our results show that ABC transporters play important and diverse roles in both fungicide resistance and pathogenesis of F. graminearum. PMID:24244413

  12. Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure.

    PubMed

    Staud, Frantisek; Cerveny, Lukas; Ceckova, Martina

    2012-11-01

    Pharmacotherapy during pregnancy is often inevitable for medical treatment of the mother, the fetus or both. The knowledge of drug transport across placenta is, therefore, an important topic to bear in mind when deciding treatment in pregnant women. Several drug transporters of the ABC and SLC families have been discovered in the placenta, such as P-glycoprotein, breast cancer resistance protein, or organic anion/cation transporters. It is thus evident that the passage of drugs across the placenta can no longer be predicted simply on the basis of their physical-chemical properties. Functional expression of placental drug transporters in the trophoblast and the possibility of drug-drug interactions must be considered to optimize pharmacotherapy during pregnancy. In this review we summarize current knowledge on the expression and function of ABC and SLC transporters in the trophoblast. Furthermore, we put this data into context with medical conditions that require maternal and/or fetal treatment during pregnancy, such as gestational diabetes, HIV infection, fetal arrhythmias and epilepsy. Proper understanding of the role of placental transporters should be of great interest not only to clinicians but also to pharmaceutical industry for future drug design and development to control the degree of fetal exposure.

  13. Functional assignment of solute-binding proteins of ABC transporters using a fluorescence-based thermal shift assay.

    SciTech Connect

    Giulliani, S. E.; Frank, A. E.; Collart, F. R.

    2008-12-08

    We have used a fluorescence-based thermal shift (FTS) assay to identify amino acids that bind to solute-binding proteins in the bacterial ABC transporter family. The assay was validated with a set of six proteins with known binding specificity and was consistently able to map proteins with their known binding ligands. The assay also identified additional candidate binding ligands for several of the amino acid-binding proteins in the validation set. We extended this approach to additional targets and demonstrated the ability of the FTS assay to unambiguously identify preferential binding for several homologues of amino acid-binding proteins with known specificity andmore » to functionally annotate proteins of unknown binding specificity. The assay is implemented in a microwell plate format and provides a rapid approach to validate an anticipated function or to screen proteins of unknown function. The ABC-type transporter family is ubiquitous and transports a variety of biological compounds, but the current annotation of the ligand-binding proteins is limited to mostly generic descriptions of function. The results illustrate the feasibility of the FTS assay to improve the functional annotation of binding proteins associated with ABC-type transporters and suggest this approach that can also be extended to other protein families.« less

  14. Trichothecene resistance in wheat: Development of molecular markers for PDR-type ABC transporter genes.

    PubMed

    Mitterbauer, R; Heinrich, M; Rauscher, R; Lemmens, M; Bürstmayr, H; Adam, G

    2003-03-01

    Infection withFusarium graminearum andF. culmorum not only causes severe yield and quality losses, the most relevant concern is the contamination of cereal foods and feeds with trichothecenes (e.g. deoxynivalenol, DON). The ability to synthesize trichothecenes has been shown to be a virulence factor ofF. graminearum on wheat and, on the other hand, toxin resistance is most likely an important component of field resistance. Our hypothesis is that pleiotropic drug resistance mediated by PDR-type ABC transporter proteins (acting as membrane located drug efflux pumps) is a relevant mechanism of DON resistance not only in yeast but also in wheat. Goal of this project is the development of molecular markers for this gene family for use in marker-assisted plant breeding programs. The technical difficulties caused by the large size of the PDR-family are discussed.

  15. NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum.

    PubMed

    Ducos, Eric; Fraysse, Staffan; Boutry, Marc

    2005-12-19

    In plants, the ABC transporter PDR (pleiotropic drug resistance) subfamily is composed of approximately 15 genes, few of which have been analyzed. We have identified NtPDR3, a Nicotiana tabacum PDR gene belonging to a cluster for which no functional data was previously available. NtPDR3 was found to be induced in suspension cells treated with methyl jasmonate, salicylic acid, 1-naphthalene acetic acid, or cembrene, a macrocyclic diterpene. In agreement with the identification of a putative iron deficiency element in the NtPDR3 transcription promoter region, we found that iron deficiency in the culture medium induced NtPDR3 expression, thus suggesting a new function of the PDR transporter family.

  16. Interaction of ABC multidrug transporters with anticancer protein kinase inhibitors: substrates and/or inhibitors?

    PubMed

    Hegedus, Csilla; Ozvegy-Laczka, Csilla; Szakács, Gergely; Sarkadi, Balázs

    2009-05-01

    Protein kinase inhibitors (PKI) are becoming key agents in modern cancer chemotherapy, and combination of PKIs with classical chemotherapeutic drugs may help to overcome currently untreatable metastatic cancers. Since chemotherapy resistance is a recurrent problem, mechanisms of resistance should be clarified in order to help further drug development. Here we suggest that in addition to PKI resistance based on altered target structures, the active removal of these therapeutic agents by the MDR-ABC transporters should also be considered as a major cause of clinical resistance. We discuss the occurring systemic and cellular mechanisms, which may hamper PKI efficiency, and document the role of selected MDR-ABC transporters in these phenomena through their interactions with these anticancer agents. Moreover, we suggest that PKI interactions with ABC transporters may modulate overall drug metabolism, including the fate of diverse, chemically or target-wise unrelated drugs. These effects are based on multiple forms of MDR-ABC transporter interaction with PKIs, as these compounds may be both substrates and/or inhibitors of an ABC transporter. We propose that these interactions should be carefully considered in clinical application, and a combined MDR-ABC transporter and PKI effect may bring a major advantage in future drug development.

  17. Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling.

    PubMed

    Jones, P M; George, A M

    2005-04-30

    Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein.

  18. ABC Transporter Genes and Risk of Type 2 Diabetes

    PubMed Central

    Schou, Jesper; Tybjærg-Hansen, Anne; Møller, Holger J.; Nordestgaard, Børge G.; Frikke-Schmidt, Ruth

    2012-01-01

    OBJECTIVE Alterations of pancreatic β-cell cholesterol content may contribute to β-cell dysfunction. Two important determinants of intracellular cholesterol content are the ATP-binding cassette (ABC) transporters A1 (ABCA1) and -G1 (ABCG1). Whether genetic variation in ABCA1 and ABCG1 predicts risk of type 2 diabetes in the general population is unknown. RESEARCH DESIGN AND METHODS We tested whether genetic variation in the promoter and coding regions of ABCA1 and ABCG1 predicted risk of type 2 diabetes in the general population. Twenty-seven variants, identified by previous resequencing of both genes, were genotyped in the Copenhagen City Heart Study (CCHS) (n = 10,185). Two loss-of-function mutations (ABCA1 N1800H and ABCG1 g.-376C>T) (n = 322) and a common variant (ABCG1 g.-530A>G) were further genotyped in the Copenhagen General Population Study (CGPS) (n = 30,415). RESULTS Only one of the variants examined, ABCG1 g.-530A>G, predicted a decreased risk of type 2 diabetes in the CCHS (P for trend = 0.05). Furthermore, when validated in the CGPS or in the CCHS and CGPS combined (n = 40,600), neither the two loss-of-function mutations (ABCA1 N1800H, ABCG1 g.-376C>T) nor ABCG1 g.-530A>G were associated with type 2 diabetes (P values >0.57 and >0.30, respectively). CONCLUSIONS Genetic variations in ABCA1 and ABCG1 were not associated with increased risk of type 2 diabetes in the general population. These data were obtained in general population samples harboring the largest number of heterozygotes for loss-of-function mutations in ABCA1 and ABCG1. PMID:23139370

  19. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa.

    PubMed

    Chen, Lin; Duan, Kangmin

    2016-05-01

    Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Transcriptome-based identification of ABC transporters in the western tarnished plant bug lygus hesperus

    USDA-ARS?s Scientific Manuscript database

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic cle...

  1. ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma.

    PubMed

    Dréan, Antonin; Rosenberg, Shai; Lejeune, François-Xavier; Goli, Larissa; Nadaradjane, Aravindan Arun; Guehennec, Jérémy; Schmitt, Charlotte; Verreault, Maïté; Bielle, Franck; Mokhtari, Karima; Sanson, Marc; Carpentier, Alexandre; Delattre, Jean-Yves; Idbaih, Ahmed

    2018-03-08

    ATP-binding cassette transporters (ABC transporters) regulate traffic of multiple compounds, including chemotherapeutic agents, through biological membranes. They are expressed by multiple cell types and have been implicated in the drug resistance of some cancer cells. Despite significant research in ABC transporters in the context of many diseases, little is known about their expression and clinical value in glioblastoma (GBM). We analyzed expression of 49 ABC transporters in both commercial and patient-derived GBM cell lines as well as from 51 human GBM tumor biopsies. Using The Cancer Genome Atlas (TCGA) cohort as a training dataset and our cohort as a validation dataset, we also investigated the prognostic value of these ABC transporters in newly diagnosed GBM patients, treated with the standard of care. In contrast to commercial GBM cell lines, GBM-patient derived cell lines (PDCL), grown as neurospheres in a serum-free medium, express ABC transporters similarly to parental tumors. Serum appeared to slightly increase resistance to temozolomide correlating with a tendency for an increased expression of ABCB1. Some differences were observed mainly due to expression of ABC transporters by microenvironmental cells. Together, our data suggest that the efficacy of chemotherapeutic agents may be misestimated in vitro if they are the targets of efflux pumps whose expression can be modulated by serum. Interestingly, several ABC transporters have prognostic value in the TCGA dataset. In our cohort of 51 GBM patients treated with radiation therapy with concurrent and adjuvant temozolomide, ABCA13 overexpression is associated with a decreased progression free survival in univariate (p < 0.01) and multivariate analyses including MGMT promoter methylation (p = 0.05) suggesting reduced sensitivity to temozolomide in ABCA13 overexpressing GBM. Expression of ABC transporters is: (i) detected in GBM and microenvironmental cells and (ii) better reproduced in GBM

  2. Phosphorylation is required for the pathogen defense function of the Arabidopsis PEN3 ABC transporter

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in defense against multiple pathogens. Perception of PAMPs by pattern recognition receptors initiates recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whet...

  3. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide.

    PubMed

    Tournier, Nicolas; Saba, Wadad; Cisternino, Salvatore; Peyronneau, Marie-Anne; Damont, Annelaure; Goutal, Sébastien; Dubois, Albertine; Dollé, Frédéric; Scherrmann, Jean-Michel; Valette, Héric; Kuhnast, Bertrand; Bottlaender, Michel

    2013-10-01

    Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [(11)C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [(11)C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood-brain barrier (BBB). PET revealed the critical role of OATP on liver [(11)C]GLB uptake and its subsequent impact on [(11)C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [(11)C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake.

  4. Detergent-free purification of ABC (ATP-binding-cassette) transporters.

    PubMed

    Gulati, Sonali; Jamshad, Mohammed; Knowles, Timothy J; Morrison, Kerrie A; Downing, Rebecca; Cant, Natasha; Collins, Richard; Koenderink, Jan B; Ford, Robert C; Overduin, Michael; Kerr, Ian D; Dafforn, Timothy R; Rothnie, Alice J

    2014-07-15

    ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.

  5. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  6. Genome-wide identification of ATP-binding cassette (ABC) transporters and their roles in response to polycyclic aromatic hydrocarbons (PAHs) in the copepod Paracyclopina nana.

    PubMed

    Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Lee, Young Hwan; Kim, Hui-Su; Kim, Il-Chan; Lee, Jae-Seong

    2017-02-01

    The ATP-binding cassette (ABC) protein superfamily is one of the largest gene families and is highly conserved in all domains. The ABC proteins play roles in several biological processes, including multi-xenobiotic resistance (MXR), by functioning as transporters in the cellular membrane. They also mediate the cellular efflux of a wide range of substrates against concentration gradients. In this study, 37 ABC genes belonging to eight distinct subfamilies were identified in the marine copepod Paracyclopina nana and annotated based on a phylogenetic analysis. Also, the functions of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRPs), conferring MXR, were verified using fluorescent substrates and specific inhibitors. The activities of MXR-mediated ABC proteins and their transcriptional level were examined in response to polyaromatic hydrocarbons (PAHs), main components of the water-accommodated fraction. This study increases the understanding of the protective role of MXR in response to PAHs over the comparative evolution of ABC gene families. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo.

    PubMed

    Hyde, B B; Liesa, M; Elorza, A A; Qiu, W; Haigh, S E; Richey, L; Mikkola, H K; Schlaeger, T M; Shirihai, O S

    2012-07-01

    The mitochondrial transporter ATP binding cassette mitochondrial erythroid (ABC-me/ABCB10) is highly induced during erythroid differentiation by GATA-1 and its overexpression increases hemoglobin production rates in vitro. However, the role of ABC-me in erythropoiesis in vivo is unknown. Here we report for the first time that erythrocyte development in mice requires ABC-me. ABC-me-/- mice die at day 12.5 of gestation, showing nearly complete eradication of primitive erythropoiesis and lack of hemoglobinized cells at day 10.5. ABC-me-/- erythroid cells fail to differentiate because they exhibit a marked increase in apoptosis, both in vivo and ex vivo. Erythroid precursors are particularly sensitive to oxidative stress and ABC-me in the heart and its yeast ortholog multidrug resistance-like 1 have been shown to protect against oxidative stress. Thus, we hypothesized that increased apoptosis in ABC-me-/- erythroid precursors was caused by oxidative stress. Within this context, ABC-me deletion causes an increase in mitochondrial superoxide production and protein carbonylation in erythroid precursors. Furthermore, treatment of ABC-me-/- erythroid progenitors with the mitochondrial antioxidant MnTBAP (superoxide dismutase 2 mimetic) supports survival, ex vivo differentiation and increased hemoglobin production. Altogether, our findings demonstrate that ABC-me is essential for erythropoiesis in vivo.

  8. The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo

    PubMed Central

    Hyde, B B; Liesa, M; Elorza, A A; Qiu, W; Haigh, S E; Richey, L; Mikkola, H K; Schlaeger, T M; Shirihai, O S

    2012-01-01

    The mitochondrial transporter ATP binding cassette mitochondrial erythroid (ABC-me/ABCB10) is highly induced during erythroid differentiation by GATA-1 and its overexpression increases hemoglobin production rates in vitro. However, the role of ABC-me in erythropoiesis in vivo is unknown. Here we report for the first time that erythrocyte development in mice requires ABC-me. ABC-me−/− mice die at day 12.5 of gestation, showing nearly complete eradication of primitive erythropoiesis and lack of hemoglobinized cells at day 10.5. ABC-me−/− erythroid cells fail to differentiate because they exhibit a marked increase in apoptosis, both in vivo and ex vivo. Erythroid precursors are particularly sensitive to oxidative stress and ABC-me in the heart and its yeast ortholog multidrug resistance-like 1 have been shown to protect against oxidative stress. Thus, we hypothesized that increased apoptosis in ABC-me−/− erythroid precursors was caused by oxidative stress. Within this context, ABC-me deletion causes an increase in mitochondrial superoxide production and protein carbonylation in erythroid precursors. Furthermore, treatment of ABC-me−/− erythroid progenitors with the mitochondrial antioxidant MnTBAP (superoxide dismutase 2 mimetic) supports survival, ex vivo differentiation and increased hemoglobin production. Altogether, our findings demonstrate that ABC-me is essential for erythropoiesis in vivo. PMID:22240895

  9. Sensitive and Specific Fluorescent Probes for Functional Analysis of the Three Major Types of Mammalian ABC Transporters

    PubMed Central

    Lebedeva, Irina V.; Pande, Praveen; Patton, Wayne F.

    2011-01-01

    An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC2(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments. PMID:21799851

  10. ABC Transporters and Isothiocyanates: Potential for Pharmacokinetic Diet–Drug Interactions

    PubMed Central

    Telang, Urvi; Ji, Yan; Morris, Marilyn E.

    2013-01-01

    Isothiocyanates, a class of anti-cancer agents, are derived from cruciferous vegetables such as broccoli, cabbage and watercress, and have demonstrated chemopreventive activity in a number of cancer models and epidemiologic studies. Due to public interest in cancer prevention and alternative therapies in cancer, the consumption of herbal supplements and vegetables containing these compounds is widespread and increasing. Isothiocyanates interact with ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, MRP1, MRP2 and BCRP, and may influence the pharmacokinetics of substrates of these transporters. This review discusses the pharmacokinetic properties of isothiocyanates, their interactions with ABC transporters, and presents some data describing the potential for isothiocyanate-mediated diet–drug interactions. PMID:19623673

  11. A bacterial-type ABC transporter is involved in aluminum tolerance in rice.

    PubMed

    Huang, Chao Feng; Yamaji, Naoki; Mitani, Namiki; Yano, Masahiro; Nagamura, Yoshiaki; Ma, Jian Feng

    2009-02-01

    Aluminum (Al) toxicity is a major factor limiting crop production in acidic soil, but the molecular mechanisms of Al tolerance are poorly understood. Here, we report that two genes, STAR1 (for sensitive to Al rhizotoxicity1) and STAR2, are responsible for Al tolerance in rice. STAR1 encodes a nucleotide binding domain, while STAR2 encodes a transmembrane domain, of a bacterial-type ATP binding cassette (ABC) transporter. Disruption of either gene resulted in hypersensitivity to aluminum toxicity. Both STAR1 and STAR2 are expressed mainly in the roots and are specifically induced by Al exposure. Expression in onion epidermal cells, rice protoplasts, and yeast showed that STAR1 interacts with STAR2 to form a complex that localizes to the vesicle membranes of all root cells, except for those in the epidermal layer of the mature zone. When expressed together in Xenopus laevis oocytes, STAR1/2 shows efflux transport activity specific for UDP-glucose. Furthermore, addition of exogenous UDP-glucose rescued root growth in the star1 mutant exposed to Al. These results indicate that STAR1 and STAR2 form a complex that functions as an ABC transporter, which is required for detoxification of Al in rice. The ABC transporter transports UDP-glucose, which may be used to modify the cell wall.

  12. ABC transporter content diversity in Streptococcus pneumoniae impacts competence regulation and bacteriocin production.

    PubMed

    Wang, Charles Y; Patel, Nisha; Wholey, Wei-Yun; Dawid, Suzanne

    2018-06-19

    The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) uses natural genetic competence to increase its adaptability through horizontal gene transfer. One method of acquiring DNA is through predation of neighboring strains with antimicrobial peptides called "bacteriocins." Competence and production of the major family of pneumococcal bacteriocins, pneumocins, are regulated by the quorum-sensing systems com and blp , respectively. In the classical paradigm, the ABC transporters ComAB and BlpAB each secretes its own system's signaling pheromone and in the case of BlpAB also secretes the pneumocins. While ComAB is found in all pneumococci, only 25% of strains encode an intact version of BlpAB [BlpAB(+)] while the rest do not [BlpAB(-)]. Contrary to the classical paradigm, it was previously shown that BlpAB(-) strains can activate blp through ComAB-mediated secretion of the blp pheromone during brief periods of competence. To better understand the full extent of com - blp crosstalk, we examined the contribution of each transporter to competence development and pneumocin secretion. We found that BlpAB(+) strains have a greater capacity for competence activation through BlpAB-mediated secretion of the com pheromone. Similarly, we show that ComAB and BlpAB are promiscuous and both can secrete pneumocins. Consequently, differences in pneumocin secretion between BlpAB(+) and BlpAB(-) strains derive from the regulation and kinetics of transporter expression rather than substrate specificity. We speculate that BlpAB(-) strains (opportunists) use pneumocins mainly in a narrowly tailored role for DNA acquisition and defense during competence while BlpAB(+) strains (aggressors) expand their use for the general inhibition of rival strains. Copyright © 2018 the Author(s). Published by PNAS.

  13. Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi

    NASA Astrophysics Data System (ADS)

    Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Urbanelli, Sandra; Sassera, Davide; De Marco, Leone; Mereghetti, Valeria; Montagna, Matteo; Ricci, Irene; Favia, Guido; Bandi, Claudio

    2014-12-01

    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABC gene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps.

  14. Nucleotide-induced conformational dynamics in ABC transporters from structure-based coarse grained modelling.

    NASA Astrophysics Data System (ADS)

    Flechsig, Holger

    2016-02-01

    ATP-binding cassette (ABC) transporters are integral membrane proteins which mediate the exchange of diverse substrates across membranes powered by ATP molecules. Our understanding of their activity is still hampered since the conformational dynamics underlying the operation of such proteins cannot yet be resolved in detailed molecular dynamics studies. Here a coarse grained model which allows to mimic binding of nucleotides and follow subsequent conformational motions of full-length transporter structures in computer simulations is proposed and implemented. To justify its explanatory quality, the model is first applied to the maltose transporter system for which multiple conformations are known and we find that the model predictions agree remarkably well with the experimental data. For the MalK subunit the switching from open to the closed dimer configuration upon ATP binding is reproduced and, moreover, for the full-length maltose transporter, progression from inward-facing to the outward-facing state is correctly obtained. For the heme transporter HmuUV, for which only the free structure could yet be determined, the model was then applied to predict nucleotide-induced conformational motions. Upon binding of ATP-mimicking ligands the structure changed from a conformation in which the nucleotide-binding domains formed an open shape, to a conformation in which they were found in tight contact, while, at the same time, a pronounced rotation of the transmembrane domains was observed. This finding is supported by normal mode analysis, and, comparison with structural data of the homologous vitamin B12 transporter BtuCD suggests that the observed rotation mechanism may contribute a common functional aspect for this class of ABC transporters. Although in HmuuV noticeable rearrangement of essential transmembrane helices was detected, there are no indications from our simulations that ATP binding alone may facilitate propagation of substrate molecules in this transporter

  15. The Role of the Photoreceptor ABC Transporter ABCA4 in Lipid Transport and Stargardt Macular Degeneration

    PubMed Central

    Molday, Robert S.; Zhong, Ming; Quazi, Faraz

    2009-01-01

    ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone-rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders. PMID:19230850

  16. Alzheimer’s and ABC transporters - new opportunities for diagnostics and treatment

    PubMed Central

    Pahnke, Jens; Langer, Oliver; Krohn, Markus

    2014-01-01

    Much has been said about the increasing number of demented patients and the main risk factor ‘age’. Frustratingly, we do not know the precise pattern and all modulating factors that provoke the pathologic changes in the brains of affected elderly. We have to diagnose early to be able to stop the progression of diseases that irreversibly destroy brain substance. Familiar AD cases have mislead some researchers for almost 20 years, which has unfortunately narrowed the scientific understanding and has, thus, lead to insufficient funding of independent approaches. Therefore, basic researchers hardly have been able to develop causative treatments and clinicians still do not have access to prognostic and early diagnostic tools. During the recent years it became clear that insufficient Aβ export, physiologically facilitated by the ABC transporter superfamily at the brain’s barriers, plays a fundamental role in disease initiation and progression. Furthermore, export mechanisms that are deficient in affected elderly are new targets for activation and, thus, treatment, but ideally also for prevention. In sporadic AD disturbed clearance of β-amyloid from the brain is so far the most important factor for its accumulation in the parenchyma and vessel walls. Here, we review findings about the contribution of ABC transporters and of the perivascular drainage/glymphatic system on β-amyloid clearance. We highlight their potential value for innovative early diagnostics using PET and describe recently described, effective ABC transporter-targeting agents as potential causative treatment for neurodegenerative proteopathies/dementias. PMID:24746857

  17. Alzheimer's and ABC transporters--new opportunities for diagnostics and treatment.

    PubMed

    Pahnke, Jens; Langer, Oliver; Krohn, Markus

    2014-12-01

    Much has been said about the increasing number of demented patients and the main risk factor 'age'. Frustratingly, we do not know the precise pattern and all modulating factors that provoke the pathologic changes in the brains of affected elderly. We have to diagnose early to be able to stop the progression of diseases that irreversibly destroy brain substance. Familiar AD cases have mislead some researchers for almost 20 years, which has unfortunately narrowed the scientific understanding and has, thus, lead to insufficient funding of independent approaches. Therefore, basic researchers hardly have been able to develop causative treatments and clinicians still do not have access to prognostic and early diagnostic tools. During the recent years it became clear that insufficient Aβ export, physiologically facilitated by the ABC transporter superfamily at the brain's barriers, plays a fundamental role in disease initiation and progression. Furthermore, export mechanisms that are deficient in affected elderly are new targets for activation and, thus, treatment, but ideally also for prevention. In sporadic AD disturbed clearance of β-amyloid from the brain is so far the most important factor for its accumulation in the parenchyma and vessel walls. Here, we review findings about the contribution of ABC transporters and of the perivascular drainage/glymphatic system on β-amyloid clearance. We highlight their potential value for innovative early diagnostics using PET and describe recently described, effective ABC transporter-targeting agents as potential causative treatment for neurodegenerative proteopathies/dementias. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Whole-Genome Survey of the Putative ATP-Binding Cassette Transporter Family Genes in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2013-01-01

    The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera. PMID:24244377

  19. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells

    SciTech Connect

    Chen, Mingli; Yin, Huancai; Bai, Pengli

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity ofmore » QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.« less

  20. Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG.

    PubMed

    Luo, Qingshan; Yang, Xu; Yu, Shan; Shi, Huigang; Wang, Kun; Xiao, Le; Zhu, Guangyu; Sun, Chuanqi; Li, Tingting; Li, Dianfan; Zhang, Xinzheng; Zhou, Min; Huang, Yihua

    2017-05-01

    After biosynthesis, bacterial lipopolysaccharides (LPS) are transiently anchored to the outer leaflet of the inner membrane (IM). The ATP-binding cassette (ABC) transporter LptB 2 FG extracts LPS molecules from the IM and transports them to the outer membrane. Here we report the crystal structure of nucleotide-free LptB 2 FG from Pseudomonas aeruginosa. The structure reveals that lipopolysaccharide transport proteins LptF and LptG each contain a transmembrane domain (TMD), a periplasmic β-jellyroll-like domain and a coupling helix that interacts with LptB on the cytoplasmic side. The LptF and LptG TMDs form a large outward-facing V-shaped cavity in the IM. Mutational analyses suggest that LPS may enter the central cavity laterally, via the interface of the TMD domains of LptF and LptG, and is expelled into the β-jellyroll-like domains upon ATP binding and hydrolysis by LptB. These studies suggest a mechanism for LPS extraction by LptB 2 FG that is distinct from those of classical ABC transporters that transport substrates across the IM.

  1. The Yeast Plasma Membrane ATP Binding Cassette (ABC) Transporter Aus1

    PubMed Central

    Marek, Magdalena; Milles, Sigrid; Schreiber, Gabriele; Daleke, David L.; Dittmar, Gunnar; Herrmann, Andreas; Müller, Peter; Pomorski, Thomas Günther

    2011-01-01

    The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter. PMID:21521689

  2. Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts.

    PubMed

    Denecke, Shane; Fusetto, Roberto; Batterham, Philip

    2017-12-01

    ABC transporters have a well-established role in drug resistance, effluxing xenobiotics from cells and tissues within the organism. More recently, research has been dedicated to understanding the role insect ABC transporters play in insecticide toxicity, but progress in understanding the contribution of specific transporters has been hampered by the lack of functional genetic tools. Here, we report knockouts of three Drosophila melanogaster ABC transporter genes, Mdr49, Mdr50, and Mdr65, that are homologous to the well-studied mammalian ABCB1 (P-glycoprotein). Each knockout mutant was created in the same wild type background and tested against a panel of insecticides representing different chemical classes. Mdr65 knockouts were more susceptible to all neuroactive insecticides tested, but Mdr49 and Mdr50 knockouts showed increased susceptibility or resistance depending on the insecticide used. Mdr65 was chosen for further analysis. Calculation of LC 50 values for the Mdr65 knockout allowed the substrate specificity of this transporter to be examined. No obvious distinguishing structural features were shared among MDR65 substrates. A role for Mdr65 in insecticide transport was confirmed by testing the capacity of the knockout to synergize with the ABC inhibitor verapamil and by measuring the levels of insecticide retained in the body of knockout flies. These data unambiguously establish the influence of ABC transporters on the capacity of wild type D. melanogaster to tolerate insecticide exposure and suggest that both tissue and substrate specificity underpin this capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    NASA Astrophysics Data System (ADS)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  4. NFκBP65 transcription factor modulates resistance to doxorubicin through ABC transporters in breast cancer.

    PubMed

    Velaei, Kobra; Samadi, Nasser; Soltani, Sina; Barazvan, Balal; Soleimani Rad, Jafar

    2017-07-01

    Shedding light on chemoresistance biology of breast cancer could contribute to enhance the clinical outcome. Intrinsic or acquired resistance to chemotherapy is a major problem in breast cancer treatment. The NFκB pathway by siRNAP65 and JSH-23 as a translocational inhibitor of NFκBP65 in the doxorubicin-resistant MCF-7 (MCF-7/Dox) and MCF-7 cells was blocked. Then, the ABC transporter expression and function were assessed by real-time qRT-PCR and flow cytometry, respectively. Induction of apoptosis was evaluated after inhibition of the NFΚB pathway as well. Our study underlined the upregulation of NFκBP65 and anti-apoptotic Bcl-2 and downregulation of pro-apoptotic Bax in the MCF-7/Dox cells compared with control MCF-7 cells. Here, we showed that interplay between nuclear factor kappa B P65 (NFkBP65) as a transcriptional regulator and ABC transporters in the MCF-7/Dox cancer cells. We found that inhibition of the elevated expression of NFκBP65 in the resistant breast cancer, whether translocational inhibition or silencing by siRNA, decreased the expression and function of MDR1 and MRP1 efflux pumps. Furthermore, the blockade of NFκBP65 promoted apoptosis via modulating Bcl-2 and BAX expression. After inhibition of the NFκBP65 signaling pathway, elevated baseline expression of survival Bcl-2 gene in the resistant breast cells significantly decreased. Suppression of the NFκB pathway has a profound dual impact on promoting the intrinsic apoptotic pathway and reducing ABC transporter function and expression, which are some of the chemoresistance features. It was speculated that the NFκB pathway directly acts on doxorubicin-induced MDR1 and MRP1 expression in MCF-7/Dox cells.

  5. A Silent ABC Transporter Isolated from Streptomyces rochei F20 Induces Multidrug Resistance

    PubMed Central

    Fernández-Moreno, Miguel A.; Carbó, Lázaro; Cuesta, Trinidad; Vallín, Carlos; Malpartida, Francisco

    1998-01-01

    In the search for heterologous activators for actinorhodin production in Streptomyces lividans, 3.4 kb of DNA from Streptomyces rochei F20 (a streptothricin producer) were characterized. Subcloning experiments showed that the minimal DNA fragment required for activation was 0.4 kb in size. The activation is mediated by increasing the levels of transcription of the actII-ORF4 gene. Sequencing of the minimal activating fragment did not reveal any clues about its mechanism; nevertheless, it was shown to overlap the 3′ end of two convergent genes, one of whose translated products (ORF2) strongly resembles that of other genes belonging to the ABC transporter superfamily. Computer-assisted analysis of the 3.4-kb DNA sequence showed the 3′ terminus of an open reading frame (ORF), i.e., ORFA, and three complete ORFs (ORF1, ORF2, and ORFB). Searches in the databases with their respective gene products revealed similarities for ORF1 and ORF2 with ATP-binding proteins and transmembrane proteins, respectively, which are found in members of the ABC transporter superfamily. No similarities for ORFA and ORFB were found in the databases. Insertional inactivation of ORF1 and ORF2, their transcription analysis, and their cloning in heterologous hosts suggested that these genes were not expressed under our experimental conditions; however, cloning of ORF1 and ORF2 together (but not separately) under the control of an expressing promoter induced resistance to several chemically different drugs: oleandomycin, erythromycin, spiramycin, doxorubicin, and tetracycline. Thus, this genetic system, named msr, is a new bacterial multidrug ABC transporter. PMID:9696745

  6. Minireview: SLCO and ABC Transporters: A Role for Steroid Transport in Prostate Cancer Progression

    PubMed Central

    Cho, Eunpi; Montgomery, R. Bruce

    2014-01-01

    Androgens play a critical role in the development and progression of prostate cancer (PCa), and androgen deprivation therapy via surgical or medical castration is front-line therapy for patients with advanced PCa. However, intratumoral testosterone levels are elevated in metastases from patients with castration-resistant disease, and residual intratumoral androgens have been implicated in mediating ligand-dependent mechanisms of androgen receptor activation. The source of residual tissue androgens present despite castration has not been fully elucidated, but proposed mechanisms include uptake and conversion of adrenal androgens, such as dehdroepiandrosterone to testosterone and dihydrotestosterone, or de novo androgen synthesis from cholesterol or progesterone precursors. In this minireview, we discuss the emerging evidence that suggests a role for specific transporters in mediating transport of steroids into or out of prostate cells, thereby influencing intratumoral androgen levels and PCa development and progression. We focus on the solute carrier and ATP binding cassette gene families, which have the most published data for a role in PCa-related steroid transport, and review the potential impact of genetic variation on steroid transport activity and PCa outcomes. Continued assessment of transport activity in PCa models and human tumor tissue is needed to better delineate the different roles these transporters play in physiologic and neoplastic settings, and in order to determine whether targeting the uptake of steroid substrates by specific transporters may be a clinically feasible therapeutic strategy. PMID:25147980

  7. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    DOE PAGES

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; ...

    2014-11-07

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the converved aspartate, whichmore » coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. As a result, our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.« less

  8. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path–Force Matching QM/MM Method

    PubMed Central

    Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  9. GxySBA ABC Transporter of Agrobacterium tumefaciens and Its Role in Sugar Utilization and vir Gene Expression

    PubMed Central

    Zhao, Jinlei

    2014-01-01

    Monosaccharides available in the extracellular milieu of Agrobacterium tumefaciens can be transported into the cytoplasm, or via the periplasmic sugar binding protein, ChvE, play a critical role in controlling virulence gene expression. The ChvE-MmsAB ABC transporter is involved in the utilization of a wide range of monosaccharide substrates but redundant transporters are likely given the ability of a chvE-mmsAB deletion strain to grow, albeit more slowly, in the presence of particular monosaccharides. In this study, a putative ABC transporter encoded by the gxySBA operon is identified and shown to be involved in the utilization of glucose, xylose, fucose, and arabinose, which are also substrates for the ChvE-MmsAB ABC transporter. Significantly, GxySBA is also shown to be the first characterized glucosamine ABC transporter. The divergently transcribed gene gxyR encodes a repressor of the gxySBA operon, the function of which can be relieved by a subset of the transported sugars, including glucose, xylose, and glucosamine, and this substrate-induced expression can be repressed by glycerol. Furthermore, deletion of the transporter can increase the sensitivity of the virulence gene expression system to certain sugars that regulate it. Collectively, the results reveal a remarkably diverse set of substrates for the GxySBA transporter and its contribution to the repression of sugar sensitivity by the virulence-controlling system, thereby facilitating the capacity of the bacterium to distinguish between the soil and plant environments. PMID:24957625

  10. Phosphorylation is required for the pathogen defense function of the Arabidopsis PEN3 ABC transporter.

    PubMed

    Underwood, William; Somerville, Shauna C

    2017-10-03

    The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in defense against a number of pathogens. Perception of PAMPs by pattern recognition receptors initiates recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whether PAMP-induced phosphorylation of PEN3 is important for its defense function or focal recruitment has not been addressed. In this study, we evaluated the role of PEN3 phosphorylation in modulating the localization and defense function of the transporter. We report that PEN3 phosphorylation is critical for its function in defense, but dispensable for recruitment to powdery mildew penetration sites. These results indicate that PAMP-induced phosphorylation is likely to regulate the transport activity of PEN3.

  11. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance

    PubMed Central

    Walter, Stephanie; Kahla, Amal; Arunachalam, Chanemoughasoundharam; Perochon, Alexandre; Khan, Mojibur R.; Scofield, Steven R.; Doohan, Fiona M.

    2015-01-01

    The mycotoxin deoxynivalenol (DON) acts as a disease virulence factor for Fusarium fungi, and tolerance of DON enhances wheat resistance to Fusarium head blight (FHB) disease. Two variants of an ATP-binding cassette (ABC) family C transporter gene were cloned from DON-treated wheat mRNA, namely TaABCC3.1 and TaABCC3.2. These represent two of three putative genes identified on chromosomes 3A, 3B, and 3D of the wheat genome sequence. Variant TaABCC3.1 represents the DON-responsive transcript previously associated with DON resistance in wheat. PCR-based mapping and in silico sequence analyses located TaABCC3.1 to the short arm of wheat chromosome 3B (not within the FHB resistance quantitative trait locus Fhb1). In silico analyses of microarray data indicated that TaABCC3 genes are expressed in reproductive tissue and roots, and in response to the DON producer Fusarium graminearum. Gene expression studies showed that TaABCC3.1 is activated as part of the early host response to DON and in response to the FHB defence hormone jasmonic acid. Virus-induced gene silencing (VIGS) confirmed that TaABCC3 genes contributed to DON tolerance. VIGS was performed using two independent viral construct applications: one specifically targeted TaABCC3.1 for silencing, while the other targeted this gene and the chromosome 3A homeologue. In both instances, VIGS resulted in more toxin-induced discoloration of spikelets, compared with the DON effects in non-silenced spikelets at 14 d after toxin treatment (≥2.2-fold increase, P<0.05). Silencing by both VIGS constructs enhanced head ripening, and especially so in DON-treated heads. VIGS of TaABCC3 genes also reduced the grain number by more than 28% (P<0.05), both with and without DON treatment, and the effects were greater for the construct that targeted the two homeologues. Hence, DON-responsive TaABCC3 genes warrant further study to determine their potential as disease resistance breeding targets and their function in grain formation

  12. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter.

    PubMed

    Adebesin, Funmilayo; Widhalm, Joshua R; Boachon, Benoît; Lefèvre, François; Pierman, Baptiste; Lynch, Joseph H; Alam, Iftekhar; Junqueira, Bruna; Benke, Ryan; Ray, Shaunak; Porter, Justin A; Yanagisawa, Makoto; Wetzstein, Hazel Y; Morgan, John A; Boutry, Marc; Schuurink, Robert C; Dudareva, Natalia

    2017-06-30

    Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of a Petunia hybrida adenosine triphosphate-binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport. PhABCG1 down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. A new ABC half-transporter in Leishmania major is involved in resistance to antimony.

    PubMed

    Manzano, J I; García-Hernández, R; Castanys, S; Gamarro, F

    2013-08-01

    The characterization of ABCI4, a new intracellular ATP-binding cassette (ABC) half-transporter in Leishmania major, is described. We show that ABCI4 is involved in heavy metal export, thereby conferring resistance to Pentostam, to Sb(III), and to As(III) and Cd(II). Parasites overexpressing ABCI4 showed a lower mitochondrial toxic effect of antimony by decreasing reactive oxygen species production and maintained higher values of both the mitochondrial electrochemical potential and total ATP levels with respect to controls. The ABCI4 half-transporter forms homodimers as determined by a coimmunoprecipitation assay. A combination of subcellular localization studies under a confocal microscope and a surface biotinylation assay using parasites expressing green fluorescent protein- and FLAG-tagged ABCI4 suggests that the transporter presents a dual localization in both mitochondria and the plasma membrane. Parasites overexpressing ABCI4 present an increased replication in mouse peritoneal macrophages. We have determined that porphyrins are substrates for ABCI4. Consequently, the overexpression of ABCI4 confers resistance to some toxic porphyrins, such as zinc-protoporphyrin, due to the lower accumulation resulting from a significant efflux, as determined using the fluorescent zinc-mesoporphyrin, a validated heme analog. In addition, ABCI4 has a significant ability to efflux thiol after Sb(III) incubation, thus meaning that ABCI4 could be considered to be a potential thiol-X-pump that is able to recognize metal-conjugated thiols. In summary, we have shown that this new ABC transporter is involved in drug sensitivity to antimony and other compounds by efflux as conjugated thiol complexes.

  14. Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function.

    PubMed

    Simpson, Brent W; Owens, Tristan W; Orabella, Matthew J; Davis, Rebecca M; May, Janine M; Trauger, Sunia A; Kahne, Daniel; Ruiz, Natividad

    2016-10-18

    The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB 2 FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB 2 FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. Lipopolysaccharide (LPS) is synthesized at the cytoplasmic membrane of Gram-negative bacteria and transported across several compartments to the cell surface, where it forms a barrier that protects these organisms from antibiotics. The LptB 2 FG proteins form an ATP-binding cassette (ABC) transporter that uses energy from ATP hydrolysis in the cytoplasm to facilitate extraction of LPS from the outer face of the

  15. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions.

    PubMed

    Marquez, Béatrice; Van Bambeke, Françoise

    2011-05-01

    Nine proteins of the ABC superfamily (P-glycoprotein, 7 MRPs and BCRP) are involved in multidrug transport. Being localised at the surface of endothelial or epithelial cells, they expel drugs back to the external medium (if located at the apical side [P-glycoprotein, BCRP, MRP2, MRP4 in the kidney]) or to the blood (if located at the basolateral side [MRP1, MRP3, MRP4, MRP5]), modulating thereby their absorption, distribution, and elimination. In the CNS, most transporters are oriented to expel drugs to the blood. Transporters also cooperate with Phase I/Phase II metabolism enzymes by eliminating drug metabolites. Their major features are (i) their capacity to recognize drugs belonging to unrelated pharmacological classes, and (ii) their redundancy, a single molecule being possibly substrate for different transporters. This ensures an efficient protection of the body against invasion by xenobiotics. Competition for transport is now characterized as a mechanism of interaction between co-administered drugs, one molecule limiting the transport of the other, potentially affecting bioavailability, distribution, and/or elimination. Again, this mechanism reinforces drug interactions mediated by cytochrome P450 inhibition, as many substrates of P-glycoprotein and CYP3A4 are common. Induction of the expression of genes coding for MDR transporters is another mechanism of drug interaction, which could affect all drug substrates of the up-regulated transporter. Overexpression of MDR transporters confers resistance to anticancer agents and other therapies. All together, these data justify why studying drug active transport should be part of the evaluation of new drugs, as recently recommended by the FDA.

  16. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation

    PubMed Central

    Mendiondo, Guillermina M.; Medhurst, Anne; van Roermund, Carlo W.; Zhang, Xuebin; Devonshire, Jean; Scholefield, Duncan; Fernández, José; Axcell, Barry; Ramsay, Luke; Waterham, Hans R.; Waugh, Robbie; Theodoulou, Frederica L.; Holdsworth, Michael J.

    2014-01-01

    In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ. PMID:24913629

  17. Investigation of the quaternary structure of an ABC transporter in living cells using spectrally resolved resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Singh, Deo Raj

    Forster resonance energy transfer (FRET) has become an important tool to study proteins inside living cells. It has been used to explore membrane protein folding and dynamics, determine stoichiometry and geometry of protein complexes, and measure the distance between two molecules. In this dissertation, we use a method based on FRET and optical micro-spectroscopy (OptiMiS) technology, developed in our lab, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of an ABC transporter in living cells. Specifically, the transporter we investigate originates from the pathogen Pseudomonas aeruginosa, which is a Gram-negative bacterium with several virulence factors, lipopolysaccharides being one of them. This pathogen coexpresses two unique forms of lipopolysaccharides on its surface, the A- and B-bands. The A-band polysaccharides, synthesized in the cytoplasm, are translocated into the periplasm through an ATP-binding-cassette (ABC) transporter consisting of a transmembranar protein, Wzm, and a nucleotide-binding protein, Wzt. In P. aeruginosa, all of the biochemical studies of A-band LPS are concentrated on the stages of the synthesis and ligation of polysaccharides (PSs), leaving the export stage involving ABC transporter unexplored. The mode of PS export through ABC transporters is still unknown. This difficulty is due to the lack of information about sub-unit composition and structure of this bi-component ABC transporter. Using the FRET-OptiMiS combination method developed by our lab, we found that Wzt forms a rhombus-shaped homo-tetramer which becomes a square upon co-expression with Wzm, and that Wzm forms a square-shaped homo-tetramer both in the presence and absence of Wzt. Based on these results, we propose a structural model for the double-tetramer complex formed by the bi-component ABC transporter in living cells. An understanding of the

  18. Human and Rat ABC Transporter Efflux of Bisphenol A and Bisphenol A Glucuronide: Interspecies Comparison and Implications for Pharmacokinetic Assessment

    EPA Science Inventory

    Significant interspecies differences exist between human and rodent with respect to absorption, distribution, and excretion of bisphenol A (BPA) and its primary metabolite, BPA-glucuronide (BPA-G). ATP-Binding Cassette (ABC) transporter enzymes play important roles in these physi...

  19. Inhibition of the Human ABC Efflux Transporters P-gp and ...

    EPA Pesticide Factsheets

    High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity.

  20. ATP-binding cassette (ABC) transporters in caprine preantral follicles: gene and protein expression.

    PubMed

    Guerreiro, Denise Damasceno; de Lima, Laritza Ferreira; Mbemya, Gildas Tetaping; Maside, Carolina Mielgo; Miranda, André Marrocos; Tavares, Kaio César Simiano; Alves, Benner Geraldo; Faustino, Luciana Rocha; Smitz, Johan; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro

    2018-06-01

    The multidrug resistance proteins ABCB1, ABCC2 and ABCG2 are an energy-dependent efflux pump that functions in systemic detoxification processes. Physiologically expressed in a variety of tissues, most abundantly in the liver and intestinal epithelia, placenta, blood-brain barrier and various stem cells, until now, these pumps were not identified in goat ovarian tissue. Therefore, the aim of this study is to analyze ABCB1, ABCC2, and ABCG2 mRNA and protein expression in goat preantral follicles. Fragments (3 × 3 × 1 mm) from five pairs of ovary (n = 10) obtained from five goat were collected and immediately submitted to qPCR, Western blot, and immunofluorescence assay for mRNA detection and identification and localization of the ABC transporters, respectively. mRNA for ABCB1, ABCC2, and ABCG2 and the presence of their proteins were observed on ovarian tissue samples. Positive marks were observed for the three transport proteins in all follicular categories studied. However, the marks were primarily localized in the oocyte of primordial, transition and primary follicle categories. In conclusion, goat ovarian tissue expresses mRNA for the ABCB1, ABCC2 and ABCG2 transporters and the expression of these proteins in the preantral follicles is a follicle-dependent stage.

  1. The ABC transporter Rv1272c of Mycobacterium tuberculosis enhances the import of long-chain fatty acids in Escherichia coli.

    PubMed

    Martin, Audrey; Daniel, Jaiyanth

    2018-02-05

    Mycobacterium tuberculosis (Mtb), which causes tuberculosis, is capable of accumulating triacylglycerol (TAG) by utilizing fatty acids from host cells. ATP-binding cassette (ABC) transporters are involved in transport processes in all organisms. Among the classical ABC transporters in Mtb none have been implicated in fatty acid import. Since the transport of fatty acids from the host cell is important for dormancy-associated TAG synthesis in the pathogen, mycobacterial ABC transporter(s) could potentially be involved in this process. Based on sequence identities with a bacterial ABC transporter that mediates fatty acid import for TAG synthesis, we identified Rv1272c, a hitherto uncharacterized ABC-transporter in Mtb that also shows sequence identities with a plant ABC transporter involved in fatty acid transport. We expressed Rv1272c in E. coli and show that it enhances the import of radiolabeled fatty acids. We also show that Rv1272c causes a significant increase in the metabolic incorporation of radiolabeled long-chain fatty acids into cardiolipin, a tetra-acylated phospholipid, and phosphatidylglycerol in E. coli. This is the first report on the function of Rv1272c showing that it displays a long-chain fatty acid transport function. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters

    SciTech Connect

    Němcová-Fürstová, Vlasta, E-mail: vlasta.furstova@

    Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100 nM and 300 nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublinesmore » of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells. - Highlights: • Expression of all ABC transporters in paclitaxel-resistant sublines of SK-BR-3 and MCF-7 cells was analyzed. • SK-BR-3 and MCF-7 cells are unable to develop resistance to some taxanes. • Some taxanes are able to overcome developed resistance to

  3. The ABC of Biofilm Drug Tolerance: the MerR-Like Regulator BrlR Is an Activator of ABC Transport Systems, with PA1874-77 Contributing to the Tolerance of Pseudomonas aeruginosa Biofilms to Tobramycin.

    PubMed

    Poudyal, Bandita; Sauer, Karin

    2018-02-01

    A hallmark of biofilms is their tolerance to killing by antimicrobial agents. In Pseudomonas aeruginosa , biofilm drug tolerance requires the c-di-GMP-responsive MerR transcriptional regulator BrlR. However, the mechanism by which BrlR mediates biofilm drug tolerance has not been elucidated. Here, we demonstrate that BrlR activates the expression of at least 7 ABC transport systems, including the PA1874-PA1875-PA1876-PA1877 (PA1874-77) operon, with chromatin immunoprecipitation and DNA binding assays confirming BrlR binding to the promoter region of PA1874-77. Insertional inactivation of the 7 ABC transport systems rendered P. aeruginosa PAO1 biofilms susceptible to tobramycin or norfloxacin. Susceptibility was linked to drug accumulation, with BrlR contributing to norfloxacin accumulation in a manner dependent on multidrug efflux pumps and the PA1874-77 ABC transport system. Inactivation of the respective ABC transport system, furthermore, eliminated the recalcitrance of biofilms to killing by tobramycin but not norfloxacin, indicating that drug accumulation is not linked to biofilm drug tolerance. Our findings indicate for the first time that BrlR, a MerR-type transcriptional activator, activates genes encoding several ABC transport systems, in addition to multiple multidrug efflux pump genes. Moreover, our data confirm a BrlR target contributing to drug tolerance, likely countering the prevailing dogma that biofilm tolerance arises from a multiplicity of factors. Copyright © 2018 American Society for Microbiology.

  4. Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis.

    PubMed

    Qiu, Jingfan; Zhuo, Ying; Zhu, Dongqing; Zhou, Xiufen; Zhang, Lixin; Bai, Linquan; Deng, Zixin

    2011-10-01

    Avermectins are 16-membered macrocyclic polyketides with potent antiparasitic activities, produced by Streptomyces avermitilis. Upstream of the avermectin biosynthetic gene cluster, there is the avtAB operon encoding the ABC transporter AvtAB, which is highly homologous to the mammalian multidrug efflux pump P-glycoprotein (Pgp). Inactivation of avtAB had no effect, but increasing the concentration of avtAB mRNA 30-500-fold, using a multi-copy plasmid in S. avermitilis, enhanced avermectin production about two-fold both in the wild-type and in a high-yield producer strain on agar plates. In liquid industrial fermentation medium, the overall productivity of avermectin B1a in the engineered high-yield producer was improved for about 50%, from 3.3 to 4.8 g/l. In liquid YMG medium, moreover, the ratio of intracellular to extracellular accumulation of avermectin B1a was dropped from 6:1 to 4.5:1 in response to multiple copies of avtAB. Additionally, the overexpression of avtAB did not cause any increased expression of the avermectin biosynthetic genes through RT-PCR analysis. We propose that the AvtAB transporter exports avermectin, and thus reduces the feedback inhibition on avermectin production inside the cell. This strategy may be useful for enhancing the production of other antibiotics.

  5. The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion.

    PubMed

    Khunweeraphong, Narakorn; Stockner, Thomas; Kuchler, Karl

    2017-10-23

    The human ABC transporter ABCG2 (Breast Cancer Resistance Protein, BCRP) is implicated in anticancer resistance, in detoxification across barriers and linked to gout. Here, we generate a novel atomic model of ABCG2 using the crystal structure of ABCG5/G8. Extensive mutagenesis verifies the structure, disclosing hitherto unrecognized essential residues and domains in the homodimeric ABCG2 transporter. The elbow helix, the first intracellular loop (ICL1) and the nucleotide-binding domain (NBD) constitute pivotal elements of the architecture building the transmission interface that borders a central cavity which acts as a drug trap. The transmission interface is stabilized by salt-bridge interactions between the elbow helix and ICL1, as well as within ICL1, which is essential to control the conformational switch of ABCG2 to the outward-open drug-releasing conformation. Importantly, we propose that ICL1 operates like a molecular spring that holds the NBD dimer close to the membrane, thereby enabling efficient coupling of ATP hydrolysis during the catalytic cycle. These novel mechanistic data open new opportunities to therapeutically target ABCG2 in the context of related diseases.

