Catalytic and transport cycles of ABC exporters.
Al-Shawi, Marwan K
2011-09-07
ABC (ATP-binding cassette) transporters are arguably the most important family of ATP-driven transporters in biology. Despite considerable effort and advances in determining the structures and physiology of these transporters, their fundamental molecular mechanisms remain elusive and highly controversial. How does ATP hydrolysis by ABC transporters drive their transport function? Part of the problem in answering this question appears to be a perceived need to formulate a universal mechanism. Although it has been generally hoped and assumed that the whole superfamily of ABC transporters would exhibit similar conserved mechanisms, this is proving not to be the case. Structural considerations alone suggest that there are three overall types of coupling mechanisms related to ABC exporters, small ABC importers and large ABC importers. Biochemical and biophysical characterization leads us to the conclusion that, even within these three classes, the catalytic and transport mechanisms are not fully conserved, but continue to evolve. ABC transporters also exhibit unusual characteristics not observed in other primary transporters, such as uncoupled basal ATPase activity, that severely complicate mechanistic studies by established methods. In this chapter, I review these issues as related to ABC exporters in particular. A consensus view has emerged that ABC exporters follow alternating-access switch transport mechanisms. However, some biochemical data suggest that alternating catalytic site transport mechanisms are more appropriate for fully symmetrical ABC exporters. Heterodimeric and asymmetrical ABC exporters appear to conform to simple alternating-access-type mechanisms.
[The ABC transporters of Saccharomyces cerevisiae].
Wawrzycka, Donata
2011-01-01
The ABC transporters (ATP Binding Cassette) compose one of the bigest protein family with the great medical, industrial and economical impact. They are found in all organism from bacteria to man. ABC proteins are responsible for resistance of microorganism to antibiotics and fungicides and multidrug resistance of cancer cells. Mutations in ABC transporters genes cause seriuos deseases like cystic fibrosis, adrenoleucodystrophy or ataxia. Transport catalized by ABC proteins is charged with energy from the ATP hydrolysis. The ABC superfamily contains transporters, canals, receptors. Analysis of the Saccharomyces cerevisiae genome allowed to distinguish 30 potential ABC proteins which are classified into 6 subfamilies. The structural and functional similarity of the yeast and human ABC proteins allowes to use the S. cerevisiae as a model organism for ABC transporters characterisation. In this work the present state of knowleadge on yeast S. cerevisiae ABC proteins was summarised.
NASA Astrophysics Data System (ADS)
Singh, Deo Raj
Forster resonance energy transfer (FRET) has become an important tool to study proteins inside living cells. It has been used to explore membrane protein folding and dynamics, determine stoichiometry and geometry of protein complexes, and measure the distance between two molecules. In this dissertation, we use a method based on FRET and optical micro-spectroscopy (OptiMiS) technology, developed in our lab, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of an ABC transporter in living cells. Specifically, the transporter we investigate originates from the pathogen Pseudomonas aeruginosa, which is a Gram-negative bacterium with several virulence factors, lipopolysaccharides being one of them. This pathogen coexpresses two unique forms of lipopolysaccharides on its surface, the A- and B-bands. The A-band polysaccharides, synthesized in the cytoplasm, are translocated into the periplasm through an ATP-binding-cassette (ABC) transporter consisting of a transmembranar protein, Wzm, and a nucleotide-binding protein, Wzt. In P. aeruginosa, all of the biochemical studies of A-band LPS are concentrated on the stages of the synthesis and ligation of polysaccharides (PSs), leaving the export stage involving ABC transporter unexplored. The mode of PS export through ABC transporters is still unknown. This difficulty is due to the lack of information about sub-unit composition and structure of this bi-component ABC transporter. Using the FRET-OptiMiS combination method developed by our lab, we found that Wzt forms a rhombus-shaped homo-tetramer which becomes a square upon co-expression with Wzm, and that Wzm forms a square-shaped homo-tetramer both in the presence and absence of Wzt. Based on these results, we propose a structural model for the double-tetramer complex formed by the bi-component ABC transporter in living cells. An understanding of the structure and behavior of this ABC transporter will help develop antibiotics targeting the biosynthesis of the A-band LPS endotoxin.
Greene, Nicholas P; Kaplan, Elise; Crow, Allister; Koronakis, Vassilis
2018-01-01
The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.
Comparison of mechanistic transport cycle models of ABC exporters.
Szöllősi, Dániel; Rose-Sperling, Dania; Hellmich, Ute A; Stockner, Thomas
2018-04-01
ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain." Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Greene, Nicholas P.; Kaplan, Elise; Crow, Allister; Koronakis, Vassilis
2018-01-01
The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking. PMID:29892271
ABC Transporters Involved in Export of Cell Surface Glycoconjugates
Cuthbertson, Leslie; Kos, Veronica; Whitfield, Chris
2010-01-01
Summary: Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles. PMID:20805402
Diversity in ABC transporters: Type I, II and III importers
Rice, Austin J.; Park, Aekyung
2014-01-01
ATP-binding cassette transporters are multi-subunit membrane pumps that transport substrates across membranes. While significant in the transport process, transporter architecture exhibits a range of diversity that we are only beginning to recognize. This divergence may provide insight into the mechanisms of substrate transport and homeostasis. Until recently, ABC importers have been classified into two types, but with the emergence of energy-coupling factor (ECF) transporters there are potentially three types of ABC importers. In this review, we summarize an expansive body of research on the three types of importers with an emphasis on the basics that underlie ABC importers, such as structure, subunit composition and mechanism. PMID:25155087
Hohl, Michael; Hürlimann, Lea M; Böhm, Simon; Schöppe, Jendrik; Grütter, Markus G; Bordignon, Enrica; Seeger, Markus A
2014-07-29
ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5'-(β,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport.
Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters
Andreoletti, Pierre; Raas, Quentin; Gondcaille, Catherine; Cherkaoui-Malki, Mustapha; Trompier, Doriane; Savary, Stéphane
2017-01-01
The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85 Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues. PMID:28737695
Hegedus, Csilla; Ozvegy-Laczka, Csilla; Szakács, Gergely; Sarkadi, Balázs
2009-05-01
Protein kinase inhibitors (PKI) are becoming key agents in modern cancer chemotherapy, and combination of PKIs with classical chemotherapeutic drugs may help to overcome currently untreatable metastatic cancers. Since chemotherapy resistance is a recurrent problem, mechanisms of resistance should be clarified in order to help further drug development. Here we suggest that in addition to PKI resistance based on altered target structures, the active removal of these therapeutic agents by the MDR-ABC transporters should also be considered as a major cause of clinical resistance. We discuss the occurring systemic and cellular mechanisms, which may hamper PKI efficiency, and document the role of selected MDR-ABC transporters in these phenomena through their interactions with these anticancer agents. Moreover, we suggest that PKI interactions with ABC transporters may modulate overall drug metabolism, including the fate of diverse, chemically or target-wise unrelated drugs. These effects are based on multiple forms of MDR-ABC transporter interaction with PKIs, as these compounds may be both substrates and/or inhibitors of an ABC transporter. We propose that these interactions should be carefully considered in clinical application, and a combined MDR-ABC transporter and PKI effect may bring a major advantage in future drug development.