  6. A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3.

    PubMed

    Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz

    2015-02-20

    The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A Mutation within the Extended X Loop Abolished Substrate-induced ATPase Activity of the Human Liver ATP-binding Cassette (ABC) Transporter MDR3*

    PubMed Central

    Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz

    2015-01-01

    The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. PMID:25533467

  8. Multiple ABC glucoside transporters mediate sugar-stimulated growth in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Nieves-Morión, Mercedes; Flores, Enrique

    2018-02-01

    Cyanobacteria are generally capable of photoautotrophic growth and are widely distributed on Earth. The model filamentous, heterocyst-forming strain Anabaena sp. PCC 7120 has long been considered as a strict photoautotroph but is now known to be able to assimilate fructose. We have previously described two components of ABC glucoside uptake transporters from Anabaena that are involved in uptake of the sucrose analog esculin: GlsC [a nucleotide-binding domain subunit (NBD)] and GlsP [a transmembrane component (TMD)]. Here, we created Anabaena mutants of genes encoding three further ABC transporter components needed for esculin uptake: GlsD (NBD), GlsQ (TMD) and GlsR (periplasmic substrate-binding protein). Phototrophic growth of Anabaena was significantly stimulated by sucrose, fructose and glucose. Whereas the glsC and glsD mutants were drastically hampered in sucrose-stimulated growth, the different gls mutants were generally impaired in sugar-dependent growth. Our results suggest the participation of Gls and other ABC transporters encoded in the Anabaena genome in sugar-stimulated growth. Additionally, Gls transporter components influence the function of septal junctions in the Anabaena filament. We suggest that mixotrophic growth is important in cyanobacterial physiology and may be relevant for the wide success of these organisms in diverse environments. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Drug resistance-associated changes in sphingolipids and ABC transporters occur in different regions of membrane domains.

    PubMed

    Hinrichs, John W J; Klappe, Karin; van Riezen, Manon; Kok, Jan W

    2005-11-01

    We have recently shown that two ATP binding cassette (ABC) transporters are enriched in Lubrol-resistant noncaveolar membrane domains in multidrug-resistant human cancer cells [Hinrichs, J. W. J., K. Klappe, I. Hummel, and J. W. Kok. 2004. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells. J. Biol. Chem. 279: 5734-5738]. Here, we show that aminophospholipids are relatively enriched in Lubrol-resistant membrane domains compared with Triton X-100-resistant membrane domains, whereas sphingolipids are relatively enriched in the latter. Moreover, Lubrol-resistant membrane domains contain more protein and lipid mass. Based on these results, we postulate a model for detergent-insoluble glycosphingolipid-enriched membrane domains consisting of a Lubrol-insoluble/Triton X-100-insoluble region and a Lubrol-insoluble/Triton X-100-soluble region. The latter region contains most of the ABC transporters as well as lipids known to be necessary for their efflux activity. Compared with drug-sensitive cells, the detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in drug-resistant cells differ specifically in sphingolipid content and not in protein, phospholipid, or cholesterol content. In drug-resistant cells, sphingolipids with specific fatty acids (especially C24:1) are enriched in these membrane domains. Together, these data show that multidrug resistance-associated changes in both sphingolipids and ABC transporters occur in DIGs, but in different regions of these domains.

  10. Multiple ABC transporters are involved in the acquisition of petrobactin in Bacillus anthracis

    PubMed Central

    Dixon, Shandee D.; Janes, Brian K.; Bourgis, Alexandra; Carlson, Paul E.; Hanna, Philip C.

    2012-01-01

    Summary In Bacillus anthracis the siderophore petrobactin is vital for iron acquisition and virulence. The petrobactin-binding receptor FpuA is required for these processes. Here additional components of petrobactin reacquisition are described. To identify these proteins, mutants of candidate permease and ATPase genes were generated allowing for characterization of multiple petrobactin ATP-binding cassette (ABC)-import systems. Either of two distinct permeases, FpuB or FatCD, are required for iron acquisition and play redundant roles in petrobactin transport. A mutant strain lacking both permeases, ΔfpuBΔfatCD, was incapable of using petrobactin as an iron source and exhibited attenuated virulence in a murine model of inhalational anthrax infection. ATPase mutants were generated in either of the permease mutant backgrounds to identify the ATPase(s) interacting with each individual permease channel. Mutants lacking the FpuB permease and FatE ATPase (ΔfpuBΔfatE) and a mutant lacking the distinct ATPases FpuC and FpuD generated in the ΔfatCD background (ΔfatCDΔfpuCΔfpuD) displayed phenotypic characteristics of a mutant deficient in petrobactin import. A mutant lacking all three of the identified ATPases (ΔfatEΔfpuCΔfpuD) exhibited the same growth defect in iron-depleted conditions. Taken together, these results provide the first description of the permease and ATPase proteins required for the import of petrobactin in B. anthracis. PMID:22429808

  11. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane.

    PubMed

    van der Heide, T; Poolman, B

    2000-06-20

    An osmoregulated ABC transporter (OpuA) with novel structural features has been identified that responds to water stress. This glycine betaine transport system consists of an ATP-binding/hydrolyzing subunit (OpuAA) and a protein (OpuABC) that contains both the translocator and the substrate-binding domain. The components of OpuA have been overexpressed, purified, and functionally incorporated into liposomes with an ATP-regenerating system in the vesicle lumen. A transmembrane osmotic gradient (outside hyperosmotic relative to the inside) of both ionic and nonionic compounds was able to osmotically activate OpuA in the proteoliposomal system. Hypoosmotic medium conditions inhibited the basal activity of the system. The data show that OpuAA and OpuABC are sufficient for osmoregulated transport, indicating that OpuA can act both as osmosensor and osmoregulator. Strikingly, OpuA could also be activated by low concentrations of cationic and anionic amphipaths, which interact with the membrane. This result indicates that activation by a transmembrane osmotic gradient is mediated by changes in membrane properties/protein-lipid interactions.

  12. The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin.

    PubMed

    Menges, R; Muth, G; Wohlleben, W; Stegmann, E

    2007-11-01

    All known gene clusters for glycopeptide antibiotic biosynthesis contain a conserved gene supposed to encode an ABC-transporter. In the balhimycin-producer Amycolatopsis balhimycina this gene (tba) is localised between the prephenate dehydrogenase gene pdh and the peptide synthetase gene bpsA. Inactivation of tba in A. balhimycina by gene replacement did not interfere with growth and did not affect balhimycin resistance. However, in the supernatant of the tba mutant RM43 less balhimycin was accumulated compared to the wild type; and the intra-cellular balhimycin concentration was ten times higher in the tba mutant RM43 than in the wild type. These data suggest that the ABC transporter encoded in the balhimycin biosynthesis gene cluster is not involved in resistance but is required for the efficient export of the antibiotic. To elucidate the activity of Tba it was heterologously expressed in Escherichia coli with an N-terminal His-tag and purified by nickel chromatography. A photometric assay revealed that His(6)-Tba solubilised in dodecylmaltoside possesses ATPase activity, characteristic for ABC-transporters.

  13. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane

    PubMed Central

    van der Heide, Tiemen; Poolman, Bert

    2000-01-01

    An osmoregulated ABC transporter (OpuA) with novel structural features has been identified that responds to water stress. This glycine betaine transport system consists of an ATP-binding/hydrolyzing subunit (OpuAA) and a protein (OpuABC) that contains both the translocator and the substrate-binding domain. The components of OpuA have been overexpressed, purified, and functionally incorporated into liposomes with an ATP-regenerating system in the vesicle lumen. A transmembrane osmotic gradient (outside hyperosmotic relative to the inside) of both ionic and nonionic compounds was able to osmotically activate OpuA in the proteoliposomal system. Hypoosmotic medium conditions inhibited the basal activity of the system. The data show that OpuAA and OpuABC are sufficient for osmoregulated transport, indicating that OpuA can act both as osmosensor and osmoregulator. Strikingly, OpuA could also be activated by low concentrations of cationic and anionic amphipaths, which interact with the membrane. This result indicates that activation by a transmembrane osmotic gradient is mediated by changes in membrane properties/protein–lipid interactions. PMID:10860977

  14. The ABCs of membrane transporters in health and disease (SLC series): Introduction☆☆☆

    PubMed Central

    Hediger, Matthias A.; Clémençon, Benjamin; Burrier, Robert E.; Bruford, Elspeth A.

    2013-01-01

    The field of transport biology has steadily grown over the past decade and is now recognized as playing an important role in manifestation and treatment of disease. The SLC (solute carrier) gene series has grown to now include 52 families and 395 transporter genes in the human genome. A list of these genes can be found at the HUGO Gene Nomenclature Committee (HGNC) website (see www.genenames.org/genefamilies/SLC). This special issue features mini-reviews for each of these SLC families written by the experts in each field. The existing online resource for solute carriers, the Bioparadigms SLC Tables (www.bioparadigms.org), has been updated and significantly extended with additional information and cross-links to other relevant databases, and the nomenclature used in this database has been validated and approved by the HGNC. In addition, the Bioparadigms SLC Tables functionality has been improved to allow easier access by the scientific community. This introduction includes: an overview of all known SLC and “non-SLC” transporter genes; a list of transporters of water soluble vitamins; a summary of recent progress in the structure determination of transporters (including GLUT1/SLC2A1); roles of transporters in human diseases and roles in drug approval and pharmaceutical perspectives. PMID:23506860

  15. N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR).

    PubMed

    Beharry, Seelochan; Zhong, Ming; Molday, Robert S

    2004-12-24

    ABCA4, a member of the family of ATP binding cassette (ABC) proteins found in rod and cone photoreceptors, has been implicated in the transport of retinoid compounds across the outer segment disk membrane following the photoactivation of rhodopsin. Mutations in the ABCA4 gene are responsible for Stargardt macular dystrophy and related retinal degenerative diseases that cause a loss in vision. To identify the retinoid substrate that interacts with ABCA4, we have isolated ABCA4 from rod outer segment disk membranes on an immunoaffinity matrix and analyzed retinoid compounds that bind to ABCA4 using high performance liquid chromatography and radiolabeling methods. When all-trans-retinal was added to ABCA4 in the presence of phosphatidylethanolamine, approximately 0.9 mol of N-retinylidene-phosphatidylethanolamine and 0.3 mol of all-trans-retinal were bound per mol of ABCA4 with an apparent K(d) of 2-5 microm. ATP and GTP released these retinoids from ABCA4, whereas ADP, GDP, and nonhydrolyzable derivatives, adenosine 5'-(beta,gamma-imido)triphosphate and guanosine 5'-(beta,gamma-imido)triphosphate, were ineffective. One mole of N-retinyl-phosphatidylethanolamine, the reduced form of N-retinylidene-phosphatidylethanolamine, bound per mol of ABCA4, whereas 0.3 mol of all-trans-retinal were bound in the absence of phosphatidylethanolamine. No binding of all-trans-retinol to ABCA4 was observed. Our results indicate that ABCA4 preferentially binds N-retinylidene-phosphatidylethanolamine with high affinity in the absence of ATP. Our studies further suggest that ATP binding and hydrolysis induces a protein conformational change that causes N-retinylidene-phosphatidylethanolamine to dissociate from ABCA4.

  16. An ABC Transporter System of Yersinia pestis Allows Utilization of Chelated Iron by Escherichia coli SAB11

    PubMed Central

    Bearden, Scott W.; Staggs, Teanna M.; Perry, Robert D.

    1998-01-01

    The acquisition of iron is an essential component in the pathogenesis of Yersinia pestis, the agent of bubonic and pneumonic plague. A cosmid library derived from the genomic DNA of Y. pestis KIM6+ was used for transduction of an Escherichia coli mutant (SAB11) defective in the biosynthesis of the siderophore enterobactin. Recombinant plasmids which had a common 13-kb BamHI fragment were isolated from SAB11 transductants in which growth but not enterobactin synthesis was restored on media containing the iron chelator EDDA [ethylenediamine-di(o-hydroxyphenyl acetic acid)]. Subcloning and transposon mutagenesis revealed a 5.6-kb region, designated yfe, essential for SAB11 growth stimulation. In vitro transcription-translation analysis identified polypeptides of 18, 29.5, 32, and 33 kDa encoded by the yfe locus. Sequence analysis shows this locus to be comprised of five genes in two separate operons which have potential Fur-binding sequences in both promoters. A putative polycistronic operon, yfeABCD, is Fur regulated and responds to iron and manganese. A functional Fur protein is required for the observed manganese repression of this operon. This operon encodes polypeptides which have strong similarity to the ATP-binding cassette (ABC) family of transporters and include a periplasmic binding protein (YfeA), an ATP-binding protein (YfeB), and two integral membrane proteins (YfeC and -D), which likely function in the acquisition of inorganic iron and possibly other ions. The ∼21-kDa protein encoded by the separately transcribed yfeE gene may be located in the cell envelope, since a yfeE::TnphoA fusion is PhoA+. Mutations in this gene abrogate growth of SAB11 on iron-chelated media. PMID:9495751

  17. An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11.

    PubMed

    Bearden, S W; Staggs, T M; Perry, R D

    1998-03-01

    The acquisition of iron is an essential component in the pathogenesis of Yersinia pestis, the agent of bubonic and pneumonic plague. A cosmid library derived from the genomic DNA of Y. pestis KIM6+ was used for transduction of an Escherichia coli mutant (SAB11) defective in the biosynthesis of the siderophore enterobactin. Recombinant plasmids which had a common 13-kb BamHI fragment were isolated from SAB11 transductants in which growth but not enterobactin synthesis was restored on media containing the iron chelator EDDA [ethylenediamine-di(o-hydroxyphenyl acetic acid)]. Subcloning and transposon mutagenesis revealed a 5.6-kb region, designated yfe, essential for SAB11 growth stimulation. In vitro transcription-translation analysis identified polypeptides of 18, 29.5, 32, and 33 kDa encoded by the yfe locus. Sequence analysis shows this locus to be comprised of five genes in two separate operons which have potential Fur-binding sequences in both promoters. A putative polycistronic operon, yfeABCD, is Fur regulated and responds to iron and manganese. A functional Fur protein is required for the observed manganese repression of this operon. This operon encodes polypeptides which have strong similarity to the ATP-binding cassette (ABC) family of transporters and include a periplasmic binding protein (YfeA), an ATP-binding protein (YfeB), and two integral membrane proteins (YfeC and -D), which likely function in the acquisition of inorganic iron and possibly other ions. The approximately 21-kDa protein encoded by the separately transcribed yfeE gene may be located in the cell envelope, since a yfeE::TnphoA fusion is PhoA+. Mutations in this gene abrogate growth of SAB11 on iron-chelated media.

  18. Iowa ABC connections.

    DOT National Transportation Integrated Search

    2015-06-01

    For several years the Iowa Department of Transportation (DOT), Iowa State University, the Federal Highway Administration, : and several Iowa counties have been working to develop accelerated bridge construction (ABC) concepts, details, and processes....

  19. The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters.

    PubMed

    Rigalli, Juan Pablo; Tocchetti, Guillermo Nicolás; Arana, Maite Rocío; Villanueva, Silvina Stella Maris; Catania, Viviana Alicia; Theile, Dirk; Ruiz, María Laura; Weiss, Johanna

    2016-06-28

    Breast cancer is the most frequent malignancy in women. Multidrug resistance due to overexpression of ABC drug transporters is a common cause of chemotherapy failure and disease recurrence. Genistein (GNT) is a phytoestrogen present in soybeans and hormone supplements. We investigated the effect of GNT on the expression and function of ABC transporters in MCF-7 and MDA-MB-231 breast cancer cell lines. Results demonstrated an induction at the protein level of ABCC1 and ABCG2 and of ABCC1 in MCF-7 and MDA-MB-231, respectively. MCF-7 cells showed a concomitant increase in doxorubicin and mitoxantrone efflux and resistance, dependent on ABCG2 activity. ABCC1 induction by GNT in MDA-MB-231 cells modified neither drug efflux nor chemoresistance due to simultaneous acute inhibition of the transporter activity by GNT. All inductions took place at the translational level, as no increment in mRNA was observed and protein increase was prevented by cycloheximide. miR-181a, already demonstrated to inhibit ABCG2 translation, was down-regulated by GNT, explaining translational induction. Effects were independent of classical estrogen receptors. Results suggest potential nutrient-drug interactions that could threaten chemotherapy efficacy, especially in ABCG2-expressing tumors treated with substrates of this transporter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Characterization of SiaA, a streptococcal heme-binding protein associated with a heme ABC transport system.

    PubMed

    Sook, Brian R; Block, Darci R; Sumithran, Suganya; Montañez, Griselle E; Rodgers, Kenton R; Dawson, John H; Eichenbaum, Zehava; Dixon, Dabney W

    2008-02-26

    Many pathogenic bacteria require heme and obtain it from their environment. Heme transverses the cytoplasmic membrane via an ATP binding cassette (ABC) pathway. Although a number of heme ABC transport systems have been described in pathogenic bacteria, there is as yet little biophysical characterization of the proteins in these systems. The sia (hts) gene cluster encodes a heme ABC transporter in the Gram positive Streptococcus pyogenes. The lipoprotein-anchored heme binding protein (HBP) of this transporter is SiaA (HtsA). In the current study, resonance Raman (rR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopies were used to determine the coordination state and spin state of both the ferric and ferrous forms of this protein. Identifiers from these techniques suggest that the heme is six-coordinate and low-spin in both oxidation states of the protein, with methionine and histidine as axial ligands. SiaA has a pKa of 9.7 +/- 0.1, attributed to deprotonation of the axial histidine. Guanidinium titration studies show that the ferric state is less stable than the ferrous state, with DeltaG(H2O) values for the oxidized and reduced proteins of 7.3 +/- 0.8 and 16.0 +/- 3.6 kcal mol-1, respectively. The reductive and oxidative midpoint potentials determined via spectroelectrochemistry are 83 +/- 3 and 64 +/- 3 mV, respectively; the irreversibility of heme reduction suggests that redox cycling of the heme is coupled to a kinetically sluggish change in structure or conformation. The biophysical characterization described herein will significantly advance our understanding of structure-function relationships in HBP.

  1. The ABC transporter ABCG29 is involved in H2O2 tolerance and biocontrol traits in the fungus Clonostachys rosea.

    PubMed

    Dubey, Mukesh; Jensen, Dan Funck; Karlsson, Magnus

    2016-04-01

    For successful biocontrol interactions, biological control organisms must tolerate toxic metabolites produced by themselves or plant pathogens during mycoparasitic/antagonistic interactions, by host plant during colonization of the plant, and xenobiotics present in the environment. ATP-binding cassette (ABC) transporters can play a significant role in tolerance of toxic compounds by mediating active transport across the cellular membrane. This paper reports on functional characterization of an ABC transporter ABCG29 in the biocontrol fungus Clonostachys rosea strain IK726. Gene expression analysis showed induced expression of abcG29 during exposure to the Fusarium spp. mycotoxin zearalenone (ZEA) and the fungicides Cantus, Chipco Green and Apron. Expression of abcG29 in C. rosea was significantly higher during C. rosea-C. rosea (Cr-Cr) interaction or in exposure to C. rosea culture filtrate for 2 h, compared to interaction with Fusarium graminearum or 2 h exposure to F. graminearum culture filtrate. In contrast with gene expression data, ΔabcG29 strains did not display reduced tolerance towards ZEA, fungicides or chemical agents known for inducing oxidative, cell wall or osmotic stress, compared to C. rosea WT. The exception was a significant reduction in tolerance to H2O2 (10 mM) in ΔabcG29 strains when conidia were used as an inoculum. The antagonistic ability of ΔabcG29 strains towards F. graminearum, Fusarium oxysporum or Botrytis cinerea in dual plate assays were not different compared with WT. However, in biocontrol assays ΔabcG29 strains displayed reduced ability to protect Arabidopsis thaliana leaves from B. cinerea, and barley seedling from F. graminearum as measured by an A. thaliana detached leaf assay and a barley foot rot disease assay, respectively. These data show that the ABCG29 is dispensable for ZEA and fungicides tolerance, and antagonism but not H2O2 tolerance and biocontrol effects in C. rosea.

  2. Molecular cloning and expression profile of an ATP-binding cassette (ABC) transporter gene from the hemipteran insect Nilaparvata lugens.

    PubMed

    Zha, W J; Li, S H; Zhou, L; Chen, Z J; Liu, K; Yang, G C; Hu, G; He, G C; You, A Q

    2015-03-30

    The ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins that have important physiological functions in all living organisms. In insects, ABC transporters have important functions in the transport of molecules, and are also involved in insecticide resistance, metabolism, and development. In this study, the Nilaparvata lugens Stal (Hemiptera: Delphacidae) ABCG (NlABCG) gene was identified and characterized. The complete mRNA sequence of NlABCG was 2608-bp long, with an open reading frame of 2064 bp encoding a protein comprised of 687 amino acids. The conserved regions include three N-glycosylation and 34 phosphorylation sites, as well as seven transmembrane domains. The amino acid identity with the closely related species Acyrthosiphon pisum was 42.8%. Developmental expression analysis using quantitative real-time reverse transcriptase PCR suggested that the NlABCG transcript was expressed at all developmental stages of N. lugens. The lowest expression of NlABCG was in the 1st instar, and levels increased with larval growth. The transcript profiles of NlABCG were analyzed in various tissues from a 5th instar nymph, and the highest expression was observed in the midgut. These results suggest that the sequence, characteristics, and expression of NlABCG are highly conserved, and basic information is provided for its functional analysis.

  3. Polymorphisms in ABC Transporter Genes and Concentrations of Mercury in Newborns – Evidence from Two Mediterranean Birth Cohorts

    PubMed Central

    Llop, Sabrina; Engström, Karin; Ballester, Ferran; Franforte, Elisa; Alhamdow, Ayman; Pisa, Federica; Tratnik, Janja Snoj; Mazej, Datja; Murcia, Mario; Rebagliato, Marisa; Bustamante, Mariona; Sunyer, Jordi; Sofianou-Katsoulis, Αikaterini; Prasouli, Alexia; Antonopoulou, Eleni; Antoniadou, Ioanna; Nakou, Sheena; Barbone, Fabio; Horvat, Milena; Broberg, Karin

    2014-01-01

    Background The genetic background may influence methylmercury (MeHg) metabolism and neurotoxicity. ATP binding cassette (ABC) transporters actively transport various xenobiotics across biological membranes. Objective To investigate the role of ABC polymorphisms as modifiers of prenatal exposure to MeHg. Methods The study population consisted of participants (n = 1651) in two birth cohorts, one in Italy and Greece (PHIME) and the other in Spain (INMA). Women were recruited during pregnancy in Italy and Spain, and during the perinatal period in Greece. Total mercury concentrations were measured in cord blood samples by atomic absorption spectrometry. Maternal fish intake during pregnancy was determined from questionnaires. Polymorphisms (n = 5) in the ABC genes ABCA1, ABCB1, ABCC1 and ABCC2 were analysed in both cohorts. Results ABCB1 rs2032582, ABCC1 rs11075290, and ABCC2 rs2273697 modified the associations between maternal fish intake and cord blood mercury concentrations. The overall interaction coefficient between rs2032582 and log2-transformed fish intake was negative for carriers of GT (β = −0.29, 95%CI −0.47, −0.12) and TT (β = −0.49, 95%CI −0.71, −0.26) versus GG, meaning that for a doubling in fish intake of the mothers, children with the rs2032582 GG genotype accumulated 35% more mercury than children with TT. For rs11075290, the interaction coefficient was negative for carriers of TC (β = −0.12, 95%CI −0.33, 0.09), and TT (β = −0.28, 95%CI −0.51, −0.06) versus CC. For rs2273697, the interaction coefficient was positive when combining GA+AA (β = 0.16, 95%CI 0.01, 0.32) versus GG. Conclusion The ABC transporters appear to play a role in accumulation of MeHg during early development. PMID:24831289

  4. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall.

    PubMed

    Jonsson, Ing-Marie; Juuti, Jarmo T; François, Patrice; AlMajidi, Rana; Pietiäinen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J; Driessen, Arnold J M; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P

    2010-12-02

    Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown. In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine. Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.

  5. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis.

    PubMed

    Larsen, Paul B; Geisler, Matt J B; Jones, Carol A; Williams, Kelly M; Cancel, Jesse D

    2005-02-01

    Aluminum (Al) toxicity in acid soils is a worldwide agricultural problem that severely limits crop productivity through inhibition of root growth. Previously, Arabidopsis mutants with increased Al sensitivity were isolated in order to identify genes important for Al tolerance in plants. One mutant, als3, exhibited extreme root growth inhibition in the presence of Al, suggesting that this mutation negatively impacts a gene required for Al tolerance. Map-based cloning of the als3-1 mutation resulted in the isolation of a novel gene that encodes a previously undescribed ABC transporter-like protein, which is highly homologous to a putative bacterial metal resistance protein, ybbM. Northern analysis for ALS3 expression revealed that it is found in all organs examined, which is consistent with the global nature of Al sensitivity displayed by als3, and that expression increases in roots following Al treatment. Based on GUS fusion and in situ hybridization analyses, ALS3 is primarily expressed in leaf hydathodes and the phloem throughout the plant, along with the root cortex following Al treatment. Immunolocalization indicates that ALS3 predominantly accumulates in the plasma membrane of cells that express ALS3. From our results, it appears that ALS3 encodes an ABC transporter-like protein that is required for Al resistance/tolerance and may function to redistribute accumulated Al away from sensitive tissues in order to protect the growing root from the toxic effects of Al.

  6. Application of fluorescent dye substrates for functional characterization of ABC multidrug transporters at a single cell level.

    PubMed

    Nerada, Zsuzsanna; Hegyi, Zoltán; Szepesi, Áron; Tóth, Szilárd; Hegedüs, Csilla; Várady, György; Matula, Zsolt; Homolya, László; Sarkadi, Balázs; Telbisz, Ágnes

    2016-09-01

    ABC multidrug transporters are key players in cancer multidrug resistance and in determining the ADME-Tox properties of drugs and xenobiotics. The most sensitive and specific detection of these transporters is based on functional assays. Assessment of the transporter-dependent reduction of cellular uptake of the fluorescent dyes, such as Hoechst 33342 (Ho) and more recently DyeCycle Violet (DCV), have been widely advocated for the characterization of both ABCB1 and ABCG2 multidrug transporters. Detailed comparison of these supravital DNA-binding dyes revealed that DCV is less toxic to ABCG2- and ABCB1-expressing cells than Ho. ATPase measurements imply that DCV and Ho are similarly handled by ABCB1, whereas ABCG2 seems to transport DVC more effectively. In addition, we have developed an image-based high content microscopy screening method for simultaneous in situ measurement of the cellular activity and expression of the ABCG2 multidrug transporter. We demonstrated the applicability of this method for identifying ABCG2-positive cells in heterogeneous cell population by a single dye uptake measurement. These results may promote multidrug transporter studies at a single cell level and allow the quantitative detection of clinically important drug-resistant sub-populations. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  7. Investigating the dynamic nature of the ABC transporters: ABCB1 and MsbA as examples for the potential synergies of MD theory and EPR applications.

    PubMed

    Stockner, Thomas; Mullen, Anna; MacMillan, Fraser

    2015-10-01

    ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented. © 2015 Authors; published by Portland Press Limited.

  8. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis

    PubMed Central

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S.; Bilalis, Dimitrios

    2016-01-01

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha−1) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532

  9. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis.

    PubMed

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S; Bilalis, Dimitrios

    2016-04-20

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha(-1)) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance.

  10. Mutations in the Arabidopsis Peroxisomal ABC Transporter COMATOSE Allow Differentiation between Multiple Functions In Planta: Insights from an Allelic Series

    PubMed Central

    Dietrich, Daniela; Schmuths, Heike; Lousa, Carine De Marcos; Baldwin, Jocelyn M.; Baldwin, Stephen A.; Baker, Alison; Holdsworth, Michael J.

    2009-01-01

    COMATOSE (CTS), the Arabidopsis homologue of human Adrenoleukodystrophy protein (ALDP), is required for import of substrates for peroxisomal β-oxidation. A new allelic series and a homology model based on the bacterial ABC transporter, Sav1866, provide novel insights into structure-function relations of ABC subfamily D proteins. In contrast to ALDP, where the majority of mutations result in protein absence from the peroxisomal membrane, all CTS mutants produced stable protein. Mutation of conserved residues in the Walker A and B motifs in CTS nucleotide-binding domain (NBD) 1 resulted in a null phenotype but had little effect in NBD2, indicating that the NBDs are functionally distinct in vivo. Two alleles containing mutations in NBD1 outside the Walker motifs (E617K and C631Y) exhibited resistance to auxin precursors 2,4-dichlorophenoxybutyric acid (2,4-DB) and indole butyric acid (IBA) but were wild type in all other tests. The homology model predicted that the transmission interfaces are domain-swapped in CTS, and the differential effects of mutations in the conserved “EAA motif” of coupling helix 2 supported this prediction, consistent with distinct roles for each NBD. Our findings demonstrate that CTS functions can be separated by mutagenesis and the structural model provides a framework for interpretation of phenotypic data. PMID:19019987

  11. Iowa ABC connections : [tech transfer summary].

    DOT National Transportation Integrated Search

    2015-06-01

    The Iowa Department of Transportation (DOT) and other organizations have : been developing accelerated bridge construction (ABC) concepts, details, and : processes, and Iowa has come to be viewed as a national leader in the area of : ABC. However, th...

  12. Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria.

    PubMed

    Herrou, Julien; Willett, Jonathan W; Czyż, Daniel M; Babnigg, Gyorgy; Kim, Youngchang; Crosson, Sean

    2017-03-01

    Brucella abortus σ E1 is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon, bab1_0223-bab1_0226 , is among the most highly activated gene sets in the σ E1 regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription of yehZYXW is activated by the general stress sigma factor σ S in Enterobacteriaceae , which suggests a functional role for this transport system in bacterial stress response across the classes Alphaproteobacteria and Gammaproteobacteria We present evidence that B. abortus YehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σ E1 -null strain. The sole in vitro phenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li + ion concentrations. A crystal structure of B. abortus YehZ revealed a class II periplasmic binding protein fold with significant structural homology to Archaeoglobus fulgidus ProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers. IMPORTANCE Brucella abortus σ E1 regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the

  13. Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria

    SciTech Connect

    Herrou, Julien; Willett, Jonathan W.; Czyż, Daniel M.

    ABSTRACT Brucella abortusσ E1is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon,bab1_0223-bab1_0226, is among the most highly activated gene sets in the σ E1regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription ofyehZYXWis activated by the general stress sigma factor σ SinEnterobacteriaceae, which suggests a functional role for this transport systemmore » in bacterial stress response across the classesAlphaproteobacteriaandGammaproteobacteria. We present evidence thatB. abortusYehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σ E1-null strain. The solein vitrophenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li +ion concentrations. A crystal structure ofB. abortusYehZ revealed a class II periplasmic binding protein fold with significant structural homology toArchaeoglobus fulgidusProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers. IMPORTANCEBrucella abortusσ E1regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of

  14. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  15. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    SciTech Connect

    Fuchs, Dominik; Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg; Daniel, Volker

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity ofmore » P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.« less

  16. Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes.

    PubMed

    Lewis, Daniel R; Miller, Nathan D; Splitt, Bessie L; Wu, Guosheng; Spalding, Edgar P

    2007-06-01

    Two Arabidopsis thaliana ABC transporter genes linked to auxin transport by various previous results were studied in a reverse-genetic fashion. Mutations in Multidrug Resistance-Like1 (MDR1) reduced acropetal auxin transport in roots by 80% without affecting basipetal transport. Conversely, mutations in MDR4 blocked 50% of basipetal transport without affecting acropetal transport. Developmental and auxin distribution phenotypes associated with these altered auxin flows were studied with a high-resolution morphometric system and confocal microscopy, respectively. Vertically grown mdr1 roots produced positive and negative curvatures threefold greater than the wild type, possibly due to abnormal auxin distribution observed in the elongation zone. However, upon 90 degrees reorientation, mdr1 gravitropism was inseparable from the wild type. Thus, acropetal auxin transport maintains straight growth but contributes surprisingly little to gravitropism. Conversely, vertically maintained mdr4 roots grew as straight as the wild type, but their gravitropism was enhanced. Upon reorientation, curvature in this mutant developed faster, was distributed more basally, and produced a greater total angle than the wild type. An amplified auxin asymmetry may explain the mdr4 hypertropism. Double mutant analysis indicated that the two auxin transport streams are more independent than interdependent. The hypothesis that flavanols regulate MDR-dependent auxin transport was supported by the epistatic relationship of mdr4 to the tt4 phenylpropanoid pathway mutation.

  17. Functional Dependence between Septal Protein SepJ from Anabaena sp. Strain PCC 7120 and an Amino Acid ABC-Type Uptake Transporter.

    PubMed

    Escudero, Leticia; Mariscal, Vicente; Flores, Enrique

    2015-08-01

    In the diazotrophic filaments of heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients, including some amino acids. In the model organism Anabaena sp. strain PCC 7120, the SepJ protein, composed of periplasmic and integral membrane (permease) sections, is located at the intercellular septa joining adjacent cells in the filament. The unicellular cyanobacterium Synechococcus elongatus strain PCC 7942 bears a gene, Synpcc7942_1024 (here designated dmeA), encoding a permease homologous to the SepJ permease domain. Synechococcus strains lacking dmeA or lacking dmeA and expressing Anabaena sepJ were constructed. The Synechococcus dmeA mutant showed a significant 22 to 32% decrease in the uptake of aspartate, glutamate, and glutamine, a phenotype that could be partially complemented by Anabaena sepJ. Synechococcus mutants of an ATP-binding-cassette (ABC)-type transporter for polar amino acids showed >98% decreased uptake of glutamate irrespective of the presence of dmeA or Anabaena sepJ in the same strain. Thus, Synechococcus DmeA or Anabaena SepJ is needed to observe full (or close to full) activity of the ABC transporter. An Anabaena sepJ deletion mutant was significantly impaired in glutamate and aspartate uptake, which also in this cyanobacterium requires the activity of an ABC-type transporter for polar amino acids. SepJ appears therefore to generally stimulate the activity of cyanobacterial ABC-type transporters for polar amino acids. Conversely, an Anabaena mutant of three ABC-type transporters for amino acids was impaired in the intercellular transfer of 5-carboxyfluorescein, a SepJ-related property. Our results unravel possible functional interactions in transport elements important for diazotrophic growth. Membrane transporters are essential for many aspects of cellular life, from uptake and export of substances in unicellular organisms to intercellular molecular exchange in

  18. The ABCs of Family Mealtimes: Observational Lessons for Promoting Healthy Outcomes for Children with Persistent Asthma

    ERIC Educational Resources Information Center

    Fiese, Barbara H.; Winter, Marcia A.; Botti, Joanna C.

    2011-01-01

    Family mealtimes have the potential to promote healthy child development. This observational study of 200 family mealtimes examined the relation between child health in a group of children (ages 5 to 12) with persistent asthma and 3 dimensions of mealtime interaction: Action, Behavior Control, and Communication. Percent time spent in Action and…

  19. Jobs in Transportation. Job Family Series.

    ERIC Educational Resources Information Center

    Science Research Associates, Inc., Chicago, IL.

    The instructional booklet explores various occupations in the job family of transportation. Following a brief introduction to the concept of occupational clusters, the student is given an overall orientation to the general area of transportation. Chapter 2 describes jobs in water transportation, and chapter 3 deals with rail transportation,…

  20. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that

  1. Alzheimer's disease: neuroprogesterone, epoxycholesterol, and ABC transporters as determinants of neurodesmosterol tissue levels and its role in amyloid protein processing.

    PubMed

    Javitt, Norman B

    2013-01-01

    Evidence is emerging that during the development of Alzheimer's disease (AD), changes in the synthesis and metabolism of cholesterol and progesterone are occurring that may or may not affect the progression of the disease. The concept arose from the recognition that dehydrocholesterol 24-reductase (DHCR24/Seladin-1), one of the nine enzymes in the endoplasmic reticulum that determines the transformation of lanosterol to cholesterol, is selectively reduced in late AD. As a consequence, the tissue level of desmosterol increases, affecting the expression of ABC transporters and the structure of lipid rafts, both determinants of amyloid-β processing. However, the former effect is considered beneficial and the latter detrimental to processing. Other determinants of desmosterol tissue levels are 24,25 epoxycholesterol and the ABCG1 and ABCG4 transporters. Progesterone and its metabolites are determinants of tissue levels of desmosterol and several other sterol intermediates in cholesterol synthesis. Animal models indicate marked elevations in the tissue levels of these sterols at early time frames in the progression of neurodegenerative diseases. The low level of neuroprogesterone and metabolites in AD are consonant with the low level of desmosterol and may have a role in amyloid-β processing. The sparse data that has accumulated appears to be a sufficient basis for proposing a systematic evaluation of the biologic roles of sterol intermediates in the slowly progressive neurodegeneration characteristic of AD.

  2. ABC transporters and cytochromes P450 in the human central nervous system: influence on brain pharmacokinetics and contribution to neurodegenerative disorders.

    PubMed

    Dutheil, Fabien; Jacob, Aude; Dauchy, Sandrine; Beaune, Philippe; Scherrmann, Jean-Michel; Declèves, Xavier; Loriot, Marie-Anne

    2010-10-01

    The identification of xenobiotic metabolizing enzymes (i.e., CYP) and transporters (i.e., ABC transporters) (XMET) in the human brain, including the BBB, raises the question whether these transporters and enzymes have specific functions in brain physiology, neuropharmacology and toxicology. Relevant literature was identified using PubMed search articles published up to March 2010. Search terms included 'ABC transporters and P450 or CYP', 'drug metabolism, effect and toxicity' and 'neurodegenerative disease (Alzheimer and Parkinson diseases)' restricted to the field of 'brain or human brain'. This review aims to provide a better understanding of XMET functions in the human brain and show their pharmacological importance for improving drug delivery and efficacy and also for managing their side effects. Finally, the impact of brain XMET activity during neurodegenerative processes is discussed, giving an opportunity to identify new markers of human brain diseases. During the last 2 decades, much evidence concerning the specific distribution patterns of XMET, their induction by xenobiotics and endobiotics and their genetic variations have made cerebral ABC transporters and CYP enzymes key elements in the way individual patients respond to centrally acting drugs.

  3. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    PubMed Central

    Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556

  4. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice.

    PubMed

    Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

  5. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management.

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-09-03

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management.

  6. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management

    PubMed Central

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-01-01

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management. PMID:26333918

  7. Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1.

    PubMed

    Kawaguchi, Kosuke; Okamoto, Takumi; Morita, Masashi; Imanaka, Tsuneo

    2016-07-26

    We previously demonstrated that ABCD4 does not localize to peroxisomes but rather, the endoplasmic reticulum (ER), because it lacks the NH2-terminal hydrophilic region required for peroxisomal targeting. It was recently reported that mutations in ABCD4 result in a failure to release vitamin B12 from lysosomes. A similar phenotype is caused by mutations in LMBRD1, which encodes the lysosomal membrane protein LMBD1. These findings suggested to us that ABCD4 translocated from the ER to lysosomes in association with LMBD1. In this report, it is demonstrated that ABCD4 interacts with LMBD1 and then localizes to lysosomes, and this translocation depends on the lysosomal targeting ability of LMBD1. Furthermore, endogenous ABCD4 was localized to both lysosomes and the ER, and its lysosomal localization was disturbed by knockout of LMBRD1. To the best of our knowledge, this is the first report demonstrating that the subcellular localization of the ABC transporter is determined by its association with an adaptor protein.

  8. Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin.

    PubMed

    Tanaka, Shiho; Endo, Haruka; Adegawa, Satomi; Iizuka, Ami; Imamura, Kazuhiro; Kikuta, Shingo; Sato, Ryoichi

    2017-12-01

    Because Bombyx mori ABC transporter C2 (BmABCC2) has 1000-fold higher potential than B. mori cadherin-like protein as a receptor for Bacillus thuringiensis Cry1Aa toxin (Tanaka et al., 2013), the gate-opening ability of the latent pore under six extracellular loops (ECLs) of BmABCC2 was expected to be the reason for its higher potential (Heckel, 2012). In this study, cell swelling assays in Sf9 cells showed that BmABCC2 mutants lacking substrate-excreting activity retained receptor activity, indicating that the gate-opening activity of BmABCC2 is not responsible for Cry1Aa toxicity. The analysis of 29 BmABCC2 mutants demonstrated that 770 DYWL 773 of ECL 4 comprise a putative binding site to Cry1Aa. This suggests that specific toxicity of Cry1Aa toxin to a restricted range of lepidopteran insects is dependent on conservation and variation in the amino acid residues around 770 DYWL 773 of ECL 4 in the ABCC2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Role of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the transcriptional regulation of brain ABC transporters during acute acetaminophen (APAP) intoxication in mice.

    PubMed

    Ghanem, Carolina I; Rudraiah, Swetha; Bataille, Amy M; Vigo, María B; Goedken, Michael J; Manautou, José E

    2015-04-01

    Changes in expression of liver ABC transporters have been described during acute APAP intoxication. However, the effect of APAP on brain ABC transporters is poorly understood. The aim of this study was to evaluate the effect of APAP on brain ABC transporters expression and the role of the oxidative stress sensor Nrf2. Male C57BL/6J mice were administered APAP (400mg/kg) for analysis of brain mRNA and protein expression of Mrp1-6, Bcrp and P-gp. The results show induction of P-gp, Mrp2 and Mrp4 proteins, with no changes in Bcrp, Mrp1 or Mrp5-6. The protein values were accompanied by corresponding changes in mRNA levels. Additionally, brain Nrf2 nuclear translocation and expression of two Nrf2 target genes, quinone oxidoreductase 1 (Nqo1) and Hemoxygenase 1 (Ho-1), was evaluated at 6, 12 and 24h after APAP treatment. Nrf2 nuclear content increased by 58% at 12h after APAP along with significant increments in mRNA and protein expression of Nqo1 and Ho-1. Furthermore, APAP treated Nrf2 knockout mice did not increase mRNA or protein expression of Mrp2 and Mrp4 as observed in wildtypes. In contrast, P-gp induction by APAP was observed in both genotypes. In conclusion, acute APAP intoxication induces protein expression of brain P-gp, Mrp2 and Mrp4. This study also suggests that brain changes in Mrp2 and Mrp4 expression may be due to in situ Nrf2 activation by APAP, while P-gp induction is independent of Nrf2 function. The functional consequences of these changes in brain ABC transporters by APAP deserve further attention. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. ATP-induced conformational changes of nucleotide-binding domains in an ABC transporter. Importance of the water-mediated entropic force.

    PubMed

    Hayashi, Tomohiko; Chiba, Shuntaro; Kaneta, Yusuke; Furuta, Tadaomi; Sakurai, Minoru

    2014-11-06

    ATP binding cassette (ABC) proteins belong to a superfamily of active transporters. Recent experimental and computational studies have shown that binding of ATP to the nucleotide binding domains (NBDs) of ABC proteins drives the dimerization of NBDs, which, in turn, causes large conformational changes within the transmembrane domains (TMDs). To elucidate the active substrate transport mechanism of ABC proteins, it is first necessary to understand how the NBD dimerization is driven by ATP binding. In this study, we selected MalKs (NBDs of a maltose transporter) as a representative NBD and calculated the free-energy change upon dimerization using molecular mechanics calculations combined with a statistical thermodynamic theory of liquids, as well as a method to calculate the translational, rotational, and vibrational entropy change. This combined method is applied to a large number of snapshot structures obtained from molecular dynamics simulations containing explicit water molecules. The results suggest that the NBD dimerization proceeds with a large gain of water entropy when ATP molecules bind to the NBDs. The energetic gain arising from direct NBD-NBD interactions is canceled by the dehydration penalty and the configurational-entropy loss. ATP hydrolysis induces a loss of the shape complementarity between the NBDs, which leads to the dissociation of the dimer, due to a decrease in the water-entropy gain and an increase in the configurational-entropy loss. This interpretation of the NBD dimerization mechanism in concert with ATP, especially focused on the water-mediated entropy force, is potentially applicable to a wide variety of the ABC transporters.

  11. Structural and functional insights into the lipopolysaccharide ABC transporter LptB2FG.

    PubMed

    Dong, Haohao; Zhang, Zhengyu; Tang, Xiaodi; Paterson, Neil G; Dong, Changjiang

    2017-08-09

    The cell surface of most Gram-negative bacteria contains lipopolysaccharide that is essential for their viability and drug resistance. A 134-kDa protein complex LptB 2 FG is unique among ATP-binding cassette transporters because it extracts lipopolysaccharide from the external leaflet of the inner membrane and propels it along a filament that extends across the periplasm to directly deliver lipopolysaccharide into the external leaflet of the outer membrane. Here we report the crystal structure of the lipopolysaccharide transporter LptB 2 FG from Klebsiella pneumoniae, in which both LptF and LptG are composed of a β-jellyroll-like periplasmic domain and six α-helical segments in the transmembrane domain. LptF and LptG form a central cavity containing highly conserved hydrophobic residues. Structural and functional studies suggest that LptB 2 FG uses an alternating lateral access mechanism to extract lipopolysaccharide and traffic it along the hydrophobic cavity toward the transporter's periplasmic domains.Lipopolysaccharides (LPS) are synthesized at the periplasmic side of the inner membrane of Gram-negative bacteria and are then extracted by the LptB 2 FG complex during the first step of LPS transport to the outer membrane. Here the authors present the LptB 2 FG structure, which supports an alternating lateral access mechanism for LPS extraction.

  12. Drosophila ABC Transporter DmHMT-1 Confers Tolerance to Cadmium.

    USDA-ARS?s Scientific Manuscript database

    Half molecule ATP-binding cassette transporters of the HMT1(heavy metal tolerance factor 1)subfamily are required for Cd2+ tolerance in Schizosaccharomyces pombe, Caenorhabditis elegans and Chlamydomonas reinhardtii, and have homologs in other species, including plants and humans. Based on studies i...

  13. Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function

    PubMed Central

    Simpson, Brent W.; Owens, Tristan W.; Orabella, Matthew J.; Davis, Rebecca M.; May, Janine M.; Trauger, Sunia A.

    2016-01-01

    ABSTRACT The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB2FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB2FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. PMID:27795402

  14. A lower isoelectric point increases signal sequence-mediated secretion of recombinant proteins through a bacterial ABC transporter.

    PubMed

    Byun, Hyunjong; Park, Jiyeon; Kim, Sun Chang; Ahn, Jung Hoon

    2017-12-01

    Efficient protein production for industrial and academic purposes often involves engineering microorganisms to produce and secrete target proteins into the culture. Pseudomonas fluorescens has a TliDEF ATP-binding cassette transporter, a type I secretion system, which recognizes C-terminal LARD3 signal sequence of thermostable lipase TliA. Many proteins are secreted by TliDEF in vivo when recombined with LARD3, but there are still others that cannot be secreted by TliDEF even when LARD3 is attached. However, the factors that determine whether or not a recombinant protein can be secreted through TliDEF are still unknown. Here, we recombined LARD3 with several proteins and examined their secretion through TliDEF. We found that the proteins secreted via LARD3 are highly negatively charged with highly-acidic isoelectric points (pI) lower than 5.5. Attaching oligo-aspartate to lower the pI of negatively-charged recombinant proteins improved their secretion, and attaching oligo-arginine to negatively-charged proteins blocked their secretion by LARD3. In addition, negatively supercharged green fluorescent protein (GFP) showed improved secretion, whereas positively supercharged GFP did not secrete. These results disclosed that proteins' acidic pI and net negative charge are major factors that determine their secretion through TliDEF. Homology modeling for TliDEF revealed that TliD dimer forms evolutionarily-conserved positively-charged clusters in its pore and substrate entrance site, which also partially explains the pI dependence of the TliDEF-dependent secretions. In conclusion, lowering the isoelectric point improved LARD3-mediated protein secretion, both widening the range of protein targets for efficient production via secretion and signifying an important aspect of ABC transporter-mediated secretions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Rethinking Drug Treatment Approaches in ALS by Targeting ABC Efflux Transporters

    DTIC Science & Technology

    2014-12-01

    for ALS patients. One of the problems in finding highly efficacious treatments in ALS may derive from the so far underestimated issue of disease... efficacy the SOD1-G93A ALS mice. 15. SUBJECT TERMS Drug resistance, ALS, Therapy, Riluzole, Drug Efflux Transporters 16. SECURITY CLASSIFICATION OF...improves efficacy of ALS therapeutics Michael R. Jablonski1, Shashirekha S. Markandaiah1, Dena Jacob1, Ni J. Meng1, Ke Li2, Victoria Gennaro1, Angelo

  16. Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate.

    PubMed

    Maruyama, Yukie; Itoh, Takafumi; Kaneko, Ai; Nishitani, Yu; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2015-09-01

    The acidic polysaccharide alginate represents a promising marine biomass for the microbial production of biofuels, although the molecular and structural characteristics of alginate transporters remain to be clarified. In Sphingomonas sp. A1, the ATP-binding cassette transporter AlgM1M2SS is responsible for the import of alginate across the cytoplasmic membrane. Here, we present the substrate-transport characteristics and quaternary structure of AlgM1M2SS. The addition of poly- or oligoalginate enhanced the ATPase activity of reconstituted AlgM1M2SS coupled with one of the periplasmic solute-binding proteins, AlgQ1 or AlgQ2. External fluorescence-labeled oligoalginates were specifically imported into AlgM1M2SS-containing proteoliposomes in the presence of AlgQ2, ATP, and Mg(2+). The crystal structure of AlgQ2-bound AlgM1M2SS adopts an inward-facing conformation. The interaction between AlgQ2 and AlgM1M2SS induces the formation of an alginate-binding tunnel-like structure accessible to the solvent. The translocation route inside the transmembrane domains contains charged residues suitable for the import of acidic saccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of β-elemene on the kinetics of intracellular transport of d-luciferin potassium salt (ABC substrate) in doxorubicin-resistant breast cancer cells and the associated molecular mechanism.

    PubMed

    Tang, Chao-Yuan; Zhu, Li-Xin; Yu, Jian-Dong; Chen, Zhi; Gu, Man-Cang; Mu, Chao-Feng; Liu, Qi; Xiong, Yang

    2018-07-30

    In order to explore the mechanism of the reversing multidrug resistance (MDR) phenotypes by β-elemene (β-ELE) in doxorubicin (DOX)-resistant breast cancer cells (MCF-7/DOX), both the functionality and quantity of the ABC transporters in MCF-7/DOX were studied. Bioluminescence imaging (BLI) was used to study the efflux of d-luciferin potassium salt, the substrate of ATP-binding cassette transporters (ABC transporters), in MCF-7/DOX cells treated by β-ELE. At the same time three major ABC transport proteins and genes-related MDR, P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 1 (MRP, ABCC1) as well as breast cancer resistance protein (BCRP, ABCG2) were analyzed by q-PCR and Western blot. To investigate the efflux functionality of ABC transporters, MCF-7/DOX Fluc cell line with stably-overexpressed luciferase was established. BLI was then used to real-time monitor the efflux kinetics of d-luciferin potassium salt before and after MCF-7/DOX Fluc cells being treated with β-ELE or not. The results showed that the efflux of d-luciferin potassium salt from MCF-7/DOX Fluc was lessened when pretreated with β-ELE, which means that β-ELE may dampen the functionality of ABC transporters, thus decrease the efflux of d-fluorescein potassium or other chemotherapies which also serve as the substrates of ABC transporters. As the effect of β-ELE on the expression of ABC transporters, the results of q-PCR and Western blot showed that gene and protein expression of ABC transporters such as P-gp, MRP, and BCRP were down-regulated after the treatment of β-ELE. To verify the efficacy of β-ELE on reversing MDR, MCF-7/DOX cells were treated with the combination of DOX and β-ELE. MTT assay showed that β-ELE increased the inhibitory effect of DOX on the proliferation of MCF-7/DOX, and the IC 50 of the combination group was much lower than that of the single DOX or β-ELE treatment. In all, β-ELE may reverse MDR through the substrates of ABC transporters

  18. The babel of the ABCs: novel transporters involved in the regulation of sterol absorption and excretion.

    PubMed

    Ordovas, Jose M; Tai, E Shyong

    2002-01-01

    Hypercholesterolaemia is a major risk factor for coronary heart disease (CHD). Therefore, the reduction of low-density lipoprotein (LDL) cholesterol is one of the primary targets of the current recommendations to decrease CHD risk in the population. Whereas, the mechanisms involved in de novo cholesterol synthesis and its uptake by cells via the LDL receptor are well known, we still need better understanding about the mechanisms involved in intestinal cholesterol absorption and excretion. The recent discovery of ABCG5 and ABCG8 transporters will significantly improve our understanding of cholesterol trafficking and it will lead to better and new therapeutic strategies to maintain cholesterol homeostasis.