ABC transporters and immunity: mechanism of self-defense.
Hinz, Andreas; Tampé, Robert
2012-06-26
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.
Structure of a Type-1 Secretion System ABC Transporter.
Morgan, Jacob L W; Acheson, Justin F; Zimmer, Jochen
2017-03-07
Type-1 secretion systems (T1SSs) represent a widespread mode of protein secretion across the cell envelope in Gram-negative bacteria. The T1SS is composed of an inner-membrane ABC transporter, a periplasmic membrane-fusion protein, and an outer-membrane porin. These three components assemble into a complex spanning both membranes and providing a conduit for the translocation of unfolded polypeptides. We show that ATP hydrolysis and assembly of the entire T1SS complex is necessary for protein secretion. Furthermore, we present a 3.15-Å crystal structure of AaPrtD, the ABC transporter found in the Aquifex aeolicus T1SS. The structure suggests a substrate entry window just above the transporter's nucleotide binding domains. In addition, highly kinked transmembrane helices, which frame a narrow channel not observed in canonical peptide transporters, are likely involved in substrate translocation. Overall, the AaPrtD structure supports a polypeptide transport mechanism distinct from alternating access. Copyright © 2017 Elsevier Ltd. All rights reserved.
The ABC protein turned chloride channel whose failure causes cystic fibrosis
NASA Astrophysics Data System (ADS)
Gadsby, David C.; Vergani, Paola; Csanády, László
2006-03-01
CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.
Stockner, Thomas; Mullen, Anna; MacMillan, Fraser
2015-10-01
ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented. © 2015 Authors; published by Portland Press Limited.
Mdr65 decreases toxicity of multiple insecticides in Drosophila melanogaster.
Sun, Haina; Buchon, Nicolas; Scott, Jeffrey G
2017-10-01
ABC transporters are ubiquitous membrane-bound proteins, present in both prokaryotes and eukaryotes. The major function of eukaryotic ABC transporters is to mediate the efflux of a variety of substrates (including xenobiotics) out of cells. ABC transporters have been widely investigated in humans, particularly for their involvement in multidrug resistance (MDR). Considerably less is known about their roles in transport and/or excretion in insects. ABC transporters are only known to function as exporters in insects. Drosophila melanogaster has 56 ABC transporter genes, including eight which are phylogenetically most similar to the human Mdr genes (ABCB1 clade). We investigated the role of ABC transporters in the ABCB1 clade in modulating the susceptibility to insecticides. We took advantage of the GAL4/UAS system in D. melanogaster to knockdown the expression levels of Mdr65, Mdr50, Mdr49 and ABCB6 using transgenic UAS-RNAi lines and conditional driver lines. The most notable effects were increased sensitivities to nine different insecticides by silencing of Mdr65. Furthermore, a null mutation of Mdr65 decreased the malathion, malaoxon and fipronil LC 50 values by a factor of 1.9, 2.1 and 3.9, respectively. Altogether, this data demonstrates the critical role of ABC transporters, particularly Mdr65, in altering the toxicity of specific, structurally diverse, insecticides in D. melanogaster. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detergent-free purification of ABC (ATP-binding-cassette) transporters.
Gulati, Sonali; Jamshad, Mohammed; Knowles, Timothy J; Morrison, Kerrie A; Downing, Rebecca; Cant, Natasha; Collins, Richard; Koenderink, Jan B; Ford, Robert C; Overduin, Michael; Kerr, Ian D; Dafforn, Timothy R; Rothnie, Alice J
2014-07-15
ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.
Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N
2016-01-01
Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.
Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling.
Jones, P M; George, A M
2005-04-30
Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein.
Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG.
Luo, Qingshan; Yang, Xu; Yu, Shan; Shi, Huigang; Wang, Kun; Xiao, Le; Zhu, Guangyu; Sun, Chuanqi; Li, Tingting; Li, Dianfan; Zhang, Xinzheng; Zhou, Min; Huang, Yihua
2017-05-01
After biosynthesis, bacterial lipopolysaccharides (LPS) are transiently anchored to the outer leaflet of the inner membrane (IM). The ATP-binding cassette (ABC) transporter LptB 2 FG extracts LPS molecules from the IM and transports them to the outer membrane. Here we report the crystal structure of nucleotide-free LptB 2 FG from Pseudomonas aeruginosa. The structure reveals that lipopolysaccharide transport proteins LptF and LptG each contain a transmembrane domain (TMD), a periplasmic β-jellyroll-like domain and a coupling helix that interacts with LptB on the cytoplasmic side. The LptF and LptG TMDs form a large outward-facing V-shaped cavity in the IM. Mutational analyses suggest that LPS may enter the central cavity laterally, via the interface of the TMD domains of LptF and LptG, and is expelled into the β-jellyroll-like domains upon ATP binding and hydrolysis by LptB. These studies suggest a mechanism for LPS extraction by LptB 2 FG that is distinct from those of classical ABC transporters that transport substrates across the IM.
NASA Astrophysics Data System (ADS)
Flechsig, Holger
2016-02-01
ATP-binding cassette (ABC) transporters are integral membrane proteins which mediate the exchange of diverse substrates across membranes powered by ATP molecules. Our understanding of their activity is still hampered since the conformational dynamics underlying the operation of such proteins cannot yet be resolved in detailed molecular dynamics studies. Here a coarse grained model which allows to mimic binding of nucleotides and follow subsequent conformational motions of full-length transporter structures in computer simulations is proposed and implemented. To justify its explanatory quality, the model is first applied to the maltose transporter system for which multiple conformations are known and we find that the model predictions agree remarkably well with the experimental data. For the MalK subunit the switching from open to the closed dimer configuration upon ATP binding is reproduced and, moreover, for the full-length maltose transporter, progression from inward-facing to the outward-facing state is correctly obtained. For the heme transporter HmuUV, for which only the free structure could yet be determined, the model was then applied to predict nucleotide-induced conformational motions. Upon binding of ATP-mimicking ligands the structure changed from a conformation in which the nucleotide-binding domains formed an open shape, to a conformation in which they were found in tight contact, while, at the same time, a pronounced rotation of the transmembrane domains was observed. This finding is supported by normal mode analysis, and, comparison with structural data of the homologous vitamin B12 transporter BtuCD suggests that the observed rotation mechanism may contribute a common functional aspect for this class of ABC transporters. Although in HmuuV noticeable rearrangement of essential transmembrane helices was detected, there are no indications from our simulations that ATP binding alone may facilitate propagation of substrate molecules in this transporter. Possible explanations are discussed in the light of currently debated transport scenarios of ABC transporters.
Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump
Llabrés, Salomé; Neuberger, Arthur; Blaza, James N.; Bai, Xiao-chen; Okada, Ui; Murakami, Satoshi; van Veen, Hendrik W.; Zachariae, Ulrich; Scheres, Sjors H.W.; Luisi, Ben F.