  19. ABC Transporters and Their Role in the Neoadjuvant Treatment of Esophageal Cancer

    PubMed Central

    Vaclavikova, Radka; Neoral, Cestmir; Vrba, Jiri; Aujesky, Rene; Matzenauer, Marcel; Melichar, Bohuslav

    2018-01-01

    The prognosis of esophageal cancer (EC) is poor, despite considerable effort of both experimental scientists and clinicians. The tri-modality treatment consisting of neoadjuvant chemoradiation followed by surgery has remained the gold standard over decades, unfortunately, without significant progress in recent years. Suitable prognostic factors indicating which patients will benefit from this tri-modality treatment are missing. Some patients rapidly progress on the neoadjuvant chemoradiotherapy, which is thus useless and sometimes even harmful. At the same time, other patients achieve complete remission on neoadjuvant chemoradiotherapy and subsequent surgery may increase their risk of morbidity and mortality. The prognosis of patients ranges from excellent to extremely poor. Considering these differences, the role of drug metabolizing enzymes and transporters, among other factors, in the EC response to chemotherapy may be more important compared, for example, with pancreatic cancer where all patients progress on chemotherapy regardless of the treatment or disease stage. This review surveys published literature describing the potential role of ATP-binding cassette transporters, the genetic polymorphisms, epigenetic regulations, and phenotypic changes in the prognosis and therapy of EC. The review provides knowledge base for further research of potential predictive biomarkers that will allow the stratification of patients into defined groups for optimal therapeutic outcome. PMID:29543757

  20. Convergent Loss of ABC Transporter Genes From Clostridioides difficile Genomes Is Associated With Impaired Tyrosine Uptake and p-Cresol Production.

    PubMed

    Steglich, Matthias; Hofmann, Julia D; Helmecke, Julia; Sikorski, Johannes; Spröer, Cathrin; Riedel, Thomas; Bunk, Boyke; Overmann, Jörg; Neumann-Schaal, Meina; Nübel, Ulrich

    2018-01-01

    We report the frequent, convergent loss of two genes encoding the substrate-binding protein and the ATP-binding protein of an ATP-binding cassette (ABC) transporter from the genomes of unrelated Clostridioides difficile strains. This specific genomic deletion was strongly associated with the reduced uptake of tyrosine and phenylalanine and production of derived Stickland fermentation products, including p -cresol, suggesting that the affected ABC transporter had been responsible for the import of aromatic amino acids. In contrast, the transporter gene loss did not measurably affect bacterial growth or production of enterotoxins. Phylogenomic analysis of publically available genome sequences indicated that this transporter gene deletion had occurred multiple times in diverse clonal lineages of C. difficile , with a particularly high prevalence in ribotype 027 isolates, where 48 of 195 genomes (25%) were affected. The transporter gene deletion likely was facilitated by the repetitive structure of its genomic location. While at least some of the observed transporter gene deletions are likely to have occurred during the natural life cycle of C. difficile , we also provide evidence for the emergence of this mutation during long-term laboratory cultivation of reference strain R20291.

  1. Convergent Loss of ABC Transporter Genes From Clostridioides difficile Genomes Is Associated With Impaired Tyrosine Uptake and p-Cresol Production

    PubMed Central

    Steglich, Matthias; Hofmann, Julia D.; Helmecke, Julia; Sikorski, Johannes; Spröer, Cathrin; Riedel, Thomas; Bunk, Boyke; Overmann, Jörg; Neumann-Schaal, Meina; Nübel, Ulrich

    2018-01-01

    We report the frequent, convergent loss of two genes encoding the substrate-binding protein and the ATP-binding protein of an ATP-binding cassette (ABC) transporter from the genomes of unrelated Clostridioides difficile strains. This specific genomic deletion was strongly associated with the reduced uptake of tyrosine and phenylalanine and production of derived Stickland fermentation products, including p-cresol, suggesting that the affected ABC transporter had been responsible for the import of aromatic amino acids. In contrast, the transporter gene loss did not measurably affect bacterial growth or production of enterotoxins. Phylogenomic analysis of publically available genome sequences indicated that this transporter gene deletion had occurred multiple times in diverse clonal lineages of C. difficile, with a particularly high prevalence in ribotype 027 isolates, where 48 of 195 genomes (25%) were affected. The transporter gene deletion likely was facilitated by the repetitive structure of its genomic location. While at least some of the observed transporter gene deletions are likely to have occurred during the natural life cycle of C. difficile, we also provide evidence for the emergence of this mutation during long-term laboratory cultivation of reference strain R20291. PMID:29867812

  2. Stubborn contaminants: influence of detergents on the purity of the multidrug ABC transporter BmrA.

    PubMed

    Wiseman, Benjamin; Kilburg, Arnaud; Chaptal, Vincent; Reyes-Mejia, Gina Catalina; Sarwan, Jonathan; Falson, Pierre; Jault, Jean-Michel

    2014-01-01

    Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12) but not with Lauryldimethylamine-N-oxide (LDAO) or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli.

  3. Stubborn Contaminants: Influence of Detergents on the Purity of the Multidrug ABC Transporter BmrA

    PubMed Central

    Chaptal, Vincent; Reyes-Mejia, Gina Catalina; Sarwan, Jonathan; Falson, Pierre; Jault, Jean-Michel

    2014-01-01

    Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12) but not with Lauryldimethylamine-N-oxide (LDAO) or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli. PMID:25517996

  4. The yeast plasma membrane ATP binding cassette (ABC) transporter Aus1: purification, characterization, and the effect of lipids on its activity.

    PubMed

    Marek, Magdalena; Milles, Sigrid; Schreiber, Gabriele; Daleke, David L; Dittmar, Gunnar; Herrmann, Andreas; Müller, Peter; Pomorski, Thomas Günther

    2011-06-17

    The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter.

  5. Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Fischer, Stephan; Loncar, Jovica; Zaja, Roko; Schnell, Sabine; Schirmer, Kristin; Smital, Tvrtko; Luckenbach, Till

    2011-01-25

    Permanent fish cell lines have become common model systems for determining ecotoxicological effects of pollutants. For these cell lines little is known on the cellular active transport mechanisms that control the amount of a compound entering the cell, such as the MXR (multixenobiotic resistance) system mediated by ATP binding cassette (ABC) transport proteins. Therefore, for toxic evaluation of chemicals with those cells information on MXR is important. We here present data on constitutive mRNA expression and protein activity levels of a series of ABC efflux transporters in seven permanent cell lines derived from liver (RTL-W1; R1) and liver hepatoma (RTH-149), gill (RTgill-W1), gonad (RTG-2), gut (RTgutGC) and brain (RTbrain) of rainbow trout (Oncorhynchus mykiss). In addition to known transporters abcb1 (designated here abcb1a), abcb11, abcc1-3, abcc5 and abcg2, we quantified expression levels of a newly identified abcb1 isoform (abcb1b) and abcc4, previously unknown in trout. Quantitative real time PCR (qPCR) indicated that mRNA of the examined ABC transporters was constitutively expressed in all cell lines. Transporter mRNA expression patterns were similar in all cell lines, with expression levels of abcc transporters being 80 to over 1000 fold higher than for abcg2, abcb1a/b and abcb11 (abcc1-5>abcg2>abcb1a/b, 11). Transporter activity in the cell lines was determined by measuring uptake of transporter type specific fluorescent substrates in the presence of activity inhibitors. The combination of the ABCB1 and ABCC transporter substrate calcein-AM with inhibitors cyclosporine A, PSC833 and MK571 resulted in a concentration-dependent fluorescence increase of up to 3-fold, whereas reversin 205 caused a slight, but not concentration-dependent fluorescence increase. Accumulation of the dyes Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate was basically unchanged in the presence of Ko134 and taurocholate, respectively, indicating low Abcg2 and Abcb11

  6. The Pseudomonas aeruginosa PA14 ABC Transporter NppA1A2BCD Is Required for Uptake of Peptidyl Nucleoside Antibiotics.

    PubMed

    Pletzer, Daniel; Braun, Yvonne; Dubiley, Svetlana; Lafon, Corinne; Köhler, Thilo; Page, Malcolm G P; Mourez, Michael; Severinov, Konstantin; Weingart, Helge

    2015-07-01

    Analysis of the genome sequence of Pseudomonas aeruginosa PA14 revealed the presence of an operon encoding an ABC-type transporter (NppA1A2BCD) showing homology to the Yej transporter of Escherichia coli. The Yej transporter is involved in the uptake of the peptide-nucleotide antibiotic microcin C, a translation inhibitor that targets the enzyme aspartyl-tRNA synthetase. Furthermore, it was recently shown that the Opp transporter from P. aeruginosa PAO1, which is identical to Npp, is required for uptake of the uridyl peptide antibiotic pacidamycin, which targets the enzyme translocase I (MraY), which is involved in peptidoglycan synthesis. We used several approaches to further explore the substrate specificity of the Npp transporter. Assays of growth in defined minimal medium containing peptides of various lengths and amino acid compositions as sole nitrogen sources, as well as Biolog Phenotype MicroArrays, showed that the Npp transporter is not required for di-, tri-, and oligopeptide uptake. Overexpression of the npp operon increased susceptibility not just to pacidamycin but also to nickel chloride and the peptidyl nucleoside antibiotic blasticidin S. Furthermore, heterologous expression of the npp operon in a yej-deficient mutant of E. coli resulted in increased susceptibility to albomycin, a naturally occurring sideromycin with a peptidyl nucleoside antibiotic. Additionally, heterologous expression showed that microcin C is recognized by the P. aeruginosa Npp system. Overall, these results suggest that the NppA1A2BCD transporter is involved in the uptake of peptidyl nucleoside antibiotics by P. aeruginosa PA14. One of the world's most serious health problems is the rise of antibiotic-resistant bacteria. There is a desperate need to find novel antibiotic therapeutics that either act on new biological targets or are able to bypass known resistance mechanisms. Bacterial ABC transporters play an important role in nutrient uptake from the environment. These uptake

  7. Maltose Uptake by the Novel ABC Transport System MusEFGK2I Causes Increased Expression of ptsG in Corynebacterium glutamicum

    PubMed Central

    Henrich, Alexander; Kuhlmann, Nora; Eck, Alexander W.; Krämer, Reinhard

    2013-01-01

    The Gram-positive Corynebacterium glutamicum efficiently metabolizes maltose by a pathway involving maltodextrin and glucose formation by 4-α-glucanotransferase, glucose phosphorylation by glucose kinases, and maltodextrin degradation via maltodextrin phosphorylase and α-phosphoglucomutase. However, maltose uptake in C. glutamicum has not been investigated. Interestingly, the presence of maltose in the medium causes increased expression of ptsG in C. glutamicum by an unknown mechanism, although the ptsG-encoded glucose-specific EII permease of the phosphotransferase system itself is not required for maltose utilization. We identified the maltose uptake system as an ABC transporter encoded by musK (cg2708; ATPase subunit), musE (cg2705; substrate binding protein), musF (cg2704; permease), and musG (cg2703; permease) by combination of data obtained from characterization of maltose uptake and reanalyses of transcriptome data. Deletion of the mus gene cluster in C. glutamicum Δmus abolished maltose uptake and utilization. Northern blotting and reverse transcription-PCR experiments revealed that musK and musE are transcribed monocistronically, whereas musF and musG are part of an operon together with cg2701 (musI), which encodes a membrane protein of unknown function with no homologies to characterized proteins. Characterization of growth and [14C]maltose uptake in the musI insertion strain C. glutamicum IMcg2701 showed that musI encodes a novel essential component of the maltose ABC transporter of C. glutamicum. Finally, ptsG expression during cultivation on different carbon sources was analyzed in the maltose uptake-deficient strain C. glutamicum Δmus. Indeed, maltose uptake by the novel ABC transport system MusEFGK2I is required for the positive effect of maltose on ptsG expression in C. glutamicum. PMID:23543710

  8. Requirement of ABC transporter inhibition and Hoechst 33342 dye deprivation for the assessment of side population-defined C6 glioma stem cell metabolism using fluorescent probes.

    PubMed

    Murota, Yoshitaka; Tabu, Kouichi; Taga, Tetsuya

    2016-11-04

    Elucidating the precise properties of cancer stem cells (CSCs) is indispensable for the development of effective therapies against tumors, because CSCs are key drivers of tumor development, metastasis and relapse. We previously reported that the Hoechst 33342 dye-low staining side population (SP) method can enrich for CSCs in the C6 glioma cell line, and that the positively stained main population (MP) cells are non-CSCs. Presence of cancer stem-like SP cells is reported in various types of cancer. Although altered cellular energy metabolism is a hallmark of cancer, very little has been studied on the applicability of fluorescent probes for the understanding of CSC energy metabolism. The metabolic status of C6 SP and MP cells are evaluated by CellROX, MitoTracker Green (MTG) and JC-1 for cellular oxidative stress, mitochondrial amount, and mitochondrial membrane potential, respectively. SP cells were found to exhibit significantly lower fluorescent intensities of CellROX and MTG than MP cells. However, inhibition of ATP binding cassette (ABC) transporters by verapamil enhanced the intensities of these probes in SP cells to the levels similar to those in MP cells, indicating that SP cells expel the probes outside of the cells through ABC transporters. Next, SP cells were stained with JC-1 dye which exhibits membrane potential dependent accumulation in mitochondrial matrix, followed by formation of aggregates. The mitochondrial membrane potential indicated by the aggregates of JC-1 was 5.0-fold lower in SP cells than MP cells. Inhibition of ABC transporters enhanced the fluorescent intensities of the JC-1 aggregates in both SP and MP cells, the former of which was still 2.2-fold lower than the latter. This higher JC-1 signal in MP cells was further found to be due to the Hoechst 33342 dye existing in MP cells. When SP and MP cells were recultured to deprive the intracellular Hoechst 33342 dye and then stained with JC-1 in the presence of verapamil, the intensities of

  9. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism

    PubMed Central

    Reilman, Ewoud; Mars, Ruben A. T.; van Dijl, Jan Maarten; Denham, Emma L.

    2014-01-01

    Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology, we demonstrate a temporally controlled transcriptional activation of the bmrCD genes in response to antibiotics that target protein synthesis. Intriguingly, bmrCD expression only occurs during the late-exponential and stationary growth stages, irrespective of the timing of the antibiotic challenge. We show that this is due to tight transcriptional control by the transition state regulator AbrB. Moreover, our results show that the bmrCD genes are co-transcribed with bmrB (yheJ), a small open reading frame immediately upstream of bmrC that harbors three alternative stem-loop structures. These stem-loops are apparently crucial for antibiotic-induced bmrCD transcription. Importantly, the antibiotic-induced bmrCD expression requires translation of bmrB, which implies that BmrB serves as a regulatory leader peptide. Altogether, we demonstrate for the first time that a ribosome-mediated transcriptional attenuation mechanism can control the expression of a multidrug ABC transporter. PMID:25217586

  10. ABC transporter Cdr1p harbors charged residues in the intracellular loop and nucleotide-binding domain critical for protein trafficking and drug resistance.

    PubMed

    Shah, Abdul Haseeb; Banerjee, Atanu; Rawal, Manpreet Kaur; Saxena, Ajay Kumar; Mondal, Alok Kumar; Prasad, Rajendra

    2015-08-01

    The ABC transporter Cdr1 protein of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The 12 transmembrane helices of TMDs that are interconnected by extracellular and intracellular loops (ICLs) mainly harbor substrate recognition sites where drugs bind while cytoplasmic NBDs hydrolyze ATP which powers drug efflux. The coupling of ATP hydrolysis to drug transport requires proper communication between NBDs and TMDs typically accomplished by ICLs. This study examines the role of cytoplasmic ICLs of Cdr1p by rationally predicting the critical residues on the basis of their interatomic distances. Among nine pairs that fall within a proximity of <4 Å, an ion pair between K577 of ICL1 and E315 of NBD1 was found to be critical. The substitution, swapping and changing of the length or charge of K577 or E315 by directed mutagenesis led to a misfolded, non-rescuable protein entrapped in intracellular structures. Furthermore, the equipositional ionic pair-forming residues from ICL3 and NBD2 (R1260 and E1014) did not impact protein trafficking. These results point to a new role for ICL/NBD interacting residues in PDR ABC transporters in protein folding and trafficking. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Therapeutic and biological importance of getting nucleotides out of cells: a case for the ABC transporters, MRP4 and 5.

    PubMed

    Adachi, Masashi; Reid, Glen; Schuetz, John D

    2002-11-18

    The energy dependent transport of drugs contributes to cellular resistance and is undoubtedly a prime suspect in chemotherapeutic failure of a variety of disease processes. Early studies focused on a single gene, the multidrug resistance gene, MDR1, as a main contributor to chemotherapeutic failure. However, the multifaceted nature of cellular resistance lead to the discovery of the MRP gene. This pivotal finding and the concurrent rapid development of gene databases lead to the expansion of the MRP gene family. The purpose of this review is to discuss two of the recently described MRP family members that were orphans until their role in drug resistance was discovered. This review will provide an overview of the current state of our understanding of MRP4 and 5.

  12. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    SciTech Connect

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate.more » The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.« less

  13. Complete sequence of Enterococcus faecium pVEF3 and the detection of an omega-epsilon-zeta toxin-antitoxin module and an ABC transporter.

    PubMed

    Sletvold, H; Johnsen, P J; Hamre, I; Simonsen, G S; Sundsfjord, A; Nielsen, K M

    2008-07-01

    Glycopeptide resistant Enterococcus faecium (GREF) persists on Norwegian poultry farms despite the ban on the growth promoter avoparcin. The biological basis for long-term persistence of avoparcin resistance is not fully understood. This study presents the complete DNA sequence of the E. faecium R-plasmid pVEF3 and functional studies of some plasmid-encoded traits (a toxin-antitoxin (TA) system and an ABC transporter) that may be of importance for plasmid persistence. The pVEF3 (63.1 kbp), isolated from an E. faecium strain of poultry origin sampled in Norway in 1999, has 71 coding sequences including the vanA avoparcin/vancomycin resistance encoding gene cluster. pVEF3 encodes the TA system omega-epsilon-zeta, and plasmid stability tests and transcription analysis show that omega-epsilon-zeta is functional in Enterococcus faecalis OGIX, although with decreasing effect over time. The predicted ABC transporter was not found to confer reduced susceptibility to any of the 28 substances tested. The TA system identified in the pVEF-type plasmids may contribute to vanA plasmid persistence on Norwegian poultry farms. However, size and compositional heterogeneity among E. faecium vanA plasmids suggest that additional plasmid maintenance systems in combination with host specific factors and frequent horizontal gene transfer and rearrangement causes the observed plasmid composition and distribution patterns.

  14. Evolution of the oligopeptide transporter family.

    PubMed

    Gomolplitinant, Kenny M; Saier, Milton H

    2011-03-01

    The oligopeptide transporter (OPT) family of peptide and iron-siderophore transporters includes members from both prokaryotes and eukaryotes but with restricted distribution in the latter domain. Eukaryotic members were found only in fungi and plants with a single slime mold homologue clustering with the fungal proteins. All functionally characterized eukaryotic peptide transporters segregate from the known iron-siderophore transporters on a phylogenetic tree. Prokaryotic members are widespread, deriving from many different phyla. Although they belong only to the iron-siderophore subdivision, genome context analyses suggest that many of them are peptide transporters. OPT family proteins have 16 or occasionally 17 transmembrane-spanning α-helical segments (TMSs). We provide statistical evidence that the 16-TMS topology arose via three sequential duplication events followed by a gene-fusion event for proteins with a seventeenth TMS. The proposed pathway is as follows: 2 TMSs → 4 TMSs → 8 TMSs → 16 TMSs → 17 TMSs. The seventeenth C-terminal TMS, which probably arose just once, is found in just one phylogenetic group of these homologues. Analyses for orthology revealed that a few phylogenetic clusters consist exclusively of orthologues but most have undergone intermixing, suggestive of horizontal transfer. It appears that in this family horizontal gene transfer was frequent among prokaryotes, rare among eukaryotes and largely absent between prokaryotes and eukaryotes as well as between plants and fungi. These observations provide guides for future structural and functional analyses of OPT family members.

  15. Detergent Screening and Purification of the Human Liver ABC Transporters BSEP (ABCB11) and MDR3 (ABCB4) Expressed in the Yeast Pichia pastoris

    PubMed Central

    Stindt, Jan; Smits, Sander H. J.; Schmitt, Lutz

    2013-01-01

    The human liver ATP-binding cassette (ABC) transporters bile salt export pump (BSEP/ABCB11) and the multidrug resistance protein 3 (MDR3/ABCB4) fulfill the translocation of bile salts and phosphatidylcholine across the apical membrane of hepatocytes. In concert with ABCG5/G8, these two transporters are responsible for the formation of bile and mutations within these transporters can lead to severe hereditary diseases. In this study, we report the heterologous overexpression and purification of human BSEP and MDR3 as well as the expression of the corresponding C-terminal GFP-fusion proteins in the yeast Pichia pastoris. Confocal laser scanning microscopy revealed that BSEP-GFP and MDR3-GFP are localized in the plasma membrane of P. pastoris. Furthermore, we demonstrate the first purification of human BSEP and MDR3 yielding ∼1 mg and ∼6 mg per 100 g of wet cell weight, respectively. By screening over 100 detergents using a dot blot technique, we found that only zwitterionic, lipid-like detergents such as Fos-cholines or Cyclofos were able to extract both transporters in sufficient amounts for subsequent functional analysis. For MDR3, fluorescence-detection size exclusion chromatography (FSEC) screens revealed that increasing the acyl chain length of Fos-Cholines improved monodispersity. BSEP purified in n-dodecyl-β-D-maltoside or Cymal-5 after solubilization with Fos-choline 16 from P. pastoris membranes showed binding to ATP-agarose. Furthermore, detergent-solubilized and purified MDR3 showed a substrate-inducible ATPase activity upon addition of phosphatidylcholine lipids. These results form the basis for further biochemical analysis of human BSEP and MDR3 to elucidate the function of these clinically relevant ABC transporters. PMID:23593265

  16. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice.

    PubMed

    Bobrov, Alexander G; Kirillina, Olga; Fosso, Marina Y; Fetherston, Jacqueline D; Miller, M Clarke; VanCleave, Tiva T; Burlison, Joseph A; Arnold, William K; Lawrenz, Matthew B; Garneau-Tsodikova, Sylvie; Perry, Robert D

    2017-06-21

    A number of bacterial pathogens require the ZnuABC Zinc (Zn 2+ ) transporter and/or a second Zn 2+ transport system to overcome Zn 2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn 2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn 2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic plague while a ybtX mutant retains high virulence in both plague models. While sequestration of host Zn is a key nutritional immunity factor, excess Zn appears to have a significant antimicrobial role in controlling intracellular bacterial survival. Here, we demonstrate that ZntA, a Zn 2+ exporter, plays a role in resistance to Zn toxicity in vitro, but that a zntA zur double mutant retains high virulence in both pneumonic and bubonic plague models and survival in macrophages. We also confirm that Ybt does not directly bind Zn 2+ in vitro under the conditions tested. However, we detect a significant increase in Zn 2+ -binding ability of filtered supernatants from a Ybt + strain compared to those from a strain unable to produce the siderophore, supporting our previously published data that Ybt biosynthetic genes are involved in the production of a secreted Zn-binding molecule (zincophore). Our data suggest that Ybt or a modified Ybt participate in or promote Zn-binding activity in culture supernatants and is involved in Zn acquisition in Y. pestis.

  17. ATP-binding cassette (ABC) proteins in aquatic invertebrates: Evolutionary significance and application in marine ecotoxicology.

    PubMed

    Jeong, Chang-Bum; Kim, Hui-Su; Kang, Hye-Min; Lee, Jae-Seong

    2017-04-01

    The ATP-binding cassette (ABC) protein superfamily is known to play a fundamental role in biological processes and is highly conserved across animal taxa. The ABC proteins function as active transporters for multiple substrates across the cellular membrane by ATP hydrolysis. As this superfamily is derived from a common ancestor, ABC genes have evolved via lineage-specific duplications through the process of adaptation. In this review, we summarized information about the ABC gene families in aquatic invertebrates, considering their evolution and putative functions in defense mechanisms. Phylogenetic analysis was conducted to examine the evolutionary significance of ABC gene families in aquatic invertebrates. Particularly, a massive expansion of multixenobiotic resistance (MXR)-mediated efflux transporters was identified in the absence of the ABCG2 (BCRP) gene in Ecdysozoa and Platyzoa, suggesting that a loss of Abcg2 gene occurred sporadically in these species during divergence of Protostome to Lophotrochozoa. Furthermore, in aquatic invertebrates, the ecotoxicological significance of MXR is discussed while considering the role of MXR-mediated efflux transporters in response to various environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The trehalose-specific transporter LpqY-SugABC is required for antimicrobial and anti-biofilm activity of trehalose analogues in Mycobacterium smegmatis.

    PubMed

    Wolber, Jeffrey M; Urbanek, Bailey L; Meints, Lisa M; Piligian, Brent F; Lopez-Casillas, Irene C; Zochowski, Kailey M; Woodruff, Peter J; Swarts, Benjamin M

    2017-10-10

    Mycobacteria, including the bacterial pathogen that causes human tuberculosis, possess distinctive pathways for synthesizing and utilizing the non-mammalian disaccharide trehalose. Trehalose metabolism is essential for mycobacterial viability and has been linked to in vitro biofilm formation, which may bear relevance to in vivo drug tolerance. Previous research has shown that some trehalose analogues bearing modifications at the 6-position inhibit growth of various mycobacterial species. In this work, 2-, 5-, and 6-position-modified trehalose analogues were synthesized using our previously reported one-step chemoenzymatic method and shown to inhibit growth and biofilm formation in the two-to three-digit micromolar range in Mycobacterium smegmatis. The trehalose-specific ABC transporter LpqY-SugABC was essential for antimicrobial and anti-biofilm activity, suggesting that inhibition by monosubstituted trehalose analogues requires cellular uptake and does not proceed via direct action on extracellular targets such as antigen 85 acyltransferases or trehalose dimycolate hydrolase. Although the potency of the described compounds in in vitro growth and biofilm assays is moderate, this study reports the first trehalose-based mycobacterial biofilm inhibitors and reinforces the concept of exploiting unique sugar uptake pathways to deliver inhibitors and other chemical cargo to mycobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism.

    PubMed

    Reilman, Ewoud; Mars, Ruben A T; van Dijl, Jan Maarten; Denham, Emma L

    2014-10-01

    Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology, we demonstrate a temporally controlled transcriptional activation of the bmrCD genes in response to antibiotics that target protein synthesis. Intriguingly, bmrCD expression only occurs during the late-exponential and stationary growth stages, irrespective of the timing of the antibiotic challenge. We show that this is due to tight transcriptional control by the transition state regulator AbrB. Moreover, our results show that the bmrCD genes are co-transcribed with bmrB (yheJ), a small open reading frame immediately upstream of bmrC that harbors three alternative stem-loop structures. These stem-loops are apparently crucial for antibiotic-induced bmrCD transcription. Importantly, the antibiotic-induced bmrCD expression requires translation of bmrB, which implies that BmrB serves as a regulatory leader peptide. Altogether, we demonstrate for the first time that a ribosome-mediated transcriptional attenuation mechanism can control the expression of a multidrug ABC transporter. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent.

    PubMed

    Howlett, Robert M; Hughes, Bethan M; Hitchcock, Andrew; Kelly, David J

    2012-06-01

    Campylobacter jejuni is a human pathogen of worldwide significance. It is commensal in the gut of many birds and mammals, where hydrogen is a readily available electron donor. The bacterium possesses a single membrane-bound, periplasmic-facing NiFe uptake hydrogenase that depends on the acquisition of environmental nickel for activity. The periplasmic binding protein Cj1584 (NikZ) of the ATP binding cassette (ABC) transporter encoded by the cj1584c-cj1580c (nikZYXWV) operon in C. jejuni strain NCTC 11168 was found to be nickel-repressed and to bind free nickel ions with a submicromolar K(d) value, as measured by fluorescence spectroscopy. Unlike the Escherichia coli NikA protein, NikZ did not bind EDTA-chelated nickel and lacks key conserved residues implicated in metallophore interaction. A C. jejuni cj1584c null mutant strain showed an approximately 22-fold decrease in intracellular nickel content compared with the wild-type strain and a decreased rate of uptake of (63)NiCl(2). The inhibition of residual nickel uptake at higher nickel concentrations in this mutant by hexa-ammine cobalt (III) chloride or magnesium ions suggests that low-affinity uptake occurs partly through the CorA magnesium transporter. Hydrogenase activity was completely abolished in the cj1584c mutant after growth in unsupplemented media, but was fully restored after growth with 0.5 mM nickel chloride. Mutation of the putative metallochaperone gene slyD (cj0115) had no effect on either intracellular nickel accumulation or hydrogenase activity. Our data reveal a strict dependence of hydrogenase activity in C. jejuni on high-affinity nickel uptake through an ABC transporter that has distinct properties compared with the E. coli Nik system.

  1. Profiling of ABC transporters ABCB5, ABCF2 and nestin-positive stem cells in nevi, in situ and invasive melanoma.

    PubMed

    Setia, Namrata; Abbas, Ossama; Sousa, Yessica; Garb, Jane L; Mahalingam, Meera

    2012-08-01

    Distinct ABCB5 forms and ABCF2, members of the ATP-binding cassette (ABC) superfamily of transporters, are normally expressed in various tissues and cells, and enhanced expression of both has been demonstrated in select cancers. In melanoma cell lines, gene expression profiling of ABC transporters has revealed enhanced expression of melanocyte-specific ABCB5 and ABCF2 proteins. Given this, our primary aim was to ascertain immunohistochemical expression of the ABC transporters ABCB5 and ABCF2 and, the stem cell marker, nestin in a spectrum of benign and malignant nevomelanocytic proliferations, including nevi (n=30), in situ (n=31) and invasive (n=24) primary cutaneous melanomas to assess their role in the stepwise development of malignancy. In addition, their expression was compared with established melanoma prognosticators to ascertain their utility as independent prognosticators. A semiquantitative scoring system was utilized by deriving a cumulative score (based on percentage positivity cells and intensity of expression) and statistical analyses was carried out using analysis of variance with linear contrasts. Mean cumulative score in nevi, in situ and invasive melanoma were as follows: 3.8, 4.4 and 5.3 for ABCB5, respectively (P<0.005 for all), and 4.6, 4.6 and 5.3 for nestin, respectively (P=not significant for all). No appreciable expression of ABCF2 was noted in any of the groups. While ulcerated lesions of melanoma demonstrated lower levels of expression of ABCB5 and nestin than non-ulcerated lesions, and nestin expression was lower in lesions with mitoses >1, after controlling for the presence of ulceration and mitotic activity, the expression of both proteins did not significantly correlate with known melanoma prognosticators. The gradual increase in the expression of ABCB5 from benign nevus to in situ to invasive melanoma suggests that it plays a role in melanomagenesis. On the basis of our findings, a prospective study with follow-up data is required to

  2. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    EPA Science Inventory

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  3. Novel families of vacuolar amino acid transporters.

    PubMed

    Sekito, Takayuki; Fujiki, Yuki; Ohsumi, Yoshinori; Kakinuma, Yoshimi

    2008-08-01

    Amino acids are compartmentalized in the vacuoles of microorganisms and plants. In Saccharomyces cerevisiae, basic amino acids accumulate preferentially into vacuoles but acidic amino acids are almost excluded from them. This indicates that selective machineries operate at the vacuolar membrane. The members of the amino acid/auxin permease family and the major facilitator superfamily involved in the vacuolar compartmentalization of amino acids have been recently identified in studies using S. cerevisiae. Homologous genes for these transporters are also found in plant and mammalian genomes. The physiological significance in response to nitrogen starvation can now be discussed. (c) 2008 IUBMB

  4. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  5. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.).

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-04-01

    Biopesticides or transgenic crops based on Cry toxins from the soil bacterium Bacillus thuringiensis (Bt) effectively control agricultural insect pests. The sustainable use of Bt biopesticides and Bt crops is threatened, however, by the development of Cry resistance in the target pests. The diamondback moth, Plutella xylostella (L.), is the first pest that developed resistance to a Bt biopesticide in the field, and a recent study has shown that the resistance of P. xylostella to Cry1Ac is caused by a mutation in an ATP-binding cassette (ABC) transporter gene (ABCC2). In this study, we report that down-regulation of a novel ABC transporter gene from ABCG subfamily (Pxwhite) is associated with Cry1Ac resistance in P. xylostella. The full-length cDNA sequence of Pxwhite was cloned and analyzed. Spatial-temporal expression detection revealed that Pxwhite was expressed in all tissues and developmental stages, and highest expressed in Malpighian tubule tissue and in egg stage. Sequence variation analysis of Pxwhite indicated the absence of constant non-synonymous mutations between susceptible and resistant strains, whereas midgut transcript analysis showed that Pxwhite was remarkably reduced in all resistant strains and further reduced when larvae of the moderately resistant SZ-R strain were subjected to selection with Cry1Ac toxin. Furthermore, RNA interference (RNAi)-mediated suppression of Pxwhite gene expression significantly reduced larval susceptibility to Cry1Ac toxin, and genetic linkage analysis confirmed that down-regulation of Pxwhite gene is tightly linked to Cry1Ac resistance in P. xylostella. To our knowledge, this is the first report indicating that Pxwhite gene is involved in Cry1Ac resistance in P. xylostella. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 75 FR 49549 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35397] ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D..., ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, Massachusetts (STB...

  7. Family-centered care in pediatric critical care transport.

    PubMed

    Joyce, Crystal N; Libertin, Rachel; Bigham, Michael T

    2015-01-01

    Family-centered care (FCC) in medicine highlights mutually beneficial partnerships among providers, patients, and families. In the field of specialty pediatric critical care transport (SPCCT), FCC includes family presence during transport. We sought to describe family presence and family/staff perspectives of FCC in transport. This institutional review board-approved study established family presence rates among 5 SPCCT teams. At the top-performing family presence team, parents of transported children were interviewed. A staff survey measured perspectives on FCC using SurveyMonkey (Palo Alto, CA). Statistical tests including chi-square and Fisher exact tests for comparative data were applied using SPSSv17.0 software (SPSS Inc, Chicago, IL). The cohort-wide range of family presence was 23% to 66%. Parents were 4 times more likely to accompany their child if transported by ground versus air (ground: 26 [59%] vs. air: 6 [26%]). Sex, race, travel distance from referral hospital, and child's age did not influence the rate of family accompaniment. Most staff (76%) received education on FCC. This study informs how transport factors and parent/staff perceptions influence parental presence on transport at a single center. Opportunities to optimize transport FCC include defining protocols for ground and air transport, establishing a more welcoming attitude toward parents, and designing an FCC educational module specific for transport staff. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  8. The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2

    PubMed Central

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

    2008-01-01

    Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone, but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). They inhibited the binding of [125I]-Iodoarylazidoprazosin (IAAP), a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC50 values of 7.3 and 22.6 μM, respectively, but had no effect on the binding of this photoaffinity analog to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of this transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared to the control cells, suggesting that they are substrates of this transporter. Collectively, these data demonstrate for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function. PMID:18065489

  9. Functional Interaction between the Cytoplasmic ABC Protein LptB and the Inner Membrane LptC Protein, Components of the Lipopolysaccharide Transport Machinery in Escherichia coli

    PubMed Central

    Martorana, Alessandra M.; Benedet, Mattia; Maccagni, Elisa A.; Sperandeo, Paola; Villa, Riccardo; Dehò, Gianni

    2016-01-01

    ABSTRACT The assembly of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) requires the transenvelope Lpt (lipopolysaccharide transport) complex, made in Escherichia coli of seven essential proteins located in the inner membrane (IM) (LptBCFG), periplasm (LptA), and OM (LptDE). At the IM, LptBFG constitute an unusual ATP binding cassette (ABC) transporter, composed by the transmembrane LptFG proteins and the cytoplasmic LptB ATPase, which is thought to extract LPS from the IM and to provide the energy for its export across the periplasm to the cell surface. LptC is a small IM bitopic protein that binds to LptBFG and recruits LptA via its N- and C-terminal regions, and its role in LPS export is not completely understood. Here, we show that the expression level of lptB is a critical factor for suppressing lethality of deletions in the C-terminal region of LptC and the functioning of a hybrid Lpt machinery that carries Pa-LptC, the highly divergent LptC orthologue from Pseudomonas aeruginosa. We found that LptB overexpression stabilizes C-terminally truncated LptC mutant proteins, thereby allowing the formation of a sufficient amount of stable IM complexes to support growth. Moreover, the LptB level seems also critical for the assembly of IM complexes carrying Pa-LptC which is otherwise defective in interactions with the E. coli LptFG components. Overall, our data suggest that LptB and LptC functionally interact and support a model whereby LptB plays a key role in the assembly of the Lpt machinery. IMPORTANCE The asymmetric outer membrane (OM) of Gram-negative bacteria contains in its outer leaflet an unusual glycolipid, the lipopolysaccharide (LPS). LPS largely contributes to the peculiar permeability barrier properties of the OM that prevent the entry of many antibiotics, thus making Gram-negative pathogens difficult to treat. In Escherichia coli the LPS transporter (the Lpt machine) is made of seven essential proteins (LptABCDEFG) that form a

  10. TaABC1, a member of the activity of bc1 complex protein kinase family from common wheat, confers enhanced tolerance to abiotic stresses in Arabidopsis

    PubMed Central

    Wang, Caixiang; Jing, Ruilian; Mao, Xinguo; Chang, Xiaoping; Li, Ang

    2011-01-01

    Abiotic stresses such as drought, salinity, and low temperature have drastic effects on plant growth and development. However, the molecular mechanisms regulating biochemical and physiological changes in response to stresses are not well understood. Protein kinases are major signal transduction factors among the reported molecular mechanisms mediating acclimation to environmental changes. Protein kinase ABC1 (activity of bc1 complex) is involved in regulating coenzyme Q biosynthesis in mitochondria in yeast (Saccharomyces cersvisiae), and in balancing oxidative stress in chloroplasts in Arabidopsis thaliana. In the current study, TaABC1 (Triticum aestivum L. activity of bc1 complex) protein kinase was localized to the cell membrane, cytoplasm, and nucleus. The effects of overexpressing TaABC1 in transgenic Arabidopsis plants on responses to drought, salt, and cold stress were further investigated. Transgenic Arabidopsis overexpressing the TaABC1 protein showed lower water loss and higher osmotic potential, photochemistry efficiency, and chlorophyll content, while cell membrane stability and controlled reactive oxygen species homeostasis were maintained. In addition, overexpression of TaABC1 increased the expression of stress-responsive genes, such as DREB1A, DREB2A, RD29A, ABF3, KIN1, CBF1, LEA, and P5CS, detected by real-time PCR analysis. The results suggest that TaABC1 overexpression enhances drought, salt, and cold stress tolerance in Arabidopsis, and imply that TaABC1 may act as a regulatory factor involved in a multiple stress response pathways. PMID:21115661

  11. Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process.

    PubMed Central

    Bartsevich, V V; Pakrasi, H B

    1995-01-01

    During photosynthesis, the photosystem II (PSII) pigment-protein complex catalyzes oxygen evolution, a reaction in which a four-manganese ensemble plays a crucial role. Using a newly developed selection scheme, we have isolated BP13, a random photosynthesis-deficient mutant strain of the cyanobacterium, Synechocystis 6803. This mutant grew slowly under photoautotrophic conditions, and had a low oxygen evolution activity. Biochemical analysis revealed that the lesion in this mutant strain had specifically affected the Mn ensemble in PSII. Interestingly, incubation of BP13 cells with micromolar levels of added Mn induced rapid recovery of oxygen evolution activity. The mutant could be complemented with a fragment of wild-type chromosomal DNA containing three closely linked genes, mntA, mntB and mntC. These gene products showed significant sequence similarities with polypeptide components of bacterial permeases that are members of the 'ABC (ATP binding cassette) superfamily' of transporter proteins. We determined that in the BP13 strain, a single nucleotide change had resulted in the replacement of an alanine by an aspartic acid residue in MntA, a soluble protein containing ATP binding motifs. These results suggest that the mntCAB gene cluster encodes polypeptide components of a Mn transporter, the first such protein complex identified in any organism. PMID:7743991

  12. Whole genome re-sequencing identifies a mutation in an ABC transporter (mdr2) in a Plasmodium chabaudi clone with altered susceptibility to antifolate drugs☆

    PubMed Central

    Martinelli, Axel; Henriques, Gisela; Cravo, Pedro; Hunt, Paul

    2011-01-01

    In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates. PMID:20858498

  13. Characterization and expression of the ABC family (G group) in 'Dangshansuli' pear (Pyrus bretschneideri Rehd.) and its russet mutant.

    PubMed

    Hou, Zhaoqi; Jia, Bing; Li, Fei; Liu, Pu; Liu, Li; Ye, Zhenfeng; Zhu, Liwu; Wang, Qi; Heng, Wei

    2018-01-01

    The plant genes encoding ABCGs that have been identified to date play a role in suberin formation in response to abiotic and biotic stress. In the present study, 80 ABCG genes were identified in 'Dangshansuli' Chinese white pear and designated as PbABCGs. Based on the structural characteristics and phylogenetic analysis, the PbABCG family genes could be classified into seven main groups: classes A-G. Segmental and dispersed duplications were the primary forces underlying the PbABCG gene family expansion in 'Dangshansuli' pear. Most of the PbABCG duplicated gene pairs date to the recent whole-genome duplication that occurred 30~45 million years ago. Purifying selection has also played a critical role in the evolution of the ABCG genes. Ten PbABCG genes screened in the transcriptome of 'Dangshansuli' pear and its russet mutant 'Xiusu' were validated, and the expression levels of the PbABCG genes exhibited significant differences at different stages. The results presented here will undoubtedly be useful for better understanding of the complexity of the PbABCG gene family and will facilitate the functional characterization of suberin formation in the russet mutant.

  14. Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides.

    PubMed

    Narita, Shin-ichiro; Tokuda, Hajime

    2009-07-07

    Seven Lpt proteins (A through G) are thought to be involved in lipopolysaccharide transport from the inner to outer membrane of Escherichia coli. LptB belongs to the ATP-binding cassette transporter superfamily. Although the lptB gene lacks neighboring genes encoding membrane subunits, bioinformatic analyses recently indicated that two distantly located consecutive genes, lptF and lptG, could encode membrane subunits. To examine this possibility, LptB was expressed with LptF and LptG. We report here that both LptF and LptG formed a complex with LptB. Furthermore, an inner membrane protein, LptC, which had been implicated in lipopolysaccharide transport, was also included in this complex.

  15. Attenuated mutant strain of Salmonella Typhimurium lacking the ZnuABC transporter contrasts tumor growth promoting anti-cancer immune response.

    PubMed

    Chirullo, Barbara; Ammendola, Serena; Leonardi, Leonardo; Falcini, Roberto; Petrucci, Paola; Pistoia, Claudia; Vendetti, Silvia; Battistoni, Andrea; Pasquali, Paolo

    2015-07-10

    Salmonella Typhimurium has been shown to be highly effective as antitumor agent. The aim of this study was to investigate the tumor targeting efficacy and the mechanism of action of a specific attenuated mutant strain of Salmonella Typhimurium (STM) devoid of the whole operon coding for the high-affinity zinc transporter ZnuABC, which is required for bacterial growth in environments poor in zinc and for conferring full virulence to different Gram-negative pathogens.We showed that STM is able to penetrate and replicate into tumor cells in in vitro and in vivo models. The subcutaneous administration of STM in mammary adenocarcinoma mouse model led to both reduction of tumor growth and increase in life expectancy of STM treated mice. Moreover, investigating the potential mechanism behind the favorable clinical outcomes, we provide evidence that STM stimulates a potent inflammatory response and a specific immune pattern, recruiting a large number of innate and adaptive immune cells capable to contrast the immunosuppressive environment generated by tumors.

  16. Characterization of a lactose-responsive promoter of ATP-binding cassette (ABC) transporter gene from Lactobacillus acidophilus 05-172.

    PubMed

    Zeng, Zhu; Zuo, Fanglei; Yu, Rui; Zhang, Bo; Ma, Huiqin; Chen, Shangwu

    2017-09-01

    A novel lactose-responsive promoter of the ATP-binding cassette (ABC) transporter gene Lba1680 of Lactobacillus acidophilus strain 05-172 isolated from a traditionally fermented dairy product koumiss was characterized. In L. acidophilus 05-172, expression of Lba1680 was induced by lactose, with lactose-induced transcription of Lba1680 being 6.1-fold higher than that induced by glucose. This is in contrast to L. acidophilus NCFM, a strain isolated from human feces, in which expression of Lba1680 and Lba1679 is induced by glucose. Both gene expression and enzyme activity assays in L. paracasei transformed with a vector containing the inducible Lba1680 promoter (PLba1680) of strain 05-172 and a heme-dependent catalase gene as reporter confirmed that PLba1680 is specifically induced by lactose. Its regulatory expression could not be repressed by glucose, and was independent of cAMP receptor protein. This lactose-responsive promoter might be used in the expression of functional genes in L. paracasei incorporated into a lactose-rich environment, such as dairy products. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. The ABC model of recombination reinterpreted: Impact on understanding carrier transport and efficiency droop in InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hopkins, M. A.; Allsopp, D. W. E.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J.

    2017-12-01

    The efficiency of light emitting diodes (LEDs) remains a topic of great contemporary interest due to their potential to reduce the amount of energy consumed in lighting. The current consensus is that electrons and holes distribute themselves through the emissive region by a drift-diffusion process which results in a highly non-uniform distribution of the light emission and can reduce efficiency. In this paper, the measured variations in the external quantum efficiency of a range of InGaN/GaN LEDs with different numbers of quantum wells (QWs) are shown to compare closely with the predictions of a revised ABC model, in which it is assumed that the electrically injected electrons and holes are uniformly distributed through the multi-quantum well (MQW) region, or nearly so, and hence carrier recombination occurs equally in all the quantum wells. The implications of the reported results are that drift-diffusion plays a far lesser role in cross-well carrier transport than previously thought; that the dominant cause of efficiency droop is intrinsic to the quantum wells and that reductions in the density of non-radiative recombination centers in the MQW would enable the use of more QWs and thereby reduce Auger losses by spreading carriers more evenly across a wider emissive region.

  18. Induction of hepatic ABC transporter expression is part of the PPARalpha-mediated fasting response in the mouse.

    PubMed

    Kok, Tineke; Wolters, Henk; Bloks, Vincent W; Havinga, Rick; Jansen, Peter L M; Staels, Bart; Kuipers, Folkert

    2003-01-01

    Fatty acids are natural ligands of the peroxisome proliferator-activated receptor alpha (PPARalpha). Synthetic ligands of this nuclear receptor, i.e., fibrates, induce the hepatic expression of the multidrug resistance 2 gene (Mdr2), encoding the canalicular phospholipid translocator, and affect hepatobiliary lipid transport. We tested whether fasting-associated fatty acid release from adipose tissues alters hepatic transporter expression and bile formation in a PPARalpha-dependent manner. A 24-hour fasting/48-hour refeeding schedule was used in wild-type and Pparalpha((-/-)) mice. Expression of genes involved in the control of bile formation was determined and related to secretion rates of biliary components. Expression of Pparalpha, farnesoid X receptor, and liver X receptor alpha genes encoding nuclear receptors that control hepatic bile salt and sterol metabolism was induced on fasting in wild-type mice only. The expression of Mdr2 was 5-fold increased in fasted wild-type mice and increased only marginally in Pparalpha((-/-)) mice, and it normalized on refeeding. Mdr2 protein levels and maximal biliary phospholipid secretion rates were clearly increased in fasted wild-type mice. Hepatic expression of the liver X receptor target genes ATP binding cassette transporter a1 (Abca1), Abcg5, and Abcg8, implicated in hepatobiliary cholesterol transport, was induced in fasted wild-type mice only. However, the maximal biliary cholesterol secretion rate was reduced by approximately 50%. Induction of Mdr2 expression and function is part of the PPARalpha-mediated fasting response in mice. Fasting also induces expression of the putative hepatobiliary cholesterol transport genes Abca1, Abcg5, and Abcg8, but, nonetheless, maximal biliary cholesterol excretion is decreased after fasting.

  19. The ABC and AUSSAT.

    ERIC Educational Resources Information Center

    McGarritty, Ian

    1985-01-01

    Discusses the Australian Broadcasting Corporation's (ABC) utilization of the AUSSAT telecommunications satellite to extend its television and radio transmission range to reach remote Australian audiences; the satellite's program gathering and interchange capabilities; and ABC's generation of other benefits to offset cost of satellite services.…

  20. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).

    PubMed

    Shiono, Katsuhiro; Ando, Miho; Nishiuchi, Shunsaku; Takahashi, Hirokazu; Watanabe, Kohtaro; Nakamura, Motoaki; Matsuo, Yuichi; Yasuno, Naoko; Yamanouchi, Utako; Fujimoto, Masaru; Takanashi, Hideki; Ranathunge, Kosala; Franke, Rochus B; Shitan, Nobukazu; Nishizawa, Naoko K; Takamure, Itsuro; Yano, Masahiro; Tsutsumi, Nobuhiro; Schreiber, Lukas; Yazaki, Kazufumi; Nakazono, Mikio; Kato, Kiyoaki

    2014-10-01

    Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP-binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP-RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C(28) and C(30) fatty acids or ω-OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Multidrug Resistance Protein 1 (MRP1, ABCC1), a “Multitasking” ATP-binding Cassette (ABC) Transporter*

    PubMed Central

    Cole, Susan P. C.

    2014-01-01

    The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases. PMID:25281745

  2. LABCG2, a New ABC Transporter Implicated in Phosphatidylserine Exposure, Is Involved in the Infectivity and Pathogenicity of Leishmania

    PubMed Central

    González-Rey, Elena; Delgado, Mario; Castanys, Santiago; Pérez-Victoria, José M.; Gamarro, Francisco

    2013-01-01

    Leishmaniasis is a neglected disease produced by the intracellular protozoan parasite Leishmania. In the present study, we show that LABCG2, a new ATP-binding cassette half-transporter (ABCG subfamily) from Leishmania, is involved in parasite virulence. Down-regulation of LABCG2 function upon expression of an inactive mutant version of this half-transporter (LABCG2K/M) is shown to reduce the translocation of short-chain analogues of phosphatidylserine (PS). This dominant-negative phenotype is specific for the headgroup of the phospholipid, as the movement of phospholipid analogues of phosphatidylcholine, phosphatidylethanolamine or sphingomyelin is not affected. In addition, promastigotes expressing LABCG2K/M expose less endogenous PS in the stationary phase than control parasites. Transient exposure of PS at the outer leaflet of the plasma membrane is known to be one of the mechanisms used by Leishmania to infect macrophages and to silence their immune response. Stationary phase/metacyclic promastigotes expressing LABCG2K/M are less infective for macrophages and show decreased pathogenesis in a mouse model of cutaneous leishmaniasis. Thus, mice infected with parasites expressing LABCG2K/M did not develop any lesion and showed significantly lower inflammation and parasite burden than mice infected with control parasites. Our results indicate that LABCG2 function is required for the externalization of PS in Leishmania promastigotes, a process that is involved in the virulence of the parasite. PMID:23638200

  3. Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk.