2017-01-01
The MacA-MacB-TolC assembly of Escherichia coli is a transmembrane machine that spans the cell envelope and actively extrudes substrates, including macrolide antibiotics and polypeptide virulence factors. These transport processes are energized by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. We present an electron cryo-microscopy structure of the ABC-type tripartite assembly at near-atomic resolution. A hexamer of the periplasmic protein MacA bridges between a TolC trimer in the outer membrane and a MacB dimer in the inner membrane, generating a quaternary structure with a central channel for substrate translocation. A gating ring found in MacA is proposed to act as a one-way valve in substrate transport. The MacB structure features an atypical transmembrane domain (TMD) with a closely packed dimer interface and a periplasmic opening that is the likely portal for substrate entry from the periplasm, with subsequent displacement through an allosteric transport mechanism. PMID:28504659
Denecke, Shane; Fusetto, Roberto; Batterham, Philip
2017-12-01
ABC transporters have a well-established role in drug resistance, effluxing xenobiotics from cells and tissues within the organism. More recently, research has been dedicated to understanding the role insect ABC transporters play in insecticide toxicity, but progress in understanding the contribution of specific transporters has been hampered by the lack of functional genetic tools. Here, we report knockouts of three Drosophila melanogaster ABC transporter genes, Mdr49, Mdr50, and Mdr65, that are homologous to the well-studied mammalian ABCB1 (P-glycoprotein). Each knockout mutant was created in the same wild type background and tested against a panel of insecticides representing different chemical classes. Mdr65 knockouts were more susceptible to all neuroactive insecticides tested, but Mdr49 and Mdr50 knockouts showed increased susceptibility or resistance depending on the insecticide used. Mdr65 was chosen for further analysis. Calculation of LC 50 values for the Mdr65 knockout allowed the substrate specificity of this transporter to be examined. No obvious distinguishing structural features were shared among MDR65 substrates. A role for Mdr65 in insecticide transport was confirmed by testing the capacity of the knockout to synergize with the ABC inhibitor verapamil and by measuring the levels of insecticide retained in the body of knockout flies. These data unambiguously establish the influence of ABC transporters on the capacity of wild type D. melanogaster to tolerate insecticide exposure and suggest that both tissue and substrate specificity underpin this capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Han; Rahman, Sadia; Li, Wen
2015-03-27
A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homologmore » MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis. - Highlights: • A novel domain ‘GATE’ is identified in the ABC protein DrrA. • GATE shows high sequence and structural conservation among diverse ABC proteins. • GATE is located outside of the previously studied ATP binding and hydrolysis motifs. • Conserved GATE residues are critical for stability of DrrAB and for ATP catalysis.« less
Clifton, Matthew C.; Simon, Michael J.; Erramilli, Satchal K.; Zhang, Huide; Zaitseva, Jelena; Hermodson, Mark A.; Stauffacher, Cynthia V.
2015-01-01
Bacterial ATP-binding cassette (ABC) importers are primary active transporters that are critical for nutrient uptake. Based on structural and functional studies, ABC importers can be divided into two distinct classes, type I and type II. Type I importers follow a strict alternating access mechanism that is driven by the presence of the substrate. Type II importers accept substrates in a nucleotide-free state, with hydrolysis driving an inward facing conformation. The ribose transporter in Escherichia coli is a tripartite complex consisting of a cytoplasmic ATP-binding cassette protein, RbsA, with fused nucleotide binding domains; a transmembrane domain homodimer, RbsC2; and a periplasmic substrate binding protein, RbsB. To investigate the transport mechanism of the complex RbsABC2, we probed intersubunit interactions by varying the presence of the substrate ribose and the hydrolysis cofactors, ATP/ADP and Mg2+. We were able to purify a full complex, RbsABC2, in the presence of stable, transition state mimics (ATP, Mg2+, and VO4); a RbsAC complex in the presence of ADP and Mg2+; and a heretofore unobserved RbsBC complex in the absence of cofactors. The presence of excess ribose also destabilized complex formation between RbsB and RbsC. These observations suggest that RbsABC2 shares functional traits with both type I and type II importers, as well as possessing unique features, and employs a distinct mechanism relative to other ABC transporters. PMID:25533465
Döll, Katharina; Karlovsky, Petr; Deising, Holger B.; Wirsel, Stefan G. R.
2013-01-01
Fusarium graminearum is a plant pathogen infecting several important cereals, resulting in substantial yield losses and mycotoxin contamination of the grain. Triazole fungicides are used to control diseases caused by this fungus on a worldwide scale. Our previous microarray study indicated that 15 ABC transporter genes were transcriptionally upregulated in response to tebuconazole treatment. Here, we deleted four ABC transporter genes in two genetic backgrounds of F. graminearum representing the DON (deoxynivalenol) and the NIV (nivalenol) trichothecene chemotypes. Deletion of FgABC3 and FgABC4 belonging to group I of ABC-G and to group V of ABC-C subfamilies of ABC transporters, respectively, considerably increased the sensitivity to the class I sterol biosynthesis inhibitors triazoles and fenarimol. Such effects were specific since they did not occur with any other fungicide class tested. Assessing the contribution of the four ABC transporters to virulence of F. graminearum revealed that, irrespective of their chemotypes, deletion mutants of FgABC1 (ABC-C subfamily group V) and FgABC3 were impeded in virulence on wheat, barley and maize. Phylogenetic context and analyses of mycotoxin production suggests that FgABC3 may encode a transporter protecting the fungus from host-derived antifungal molecules. In contrast, FgABC1 may encode a transporter responsible for the secretion of fungal secondary metabolites alleviating defence of the host. Our results show that ABC transporters play important and diverse roles in both fungicide resistance and pathogenesis of F. graminearum. PMID:24244413
Structure, function, and evolution of bacterial ATP-binding cassette systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, A.L.; Dassa, E.; Orelle, C.