    PubMed

    Ishikawa, Toshihisa; Aw, Wanping; Kaneko, Kiyoko

    2013-11-04

    In mammals, excess purine nucleosides are removed from the body by breakdown in the liver and excretion from the kidneys. Uric acid is the end product of purine metabolism in humans. Two-thirds of uric acid in the human body is normally excreted through the kidney, whereas one-third undergoes uricolysis (decomposition of uric acid) in the gut. Elevated serum uric acid levels result in gout and could be a risk factor for cardiovascular disease and diabetes. Recent studies have shown that human ATP-binding cassette transporter ABCG2 plays a role of renal excretion of uric acid. Two non-synonymous single nucleotide polymorphisms (SNPs), i.e., 421C>A (major) and 376C>T (minor), in the ABCG2 gene result in impaired transport activity, owing to ubiquitination-mediated proteosomal degradation and truncation of ABCG2, respectively. These genetic polymorphisms are associated with hyperuricemia and gout. Allele frequencies of those SNPs are significantly higher in Asian populations than they are in African and Caucasian populations. A rapid and isothermal genotyping method has been developed to detect the SNP 421C>A, where one drop of peripheral blood is sufficient for the detection. Development of simple genotyping methods would serve to improve prevention and early therapeutic intervention for high-risk individuals in personalized healthcare.

  4. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions

    PubMed Central

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W.; Browne, Tristan; Cox, Kevin; Paul, Andrew T.; Ko, Seung-Hyun B.; Mortensen, Joel E.; Lam, Joseph S.; Muruve, Daniel A.; Hassett, Daniel J.

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains. PMID:27064218

  5. ABC transporters and the proteasome complex are implicated in susceptibility to Stevens-Johnson syndrome and toxic epidermal necrolysis across multiple drugs.

    PubMed

    Nicoletti, Paola; Bansal, Mukesh; Lefebvre, Celine; Guarnieri, Paolo; Shen, Yufeng; Pe'er, Itsik; Califano, Andrea; Floratos, Aris

    2015-01-01

    Stevens-Johnson syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) represent rare but serious adverse drug reactions (ADRs). Both are characterized by distinctive blistering lesions and significant mortality rates. While there is evidence for strong drug-specific genetic predisposition related to HLA alleles, recent genome wide association studies (GWAS) on European and Asian populations have failed to identify genetic susceptibility alleles that are common across multiple drugs. We hypothesize that this is a consequence of the low to moderate effect size of individual genetic risk factors. To test this hypothesis we developed Pointer, a new algorithm that assesses the aggregate effect of multiple low risk variants on a pathway using a gene set enrichment approach. A key advantage of our method is the capability to associate SNPs with genes by exploiting physical proximity as well as by using expression quantitative trait loci (eQTLs) that capture information about both cis- and trans-acting regulatory effects. We control for known bias-inducing aspects of enrichment based analyses, such as: 1) gene length, 2) gene set size, 3) presence of biologically related genes within the same linkage disequilibrium (LD) region, and, 4) genes shared among multiple gene sets. We applied this approach to publicly available SJS/TEN genome-wide genotype data and identified the ABC transporter and Proteasome pathways as potentially implicated in the genetic susceptibility of non-drug-specific SJS/TEN. We demonstrated that the innovative SNP-to-gene mapping phase of the method was essential in detecting the significant enrichment for those pathways. Analysis of an independent gene expression dataset provides supportive functional evidence for the involvement of Proteasome pathways in SJS/TEN cutaneous lesions. These results suggest that Pointer provides a useful framework for the integrative analysis of pharmacogenetic GWAS data, by increasing the power to detect aggregate effects

  6. Forkhead-associated (FHA) Domain Containing ABC Transporter Rv1747 Is Positively Regulated by Ser/Thr Phosphorylation in Mycobacterium tuberculosis*

    PubMed Central

    Spivey, Vicky L.; Molle, Virginie; Whalan, Rachael H.; Rodgers, Angela; Leiba, Jade; Stach, Lasse; Walker, K. Barry; Smerdon, Stephen J.; Buxton, Roger S.

    2011-01-01

    One major signaling method employed by Mycobacterium tuberculosis, the causative agent of tuberculosis, is through reversible phosphorylation of proteins mediated by protein kinases and phosphatases. This study concerns one of these enzymes, the serine/threonine protein kinase PknF, that is encoded in an operon with Rv1747, an ABC transporter that is necessary for growth of M. tuberculosis in vivo and contains two forkhead-associated (FHA) domains. FHA domains are phosphopeptide recognition motifs that specifically recognize phosphothreonine-containing epitopes. Experiments to determine how PknF regulates the function of Rv1747 demonstrated that phosphorylation occurs on two specific threonine residues, Thr-150 and Thr-208. To determine the in vivo consequences of phosphorylation, infection experiments were performed in bone marrow-derived macrophages and in mice using threonine-to-alanine mutants of Rv1747 that prevent specific phosphorylation and revealed that phosphorylation positively modulates Rv1747 function in vivo. The role of the FHA domains in this regulation was further demonstrated by isothermal titration calorimetry, using peptides containing both phosphothreonine residues. FHA-1 domain mutation resulted in attenuation in macrophages highlighting the critical role of this domain in Rv1747 function. A mutant deleted for pknF did not, however, have a growth phenotype in an infection, suggesting that other kinases can fulfill its role when it is absent. This study provides the first information on the molecular mechanism(s) regulating Rv1747 through PknF-dependent phosphorylation but also indicates that phosphorylation activates Rv1747, which may have important consequences in regulating growth of M. tuberculosis. PMID:21622570

  7. Substrate Binding Protein DppA1 of ABC Transporter DppBCDF Increases Biofilm Formation in Pseudomonas aeruginosa by Inhibiting Pf5 Prophage Lysis

    PubMed Central

    Lee, Yunho; Song, Sooyeon; Sheng, Lili; Zhu, Lei; Kim, Jun-Seob; Wood, Thomas K.

    2018-01-01

    Filamentous phage impact biofilm development, stress tolerance, virulence, biofilm dispersal, and colony variants. Previously, we identified 137 Pseudomonas aeruginosa PA14 mutants with more than threefold enhanced and 88 mutants with more than 10-fold reduced biofilm formation by screening 5850 transposon mutants (PLoS Pathogens 5: e1000483, 2009). Here, we characterized the function of one of these 225 mutations, dppA1 (PA14_58350), in regard to biofilm formation. DppA1 is a substrate-binding protein (SBP) involved in peptide utilization via the DppBCDF ABC transporter system. We show that compared to the wild-type strain, inactivating dppA1 led to 68-fold less biofilm formation in a static model and abolished biofilm formation in flow cells. Moreover, the dppA1 mutant had a delay in swarming and produced 20-fold less small-colony variants, and both biofilm formation and swarming were complemented by producing DppA1. A whole-transcriptome analysis showed that only 10 bacteriophage Pf5 genes were significantly induced in the biofilm cells of the dppA1 mutant compared to the wild-type strain, and inactivation of dppA1 resulted in a 600-fold increase in Pf5 excision and a million-fold increase in phage production. As expected, inactivating Pf5 genes PA0720 and PA0723 increased biofilm formation substantially. Inactivation of DppA1 also reduced growth (due to cell lysis). Hence, DppA1 increases biofilm formation by repressing Pf5 prophage. PMID:29416528

  8. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays.

    PubMed

    Bezrutczyk, Margaret; Hartwig, Thomas; Horschman, Marc; Char, Si Nian; Yang, Jinliang; Yang, Bing; Frommer, Wolf B; Sosso, Davide

    2018-04-01

    Crop yield depends on efficient allocation of sucrose from leaves to seeds. In Arabidopsis, phloem loading is mediated by a combination of SWEET sucrose effluxers and subsequent uptake by SUT1/SUC2 sucrose/H + symporters. ZmSUT1 is essential for carbon allocation in maize, but the relative contribution to apoplasmic phloem loading and retrieval of sucrose leaking from the translocation path is not known. Here we analysed the contribution of SWEETs to phloem loading in maize. We identified three leaf-expressed SWEET sucrose transporters as key components of apoplasmic phloem loading in Zea mays L. ZmSWEET13 paralogues (a, b, c) are among the most highly expressed genes in the leaf vasculature. Genome-edited triple knock-out mutants were severely stunted. Photosynthesis of mutants was impaired and leaves accumulated high levels of soluble sugars and starch. RNA-seq revealed profound transcriptional deregulation of genes associated with photosynthesis and carbohydrate metabolism. Genome-wide association study (GWAS) analyses may indicate that variability in ZmSWEET13s correlates with agronomical traits, especifically flowering time and leaf angle. This work provides support for cooperation of three ZmSWEET13s with ZmSUT1 in phloem loading in Z. mays. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. ¹⁸FDG a PET tumor diagnostic tracer is not a substrate of the ABC transporter P-glycoprotein.

    PubMed

    Krasznai, Zoárd T; Trencsényi, György; Krasznai, Zoltán; Mikecz, Pál; Nizsalóczki, Enikő; Szalóki, Gábor; Szabó, Judit P; Balkay, László; Márián, Teréz; Goda, Katalin

    2014-11-20

    2-[(18)F]fluoro-2-deoxy-d-glucose ((18)FDG) is a tumor diagnostic radiotracer of great importance in both diagnosing primary and metastatic tumors and in monitoring the efficacy of the treatment. P-glycoprotein (Pgp) is an active transporter that is often expressed in various malignancies either intrinsically or appears later upon disease progression or in response to chemotherapy. Several authors reported that the accumulation of (18)FDG in P-glycoprotein (Pgp) expressing cancer cells (Pgp(+)) and tumors is different from the accumulation of the tracer in Pgp nonexpressing (Pgp(-)) ones, therefore we investigated whether (18)FDG is a substrate or modulator of Pgp pump. Rhodamine 123 (R123) accumulation experiments and ATPase assay were used to detect whether (18)FDG is substrate for Pgp. The accumulation and efflux kinetics of (18)FDG were examined in two different human gynecologic (A2780/A2780AD and KB-3-1/KB-V1) and a mouse fibroblast (3T3 and 3T3MDR1) Pgp(+) and Pgp(-) cancer cell line pairs both in cell suspension and monolayer cultures. We found that (18)FDG and its derivatives did not affect either the R123 accumulation in Pgp(+) cells or the basal and the substrate stimulated ATPase activity of Pgp supporting that they are not substrates or modulators of the pump. Measuring the accumulation and efflux kinetics of (18)FDG in different Pgp(+) and Pgp(-) cell line pairs, we have found that the Pgp(+) cells exhibited significantly higher (p⩽0.01) (18)FDG accumulation and slightly faster (18)FDG efflux kinetics compared to their Pgp(-) counterparts. The above data support the idea that expression of Pgp may increase the energy demand of cells resulting in higher (18)FDG accumulation and faster efflux. We concluded that (18)FDG and its metabolites are not substrates of Pgp. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Glaucarubinone sensitizes KB cells to paclitaxel by inhibiting ABC transporters via ROS-dependent and p53-mediated activation of apoptotic signaling pathways

    PubMed Central

    Karthikeyan, Subburayan; Hoti, Sugeerappa Laxmanappa; Nazeer, Yasin; Hegde, Harsha Vasudev

    2016-01-01

    Multidrug resistance (MDR) is considered to be the major contributor to failure of chemotherapy in oral squamous cell carcinoma (SCC). This study was aimed to explore the effects and mechanisms of glaucarubinone (GLU), one of the major quassinoids from Simarouba glauca DC, in potentiating cytotoxicity of paclitaxel (PTX), an anticancer drug in KB cells. Our data showed that the administration of GLU pre-treatment significantly enhanced PTX anti-proliferative effect in ABCB1 over-expressing KB cells. The Rh 123 drug efflux studies revealed that there was a significant transport function inhibition by GLU-PTX treatment. Interestingly, it was also found that this enhanced anticancer efficacy of GLU was associated with PTX-induced cell arrest in the G2/M phase of cell cycle. Further, the combined treatment of GLU-PTX had significant decrease in the expression levels of P-gp, MRPs, and BCRP in resistant KB cells at both mRNA and protein levels. Furthermore, the combination treatments showed significant reactive oxygen species (ROS) production, chromatin condensation and reduced mitochondrial membrane potential in resistant KB cells. The results from DNA fragmentation analysis also demonstrated the GLU induced apoptosis in KB cells and its synergy with PTX. Importantly, GLU and/or PTX triggered apoptosis through the activation of pro-apoptotic proteins such as p53, Bax, and caspase-9. Our findings demonstrated for the first time that GLU causes cell death in human oral cancer cells via the ROS-dependent suppression of MDR transporters and p53-mediated activation of the intrinsic mitochondrial pathway of apoptosis. Additionally, the present study also focussed on investigation of the protective effect of GLU and combination drugs in human normal blood lymphocytes. Normal blood lymphocytes assay indicated that GLU is able to induce selective toxicity in cancer cells and in silico molecular docking studies support the choice of GLU as ABC inhibitor to enhance PTX efficacy

  11. Air medical transport: what the family wants to know.

    PubMed

    Fultz, J H; McKee, J L; Zalaznik, F R; Kidd, P S

    1993-01-01

    The needs of family members of intensive care unit patients are well-documented, but there is little published about the specific needs of family members of air medical patients. This study was devised to identify family member's information needs regarding air medical transport. Using a descriptive correlational design, 100 family members of air medical patients completed a 14-item Likert-format questionnaire. Each item addressed an information need and asked how important the information was to the family member and how much of this information they received. The information needs most frequently ranked as very important related to the patient's condition, the patient's admitting unit at the receiving hospital, and being able to see the patient prior to flight. Information most frequently received by the family related to the patient's condition. Flight crews need to be cognizant of families' needs and develop ways to improve communication with the family to meet those needs.

  12. Identification of ABC transporter genes conferring combined pleuromutilin-lincosamide-streptogramin A resistance in bovine methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci.

    PubMed

    Wendlandt, Sarah; Kadlec, Kristina; Feßler, Andrea T; Schwarz, Stefan

    2015-06-12

    The aim of this study was to investigate the genetic basis of combined pleuromutilin-lincosamide-streptogramin A resistance in 26 unrelated methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) from dairy cows suffering from mastitis. The 26 pleuromutilin-resistant staphylococcal isolates were screened for the presence of the genes vga(A), vga(B), vga(C), vga(E), vga(E) variant, sal(A), vmlR, cfr, lsa(A), lsa(B), lsa(C), and lsa(E) by PCR. None of the 26 isolates carried the genes vga(B), vga(C), vga(E), vga(E) variant, vmlR, cfr, lsa(A), lsa(B), or lsa(C). Two Staphylococcus haemolyticus and single Staphylococcus xylosus, Staphylococcus lentus, and Staphylococcus hominis were vga(A)-positive. Twelve S. aureus, two Staphylococcus warneri, as well as single S. lentus and S. xylosus carried the lsa(E) gene. Moreover, single S. aureus, S. haemolyticus, S. xylosus, and Staphylococcus epidermidis were positive for both genes, vga(A) and lsa(E). The sal(A) gene was found in a single Staphylococcus sciuri. All ABC transporter genes were located in the chromosomal DNA, except for a plasmid-borne vga(A) gene in the S. epidermidis isolate. The genetic environment of the lsa(E)-positive isolates was analyzed using previously described PCR assays. Except for the S. warneri and S. xylosus, all lsa(E)-positive isolates harbored a part of the previously described enterococcal multiresistance gene cluster. This is the first report of the novel lsa(E) gene in the aforementioned bovine CoNS species. This is also the first identification of the sal(A) gene in a S. sciuri from a case of bovine mastitis. Moreover, the sal(A) gene was shown to also confer pleuromutilin resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A Neisseria meningitidis fbpABC mutant is incapable of using nonheme iron for growth.

    PubMed

    Khun, H H; Kirby, S D; Lee, B C

    1998-05-01

    The neisserial fbpABC locus has been proposed to act as an iron-specific ABC transporter system. To confirm this assigned function, we constructed an fbpABC mutant in Neisseria meningitidis by insertional inactivation of fbpABC with a selectable antibiotic marker. The mutant was unable to use iron supplied from human transferrin, human lactoferrin, or iron chelates. However, the use of iron from heme and human hemoglobin was unimpaired. These results support the obligatory participation of fbpABC in neisserial periplasmic iron transport and do not indicate a role for this genetic locus in the heme iron pathway.

  14. A Neisseria meningitidis fbpABC Mutant Is Incapable of Using Nonheme Iron for Growth

    PubMed Central

    Khun, Heng H.; Kirby, Shane D.; Lee, B. Craig

    1998-01-01

    The neisserial fbpABC locus has been proposed to act as an iron-specific ABC transporter system. To confirm this assigned function, we constructed an fbpABC mutant in Neisseria meningitidis by insertional inactivation of fbpABC with a selectable antibiotic marker. The mutant was unable to use iron supplied from human transferrin, human lactoferrin, or iron chelates. However, the use of iron from heme and human hemoglobin was unimpaired. These results support the obligatory participation of fbpABC in neisserial periplasmic iron transport and do not indicate a role for this genetic locus in the heme iron pathway. PMID:9573125

  15. Comparison of model results transporting the odd nitrogen family with results transporting separate odd nitrogen species

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Jackman, Charles H.; Stolarski, Richard S.

    1989-01-01

    A fast two-dimensional residual circulation stratospheric family transport model, designed to minimize computer requirements, is developed. The model was used to calculate the ambient and perturbed atmospheres in which odd nitrogen species are transported as a family, and the results were compared with calculations in which HNO3, N2O5, ClONO2, and HO2NO2 are transported separately. It was found that ozone distributions computed by the two models for a present-day atmosphere are nearly identical. Good agreement was also found between calculated species concentrations and the ozone response, indicating the general applicability of the odd-nitrogen family approximations.

  16. 75 FR 11991 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB Finance Docket No. 35356] ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to lease from O...

  17. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58*

    PubMed Central

    Wichelecki, Daniel J.; Vetting, Matthew W.; Chou, Liyushang; Al-Obaidi, Nawar; Bouvier, Jason T.; Almo, Steven C.; Gerlt, John A.

    2015-01-01

    Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool. PMID:26472925

  18. Overexpression of an ABC transporter and mutations of GyrA, GyrB, and ParC in contributing to high-level ciprofloxacin resistance in Streptococcus suis type 2.

    PubMed

    Yao, Jie; Shang, Kexin; Huang, Jinhu; Ran, Wei; Kashif, Jam; Wang, Liping

    2014-04-01

    Streptococcus suis is a pathogen of zoonotic diseases. Moreover, the emergence of fluoro-quinolones (FQs) resistance in this pathogen has severe consequences for pigs and human health. In this study, the molecular mechanism of FQs resistance in S. suis type 2 (SS2) sensitive strains isolated from pigs was assessed after in vitro induction of resistance against the most frequently used FQs: ciprofloxacin, norfloxacin, and enrofloxacin. Proteome analysis, sequencing and real-time RT-PCR results strongly established an overexpression of an ABC transporter protein (other than SatAB) and topoisomerase mutations in GyrA (Ser81Arg), GyrB (Glu354Lys), and ParC (Ser79Phe) in contributing to high level ciprofloxacin resistance in SS2. Due to the overexpression of the ABC transporter, intracellular ciprofloxacin concentrations were significantly lower in the resistant strains than those of sensitive strains after 20, 35, and 60 min exposures to ciprofloxacin (p < 0.05). It was concluded that improper use of FQs is one of the main causes of the emergence of this zoonotic pathogen as a multiresistant organism against commonly used antibiotics. The existence of an efflux-like protein is an incentive to find new drug targets to avoid the spread of FQs-resistant S. suis isolates in pigs and the human population.

  19. Genome-wide identification, phylogenetic analysis, and expression profiles of ATP-binding cassette transporter genes in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    PubMed

    Xiao, Lin-Fan; Zhang, Wei; Jing, Tian-Xing; Zhang, Meng-Yi; Miao, Ze-Qing; Wei, Dan-Dan; Yuan, Guo-Rui; Wang, Jin-Jun

    2018-03-01

    The ATP-binding cassette (ABC) is the largest transporter gene family and the genes play key roles in xenobiotic resistance, metabolism, and development of all phyla. However, the specific functions of ABC gene families in insects is unclear. We report a genome-wide identification, phylogenetic, and transcriptional analysis of the ABC genes in the oriental fruit fly, Bactrocera dorsalis (Hendel). We identified a total of 47 ABC genes (BdABCs) from the transcriptomic and genomic databases of B. dorsalis and classified these genes into eight subfamilies (A-H), including 7 ABCAs, 7 ABCBs, 9 ABCCs, 2 ABCDs, 1 ABCE, 3 ABCFs, 15 ABCGs, and 3 ABCHs. Comparative phylogenetic analysis of the ABCs suggests an orthologous relationship between B. dorsalis and other insect species in which these genes have been related to pesticide resistance and essential biological processes. Comparison of transcriptome and relative expression patterns of BdABCs indicated diverse multifunctions within different B. dorsalis tissues. The expression of 4, 10, and 14 BdABCs from 18 BdABCs was significantly upregulated after exposure to LD 50 s of malathion, avermectin, and beta-cypermethrin, respectively. The maximum expression level of most BdABCs (including BdABCFs, BdABCGs, and BdABCHs) occurred at 48h post exposures, whereas BdABCEs peaked at 24h after treatment. Furthermore, RNA interference-mediated suppression of BdABCB7 resulted in increased toxicity of malathion against B. dorsalis. These data suggest that ABC transporter genes might play key roles in xenobiotic metabolism and biosynthesis in B. dorsalis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti.

    PubMed

    Torres-Quesada, Omar; Millán, Vicenta; Nisa-Martínez, Rafael; Bardou, Florian; Crespi, Martín; Toro, Nicolás; Jiménez-Zurdo, José I

    2013-01-01

    The legume symbiont Sinorhizobium meliloti expresses a plethora of small noncoding RNAs (sRNAs) whose function is mostly unknown. Here, we have functionally characterized two tandemly encoded S. meliloti Rm1021 sRNAs that are similar in sequence and structure. Homologous sRNAs (designated AbcR1 and AbcR2) have been shown to regulate several ABC transporters in the related α-proteobacteria Agrobacterium tumefaciens and Brucella abortus. In Rm1021, AbcR1 and AbcR2 exhibit divergent unlinked regulation and are stabilized by the RNA chaperone Hfq. AbcR1 is transcribed in actively dividing bacteria, either in culture, rhizosphere or within the invasion zone of mature alfalfa nodules. Conversely, AbcR2 expression is induced upon entry into stationary phase and under abiotic stress. Only deletion of AbcR1 resulted into a discrete growth delay in rich medium, but both are dispensable for symbiosis. Periplasmic proteome profiling revealed down-regulation of the branched-chain amino acid binding protein LivK by AbcR1, but not by AbcR2. A double-plasmid reporter assay confirmed the predicted specific targeting of the 5'-untranslated region of the livK mRNA by AbcR1 in vivo. Our findings provide evidences of independent regulatory functions of these sRNAs, probably to fine-tune nutrient uptake in free-living and undifferentiated symbiotic rhizobia.

  1. Independent Activity of the Homologous Small Regulatory RNAs AbcR1 and AbcR2 in the Legume Symbiont Sinorhizobium meliloti

    PubMed Central

    Torres-Quesada, Omar; Millán, Vicenta; Nisa-Martínez, Rafael; Bardou, Florian; Crespi, Martín; Toro, Nicolás; Jiménez-Zurdo, José I.

    2013-01-01

    The legume symbiont Sinorhizobium meliloti expresses a plethora of small noncoding RNAs (sRNAs) whose function is mostly unknown. Here, we have functionally characterized two tandemly encoded S. meliloti Rm1021 sRNAs that are similar in sequence and structure. Homologous sRNAs (designated AbcR1 and AbcR2) have been shown to regulate several ABC transporters in the related α-proteobacteria Agrobacterium tumefaciens and Brucella abortus. In Rm1021, AbcR1 and AbcR2 exhibit divergent unlinked regulation and are stabilized by the RNA chaperone Hfq. AbcR1 is transcribed in actively dividing bacteria, either in culture, rhizosphere or within the invasion zone of mature alfalfa nodules. Conversely, AbcR2 expression is induced upon entry into stationary phase and under abiotic stress. Only deletion of AbcR1 resulted into a discrete growth delay in rich medium, but both are dispensable for symbiosis. Periplasmic proteome profiling revealed down-regulation of the branched-chain amino acid binding protein LivK by AbcR1, but not by AbcR2. A double-plasmid reporter assay confirmed the predicted specific targeting of the 5′-untranslated region of the livK mRNA by AbcR1 in vivo. Our findings provide evidences of independent regulatory functions of these sRNAs, probably to fine-tune nutrient uptake in free-living and undifferentiated symbiotic rhizobia. PMID:23869210

  2. Regulation of Expression of abcA and Its Response to Environmental Conditions

    PubMed Central

    Villet, Regis A.; Truong-Bolduc, Que Chi; Wang, Yin; Estabrooks, Zoe; Medeiros, Heidi

    2014-01-01

    The ATP-dependent transporter gene abcA in Staphylococcus aureus confers resistance to hydrophobic β-lactams. In strain ISP794, abcA is regulated by the transcriptional regulators MgrA and NorG and shares a 420-nucleotide intercistronic region with the divergently transcribed pbp4 gene, which encodes the transpeptidase Pbp4. Exposure of exponentially growing cells to iron-limited media, oxidative stress, and acidic pH (5.5) for 0.5 to 2 h had no effect on abcA expression. In contrast, nutrient limitation produced a significant increase in abcA transcripts. We identified three additional regulators (SarA, SarZ, and Rot) that bind to the overlapping promoter region of abcA and pbp4 in strain MW2 and investigated their role in the regulation of abcA expression. Expression of abcA is decreased by 10.0-fold in vivo in a subcutaneous abscess model. In vitro, abcA expression depends on rot and sarZ regulators. Moenomycin A exposure of strain MW2 produced an increase in abcA transcripts. Relative to MW2, the MIC of moenomycin was decreased 8-fold for MW2ΔabcA and increased 10-fold for the MW2 abcA overexpresser, suggesting that moenomycin is a substrate of AbcA. PMID:24509312

  3. eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells

    PubMed Central

    Yeh, Johannes T.-H.; Nam, Kwangho; Yeh, Joshua T.-H.; Perrimon, Norbert

    2017-01-01

    The absorption, distribution, metabolism and excretion (ADME) of metabolites and toxic organic solutes are orchestrated by the ATP-binding cassette (ABC) transporters and the organic solute carrier family (SLC) proteins. A large number of ABC and SLC transpoters exist; however, only a small number have been well characterized. To facilitate the analysis of these transporters, which is important for drug safety and physiological studies, we developed a sensitive genetically encoded bilirubin (BR)-inducible fluorescence sensor (eUnaG) to detect transporter-coupled influx/efflux of organic compounds. This sensor can be used in live cells to measure transporter activity, as excretion of BR depends on ABC and SLC transporters. Applying eUnaG in functional RNAi screens, we characterize l(2)03659 as a Drosophila multidrug resistant-associated ABC transporter. PMID:28176814

  4. Characterization of a New Family of Metal Transport Proteins

    SciTech Connect

    Guerinot, Mary Lou; Eide, David

    1999-06-01

    Soils at many DOE sites are contaminated with metals and radionuclides. Such soils obviously pose a risk to human and animal health. Unlike organic wastes, which can be metabolized, metals are immutable and cannot be degraded into harmless constituents. Phytoremediation, the use of plants to remove toxic materials from soil and water, may prove to be an environmentally friendly and cost effective solution for cleaning up metal contaminated sites. The success of phytoremediation will rely on the availability of plants that absorb, translocate, and tolerate the contaminating metals. However, before we can engineer such plants, we need more basic informationmore » on how plants acquire metals. An important long term goal of our research program is to understand how metals such as zinc, cadmium and iron are transported across membranes. Our research is focused on a new family of metal transporters, which we have identified through combined studies in the yeast Saccharomyces cerevisiae and in the model plant Arabidopsis thaliana. We have identified a family of 24 presumptive metal transport genes in a variety of organisms including yeast, trypanosomes, plants, nematodes, and humans. This family, which we have designated the ''ZIP'' genes, provides a rich source of material with which to undertake studies on metal transport in eukar« less

  5. The Yersinia pestis Siderophore, Yersiniabactin, and the ZnuABC system both contribute to Zinc acquisition and the development of lethal septicemic plague in mice

    PubMed Central

    Bobrov, Alexander G.; Kirillina, Olga; Fetherston, Jacqueline D.; Miller, M. Clarke; Burlison, Joseph A.; Perry, Robert D.

    2014-01-01

    Summary Bacterial pathogens must overcome host sequestration of zinc (Zn2+), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn2+ by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn2+-deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn2+ acquisition. Studies with the Zn2+-dependent transcriptional reporter znuA∷lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn2+. However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, that are required for Fe3+ acquisition by Ybt, are not needed for Ybt-dependent Zn2+ uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn2+ uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicemic plague mouse model. PMID:24979062

  6. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice.

    PubMed

    Bobrov, Alexander G; Kirillina, Olga; Fetherston, Jacqueline D; Miller, M Clarke; Burlison, Joseph A; Perry, Robert D

    2014-08-01

    Bacterial pathogens must overcome host sequestration of zinc (Zn(2+) ), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn(2+) by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn(2+) -deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn(2+) acquisition. Studies with the Zn(2+) -dependent transcriptional reporter znuA::lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn(2+) . However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, which are required for Fe(3+) acquisition by Ybt, are not needed for Ybt-dependent Zn(2+) uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn(2+) uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicaemic plague mouse model. © 2014 John Wiley & Sons Ltd.

  7. Hepatic expression and cellular distribution of the glucose transporter family

    PubMed Central

    Karim, Sumera; Adams, David H; Lalor, Patricia F

    2012-01-01

    Glucose and other carbohydrates are transported into cells using members of a family of integral membrane glucose transporter (GLUT) molecules. To date 14 members of this family, also called the solute carrier 2A proteins have been identified which are divided on the basis of transport characteristics and sequence similarities into several families (Classes 1 to 3). The expression of these different receptor subtypes varies between different species, tissues and cellular subtypes and each has differential sensitivities to stimuli such as insulin. The liver is a contributor to metabolic carbohydrate homeostasis and is a major site for synthesis, storage and redistribution of carbohydrates. Situations in which the balance of glucose homeostasis is upset such as diabetes or the metabolic syndrome can lead metabolic disturbances that drive chronic organ damage and failure, confirming the importance of understanding the molecular regulation of hepatic glucose homeostasis. There is a considerable literature describing the expression and function of receptors that regulate glucose uptake and release by hepatocytes, the most import cells in glucose regulation and glycogen storage. However there is less appreciation of the roles of GLUTs expressed by non parenchymal cell types within the liver, all of which require carbohydrate to function. A better understanding of the detailed cellular distribution of GLUTs in human liver tissue may shed light on mechanisms underlying disease pathogenesis. This review summarises the available literature on hepatocellular expression of GLUTs in health and disease and highlights areas where further investigation is required. PMID:23239915

  8. Disruption of the ABC transporter genes PDR5, YOR1, and SNQ2, and their participation in improved fermentative activity of a sake yeast mutant showing pleiotropic drug resistance.

    PubMed

    Watanabe, M; Mizoguchi, H; Nishimura, A

    2000-01-01

    Clotrimazole-resistant mutants from sake yeasts show improved fermentative activity in sake mash and pleiotropic drug resistance (PDR). The PDR mechanism is interpreted by overexpression of ATP-binding cassette (ABC) transporters, which extrude various kinds of drugs out of a cell. In a clotrimazole-resistant mutant, CTZ21, isolated from the haploid sake yeast HL69, the levels of mRNA for three major ABC transporter genes, PDR5, SNQ2, and YOR1, markedly increased. These three genes of CTZ21 were disrupted to investigate which participated in the improved fermentative activity of CTZ21. The fermentative activities of deltapdr5 and deltasnq2 strains of CTZ21 were reduced to that of HL69 in the initial and middle stages of fermentation. In the last stage, however, the sake meter [(1/gravity - 1) x 1443] of the deltapdr5 and deltasnq2 strains rose faster than that of HL69. On the other hand, a deltayor1 strain of CTZ21 fermented sake mash in a manner nearly identical to that of CTZ21 until the last stage of fermentation. But in the last stage, fermentation of the deltayor1 slowed down compared with that of CTZ21. A deltayor1 strain of HL69 also exhibited much reduced fermentative activity in the middle and last fermentation stages. The YOR1 gene seems necessary for sake fermentation to be completed efficiently. The ATP content in sake mash brewed with CTZ21 was drastically decreased throughout the whole fermentation period. This low ATP level was restored to a medium level in the cases of both the deltapdr5 and deltasnq2 strains of CTZ21. In contrast, the deltayor1 of CTZ21 exhibited a low ATP level in sake mash in the same manner as CTZ21. These results suggest that the low ATP level of CTZ21 contributes to a certain extent its improved fermentative activity in the initial and middle stages of sake fermentation.

  9. 1977 Nationwide Personal Transportation Study : a life cycle of travel by the American family

    DOT National Transportation Integrated Search

    1981-07-01

    This report provides information about family trips and travel from the point of view of the family life cycle, using data from the 1977 Nationwide Personal Transportation Study. Daily travel characteristics of families in stages of four life cycles ...

  10. ABC's of Construction. Final Report.

    ERIC Educational Resources Information Center

    Greater Baton Rouge Chamber of Commerce, LA.

    The ABC's of Construction project was a demonstration project designed to integrate basic skills training with an industry-developed vocational-craft training program. The program was located at the central training facility of the Pelican Chapter of Associated Builders and Contractors (ABC), an organization made up of nearly 300 member companies…

  11. Do You Know Your ABC?

    ERIC Educational Resources Information Center

    Neale, Claire

    2013-01-01

    Within primary schools, the core subjects of literacy and numeracy are highly regarded, and rightly so, as children need to learn to read, write and be numerically literate. This means that all children learn their ABCs at an early age, But, what about the "other ABC"--"Airway, Breathing and Circulation?" Accidents and medical…

  12. Identification of Transport-critical Residues in a Folate Transporter from the Folate-Biopterin Transporter (FBT) Family*

    PubMed Central

    Eudes, Aymerick; Kunji, Edmund R. S.; Noiriel, Alexandre; Klaus, Sebastian M. J.; Vickers, Tim J.; Beverley, Stephen M.; Gregory, Jesse F.; Hanson, Andrew D.

    2010-01-01

    The Synechocystis Slr0642 protein and its plastidial Arabidopsis (Arabidopsis thaliana) ortholog At2g32040 belong to the folate-biopterin transporter (FBT) family within the major facilitator superfamily. Both proteins transport folates when expressed in Escherichia coli. Because the structural requirements for transport activity are not known for any FBT protein, we applied mutational analysis to identify residues that are critical to transport and interpreted the results using a comparative structural model based on E. coli lactose permease. Folate transport was assessed via the growth of an E. coli pabA abgT strain, which cannot synthesize or take up folates or p-aminobenzoylglutamate. In total, 47 residues were replaced with Cys or Ala. Mutations at 22 positions abolished folate uptake without affecting Slr0642 expression in membranes, whereas other mutations had no effect. Residues important for function mostly line the predicted central cavity and are concentrated in the core α-helices H1, H4, H7, and H10. The essential residue locations are consistent with a folate-binding site lying roughly equidistant from both faces of the transporter. Arabidopsis has eight FBT proteins besides At2g32040, often lacking conserved critical residues. When six of these proteins were expressed in E. coli or in Leishmania folate or pterin transporter mutants, none showed evidence of folate or pterin transport activity, and only At2g32040 was isolated by functional screening of Arabidopsis cDNA libraries in E. coli. Such negative data could reflect roles in transport of other substrates. These studies provide the first insights into the native structure and catalytic mechanism of FBT family carriers. PMID:19923217

  13. ABCE1 Is a Highly Conserved RNA Silencing Suppressor

    PubMed Central

    Kärblane, Kairi; Gerassimenko, Jelena; Nigul, Lenne; Piirsoo, Alla; Smialowska, Agata; Vinkel, Kadri; Kylsten, Per; Ekwall, Karl; Swoboda, Peter; Truve, Erkki; Sarmiento, Cecilia

    2015-01-01

    ATP-binding cassette sub-family E member 1 (ABCE1) is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference. PMID:25659154

  14. Characterization of zinc transport by divalent metal transporters of the ZIP family from the model legume medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    To understand how plants from the Fabaceae family maintain zinc (Zn) homeostasis, we have characterized the kinetics of the Zn transporting proteins from the ZIP family of divalent metal transporters in the model legume Medicago truncatula. MtZIP1, MtZIP5, and MtZIP6 were the only members from this ...

  15. The ABCs of Sex Ed.

    ERIC Educational Resources Information Center

    Sroka, Stephen R.

    2002-01-01

    Cites statistics on extent of sexually transmitted diseases and pregnancies among adolescents; describes ideological dispute over how to teach sex education; advocates teaching the ABCs of sex education: Abstinence, Be Monogamous, and Condoms. (PKP)

  16. Familial orthostatic tachycardia due to norepinephrine transporter deficiency

    NASA Technical Reports Server (NTRS)

    Robertson, D.; Flattem, N.; Tellioglu, T.; Carson, R.; Garland, E.; Shannon, J. R.; Jordan, J.; Jacob, G.; Blakely, R. D.; Biaggioni, I.

    2001-01-01

    Orthostatic intolerance (OI) or postural tachycardia syndrome (POTS) is a syndrome primarily affecting young females, and is characterized by lightheadedness, palpitations, fatigue, altered mentation, and syncope primarily occurring with upright posture and being relieved by lying down. There is typically tachycardia and raised plasma norepinephrine levels on upright posture, but little or no orthostatic hypotension. The pathophysiology of OI is believed to be very heterogeneous. Most studies of the syndrome have focused on abnormalities in norepinephrine release. Here the hypothesis that abnormal norepinephrine transporter (NET) function might contribute to the pathophysiology in some patients with OI was tested. In a proband with significant orthostatic symptoms and tachycardia, disproportionately elevated plasma norepinephrine with standing, impaired systemic, and local clearance of infused tritiated norepinephrine, impaired tyramine responsiveness, and a dissociation between stimulated plasma norepinephrine and DHPG elevation were found. Studies of NET gene structure in the proband revealed a coding mutation that converts a highly conserved transmembrane domain Ala residue to Pro. Analysis of the protein produced by the mutant cDNA in transfected cells demonstrated greater than 98% reduction in activity relative to normal. NE, DHPG/NE, and heart rate correlated with the mutant allele in this family. CONCLUSION: These results represent the first identification of a specific genetic defect in OI and the first disease linked to a coding alteration in a Na+/Cl(-)-dependent neurotransmitter transporter. Identification of this mechanism may facilitate our understanding of genetic causes of OI and lead to the development of more effective therapeutic modalities.

  17. The Organic Anion Transporter (OAT) Family: A Systems Biology Perspective

    PubMed Central

    Nigam, Sanjay K.; Bush, Kevin T.; Martovetsky, Gleb; Ahn, Sun-Young; Liu, Henry C.; Richard, Erin; Bhatnagar, Vibha; Wu, Wei

    2015-01-01

    The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the “Remote Sensing and Signaling Hypothesis,” which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling. PMID:25540139

  18. Sodium-dependent bile salt transporters of the SCL10A Transporter Family: More than solute transporters

    PubMed Central

    Anwer, M. Sawkat; Stieger, Bruno

    2013-01-01

    Summary The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na+-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide or NTCP) and SLC10A2 (apical sodium-dependent bile salt transporter or ASBT) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes. PMID:24196564

  19. Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport

    PubMed Central

    Cockerell, Steven R.; Rutkovsky, Alex C.; Zayner, Josiah P.; Cooper, Rebecca E.; Porter, Lindsay R.; Pendergraft, Sam S.; Parker, Zach M.; McGinnis, Marcus W.

    2014-01-01

    The polyamines norspermidine and spermidine are among the environmental signals that regulate Vibrio cholerae biofilm formation. The effects of these polyamines are mediated by NspS, a member of the bacterial periplasmic solute binding protein superfamily. Almost all members of this superfamily characterized to date are components of ATP-binding cassette-type transporters involved in nutrient uptake. Consequently, in the current annotation of the V. cholerae genome, NspS has been assigned a function in transport. The objective of this study was to further characterize NspS and investigate its potential role in transport. Our results support a role for NspS in signal transduction in response to norspermidine and spermidine, but not their transport. In addition, we provide evidence that these polyamine signals are processed by c-di-GMP signalling networks in the cell. Furthermore, we present comparative genomics analyses which reveal the presence of NspS-like proteins in a variety of bacteria, suggesting that periplasmic ligand binding proteins may be widely utilized for sensory transduction. PMID:24530989

  20. Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli.

    PubMed

    Ohtsu, Iwao; Kawano, Yusuke; Suzuki, Marina; Morigasaki, Susumu; Saiki, Kyohei; Yamazaki, Shunsuke; Nonaka, Gen; Takagi, Hiroshi

    2015-01-01

    Intracellular thiols like L-cystine and L-cystine play a critical role in the regulation of cellular processes. Here we show that Escherichia coli has two L-cystine transporters, the symporter YdjN and the ATP-binding cassette importer FliY-YecSC. These proteins import L-cystine, an oxidized product of L-cystine from the periplasm to the cytoplasm. The symporter YdjN, which is expected to be a new member of the L-cystine regulon, is a low affinity L-cystine transporter (Km = 1.1 μM) that is mainly involved in L-cystine uptake from outside as a nutrient. E. coli has only two L-cystine importers because ΔydjNΔyecS mutant cells are not capable of growing in the minimal medium containing L-cystine as a sole sulfur source. Another protein YecSC is the FliY-dependent L-cystine transporter that functions cooperatively with the L-cystine transporter YdeD, which exports L-cystine as reducing equivalents from the cytoplasm to the periplasm, to prevent E. coli cells from oxidative stress. The exported L-cystine can reduce the periplasmic hydrogen peroxide to water, and then generated L-cystine is imported back into the cytoplasm via the ATP-binding cassette transporter YecSC with a high affinity to L-cystine (Km = 110 nM) in a manner dependent on FliY, the periplasmic L-cystine-binding protein. The double disruption of ydeD and fliY increased cellular levels of lipid peroxides. From these findings, we propose that the hydrogen peroxide-inducible L-cystine/L-cystine shuttle system plays a role of detoxification of hydrogen peroxide before lipid peroxidation occurs, and then might specific prevent damage to membrane lipids.

  1. Accelerated bridge construction (ABC) decision making and economic modeling tool.

    DOT National Transportation Integrated Search

    2011-12-01

    In this FHWA-sponsored pool funded study, a set of decision making tools, based on the Analytic Hierarchy Process (AHP) was developed. This tool set is prepared for transportation specialists and decision-makers to determine if ABC is more effective ...

  2. ROLE OF ATP BINDING CASSETTE SUB-FAMILY MEMBER 2 (ABCG2) IN MOUSE EMBRYONIC STEM CELL DEVELOPMENT.

    EPA Science Inventory

    ATP binding cassette sub-family member 2 (ABCG2), is a member of the ABC transporter superfamily and a principal xenobiotic transporter. ABCG2 is also highly expressed in certain stem cell populations where it is thought to be related to stem cell plasticity, although the role o...

  3. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    PubMed Central

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386

  4. Cystathionine β-Synthase (CBS) Domains 1 and 2 Fulfill Different Roles in Ionic Strength Sensing of the ATP-binding Cassette (ABC) Transporter OpuA*

    PubMed Central

    Karasawa, Akira; Erkens, Guus B.; Berntsson, Ronnie P.-A.; Otten, Renee; Schuurman-Wolters, Gea K.; Mulder, Frans A. A.; Poolman, Bert

    2011-01-01

    The cystathionine β-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine β-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity. PMID:21878634

  5. Retinoid Binding Properties of Nucleotide Binding Domain 1 of the Stargardt Disease-associated ATP Binding Cassette (ABC) Transporter, ABCA4*

    PubMed Central

    Biswas-Fiss, Esther E.; Affet, Stephanie; Ha, Malissa; Biswas, Subhasis B.

    2012-01-01

    The retina-specific ATP binding cassette transporter, ABCA4 protein, is associated with a broad range of inherited macular degenerations, including Stargardt disease, autosomal recessive cone rod dystrophy, and fundus flavimaculatus. In order to understand its role in retinal transport in rod out segment discs, we have investigated the interactions of the soluble domains of ABCA4 with both 11-cis- and all-trans-retinal. Using fluorescence anisotropy-based binding analysis and recombinant polypeptides derived from the amino acid sequences of the four soluble domains of ABCA4, we demonstrated that the nucleotide binding domain 1 (NBD1) specifically bound 11-cis-retinal. Its affinity for all-trans-retinal was markedly reduced. Stargardt disease-associated mutations in this domain resulted in attenuation of 11-cis-retinal binding. Significant differences in 11-cis-retinal binding affinities were observed between NBD1 and other cytoplasmic and lumenal domains of ABCA4. The results suggest a possible role of ABCA4 and, in particular, the NBD1 domain in 11-cis-retinal binding. These results also correlate well with a recent report on the in vivo role of ABCA4 in 11-cis-retinal transport. PMID:23144455

  6. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    SciTech Connect

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABCmore » gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.« less

  7. Hijacking membrane transporters for arsenic phytoextraction

    PubMed Central

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  8. A surface transporter family conveys the trypanosome differentiation signal.

    PubMed

    Dean, Samuel; Marchetti, Rosa; Kirk, Kiaran; Matthews, Keith R

    2009-05-14

    Microbial pathogens use environmental cues to trigger the developmental events needed to infect mammalian hosts or transmit to disease vectors. The parasites causing African sleeping sickness respond to citrate or cis-aconitate (CCA) to initiate life-cycle development when transmitted to their tsetse fly vector. This requires hypersensitization of the parasites to CCA by exposure to low temperature, conditions encountered after tsetse fly feeding at dusk or dawn. Here we identify a carboxylate-transporter family, PAD (proteins associated with differentiation), required for perception of this differentiation signal. Consistent with predictions for the response of trypanosomes to CCA, PAD proteins are expressed on the surface of the transmission-competent 'stumpy-form' parasites in the bloodstream, and at least one member is thermoregulated, showing elevated expression and surface access at low temperature. Moreover, RNA-interference-mediated ablation of PAD expression diminishes CCA-induced differentiation and eliminates CCA hypersensitivity under cold-shock conditions. As well as being molecular transducers of the differentiation signal in these parasites, PAD proteins provide the first example of a surface marker able to discriminate the transmission stage of trypanosomes in their mammalian host.

  9. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism.

    PubMed

    Döring, Barbara; Petzinger, Ernst

    2014-08-01

    The historical phasing concept of drug metabolism and elimination was introduced to comprise the two phases of metabolism: phase I metabolism for oxidations, reductions and hydrolyses, and phase II metabolism for synthesis. With this concept, biological membrane barriers obstructing the accessibility of metabolism sites in the cells for drugs were not considered. The concept of two phases was extended to a concept of four phases when drug transporters were detected that guided drugs and drug metabolites in and out of the cells. In particular, water soluble or charged drugs are virtually not able to overcome the phospholipid membrane barrier. Drug transporters belong to two main clusters of transporter families: the solute carrier (SLC) families and the ATP binding cassette (ABC) carriers. The ABC transporters comprise seven families with about 20 carriers involved in drug transport. All of them operate as pumps at the expense of ATP splitting. Embedded in the former phase concept, the term "phase III" was introduced by Ishikawa in 1992 for drug export by ABC efflux pumps. SLC comprise 52 families, from which many carriers are drug uptake transporters. Later on, this uptake process was referred to as the "phase 0 transport" of drugs. Transporters for xenobiotics in man and animal are most expressed in liver, but they are also present in extra-hepatic tissues such as in the kidney, the adrenal gland and lung. This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.

  10. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2006-03-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  11. Searching for the fastest dynamo: laminar ABC flows.

    PubMed

    Alexakis, Alexandros

    2011-08-01

    The growth rate of the dynamo instability as a function of the magnetic Reynolds number R(M) is investigated by means of numerical simulations for the family of the Arnold-Beltrami-Childress (ABC) flows and for two different forcing scales. For the ABC flows that are driven at the largest available length scale, it is found that, as the magnetic Reynolds number is increased: (a) The flow that results first in a dynamo is the 2 1/2-dimensional flow for which A=B and C=0 (and all permutations). (b) The second type of flow that results in a dynamo is the one for which A=B≃2C/5 (and permutations). (c) The most symmetric flow, A=B=C, is the third type of flow that results in a dynamo. (d) As R(M) is increased, the A=B=C flow stops being a dynamo and transitions from a local maximum to a third-order saddle point. (e) At larger R(M), the A=B=C flow reestablishes itself as a dynamo but remains a saddle point. (f) At the largest examined R(M), the growth rate of the 2 1/2-dimensional flows starts to decay, the A=B=C flow comes close to a local maximum again, and the flow A=B≃2C/5 (and permutations) results in the fastest dynamo with growth rate γ≃0.12 at the largest examined R(M). For the ABC flows that are driven at the second largest available length scale, it is found that (a) the 2 1/2-dimensional flows A=B,C=0 (and permutations) are again the first flows that result in a dynamo with a decreased onset. (b) The most symmetric flow, A=B=C, is the second type of flow that results in a dynamo. It is, and it remains, a local maximum. (c) At larger R(M), the flow A=B≃2C/5 (and permutations) appears as the third type of flow that results in a dynamo. As R(M) is increased, it becomes the flow with the largest growth rate. The growth rates appear to have some correlation with the Lyapunov exponents, but constructive refolding of the field lines appears equally important in determining the fastest dynamo flow.

  12. Down-regulation of aminopeptidase N and ABC transporter subfamily G transcripts in Cry1Ab and Cry1Ac resistant Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae)

    PubMed Central

    Zhang, Tiantao; Coates, Brad S.; Wang, Yueqin; Wang, Yidong; Bai, Shuxiong; Wang, Zhenying; He, Kanglai

    2017-01-01

    The Asian corn borer (ACB), Ostrinia furnacalis (Lepidoptera: Crambidae), is a highly destructive pest of cultivated maize throughout East Asia. Bacillus thuringiensis (Bt) crystalline protein (Cry) toxins cause mortality by a mechanism involving pore formation or signal transduction following toxin binding to receptors along the midgut lumen of susceptible insects, but this mechanism and mutations therein that lead to resistance are not fully understood. In the current study, quantitative comparisons were made among midgut expressed transcripts from O. furnacalis susceptible (ACB-BtS) and laboratory selected strains resistant to Cry1Ab (ACB-AbR) and Cry1Ac toxins (ACB-AcR) when feeding on non-Bt diet. From a combined de novo transcriptome assembly of 83,370 transcripts, ORFs of ≥ 100 amino acids were predicted and annotated for 28,940 unique isoforms derived from 12,288 transcripts. Transcriptome-wide expression estimated from RNA-seq read depths predicted significant down-regulation of transcripts for previously known Bt resistance genes, aminopeptidase N1 (apn1) and apn3, as well as a putative ATP binding cassette transporter group G (abcg) gene in both ACB-AbR and -AcR (log2[fold-change] ≥ 1.36; P < 0.0001). The transcripts that were most highly differentially regulated in both ACB-AbR and -AcR compared to ACB-BtS (log2[fold-change] ≥ 2.0; P < 0.0001) included up- and down-regulation of serine proteases, storage proteins and cytochrome P450 monooxygenases, as well as up-regulation of genes with predicted transport function. This study predicted the significant down-regulation of transcripts for previously known Bt resistance genes, aminopeptidase N1 (apn1) and apn3, as well as abccg gene in both ACB-AbR and -AcR. These data are important for the understanding of systemic differences between Bt resistant and susceptible genotypes. PMID:28808417

  13. Mycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth.

    PubMed

    Glass, Lisa N; Swapna, Ganduri; Chavadi, Sivagami Sundaram; Tufariello, JoAnn M; Mi, Kaixia; Drumm, Joshua E; Lam, TuKiet T; Zhu, Guofeng; Zhan, Chenyang; Vilchéze, Catherine; Arcos, Jesus; Chen, Yong; Bi, Lijun; Mehta, Simren; Porcelli, Steven A; Almo, Steve C; Yeh, Syun-Ru; Jacobs, William R; Torrelles, Jordi B; Chan, John

    2017-07-01

    We have previously shown that the Mycobacterium tuberculosis universal stress protein Rv2623 regulates mycobacterial growth and may be required for the establishment of tuberculous persistence. Here, yeast two-hybrid and affinity chromatography experiments have demonstrated that Rv2623 interacts with one of the two forkhead-associated domains (FHA I) of Rv1747, a putative ATP-binding cassette transporter annotated to export lipooligosaccharides. FHA domains are signaling protein modules that mediate protein-protein interactions to modulate a wide variety of biological processes via binding to conserved phosphorylated threonine (pT)-containing oligopeptides of the interactors. Biochemical, immunochemical and mass spectrometric studies have shown that Rv2623 harbors pT and specifically identified threonine 237 as a phosphorylated residue. Relative to wild-type Rv2623 (Rv2623WT), a mutant protein in which T237 has been replaced with a non-phosphorylatable alanine (Rv2623T237A) exhibits decreased interaction with the Rv1747 FHA I domain and diminished growth-regulatory capacity. Interestingly, compared to WT bacilli, an M. tuberculosis Rv2623 null mutant (ΔRv2623) displays enhanced expression of phosphatidyl-myo-inositol mannosides (PIMs), while the ΔRv1747 mutant expresses decreased levels of PIMs. Animal studies have previously shown that ΔRv2623 is hypervirulent, while ΔRv1747 is growth-attenuated. Collectively, these data have provided evidence that Rv2623 interacts with Rv1747 to regulate mycobacterial growth; and this interaction is mediated via the recognition of the conserved Rv2623 pT237-containing FHA-binding motif by the Rv1747 FHA I domain. The divergent aberrant PIM profiles and the opposing in vivo growth phenotypes of ΔRv2623 and ΔRv1747, together with the annotated lipooligosaccharide exporter function of Rv1747, suggest that Rv2623 interacts with Rv1747 to modulate mycobacterial growth by negatively regulating the activity of Rv1747; and that Rv

  14. Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi.

    PubMed

    Ruocco, Michelina; Lanzuise, Stefania; Vinale, Francesco; Marra, Roberta; Turrà, David; Woo, Sheridan Lois; Lorito, Matteo

    2009-03-01

    Successful biocontrol interactions often require that the beneficial microbes involved are resistant or tolerant to a variety of toxicants, including antibiotics produced by themselves or phytopathogens, plant antimicrobial compounds, and synthetic chemicals or contaminants. The ability of Trichoderma spp., the most widely applied biocontrol fungi, to withstand different chemical stresses, including those associated with mycoparasitism, is well known. In this work, we identified an ATP-binding cassette transporter cell membrane pump as an important component of the above indicated resistance mechanisms that appears to be supported by an extensive and powerful cell detoxification system. The encoding gene, named Taabc2, was cloned from a strain of Trichoderma atroviride and characterized. Its expression was found to be upregulated in the presence of pathogen-secreted metabolites, specific mycotoxins and some fungicides, and in conditions that stimulate the production in Trichoderma spp. of antagonism-related factors (toxins and enzymes). The key role of this gene in antagonism and biocontrol was demonstrated by the characterization of the obtained deletion mutants. They suffered an increased susceptibility to inhibitory compounds either secreted by pathogenic fungi or possibly produced by the biocontrol microbe itself and lost, partially or entirely, the ability to protect tomato plants from Pythium ultimum and Rhizoctonia solani attack.

  15. ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes.

    PubMed

    Ismair, Manfred G; Häusler, Stephanie; Stuermer, Claudia A; Guyot, Christelle; Meier, Peter J; Roth, Jürgen; Stieger, Bruno

    2009-05-01

    The canalicular plasma membrane is constantly exposed to bile acids acting as detergents. Bile acids are essential to mediate release of biliary lipids from the canalicular membrane. Membrane microdomains (previously called lipid rafts) are biochemically defined by their resistance to detergent solubilization at cold temperature. We aimed to investigate the canalicular plasma membrane for the presence of microdomains, which could protect this membrane against the detergent action of bile acids. Highly purified rat liver canalicular plasma membrane vesicles were extracted with 1% Triton X-100 or 1% Lubrol WX at 4 degrees C and subjected to flotation through sucrose step gradients. Both detergents yielded detergent-resistant membranes containing the microdomain markers alkaline phosphatase and sphingomyelin. However, cholesterol was resistant to Lubrol WX solubilization, whereas it was only marginally resistant to solubilization by Triton X-100. The microdomain marker caveolin-1 was localized to the canalicular plasma membrane domain and was resistant to Lubrol WX, but to a large extent solubilized by Triton X-100. The two additional microdomain markers, reggie-1 and reggie-2, were localized to the basolateral and canalicular plasma membrane and were partially resistant to Lubrol WX but resistant to Triton X-100. The canalicular transporters bile salt export pump, multidrug resistance protein 2, multidrug resistance-associated protein 2, and Abcg5 were largely resistant to Lubrol WX but were solubilized by Triton X-100. These results indicate the presence of two different types of microdomains in the canalicular plasma membrane: "Lubrol-microdomains" and "Triton-microdomains". "Lubrol-microdomains" contain the machinery for canalicular bile formation and may be the starting place for canalicular lipid secretion.

  16. Inhibition of cholesterol absorption associated with a PPAR alpha-dependent increase in ABC binding cassette transporter A1 in mice.

    PubMed

    Knight, Brian L; Patel, Dilip D; Humphreys, Sandy M; Wiggins, David; Gibbons, Geoffrey F

    2003-11-01

    Dietary supplementation with the peroxisome proliferator-activated receptor alpha (PPAR alpha) ligand WY 14,643 gave rise to a 4- to 5-fold increase in the expression of mRNA for the ATP binding cassette transporter A1 (ABCA1) in the intestine of normal mice. There was no effect in the intestine of PPAR alpha-null mice. Consumption of a high-cholesterol diet also increased intestinal ABCA1 expression. The effects of WY 14,643 and the high-cholesterol diet were not additive. WY 14,643 feeding reduced intestinal absorption of cholesterol in the normal mice, irrespective of the dietary cholesterol concentration, and this resulted in lower diet-derived cholesterol and cholesteryl ester concentrations in plasma and liver. At each concentration of dietary cholesterol, there was a similar significant inverse correlation between intestinal ABCA1 mRNA content and the amount of cholesterol absorbed. The fibrate-induced changes in the intestines of the normal mice were accompanied by an increased concentration of the mRNA encoding the sterol-regulatory element binding protein-1c gene (SREBP-1c), a known target gene for the oxysterol receptor liver X receptor alpha (LXR alpha). There was a correlation between intestinal ABCA1 mRNA and SREBP-1c mRNA contents, but not between SREBP-1c mRNA content and cholesterol absorption. These results suggest that PPAR alpha influences cholesterol absorption through modulating ABCA1 activity in the intestine by a mechanism involving LXR alpha.

  17. Molecular Determinants for Functional Differences between Alanine-Serine-Cysteine Transporter 1 and Other Glutamate Transporter Family Members*

    PubMed Central

    Scopelliti, Amanda J.; Ryan, Renae M.; Vandenberg, Robert J.

    2013-01-01

    The ASCTs (alanine, serine, and cysteine transporters) belong to the solute carrier family 1 (SLC1), which also includes the human glutamate transporters (excitatory amino acid transporters, EAATs) and the prokaryotic aspartate transporter GltPh. Despite the high degree of amino acid sequence identity between family members, ASCTs function quite differently from the EAATs and GltPh. The aim of this study was to mutate ASCT1 to generate a transporter with functional properties of the EAATs and GltPh, to further our understanding of the structural basis for the different transport mechanisms of the SLC1 family. We have identified three key residues involved in determining differences between ASCT1, the EAATs and GltPh. ASCT1 transporters containing the mutations A382T, T459R, and Q386E were expressed in Xenopus laevis oocytes, and their transport and anion channel functions were investigated. A382T and T459R altered the substrate selectivity of ASCT1 to allow the transport of acidic amino acids, particularly l-aspartate. The combination of A382T and T459R within ASCT1 generates a transporter with a similar profile to that of GltPh, with preference for l-aspartate over l-glutamate. Interestingly, the amplitude of the anion conductance activated by the acidic amino acids does not correlate with rates of transport, highlighting the distinction between these two processes. Q386E impaired the ability of ASCT1 to bind acidic amino acids at pH 5.5; however, this was reversed by the additional mutation A382T. We propose that these residues differences in TM7 and TM8 combine to determine differences in substrate selectivity between members of the SLC1 family. PMID:23393130

  18. The ABCs of Student Engagement

    ERIC Educational Resources Information Center

    Parsons, Seth A.; Nuland, Leila Richey; Parsons, Allison Ward

    2014-01-01

    Student engagement is an important consideration for teachers and administrators because it is explicitly associated with achievement. What the authors call the ABC's of engagement they outline as: Affective engagement, Behavioral engagement, and Cognitive engagement. They also present "Three Things Every Teacher Needs to Know about…

  19. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    PubMed

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Copyright © 2016 Sharkey et al.

  20. 75 FR 47677 - CSX Transportation, Inc.-Corporate Family Merger Exemption-Gainesville Midland Railroad Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ..., Inc.--Corporate Family Merger Exemption-- Gainesville Midland Railroad Company CSX Transportation, Inc... under 49 CFR 1180.2(d)(3) for a corporate family transaction. CSXT is a Class I rail carrier that... corporate structure and reduce overhead costs and duplication by eliminating one corporation while retaining...

  1. Proton movement and coupling in the POT family of peptide transporters

    PubMed Central

    Parker, Joanne L.; Li, Chenghan; Brinth, Allete; Wang, Zhi; Vogeley, Lutz; Solcan, Nicolae; Ledderboge-Vucinic, Gregory; Swanson, Jessica M. J.; Caffrey, Martin; Voth, Gregory A.

    2017-01-01

    POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate. PMID:29180426

  2. Proton movement and coupling in the POT family of peptide transporters.

    PubMed

    Parker, Joanne L; Li, Chenghan; Brinth, Allete; Wang, Zhi; Vogeley, Lutz; Solcan, Nicolae; Ledderboge-Vucinic, Gregory; Swanson, Jessica M J; Caffrey, Martin; Voth, Gregory A; Newstead, Simon

    2017-12-12

    POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate. Copyright © 2017 the Author(s). Published by PNAS.

  3. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters

    PubMed Central

    Pajor, Ana M.

    2006-01-01

    The SLC13 gene family consists of five members in humans, with corresponding orthologs from different vertebrate species. All five genes code for sodium-coupled transporters that are found on the plasma membrane. Two of the transporters, NaS1 and NaS2, carry substrates such as sulfate, selenate and thiosulfate. The other members of the family (NaDC1, NaDC3, and NaCT) are transporters for di- and tri-carboxylates including succinate, citrate and α-ketoglutarate. The SLC13 transporters from vertebrates are electrogenic and they produce inward currents in the presence of sodium and substrate. Substrate-independent leak currents have also been described. Structure–function studies have identified the carboxy terminal half of these proteins as the most important for determining function. Transmembrane helices 9 and 10 may form part of the substrate permeation pathway and participate in conformational changes during the transport cycle. This review also discusses new members of the SLC13 superfamily that exhibit both sodium-dependent and sodium-independent transport mechanisms. The Indy protein from Drosophila, involved in determining lifespan, and the plant vacuolar malate transporter are both sodium-independent dicarboxylate transporters, possibly acting as exchangers. The purpose of this review is to provide an update on new advances in this gene family, particularly on structure–function studies and new members of the family. PMID:16211368

  4. High-Affinity Vanadate Transport System in the Cyanobacterium Anabaena variabilis ATCC 29413

    PubMed Central

    Pratte, Brenda S.; Thiel, Teresa

    2006-01-01

    High-affinity vanadate transport systems have not heretofore been identified in any organism. Anabaena variabilis, which can fix nitrogen by using an alternative V-dependent nitrogenase, transported vanadate well. The concentration of vanadate giving half-maximum V-nitrogenase activity when added to V-starved cells was about 3 × 10−9 M. The genes for an ABC-type vanadate transport system, vupABC, were found in A. variabilis about 5 kb from the major cluster of genes encoding the V-nitrogenase, and like those genes, the vupABC genes were repressed by molybdate; however, unlike the V-nitrogenase genes the vanadate transport genes were expressed in vegetative cells. A vupB mutant failed to grow by using V-nitrogenase unless high levels of vanadate were provided, suggesting that there was also a low-affinity vanadate transport system that functioned in the vupB mutant. The vupABC genes belong to a family of putative metal transport genes that include only one other characterized transport system, the tungstate transport genes of Eubacterium acidaminophilum. Similar genes are not present in the complete genomes of other bacterial strains that have a V-nitrogenase, including Azotobacter vinelandii, Rhodopseudomonas palustris, and Methanosarcina barkeri. PMID:16385036

  5. Televisitation: Virtual Transportation of Family to the Bedside in an Acute Care Setting

    PubMed Central

    Nicholas, Bonnie

    2013-01-01

    Televisitation is the virtual transportation of a patient’s family to the bedside, regardless of the patient’s location within an acute care setting. This innovation in the Telemedicine Program at Thunder Bay Regional Health Sciences Centre (TBRHSC) in Ontario, Canada, embraces the concept of patient- and family-centered care and has been identified as a leading practice by Accreditation Canada. The need to find creative ways to link patients to their family and friend supports hundreds of miles away was identified more than ten years ago. The important relationship between health outcomes and the psychosocial needs of patients and families has been recognized more recently. TBRHSC’s patient- and family-centered model of care focuses on connecting patients with their families. First Nations renal patients with family in remote communities were some of the earliest users of videoconferencing technology for this purpose. PMID:23596369

  6. The solute carrier family 10 (SLC10): beyond bile acid transport

    PubMed Central

    da Silva, Tatiana Claro; Polli, James E.; Swaan, Peter W.

    2012-01-01

    The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term “sodium bile salt cotransporting family” was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family. PMID:23506869

  7. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    PubMed Central

    2010-01-01

    Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar

  8. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat

    PubMed Central

    Buchner, Peter; Hawkesford, Malcolm J.

    2014-01-01

    NPF (formerly referred to as low-affinity NRT1) and ‘high-affinity’ NRT2 nitrate transporter genes are involved in nitrate uptake by the root, and transport and distribution of nitrate within the plant. The NPF gene family consists of 53 members in Arabidopsis thaliana, however only 11 of these have been functionally characterized. Although homologous genes have been identified in genomes of different plant species including some cereals, there is little information available for wheat (Triticum aestivum). Sixteen genes were identified in wheat homologous to characterized Arabidopsis low-affinity nitrate transporter NPF genes, suggesting a complex wheat NPF gene family. The regulation of wheat NFP genes by plant N-status indicated involvement of these transporters in substrate transport in relation to N-metabolism. The complex expression pattern in relation to tissue specificity, nitrate availability and senescence may be associated with the complex growth patterns of wheat depending on sink/source demands, as well as remobilization during grain filling. PMID:24913625

  9. Plant KT/KUP/HAK Potassium Transporters: Single Family – Multiple Functions

    PubMed Central

    Grabov, Alexander

    2007-01-01

    Background and Aims Potassium transporters belonging to the KT/KUP/HAK family are important for various aspects of plant life including mineral nutrition and the regulation of development. Genes encoding these transporters are present in the genomes of all plants, but have not been found in the genomes of Protista or Animalia. The aim of this Botanical Briefing is to analyse the function of KT/KUP/HAK transporters from evolutionary, molecular and physiological perspectives. Scope This Briefing covers the phylogeny and evolution of KT/KUP/HAK transporters, the role of transporters in plant mineral nutrition and potassium homeostasis, and the role of KT/KUP/HAK transporters in plant development. PMID:17495982

  10. The emerging physiological roles of the SLC14A family of urea transporters

    PubMed Central

    Stewart, Gavin

    2011-01-01

    In mammals, urea is the main nitrogenous breakdown product of protein catabolism and is produced in the liver. In certain tissues, the movement of urea across cell membranes is specifically mediated by a group of proteins known as the SLC14A family of facilitative urea transporters. These proteins are derived from two distinct genes, UT-A (SLC14A2) and UT-B (SLC14A1). Facilitative urea transporters play an important role in two major physiological processes – urinary concentration and urea nitrogen salvaging. Although UT-A and UT-B transporters both have a similar basic structure and mediate the transport of urea in a facilitative manner, there are a number of significant differences between them. UT-A transporters are mainly found in the kidney, are highly specific for urea, have relatively lower transport rates and are highly regulated at both gene expression and cellular localization levels. In contrast, UT-B transporters are more widespread in their tissue location, transport both urea and water, have a relatively high transport rate, are inhibited by mercurial compounds and currently appear to be less acutely regulated. This review details the fundamental research that has so far been performed to investigate the function and physiological significance of these two types of urea transporters. PMID:21449978

  11. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats.

    PubMed

    Chen, Xin-ran; Liao, Song-jie; Ye, Lan-xiang; Gong, Qiong; Ding, Qiao; Zeng, Jin-sheng; Yu, Jian

    2014-01-16

    Focal cerebral infarction causes secondary damage in the ipsilateral ventroposterior thalamic nucleus (VPN). Chondroitin sulfate proteoglycans (CSPGs) are a family of putative inhibitory components, and its degradation by chondroitinase ABC (ChABC) promotes post-injury neurogenesis. This study investigated the role of ChABC in the primary and secondary injury post stroke in hypertension. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), and were subjected to continuous intra-infarct infusion of ChABC (0.12 U/d for 7 days) 24 h later. Neurological function was evaluated by a modified neurologic severity score. Neurons were counted in the peri-infarct region and the ipsilateral VPN 8 and 14 days after MCAO by Nissl staining and NeuN labeling. The expressions of CSPGs, growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were detected with immunofluorescence or Western blotting. The intra-infarct infusion of ChABC, by degrading accumulated CSPGs, rescued neuronal loss and increased the levels of GAP-43 and SYN in both the ipsilateral cortex and VPN, indicating enhancd neuron survival as well as augmented axonal growth and synaptic plasticity, eventually improving overall neurological function. The study demonstrated that intra-infarct ChABC infusion could salvage the brain from both primary and secondary injury by the intervention on the neuroinhibitory environment post focal cerebral infarction. © 2013 Published by Elsevier B.V.

  12. Use of the K-ABC with Children in Zaire, Africa: An Evaluation of the Sequential-Simultaneous Processing Distinction within an Intercultural Context.

    ERIC Educational Resources Information Center

    Giordani, Bruno; And Others

    1996-01-01

    Evaluation of the Kaufman Assessment Battery for Children (K-ABC) with 130 primary school children in Zaire revealed three findings: (1) the distinction between sequential processing and simultaneous processing was valid; (2) the K-ABC discriminated effectively among grade levels, health and family environment variables, and tribal membership; and…

  13. The cost of family-oriented communication before air medical interfacility transport.

    PubMed

    Macnab, A J; Gagnon, F; George, S; Sun, C

    2001-01-01

    Family-oriented communication with parents by transport teams eases the stress associated with transferring children to tertiary care. This study was conducted to determine the duration of family-oriented visits and whether the visit contributed significant cost to the mission. Data collection was prospective and double-blind; questions were incorporated into another study. Subjects were infants or children requiring assisted ventilation and air transport to tertiary care. Time from completion of stabilization to departure and reasons for any delay were recorded. Cost of contact time longer than 20 minutes (total acceptable time for family visit and transfer to vehicle) was calculated at paramedic overtime at $0.82/minute and aircraft wait time at $200/hour if incurred. Forty-six patients were enrolled. In 16 cases (35%), time between completing stabilization and hospital departure exceeded 20 minutes, with "family visit" listed as the explanation. Nine of these visits incurred overtime, and two incurred aircraft wait costs. Total costs for providing communication visits more than 10 minutes long were $607 or approximately $13 per patient. The costs for visit time longer than 10 minutes are small compared with the documented benefits of family-oriented communication. However, transport personnel must be mindful of the potential to incur additional cost through overtime, aircraft wait time, or pilot replacement.

  14. Characterization of a new family of metal transport proteins. 1998 annual progress report

    SciTech Connect

    Guerinot, M.L.

    1998-06-01

    'Soils at many DOE sites are contaminated with metals and radionuclides. Such soils obviously pose a risk to human and animal health. Unlike organic wastes which can be metabolized, metals are immutable and cannot be degraded into harmless constituents. Phytoremediation, the use of plants to remove toxic materials from soil and water, may prove to be an environmentally friendly and cost effective solution for cleaning up metal-contaminated sites. The success of phytoremediation will rely on the availability of plants that absorb, translocate, and tolerate the contaminating metals. However, before the authors can engineer such plants, they need more basic informationmore » on how plants acquire metals. An important long term goal of the research program is to understand how metals such as zinc, cadmium and copper are transported across membranes. The research is focused on a new family of metal transporters which they have identified through combined studies in the yeast Saccharomyces cerevisiae and in the model plant Arabidopsis thaliana. They have identified a family of 19 presumptive metal transport genes in a variety of organisms including yeast, trypanosomes, plants, nematodes, and humans. This family, which the authors have designated the ZIP genes, provides a rich source of material with which to undertake studies on metal transport in eukaryotes. The project has three main objectives: Objective 1: Determine the sub-cellular location of the ZIP proteins in Arabidopsis. Objective 2: Carry out a structure/function analysis of the proteins encoded by the ZIP gene family to identify regions of the protein responsible for substrate specificity and affinity. Objective 3: Engineer plants to overexpress and underexpress members of the ZIP gene family and analyze these transgenic plants for alterations in metal accumulation. They now know that manipulation of transporter levels will also require an understanding of post-transcriptional control of ZIP gene expression

  15. The feoABC Locus of Yersinia pestis Likely Has Two Promoters Causing Unique Iron Regulation

    PubMed Central

    O'Connor, Lauren; Fetherston, Jacqueline D.; Perry, Robert D.

    2017-01-01

    The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis Fur protein but to DNA sequences that regulate transcription. We have used truncations, alterations, and deletions of the feoA::lacZ reporter to assess the mechanism behind the failure of iron to repress transcription under aerobic conditions. These studies plus EMSAs and DNA sequence analysis have led to our proposal that the feoABC locus has two promoters: an upstream P1 promoter whose expression is relatively iron-independent but repressed under microaerobic conditions and the known downstream Fur-regulated P2 promoter. In addition, we have identified two regions that bind Y. pestis protein(s), although we have not identified these protein(s) or their function. Finally we used iron uptake assays to demonstrate that both FeoABC and YfeABCD transport ferrous iron in an energy-dependent manner and also use ferric iron as a substrate for uptake. PMID:28785546

  16. Step 2: Know Your Diabetes ABCs

    MedlinePlus

    ... please turn JavaScript on. Feature: Type 2 Diabetes Step 2: Know Your Diabetes ABCs Past Issues / Fall ... 2 Diabetes" Articles Diabetes Is Serious But Manageable / Step 1: Learn About Diabetes / Step 2: Know Your ...

  17. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters.

    PubMed

    Guo, B; Jin, Y; Wussler, C; Blancaflor, E B; Motes, C M; Versaw, W K

    2008-01-01

    The transport of phosphate (Pi) between subcellular compartments is central to metabolic regulation. Although some of the transporters involved in controlling the intracellular distribution of Pi have been identified in plants, others are predicted from genetic, biochemical and bioinformatics studies. Heterologous expression in yeast, and gene expression and localization in plants were used to characterize all six members of an Arabidopsis thaliana membrane transporter family designated here as PHT4. PHT4 proteins share similarity with SLC17/type I Pi transporters, a diverse group of animal proteins involved in the transport of Pi, organic anions and chloride. All of the PHT4 proteins mediate Pi transport in yeast with high specificity. Bioinformatic analysis and localization of PHT4-GFP fusion proteins indicate that five of the proteins are targeted to the plastid envelope, and the sixth resides in the Golgi apparatus. PHT4 genes are expressed in both roots and leaves, although two of the genes are expressed predominantly in leaves and one mostly in roots. These expression patterns, together with Pi transport activities and subcellular locations, suggest roles for PHT4 proteins in the transport of Pi between the cytosol and chloroplasts, heterotrophic plastids and the Golgi apparatus.

  18. Comprehensive Genomic Identification and Expression Analysis of the Phosphate Transporter (PHT) Gene Family in Apple

    PubMed Central

    Sun, Tingting; Li, Mingjun; Shao, Yun; Yu, Lingyan; Ma, Fengwang

    2017-01-01

    Elemental phosphorus (Pi) is essential to plant growth and development. The family of phosphate transporters (PHTs) mediates the uptake and translocation of Pi inside the plants. Members include five sub-cellular phosphate transporters that play different roles in Pi uptake and transport. We searched the Genome Database for Rosaceae and identified five clusters of phosphate transporters in apple (Malus domestica), including 37 putative genes. The MdPHT1 family contains 14 genes while MdPHT2 has two, MdPHT3 has seven, MdPHT4 has 11, and MdPHT5 has three. Our overview of this gene family focused on structure, chromosomal distribution and localization, phylogenies, and motifs. These genes displayed differential expression patterns in various tissues. For example, expression was high for MdPHT1;12, MdPHT3;6, and MdPHT3;7 in the roots, and was also increased in response to low-phosphorus conditions. In contrast, MdPHT4;1, MdPHT4;4, and MdPHT4;10 were expressed only in the leaves while transcript levels of MdPHT1;4, MdPHT1;12, and MdPHT5;3 were highest in flowers. In general, these 37 genes were regulated significantly in either roots or leaves in response to the imposition of phosphorus and/or drought stress. The results suggest that members of the PHT family function in plant adaptations to adverse growing environments. Our study will lay a foundation for better understanding the PHT family evolution and exploring genes of interest for genetic improvement in apple. PMID:28424713

  19. 78 FR 73584 - CSX Transportation, Inc.-Corporate Family Merger Exemption-Buffalo, Rochester and Pittsburgh Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ..., Inc.--Corporate Family Merger Exemption-- Buffalo, Rochester and Pittsburgh Company CSX Transportation... jointly filed a verified notice of exemption under 49 CFR 1180.2(d)(3) for a corporate family transaction... intends to merge BR&P into CSXT on or after that date. This is a transaction within a corporate family of...

  20. Characterization and expression profiling of ATP-binding cassette transporter genes in the diamondback moth, Plutella xylostella (L.).

    PubMed

    Qi, Weiping; Ma, Xiaoli; He, Weiyi; Chen, Wei; Zou, Mingmin; Gurr, Geoff M; Vasseur, Liette; You, Minsheng

    2016-09-27

    ATP-binding cassette (ABC) transporters are one of the major transmembrane protein families found in all organisms and play important roles in transporting a variety of compounds across intra and extra cellular membranes. In some species, ABC transporters may be involved in the detoxification of substances such as insecticides. The diamondback moth, Plutella xylostella (L.), a destructive pest of cruciferous crops worldwide, is an important species to study as it is resistant to many types of insecticides as well as biological control Bacillus thuringiensis toxins. A total of 82 ABC genes were identified from our published P. xylostella genome, and grouped into eight subfamilies (ABCA-H) based on phylogenetic analysis. Genes of subfamilies ABCA, ABCC and ABCH were found to be expanded in P. xylostella compared with those in Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens. Phylogenetic analysis indicated that many of the ABC transporters in P. xylostella are orthologous to the well-studied ABC transporter genes in the seven other species. Transcriptome- and qRT-PCR-based analysis elucidated physiological effects of ABC gene expressions of P. xylostella which were developmental stage- and tissue-specific as well as being affected by whether or not the insects were from an insecticide-resistant strain. Two ABCC and one ABCA genes were preferentially expressed in midgut of the 4th-instar larvae of a susceptible strain (Fuzhou-S) suggesting their potential roles in metabolizing plant defensive chemicals. Most of the highly expressed genes in insecticide-resistant strains were also predominantly expressed in the tissues of Malpighian tubules and midgut. This is the most comprehensive study on identification, characterization and expression profiling of ABC transporter genes in P. xylostella to date. The diversified features and expression patterns of this gene family may be associated with

  1. Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family

    PubMed Central

    Ehrnstorfer, Ines A.; Manatschal, Cristina; Arnold, Fabian M.; Laederach, Juerg; Dutzler, Raimund

    2017-01-01

    Secondary active transporters of the SLC11/NRAMP family catalyse the uptake of iron and manganese into cells. These proteins are highly conserved across all kingdoms of life and thus likely share a common transport mechanism. Here we describe the structural and functional properties of the prokaryotic SLC11 transporter EcoDMT. Its crystal structure reveals a previously unknown outward-facing state of the protein family. In proteoliposomes EcoDMT mediates proton-coupled uptake of manganese at low micromolar concentrations. Mutants of residues in the transition-metal ion-binding site severely affect transport, whereas a mutation of a conserved histidine located near this site results in metal ion transport that appears uncoupled to proton transport. Combined with previous results, our study defines the conformational changes underlying transition-metal ion transport in the SLC11 family and it provides molecular insight to its coupling to protons. PMID:28059071

  2. The SLC3 and SLC7 families of amino acid transporters.

    PubMed

    Fotiadis, Dimitrios; Kanai, Yoshikatsu; Palacín, Manuel

    2013-01-01

    Amino acids are necessary for all living cells and organisms. Specialized transporters mediate the transfer of amino acids across plasma membranes. Malfunction of these proteins can affect whole-body homoeostasis giving raise to diverse human diseases. Here, we review the main features of the SLC3 and SLC7 families of amino acid transporters. The SLC7 family is divided into two subfamilies, the cationic amino acid transporters (CATs), and the L-type amino acid transporters (LATs). The latter are the light or catalytic subunits of the heteromeric amino acid transporters (HATs), which are associated by a disulfide bridge with the heavy subunits 4F2hc or rBAT. These two subunits are glycoproteins and form the SLC3 family. Most CAT subfamily members were functionally characterized and shown to function as facilitated diffusers mediating the entry and efflux of cationic amino acids. In certain cells, CATs play an important role in the delivery of L-arginine for the synthesis of nitric oxide. HATs are mostly exchangers with a broad spectrum of substrates and are crucial in renal and intestinal re-absorption and cell redox balance. Furthermore, the role of the HAT 4F2hc/LAT1 in tumor growth and the application of LAT1 inhibitors and PET tracers for reduction of tumor progression and imaging of tumors are discussed. Finally, we describe the link between specific mutations in HATs and the primary inherited aminoacidurias, cystinuria and lysinuric protein intolerance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The choline transporter-like family SLC44: properties and roles in human diseases.

    PubMed

    Traiffort, Elisabeth; O'Regan, Seana; Ruat, Martial

    2013-01-01

    The Na(+)-independent, high affinity choline carrier system proposed to supply choline for the synthesis of cell membrane phospholipids was recently associated with SLC44 family members (SLC44A1-5) also called choline-like transporter family. SLC44A1 is widely expressed throughout the nervous system in both neurons and oligodendrocytes, while SLC44A2-4 are mainly detected in peripheral tissues. The subcellular localization of the proteins was mainly addressed for SLC44A1 through the development of specific antibodies. SLC44A1 is detected in both the plasma and mitochondrial membranes where the protein is able to transport choline at high affinity and in a Na(+)-independent manner. The physiological relevance of SLC44A1 as a choline carrier is indicated by its likely involvement in membrane synthesis for cell growth or repair, and also by its role in phospholipid production for the generation of lung surfactant. Moreover, an autoimmune disease has been related to the blockade of SLC44A2 function, which results in the alteration of hair cells in the inner ear and leads to autoimmune hearing loss. In the alloimmune syndrome called transfusion-related acute lung injury, antibodies to SLC44A2 cause a deleterious aggregation of granulocytes. Therefore transporters of the SLC44 family represent attractive and promising targets for therapeutic and diagnostic applications regarding both immune and degenerative diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6)

    PubMed Central

    Boudko, Dmitri Y.

    2012-01-01

    Two protein families that represent major components of essential amino acid transport in insects have been identified. They are annotated as the SLC6 and SLC7 families of transporters according to phylogenetic proximity to characterized amino acid transporters (HUGO nomenclature). Members of these families have been identified as important apical and basolateral parts of transepithelial essential amino acid absorption in the metazoan alimentary canal. Synergistically, they play critical physiological roles as essential substrate providers to diverse metabolic processes, including generic protein synthesis. This review briefly clarifies the requirements for amino acid transport and a variety of amino acid transport mechanisms, including the aforementioned families. Further it focuses on the large group of Nutrient Amino acid Transporters (NATs), which comprise a recently identified subfamily of the Neurotransmitter Sodium Symporter family (NSS or SLC6). The first insect NAT, cloned from the caterpillar gut, has a broad substrate spectrum similar to mammalian B0 transporters. Several new NAT-SLC6 members have been characterized in an effort to explore mechanisms for the essential amino acid absorption in model dipteran insects. The identification and functional characterization of new B0-like and narrow specificity transporters of essential amino acids in fruit fly and mosquitoes leads to a fundamentally important insight: that NATs evolved and act together as the integrated active core of a transport network that mediates active alimentary absorption and systemic distribution of essential amino acids. This role of NATs is projected from the most primitive prokaryotes to the most complex metazoan organisms, and represents an interesting platform for unraveling the molecular evolution of amino acid transport and modeling amino acid transport disorders. The comparative study of NATs elucidates important adaptive differences between essential amino acid transportomes

  5. Expression, purification and characterization of GAPDH-ChSase ABC I from Proteus vulgaris in Escherichia coli.

    PubMed

    Li, Ye; Chen, Zhenya; Zhou, Zhao; Yuan, Qipeng

    2016-12-01

    Chondroitinases (ChSases) are a family of polysaccharide lyases that can depolymerize high molecular weight chondroitin sulfate (CS) and dermatan sulfate (DS). In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is stably expressed in different cells like normal cells and cancer cells and the expression is relatively insensitive to experimental conditions, was expressed as a fusion protein with ChSase ABC I. Results showed that the expression level and enzyme activity of GAPDH-ChSase ABC I were about 2.2 and 3.0 times higher than those of ChSase ABC I. By optimization of fermentation conditions, higher productivity of ChSase ABC I was achieved as 880 ± 61 IU/g wet cell weight compared with the reported ones. The optimal temperature and pH of GAPDH-ChSase ABC I were 40 °C and 7.5, respectively. GAPDH-ChSase ABC I had a kcat/Km of 131 ± 4.1 L/μmol s and the catalytic efficiency was decreased as compared to ChSase ABC I. The relative activity of GAPDH-ChSase ABC I remained 89% after being incubated at 30 °C for 180 min and the thermostability of ChSase ABC I was enhanced by GAPDH when it was incubated at 30, 35, 40 and 45 °C. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Evolution of the Karyopherin-β Family of Nucleocytoplasmic Transport Factors; Ancient Origins and Continued Specialization

    PubMed Central

    O'Reilly, Amanda J.; Dacks, Joel B.; Field, Mark C.

    2011-01-01

    Background Macromolecular transport across the nuclear envelope (NE) is achieved through nuclear pore complexes (NPCs) and requires karyopherin-βs (KAP-βs), a family of soluble receptors, for recognition of embedded transport signals within cargo. We recently demonstrated, through proteomic analysis of trypanosomes, that NPC architecture is likely highly conserved across the Eukaryota, which in turn suggests conservation of the transport mechanisms. To determine if KAP-β diversity was similarly established early in eukaryotic evolution or if it was subsequently layered onto a conserved NPC, we chose to identify KAP-β sequences in a diverse range of eukaryotes and to investigate their evolutionary history. Results Thirty six predicted proteomes were scanned for candidate KAP-β family members. These resulting sequences were resolved into fifteen KAP-β subfamilies which, due to broad supergroup representation, were most likely represented in the last eukaryotic common ancestor (LECA). Candidate members of each KAP-β subfamily were found in all eukaryotic supergroups, except XPO6, which is absent from Archaeplastida. Phylogenetic reconstruction revealed the likely evolutionary relationships between these different subfamilies. Many species contain more than one representative of each KAP-β subfamily; many duplications are apparently taxon-specific but others result from duplications occurring earlier in eukaryotic history. Conclusions At least fifteen KAP-β subfamilies were established early in eukaryote evolution and likely before the LECA. In addition we identified expansions at multiple stages within eukaryote evolution, including a multicellular plant-specific KAP-β, together with frequent secondary losses. Taken with evidence for early establishment of NPC architecture, these data demonstrate that multiple pathways for nucleocytoplasmic transport were established prior to the radiation of modern eukaryotes but that selective pressure continues to sculpt

  7. The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis

    PubMed Central

    Rautengarten, Carsten; Ebert, Berit; Moreno, Ignacio; Temple, Henry; Herter, Thomas; Link, Bruce; Doñas-Cofré, Daniela; Moreno, Adrián; Saéz-Aguayo, Susana; Blanco, Francisca; Mortimer, Jennifer C.; Schultink, Alex; Reiter, Wolf-Dieter; Dupree, Paul; Pauly, Markus; Heazlewood, Joshua L.; Scheller, Henrik V.; Orellana, Ariel

    2014-01-01

    Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP–l-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP–l-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP–l-Rha/UDP–d-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP–l-Rha and UDP–d-Gal for matrix polysaccharide biosynthesis. PMID:25053812

  8. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater

    PubMed Central

    Nakajima, Kensuke; Tanaka, Atsuko; Matsuda, Yusuke

    2013-01-01

    Photosynthesis in marine diatoms is a vital fraction of global primary production empowered by CO2-concentrating mechanisms. Acquisition of HCO3− from seawater is a critical primary step of the CO2-concentrating mechanism, allowing marine photoautotrophic eukaryotes to overcome CO2 limitation in alkaline high-salinity water. However, little is known about molecular mechanisms governing this process. Here, we show the importance of a plasma membrane-type HCO3− transporter for CO2 acquisition in a marine diatom. Ten putative solute carrier (SLC) family HCO3− transporter genes were found in the genome of the marine pennate diatom Phaeodactylum tricornutum. Homologs also exist in marine centric species, Thalassiosira pseudonana, suggesting a general occurrence of SLC transporters in marine diatoms. Seven genes were found to encode putative mammalian-type SLC4 family transporters in P. tricornutum, and three of seven genes were specifically transcribed under low CO2 conditions. One of these gene products, PtSLC4-2, was localized at the plasmalemma and significantly stimulated both dissolved inorganic carbon (DIC) uptake and photosynthesis in P. tricornutum. DIC uptake by PtSLC4-2 was efficiently inhibited by an anion-exchanger inhibitor, 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid, in a concentration-dependent manner and highly dependent on Na+ ions at concentrations over 100 mM. These results show that DIC influx into marine diatoms is directly driven at the plasmalemma by a specific HCO3− transporter with a significant halophilic nature. PMID:23297242

  9. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family.

    PubMed

    Xuan, Yuan Hu; Hu, Yi Bing; Chen, Li-Qing; Sosso, Davide; Ducat, Daniel C; Hou, Bi-Huei; Frommer, Wolf B

    2013-09-24

    Eukaryotic sugar transporters of the MFS and SWEET superfamilies consist of 12 and 7 α-helical transmembrane domains (TMs), respectively. Structural analyses indicate that MFS transporters evolved from a series of tandem duplications of an ancestral 3-TM unit. SWEETs are heptahelical proteins carrying a tandem repeat of 3-TM separated by a single TM. Here, we show that prokaryotes have ancestral SWEET homologs with only 3-TM and that the Bradyrhizobium japonicum SemiSWEET1, like Arabidopsis SWEET11, mediates sucrose transport. Eukaryotic SWEETs most likely evolved by internal duplication of the 3-TM, suggesting that SemiSWEETs form oligomers to create a functional pore. However, it remains elusive whether the 7-TM SWEETs are the functional unit or require oligomerization to form a pore sufficiently large to allow for sucrose passage. Split ubiquitin yeast two-hybrid and split GFP assays indicate that Arabidopsis SWEETs homo- and heterooligomerize. We examined mutant SWEET variants for negative dominance to test if oligomerization is necessary for function. Mutation of the conserved Y57 or G58 in SWEET1 led to loss of activity. Coexpression of the defective mutants with functional A. thaliana SWEET1 inhibited glucose transport, indicating that homooligomerization is necessary for function. Collectively, these data imply that the basic unit of SWEETs, similar to MFS sugar transporters, is a 3-TM unit and that a functional transporter contains at least four such domains. We hypothesize that the functional unit of the SWEET family of transporters possesses a structure resembling the 12-TM MFS structure, however, with a parallel orientation of the 3-TM unit.

  10. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family

    PubMed Central

    Xuan, Yuan Hu; Hu, Yi Bing; Chen, Li-Qing; Sosso, Davide; Ducat, Daniel C.; Hou, Bi-Huei; Frommer, Wolf B.

    2013-01-01

    Eukaryotic sugar transporters of the MFS and SWEET superfamilies consist of 12 and 7 α-helical transmembrane domains (TMs), respectively. Structural analyses indicate that MFS transporters evolved from a series of tandem duplications of an ancestral 3-TM unit. SWEETs are heptahelical proteins carrying a tandem repeat of 3-TM separated by a single TM. Here, we show that prokaryotes have ancestral SWEET homologs with only 3-TM and that the Bradyrhizobium japonicum SemiSWEET1, like Arabidopsis SWEET11, mediates sucrose transport. Eukaryotic SWEETs most likely evolved by internal duplication of the 3-TM, suggesting that SemiSWEETs form oligomers to create a functional pore. However, it remains elusive whether the 7-TM SWEETs are the functional unit or require oligomerization to form a pore sufficiently large to allow for sucrose passage. Split ubiquitin yeast two-hybrid and split GFP assays indicate that Arabidopsis SWEETs homo- and heterooligomerize. We examined mutant SWEET variants for negative dominance to test if oligomerization is necessary for function. Mutation of the conserved Y57 or G58 in SWEET1 led to loss of activity. Coexpression of the defective mutants with functional A. thaliana SWEET1 inhibited glucose transport, indicating that homooligomerization is necessary for function. Collectively, these data imply that the basic unit of SWEETs, similar to MFS sugar transporters, is a 3-TM unit and that a functional transporter contains at least four such domains. We hypothesize that the functional unit of the SWEET family of transporters possesses a structure resembling the 12-TM MFS structure, however, with a parallel orientation of the 3-TM unit. PMID:24027245

  11. Evolutionary Descent of Prion Genes from the ZIP Family of Metal Ion Transporters

    PubMed Central

    Schmitt-Ulms, Gerold; Ehsani, Sepehr; Watts, Joel C.; Westaway, David; Wille, Holger

    2009-01-01

    In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo. A subsequent bioinformatic analysis revealed the unexpected presence of a PrP-like amino acid sequence within the N-terminal, extracellular domain of a distinct sub-branch of the ZIP protein family that includes ZIP5, ZIP6 and ZIP10. Additional structural threading and orthologous sequence alignment analyses argued that the prion gene family is phylogenetically derived from a ZIP-like ancestral molecule. The level of sequence homology and the presence of prion protein genes in most chordate species place the split from the ZIP-like ancestor gene at the base of the chordate lineage. This relationship explains structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The phylogenetic and spatial connection to ZIP proteins is expected to open new avenues of research to elucidate the biology of the prion protein in health and disease. PMID:19784368

  12. SLC31 (CTR) Family of Copper Transporters in Health and Disease

    PubMed Central

    Kim, Heejeong; Wu, Xiaobin; Lee, Jaekwon

    2012-01-01

    Copper is a vital mineral for many organisms, yet it is highly toxic as demonstrated by serious health concerns associated with its deficiency or excess accumulation. The SLC31 (CTR) family of copper transporters is a major gateway of copper acquisition in eukaryotes, ranging from yeast to humans. Characterization of the function, modes of action, and regulation of CTR and other molecular factors that functionally cooperate with CTR for copper transport, compartmentalization, incorporation into cuproproteins, and detoxification has revealed that organisms have evolved fascinating mechanisms for tight control of copper metabolism. This research progress further indicates the significance of copper in health and disease and opens avenues for therapeutic control of copper bioavailability and its metabolic pathways. PMID:23506889

  13. Genome-Wide Comparative Gene Family Classification

    PubMed Central

    Frech, Christian; Chen, Nansheng

    2010-01-01

    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221

  14. The ABC's of Learning in Infancy.

    ERIC Educational Resources Information Center

    Saunders, Minta M.

    Learning in infancy is based on activity, beginnings, and curiosity, the so-called ABC's. Earliest behavior consists of mass activity, the period from birth to 24 months of sensory-motor development which provides the foundation for all future learning. Adults must provide space, toys, and affectionate care to help infants proceed through…

  15. Calculus ABCs: A Gateway for Freshman Calculus

    ERIC Educational Resources Information Center

    Fulton, Scott R.

    2003-01-01

    This paper describes a gateway testing program designed to ensure that students acquire basic skills in freshman calculus. Students must demonstrate they have mastered standards for "Absolutely Basic Competency"--the Calculus ABCs--in order to pass the course with a grade of C or better. We describe the background, standards, and testing program.…

  16. Comprehensive Analysis of the Soybean (Glycine max) GmLAX Auxin Transporter Gene Family

    PubMed Central

    Chai, Chenglin; Wang, Yongqin; Valliyodan, Babu; Nguyen, Henry T.

    2016-01-01

    The phytohormone auxin plays a critical role in regulation of plant growth and development as well as plant responses to abiotic stresses. This is mainly achieved through its uneven distribution in plant via a polar auxin transport process. Auxin transporters are major players in polar auxin transport. The AUXIN RESISTENT 1/LIKE AUX1 (AUX/LAX) auxin influx carriers belong to the amino acid permease family of proton-driven transporters and function in the uptake of indole-3-acetic acid (IAA). In this study, genome-wide comprehensive analysis of the soybean AUX/LAX (GmLAX) gene family, including phylogenic relationships, chromosome localization, and gene structure, was carried out. A total of 15 GmLAX genes, including seven duplicated gene pairs, were identified in the soybean genome. They were distributed on 10 chromosomes. Despite their higher percentage identities at the protein level, GmLAXs exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. Most GmLAXs were responsive to drought and dehydration stresses and auxin and abscisic acid (ABA) stimuli, in a tissue- and/or time point- sensitive mode. Several GmLAX members were involved in responding to salt stress. Sequence analysis revealed that promoters of GmLAXs contained different combinations of stress-related cis-regulatory elements. These studies suggest that the soybean GmLAXs were under control of a very complex regulatory network, responding to various internal and external signals. This study helps to identity candidate GmLAXs for further analysis of their roles in soybean development and adaption to adverse environments. PMID:27014306

  17. [Biological characteristics of an enteroinvasive Escherichia coli strain with tatABC deletion].

    PubMed

    Gong, Zhaolong; Ye, Changyun; Liu, Xiaobing; Zhang, Min; Zhuo, Qin

    2013-05-04

    To study the relationship between twin-arginine translocation system (Tat) system with the biological characteristics of enteroinvasive Escherichia coli (EIEC). Through homologous recombination, we constructed EIEC's tatABC gene deletion strain and complementary strain, and explored their impact on bacterial form, substrate transport function as well as on HeLa cells and guinea pig's corneal invasion force. The tatABC gene deletion strain had apparent changes in bacterial form, loss of substrate transporter function, and significant weakened bacterial invasion force (the number of the deletion strain invading into HeLa cells was decreased significantly, and the ability of its corneal lesion capacity of the guinea pig was significantly weakened), while the complementary strain was similar to the wild strain in the above respects. EIEC's Tat protein transport system is closely related with the biological characteristics of EIEC.

  18. [A family with creatine transporter deficiency diagnosed with urinary creatine/creatinine ratio and the family history: the third Japanese familial case].

    PubMed

    Nozaki, Fumihito; Kumada, Tomohiro; Shibata, Minoru; Fujii, Tatsuya; Wada, Takahito; Osaka, Hitoshi

    2015-01-01

    Creatine transporter deficiency (CRTR-D) is an X-linked disorder characterized by hypotonia, developmental delay, and seizures. We report the third Japanese family with CRTR-D. The proband was an 8-year-old boy who presented with hypotonia, severe intellectual disability and two episodes of seizures associated with/without fever. Among 7 siblings (4 males, 3 females), the eldest brother had severe intellectual disability, epilepsy, and sudden death at 17 years of age, while 18-year-old third elder brother had severe intellectual disability, autism, and drug-resistant epilepsy. The proband's urinary creatine/creatinine ratio was increased. A reduced creatine peak on brain magnetic resonance spectroscopy and a known pathogenic mutation in the SLC6A8 gene (c.1661 C > T;p.Pro554Leu) confirmed the diagnosis of CRTR-D. The same mutation was found in the third elder brother. Their mother was a heterozygote. Symptoms of CRTR-D are non-specific. Urinary creatine/creatinine ratio should be measured in patients with hypotonia, developmental delay, seizure and autism whose family history indicates an X-linked inheritance.

  19. LC-MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line.

    PubMed

    Pelkonen, Laura; Sato, Kazuki; Reinisalo, Mika; Kidron, Heidi; Tachikawa, Masanori; Watanabe, Michitoshi; Uchida, Yasuo; Urtti, Arto; Terasaki, Tetsuya

    2017-03-06

    The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier between neural retina and choroid. The RPE has several important vision supporting functions, such as transport mechanisms that may also modify pharmacokinetics in the posterior eye segment. Expression of plasma membrane transporters in the RPE cells has not been quantitated. The aim of this study was to characterize and compare transporter protein expression in the ARPE19 cell line and hfRPE (human fetal RPE) cells by using quantitative targeted absolute proteomics (QTAP). Among 41 studied transporters, 16 proteins were expressed in hfRPE and 13 in ARPE19 cells. MRP1, MRP5, GLUT1, 4F2hc, TAUT, CAT1, LAT1, and MATE1 proteins were detected in both cell lines within 4-fold differences. MPR7, OAT2 and RFC1 were detected in the hfRPE cells, but their expression levels were below the limit of quantification in ARPE19 cells. PCFT was detected in both studied cell lines, but the expression was over 4-fold higher in hfRPE cells. MCT1, MCT4, MRP4, and Na + /K + ATPase were upregulated in the ARPE19 cell line showing over 4-fold differences in the quantitative expression values. Expression levels of 25 transporters were below the limit of quantification in both cell models. In conclusion, we present the first systematic and quantitative study on transporter protein expression in the plasma membranes of ARPE19 and hfRPE cells. Overall, transporter expression in the ARPE19 and hfRPE cells correlated well and the absolute expression levels were similar, but not identical. The presented quantitative expression levels could be a useful basis for further studies on drug permeation in the outer blood-retinal barrier.

  20. Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter.