2010-07-27
The ATP-binding cassette (ABC) systems constitute one of the largest superfamilies of paralogous sequences. All ABC systems share a highly conserved ATP-hydrolyzing domain or protein (the ABC; also referred to as a nucleotide-binding domain [NBD]) that is unequivocally characterized by three short sequence motifs (Fig. 1): these are the Walker A and Walker B motifs, indicative of the presence of a nucleotide-binding site, and the signature motif, unique to ABC proteins, located upstream of the Walker B motif (426). Other motifs diagnostic of ABC proteins are also indicated in Fig. 1. The biological significance of these motifs is discussed inmore » Structure, Function, and Dynamics of the ABC. ABC systems are widespread among living organisms and have been detected in all genera of the three kingdoms of life, with remarkable conservation in the primary sequence of the cassette and in the organization of the constitutive domains or subunits (203, 420). ABC systems couple the energy of ATP hydrolysis to an impressively large variety of essential biological phenomena, comprising not only transmembrane (TM) transport, for which they are best known, but also several non-transport-related processes, such as translation elongation (62) and DNA repair (174). Although ABC systems deserve much attention because they are involved in severe human inherited diseases (107), they were first discovered and characterized in detail in prokaryotes, as early as the 1970s (13, 148, 238, 468). The most extensively analyzed systems were the high-affinity histidine and maltose uptake systems of Salmonella enterica serovar Typhimurium and Escherichia coli. Over 2 decades ago, after the completion of the nucleotide sequences encoding these transporters in the respective laboratories of Giovanna Ames and Maurice Hofnung, Hiroshi Nikaido and colleagues noticed that the two systems displayed a global similarity in the nature of their components and, moreover, that the primary sequences of MalK and HisP, the proteins suspected to energize these transporters, shared as much as 32% identity in amino acid residues when their sequences were aligned (171). Later, it was found that several bacterial proteins involved in uptake of nutrients, export of toxins, cell division, bacterial nodulation of plants, and DNA repair displayed the same similarity in their sequences (127, 196). This led to the notion that the conserved protein, which had been shown to bind ATP (198, 201), would probably energize the systems mentioned above by coupling the energy of ATP hydrolysis to transport. The latter was demonstrated with the maltose and histidine transporters by use of isolated membrane vesicles (105, 379) and purified transporters reconstituted into proteoliposomes (30, 98). The determination of the sequence of the first eukaryotic protein strongly similar to these bacterial transporters (the P-glycoprotein, involved in resistance of cancer cells to multiple drugs) (169, 179) demonstrated that these proteins were not restricted to prokaryotes. Two names, 'traffic ATPases' (15) and the more accepted name 'ABC transporters' (193, 218), were proposed for members of this new superfamily. ABC systems can be divided into three main functional categories, as follows. Importers mediate the uptake of nutrients in prokaryotes. The nature of the substrates that are transported is very wide, including mono- and oligosaccharides, organic and inorganic ions, amino acids, peptides, ironsiderophores, metals, polyamine cations, opines, and vitamins. Exporters are involved in the secretion of various molecules, such as peptides, lipids, hydrophobic drugs, polysaccharides, and proteins, including toxins such as hemolysin. The third category of systems is apparently not involved in transport, with some members being involved in translation of mRNA and in DNA repair. Despite the large, diverse population of substrates handled and the difference in the polarity of transport, importers and exporters share a common organization made of two hydrophobic membrane-spanning or integral membrane (IM) domains and two hydrophilic domains carrying the ABC peripherally associated with the IM domains on the cytosolic side of the membrane (26). In importers, these four domains are almost always independent polypeptide chains that come together to form a multimeric complex. In most exporters, including the E. coli hemolysin exporter HlyB, the N-terminal IM and the C-terminal ABC domains are fused as a single polypeptide chain (IM-ABC). An inverted organization in which the IM domain is C-terminal with respect to the ABC domain (ABC-IM) exists, such as in the MacB protein, involved in macrolide resistance in E. coli. No IM domain partners have been identified for ABC proteins falling into the third category, and these proteins consist of two ABCs fused together (ABC2).« less
Lane, Thomas S; Rempe, Caroline S; Davitt, Jack; Staton, Margaret E; Peng, Yanhui; Soltis, Douglas Edward; Melkonian, Michael; Deyholos, Michael; Leebens-Mack, James H; Chase, Mark; Rothfels, Carl J; Stevenson, Dennis; Graham, Sean W; Yu, Jun; Liu, Tao; Pires, J Chris; Edger, Patrick P; Zhang, Yong; Xie, Yinlong; Zhu, Ying; Carpenter, Eric; Wong, Gane Ka-Shu; Stewart, C Neal
2016-05-31
The ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants. ABC transporters act to transport compounds across cellular membranes and are involved in a diverse range of biological processes. Thus, the applicability to biotechnology is vast, including cancer resistance in humans, drug resistance among vertebrates, and herbicide and other xenobiotic resistance in plants. In addition, plants appear to harbor the highest diversity of ABC transporter genes compared with any other group of organisms. This study applied transcriptome analysis to survey the kingdom-wide ABC transporter diversity in plants and suggest biotechnology applications of this diversity. We utilized sequence similarity-based informatics techniques to infer the identity of ABC transporter gene candidates from 1295 phylogenetically-diverse plant transcriptomes. A total of 97,149 putative (approximately 25 % were full-length) ABC transporter gene members were identified; each RNA-Seq library (plant sample) had 88 ± 30 gene members. As expected, simpler organisms, such as algae, had fewer unique members than vascular land plants. Differences were also noted in the richness of certain ABC transporter subfamilies. Land plants had more unique ABCB, ABCC, and ABCG transporter gene members on average (p < 0.005), and green algae, red algae, and bryophytes had significantly more ABCF transporter gene members (p < 0.005). Ferns had significantly fewer ABCA transporter gene members than all other plant groups (p < 0.005). We present a transcriptomic overview of ABC transporter gene members across all major plant groups. An increase in the number of gene family members present in the ABCB, ABCC, and ABCD transporter subfamilies may indicate an expansion of the ABC transporter superfamily among green land plants, which include all crop species. The striking difference between the number of ABCA subfamily transporter gene members between ferns and other plant taxa is surprising and merits further investigation. Discussed is the potential exploitation of ABC transporters in plant biotechnology, with an emphasis on crops.
van der Heide, T; Poolman, B
2000-06-20
An osmoregulated ABC transporter (OpuA) with novel structural features has been identified that responds to water stress. This glycine betaine transport system consists of an ATP-binding/hydrolyzing subunit (OpuAA) and a protein (OpuABC) that contains both the translocator and the substrate-binding domain. The components of OpuA have been overexpressed, purified, and functionally incorporated into liposomes with an ATP-regenerating system in the vesicle lumen. A transmembrane osmotic gradient (outside hyperosmotic relative to the inside) of both ionic and nonionic compounds was able to osmotically activate OpuA in the proteoliposomal system. Hypoosmotic medium conditions inhibited the basal activity of the system. The data show that OpuAA and OpuABC are sufficient for osmoregulated transport, indicating that OpuA can act both as osmosensor and osmoregulator. Strikingly, OpuA could also be activated by low concentrations of cationic and anionic amphipaths, which interact with the membrane. This result indicates that activation by a transmembrane osmotic gradient is mediated by changes in membrane properties/protein-lipid interactions.
van der Heide, Tiemen; Poolman, Bert
2000-01-01
An osmoregulated ABC transporter (OpuA) with novel structural features has been identified that responds to water stress. This glycine betaine transport system consists of an ATP-binding/hydrolyzing subunit (OpuAA) and a protein (OpuABC) that contains both the translocator and the substrate-binding domain. The components of OpuA have been overexpressed, purified, and functionally incorporated into liposomes with an ATP-regenerating system in the vesicle lumen. A transmembrane osmotic gradient (outside hyperosmotic relative to the inside) of both ionic and nonionic compounds was able to osmotically activate OpuA in the proteoliposomal system. Hypoosmotic medium conditions inhibited the basal activity of the system. The data show that OpuAA and OpuABC are sufficient for osmoregulated transport, indicating that OpuA can act both as osmosensor and osmoregulator. Strikingly, OpuA could also be activated by low concentrations of cationic and anionic amphipaths, which interact with the membrane. This result indicates that activation by a transmembrane osmotic gradient is mediated by changes in membrane properties/protein–lipid interactions. PMID:10860977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.
2014-10-02
molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate.more » The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.« less
Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Comandatore, Francesco; Sassera, Davide; Rossi, Paolo; Cafarchia, Claudia; Otranto, Domenico; Favia, Guido; Genchi, Claudio; Bandi, Claudio; Urbanelli, Sandra
2014-07-29
Proteins from the ABC family (ATP-binding cassette) represent the largest known group of efflux pumps, responsible for transporting specific molecules across lipid membranes in both prokaryotic and eukaryotic organisms. In arthropods they have been shown to play a role in insecticide defense/resistance. The presence of ABC transporters and their possible association with insecticide transport have not yet been investigated in the mosquito Anopheles stephensi, the major vector of human malaria in the Middle East and South Asian regions. Here we investigated the presence and role of ABCs in transport of permethrin insecticide in a susceptible strain of this mosquito species. To identify ABC transporter genes we obtained a transcriptome from untreated larvae of An. stephensi and then compared it with the annotated transcriptome of Anopheles gambiae. To analyse the association between ABC transporters and permethrin we conducted bioassays with permethrin alone and in combination with an ABC inhibitor, and then we investigated expression profiles of the identified genes in larvae exposed to permethrin. Bioassays showed an increased mortality of mosquitoes when permethrin was used in combination with the ABC-transporter inhibitor. Genes for ABC transporters were detected in the transcriptome, and five were selected (AnstABCB2, AnstABCB3, AnstABCB4, AnstABCmember6 and AnstABCG4). An increased expression in one of them (AnstABCG4) was observed in larvae exposed to the LD50 dose of permethrin. Contrary to what was found in other insect species, no up-regulation was observed in the AnstABCB genes. Our results show for the first time the involvement of ABC transporters in larval defense against permethrin in An. stephensi and, more in general, confirm the role of ABC transporters in insecticide defense. The differences observed with previous studies highlight the need of further research as, despite the growing number of studies on ABC transporters in insects, the heterogeneity of the results available at present does not allow us to infer general trends in ABC transporter-insecticide interactions.
ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mingli; Yin, Huancai; Bai, Pengli
This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity ofmore » QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.« less
Whole-Genome Survey of the Putative ATP-Binding Cassette Transporter Family Genes in Vitis vinifera
Çakır, Birsen; Kılıçkaya, Ozan
2013-01-01
The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera. PMID:24244377
Lebedeva, Irina V.; Pande, Praveen; Patton, Wayne F.
2011-01-01
An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC2(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments. PMID:21799851
Martin, Audrey; Daniel, Jaiyanth
2018-02-05
Mycobacterium tuberculosis (Mtb), which causes tuberculosis, is capable of accumulating triacylglycerol (TAG) by utilizing fatty acids from host cells. ATP-binding cassette (ABC) transporters are involved in transport processes in all organisms. Among the classical ABC transporters in Mtb none have been implicated in fatty acid import. Since the transport of fatty acids from the host cell is important for dormancy-associated TAG synthesis in the pathogen, mycobacterial ABC transporter(s) could potentially be involved in this process. Based on sequence identities with a bacterial ABC transporter that mediates fatty acid import for TAG synthesis, we identified Rv1272c, a hitherto uncharacterized ABC-transporter in Mtb that also shows sequence identities with a plant ABC transporter involved in fatty acid transport. We expressed Rv1272c in E. coli and show that it enhances the import of radiolabeled fatty acids. We also show that Rv1272c causes a significant increase in the metabolic incorporation of radiolabeled long-chain fatty acids into cardiolipin, a tetra-acylated phospholipid, and phosphatidylglycerol in E. coli. This is the first report on the function of Rv1272c showing that it displays a long-chain fatty acid transport function. Copyright © 2018 Elsevier Inc. All rights reserved.
Bera, Krishnendu; Rani, Priyanka; Kishor, Gaurav; Agarwal, Shikha; Kumar, Antresh; Singh, Durg Vijay
2017-09-20
ATP-Binding cassette (ABC) transporters play an extensive role in the translocation of diverse sets of biologically important molecules across membrane. EchnocandinB (antifungal) and EcdL protein of Aspergillus rugulosus are encoded by the same cluster of genes. Co-expression of EcdL and echinocandinB reflects tightly linked biological functions. EcdL belongs to Multidrug Resistance associated Protein (MRP) subfamily of ABC transporters with an extra transmembrane domain zero (TMD0). Complete structure of MRP subfamily comprising of TMD0 domain, at atomic resolution is not known. We hypothesized that the transportation of echonocandinB is mediated via EcdL protein. Henceforth, it is pertinent to know the topological arrangement of TMD0, with other domains of protein and its possible role in transportation of echinocandinB. Absence of effective template for TMD0 domain lead us to model by I-TASSER, further structure has been refined by multiple template modelling using homologous templates of remaining domains (TMD1, NBD1, TMD2, NBD2). The modelled structure has been validated for packing, folding and stereochemical properties. MD simulation for 0.1 μs has been carried out in the biphasic environment for refinement of modelled protein. Non-redundant structures have been excavated by clustering of MD trajectory. The structural alignment of modelled structure has shown Z-score -37.9; 31.6, 31.5 with RMSD; 2.4, 4.2, 4.8 with ABC transporters; PDB ID 4F4C, 4M1 M, 4M2T, respectively, reflecting the correctness of structure. EchinocandinB has been docked to the modelled as well as to the clustered structures, which reveals interaction of echinocandinB with TMD0 and other TM helices in the translocation path build of TMDs.
An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease.
Urban, M; Bhargava, T; Hamer, J E
1999-01-01
Cells tolerate exposure to cytotoxic compounds through the action of ATP-driven efflux pumps belonging to the ATP-binding cassette (ABC) superfamily of membrane transporters. Phytopathogenic fungi encounter toxic environments during plant invasion as a result of the plant defense response. Here we demonstrate the requirement for an ABC transporter during host infection by the fungal plant pathogen Magnaporthe grisea. The ABC1 gene was identified in an insertional mutagenesis screen for pathogenicity mutants. The ABC1 insertional mutant and a gene-replacement mutant arrest growth and die shortly after penetrating either rice or barley epidermal cells. The ABC1-encoded protein is similar to yeast ABC transporters implicated in multidrug resistance, and ABC1 gene transcripts are inducible by toxic drugs and a rice phytoalexin. However, abc1 mutants are not hypersensitive to antifungal compounds. The non-pathogenic, insertional mutation in ABC1 occurs in the promoter region and dramatically reduces transcript induction by metabolic poisons. These data strongly suggest that M.grisea requires the up-regulation of specific ABC transporters for pathogenesis; most likely to protect itself against plant defense mechanisms. PMID:9927411
Caenorhabditis elegans ABCRNAi transporters interact genetically with rde-2 and mut-7.
Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa
2008-02-01
RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABC(RNAi) mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABC(RNAi) gene class. Genetic complementation tests reveal functions for ABC(RNAi) transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABC(RNAi) proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABC(RNAi) mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABC(RNAi) gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABC(RNAi) transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity.
ABC-B transporter genes in Dirofilaria immitis.
Bourguinat, Catherine; Che, Hua; Mani, Thangadurai; Keller, Kathy; Prichard, Roger K
2016-08-01
Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchus contortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite. Copyright © 2016. Published by Elsevier Ltd.
75 FR 49549 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35397] ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D..., ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, Massachusetts (STB...