    PubMed

    Bozzi, Aaron T; Bane, Lukas B; Weihofen, Wilhelm A; Singharoy, Abhishek; Guillen, Eduardo R; Ploegh, Hidde L; Schulten, Klaus; Gaudet, Rachelle

    2016-12-06

    The widely conserved natural resistance-associated macrophage protein (Nramp) family of divalent metal transporters enables manganese import in bacteria and dietary iron uptake in mammals. We determined the crystal structure of the Deinococcus radiodurans Nramp homolog (DraNramp) in an inward-facing apo state, including the complete transmembrane (TM) segment 1a (absent from a previous Nramp structure). Mapping our cysteine accessibility scanning results onto this structure, we identified the metal-permeation pathway in the alternate outward-open conformation. We investigated the functional impact of two natural anemia-causing glycine-to-arginine mutations that impaired transition metal transport in both human Nramp2 and DraNramp. The TM4 G153R mutation perturbs the closing of the outward metal-permeation pathway and alters the selectivity of the conserved metal-binding site. In contrast, the TM1a G45R mutation prevents conformational change by sterically blocking the essential movement of that helix, thus locking the transporter in an inward-facing state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family.

    PubMed

    Mackenzie, Bryan; Erickson, Jeffrey D

    2004-02-01

    The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.

  2. Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus

    PubMed Central

    Carraro, Nicola; Tisdale-Orr, Tracy Eizabeth; Clouse, Ronald Matthew; Knöller, Anne Sophie; Spicer, Rachel

    2012-01-01

    Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history, including both tandem and whole genome duplication as well as probable gene loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of genes involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ localization. PMID:22645571

  3. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway

    USDA-ARS?s Scientific Manuscript database

    Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the dou...

  4. Differential expression of the Slc4 bicarbonate transporter family in murine corneal endothelium and cell culture.

    PubMed

    Shei, William; Liu, Jun; Htoon, Hla M; Aung, Tin; Vithana, Eranga N

    2013-01-01

    To characterize the relative expression levels of all the solute carrier 4 (Slc4) transporter family members (Slc4a1-Slc4a11) in murine corneal endothelium using real-time quantitative (qPCR), to identify further important members besides Slc4a11 and Slc4a4, and to explore how close to the baseline levels the gene expressions remain after cells have been subjected to expansion and culture. Descemet's membrane-endothelial layers of 8-10-week-old C57BL6 mice were stripped from corneas and used for both primary cell culture and direct RNA extraction. Total RNA (from uncultured cells as well as cultured cells at passages 2 and 7) was reverse transcribed, and the cDNA was used for real time qPCR using specific primers for all the Slc4 family members. The geNorm method was applied to determine the most stable housekeeping genes and normalization factor, which was calculated from multiple housekeeping genes for more accurate and robust quantification. qPCR analyses revealed that all Slc4 bicarbonate transporter family members were expressed in mouse corneal endothelium. Slc4a11 showed the highest expression, which was approximately three times higher than that of Slc4a4 (3.4±0.3; p=0.004). All Slc4 genes were also expressed in cultured cells, and interestingly, the expression of Slc4a11 in cultured cells was significantly reduced by approximately 20-fold (0.05±0.001; p=0.000001) in early passage and by approximately sevenfold (0.14±0.002; p=0.000002) in late passage cells. Given the known involvement of SLC4A4 and SLC4A11 in corneal dystrophies, we speculate that the other two highly expressed genes in the uncultured corneal endothelium, SLC4A2 and SLC4A7, are worthy of being considered as potential candidate genes for corneal endothelial diseases. Moreover, as cell culture can affect expression levels of Slc4 genes, caution and careful design of experiments are necessary when undertaking studies of Slc4-mediated ion transport in cultured cells.

  5. Comparative genomics and functional analysis of the NiaP family uncover nicotinate transporters from bacteria, plants, and mammals.

    PubMed

    Jeanguenin, Linda; Lara-Núñez, Aurora; Rodionov, Dmitry A; Osterman, Andrei L; Komarova, Nataliya Y; Rentsch, Doris; Gregory, Jesse F; Hanson, Andrew D

    2012-03-01

    The transporter(s) that mediate uptake of nicotinate and its N-methyl derivative trigonelline are not known in plants, and certain mammalian nicotinate transporters also remain unidentified. Potential candidates for these missing transporters include proteins from the ubiquitous NiaP family. In bacteria, niaP genes often belong to NAD-related regulons, and genetic evidence supports a role for Bacillus subtilis and Acinetobacter baumannii NiaP proteins in uptake of nicotinate or nicotinamide. Other bacterial niaP genes are, however, not in NAD-related regulons but cluster on the chromosome with choline-related (e.g., Ralstonia solanacearum and Burkholderia xenovorans) or thiamin-related (e.g., Thermus thermophilus) genes, implying that they might encode transporters for these compounds. Radiometric uptake assays using Lactococcus lactis cells expressing NiaP proteins showed that B. subtilis, R. solanacearum, and B. xenovorans NiaP transport nicotinate via an energy-dependent mechanism. Likewise, NiaP proteins from maize (GRMZM2G381453, GRMZM2G066801, and GRMZM2G081774), Arabidopsis (At3g13050), and mouse (SVOP) transported nicotinate; the Arabidopsis protein also transported trigonelline. In contrast, T. thermophilus NiaP transported only thiamin. None of the proteins tested transported choline or the thiazole and pyrimidine products of thiamin breakdown. The maize and Arabidopsis NiaP proteins are the first nicotinate transporters reported in plants, the Arabidopsis protein is the first trigonelline transporter, and mouse SVOP appears to represent a novel type of mammalian nicotinate transporter. More generally, these results indicate that specificity for nicotinate is conserved widely, but not absolutely, among pro- and eukaryotic NiaP family proteins.

  6. Phase behavior of model ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  7. A Novel Class of Modular Transporters for Vitamins in Prokaryotes ▿ †

    PubMed Central

    Rodionov, Dmitry A.; Hebbeln, Peter; Eudes, Aymerick; ter Beek, Josy; Rodionova, Irina A.; Erkens, Guus B.; Slotboom, Dirk J.; Gelfand, Mikhail S.; Osterman, Andrei L.; Hanson, Andrew D.; Eitinger, Thomas

    2009-01-01

    The specific and tightly controlled transport of numerous nutrients and metabolites across cellular membranes is crucial to all forms of life. However, many of the transporter proteins involved have yet to be identified, including the vitamin transporters in various human pathogens, whose growth depends strictly on vitamin uptake. Comparative analysis of the ever-growing collection of microbial genomes coupled with experimental validation enables the discovery of such transporters. Here, we used this approach to discover an abundant class of vitamin transporters in prokaryotes with an unprecedented architecture. These transporters have energy-coupling modules comprised of a conserved transmembrane protein and two nucleotide binding proteins similar to those of ATP binding cassette (ABC) transporters, but unlike ABC transporters, they use small integral membrane proteins to capture specific substrates. We identified 21 families of these substrate capture proteins, each with a different specificity predicted by genome context analyses. Roughly half of the substrate capture proteins (335 cases) have a dedicated energizing module, but in 459 cases distributed among almost 100 gram-positive bacteria, including numerous human pathogens, different and unrelated substrate capture proteins share the same energy-coupling module. The shared use of energy-coupling modules was experimentally confirmed for folate, thiamine, and riboflavin transporters. We propose the name energy-coupling factor transporters for the new class of membrane transporters. PMID:18931129

  8. The ABCs of School Choice: The Comprehensive Guide to Every Private School Choice Program in America. 2018 Edition

    ERIC Educational Resources Information Center

    EdChoice, 2018

    2018-01-01

    This annual publication of "The ABCs of School Choice" is a comprehensive, data-rich guide to every private school choice program in America. This publication outlines how each program works, whom it serves, and offers feedback on how it could be changed to help even more families in a particular state. Programs are grouped…

  9. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia

    PubMed Central

    Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth

    2016-01-01

    Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration. PMID:27997532

  10. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia.

    PubMed

    Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth; Perlson, Eran; Ast, Gil

    2016-12-01

    Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.

  11. The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1.

    PubMed

    Bodoy, Susanna; Fotiadis, Dimitrios; Stoeger, Claudia; Kanai, Yoshikatsu; Palacín, Manuel

    2013-01-01

    The SLC43 family is composed of only three genes coding for the plasma membrane facilitator system l amino acid transporters LAT3 (SLC43A1; TC 2.A.1.44.1) and LAT4 (SLC43A2; TC 2.A.1.44.2), and the orphan protein EEG1 (SLC43A3; TC 2.A.1.44.3). Besides the known mechanism of transport of LAT3 and LAT4, their physiological roles still remain quite obscure. Morphants suggested a role of LAT3 in renal podocyte development in zebrafish. Expression in liver and skeletal muscle, and up-regulation by starvation suggest a role of LAT3 in the flux of branched-chain amino acids (BCAAs) from liver and skeletal muscle to the bloodstream. Finally, LAT3 is up-regulated in androgen-dependent cancers, suggesting a role in mTORC1 signaling in this type of tumors. In addition, LAT4 might contribute to the transfer of BCAAs from mother to fetus. Unfortunately, the EEG1 mouse model (EEG1(Y221∗)) described here has not yet offered a clue to the physiological role of this orphan protein. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Bcl-2 Family Members and Functional Electron Transport Chain Regulate Oxygen Deprivation-Induced Cell Death

    PubMed Central

    McClintock, David S.; Santore, Matthew T.; Lee, Vivian Y.; Brunelle, Joslyn; Budinger, G. R. Scott; Zong, Wei-Xing; Thompson, Craig B.; Hay, Nissim; Chandel, Navdeep S.

    2002-01-01

    The mechanisms underlying cell death during oxygen deprivation are unknown. We report here a model for oxygen deprivation-induced apoptosis. The death observed during oxygen deprivation involves a decrease in the mitochondrial membrane potential, followed by the release of cytochrome c and the activation of caspase-9. Bcl-XL prevented oxygen deprivation-induced cell death by inhibiting the release of cytochrome c and caspase-9 activation. The ability of Bcl-XL to prevent cell death was dependent on allowing the import of glycolytic ATP into the mitochondria to generate an inner mitochondrial membrane potential through the F1F0-ATP synthase. In contrast, although activated Akt has been shown to inhibit apoptosis induced by a variety of apoptotic stimuli, it did not prevent cell death during oxygen deprivation. In addition to Bcl-XL, cells devoid of mitochondrial DNA (ρ° cells) that lack a functional electron transport chain were resistant to oxygen deprivation. Further, murine embryonic fibroblasts from bax−/− bak−/− mice did not die in response to oxygen deprivation. These data suggest that when subjected to oxygen deprivation, cells die as a result of an inability to maintain a mitochondrial membrane potential through the import of glycolytic ATP. Proapoptotic Bcl-2 family members and a functional electron transport chain are required to initiate cell death in response to oxygen deprivation. PMID:11739725

  13. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters.

    PubMed

    Severi, Emmanuele; Hosie, Arthur H F; Hawkhead, Judith A; Thomas, Gavin H

    2010-03-01

    The function of sialic acids in the biology of bacterial pathogens is reflected by the diverse range of solute transporters that can recognize these sugar acids. Here, we use an Escherichia coliDeltananT strain to characterize the function of known and proposed bacterial sialic acid transporters. We discover that the STM1128 gene from Salmonella enterica serovar Typhimurium, which encodes a member of the sodium solute symporter family, is able to restore growth on sialic acid to the DeltananT strain and is able to transport [(14)C]-sialic acid. Using the DeltananT genetic background, we performed a direct in vivo comparison of the transport properties of the STM1128 protein with those of sialic acid transporters of the major facilitator superfamily and tripartite ATP-independent periplasmic families, E. coli NanT and Haemophilus influenzae SiaPQM, respectively. This revealed that both STM1128 and SiaPQM are sodium-dependent and, unlike SiaPQM, both STM1128 and NanT are reversible secondary carriers, demonstrating qualitative functional differences in the properties of sialic acid transporters used by bacteria that colonize humans.

  14. The ZIP family zinc transporters support the virulence of Cryptococcus neoformans

    PubMed Central

    Do, Eunsoo; Hu, Guanggan; Caza, Mélissa; Kronstad, James W.; Jung, Won Hee

    2016-01-01

    Zinc is an essential element in living organisms and a cofactor for various metalloproteins. To disseminate and survive, a pathogenic microbe must obtain zinc from the host, which is an environment with extremely limited zinc availability. In this study, we investigated the roles of the ZIP family zinc transporters Zip1 and Zip2 in the human pathogenic fungus Cryptococcus neoformans. Zip1 and Zip2 are homologous to Zrt1 and Zrt2 of the model fungus, Saccharomyces cerevisiae, respectively. We found that the expression of ZIP1 was regulated by the zinc concentration in the environment. Furthermore, the mutant lacking ZIP1 displayed a severe growth defect under zinc-limited conditions, while the mutant lacking ZIP2 displayed normal growth. Inductively coupled plasma–atomic emission spectroscopy analysis showed that the absence of Zip1 expression significantly reduced total cellular zinc levels relative to that in the wild type, while overexpression of Zip1 was associated with increased cellular zinc levels. These findings suggested that Zip1 plays roles in zinc uptake in C. neoformans. We also constructed a Zip1-FLAG fusion protein and found, by immunofluorescence, not only that the protein was localized to the periphery implying it is a membrane transporter, but also that the protein was N-glycosylated. Furthermore, the mutant lacking ZIP1 showed attenuated virulence in a murine inhalation model of cryptococcosis and reduced survival within murine macrophages. Overall, our data suggest that Zip1 plays essential roles in zinc transport and the virulence of C. neoformans. PMID:27118799

  15. Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L.

    PubMed

    Li, Fupeng; Wu, Baoduo; Qin, Xiaowei; Yan, Lin; Hao, Chaoyun; Tan, Lehe; Lai, Jianxiong

    2014-08-10

    In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype 'TAS-R8'. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56 kDa (range 52 to 66 kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family.

    PubMed

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved

  17. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family

    PubMed Central

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved

  18. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter.

    PubMed

    Hohl, Michael; Hürlimann, Lea M; Böhm, Simon; Schöppe, Jendrik; Grütter, Markus G; Bordignon, Enrica; Seeger, Markus A

    2014-07-29

    ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5'-(β,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport.

  19. The Human Gene SLC25A29, of Solute Carrier Family 25, Encodes a Mitochondrial Transporter of Basic Amino Acids*

    PubMed Central

    Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando

    2014-01-01

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation. PMID:24652292

  20. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids.

    PubMed

    Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando

    2014-05-09

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.

  1. Statistical Hypothesis Testing in Intraspecific Phylogeography: NCPA versus ABC

    PubMed Central

    Templeton, Alan R.

    2009-01-01

    Nested clade phylogeographic analysis (NCPA) and approximate Bayesian computation (ABC) have been used to test phylogeographic hypotheses. Multilocus NCPA tests null hypotheses, whereas ABC discriminates among a finite set of alternatives. The interpretive criteria of NCPA are explicit and allow complex models to be built from simple components. The interpretive criteria of ABC are ad hoc and require the specification of a complete phylogeographic model. The conclusions from ABC are often influenced by implicit assumptions arising from the many parameters needed to specify a complex model. These complex models confound many assumptions so that biological interpretations are difficult. Sampling error is accounted for in NCPA, but ABC ignores important sources of sampling error that creates pseudo-statistical power. NCPA generates the full sampling distribution of its statistics, but ABC only yields local probabilities, which in turn make it impossible to distinguish between a good fitting model, a non-informative model, and an over-determined model. Both NCPA and ABC use approximations, but convergences of the approximations used in NCPA are well defined whereas those in ABC are not. NCPA can analyze a large number of locations, but ABC cannot. Finally, the dimensionality of tested hypothesis is known in NCPA, but not for ABC. As a consequence, the “probabilities” generated by ABC are not true probabilities and are statistically non-interpretable. Accordingly, ABC should not be used for hypothesis testing, but simulation approaches are valuable when used in conjunction with NCPA or other methods that do not rely on highly parameterized models. PMID:19192182

  2. CREATING AN IPHONE APPLICATION FOR COLLECTING CONTINUOUS ABC DATA

    PubMed Central

    Whiting, Seth W; Dixon, Mark R

    2012-01-01

    This paper provides an overview and task analysis for creating a continuous ABC data-collection application using Xcode on a Mac computer. Behavior analysts can program an ABC data collection system, complete with a customized list of target clients, antecedents, behaviors, and consequences to be recorded, and have the data automatically sent to an e-mail account after observations have concluded. Further suggestions are provided to customize the ABC data- collection system for individual preferences and clinical needs. PMID:23060682

  3. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  4. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants

    PubMed Central

    Socha, Amanda L.; Guerinot, Mary Lou

    2014-01-01

    Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis. PMID:24744764

  5. Career Education Program: Geneva Area City Schools. [Kindergarten Units: The School, The Farm, The Family, and Transportation].

    ERIC Educational Resources Information Center

    Geneva Area City Schools, OH.

    Four curriculum units for use at the kindergarten level focus on: (1) school jobs and the school community; (2) farming jobs and lifestyle; (3) family jobs at home and outside the home; and (4) transportation jobs and its industry. Objectives linking the units emphasize increasing students' awareness of and appreciation for each unit's jobs. The…

  6. Nonlinear resonances in the ABC-flow

    NASA Astrophysics Data System (ADS)

    Didov, A. A.; Uleysky, M. Yu.

    2018-01-01

    In this paper, we study resonances of the ABC-flow in the near integrable case ( C ≪1 ). This is an interesting example of a Hamiltonian system with 3/2 degrees of freedom in which simultaneous existence of two resonances of the same order is possible. Analytical conditions of the resonance existence are received. It is shown numerically that the largest n :1 (n = 1, 2, 3) resonances exist, and their energies are equal to theoretical energies in the near integrable case. We provide analytical and numerical evidences for existence of two branches of the two largest n :1 (n = 1, 2) resonances in the region of finite motion.

  7. SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability.

    PubMed

    Dufay, J Noelia; Fernández-Murray, J Pedro; McMaster, Christopher R

    2017-06-07

    The SLC25 family member SLC25A38 (Hem25 in yeast) was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25 Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1 Δ hem25 Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components. Copyright © 2017 Dufay et al.

  8. A novel TctA citrate transporter from an activated sludge metagenome: structural and mechanistic predictions for the TTT family.

    PubMed

    Batista-García, Ramón Alberto; Sánchez-Reyes, Ayixon; Millán-Pacheco, César; González-Zuñiga, Víctor Manuel; Juárez, Soledad; Folch-Mallol, Jorge Luis; Pastor, Nina

    2014-09-01

    We isolated a putative citrate transporter of the tripartite tricarboxylate transporter (TTT) class from a metagenomic library of activated sludge from a sewage treatment plant. The transporter, dubbed TctA_ar, shares ∼50% sequence identity with TctA of Comamonas testosteroni (TctA_ct) and other β-Proteobacteria, and contains two 20-amino acid repeat signature sequences, considered a hallmark of this particular transporter class. The structures for both TctA_ar and TctA_ct were modeled with I-TASSER and two possible structures for this transporter family were proposed. Docking assays with citrate resulted in the corresponding sets of proposed critical residues for function. These models suggest functions for the 20-amino acid repeats in the context of the two different architectures. This constitutes the first attempt at structure modeling of the TTT family, to the best of our knowledge, and could aid functional understanding of this little-studied family. © 2014 Wiley Periodicals, Inc.

  9. The ALMT Family of Organic Acid Transporters in Plants and Their Involvement in Detoxification and Nutrient Security.

    PubMed

    Sharma, Tripti; Dreyer, Ingo; Kochian, Leon; Piñeros, Miguel A

    2016-01-01

    About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance toward toxic aluminum ions in the soil. The efflux of Al 3+ -chelating malate anions through these channels is stimulated by external Al 3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT). Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes.

  10. The ALMT Family of Organic Acid Transporters in Plants and Their Involvement in Detoxification and Nutrient Security

    PubMed Central

    Sharma, Tripti; Dreyer, Ingo; Kochian, Leon; Piñeros, Miguel A.

    2016-01-01

    About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance toward toxic aluminum ions in the soil. The efflux of Al3+-chelating malate anions through these channels is stimulated by external Al3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT). Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes. PMID:27757118

  11. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems.

    PubMed

    Hassan, Karl A; Liu, Qi; Henderson, Peter J F; Paulsen, Ian T

    2015-02-10

    Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the Acinetobacter baumannii AceI transporter are a new class of multidrug

  12. Multidrug ATP-binding cassette transporters are essential for hepatic development of Plasmodium sporozoites.

    PubMed

    Rijpma, Sanna R; van der Velden, Maarten; González-Pons, Maria; Annoura, Takeshi; van Schaijk, Ben C L; van Gemert, Geert-Jan; van den Heuvel, Jeroen J M W; Ramesar, Jai; Chevalley-Maurel, Severine; Ploemen, Ivo H; Khan, Shahid M; Franetich, Jean-Francois; Mazier, Dominique; de Wilt, Johannes H W; Serrano, Adelfa E; Russel, Frans G M; Janse, Chris J; Sauerwein, Robert W; Koenderink, Jan B; Franke-Fayard, Blandine M

    2016-03-01

    Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development. © 2015 John Wiley & Sons Ltd.

  13. A Manual for Implementation of ABC Video Duplication Projects.

    ERIC Educational Resources Information Center

    Hill, Joseph, Ed.

    The ABC (Appalachian BOCES Consortium) consists of 10 BOCES (Boards of Cooperative Educational Services) which serve the 14 southern counties of New York State designated as Appalachia. Each year since 1974, the ABC has participated in regional video duplication projects, which have yielded a total of nearly 4,000 video titles. The complexity of…

  14. ABCs of Being Smart: S Is for Supporting

    ERIC Educational Resources Information Center

    Foster, Joanne

    2014-01-01

    Joanne Foster's article "R We There Yet?" was first published in "Parenting for High Potential" ("PHP") in 2006, which became the springboard for the "ABCs of Being Smart" series of columns. At that time, Foster invited "PHP" readers to think about their own versions of the "ABCs of Being…

  15. Family.

    ERIC Educational Resources Information Center

    Hurst, Hunter, Ed.; And Others

    1985-01-01

    This document contains the fourth volume of "Today's Delinquent," an annual publication of the National Center for Juvenile Justice. This volume deals with the issue of the family and delinquency. "The Family and Delinquency" (LaMar T. Empey) systematically reviews and weighs the evidence to support prominent theories on the origins of…

  16. Assembly and mechanism of a group II ECF transporter.

    PubMed

    Karpowich, Nathan K; Wang, Da-Neng

    2013-02-12

    Energy-coupling factor (ECF) transporters are a recently discovered family of primary active transporters for micronutrients and vitamins, such as biotin, thiamine, and riboflavin. Found exclusively in archaea and bacteria, including the human pathogens Listeria, Streptococcus, and Staphylococcus, ECF transporters may be the only means of vitamin acquisition in these organisms. The subunit composition of ECF transporters is similar to that of ATP binding cassette (ABC) importers, whereby both systems share two homologous ATPase subunits (A and A'), a high affinity substrate-binding subunit (S), and a transmembrane coupling subunit (T). However, the S subunit of ECF transporters is an integral membrane protein, and the transmembrane coupling subunits do not share an obvious sequence homology between the two transporter families. Moreover, the subunit stoichiometry of ECF transporters is controversial, and the detailed molecular interactions between subunits and the conformational changes during substrate translocation are unknown. We have characterized the ECF transporters from Thermotoga maritima and Streptococcus thermophilus. Our data suggests a subunit stoichiometry of 2S:2T:1A:1A' and that S subunits for different substrates can be incorporated into the same transporter complex simultaneously. In the first crystal structure of the A-A' heterodimer, each subunit contains a novel motif called the Q-helix that plays a key role in subunit coupling with the T subunits. Taken together, these findings suggest a mechanism for coupling ATP binding and hydrolysis to transmembrane transport by ECF transporters.

  17. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists.

    PubMed

    Balcazar, Darío E; Vanrell, María Cristina; Romano, Patricia S; Pereira, Claudio A; Goldbaum, Fernando A; Bonomi, Hernán R; Carrillo, Carolina

    2017-04-01

    Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated through a saturable carrier-mediated process. Effective competitive uptake occurs with riboflavin analogs roseoflavin, lumiflavin and lumichrome, and co-factor derivatives FMN and FAD. Moreover, important biological processes evaluated in T. cruzi (i.e. proliferation, metacyclogenesis and amastigote replication) are dependent on riboflavin availability. In addition, the riboflavin competitive analogs were found to interfere with parasite physiology on riboflavin-dependent processes. By means of bioinformatics analyses we identified a novel family of riboflavin transporters (RibJ) in trypanosomatids. Two RibJ members, TcRibJ and TbRibJ from T. cruzi and T. brucei respectively, were functionally characterized using homologous and/or heterologous expression systems. The RibJ family represents the first riboflavin transporters found in protists and the third eukaryotic family known to date. The essentiality of riboflavin for trypanosomatids, and the structural/biochemical differences that RFVT

  18. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists

    PubMed Central

    Balcazar, Darío E.; Vanrell, María Cristina; Romano, Patricia S.; Pereira, Claudio A.; Goldbaum, Fernando A.; Bonomi, Hernán R.; Carrillo, Carolina

    2017-01-01

    Background Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Methodology/Principal findings Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated through a saturable carrier-mediated process. Effective competitive uptake occurs with riboflavin analogs roseoflavin, lumiflavin and lumichrome, and co-factor derivatives FMN and FAD. Moreover, important biological processes evaluated in T. cruzi (i.e. proliferation, metacyclogenesis and amastigote replication) are dependent on riboflavin availability. In addition, the riboflavin competitive analogs were found to interfere with parasite physiology on riboflavin-dependent processes. By means of bioinformatics analyses we identified a novel family of riboflavin transporters (RibJ) in trypanosomatids. Two RibJ members, TcRibJ and TbRibJ from T. cruzi and T. brucei respectively, were functionally characterized using homologous and/or heterologous expression systems. Conclusions/Significance The RibJ family represents the first riboflavin transporters found in protists and the third eukaryotic family known to date. The essentiality of riboflavin for

  19. Independent transport and sorting of functionally distinct protein families in Tetrahymena thermophila dense core secretory granules.

    PubMed

    Rahaman, Abdur; Miao, Wei; Turkewitz, Aaron P

    2009-10-01

    Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal beta/gamma-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, DeltaGRT1 DeltaGRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in DeltaGRT1 DeltaGRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from DeltaGRT1 DeltaGRT2 cells appear less adhesive than those from the wild type.

  20. Quasiparticle renormalization in ABC graphene trilayers

    NASA Astrophysics Data System (ADS)

    Dou, Xu; Jaefari, Akbar; Barlas, Yafis; Uchoa, Bruno

    2015-03-01

    We investigate the effect of electron-electron interactions in ABC stacked graphene trilayers. In the gapless regime, we show that the self-energy corrections lead to the renormalization of the dynamical exponent z = 3 +α1 / N , with α1 ~ 0 . 52 and N is the number of fermionic species. Although the quasiparticle residue is suppressed near the neutrality point, the lifetime has a sublinear scaling with the energy and the quasiparticles are well defined even at zero energy. We calculate the renormalization of a variety of physical observables, which can be directly measured in experiments. X.D., A.J., and B.U. acknowledge University of Oklahoma for support. B.U. acknowledges NSF Career Grant No. DMR-1352604 for partial support.

  1. ABCs of SLEEPING: A review of the evidence behind pediatric sleep practice recommendations.

    PubMed

    Allen, Stephanie L; Howlett, Melissa D; Coulombe, J Aimée; Corkum, Penny V

    2016-10-01

    The ABCs of SLEEPING mnemonic was developed to serve as an organizing framework for common pediatric sleep recommendations. The mnemonic stands for 1) age appropriate bedtimes and wake-times with consistency, 2) schedules and routines, 3) location, 4) exercise and diet, 5) no electronics in the bedroom or before bed, 6) positivity 7) independence when falling asleep and 8) needs of child met during the day, 9) equal great sleep. This review examines the empirical evidence behind the practices and recommendations captured by the ABCs of SLEEPING mnemonic for children aged 1 to 12. A search was conducted of key electronic databases (PubMed, PsycINFO, CINAHL, & EMBASE) to identify English articles that included the concepts of sleep, insomnia, and/or bedtime. 77 articles were eligible for inclusion and were coded to extract key details and findings regarding the relations between sleep practices identified in the ABCs of SLEEPING mnemonic and sleep outcomes. Findings provided preliminary support for many of the recommendations that are commonly made to families regarding healthy sleep practices. However, more robust investigations are needed to better understand the causal contributions of healthy sleep practices to the onset and maintenance of children's sleep problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The minimal-ABC trees with B1-branches.

    PubMed

    Dimitrov, Darko; Du, Zhibin; Fonseca, Carlos M da

    2018-01-01

    The atom-bond connectivity index (or, for short, ABC index) is a molecular structure descriptor bridging chemistry to graph theory. It is probably the most studied topological index among all numerical parameters of a graph that characterize its topology. For a given graph G = (V, E), the ABC index of G is defined as [Formula: see text], where di denotes the degree of the vertex i, and ij is the edge incident to the vertices i and j. A combination of physicochemical and the ABC index properties are commonly used to foresee the bioactivity of different chemical composites. Additionally, the applicability of the ABC index in chemical thermodynamics and other areas of chemistry, such as in dendrimer nanostars, benzenoid systems, fluoranthene congeners, and phenylenes is well studied in the literature. While finding of the graphs with the greatest ABC-value is a straightforward assignment, the characterization of the tree(s) with minimal ABC index is a problem largely open and has recently given rise to numerous studies and conjectures. A B1-branch of a graph is a pendent path of order 2. In this paper, we provide an important step forward to the full characterization of these minimal trees. Namely, we show that a minimal-ABC tree contains neither 4 nor 3 B1-branches. The case when the number of B1-branches is 2 is also considered.

  3. ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment.

    PubMed

    Fulde, Marcus; Willenborg, Joerg; de Greeff, Astrid; Benga, Laurentiu; Smith, Hilde E; Valentin-Weigand, Peter; Goethe, Ralph

    2011-02-01

    Streptococcus suis is one of the most important pathogens in pigs and can also cause severe infections in humans. Despite its clinical relevance, very little is known about the factors that contribute to its virulence. Recently, we identified a new putative virulence factor in S. suis, the arginine deiminase system (ADS), an arginine catabolic enzyme system encoded by the arcABC operon, which enables S. suis to survive in an acidic environment. In this study, we focused on ArgR, an ADS-associated regulator belonging to the ArgR/AhrC arginine repressor family. Using an argR knockout strain we were able to show that ArgR is essential for arcABC operon expression and necessary for the biological fitness of S. suis. By cDNA expression microarray analyses and quantitative real-time RT-PCR we found that the arcABC operon is the only gene cluster regulated by ArgR, which is in contrast to the situation in many other bacteria. Reporter gene analysis with gfp under the control of the arcABC promoter demonstrated that ArgR is able to activate the arcABC promoter. Electrophoretic mobility shift assays with fragments of the arcABC promoter and recombinant ArgR, and chromatin immunoprecipitation with antibodies directed against ArgR, revealed that ArgR interacts with the arcABC promoter in vitro and in vivo by binding to a region from -147 to -72 bp upstream of the transcriptional start point. Overall, our results show that in S. suis, ArgR is an essential, system-specific transcriptional regulator of the ADS that interacts directly with the arcABC promoter in vivo.

  4. Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of pseudomonas aeruginosa.

    PubMed

    Adewoye, L O; Worobec, E A

    2000-08-08

    The Pseudomonas aeruginosa oprB gene encodes the carbohydrate-selective OprB porin, which translocates substrate molecules across the outer membrane to the periplasmic glucose-binding protein. We identified and cloned two open reading frames (ORFs) flanking the oprB gene but are not in operonic arrangement with the oprB gene. The downstream ORF encodes a putative polypeptide homologous to members of a family of transcriptional repressors, whereas the oprB gene is preceded by an ORF encoding a putative product, which exhibits strong homology to several carbohydrate transport ATP-binding cassette (ABC) proteins. The genomic copy of the upstream ORF was mutagenized by homologous recombination. Analysis of the deletion mutant in comparison with the wild type revealed a significant reduction in [14C] glucose transport activity in the mutant strain, suggesting that this ORF likely encodes the inner membrane component of the glucose ABC transporter. It is thus designated gltK gene to reflect its homology to the Pseudomona fluorescens mtlK and its involvement in the high-affinity glucose transport system. Multiple alignment analysis revealed that the P. aeruginosa gltK gene product is a member of the MalK subfamily of ABC proteins.

  5. Serotonin transporter gene promoter polymorphism and autism: a family-based genetic association study in Japanese population.

    PubMed

    Koishi, Shinko; Yamamoto, Kenji; Matsumoto, Hideo; Koishi, Seiji; Enseki, Youichi; Oya, Akitoshi; Asakura, Arata; Aoki, Yutaka; Atsumi, Mariko; Iga, Tomiei; Inomata, Jyoji; Inoko, Hidetoshi; Sasaki, Tsukasa; Nanba, Eiji; Kato, Nobumasa; Ishii, Tetsuo; Yamazaki, Kosuke

    2006-05-01

    Autism is now widely accepted as a biological disorder which, by and large, starts before birth. It has been shown that serotonin (5-HT) is associated with several psychological processes and hyperserotoninemia is observed in some autistic patients. The results of previous reports about family-based association studies between the serotonin transporter (5-HTT) gene promoter polymorphism and autism are controversial. In this study, an analysis using the transmission/disequilibrium test (TDT) between the 5-HTT gene promoter polymorphism and autism in 104 trios, all ethnically Japanese, showed no significant linkage disequilibrium (P=0.17). Recently, it has been reported that some haplotypes at the serotonin transporter locus may be associated with the pathogenesis of autism. Therefore, further investigations by haplotype analyses are necessary to confirm the implications of genetic variants of the serotonin transporter in the etiology of autism.

  6. Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52.

    PubMed

    Yonezawa, Atsushi; Inui, Ken-ichi

    2013-01-01

    Riboflavin, a water-soluble vitamin also known as vitamin B2, is essential for normal cellular functions. Riboflavin transporters play important roles in its homeostasis. Recently, three novel riboflavin transporters were identified, and designated as RFT1, RFT2 and RFT3. Because the RFTs did not show similarity to other SLC transporters, and RFT1 and RFT3 are similar in sequence and function, they were assigned into a new SLC family, SLC52. Subsequently, RFT1/GPR172B, RFT3/GPR172A and RFT2/C20orf54 were renamed as RFVT1/SLC52A1, RFVT2/SLC52A2 and RFVT3/SLC52A3, respectively. In this review, we summarize recent findings on the cloning, nomenclature, functional characterization and genetic diseases of RFVT1/SLC52A1, RFVT2/SLC52A2 and RFVT3/SLC52A3. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds

    PubMed Central

    Chen, Chiliang; Malek, Adel A.; Wargo, Matthew J.; Hogan, Deborah A.; Beattie, Gwyn A.

    2017-01-01

    Summary We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (Km, 2.6 μM) and, although it also binds betaine (Km, 24.2 μM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (Km, 24 μM) and the betaine-specific SBP BetX (Km, 0.6 μM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs. PMID:19919675

  8. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds.

    PubMed

    Chen, Chiliang; Malek, Adel A; Wargo, Matthew J; Hogan, Deborah A; Beattie, Gwyn A

    2010-01-01

    We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (K(m), 2.6 microM) and, although it also binds betaine (K(m), 24.2 microM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (K(m), 24 microM) and the betaine-specific SBP BetX (K(m), 0.6 microM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs.

  9. Characterisation and cloning of a Na(+)-dependent broad-specificity neutral amino acid transporter from NBL-1 cells: a novel member of the ASC/B(0) transporter family.

    PubMed

    Pollard, Matthew; Meredith, David; McGivan, John D

    2002-04-12

    Na(+)-dependent neutral amino acid transport into the bovine renal epithelial cell line NBL-1 is catalysed by a broad-specificity transporter originally termed System B(0). This transporter is shown to differ in specificity from the B(0) transporter cloned from JAR cells [J. Biol. Chem. 271 (1996) 18657] in that it interacts much more strongly with phenylalanine. Using probes designed to conserved transmembrane regions of the ASC/B(0) transporter family we have isolated a cDNA encoding the NBL-1 cell System B(0) transporter. When expressed in Xenopus oocytes the clone catalysed Na(+)-dependent alanine uptake which was inhibited by glutamine, leucine and phenylalanine. However, the clone did not catalyse Na(+)-dependent phenylalanine transport, again as in NBL-1 cells. The clone encoded a protein of 539 amino acids; the predicted transmembrane domains were almost identical in sequence to those of the other members of the B(0)/ASC transporter family. Comparison of the sequences of NBL-1 and JAR cell transporters showed some differences near the N-terminus, C-terminus and in the loop between helices 3 and 4. The NBL-1 B(0) transporter is not the same as the renal brush border membrane transporter since it does not transport phenylalanine. Differences in specificity in this protein family arise from relatively small differences in amino acid sequence.

  10. Transcription of putative tonoplast transporters in response to glyphosate and paraquat stress in Conyza bonariensis and Conyza canadensis and selection of reference genes for qRT-PCR.

    PubMed

    Moretti, Marcelo L; Alárcon-Reverte, Rocio; Pearce, Stephen; Morran, Sarah; Hanson, Bradley D

    2017-01-01

    Herbicide resistance is a challenge for modern agriculture further complicated by cases of resistance to multiple herbicides. Conyza bonariensis and Conyza canadensis are invasive weeds of field crops, orchards, and non-cropped areas in many parts of the world. In California, USA, Conyza populations resistant to the herbicides glyphosate and paraquat have recently been described. Although the mechanism conferring resistance to glyphosate and paraquat in these species was not elucidated, reduced translocation of these herbicides was observed under experimental conditions in both species. Glyphosate and paraquat resistance associated with reduced translocation are hypothesized to be a result of sequestration of herbicides into the vacuole, with the possible involvement of over-expression of genes encoding tonoplast transporters of ABC-transporter families in cases of glyphosate resistance or cationic amino acid transporters (CAT) in cases of paraquat resistance. However, gene expression in response to herbicide treatment has not been studied in glyphosate and paraquat resistant populations. In the current study, we evaluated the transcript levels of genes possibly involved in resistance using real-time PCR. First, we evaluated eight candidate reference genes following herbicide treatment and selected three genes that exhibited stable expression profiles; ACTIN, HEAT-SHOCK-PROTEIN-70, and CYCLOPHILIN. The reference genes identified here can be used for further studies related to plant-herbicide interactions. We used these reference genes to assay the transcript levels of EPSPS, ABC transporters, and CAT in response to herbicide treatment in susceptible and resistant Conyza spp. lines. No transcription changes were observed in EPSPS or CAT genes after glyphosate or paraquat treatment, suggesting that these genes are not involved in the resistance mechanism. Transcription of the two ABC transporter genes increased following glyphosate treatment in all Conyza spp. lines

  11. Transcription of putative tonoplast transporters in response to glyphosate and paraquat stress in Conyza bonariensis and Conyza canadensis and selection of reference genes for qRT-PCR

    PubMed Central

    Alárcon-Reverte, Rocio; Pearce, Stephen; Morran, Sarah; Hanson, Bradley D.

    2017-01-01

    Herbicide resistance is a challenge for modern agriculture further complicated by cases of resistance to multiple herbicides. Conyza bonariensis and Conyza canadensis are invasive weeds of field crops, orchards, and non-cropped areas in many parts of the world. In California, USA, Conyza populations resistant to the herbicides glyphosate and paraquat have recently been described. Although the mechanism conferring resistance to glyphosate and paraquat in these species was not elucidated, reduced translocation of these herbicides was observed under experimental conditions in both species. Glyphosate and paraquat resistance associated with reduced translocation are hypothesized to be a result of sequestration of herbicides into the vacuole, with the possible involvement of over-expression of genes encoding tonoplast transporters of ABC-transporter families in cases of glyphosate resistance or cationic amino acid transporters (CAT) in cases of paraquat resistance. However, gene expression in response to herbicide treatment has not been studied in glyphosate and paraquat resistant populations. In the current study, we evaluated the transcript levels of genes possibly involved in resistance using real-time PCR. First, we evaluated eight candidate reference genes following herbicide treatment and selected three genes that exhibited stable expression profiles; ACTIN, HEAT-SHOCK-PROTEIN-70, and CYCLOPHILIN. The reference genes identified here can be used for further studies related to plant-herbicide interactions. We used these reference genes to assay the transcript levels of EPSPS, ABC transporters, and CAT in response to herbicide treatment in susceptible and resistant Conyza spp. lines. No transcription changes were observed in EPSPS or CAT genes after glyphosate or paraquat treatment, suggesting that these genes are not involved in the resistance mechanism. Transcription of the two ABC transporter genes increased following glyphosate treatment in all Conyza spp. lines

  12. Structural elucidation of transmembrane domain zero (TMD0) of EcdL: A multidrug resistance-associated protein (MRP) family of ATP-binding cassette transporter protein revealed by atomistic simulation.

    PubMed

    Bera, Krishnendu; Rani, Priyanka; Kishor, Gaurav; Agarwal, Shikha; Kumar, Antresh; Singh, Durg Vijay

    2017-09-20

    ATP-Binding cassette (ABC) transporters play an extensive role in the translocation of diverse sets of biologically important molecules across membrane. EchnocandinB (antifungal) and EcdL protein of Aspergillus rugulosus are encoded by the same cluster of genes. Co-expression of EcdL and echinocandinB reflects tightly linked biological functions. EcdL belongs to Multidrug Resistance associated Protein (MRP) subfamily of ABC transporters with an extra transmembrane domain zero (TMD0). Complete structure of MRP subfamily comprising of TMD0 domain, at atomic resolution is not known. We hypothesized that the transportation of echonocandinB is mediated via EcdL protein. Henceforth, it is pertinent to know the topological arrangement of TMD0, with other domains of protein and its possible role in transportation of echinocandinB. Absence of effective template for TMD0 domain lead us to model by I-TASSER, further structure has been refined by multiple template modelling using homologous templates of remaining domains (TMD1, NBD1, TMD2, NBD2). The modelled structure has been validated for packing, folding and stereochemical properties. MD simulation for 0.1 μs has been carried out in the biphasic environment for refinement of modelled protein. Non-redundant structures have been excavated by clustering of MD trajectory. The structural alignment of modelled structure has shown Z-score -37.9; 31.6, 31.5 with RMSD; 2.4, 4.2, 4.8 with ABC transporters; PDB ID 4F4C, 4M1 M, 4M2T, respectively, reflecting the correctness of structure. EchinocandinB has been docked to the modelled as well as to the clustered structures, which reveals interaction of echinocandinB with TMD0 and other TM helices in the translocation path build of TMDs.

  13. Yang-Mills theory and the ABC conjecture

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Hu, Zhi; Probst, Malte; Read, James

    2018-05-01

    We establish a precise correspondence between the ABC Conjecture and 𝒩 = 4 super-Yang-Mills theory. This is achieved by combining three ingredients: (i) Elkies’ method of mapping ABC-triples to elliptic curves in his demonstration that ABC implies Mordell/Faltings; (ii) an explicit pair of elliptic curve and associated Belyi map given by Khadjavi-Scharaschkin; and (iii) the fact that the bipartite brane-tiling/dimer model for a gauge theory with toric moduli space is a particular dessin d’enfant in the sense of Grothendieck. We explore this correspondence for the highest quality ABC-triples as well as large samples of random triples. The conjecture itself is mapped to a statement about the fundamental domain of the toroidal compactification of the string realization of 𝒩 = 4 SYM.

  14. ABC's of Being Smart: I Can "C" Clearly Now

    ERIC Educational Resources Information Center

    Foster, Joanne

    2011-01-01

    In this paper, the author focuses on C of the ABC's of being smart. She continues to categorize the points for readers. These categories include the following: (1) being; (2) doing; and (3) stretching.

  15. Compilation of accelerated bridge construction (ABC) bridges : final report.

    DOT National Transportation Integrated Search

    2016-01-01

    Development of accelerated bridge construction (ABC) technologies has been occurring across the country, many times in : isolation. Although FHWA and others have worked to facilitate communication between these efforts, there was not a : comprehensiv...

  16. Variable White Matter Atrophy and Intellectual Development in a Family With X-linked Creatine Transporter Deficiency Despite Genotypic Homogeneity.

    PubMed

    Heussinger, Nicole; Saake, Marc; Mennecke, Angelika; Dörr, Helmuth-Günther; Trollmann, Regina

    2017-02-01

    The X-linked creatine transporter deficiency (CRTD) caused by an SLC6A8 mutation represents the second most common cause of X-linked intellectual disability. The clinical phenotype ranges from mild to severe intellectual disability, epilepsy, short stature, poor language skills, and autism spectrum disorders. The objective of this study was to investigate phenotypic variability in the context of genotype, cerebral creatine concentration, and volumetric analysis in a family with CRTD. The clinical phenotype and manifestations of epilepsy were assessed in a Caucasian family with CRTD. DNA sequencing and creatine metabolism analysis confirmed the diagnosis. Cerebral magnetic resonance imaging (cMRI) with voxel-based morphometry and magnetic resonance spectroscopy was performed in all family members. An SLC6A8 missense mutation (c.1169C>T; p.Pro390Leu, exon 8) was detected in four of five individuals. Both male siblings were hemizygous, the mother and the affected sister heterozygous for the mutation. Structural cMRI was normal, whereas voxel-based morphometry analysis showed reduced white matter volume below the first percentile of the reference population of 290 subjects in the more severely affected boy compared with family members and controls. Normalized creatine concentration differed significantly between the individuals (P < 0.005). There is a broad phenotypic variability in CRTD even in family members with the same mutation. Differences in mental development could be related to atrophy of the subcortical white matter. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism.

    PubMed

    Joyce, Helena; McCann, Andrew; Clynes, Martin; Larkin, Annemarie

    2015-05-01

    Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.

  18. An ATP-Binding Cassette Transporter and Two rRNA Methyltransferases Are Involved in Resistance to Avilamycin in the Producer Organism Streptomyces viridochromogenes Tü57

    PubMed Central

    Weitnauer, Gabriele; Gaisser, Sibylle; Trefzer, Axel; Stockert, Sigrid; Westrich, Lucy; Quiros, Luis M.; Mendez, Carmen; Salas, Jose A.; Bechthold, Andreas

    2001-01-01

    Three different resistance factors from the avilamycin biosynthetic gene cluster of Streptomyces viridochromogenes Tü57, which confer avilamycin resistance when expressed in Streptomyces lividans TK66, were isolated. Analysis of the deduced amino acid sequences showed that AviABC1 is similar to a large family of ATP-binding transporter proteins and that AviABC2 resembles hydrophobic transmembrane proteins known to act jointly with the ATP-binding proteins. The deduced amino acid sequence of aviRb showed similarity to those of other rRNA methyltransferases, and AviRa did not resemble any protein in the databases. Independent expression in S. lividans TK66 of aviABC1 plus aviABC2, aviRa, or aviRb conferred different levels of resistance to avilamycin: 5, 10, or 250 μg/ml, respectively. When either aviRa plus aviRb or aviRa plus aviRb plus aviABC1 plus aviABC2 was coexpressed in S. lividans TK66, avilamycin resistance levels reached more than 250 μg/ml. Avilamycin A inhibited poly(U)-directed polyphenylalanine synthesis in an in vitro system using ribosomes of S. lividans TK66(pUWL201) (GWO), S. lividans TK66(pUWL201-Ra) (GWRa), or S. lividans TK66(pUWL201-Rb) (GWRb), whereas ribosomes of S. lividans TK66 containing pUWL201-Ra+Rb (GWRaRb) were highly resistant. aviRa and aviRb were expressed in Escherichia coli, and both enzymes were purified as fusion proteins to near homogeneity. Both enzymes showed rRNA methyltransferase activity using a mixture of 16S and 23S rRNAs from E. coli as the substrate. Coincubation experiments revealed that the enzymes methylate different positions of rRNA. PMID:11181344

  19. An ATP-binding cassette transporter and two rRNA methyltransferases are involved in resistance to avilamycin in the producer organism Streptomyces viridochromogenes Tü57.

    PubMed

    Weitnauer, G; Gaisser, S; Trefzer, A; Stockert, S; Westrich, L; Quiros, L M; Mendez, C; Salas, J A; Bechthold, A

    2001-03-01

    Three different resistance factors from the avilamycin biosynthetic gene cluster of Streptomyces viridochromogenes Tü57, which confer avilamycin resistance when expressed in Streptomyces lividans TK66, were isolated. Analysis of the deduced amino acid sequences showed that AviABC1 is similar to a large family of ATP-binding transporter proteins and that AviABC2 resembles hydrophobic transmembrane proteins known to act jointly with the ATP-binding proteins. The deduced amino acid sequence of aviRb showed similarity to those of other rRNA methyltransferases, and AviRa did not resemble any protein in the databases. Independent expression in S. lividans TK66 of aviABC1 plus aviABC2, aviRa, or aviRb conferred different levels of resistance to avilamycin: 5, 10, or 250 microg/ml, respectively. When either aviRa plus aviRb or aviRa plus aviRb plus aviABC1 plus aviABC2 was coexpressed in S. lividans TK66, avilamycin resistance levels reached more than 250 microg/ml. Avilamycin A inhibited poly(U)-directed polyphenylalanine synthesis in an in vitro system using ribosomes of S. lividans TK66(pUWL201) (GWO), S. lividans TK66(pUWL201-Ra) (GWRa), or S. lividans TK66(pUWL201-Rb) (GWRb), whereas ribosomes of S. lividans TK66 containing pUWL201-Ra+Rb (GWRaRb) were highly resistant. aviRa and aviRb were expressed in Escherichia coli, and both enzymes were purified as fusion proteins to near homogeneity. Both enzymes showed rRNA methyltransferase activity using a mixture of 16S and 23S rRNAs from E. coli as the substrate. Coincubation experiments revealed that the enzymes methylate different positions of rRNA.

  20. Choline transporter-like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy.

    PubMed

    Inazu, Masato

    2014-11-01

    Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine (PC), the methyl donor betaine and the neurotransmitter acetylcholine (ACh). Elevated levels of choline and up-regulated choline kinase activity have been detected in various cancers. Thus, the intracellular accumulation of choline through choline transporters is the rate-limiting step in phospholipid metabolism and a prerequisite for cancer cell proliferation. Previous studies have demonstrated abnormalities in choline uptake and choline phospholipid metabolism in cancer cells using the imaging of cancer with positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). The aberrant choline metabolism in cancer cells is strongly correlated with their malignant progression. Using quantitative real-time PCR, the mRNA expression of choline transporters was measured, and it was found that choline transporter-like proteins CTLs/SLC44 family are highly expressed in various cancer cell lines. Choline uptake through CTLs is associated with cell viability, and the functional inhibition of CTLs could promote apoptotic cell death. Furthermore, non-neuronal cholinergic systems that include CTLs-mediated choline transport are associated with cell proliferation and their inhibition promotes apoptotic cell death in colon cancer, small cell lung cancer and human leukemic T-cells. The identification of this new CTLs-mediated choline transport system provides a potential new target for cancer therapy. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter.

    PubMed

    Weyand, Simone; Shimamura, Tatsuro; Yajima, Shunsuke; Suzuki, Shun'ichi; Mirza, Osman; Krusong, Kuakarun; Carpenter, Elisabeth P; Rutherford, Nicholas G; Hadden, Jonathan M; O'Reilly, John; Ma, Pikyee; Saidijam, Massoud; Patching, Simon G; Hope, Ryan J; Norbertczak, Halina T; Roach, Peter C J; Iwata, So; Henderson, Peter J F; Cameron, Alexander D

    2008-10-31

    The nucleobase-cation-symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuT(Aa) and the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the alternating access model for membrane transport.

  2. Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content.