ATP-binding cassette transporters in reproduction: a new frontier
Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.
2016-01-01
BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as ‘gatekeepers’ at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus. PMID:26545808
Steglich, Matthias; Hofmann, Julia D; Helmecke, Julia; Sikorski, Johannes; Spröer, Cathrin; Riedel, Thomas; Bunk, Boyke; Overmann, Jörg; Neumann-Schaal, Meina; Nübel, Ulrich
2018-01-01
We report the frequent, convergent loss of two genes encoding the substrate-binding protein and the ATP-binding protein of an ATP-binding cassette (ABC) transporter from the genomes of unrelated Clostridioides difficile strains. This specific genomic deletion was strongly associated with the reduced uptake of tyrosine and phenylalanine and production of derived Stickland fermentation products, including p -cresol, suggesting that the affected ABC transporter had been responsible for the import of aromatic amino acids. In contrast, the transporter gene loss did not measurably affect bacterial growth or production of enterotoxins. Phylogenomic analysis of publically available genome sequences indicated that this transporter gene deletion had occurred multiple times in diverse clonal lineages of C. difficile , with a particularly high prevalence in ribotype 027 isolates, where 48 of 195 genomes (25%) were affected. The transporter gene deletion likely was facilitated by the repetitive structure of its genomic location. While at least some of the observed transporter gene deletions are likely to have occurred during the natural life cycle of C. difficile , we also provide evidence for the emergence of this mutation during long-term laboratory cultivation of reference strain R20291.
Steglich, Matthias; Hofmann, Julia D.; Helmecke, Julia; Sikorski, Johannes; Spröer, Cathrin; Riedel, Thomas; Bunk, Boyke; Overmann, Jörg; Neumann-Schaal, Meina; Nübel, Ulrich
2018-01-01
We report the frequent, convergent loss of two genes encoding the substrate-binding protein and the ATP-binding protein of an ATP-binding cassette (ABC) transporter from the genomes of unrelated Clostridioides difficile strains. This specific genomic deletion was strongly associated with the reduced uptake of tyrosine and phenylalanine and production of derived Stickland fermentation products, including p-cresol, suggesting that the affected ABC transporter had been responsible for the import of aromatic amino acids. In contrast, the transporter gene loss did not measurably affect bacterial growth or production of enterotoxins. Phylogenomic analysis of publically available genome sequences indicated that this transporter gene deletion had occurred multiple times in diverse clonal lineages of C. difficile, with a particularly high prevalence in ribotype 027 isolates, where 48 of 195 genomes (25%) were affected. The transporter gene deletion likely was facilitated by the repetitive structure of its genomic location. While at least some of the observed transporter gene deletions are likely to have occurred during the natural life cycle of C. difficile, we also provide evidence for the emergence of this mutation during long-term laboratory cultivation of reference strain R20291. PMID:29867812
Hayashi, Tomohiko; Chiba, Shuntaro; Kaneta, Yusuke; Furuta, Tadaomi; Sakurai, Minoru
2014-11-06
ATP binding cassette (ABC) proteins belong to a superfamily of active transporters. Recent experimental and computational studies have shown that binding of ATP to the nucleotide binding domains (NBDs) of ABC proteins drives the dimerization of NBDs, which, in turn, causes large conformational changes within the transmembrane domains (TMDs). To elucidate the active substrate transport mechanism of ABC proteins, it is first necessary to understand how the NBD dimerization is driven by ATP binding. In this study, we selected MalKs (NBDs of a maltose transporter) as a representative NBD and calculated the free-energy change upon dimerization using molecular mechanics calculations combined with a statistical thermodynamic theory of liquids, as well as a method to calculate the translational, rotational, and vibrational entropy change. This combined method is applied to a large number of snapshot structures obtained from molecular dynamics simulations containing explicit water molecules. The results suggest that the NBD dimerization proceeds with a large gain of water entropy when ATP molecules bind to the NBDs. The energetic gain arising from direct NBD-NBD interactions is canceled by the dehydration penalty and the configurational-entropy loss. ATP hydrolysis induces a loss of the shape complementarity between the NBDs, which leads to the dissociation of the dimer, due to a decrease in the water-entropy gain and an increase in the configurational-entropy loss. This interpretation of the NBD dimerization mechanism in concert with ATP, especially focused on the water-mediated entropy force, is potentially applicable to a wide variety of the ABC transporters.
Placental ABC Transporters: Biological Impact and Pharmaceutical Significance.
Joshi, Anand A; Vaidya, Soniya S; St-Pierre, Marie V; Mikheev, Andrei M; Desino, Kelly E; Nyandege, Abner N; Audus, Kenneth L; Unadkat, Jashvant D; Gerk, Phillip M
2016-12-01
The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.
Placental ABC Transporters: Biological Impact and Pharmaceutical Significance
Joshi, Anand A.; Vaidya, Soniya S.; St-Pierre, Marie V.; Mikheev, Andrei M.; Desino, Kelly E.; Nyandege, Abner N.; Audus, Kenneth L.; Unadkat, Jashvant D.; Gerk, Phillip M.
2017-01-01
The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy. PMID:27644937
Hull, J. Joe; Chaney, Kendrick; Geib, Scott M.; Fabrick, Jeffrey A.; Brent, Colin S.; Walsh, Douglas; Lavine, Laura Corley
2014-01-01
ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic clearance. While ABC transporters have been extensively studied in vertebrates, less is known concerning this superfamily in insects, particularly hemipteran pests. We used RNA-Seq transcriptome sequencing to identify 65 putative ABC transporter sequences (including 36 full-length sequences) from the eight ABC subfamilies in the western tarnished plant bug (Lygus hesperus), a polyphagous agricultural pest. Phylogenetic analyses revealed clear orthologous relationships with ABC transporters linked to insecticide/xenobiotic clearance and indicated lineage specific expansion of the L. hesperus ABCG and ABCH subfamilies. The transcriptional profile of 13 LhABCs representative of the ABCA, ABCB, ABCC, ABCG, and ABCH subfamilies was examined across L. hesperus development and within sex-specific adult tissues. All of the transcripts were amplified from both reproductively immature and mature adults and all but LhABCA8 were expressed to some degree in eggs. Expression of LhABCA8 was spatially localized to the testis and temporally timed with male reproductive development, suggesting a potential role in sexual maturation and/or spermatozoa protection. Elevated expression of LhABCC5 in Malpighian tubules suggests a possible role in xenobiotic clearance. Our results provide the first transcriptome-wide analysis of ABC transporters in an agriculturally important hemipteran pest and, because ABC transporters are known to be important mediators of insecticidal resistance, will provide the basis for future biochemical and toxicological studies on the role of this protein family in insecticide resistance in Lygus species. PMID:25401762
ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma.