    PubMed

    Singh, Uma M; Metwal, Mamta; Singh, Manoj; Taj, Gohar; Kumar, Anil

    2015-07-15

    Calcium (Ca) is an essential mineral for proper growth and development of plants as well as animals. In plants including cereals, calcium is deposited in seed during its development which is mediated by specialized Ca transporters. Common cereal seeds contain very low amounts of Ca while the finger millet (Eleusine coracana) contains exceptionally high amounts of Ca in seed. In order to understand the role of Ca transporters in grain Ca accumulation, developing seed transcriptome of two finger millet genotypes (GP-1, low Ca and GP-45 high Ca) differing in seed Ca content was sequenced using Illumina paired-end sequencing technology and members of Ca transporter gene family were identified. Out of 109,218 and 120,130 contigs, 86 and 81 contigs encoding Ca transporters were identified in GP-1 and GP-45, respectively. After removal of redundant sequences, a total of 19 sequences were confirmed as Ca transporter genes, which includes 11 Ca(2+) ATPases, 07 Ca(2+)/cation exchangers and 01 Ca(2+) channel. The differential expressions of all genes were analyzed from transcriptome data and it was observed that 9 and 3 genes were highly expressed in GP-45 and GP-1 genotypes respectively. Validation of transcriptome expression data of selected Ca transporter genes was performed on different stages of developing spikes of both genotypes grown under different concentrations of exogenous Ca. In both genotypes, significant correlation was observed between the expression of these genes, especially EcCaX3, and on the amount of Ca accumulated in seed. The positive correlation of seed mass with the amount of Ca concentration was also observed. The efficient Ca transport property and responsiveness of EcCAX3 towards exogenous Ca could be utilized in future biofortification program. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The 'ABC' of examining foot radiographs.

    PubMed

    Pearse, Eyiyemi O; Klass, Benjamin; Bendall, Stephen P

    2005-11-01

    We report a simple systematic method of assessing foot radiographs that improves diagnostic accuracy and can reduce the incidence of inappropriate management of serious forefoot and midfoot injuries, particularly the Lisfranc-type injury. Five recently appointed senior house officers (SHOs), with no casualty or Orthopaedic experience prior to their appointment, were shown a set of 10 foot radiographs and told the history and examination findings recorded in the casualty notes of each patient within 6 weeks of taking up their posts. They were informed that the radiographs might or might not demonstrate an abnormality. They were asked to make a diagnosis and decide on a management plan. The test was repeated after they were taught the 'ABC' method of evaluating foot radiographs. Diagnostic accuracy improved after SHOs were taught a systematic method of assessing foot radiographs. The proportion of correct diagnoses increased from 0.64 to 0.78 and the probability of recognising Lisfranc injuries increased from 0 to 0.6. The use of this simple method of assessing foot radiographs can reduce the incidence of inappropriate management of serious foot injuries by casualty SHOs, in particular the Lisfranc type injury.

  4. Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump

    PubMed Central

    Llabrés, Salomé; Neuberger, Arthur; Blaza, James N.; Bai, Xiao-chen; Okada, Ui; Murakami, Satoshi; van Veen, Hendrik W.; Zachariae, Ulrich; Scheres, Sjors H.W.; Luisi, Ben F.

    2017-01-01

    The MacA-MacB-TolC assembly of Escherichia coli is a transmembrane machine that spans the cell envelope and actively extrudes substrates, including macrolide antibiotics and polypeptide virulence factors. These transport processes are energized by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. We present an electron cryo-microscopy structure of the ABC-type tripartite assembly at near-atomic resolution. A hexamer of the periplasmic protein MacA bridges between a TolC trimer in the outer membrane and a MacB dimer in the inner membrane, generating a quaternary structure with a central channel for substrate translocation. A gating ring found in MacA is proposed to act as a one-way valve in substrate transport. The MacB structure features an atypical transmembrane domain (TMD) with a closely packed dimer interface and a periplasmic opening that is the likely portal for substrate entry from the periplasm, with subsequent displacement through an allosteric transport mechanism. PMID:28504659

  5. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  6. Dopamine Transporter Genotype Conveys Familial Risk of Attention-Deficit/Hyperactivity Disorder through Striatal Activation

    ERIC Educational Resources Information Center

    Durston, Sarah; Fossella, John A.; Mulder, Martijn J.; Casey B. J.; Ziermans, Tim B.; Vessaz, M. Nathalie; Van Engeland, Herman

    2008-01-01

    The study examines the effect of the dopamine transporter (DAT1) genotype in attention-deficit/hyperactivity disorder (ADHD). The results confirm that DAT1 translates the genetic risk of ADHD through striatal activation.

  7. Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways.

    PubMed

    Dharmapuri, Gangappa; Doneti, Ravinder; Philip, Gundala Harold; Kalle, Arunasree M

    2015-07-01

    Imatinib mesylate, a tyrosine kinase inhibitor, is very effective in the treatment of chronic myeloid leukemia (CML). However, development of resistance to imatinib therapy is also a very common mechanism observed with long-term administration of the drug. Our previous studies have highlighted the role of cyclooxygenase-2 (COX-2) in regulating the expression of multidrug resistant protein-1 (MDR1), P-gp, in imatinib-resistant K562 cells (IR-K562) via PGE2-cAMP-PKC-NF-κB pathway and inhibition of COX-2 by celecoxib, a COX-2 specific inhibitor, inhibits this pathway and reverses the drug resistance. Studies have identified that not only MDR1 but other ATP-binding cassette transport proteins (ABC transporters) are involved in the development of imatinib resistance. Here, we tried to study the role of COX-2 in the regulation of other ABC transporters such as MRP1, MRP2, MRP3, ABCA2 and ABCG2 that have been already implicated in imatinib resistance development. The results of the study clearly indicated that overexpression of COX-2 lead to upregulation of MRP family proteins in IR-K562 cells and celecoxib down-regulated the ABC transporters through Wnt and MEK signaling pathways. The study signifies that celecoxib in combination with the imatinib can be a good alternate treatment strategy for the reversal of imatinib resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A chondrodysplasia family produced by mutations in the diastrophic dysplasia sulfate transporter gene: Genotype/phenotype correlations

    SciTech Connect

    Superti-Furga, A.; Steinmann, B.; Gitzelmann, R.

    1996-05-03

    Achondrogenesis type 1B (ACG-1B), atelosteogenesis type 2 (AO-2), and diastrophic dysplasia (DTD) are recessively inherited chondrodysplasia of decreasing severity caused by mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene on chromosome 5. In these conditions, sulfate transport across the cell membrane is impaired which results in insufficient sulfation of cartilage proteoglycans and thus in an abnormally low sulfate content of cartilage. The severity of the phenotype correlates well with the predicted effect of the underlying DTDST mutations: homozygosity or compound heterozygosity for stop codons or transmembrane domain substitutions mostly result in achondrogenesis type 1B, while other structural or regulatorymore » mutations usually result in one of the less severe phenotypes. The chondrodysplasia arising at the DTDST locus constitute a bone dysplasia family with recessive inheritance. 28 refs., 2 tabs.« less

  9. Topology mapping to characterize cyanobacterial bicarbonate transporters: BicA (SulP/SLC26 family) and SbtA.

    PubMed

    Price, G Dean; Howitt, Susan M

    2014-09-01

    This mini-review addresses advances in understanding the transmembrane topologies of two unrelated, single-subunit bicarbonate transporters from cyanobacteria, namely BicA and SbtA. BicA is a Na(+)-dependent bicarbonate transporter that belongs to the SulP/SLC26 family that is widespread in both eukaryotes and prokaryotes. Topology mapping of BicA via the phoA/lacZ fusion reporter method identified 12 transmembrane helices with an unresolved hydrophobic region just beyond helix 8. Re-interpreting this data in the light of a recent topology study on rat prestin leads to a consensus topology of 14 transmembrane domains with a 7+7 inverted repeat structure. SbtA is also a Na(+)-dependent bicarbonate transporter, but of considerably higher affinity (Km 2-5 μM versus >100 μM for BicA). Whilst SbtA is widespread in cyanobacteria and a few bacteria, it appears to be absent from eukaryotes. Topology mapping of SbtA via the phoA/lacZ fusion reporter method identified 10 transmembrane helices. The topology consists of a 5+5 inverted repeat, with the two repeats separated by a large intracellular loop. The unusual location of the N and C-termini outside the cell raises the possibility that SbtA forms a novel fold, not so far identified by structural and topological studies on transport proteins.

  10. A Member of the Sugar Transporter Family, Stl1p Is the Glycerol/H+ Symporter in Saccharomyces cerevisiae

    PubMed Central

    Ferreira, Célia; van Voorst, Frank; Martins, António; Neves, Luisa; Oliveira, Rui; Kielland-Brandt, Morten C.; Lucas, Cândida; Brandt, Anders

    2005-01-01

    Glycerol and other polyols are used as osmoprotectants by many organisms. Several yeasts and other fungi can take up glycerol by proton symport. To identify genes involved in active glycerol uptake in Saccharomyces cerevisiae we screened a deletion mutant collection comprising 321 genes encoding proteins with 6 or more predicted transmembrane domains for impaired growth on glycerol medium. Deletion of STL1, which encodes a member of the sugar transporter family, eliminates active glycerol transport. Stl1p is present in the plasma membrane in S. cerevisiae during conditions where glycerol symport is functional. Both the Stl1 protein and the active glycerol transport are subject to glucose-induced inactivation, following identical patterns. Furthermore, the Stl1 protein and the glycerol symporter activity are strongly but transiently induced when cells are subjected to osmotic shock. STL1 was heterologously expressed in Schizosaccharomyces pombe, a yeast that does not contain its own active glycerol transport system. In S. pombe, STL1 conferred the ability to take up glycerol against a concentration gradient in a proton motive force-dependent manner. We conclude that the glycerol proton symporter in S. cerevisiae is encoded by STL1. PMID:15703210

  11. Genome-Wide Identification, Expression, and Functional Analysis of the Sugar Transporter Gene Family in Cassava (Manihot esculenta).

    PubMed

    Liu, Qin; Dang, Huijie; Chen, Zhijian; Wu, Junzheng; Chen, Yinhua; Chen, Songbi; Luo, Lijuan

    2018-03-26

    The sugar transporter ( STP ) gene family encodes monosaccharide transporters that contain 12 transmembrane domains and belong to the major facilitator superfamily. STP genes play critical roles in monosaccharide distribution and participate in diverse plant metabolic processes. To investigate the potential roles of STPs in cassava ( Manihot esculenta ) tuber root growth, genome-wide identification and expression and functional analyses of the STP gene family were performed in this study. A total of 20 MeSTP genes ( MeSTP1 - 20 ) containing the Sugar_tr conserved motifs were identified from the cassava genome, which could be further classified into four distinct groups in the phylogenetic tree. The expression profiles of the MeSTP genes explored using RNA-seq data showed that most of the MeSTP genes exhibited tissue-specific expression, and 15 out of 20 MeSTP genes were mainly expressed in the early storage root of cassava. qRT-PCR analysis further confirmed that most of the MeSTPs displayed higher expression in roots after 30 and 40 days of growth, suggesting that these genes may be involved in the early growth of tuber roots. Although all the MeSTP proteins exhibited plasma membrane localization, variations in monosaccharide transport activity were found through a complementation analysis in a yeast ( Saccharomyces cerevisiae ) mutant, defective in monosaccharide uptake. Among them, MeSTP2, MeSTP15, and MeSTP19 were able to efficiently complement the uptake of five monosaccharides in the yeast mutant, while MeSTP3 and MeSTP16 only grew on medium containing galactose, suggesting that these two MeSTP proteins are transporters specific for galactose. This study provides significant insights into the potential functions of MeSTPs in early tuber root growth, which possibly involves the regulation of monosaccharide distribution.

  12. Caenorhabditis elegans ABCRNAi transporters interact genetically with rde-2 and mut-7.

    PubMed

    Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa

    2008-02-01

    RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABC(RNAi) mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABC(RNAi) gene class. Genetic complementation tests reveal functions for ABC(RNAi) transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABC(RNAi) proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABC(RNAi) mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABC(RNAi) gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABC(RNAi) transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity.

  13. Accurate Black Hole Spin Measurements using ABC

    NASA Astrophysics Data System (ADS)

    Connolly, Andrew

    time. In particular, a class of methods col- lectively called Approximate Bayesian Computation (ABC) is capable of exploiting the fact that it is possible to simulate instrumental effects to a high degree of accuracy in order to build reliable statistical models incorporating pile-up and related effects. With the loss of the Hitomi spacecraft, it is more important than ever to make full use of the data we collect with current instruments. We propose an ambitious program to estimate the spins of 13 black holes in X-ray binaries using observations with XMMNewton s EPIC MOS and pn, Suzaku s XIS and Chandra s ACIS and HETG instruments. We will build a general framework for dealing with pile-up in spectral modeling using ABC and refine current instrumental simulators for inclusion in this framework. Coupled with state-of-the- art sampling methods, this will allow us to take advantage of dozens of observations in the archives of all three instruments. We will be able to estimate spins to much bet- ter accuracy than ever before and test current models for black hole formation as well as jet launching mechanisms. The program will deliver a considerable legacy, because the statistical and methodological framework will be general. Application to other instruments suffering from photon pile-up, e.g. Swift/XRT, Fermi/GBM, ASCA/SIS, and GALEX, will only require is a model capable of simulating the relevant instrumental effects. This will enable other science cases beyond that proposed here which rely on precise spectral measurements or cases where pile-up cannot be avoided, e.g. high-precision radius measurements in neutron stars, understanding X-ray dust scattering, and stellar evolution studies of globular clusters.

  14. "ABC's Earthquake" (Experiments and models in seismology)

    NASA Astrophysics Data System (ADS)

    Almeida, Ana

    2017-04-01

    Ana Almeida, Portugal Almeida, Ana Escola Básica e Secundária Dr. Vieira de Carvalho Moreira da Maia, Portugal The purpose of this presentation, in poster format, is to disclose an activity which was planned and made by me, in a school on the north of Portugal, using a kit of materials simple and easy to use - the sismo-box. The activity "ABC's Earthquake" was developed under the discipline of Natural Sciences, with students from 7th grade, geosciences teachers and other areas. The possibility of work with the sismo-box was seen as an exciting and promising opportunity to promote science, seismology more specifically, to do science, when using the existing models in the box and with them implement the scientific method, to work and consolidate content and skills in the area of Natural Sciences, to have a time of sharing these materials with classmates, and also with other teachers from the different areas. Throughout the development of the activity, either with students or teachers, it was possible to see the admiration by the models presented in the earthquake-box, as well as, the interest and the enthusiasm in wanting to move and understand what the results after the proposed procedure in the script. With this activity, we managed to promote: - educational success in this subject; a "school culture" with active participation, with quality, rules, discipline and citizenship values; fully integration of students with special educational needs; strengthen the performance of the school as a cultural, informational and formation institution; provide activities to date and innovative; foment knowledge "to be, being and doing" and contribute to a moment of joy and discovery.Learn by doing!

  15. Intestinal absorption mechanism of tebipenem pivoxil, a novel oral carbapenem: involvement of human OATP family in apical membrane transport.

    PubMed

    Kato, Kazuhiko; Shirasaka, Yoshiyuki; Kuraoka, Erika; Kikuchi, Akihiro; Iguchi, Maki; Suzuki, Hisashi; Shibasaki, Shigeki; Kurosawa, Tohru; Tamai, Ikumi

    2010-10-04

    Tebipenem pivoxil (TBPM-PI) is an oral carbapenem antibiotic for treating otolaryngologic and respiratory infections in pediatric patients. This agent is a prodrug to improve intestinal absorption of TBPM, an active form, and an absorption rate of TBPM-PI is higher than those of other prodrug-type β-lactam antibiotics. In the present study, we hypothesized that a certain mechanism other than simple diffusion is involved in the process of improved intestinal absorption of TBPM-PI and examined the mechanism. TBPM-PI uptake by Caco-2 cells was decreased by ATP-depletion and lowering the temperature to 4 °C, suggesting the contribution of carrier-mediated transport mechanisms. This uptake was partially decreased by ACE inhibitors, and the reduction of the absorption by captopril was observed by in vivo study and in situ single-pass intestinal perfusion study in rat, supporting the contribution of influx transporters. Since some ACE inhibitors and β-lactam antibiotics are reported to be substrates of PEPT and OATP families, we measured transporting activity of TBPM-PI by intestinally expressed transporters, PEPT1, OATP1A2, and OATP2B1. As a result, significant transport activities were observed by both OATP1A2 and OATP2B1 but not by PEPT1. Interestingly, pH dependence of TBPM-PI transports was different between OATP1A2 and OATP2B1, showing highest activity by OATP1A2 at pH 6.5, while OATP2B1-mediated uptake was higher at neutral and weak alkaline pH. OATP1A2 exhibited higher affinity for TBPM-PI (K(m) = 41.1 μM) than OATP2B1 (K(m) > 1 mM) for this agent. These results suggested that TBPM-PI has high intestinal apical membrane permeability due to plural intestinal transport routes, including the uptake transporters such as OATP1A2 and OATP2B1 as well as simple diffusion.

  16. Identification and characterization of the three members of the CLC family of anion transport proteins in Trypanosoma brucei

    PubMed Central

    Macêdo, Juan P.; Kunz Renggli, Christina; Bütikofer, Peter; Rentsch, Doris; Mäser, Pascal

    2017-01-01

    CLC type anion transport proteins are homo-dimeric or hetero-dimeric with an integrated transport function in each subunit. We have identified and partially characterized three members of this family named TbVCL1, TbVCL2 and TbVCL3 in Trypanosoma brucei. Among the human CLC family members, the T. brucei proteins display highest similarity to CLC-6 and CLC-7. TbVCL1, but not TbVCL2 and TbVCL3 is able to complement growth of a CLC-deficient Saccharomyces cerevisiae mutant. All TbVCL-HA fusion proteins localize intracellulary in procyclic form trypanosomes. TbVCL1 localizes close to the Golgi apparatus and TbVCL2 and TbVCL3 to the endoplasmic reticulum. Upon expression in Xenopus oocytes, all three proteins induce similar outward rectifying chloride ion currents. Currents are sensitive to low concentrations of DIDS, insensitive to the pH in the range 5.4 to 8.4 and larger in nitrate than in chloride medium. PMID:29244877

  17. Identification and characterization of the three members of the CLC family of anion transport proteins in Trypanosoma brucei.

    PubMed

    Steinmann, Michael E; Schmidt, Remo S; Macêdo, Juan P; Kunz Renggli, Christina; Bütikofer, Peter; Rentsch, Doris; Mäser, Pascal; Sigel, Erwin

    2017-01-01

    CLC type anion transport proteins are homo-dimeric or hetero-dimeric with an integrated transport function in each subunit. We have identified and partially characterized three members of this family named TbVCL1, TbVCL2 and TbVCL3 in Trypanosoma brucei. Among the human CLC family members, the T. brucei proteins display highest similarity to CLC-6 and CLC-7. TbVCL1, but not TbVCL2 and TbVCL3 is able to complement growth of a CLC-deficient Saccharomyces cerevisiae mutant. All TbVCL-HA fusion proteins localize intracellulary in procyclic form trypanosomes. TbVCL1 localizes close to the Golgi apparatus and TbVCL2 and TbVCL3 to the endoplasmic reticulum. Upon expression in Xenopus oocytes, all three proteins induce similar outward rectifying chloride ion currents. Currents are sensitive to low concentrations of DIDS, insensitive to the pH in the range 5.4 to 8.4 and larger in nitrate than in chloride medium.

  18. Transport capabilities of environmental Pseudomonads for sulfur compounds

    DOE PAGES

    Zerbs, Sarah; Korajczyk, Peter J.; Noirot, Philippe H.; ...

    2017-01-27

    Sulfur is an essential element in plant rhizospheres and microbial activity plays a key role in increasing the biological availability of sulfur in soil environments. To better understand the mechanisms facilitating the exchange of sulfur-containing molecules in soil, we profiled the binding specificities of eight previously uncharacterized ABC transporter solute-binding proteins from plant-associated Pseudomonads. A high-throughput screening procedure indicated eighteen significant organosulfur binding ligands, with at least one high-quality screening hit for each protein target. Calorimetric and spectroscopic methods were used to validate the best ligand assignments and catalog the thermodynamic properties of the protein-ligand interactions. Two novel high-affinity ligandmore » binding activities were identified and quantified in this set of solute binding proteins. Bacteria were cultured in minimal media with screening library components supplied as the sole sulfur sources, demonstrating that these organosulfur compounds can be metabolized and confirming the relevance of ligand assignments. These results expand the set of experimentally validated ligands amenable to transport by this ABC transporter family and demonstrate the complex range of protein-ligand interactions that can be accomplished by solute-binding proteins. As a result, characterizing new nutrient import pathways provides insight into Pseudomonad metabolic capabilities which can be used to further interrogate bacterial survival and participation in soil and rhizosphere communities.« less

  19. Linking the serotonin transporter gene, family environments, hippocampal volume and depression onset: A prospective imaging gene × environment analysis.

    PubMed

    Little, Keriann; Olsson, Craig A; Youssef, George J; Whittle, Sarah; Simmons, Julian G; Yücel, Murat; Sheeber, Lisa B; Foley, Debra L; Allen, Nicholas B

    2015-11-01

    A single imaging gene-environment (IGxE) framework that is able to simultaneously model genetic, neurobiological, and environmental influences on psychopathology outcomes is needed to improve understanding of how complex interrelationships between allelic variation, differences in neuroanatomy or neuroactivity, and environmental experience affect risk for psychiatric disorder. In a longitudinal study of adolescent development we demonstrate the utility of such an IGxE framework by testing whether variation in parental behavior at age 12 altered the strength of an imaging genetics pathway, involving an indirect association between allelic variation in the serotonin transporter gene to variation in hippocampal volume and consequent onset of major depressive disorder by age 18. Results were consistent with the presence of an indirect effect of the serotonin transporter S-allele on depression onset via smaller left and right hippocampal volumes that was significant only in family environments involving either higher levels of parental aggression or lower levels of positive parenting. The previously reported finding of S-allele carriers' increased risk of depression in adverse environments may, therefore, be partly because of the effects of these environments on a neurobiological pathway from the serotonin transporter gene to depression onset that proceeds through variation in hippocampal volume. (c) 2015 APA, all rights reserved).

  20. Parental Perceptions of Family Adjustment in Childhood Developmental Disabilities

    ERIC Educational Resources Information Center

    Thompson, Sandra; Hiebert-Murphy, Diane; Trute, Barry

    2013-01-01

    Based on the adjustment phase of the double ABC-X model of family stress (McCubbin and Patterson, 1983) this study examined the impact of parenting stress, positive appraisal of the impact of child disability on the family, and parental self-esteem on parental perceptions of family adjustment in families of children with disabilities. For mothers,…

  1. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants

    PubMed Central

    Remy, Estelle; Duque, Paula

    2014-01-01

    Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617

  2. ABC estimation of unit costs for emergency department services.

    PubMed

    Holmes, R L; Schroeder, R E

    1996-04-01

    Rapid evolution of the health care industry forces managers to make cost-effective decisions. Typical hospital cost accounting systems do not provide emergency department managers with the information needed, but emergency department settings are so complex and dynamic as to make the more accurate activity-based costing (ABC) system prohibitively expensive. Through judicious use of the available traditional cost accounting information and simple computer spreadsheets. managers may approximate the decision-guiding information that would result from the much more costly and time-consuming implementation of ABC.

  3. Differential impact of serotonin transporter activity on temperament and behavior in persons with a family history of alcoholism in the Oklahoma Family Health Patterns project

    PubMed Central

    Lovallo, William R.; Enoch, Mary-Anne; Yechiam, Eldad; Glahn, David C.; Acheson, Ashley; Sorocco, Kristen H.; Hodgkinson, Colin A.; Kim, Bojeong; Cohoon, Andrew J.; Vincent, Andrea S.; Goldman, David

    2014-01-01

    Background Central serotonergic (5-HT) function is implicated in pathways to alcohol dependence, including dysphoria manifested by symptoms of anxiety and depression. However, little is known about genetic variation in central 5-HT function and its potential impact on temperament and behavior in persons with a family history of alcoholism (FH+). Methods We tested 314 healthy young adults (23.5 yr of age, 57% female; 193 FH− and 121 FH+) enrolled in the Oklahoma Family Health Patterns project, a study of alcoholism risk in relation to temperament and behavioral dyscontrol. Dysphoria was assessed using the Eysenck neuroticism and Beck depression scales, and Cloninger’s Tridimensional Personality Questionnaire. Risk taking was assessed with the Iowa Gambling Task (IGT) and Balloon Analogue Response Task (BART). All subjects were genotyped for a functional polymorphism (5-HTTLPR) in the promoter region of the serotonin transporter gene (SCL6A4). Results FH+ subjects with the gain-of-function 5-HTTLPR genotype scored higher in neuroticism, harm avoidance, and symptoms of Depression (p values ≤ .03). No effect of 5-HTTLPR genotype was seen in FH−. FH+ carriers of the gain-of-function 5-HTTLPR genotype played to minimize their frequency of losses in the IGT whereas FH− carriers played a balanced strategy (p < .003). No 5-HTTLPR effects were seen in the BART. Results were unaffected by sex, education, drug use, and antisocial characteristics. Conclusions The functional 5-HTTLPR polymorphism predicted significant variation in negative moods and poorer affect regulation in FH+ persons, with possible consequences for behavior, as seen in a simulated gambling task. This pattern may contribute to a drinking pattern that is compensatory for such affective tendencies. PMID:24796636

  4. Differential impact of serotonin transporter activity on temperament and behavior in persons with a family history of alcoholism in the Oklahoma Family Health Patterns Project.

    PubMed

    Lovallo, William R; Enoch, Mary-Anne; Yechiam, Eldad; Glahn, David C; Acheson, Ashley; Sorocco, Kristen H; Hodgkinson, Colin A; Kim, Bojeong; Cohoon, Andrew J; Vincent, Andrea S; Goldman, David

    2014-06-01

    Central serotonergic (5-HT) function is implicated in pathways to alcohol dependence, including dysphoria manifested by symptoms of anxiety and depression. However, little is known about genetic variation in central 5-HT function and its potential impact on temperament and behavior in persons with a family history of alcoholism (FH+). We tested 314 healthy young adults (23.5 years of age, 57% female; 193 FH- and 121 FH+) enrolled in the Oklahoma Family Health Patterns project, a study of alcoholism risk in relation to temperament and behavioral dyscontrol. Dysphoria was assessed using the Eysenck neuroticism and Beck depression scales, and Cloninger's Tridimensional Personality Questionnaire. Risk taking was assessed with the Iowa Gambling Task (IGT) and Balloon Analogue Response Task (BART). All subjects were genotyped for a functional polymorphism (5-HTTLPR) in the promoter region of the serotonin transporter gene (SLC6A4). FH+ subjects with the gain-of-function 5-HTTLPR genotype scored higher in neuroticism, harm avoidance, and symptoms of depression (p-values ≤ 0.03). No effect of 5-HTTLPR genotype was seen in FH-. FH+ carriers of the gain-of-function 5-HTTLPR genotype played to minimize their frequency of losses in the IGT, whereas FH- carriers played a balanced strategy (p < 0.003). No 5-HTTLPR effects were seen in the BART. Results were unaffected by sex, education, drug use, and antisocial characteristics. The functional 5-HTTLPR polymorphism predicted significant variation in negative moods and poorer affect regulation in FH+ persons, with possible consequences for behavior, as seen in a simulated gambling task. This pattern may contribute to a drinking pattern that is compensatory for such affective tendencies. Copyright © 2014 by the Research Society on Alcoholism.

  5. Laboratory investigation of grouted coupler connection details for ABC bridge projects.

    DOT National Transportation Integrated Search

    2015-08-01

    With an ever increasing desire to utilize accelerated bridge construction (ABC) techniques, it is becoming critical that bridge : designers and contractors have confidence in typical details. The Keg Creek Bridge on US 6 in Iowa was a recent ABC exam...

  6. Functional analysis RaZIP1 transporter of the ZIP family from the ectomycorrhizal Zn-accumulating Russula atropurpurea.

    PubMed

    Leonhardt, Tereza; Sácký, Jan; Kotrba, Pavel

    2018-04-01

    A search of R. atropurpurea transcriptome for sequences encoding the transporters of the Zrt-, Irt-like Protein (ZIP) family, which are in eukaryotes integral to Zn supply into cytoplasm, allowed the identification of RaZIP1 cDNA with a predicted product belonging to ZIP I subfamily; it was subjected to functional studies in mutant Saccharomyces cerevisiae strains. The expression of RaZIP1, but not RaZIP1 H208A or RaZIP1 H232A mutants lacking conserved-among-ZIPs transmembrane histidyls, complemented Zn uptake deficiency in zrt1Δzrt2Δ yeasts. RaZIP1 substantially increased cellular Zn uptake in this strain and added to Zn sensitivity in zrc1Δcot1Δ mutant. The Fe uptake deficiency in ftr1Δ strain was not rescued and Mn uptake was insufficient for toxicity in Mn-sensitive pmr1Δ yeasts. By contrast, RaZIP1 increased Cd sensitivity in yap1Δ strain and conferred Cd transport activity in yeasts, albeit with substantially lower efficiency compared to Zn transport. In metal uptake assays, the accumulation of Zn in zrt1Δzrt2Δ strain remained unaffected by Cd, Fe, and Mn present in 20-fold molar excess over Zn. Immunofluorescence microscopy detected functional hemagglutinin-tagged HA::RaZIP1 on the yeast cell protoplast periphery. Altogether, these data indicate that RaZIP1 is a high-affinity plasma membrane transporter specialized in Zn uptake, and improve the understanding of the cellular and molecular biology of Zn in R. atropurpurea that is known for its ability to accumulate remarkably high concentrations of Zn.

  7. Shift schedule, work-family relationships, marital communication, job satisfaction and health among transport service shift workers.

    PubMed

    Iskra-Golec, Irena; Smith, Lawrence; Wilczek-Rużyczka, Ewa; Siemiginowska, Patrycja; Wątroba, Joanna

    2017-02-21

    Existing research has documented that shiftwork consequences may depend on the shift system parameters. Fast rotating systems (1-3 shifts of the same kind in a row) and day work have been found to be less disruptive biologically and socially than slower rotating systems and afternoon and night work. The aim of this study was to compare day workers and shift workers of different systems in terms of rotation speed and shifts worked with regard to work-family and family-work positive and negative spillover, marital communication style, job satisfaction and health. Employees (N = 168) of the maintenance workshops of transportation service working different shift systems (day shift, weekly rotating 2 and 3‑shift system, and fast rotating 3-shift system) participated in the study. They completed the Work- Family Spillover Questionnaire, Marital Communication Questionnaire, Minnesota Job Satisfaction Questionnaire and the Physical Health Questionnaire (a part of the Standard Shiftwork Index). The workers of quicker rotating 3-shift systems reported significantly higher scores of family-to-work facilitation (F(3, 165) = 4.175, p = 0.007) and a higher level of constructive style of marital communication (Engagement F(3, 165) = 2.761, p = 0.044) than the workers of slower rotating 2-shift systems. There were no differences between the groups of workers with regard to health and job satisfaction. A higher level of work-family facilitation and a more constructive style of marital communication were found among the workers of faster rotating 3-shift system when compared to the workers of a slower rotating 2-shift system (afternoon, night). This may indicate that the fast rotating shift system in contrary to the slower rotating one is more friendly for the work and family domains and for the relationship between them. Int J Occup Med Environ Health 2017;30(1):121-131. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  8. 4th International Consensus Conference on Advanced Breast Cancer (ABC4), Lisbon, November 4, 2017 : ABC4 Consensus: Assessment by a Panel of German Experts.

    PubMed

    Untch, Michael; Würstlein, Rachel; Marschner, Norbert; Lüftner, Diana; Augustin, Doris; Briest, Susanne; Ettl, Johannes; Haidinger, Renate; Müller, Lothar; Müller, Volkmar; Ruckhäberle, Eugen; Harbeck, Nadia; Thomssen, Christoph

    2018-05-01

    The fourth international advanced breast cancer consensus conference (ABC4) on the diagnosis and treatment of advanced breast cancer (ABC) headed by Professor Fatima Cardoso was once again held in Lisbon on November 2 - 4, 2017. To simplify matters, the abbreviation ABC will be used hereinafter in the text. In clinical practice, the abbreviation corresponds to metastatic breast cancer or locally far-advanced disease. This year the focus was on new developments in the treatment of ABC. Topics discussed included the importance of CDK4/6 inhibition in hormone receptor (HR)-positive ABC, the use of dual antibody blockade to treat HER2-positive ABC, PARP inhibition in triple-negative ABC and the potential therapeutic outcomes. Another major area discussed at the conference was BRCA-associated breast cancer, the treatment of cerebral metastasis, and individualized treatment decisions based on molecular testing (so-called precision medicine). As in previous years, close cooperation with representatives from patient organizations from around the world is an important aspect of the ABC conference. This cooperation was reinforced and expanded at the ABC4 conference. A global alliance was founded at the conclusion of the consensus conference, which aims to promote and coordinate the measures considered necessary by patient advocates worldwide. Because the panel of experts was composed of specialists from all over the world, it was inevitable that the ABC consensus also reflected country-specific features. As in previous years, a team of German breast cancer specialists who closely followed the consensus voting of the ABC panelists in Lisbon and intensively discussed the votes has therefore commented on the consensus in the context of the current German guidelines on the diagnosis and treatment of breast cancer 1 ,  2 used in clinical practice in Germany. The ABC consensus is based on the votes of the ABC panelists in Lisbon.

  9. The ABCs of Privacy Practices for Educators

    ERIC Educational Resources Information Center

    Dark, Melissa J.; McPherson, Clewin; Troutner, Joanne

    2008-01-01

    Over the last year, the number of reported cases of confidential information lost because of stolen laptops, lost USB flash drives, misplaced PDAs, and simple human error has significantly increased. These trends have school districts concerned with issues of violating private information. Laws such as the Family Educational Rights and Privacy Act…

  10. The ABCs of Children's Mental Health.

    ERIC Educational Resources Information Center

    Whelley, Pete; Cash, Gene; Bryson, Dixie

    2002-01-01

    The U.S. Surgeon General's 2000 Report on Children's Mental Health estimates that one in five children and adolescents will experience a significant mental-health problem during their school years. While the family is the primary source of support for a child's mental health, the increased stress and fracturing of today's life make it imperative…

  11. The A-B-C of Desalting.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Office of Water Research and Technology.

    This publication provides a simple explanation of how various processes convert sea or brackish water to fresh water. Included are descriptions of the membrane processes (reverse osmosis, electrodialysis, transport depletion, and piezodialysis); the distillation processes (multistage flash distillation, vertical tube distillation, multieffect…

  12. The ABCs for Pre-Service Teacher Cultural Competency Development

    ERIC Educational Resources Information Center

    He, Ye; Cooper, Jewell E.

    2009-01-01

    In an effort to combine pre-service teachers' self-reflection with their field experiences to enhance their cultural competency, this study adopted Schmidt's ABC's (Autobiography, Biography, and Cross-cultural Comparison) Model in two courses in a pre-service teacher education program. Through group comparisons, this study measured the impact that…

  13. The Reign of Confusion: ABC and the "Crisis in Iran."

    ERIC Educational Resources Information Center

    Palmerton, Patricia R.

    A study examined reports broadcast by ABC News between November 8, 1979 and December 7, 1979 in its series entitled "Crisis in Iran: America Held Hostage." Transcripts of approximately 50% of actual broadcasts were subjected to rhetorical critical analysis, from which the finding emerged that confusion was the predominant characteristic…

  14. Know a Baby Who Needs Help? Call ABC.

    ERIC Educational Resources Information Center

    Kromer, Megan E.

    The booklet describes Project ABC (Any Baby Can), a model networking effort to promote coordinated services for disabled and high-risk infants in San Antonio, Texas. The model features a volunteer, grass-roots emphasis in an aggressive community awareness campaign with a long-term goal of improving the effectiveness of social services and health…

  15. The ABC Model and its Applicability to Basal Angiosperms

    PubMed Central

    Soltis, Douglas E.; Chanderbali, André S.; Kim, Sangtae; Buzgo, Matyas; Soltis, Pamela S.

    2007-01-01

    Background Although the flower is the central feature of the angiosperms, little is known of its origin and subsequent diversification. The ABC model has long been the unifying paradigm for floral developmental genetics, but it is based on phylogenetically derived eudicot models. Synergistic research involving phylogenetics, classical developmental studies, genomics and developmental genetics has afforded valuable new insights into floral evolution in general, and the early flower in particular. Scope and Conclusions Genomic studies indicate that basal angiosperms, and by inference the earliest angiosperms, had a rich tool kit of floral genes. Homologues of the ABCE floral organ identity genes are also present in basal angiosperm lineages; however, C-, E- and particularly B-function genes are more broadly expressed in basal lineages. There is no single model of floral organ identity that applies to all angiosperms; there are multiple models that apply depending on the phylogenetic position and floral structure of the group in question. The classic ABC (or ABCE) model may work well for most eudicots. However, modifications are needed for basal eudicots and, the focus of this paper, basal angiosperms. We offer ‘fading borders’ as a testable hypothesis for the basal-most angiosperms and, by inference, perhaps some of the earliest (now extinct) angiosperms. PMID:17616563

  16. Selections from the ABC 2011 Annual Convention, Montreal, Canada

    ERIC Educational Resources Information Center

    Whalen, D. Joel; Andersen, Ken; Campbell, Gloria; Crenshaw, Cheri; Cross, Geoffrey A.; Grinols, Anne Bradstreet; Hildebrand, John; Newman, Amy; Ortiz, Lorelei A.; Paulson, Edward; Phillabaum, Melinda; Powell, Elizabeth A.; Sloan, Ryan

    2012-01-01

    The 12 Favorite Assignments featured in this article were presented at the 2011 Annual Convention of the Association for Business Communication (ABC), Montreal, Canada. A variety of learning objectives are featured: delivering bad news, handling difficult people, persuasion, reporting financial analysis, electronic media, face-to-face…

  17. K-ABC Mental Processing Profiles for Gifted Referrals.

    ERIC Educational Resources Information Center

    Harrison, Patti L.; And Others

    This study sought to extend previous research by investigating performance of intellectucally gifted children on the Mental Processing Composite of the Kaufman Assessment Battery for Children (K-ABC). A sample of 54 children (aged 6-12) referred for possible gifted placement were administered the Sequential and Simultaneous scales. Average scores…

  18. The Value of Green Technology at ABC Community College

    ERIC Educational Resources Information Center

    McAllister, Bernadette

    2012-01-01

    A challenge facing community colleges nationwide is to reduce the carbon footprint of campuses by initiating green technology initiatives. This case study assessed the effect of switching from paper assignments to a learning management system at ABC Community College. The topic is important because federal and state funding, as well as…

  19. Selections from the ABC 2012 Annual Convention, Honolulu, Hawaii

    ERIC Educational Resources Information Center

    Whalen, D. Joel

    2013-01-01

    The 13 Favorite Assignments featured here were presented at the 2012 Association for Business Communication (ABC) Annual Convention, Honolulu, Hawaii. A variety of learning objectives are featured, including the following: enhancing resume's visual impact, interpersonal skills, social media, team building, web design, community service projects,…

  20. Selections from the ABC 2009 Annual Convention, Portsmouth, Virginia

    ERIC Educational Resources Information Center

    Whalen, D. Joel

    2010-01-01

    The "My Favorite Assignment" Session at the 2009 Association for Business Communication (ABC) annual convention in Portsmouth, Virginia, featured over a dozen teachers sharing pedagogical innovations in a fast-paced, 4-minute format designed by Dan Dietrich. The wide variety of ideas and techniques presented makes these sessions popular…

  1. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars.

    PubMed

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of "Gala" apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.

  2. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars

    PubMed Central

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of “Gala” apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties. PMID:25414708

  3. Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the PHOSPHATE TRANSPORTER1 Gene Family[W

    PubMed Central

    Yang, Shu-Yi; Grønlund, Mette; Jakobsen, Iver; Grotemeyer, Marianne Suter; Rentsch, Doris; Miyao, Akio; Hirochika, Hirohiko; Kumar, Chellian Santhosh; Sundaresan, Venkatesan; Salamin, Nicolas; Catausan, Sheryl; Mattes, Nicolas; Heuer, Sigrid; Paszkowski, Uta

    2012-01-01

    Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11. PMID:23073651

  4. Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions.

    PubMed

    Kumar, Smita; Asif, Mehar Hasan; Chakrabarty, Debasis; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar

    2011-06-01

    Sulphur, an essential nutrient required for plant growth and development, is mainly taken up by the plants as inorganic sulphate from the soil and assimilated into the sulphur reductive pathway. The uptake and transport of sulphate in plants is carried out by transporters encoded by the sulphate transporter gene family. Plant sulphate transporters have been classified with respect to their protein sequences, kinetic properties and tissue-specific localization in Arabidopsis. Though sulphate transporter genes from few other plants have also been characterized, no detailed study with respect to the structure and expression of this family from rice has been carried out. Here, we present genome-wide identification, structural and expression analyses of the rice sulphate transporter gene family. Our analysis using microarray data and MPSS database suggests that 14 rice sulphate transporters are differentially expressed during growth and development in various tissues and during biotic and abiotic stresses. Our analysis also suggests differential accumulation of splice variants of OsSultr1;1 and OsSultr4;1 transcripts during these processes. Apart from known spliced variants, we report an unusual alternative splicing of OsSultr1;1 transcript related to sulphur supply in growth medium and during stress response. Taken together, our study suggests that differential expression and alternative splicing of members of the sulphate transporter family plays an important role in regulating cellular sulphur status required for growth and development and during stress conditions. These findings significantly advance our understanding of the posttranscriptional regulatory mechanisms operating to regulate sulphur demand by the plant.

  5. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    PubMed

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  6. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.

    PubMed

    Liu, Jiping; Magalhaes, Jurandir V; Shaff, Jon; Kochian, Leon V

    2009-02-01

    Aluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that was previously shown to be necessary for AtALMT1 expression. Here we show that STOP1 is also required for AtMATE expression and Al-activated citrate exudation.

  7. Transportation

    DTIC Science & Technology

    2006-01-01

    Ports. Logistics Today, Vol.46. Issue 9. 43. Maloni, Michael ., Jackson , Eric. (2005, Spring). North American Container Port Capacity: A...Literature Review. Transportation Journal, Spring 2005. 16-36. Maloni, Michael ., Jackson , Eric. (2005, Summer). North American Container Port Capacity: An

  8. Multidrug efflux transporter, AcrB--the pumping mechanism.

    PubMed

    Murakami, Satoshi

    2008-08-01

    Resistance nodulation cell division (RND) transporters are one of the main causes of the bacterial multidrug resistance. They pump a wide range of antibiotics out of the cell by proton motive force. AcrB is the major RND transporter in Escherichia coli. Recently, the crystal structures of AcrB have been determined by different space groups. All these structures are consistent with asymmetric trimer. Each monomer has different conformation corresponding to one of the three functional states of the transport cycle. Transporting hydrophobic drug was bound in the periplasmic domain on one of the three monomers. The transport pathway with alternating access mechanism is located at the hydrophilic domain protruded into the periplasmic space while this mechanism of other transporter families like ATP binding cassette (ABC) and major facilitator superfamily (MFS) transporter is located in the membrane-embedded region. For the RND, protonation might also take place asymmetrically at the functionally important charged residues in the transmembrane (TM) region. The structures indicate that drugs are transported by a three-step functional rotation in which substrates undergo ordered binding change.

  9. The AMT1 family genes from Malus robusta display differential transcription features and ammonium transport abilities.

    PubMed

    Li, Hui; Yang, Qing-Song; Liu, Wei; Lin, Jing; Chang, You-Hong

    2017-10-01

    Ammonium is an important nitrogen sources for plant growth. In this study, we report on the gene characterization of the ammonium transporter AMT1 subfamily in the apple rootstock Malus robusta Rehd. Thirteen AMT genes were comprehensively evaluated from the apple genome (version 1.0). Then the gene features and expression patterns of five AMT1 members from M. robusta were analyzed. These genes fell into four clusters in the AMT phylogenetic tree: clade I (MrAMT1;1 and MrAMT1;3), clade II (MrAMT1;4), clade III (MrAMT1;2), and clade IV (MrAMT1;5). All the AMT1s, apart from MrAMT1;4, were expressed in vegetative organs and strongly responded to nitrogen concentration changes. For example, MrAMT1;2 and MrAMT1;3 had high transcript accumulation levels in the leaves and roots, respectively. Finally, the functions of these AMT1s were studied in detail by heterologous expression in yeast. These genes allowed strain 31019b to assimilate nitrogen, but their 15 NH 4 + uptake kinetics varied. These results revealed the functional roles of AMT1 during ammonium absorption in the AMT-defective mutant yeast system.

  10. GPS-ABC radiated chamber testing overview and results : GPS-ABC Workshop VI : RTCA Washington, DC, March 30, 2017.

    DOT National Transportation Integrated Search

    2017-03-30

    This presentation, which was given during the GPS-ABC Workshop VI in Washington, DC on March 30, 2017 details the authors' radiated testing protocols and results. GPS receiver testing was carried out April 25-29, 2016 at the Army : Research Laborator...

  11. Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora.

    PubMed

    Pletzer, Daniel; Weingart, Helge

    2014-07-11

    The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the efflux pumps are involved in

  12. Characterization and regulation of the Resistance-Nodulation-Cell Division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora

    PubMed Central

    2014-01-01

    Background The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. Results To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. Conclusions The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the

  13. MntABC and MntH Contribute to Systemic Staphylococcus aureus Infection by Competing with Calprotectin for Nutrient Manganese

    PubMed Central

    Kehl-Fie, Thomas E.; Zhang, Yaofang; Moore, Jessica L.; Farrand, Allison J.; Hood, M. Indriati; Rathi, Subodh; Chazin, Walter J.; Caprioli, Richard M.

    2013-01-01

    During infection, vertebrates limit access to manganese and zinc, starving invading pathogens, such as Staphylococcus aureus, of these essential metals in a process termed “nutritional immunity.” The manganese and zinc binding protein calprotectin is a key component of the nutrient-withholding response, and mice lacking this protein do not sequester manganese from S. aureus liver abscesses. One potential mechanism utilized by S. aureus to minimize host-imposed manganese and zinc starvation is the expression of the metal transporters MntABC and MntH. We performed transcriptional analyses of both mntA and mntH, which revealed increased expression of both systems in response to calprotectin treatment. MntABC and MntH compete with calprotectin for manganese, which enables S. aureus growth and retention of manganese-dependent superoxide dismutase activity. Loss of MntABC and MntH results in reduced staphylococcal burdens in the livers of wild-type but not calprotectin-deficient mice, suggesting that these systems promote manganese acquisition during infection. During the course of these studies, we observed that metal content and the importance of calprotectin varies between murine organs, and infection leads to profound changes in the anatomical distribution of manganese and zinc. In total, these studies provide insight into the mechanisms utilized by bacteria to evade host-imposed nutrient metal starvation and the critical importance of restricting manganese availability during infection. PMID:23817615

  14. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana).

    PubMed

    Kanno, Akira; Saeki, Hiroshi; Kameya, Toshiaki; Saedler, Heinz; Theissen, Günter

    2003-07-01

    In higher eudicotyledonous angiosperms the floral organs are typically arranged in four different whorls, containing sepals, petals, stamens and carpels. According to the ABC model, the identity of these organs is specified by floral homeotic genes of class A, A+B, B+C and C, respectively. In contrast to the sepal and petal whorls of eudicots, the perianths of many plants from the Liliaceae family have two outer whorls of almost identical petaloid organs, called tepals. To explain the Liliaceae flower morphology, van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. According to this model, class B genes are not only expressed in whorls 2 and 3, but also in whorl 1. Thus the organs of both whorls 1 and 2 express class A plus class B genes and, therefore, get the same petaloid identity. To test this modified ABC model we have cloned and characterized putative class B genes from tulip. Two DEF- and one GLO-like gene were identified, named TGDEFA, TGDEFB and TGGLO. Northern hybridization analysis showed that all of these genes are expressed in whorls 1, 2 and 3 (outer and inner tepals and stamens), thus corroborating the modified ABC model. In addition, these experiments demonstrated that TGGLO is also weakly expressed in carpels, leaves, stems and bracts. Gel retardation assays revealed that TGGLO alone binds to DNA as a homodimer. In contrast, TGDEFA and TGDEFB cannot homodimerize, but make heterodimers with PI. Homodimerization of GLO-like protein has also been reported for lily, suggesting that this phenomenon is conserved within Liliaceae plants or even monocot species.

  15. Transportation

    DTIC Science & Technology

    2007-01-01

    increasing the economic competitive advantage the US holds throughout the world. Deregulation in the early 1980s allowed the freight rail industry to...productivity; however, productivity gains realized from deregulation and logistic improvements may now have reached their limits. If so, the transportation...associated with railroad deregulation has created a situation where freight rail today has little if any excess capacity. As positive economic

  16. ATP-binding cassette transporters in reproduction: a new frontier

    PubMed Central

    Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.

    2016-01-01

    BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as ‘gatekeepers’ at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and

  17. Substituted cysteine accessibility method (SCAM) analysis of the transport domain of human concentrative nucleoside transporter 3 (hCNT3) and other family members reveals features of structural and functional importance

    PubMed Central

    Mulinta, Ras; Yao, Sylvia Y. M.; Ng, Amy M. L.; Cass, Carol E.; Young, James D.

    2017-01-01

    The human SLC28 family of concentrative nucleoside transporter (CNT) proteins has three members: hCNT1, hCNT2, and hCNT3. Na+-coupled hCNT1 and hCNT2 transport pyrimidine and purine nucleosides, respectively, whereas hCNT3 transports both pyrimidine and purine nucleosides utilizing Na+ and/or H+ electrochemical gradients. Escherichia coli CNT family member NupC resembles hCNT1 in permeant selectivity but is H+-coupled. Using heterologous expression in Xenopus oocytes and the engineered cysteine-less hCNT3 protein hCNT3(C−), substituted cysteine accessibility method analysis with the membrane-impermeant thiol reactive reagent p-chloromercuribenzene sulfonate was performed on the transport domain (interfacial helix 2, hairpin 1, putative transmembrane domain (TM) 7, and TM8), as well as TM9 of the scaffold domain of the protein. This systematic scan of the entire C-terminal half of hCNT3(C−) together with parallel studies of the transport domain of wild-type hCNT1 and the corresponding TMs of cysteine-less NupC(C−) yielded results that validate the newly developed structural homology model of CNT membrane architecture for human CNTs, revealed extended conformationally mobile regions within transport-domain TMs, identified pore-lining residues of functional importance, and provided evidence of an emerging novel elevator-type mechanism of transporter function. PMID:28385889

  18. Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor

    PubMed Central

    2013-01-01

    Background Two of the largest fully sequenced prokaryotic genomes are those of the actinobacterium, Streptomyces coelicolor (Sco), and the δ-proteobacterium, Myxococcus xanthus (Mxa), both differentiating, sporulating, antibiotic producing, soil microbes. Although the genomes of Sco and Mxa are the same size (~9 Mbp), Sco has 10% more genes that are on average 10% smaller than those in Mxa. Results Surprisingly, Sco has 93% more identifiable transport proteins than Mxa. This is because Sco has amplified several specific types of its transport protein genes, while Mxa has done so to a much lesser extent. Amplification is substrate- and family-specific. For example, Sco but not Mxa has amplified its voltage-gated ion channels but not its aquaporins and mechano-sensitive channels. Sco but not Mxa has also amplified drug efflux pumps of the DHA2 Family of the Major Facilitator Superfamily (MFS) (49 versus 6), amino acid transporters of the APC Family (17 versus 2), ABC-type sugar transport proteins (85 versus 6), and organic anion transporters of several families. Sco has not amplified most other types of transporters. Mxa has selectively amplified one family of macrolid exporters relative to Sco (16 versus 1), consistent with the observation that Mxa makes more macrolids than does Sco. Conclusions Except for electron transport carriers, there is a poor correlation between the types of transporters found in these two organisms, suggesting that their solutions to differentiative and metabolic needs evolved independently. A number of unexpected and surprising observations are presented, and predictions are made regarding the physiological functions of recognizable transporters as well as the existence of yet to be discovered transport systems in these two important model organisms and their relatives. The results provide insight into the evolutionary processes by which two dissimilar prokaryotes evolved complexity, particularly through selective chromosomal gene

  19. The Team to Address Bariatric Care in Canadian Children (Team ABC3): Team Grant Research Proposal.

    PubMed

    2017-10-05

    Severe obesity (SO) in Canadian children remains poorly understood. However, based on international data, the prevalence of SO appears to be increasing and is associated with a number of psychosocial, bio-mechanical, and cardiometabolic health risks. The purpose of our national Team to Address Bariatric Care in Canadian Children (Team ABC3) is to develop and lead a series of inter-related studies to enhance the understanding and management of SO in Canadian children and adolescents (0-18 years). From 2015 to 2019, Team ABC3 will conduct a series of projects at the regional, provincial, and national levels using multiple methods and study designs to respond to key knowledge gaps by (i) generating evidence on the prevalence of SO and its impact on health services utilization in children using existing Canadian data sources from primary care settings, (ii) exploring contemporary definitions of SO that link with health outcomes, (iii) comparing and contrasting health risks across the continuum of SO, (iv) understanding potential barriers to and facilitators of treatment success in children with SO, and (v) examining innovative lifestyle and behavioral interventions designed to successfully manage SO in children and their families. Furthermore, to examine the impact of innovative interventions on the management SO, we will (vi) evaluate whether adding a health coach, who provides support via text, email, and/or phone, improves children's ability to adhere to a web-based weight management program and (vii) test the feasibility and impact of a community-based weight management program for pre-school children with SO and their parents that combines group-based parenting sessions with in-home visits. Our research aligns with national priorities in obesity research, brings together leading scientists, clinicians, and stakeholders from across Canada, and will inform health services delivery throughout the country to provide the best care possible for children with SO and

  20. LrABCF1, a GCN-type ATP-binding cassette transporter from lilium regale, is involved in defense responses against viral and fungal pathogens

    USDA-ARS?s Scientific Manuscript database

    ATP-binding cassette (ABC) transporters are essential for membrane translocation in diverse biological processes, such as plant development and defense response. Here, a general control non-derepressible (GCN)-type ABC transporter gene, designated LrABCF1, was identified from Cucumber mosaic virus (...

  1. Personal exposure and health risk assessment of carbonyls in family cars and public transports-a comparative study in Nanjing, China.

    PubMed

    Xu, Huaizhou; Zhang, Qin; Song, Ninghui; Guo, Min; Zhang, Shenghu; Ji, Guixiang; Shi, Lili

    2017-11-01

    To evaluate passenger health risks associated with inhalation exposure to carbonyl compounds mainly emitted from decoration materials of vehicles, we tested the carbonyl concentrations in interior air of 20 family cars, 6 metro lines, and 5 buses in the city of Nanjing. To assess non-carcinogenic health risks, we compared the data to the health guidelines of China, US Environmental Protection Agency (EPA), and Office of Environmental Health Hazard Assessment (OEHHA), respectively. To assess carcinogenic risks, we followed a standard approach proposed by the OEHHA to calculate lifetime cancer risks (LCR) of formaldehyde and acetaldehyde for various age groups. The results showed that there are formaldehyde, acetaldehyde, and acrolein concentrations in 40, 35, and 50% of family car samples exceeded the reference concentrations (RfCs) provided by Chinese guidelines (GB/T 27630-2011 and GB/T 18883-2002). Whereas, in the tested public transports, concentrations of the three carbonyls were all below the Chinese RfCs. Fifty and 90% of family cars had formaldehyde and acrolein concentrations exceeding the guidelines of OEHHA. Only one public transport sample (one bus) possesses formaldehyde and acetaldehyde concentrations above the chronic inhalation reference exposure limits (RELs). Furthermore, the assessments of carcinogenic risk of formaldehyde and acetaldehyde showed that lifetime cancer risks were higher than the limits of EPA for some family cars and public transports. In the study, buses and metros appear to be relatively clean environments, with total carbonyl concentrations that do not exceed 126 μg/m 3 . In family cars, carbonyl levels showed significant variations from 6.1 to 811 μg/m 3 that was greatly influenced by direct emissions from materials inside the vehicles. Public transports seemed to be the first choice for resident trips as compared to family cars. Graphical abstract ᅟ.

  2. Arnold Diffusion of Charged Particles in ABC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Luque, Alejandro; Peralta-Salas, Daniel

    2017-06-01

    We prove the existence of diffusing solutions in the motion of a charged particle in the presence of ABC magnetic fields. The equations of motion are modeled by a 3DOF Hamiltonian system depending on two parameters. For small values of these parameters, we obtain a normally hyperbolic invariant manifold and we apply the so-called geometric methods for a priori unstable systems developed by A. Delshams, R. de la Llave and T.M. Seara. We characterize explicitly sufficient conditions for the existence of a transition chain of invariant tori having heteroclinic connections, thus obtaining global instability (Arnold diffusion). We also check the obtained conditions in a computer-assisted proof. ABC magnetic fields are the simplest force-free-type solutions of the magnetohydrodynamics equations with periodic boundary conditions, and can be considered as an elementary model for the motion of plasma-charged particles in a tokamak.

  3. Automated brainstem co-registration (ABC) for MRI.

    PubMed

    Napadow, Vitaly; Dhond, Rupali; Kennedy, David; Hui, Kathleen K S; Makris, Nikos

    2006-09-01

    Group data analysis in brainstem neuroimaging is predicated on accurate co-registration of anatomy. As the brainstem is comprised of many functionally heterogeneous nuclei densely situated adjacent to one another, relatively small errors in co-registration can manifest in increased variance or decreased sensitivity (or significance) in detecting activations. We have devised a 2-stage automated, reference mask guided registration technique (Automated Brainstem Co-registration, or ABC) for improved brainstem co-registration. Our approach utilized a brainstem mask dataset to weight an automated co-registration cost function. Our method was validated through measurement of RMS error at 12 manually defined landmarks. These landmarks were also used as guides for a secondary manual co-registration option, intended for outlier individuals that may not adequately co-register with our automated method. Our methodology was tested on 10 healthy human subjects and compared to traditional co-registration techniques (Talairach transform and automated affine transform to the MNI-152 template). We found that ABC had a significantly lower mean RMS error (1.22 +/- 0.39 mm) than Talairach transform (2.88 +/- 1.22 mm, mu +/- sigma) and the global affine (3.26 +/- 0.81 mm) method. Improved accuracy was also found for our manual-landmark-guided option (1.51 +/- 0.43 mm). Visualizing individual brainstem borders demonstrated more consistent and uniform overlap for ABC compared to traditional global co-registration techniques. Improved robustness (lower susceptibility to outliers) was demonstrated with ABC through lower inter-subject RMS error variance compared with traditional co-registration methods. The use of easily available and validated tools (AFNI and FSL) for this method should ease adoption by other investigators interested in brainstem data group analysis.

  4. Goethe and the ABC model of flower development.

    PubMed

    Coen, E

    2001-06-01

    About 10 years ago, the ABC model for the genetic control of flower development was proposed. This model was initially based on the analysis of mutant flowers but has subsequently been confirmed by molecular analysis. This paper describes the 200-year history behind this model, from the late 18th century when Goethe arrived at his idea of plant metamorphosis, to the genetic studies on flower mutants carried out on Arabidopsis and Antirrhinum in the late 20th century.

  5. A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos.

    PubMed

    Hu, Marian Y; Yan, Jia-Jiun; Petersen, Inga; Himmerkus, Nina; Bleich, Markus; Stumpp, Meike

    2018-05-01

    Efficient pH regulation is a fundamental requisite of all calcifying systems in animals and plants but with the underlying pH regulatory mechanisms remaining largely unknown. Using the sea urchin larva, this work identified the SLC4 HCO 3 - transporter family member SpSlc4a10 to be critically involved in the formation of an elaborate calcitic endoskeleton. SpSlc4a10 is specifically expressed by calcifying primary mesenchyme cells with peak expression during de novo formation of the skeleton. Knock-down of SpSlc4a10 led to pH regulatory defects accompanied by decreased calcification rates and skeleton deformations. Reductions in seawater pH, resembling ocean acidification scenarios, led to an increase in SpSlc4a10 expression suggesting a compensatory mechanism in place to maintain calcification rates. We propose a first pH regulatory and HCO 3 - concentrating mechanism that is fundamentally linked to the biological precipitation of CaCO 3 . This knowledge will help understanding biomineralization strategies in animals and their interaction with a changing environment. © 2018, Hu et al.

  6. A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos

    PubMed Central

    Yan, Jia-Jiun; Petersen, Inga; Himmerkus, Nina; Bleich, Markus; Stumpp, Meike

    2018-01-01

    Efficient pH regulation is a fundamental requisite of all calcifying systems in animals and plants but with the underlying pH regulatory mechanisms remaining largely unknown. Using the sea urchin larva, this work identified the SLC4 HCO3- transporter family member SpSlc4a10 to be critically involved in the formation of an elaborate calcitic endoskeleton. SpSlc4a10 is specifically expressed by calcifying primary mesenchyme cells with peak expression during de novo formation of the skeleton. Knock-down of SpSlc4a10 led to pH regulatory defects accompanied by decreased calcification rates and skeleton deformations. Reductions in seawater pH, resembling ocean acidification scenarios, led to an increase in SpSlc4a10 expression suggesting a compensatory mechanism in place to maintain calcification rates. We propose a first pH regulatory and HCO3- concentrating mechanism that is fundamentally linked to the biological precipitation of CaCO3. This knowledge will help understanding biomineralization strategies in animals and their interaction with a changing environment. PMID:29714685

  7. The drug:H+ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione:H+ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts

    PubMed Central

    2013-01-01

    Background The Saccharomyces cerevisiae 14-spanner Drug:H+ Antiporter family 2 (DHA2) are transporters of the Major Facilitator Superfamily (MFS) involved in multidrug resistance (MDR). Although poorly characterized, DHA2 family members were found to participate in the export of structurally and functionally unrelated compounds or in the uptake of amino acids into the vacuole or the cell. In S. cerevisiae, the four ARN/SIT family members encode siderophore transporters and the two GEX family members encode glutathione extrusion pumps. The evolutionary history of DHA2, ARN and GEX genes, encoding 14-spanner MFS transporters, is reconstructed in this study. Results The translated ORFs of 31 strains from 25 hemiascomycetous species, including 10 pathogenic Candida species, were compared using a local sequence similarity algorithm. The constraining and traversing of a network representing the pairwise similarity data gathered 355 full size proteins and retrieved ARN and GEX family members together with DHA2 transporters, suggesting the existence of a close phylogenetic relationship among these 14-spanner major facilitators. Gene neighbourhood analysis was combined with tree construction methodologies to reconstruct their evolutionary history and 7 DHA2 gene lineages, 5 ARN gene lineages, and 1 GEX gene lineage, were identified. The S. cerevisiae DHA2 proteins Sge1, Azr1, Vba3 and Vba5 co-clustered in a large phylogenetic branch, the ATR1 and YMR279C genes were proposed to be paralogs formed during the Whole Genome Duplication (WGD) whereas the closely related ORF YOR378W resides in its own lineage. Homologs of S. cerevisiae DHA2 vacuolar proteins Vba1, Vba2 and Vba4 occur widespread in the Hemiascomycetes. Arn1/Arn2 homologs were only found in species belonging to the Saccharomyces complex and are more abundant in the pre-WGD species. Arn4 homologs were only found in sub-telomeric regions of species belonging to the Sacharomyces sensu strictu group (SSSG). Arn3 type

  8. Object Detection Based on Template Matching through Use of Best-So-Far ABC

    PubMed Central

    2014-01-01

    Best-so-far ABC is a modified version of the artificial bee colony (ABC) algorithm used for optimization tasks. This algorithm is one of the swarm intelligence (SI) algorithms proposed in recent literature, in which the results demonstrated that the best-so-far ABC can produce higher quality solutions with faster convergence than either the ordinary ABC or the current state-of-the-art ABC-based algorithm. In this work, we aim to apply the best-so-far ABC-based approach for object detection based on template matching by using the difference between the RGB level histograms corresponding to the target object and the template object as the objective function. Results confirm that the proposed method was successful in both detecting objects and optimizing the time used to reach the solution. PMID:24812556

  9. The Human SLC25A33 and SLC25A36 Genes of Solute Carrier Family 25 Encode Two Mitochondrial Pyrimidine Nucleotide Transporters*

    PubMed Central

    Di Noia, Maria Antonietta; Todisco, Simona; Cirigliano, Angela; Rinaldi, Teresa; Agrimi, Gennaro; Iacobazzi, Vito; Palmieri, Ferdinando

    2014-01-01

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown. PMID:25320081

  10. The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters.

    PubMed

    Di Noia, Maria Antonietta; Todisco, Simona; Cirigliano, Angela; Rinaldi, Teresa; Agrimi, Gennaro; Iacobazzi, Vito; Palmieri, Ferdinando

    2014-11-28

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Creating an iPhone application for collecting continuous ABC data.

    PubMed

    Whiting, Seth W; Dixon, Mark R

    2012-01-01

    This paper provides an overview and task analysis for creating a continuous ABC data-collection application using Xcode on a Mac computer. Behavior analysts can program an ABC data collection system, complete with a customized list of target clients, antecedents, behaviors, and consequences to be recorded, and have the data automatically sent to an e-mail account after observations have concluded. Further suggestions are provided to customize the ABC data- collection system for individual preferences and clinical needs.

  12. Glutathione Utilization by Candida albicans Requires a Functional Glutathione Degradation (DUG) Pathway and OPT7, an Unusual Member of the Oligopeptide Transporter Family

    PubMed Central

    Desai, Prashant Ramesh; Thakur, Anil; Ganguli, Dwaipayan; Paul, Sanjoy; Morschhäuser, Joachim; Bachhawat, Anand K.

    2011-01-01

    Candida albicans lacks the ability to survive within its mammalian host in the absence of endogenous glutathione biosynthesis. To examine the ability of this yeast to utilize exogenous glutathione, we exploited the organic sulfur auxotrophy of C. albicans met15Δ strains. We observed that glutathione is utilized efficiently by the alternative pathway of glutathione degradation (DUG pathway). The major oligopeptide transporters OPT1–OPT5 of C. albicans that were most similar to the known yeast glutathione transporters were not found to contribute to glutathione transport to any significant extent. A genomic library approach to identify the glutathione transporter of C. albicans yielded OPT7 as the primary glutathione transporter. Biochemical studies on OPT7 using radiolabeled GSH uptake revealed a Km of 205 μm, indicating that it was a high affinity glutathione transporter. OPT7 is unusual in several aspects. It is the most remote member to known yeast glutathione transporters, lacks the two highly conserved cysteines in the family that are known to be crucial in trafficking, and also has the ability to take up tripeptides. The transporter was regulated by sulfur sources in the medium. OPT7 orthologues were prevalent among many pathogenic yeasts and fungi and formed a distinct cluster quite remote from the Saccharomyces cerevisiae HGT1 glutathione transporter cluster. In vivo experiments using a systemic model of candidiasis failed to detect expression of OPT7 in vivo, and strains disrupted either in the degradation (dug3Δ) or transport (opt7Δ) of glutathione failed to show a defect in virulence. PMID:21994941

  13. Direct Spectroscopic Detection of ATP Turnover Reveals Mechanistic Divergence of ABC Exporters.

    PubMed

    Collauto, Alberto; Mishra, Smriti; Litvinov, Aleksei; Mchaourab, Hassane S; Goldfarb, Daniella

    2017-08-01

    We have applied high-field (W-band) pulse electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR)-detected nuclear magnetic resonance (EDNMR) to characterize the coordination sphere of the Mn 2+ co-factor in the nucleotide binding sites (NBSs) of ABC transporters. MsbA and BmrCD are two efflux transporters hypothesized to represent divergent catalytic mechanisms. Our results reveal distinct coordination of Mn 2+ to ATP and transporter residues in the consensus and degenerate NBSs of BmrCD. In contrast, the coordination of Mn 2+ at the two NBSs of MsbA is similar, which provides a mechanistic rationale for its higher rate constant of ATP hydrolysis relative to BmrCD. Direct detection of vanadate ion, trapped in a high-energy post-hydrolysis intermediate, further supports the notion of asymmetric hydrolysis by the two NBSs of BmrCD. The integrated spectroscopic approach presented here, which link energy input to conformational dynamics, can be applied to a variety of systems powered by ATP turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Independent Transport and Sorting of Functionally Distinct Protein Families in Tetrahymena thermophila Dense Core Secretory Granules▿ †

    PubMed Central

    Rahaman, Abdur; Miao, Wei; Turkewitz, Aaron P.

    2009-01-01

    Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal β/γ-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, ΔGRT1 ΔGRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in ΔGRT1 ΔGRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from ΔGRT1 ΔGRT2 cells appear less adhesive than those from the wild type. PMID:19684282

  15. MetaABC--an integrated metagenomics platform for data adjustment, binning and clustering.

    PubMed

    Su, Chien-Hao; Hsu, Ming-Tsung; Wang, Tse-Yi; Chiang, Sufeng; Cheng, Jen-Hao; Weng, Francis C; Kao, Cheng-Yan; Wang, Daryi; Tsai, Huai-Kuang

    2011-08-15

    MetaABC is a metagenomic platform that integrates several binning tools coupled with methods for removing artifacts, analyzing unassigned reads and controlling sampling biases. It allows users to arrive at a better interpretation via series of distinct combinations of analysis tools. After execution, MetaABC provides outputs in various visual formats such as tables, pie and bar charts as well as clustering result diagrams. MetaABC source code and documentation are available at http://bits2.iis.sinica.edu.tw/MetaABC/ CONTACT: dywang@gate.sinica.edu.tw; hktsai@iis.sinica.edu.tw Supplementary data are available at Bioinformatics online.

  16. Overexpression of Both ERG11 and ABC2 Genes Might Be Responsible for Itraconazole Resistance in Clinical Isolates of Candida krusei

    PubMed Central

    He, Xiaoyuan; Zhao, Mingfeng; Chen, Jinyan; Wu, Rimao; Zhang, Jianlei; Cui, Rui; Jiang, Yanyu; Chen, Jie; Cao, Xiaoli; Xing, Yi; Zhang, Yuchen; Meng, Juanxia; Deng, Qi; Sui, Tao

    2015-01-01

    Objective To study the main molecular mechanisms responsible for itraconazole resistance in clinical isolates of Candida krusei. Methods The 14α-demethylases encoded by ERG11 gene in the 16 C.krusei clinical isolates were amplified by polymerase chain reaction (PCR), and their nucleotide sequences were determined to detect point mutations. Meanwhile, ERG11 and efflux transporters (ABC1 and ABC2) genes were determined by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) for their expression in itraconazole-resistant (R), itraconazole-susceptible dose dependent (SDD) and itraconazole-susceptible (S) C.krusei at the mRNA level. Results We found 7-point mutations in ERG11 gene of all the C.krusei clinical isolates, including 6 synonymous mutations and 1 missense mutation (C44T). However, the missense mutation was found in the three groups. The mRNA levels of ERG11 gene in itraconazole-resistant isolates showed higher expression compared with itraconazole-susceptible dose dependent and itraconazole-susceptible ones (P = 0.015 and P = 0.002 respectively). ABC2 gene mRNA levels in itraconazole-resistant group was significantly higher than the other two groups, and the levels of their expression in the isolates appeared to increase with the decrease of susceptibility to itraconazole (P = 0.007 in SDD compared with S, P = 0.016 in SDD with R, and P<0.001 in S with R respectively). While ABC1 gene presented lower expression in itraconazole resistant strains. However, the mRNA levels of ERG11, ABC1 and ABC2 in a C.krusei (CK10) resistant to both itraconazole and voriconazole were expressed highest in all the itraconazole-resistant isolates. Conclusions There are ERG11 gene polymorphisms in clinical isolates of C.krusei. ERG11 gene mutations may not be involved in the development of itraconazole resistance in C.krusei. ERG11 and ABC2 overexpression might be responsible for the acquired itraconazole resistance of these clinical isolates. PMID

  17. Characterization of a novel domain ‘GATE’ in the ABC protein DrrA and its role in drug efflux by the DrrAB complex

    SciTech Connect

    Zhang, Han; Rahman, Sadia; Li, Wen

    2015-03-27

    A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homologmore » MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis. - Highlights: • A novel domain ‘GATE’ is identified in the ABC protein DrrA. • GATE shows high sequence and structural conservation among diverse ABC proteins. • GATE is located outside of the previously studied ATP binding and hydrolysis motifs. • Conserved GATE residues are critical for stability of DrrAB and for ATP catalysis.« less

  18. ZitB (YbgR), a Member of the Cation Diffusion Facilitator Family, Is an Additional Zinc Transporter in Escherichia coli

    PubMed Central

    Grass, Gregor; Fan, Bin; Rosen, Barry P.; Franke, Sylvia; Nies, Dietrich H.; Rensing, Christopher

    2001-01-01

    The Escherichia coli zitB gene encodes a Zn(II) transporter belonging to the cation diffusion facilitator family. ZitB is specifically induced by zinc. ZitB expression on a plasmid rendered zntA-disrupted E. coli cells more resistant to zinc, and the cells exhibited reduced accumulation of 65Zn, suggesting ZitB-mediated efflux of zinc. PMID:11443104

  19. Computational models for predicting interactions with membrane transporters.

    PubMed

    Xu, Y; Shen, Q; Liu, X; Lu, J; Li, S; Luo, C; Gong, L; Luo, X; Zheng, M; Jiang, H

    2013-01-01

    Membrane transporters, including two members: ATP-binding cassette (ABC) transporters and solute carrier (SLC) transporters are proteins that play important roles to facilitate molecules into and out of cells. Consequently, these transporters can be major determinants of the therapeutic efficacy, toxicity and pharmacokinetics of a variety of drugs. Considering the time and expense of bio-experiments taking, research should be driven by evaluation of efficacy and safety. Computational methods arise to be a complementary choice. In this article, we provide an overview of the contribution that computational methods made in transporters field in the past decades. At the beginning, we present a brief introduction about the structure and function of major members of two families in transporters. In the second part, we focus on widely used computational methods in different aspects of transporters research. In the absence of a high-resolution structure of most of transporters, homology modeling is a useful tool to interpret experimental data and potentially guide experimental studies. We summarize reported homology modeling in this review. Researches in computational methods cover major members of transporters and a variety of topics including the classification of substrates and/or inhibitors, prediction of protein-ligand interactions, constitution of binding pocket, phenotype of non-synonymous single-nucleotide polymorphisms, and the conformation analysis that try to explain the mechanism of action. As an example, one of the most important transporters P-gp is elaborated to explain the differences and advantages of various computational models. In the third part, the challenges of developing computational methods to get reliable prediction, as well as the potential future directions in transporter related modeling are discussed.

  20. Design of the storage location based on the ABC analyses

    NASA Astrophysics Data System (ADS)

    Jemelka, Milan; Chramcov, Bronislav; Kříž, Pavel

    2016-06-01

    The paper focuses on process efficiency and saving storage costs. Maintaining inventory through putaway strategy takes personnel time and costs money. The aim is to control inventory in the best way. The ABC classification based on Villefredo Pareto theory is used for a design of warehouse layout. New design of storage location reduces the distance of fork-lifters, total costs and it increases inventory process efficiency. The suggested solutions and evaluation of achieved results are described in detail. Proposed solutions were realized in real warehouse operation.

  1. Drift of Phase Fluctuations in the ABC Model

    NASA Astrophysics Data System (ADS)

    Bertini, Lorenzo; Buttà, Paolo

    2013-07-01

    In a recent work, Bodineau and Derrida analyzed the phase fluctuations in the ABC model. In particular, they computed the asymptotic variance and, on the basis of numerical simulations, they conjectured the presence of a drift, which they guessed to be an antisymmetric function of the three densities. By assuming the validity of the fluctuating hydrodynamic approximation, we prove the presence of such a drift, providing an analytical expression for it. This expression is then shown to be an antisymmetric function of the three densities. The antisymmetry of the drift can also be inferred from a symmetry property of the underlying microscopic dynamics.

  2. Gyroid structure via highly asymmetric ABC and AB blends

    NASA Astrophysics Data System (ADS)

    Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; Kim, Jin Kon

    Gyroid structures are very important because of their co-continuous and network structures. However, a block copolymer shows gyroid structures only at 35 % volume fraction of one block. In this study, we designed ABC/AB blend system. B (polystyrene (PS)) is the matrix, while A (polyisoprene (PI)) and C (poly(2-vinyl pridine (P2VP)) are the core part. This blend shows gyroid structures at 20 % volume fraction, that is smaller than that observed at diblock copolymer. Morphologies of neat block copolymers and blends were characterized by TEM and small angle X-ray scattering.

  3. [ABC supplies classification: a managment tool of costs in nursing].

    PubMed

    Lourenço, Karina Gomes; Castilho, Valéria

    2006-01-01

    The implementation of costs management systems has been extremely helpful to healthcare area owing to their efficacy in cutting expenditures as well as improving service quality. The ABC classification is an applied strategy to stocktaking and control. The research, which consists of an exploratory/descriptive quantitative analysis, has been carried out in order to identify, in a year time period, the demand for supplies at Universidade de Sao Paulo's Hospital. Of 1938 classified materials, 67 itens had been classified that they correspond to the materials with bigger costs for the hospital. 31.3% of these A-Class supplies catalogued items are the nursing materials, more used for the nursing team.

  4. Lignin, mitochondrial family, and photorespiratory transporter classification as case studies in using co-expression, co-response, and protein locations to aid in identifying transport functions

    PubMed Central

    Tohge, Takayuki; Fernie, Alisdair R.

    2014-01-01

    Whole genome sequencing and the relative ease of transcript profiling have facilitated the collection and data warehousing of immense quantities of expression data. However, a substantial proportion of genes are not yet functionally annotated a problem which is particularly acute for transport proteins. In Arabidopsis, for example, only a minor fraction of the estimated 700 intracellular transporters have been identified at the molecular genetic level. Furthermore it is only within the last couple of years that critical genes such as those encoding the final transport step required for the long distance transport of sucrose and the first transporter of the core photorespiratory pathway have been identified. Here we will describe how transcriptional coordination between genes of known function and non-annotated genes allows the identification of putative transporters on the premise that such co-expressed genes tend to be functionally related. We will additionally extend this to include the expansion of this approach to include phenotypic information from other levels of cellular organization such as proteomic and metabolomic data and provide case studies wherein this approach has successfully been used to fill knowledge gaps in important metabolic pathways and physiological processes. PMID:24672529

  5. The evolutionary history and tissue mapping of amino acid transporters belonging to solute carrier families SLC32, SLC36, and SLC38.

    PubMed

    Sundberg, Björn E; Wååg, Elin; Jacobsson, Josefin A; Stephansson, Olga; Rumaks, Juris; Svirskis, Simons; Alsiö, Johan; Roman, Erika; Ebendal, Ted; Klusa, Vija; Fredriksson, Robert

    2008-06-01

    Members of the solute carrier families (SLC) 32, 36, and 38, together also designated the beta-group of SLCs, are known to transport neutral amino acids. In this paper, we show that these three families were present before the split of the animal lineage and that they are likely to share a common decent. We also show that the APF transporters found in plants are most likely homologous to the mammalian beta-group, suggesting that this type of transporters arouse early in the evolution of eukaryotes. We performed detailed tissue expression analysis of all the members of the beta-group in rat and found several examples of highly specific expression patterns, with SLC38A7 being exclusively found in liver, SLC38A5 in blood, and SLC38A4 in muscle and liver. Moreover, we found that SLC38A10 is expressed in several endocrine organs. We also found that SLC38A1 is highly up regulated in the cortex from rats treated with diazepam and that SLC38A2 is significantly down regulated in the same tissue. In addition, we performed a detailed expression analysis of SLC38A1 and SLC38A6 in mouse brain using in situ hybridization, which showed that both these transporters are widely expressed in the brain.

  6. Determination of S-methyl-L-methionine (SMM) from Brassicaceae Family Vegetables and Characterization of the Intestinal Transport of SMM by Caco-2 Cells.

    PubMed

    Song, Ji-Hoon; Lee, Hae-Rim; Shim, Soon-Mi

    2017-01-01

    The objectives of the current study were to determine S-methyl-L-methionine (SMM) from various Brassicaceae family vegetables by using validated analytical method and to characterize the intestinal transport mechanism of SMM by the Caco-2 cells. The SMM is well known to provide therapeutic activity in peptic ulcers. The amount of SMM from various Brassicaceae family vegetables ranged from 89.08 ± 1.68 μg/g to 535.98 ± 4.85 μg/g of dry weight by using validated ultra-performance liquid chromatography-electrospray ionization-mass spectrometry method. For elucidating intestinal transport mechanism, the cells were incubated with or without transport inhibitors, energy source, or a metabolic inhibitor. Phloridzin and verapamil as inhibitors of sodium glucose transport protein (SGLT1) and P-glycoprotein, respectively, were not responsible for cellular uptake of SMM. Glucose and sodium azide were not affected by the cellular accumulation of SMM. The efflux ratio of SMM was 0.26, implying that it is not effluxed through Caco-2 cells. The apparent coefficient permeability (P app ) of SMM was 4.69 × 10 -5 cm/s, indicating that it will show good oral absorption in in vivo. © 2016 Institute of Food Technologists®.

  7. Deciphering the Routes of invasion of Drosophila suzukii by Means of ABC Random Forest.

    PubMed

    Fraimout, Antoine; Debat, Vincent; Fellous, Simon; Hufbauer, Ruth A; Foucaud, Julien; Pudlo, Pierre; Marin, Jean-Michel; Price, Donald K; Cattel, Julien; Chen, Xiao; Deprá, Marindia; François Duyck, Pierre; Guedot, Christelle; Kenis, Marc; Kimura, Masahito T; Loeb, Gregory; Loiseau, Anne; Martinez-Sañudo, Isabel; Pascual, Marta; Polihronakis Richmond, Maxi; Shearer, Peter; Singh, Nadia; Tamura, Koichiro; Xuéreb, Anne; Zhang, Jinping; Estoup, Arnaud

    2017-04-01

    Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved the reconstruction of invasion routes, but can be computationally expensive. We use our study to illustrate the use of a new, more efficient, ABC method, ABC random forest (ABC-RF) and compare it to a standard ABC method (ABC-LDA). We find that Japan emerges as the most probable source of the earliest recorded invasion into Hawaii. Southeast China and Hawaii together are the most probable sources of populations in western North America, which then in turn served as sources for those in eastern North America. European populations are genetically more homogeneous than North American populations, and their most probable source is northeast China, with evidence of limited gene flow from the eastern US as well. All introduced populations passed through bottlenecks, and analyses reveal five distinct admixture events. These findings can inform hypotheses concerning how this species evolved between different and independent source and invasive populations. Methodological comparisons indicate that ABC-RF and ABC-LDA show concordant results if ABC-LDA is based on a large number of simulated datasets but that ABC-RF out-performs ABC-LDA when using a comparable and more manageable number of simulated datasets, especially when analyzing complex introduction scenarios. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    PubMed

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-01-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.

  9. Opioid transport by ATP-binding cassette transporters at the blood-brain barrier: implications for neuropsychopharmacology.

    PubMed

    Tournier, Nicolas; Declèves, Xavier; Saubaméa, Bruno; Scherrmann, Jean-Michel; Cisternino, Salvatore

    2011-01-01

    Some of the ATP-binding cassette (ABC) transporters like P-glycoprotein (P-gp; ABCB1, MDR1), BCRP (ABCG2) and MRPs (ABCCs) that are present at the blood-brain barrier (BBB) influence the brain pharmacokinetics (PK) of their substrates by restricting their uptake or enhancing their clearance from the brain into the blood, which has consequences for their CNS pharmacodynamics (PD). Opioid drugs have been invaluable tools for understanding the PK-PD relationships of these ABC-transporters. The effects of morphine, methadone and loperamide on the CNS are modulated by P-gp. This review examines the ways in which other opioid drugs and some of their active metabolites interact with ABC transporters and suggests new mechanisms that may be involved in the variability of the response of the CNS to these drugs like carrier-mediated system belonging to the solute carrier (SLC) superfamily. Exposure to opioids may also alter the expression of ABC transporters. P-gp can be overproduced during morphine treatment, suggesting that the drug has a direct or, more likely, an indirect action. Variations in cerebral neurotransmitters during exposure to opioids and the release of cytokines during pain could be new endogenous stimuli affecting transporter synthesis. This review concludes with an analysis of the pharmacotherapeutic and clinical impacts of the interactions between ABC transporters and opioids.

  10. Parents' Perspectives on Braille Literacy: Results from the ABC Braille Study

    ERIC Educational Resources Information Center

    Kamei-Hannan, Cheryl; Sacks, Sharon Zell

    2012-01-01

    Introduction: Parents who were the primary caretakers of children in the Alphabetic and Contracted Braille Study (ABC Braille Study) revealed their perspectives about braille literacy. Methods: A 30-item questionnaire was constructed by the ABC Braille research team, and researchers conducted telephone interviews with 31 parents who were the…

  11. Abrasive wear behavior of heat-treated ABC-silicon carbide

    SciTech Connect

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  12. ABCE1 is essential for S phase progression in human cells

    PubMed Central

    Toompuu, Marina; Kärblane, Kairi; Pata, Pille; Truve, Erkki; Sarmiento, Cecilia

    2016-01-01

    ABSTRACT ABCE1 is a highly conserved protein universally present in eukaryotes and archaea, which is crucial for the viability of different organisms. First identified as RNase L inhibitor, ABCE1 is currently recognized as an essential translation factor involved in several stages of eukaryotic translation and ribosome biogenesis. The nature of vital functions of ABCE1, however, remains unexplained. Here, we study the role of ABCE1 in human cell proliferation and its possible connection to translation. We show that ABCE1 depletion by siRNA results in a decreased rate of cell growth due to accumulation of cells in S phase, which is accompanied by inefficient DNA synthesis and reduced histone mRNA and protein levels. We infer that in addition to the role in general translation, ABCE1 is involved in histone biosynthesis and DNA replication and therefore is essential for normal S phase progression. In addition, we analyze whether ABCE1 is implicated in transcript-specific translation via its association with the eIF3 complex subunits known to control the synthesis of cell proliferation-related proteins. The expression levels of a few such targets regulated by eIF3A, however, were not consistently affected by ABCE1 depletion. PMID:26985706

  13. So, You Need To Justify Your Existing ABC Program (or Lobby for a New One).

    ERIC Educational Resources Information Center

    Walsh, Jean Terry; Gillis, Lee

    1998-01-01

    Advice for adventure-based counseling (ABC) programs seeking funding includes setting realistic goals, designing an evaluation that matches program resources, and keeping it simple. Low recidivism is most important to grantors. Published research on ABC is scarce, but on-site process research generates useful data, and local schools and agencies…

  14. The Role of Activity Based Costing (ABC) in Educational Support Services: A White Paper.

    ERIC Educational Resources Information Center

    Edds, Daniel B.

    Many front-line managers who are assuming more financial responsibility for their organizations find traditional cost accounting inadequate for their needs and are turning to Activity Based Costing (ABC). ABC is not a financial reporting system to serve the needs of regulatory agencies, but a tool that tracks costs from the general ledger…

  15. The ABCs of Activity-Based Costing: A Cost Containment and Reallocation Tool.

    ERIC Educational Resources Information Center

    Turk, Frederick J.

    1992-01-01

    This article describes activity-based costing (ABC) and how this tool may help management understand the costs of major activities and identify possible alternatives. Also discussed are the traditional costing systems used by higher education and ways of applying ABC to higher education. (GLR)

  16. Structural Validity of the Movement ABC-2 Test: Factor Structure Comparisons across Three Age Groups

    ERIC Educational Resources Information Center

    Schulz, Joerg; Henderson, Sheila E.; Sugden, David A.; Barnett, Anna L.

    2011-01-01

    Background: The Movement ABC test is one of the most widely used assessments in the field of Developmental Coordination Disorder (DCD). Improvements to the 2nd edition of the test (M-ABC-2) include an extension of the age range and reduction in the number of age bands as well as revision of tasks. The total test score provides a measure of motor…

  17. Creating an iPhone Application for Collecting Continuous ABC Data

    ERIC Educational Resources Information Center

    Whiting, Seth W.; Dixon, Mark R.

    2012-01-01

    This paper provides an overview and task analysis for creating a continuous ABC data- collection application using Xcode on a Mac computer. Behavior analysts can program an ABC data collection system, complete with a customized list of target clients, antecedents, behaviors, and consequences to be recorded, and have the data automatically sent to…

  18. How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family

    PubMed Central

    Magalhaes, Jurandir V.

    2010-01-01

    Background Aluminium (Al) toxicity is a major agricultural constraint for crop cultivation on acid soils, which comprise a large portion of the world's arable land. One of the most widely accepted mechanisms of Al tolerance in plants is based on Al-activated organic acid release into the rhizosphere, with organic acids forming stable, non-toxic complexes with Al. This mechanism has recently been validated by the isolation of bona-fide Al-tolerance genes in crop species, which encode membrane transporters that mediate Al-activated organic acid release leading to Al exclusion from root apices. In crop species such as sorghum and barley, members in the multidrug and toxic compound extrusion (MATE) family underlie Al tolerance by a mechanism based on Al-activated citrate release. Scope and Conclusions The study of Al tolerance in plants as conferred by MATE family members is in its infancy. Therefore, much is yet to be discovered about the functional diversity and evolutionary dynamics that led MATE proteins to acquire transport properties conducive to Al tolerance in plants. In this paper we review the major characteristics of transporters in the MATE family and will relate this knowledge to Al tolerance in plants. The MATE family is clearly extremely flexible with respect to substrate specificity, which raises the possibility that Al tolerance as encoded by MATE proteins may not be restricted to Al-activated citrate release in plant species. There are also indications that regulatory loci may be of pivotal importance to fully explore the potential for Al-tolerance improvement based on MATE genes. PMID:20511585

  19. Genome-Wide Analysis and Expression Profiling of the SUC and SWEET Gene Families of Sucrose Transporters in Oilseed Rape (Brassica napus L.)

    PubMed Central

    Jian, Hongju; Lu, Kun; Yang, Bo; Wang, Tengyue; Zhang, Li; Zhang, Aoxiang; Wang, Jia; Liu, Liezhao; Qu, Cunmin; Li, Jiana

    2016-01-01

    Sucrose is the principal transported product of photosynthesis from source leaves to sink organs. SUTs/SUCs (sucrose transporters or sucrose carriers) and SWEETs (Sugars Will Eventually be Exported Transporters) play significant central roles in phloem loading and unloading. SUTs/SUCs and SWEETs are key players in sucrose translocation and are associated with crop yields. The SUT/SUC and SWEET genes have been characterized in several plant species, but a comprehensive analysis of these two gene families in oilseed rape has not yet been reported. In our study, 22 and 68 members of the SUT/SUCs and SWEET gene families, respectively, were identified in the oilseed rape (Brassica napus) genome through homology searches. An analysis of the chromosomal distribution, phylogenetic relationships, gene structures, motifs and the cis-acting regulatory elements in the promoters of BnSUC and BnSWEET genes were analyzed. Furthermore, we examined the expression of the 18 BnSUC and 16 BnSWEET genes in different tissues of “ZS11” and the expression of 9 BnSUC and 7 BnSWEET genes in “ZS11” under various conditions, including biotic stress (Sclerotinia sclerotiorum), abiotic stresses (drought, salt and heat), and hormone treatments (abscisic acid, auxin, cytokinin, brassinolide, gibberellin, and salicylic acid). In conclusion, our study provides the first comprehensive analysis of the oilseed rape SUC and SWEET gene families. Information regarding the phylogenetic relationships, gene structure and expression profiles of the SUC and SWEET genes in the different tissues of oilseed rape helps to identify candidates with potential roles in specific developmental processes. Our study advances our understanding of the important roles of sucrose transport in oilseed rape. PMID:27733861

  20. The short version of the Activities-specific Balance Confidence (ABC) scale: its validity, reliability, and relationship to balance impairment and falls in older adults.

    PubMed

    Schepens, Stacey; Goldberg, Allon; Wallace, Melissa

    2010-01-01

    A shortened version of the ABC 16-item scale (ABC-16), the ABC-6, has been proposed as an alternative balance confidence measure. We investigated whether the ABC-6 is a valid and reliable measure of balance confidence and examined its relationship to balance impairment and falls in older adults. Thirty-five community-dwelling older adults completed the ABC-16, including the 6 questions of the ABC-6. They also completed the following clinical balance tests: unipedal stance time (UST), functional reach (FR), Timed Up and Go (TUG), and maximum step length (MSL). Participants reported 12-month falls history. Balance confidence on the ABC-6 was significantly lower than on the ABC-16, however scores were highly correlated. Fallers reported lower balance confidence than non-fallers as measured by the ABC-6 scale, but confidence did not differ between the groups with the ABC-16. The ABC-6 significantly correlated with all balance tests assessed and number of falls. The ABC-16 significantly correlated with all balance tests assessed, but not with number of falls. Test-retest reliability for the ABC-16 and ABC-6 was good to excellent. The ABC-6 is a valid and reliable measure of balance confidence in community-dwelling older adults, and shows stronger relationships to falls than does the ABC-16. The ABC-6 may be a more useful balance confidence assessment tool than the ABC-16. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  1. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    PubMed

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for

  2. Application of activity-based costing (ABC) for a Peruvian NGO healthcare provider.

    PubMed

    Waters, H; Abdallah, H; Santillán, D

    2001-01-01

    This article describes the application of activity-based costing (ABC) to calculate the unit costs of the services for a health care provider in Peru. While traditional costing allocates overhead and indirect costs in proportion to production volume or to direct costs, ABC assigns costs through activities within an organization. ABC uses personnel interviews to determine principal activities and the distribution of individual's time among these activities. Indirect costs are linked to services through time allocation and other tracing methods, and the result is a more accurate estimate of unit costs. The study concludes that applying ABC in a developing country setting is feasible, yielding results that are directly applicable to pricing and management. ABC determines costs for individual clinics, departments and services according to the activities that originate these costs, showing where an organization spends its money. With this information, it is possible to identify services that are generating extra revenue and those operating at a loss, and to calculate cross subsidies across services. ABC also highlights areas in the health care process where efficiency improvements are possible. Conclusions about the ultimate impact of the methodology are not drawn here, since the study was not repeated and changes in utilization patterns and the addition of new clinics affected applicability of the results. A potential constraint to implementing ABC is the availability and organization of cost information. Applying ABC efficiently requires information to be readily available, by cost category and department, since the greatest benefits of ABC come from frequent, systematic application of the methodology in order to monitor efficiency and provide feedback for management. The article concludes with a discussion of the potential applications of ABC in the health sector in developing countries.

  3. The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C

    PubMed Central

    May, James M

    2011-01-01

    The ascorbate transporters SVCT1 and SVCT2 are crucial for maintaining intracellular ascorbate concentrations in most cell types. Although the two transporter isoforms are highly homologous, they have different physiologic functions. The SVCT1 is located primarily in epithelial cells and has its greatest effect in reabsorbing ascorbate in the renal tubules. The SVCT2 is located in most non-epithelial tissues, with the highest expression in brain and neuroendocrine tissues. These transporters are hydrophobic membrane proteins that have a high affinity and are highly selective for ascorbate. Their ability to concentrate ascorbate inside cells is driven by the sodium gradient across the plasma membrane as generated by Na+/K+ ATPase. They can concentrate ascorbate 20 to 60-fold over plasma ascorbate concentrations. Ascorbate transport on these proteins is regulated at the transcriptional, translational and post-translational levels. Available studies show that transporter function is acutely regulated by protein kinases A and C, whereas transporter expression is increased by low intracellular ascorbate and associated oxidative stress. The knockout of the SVCT2 in mice is lethal on day 1 of life, and almost half of SVCT1 knockout mice do not survive to weaning. These findings confirm the importance both of cellular ascorbate and of the two transport proteins as key to maintaining intracellular ascorbate. PMID:21418192

  4. Monte Carlo simulations of ABC stacked kagome lattice films

    NASA Astrophysics Data System (ADS)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  5. Low Night Temperature Affects the Phloem Ultrastructure of Lateral Branches and Raffinose Family Oligosaccharide (RFO) Accumulation in RFO-Transporting Plant Melon (Cucumismelo L.) during Fruit Expansion

    PubMed Central

    Hao, Jinghong; Gu, Fengying; Zhu, Jie; Lu, Shaowei; Liu, Yifei; Li, Yunfei; Chen, Weizhi; Wang, Liping; Fan, Shuangxi; Xian, Cory J.

    2016-01-01

    Due to the importance and complexity of photo assimilate transport in raffinose family oligosaccharide (RFO)-transporting plants such as melon, it is important to study the features of the transport structure (phloem) particularly of the lateral branches connecting the source leaves and the sink fruits, and its responses to environmental challenges. Currently, it is unclear to what extents the cold environmental temperature stress would alter the phloem ultrastructure and RFO accumulation in RFO-transporting plants. In this study, we firstly utilized electron microscopy to investigate the changes in the phloem ultrastructure of lateral branches and RFO accumulation in melons after being subjected to low night temperatures (12°C and 9°C). The results demonstrated that exposure to 9°C and 12°C altered the ultrastructure of the phloem, with the effect of 9°C being more obvious. The most obvious change was the appearance of plasma membrane invaginations in 99% companion cells and intermediary cells. In addition, phloem parenchyma cells contained chloroplasts with increased amounts of starch grains, sparse cytoplasm and reduced numbers of mitochondria. In the intermediary cells, the volume of cytoplasm was reduced by 50%, and the central vacuole was present. Moreover, the treatment at 9°C during the night led to RFO accumulation in the vascular bundles of the lateral branches and fruit carpopodiums. These ultrastructural changes of the transport structure (phloem) following the treatment at 9°C represented adaptive responses of melons to low temperature stresses. Future studies are required to examine whether these responses may affect phloem transport. PMID:27501301

  6. Low Night Temperature Affects the Phloem Ultrastructure of Lateral Branches and Raffinose Family Oligosaccharide (RFO) Accumulation in RFO-Transporting Plant Melon (Cucumismelo L.) during Fruit Expansion.

    PubMed

    Hao, Jinghong; Gu, Fengying; Zhu, Jie; Lu, Shaowei; Liu, Yifei; Li, Yunfei; Chen, Weizhi; Wang, Liping; Fan, Shuangxi; Xian, Cory J

    2016-01-01

    Due to the importance and complexity of photo assimilate transport in raffinose family oligosaccharide (RFO)-transporting plants such as melon, it is important to study the features of the transport structure (phloem) particularly of the lateral branches connecting the source leaves and the sink fruits, and its responses to environmental challenges. Currently, it is unclear to what extents the cold environmental temperature stress would alter the phloem ultrastructure and RFO accumulation in RFO-transporting plants. In this study, we firstly utilized electron microscopy to investigate the changes in the phloem ultrastructure of lateral branches and RFO accumulation in melons after being subjected to low night temperatures (12°C and 9°C). The results demonstrated that exposure to 9°C and 12°C altered the ultrastructure of the phloem, with the effect of 9°C being more obvious. The most obvious change was the appearance of plasma membrane invaginations in 99% companion cells and intermediary cells. In addition, phloem parenchyma cells contained chloroplasts with increased amounts of starch grains, sparse cytoplasm and reduced numbers of mitochondria. In the intermediary cells, the volume of cytoplasm was reduced by 50%, and the central vacuole was present. Moreover, the treatment at 9°C during the night led to RFO accumulation in the vascular bundles of the lateral branches and fruit carpopodiums. These ultrastructural changes of the transport structure (phloem) following the treatment at 9°C represented adaptive responses of melons to low temperature stresses. Future studies are required to examine whether these responses may affect phloem transport.

  7. Na-coupled bicarbonate transporters of the Slc4 family in the nervous system: function, localization, and relevance to neurologic function

    PubMed Central

    Majumdar, Debeshi; Bevensee, Mark O.

    2010-01-01

    Many cellular processes including neuronal activity are sensitive to changes in intracellular and/or extracellular pH— both of which are regulated by acid-base transporter activity. HCO3−-dependent transporters are particularly potent regulators of intracellular pH in neurons and astrocytes, and also contribute to the composition of the cerebrospinal fluid (CSF). The molecular physiology of HCO3− transporters has advanced considerably over the past ~14 years as investigators have cloned and characterized the function and localization of many Na-Coupled Bicarbonate Transporters of the Slc4 family (NCBTs). In this review, we provide an updated overview of the function and localization of NCBTs in the nervous system. Multiple NCBTs are expressed in neurons and astrocytes in various brain regions, as well as in epithelial cells of the choroid plexus. Characteristics of human patients with SLC4 gene mutations/deletions and results from recent studies on mice with Slc4 gene disruptions highlight the functional importance of NCBTs in neuronal activity, somatosensory function, and CSF production. Furthermore, energy-deficient states (e.g., hypoxia and ischemia) lead to altered expression and activity of NCBTs. Thus, recent studies expand our understanding of the role of NCBTs in regulating the pH and ionic composition of the nervous system that can modulate neuronal activity. PMID:20884330

  8. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica).

    PubMed

    Ceasar, S Antony; Hodge, Angela; Baker, Alison; Baldwin, Stephen A

    2014-01-01

    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet.

  9. Phosphate Concentration and Arbuscular Mycorrhizal Colonisation Influence the Growth, Yield and Expression of Twelve PHT1 Family Phosphate Transporters in Foxtail Millet (Setaria italica)

    PubMed Central

    Ceasar, S. Antony; Hodge, Angela; Baker, Alison; Baldwin, Stephen A.

    2014-01-01

    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet. PMID:25251671

  10. Applying Activity Based Costing (ABC) Method to Calculate Cost Price in Hospital and Remedy Services

    PubMed Central

    Rajabi, A; Dabiri, A

    2012-01-01

    Background Activity Based Costing (ABC) is one of the new methods began appearing as a costing methodology in the 1990’s. It calculates cost price by determining the usage of resources. In this study, ABC method was used for calculating cost price of remedial services in hospitals. Methods: To apply ABC method, Shahid Faghihi Hospital was selected. First, hospital units were divided into three main departments: administrative, diagnostic, and hospitalized. Second, activity centers were defined by the activity analysis method. Third, costs of administrative activity centers were allocated into diagnostic and operational departments based on the cost driver. Finally, with regard to the usage of cost objectives from services of activity centers, the cost price of medical services was calculated. Results: The cost price from ABC method significantly differs from tariff method. In addition, high amount of indirect costs in the hospital indicates that capacities of resources are not used properly. Conclusion: Cost price of remedial services with tariff method is not properly calculated when compared with ABC method. ABC calculates cost price by applying suitable mechanisms but tariff method is based on the fixed price. In addition, ABC represents useful information about the amount and combination of cost price services. PMID:23113171

  11. Anticipated Benefits of Care (ABC): psychometrics and predictive value in psychiatric disorders.

    PubMed

    Warden, D; Trivedi, M H; Carmody, T J; Gollan, J K; Kashner, T M; Lind, L; Crismon, M L; Rush, A J

    2010-06-01

    Attitudes and expectations about treatment have been associated with symptomatic outcomes, adherence and utilization in patients with psychiatric disorders. No measure of patients' anticipated benefits of treatment on domains of everyday functioning has previously been available. The Anticipated Benefits of Care (ABC) is a new, 10-item questionnaire used to measure patient expectations about the impact of treatment on domains of everyday functioning. The ABC was collected at baseline in adult out-patients with major depressive disorder (MDD) (n=528), bipolar disorder (n=395) and schizophrenia (n=447) in the Texas Medication Algorithm Project (TMAP). Psychometric properties of the ABC were assessed, and the association of ABC scores with treatment response at 3 months was evaluated. Evaluation of the ABC's internal consistency yielded Cronbach's alpha of 0.90-0.92 for patients across disorders. Factor analysis showed that the ABC was unidimensional for all patients and for patients with each disorder. For patients with MDD, lower anticipated benefits of treatment was associated with less symptom improvem