Dréan, Antonin; Rosenberg, Shai; Lejeune, François-Xavier; Goli, Larissa; Nadaradjane, Aravindan Arun; Guehennec, Jérémy; Schmitt, Charlotte; Verreault, Maïté; Bielle, Franck; Mokhtari, Karima; Sanson, Marc; Carpentier, Alexandre; Delattre, Jean-Yves; Idbaih, Ahmed
2018-03-08
ATP-binding cassette transporters (ABC transporters) regulate traffic of multiple compounds, including chemotherapeutic agents, through biological membranes. They are expressed by multiple cell types and have been implicated in the drug resistance of some cancer cells. Despite significant research in ABC transporters in the context of many diseases, little is known about their expression and clinical value in glioblastoma (GBM). We analyzed expression of 49 ABC transporters in both commercial and patient-derived GBM cell lines as well as from 51 human GBM tumor biopsies. Using The Cancer Genome Atlas (TCGA) cohort as a training dataset and our cohort as a validation dataset, we also investigated the prognostic value of these ABC transporters in newly diagnosed GBM patients, treated with the standard of care. In contrast to commercial GBM cell lines, GBM-patient derived cell lines (PDCL), grown as neurospheres in a serum-free medium, express ABC transporters similarly to parental tumors. Serum appeared to slightly increase resistance to temozolomide correlating with a tendency for an increased expression of ABCB1. Some differences were observed mainly due to expression of ABC transporters by microenvironmental cells. Together, our data suggest that the efficacy of chemotherapeutic agents may be misestimated in vitro if they are the targets of efflux pumps whose expression can be modulated by serum. Interestingly, several ABC transporters have prognostic value in the TCGA dataset. In our cohort of 51 GBM patients treated with radiation therapy with concurrent and adjuvant temozolomide, ABCA13 overexpression is associated with a decreased progression free survival in univariate (p < 0.01) and multivariate analyses including MGMT promoter methylation (p = 0.05) suggesting reduced sensitivity to temozolomide in ABCA13 overexpressing GBM. Expression of ABC transporters is: (i) detected in GBM and microenvironmental cells and (ii) better reproduced in GBM-PDCL. ABCA13 expression is an independent prognostic factor in newly diagnosed GBM patients. Further prospective studies are warranted to investigate whether ABCA13 expression can be used to further personalize treatments for GBM.
Tang, Chao-Yuan; Zhu, Li-Xin; Yu, Jian-Dong; Chen, Zhi; Gu, Man-Cang; Mu, Chao-Feng; Liu, Qi; Xiong, Yang
2018-07-30
In order to explore the mechanism of the reversing multidrug resistance (MDR) phenotypes by β-elemene (β-ELE) in doxorubicin (DOX)-resistant breast cancer cells (MCF-7/DOX), both the functionality and quantity of the ABC transporters in MCF-7/DOX were studied. Bioluminescence imaging (BLI) was used to study the efflux of d-luciferin potassium salt, the substrate of ATP-binding cassette transporters (ABC transporters), in MCF-7/DOX cells treated by β-ELE. At the same time three major ABC transport proteins and genes-related MDR, P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 1 (MRP, ABCC1) as well as breast cancer resistance protein (BCRP, ABCG2) were analyzed by q-PCR and Western blot. To investigate the efflux functionality of ABC transporters, MCF-7/DOX Fluc cell line with stably-overexpressed luciferase was established. BLI was then used to real-time monitor the efflux kinetics of d-luciferin potassium salt before and after MCF-7/DOX Fluc cells being treated with β-ELE or not. The results showed that the efflux of d-luciferin potassium salt from MCF-7/DOX Fluc was lessened when pretreated with β-ELE, which means that β-ELE may dampen the functionality of ABC transporters, thus decrease the efflux of d-fluorescein potassium or other chemotherapies which also serve as the substrates of ABC transporters. As the effect of β-ELE on the expression of ABC transporters, the results of q-PCR and Western blot showed that gene and protein expression of ABC transporters such as P-gp, MRP, and BCRP were down-regulated after the treatment of β-ELE. To verify the efficacy of β-ELE on reversing MDR, MCF-7/DOX cells were treated with the combination of DOX and β-ELE. MTT assay showed that β-ELE increased the inhibitory effect of DOX on the proliferation of MCF-7/DOX, and the IC 50 of the combination group was much lower than that of the single DOX or β-ELE treatment. In all, β-ELE may reverse MDR through the substrates of ABC transporters by two ways, to lessen the ABC protein efflux by weakening their functionality, or to reduce the quantity of ABC gene and protein expression. Copyright © 2018. Published by Elsevier B.V.
A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa.
Chen, Lin; Duan, Kangmin
2016-05-01
Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Angus Stuart
2014-09-23
Efforts to manipulate production of plant secondary cell walls to improve the quality of biofuel feedstocks are currently limited by an inability to regulate the transport of small molecule components out of the cell. Plant ABCB p-glycoproteins are a small family of plasma membrane organic molecule transporters that have become primary targets for this effort, as they can potentially be harnessed to control the export of aromatic compounds and organic acids. However, unlike promiscuous mammalian ABCBs that function in multidrug resistance, all plant ABCB proteins characterized to date exhibit relatively narrow substrate specificity. Although ABCBs exhibit a highly conserved architecture,more » efforts to modify ABCB activity have been hampered by a lack of structural information largely because an eukaryotic ABCB protein crystal structure has yet to be obtained. Structure/ function analyses have been further impeded by the lack of a common heterologous expression system that can be used to characterize recombinant ABCB proteins, as many cannot be functionally expressed in S. cereviseae or other systems where proteins with analogous function can be readily knocked out. Using experimentally-determined plant ABCB substrate affinities and the crystal structure of the bacterial Sav1866 “half” ABC transporter, we have developed sequence/structure models for ABCBs that provide a testable context for mutational analysis of plant ABCB transporters. We have also developed a flexible heterologous expression system in Schizosaccharomyces pombe in which all endogenous ABC transporters have been knocked out. The effectiveness of this system for transport studies has been demonstrated by the successful functional expression all of the known PIN, AUX/LAX and ABCB auxin transporters. Our central hypothesis is that the domains of the ABCB proteins that we have identified as substrate docking sites and regulators of transport directionality can be altered or swapped to alter the transport characteristics of the proteins. We propose to combine computer modelling, mutational analyses, and complementation of well characterized Arabidopsis abcb4,14,and 19 mutants to elucidate ABCB function. The long term objective of this project is to enhance ABCB transport of cell wall components, to manipulate the direction of ABCB substrate transport, and, ultimately, to produce “designer” ABC transporters that can be used to modify plant feedstock quality.« less
A Genetic Locus Necessary for Rhamnose Uptake and Catabolism in Rhizobium leguminosarum bv. trifolii
Richardson, Jason S.; Hynes, Michael F.; Oresnik, Ivan J.
2004-01-01
Rhizobium leguminosarum bv. trifolii mutants unable to catabolize the methyl-pentose rhamnose are unable to compete effectively for nodule occupancy. In this work we show that the locus responsible for the transport and catabolism of rhamnose spans 10,959 bp. Mutations in this region were generated by transposon mutagenesis, and representative mutants were characterized. The locus contains genes coding for an ABC-type transporter, a putative dehydrogenase, a probable isomerase, and a sugar kinase necessary for the transport and subsequent catabolism of rhamnose. The regulation of these genes, which are inducible by rhamnose, is carried out in part by a DeoR-type negative regulator (RhaR) that is encoded within the same transcript as the ABC-type transporter but is separated from the structural genes encoding the transporter by a terminator-like sequence. RNA dot blot analysis demonstrated that this terminator-like sequence is correlated with transcript attenuation only under noninducing conditions. Transport assays utilizing tritiated rhamnose demonstrated that uptake of rhamnose was inducible and dependent upon the presence of the ABC transporter at this locus. Phenotypic analyses of representative mutants from this locus provide genetic evidence that the catabolism of rhamnose differs from previously described methyl-pentose catabolic pathways. PMID:15576793
Liu, Xiang; Li, Shangqi; Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A; Xu, Peng
2016-01-01
The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp.
Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A.
2016-01-01
The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp. PMID:27058731
75 FR 11991 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB Finance Docket No. 35356] ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to lease from O...
Sook, Brian R; Block, Darci R; Sumithran, Suganya; Montañez, Griselle E; Rodgers, Kenton R; Dawson, John H; Eichenbaum, Zehava; Dixon, Dabney W
2008-02-26
Many pathogenic bacteria require heme and obtain it from their environment. Heme transverses the cytoplasmic membrane via an ATP binding cassette (ABC) pathway. Although a number of heme ABC transport systems have been described in pathogenic bacteria, there is as yet little biophysical characterization of the proteins in these systems. The sia (hts) gene cluster encodes a heme ABC transporter in the Gram positive Streptococcus pyogenes. The lipoprotein-anchored heme binding protein (HBP) of this transporter is SiaA (HtsA). In the current study, resonance Raman (rR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopies were used to determine the coordination state and spin state of both the ferric and ferrous forms of this protein. Identifiers from these techniques suggest that the heme is six-coordinate and low-spin in both oxidation states of the protein, with methionine and histidine as axial ligands. SiaA has a pKa of 9.7 +/- 0.1, attributed to deprotonation of the axial histidine. Guanidinium titration studies show that the ferric state is less stable than the ferrous state, with DeltaG(H2O) values for the oxidized and reduced proteins of 7.3 +/- 0.8 and 16.0 +/- 3.6 kcal mol-1, respectively. The reductive and oxidative midpoint potentials determined via spectroelectrochemistry are 83 +/- 3 and 64 +/- 3 mV, respectively; the irreversibility of heme reduction suggests that redox cycling of the heme is coupled to a kinetically sluggish change in structure or conformation. The biophysical characterization described herein will significantly advance our understanding of structure-function relationships in HBP.
Bfr1p is responsible for tributyltin resistance in Schizosaccharomyces pombe.
Akiyama, Koichi; Iwaki, Tomoko; Sugimoto, Naoko; Chardwiriyapreecha, Soracom; Kawano, Miyuki; Nishimoto, Sogo; Sugahara, Takuya; Sekito, Takayuki; Kakinuma, Yoshimi
2011-01-01
ATP-binding cassette (ABC) transporter plays an important role for resistance against xenobiotics. There are eleven ABC transporter genes in the genome of fission yeast Schizosaccharomyces pombe. We examined the role of ABC transporter against the toxicity of tributyltin chloride (TBT), a widespread environmental pollutant, in cell growth. Among individual ABC transporter mutants, the growth of a mutant deficient in Bfr1p, a plasma membrane-embedded transporter, was extremely sensitive to TBT. The lethal TBT concentration inducing 50% of cell death (LC(50)) was 25 µM for the parent strain and 10.2 µM for the bfr1∆ mutant. Thus, Bfr1p was responsible for TBT resistance in S. pombe.
Torres-Quesada, Omar; Millán, Vicenta; Nisa-Martínez, Rafael; Bardou, Florian; Crespi, Martín; Toro, Nicolás; Jiménez-Zurdo, José I
2013-01-01
The legume symbiont Sinorhizobium meliloti expresses a plethora of small noncoding RNAs (sRNAs) whose function is mostly unknown. Here, we have functionally characterized two tandemly encoded S. meliloti Rm1021 sRNAs that are similar in sequence and structure. Homologous sRNAs (designated AbcR1 and AbcR2) have been shown to regulate several ABC transporters in the related α-proteobacteria Agrobacterium tumefaciens and Brucella abortus. In Rm1021, AbcR1 and AbcR2 exhibit divergent unlinked regulation and are stabilized by the RNA chaperone Hfq. AbcR1 is transcribed in actively dividing bacteria, either in culture, rhizosphere or within the invasion zone of mature alfalfa nodules. Conversely, AbcR2 expression is induced upon entry into stationary phase and under abiotic stress. Only deletion of AbcR1 resulted into a discrete growth delay in rich medium, but both are dispensable for symbiosis. Periplasmic proteome profiling revealed down-regulation of the branched-chain amino acid binding protein LivK by AbcR1, but not by AbcR2. A double-plasmid reporter assay confirmed the predicted specific targeting of the 5'-untranslated region of the livK mRNA by AbcR1 in vivo. Our findings provide evidences of independent regulatory functions of these sRNAs, probably to fine-tune nutrient uptake in free-living and undifferentiated symbiotic rhizobia.
Torres-Quesada, Omar; Millán, Vicenta; Nisa-Martínez, Rafael; Bardou, Florian; Crespi, Martín; Toro, Nicolás; Jiménez-Zurdo, José I.
2013-01-01
The legume symbiont Sinorhizobium meliloti expresses a plethora of small noncoding RNAs (sRNAs) whose function is mostly unknown. Here, we have functionally characterized two tandemly encoded S. meliloti Rm1021 sRNAs that are similar in sequence and structure. Homologous sRNAs (designated AbcR1 and AbcR2) have been shown to regulate several ABC transporters in the related α-proteobacteria Agrobacterium tumefaciens and Brucella abortus. In Rm1021, AbcR1 and AbcR2 exhibit divergent unlinked regulation and are stabilized by the RNA chaperone Hfq. AbcR1 is transcribed in actively dividing bacteria, either in culture, rhizosphere or within the invasion zone of mature alfalfa nodules. Conversely, AbcR2 expression is induced upon entry into stationary phase and under abiotic stress. Only deletion of AbcR1 resulted into a discrete growth delay in rich medium, but both are dispensable for symbiosis. Periplasmic proteome profiling revealed down-regulation of the branched-chain amino acid binding protein LivK by AbcR1, but not by AbcR2. A double-plasmid reporter assay confirmed the predicted specific targeting of the 5′-untranslated region of the livK mRNA by AbcR1 in vivo. Our findings provide evidences of independent regulatory functions of these sRNAs, probably to fine-tune nutrient uptake in free-living and undifferentiated symbiotic rhizobia. PMID:23869210
eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells
Yeh, Johannes T.-H.; Nam, Kwangho; Yeh, Joshua T.-H.; Perrimon, Norbert
2017-01-01
The absorption, distribution, metabolism and excretion (ADME) of metabolites and toxic organic solutes are orchestrated by the ATP-binding cassette (ABC) transporters and the organic solute carrier family (SLC) proteins. A large number of ABC and SLC transpoters exist; however, only a small number have been well characterized. To facilitate the analysis of these transporters, which is important for drug safety and physiological studies, we developed a sensitive genetically encoded bilirubin (BR)-inducible fluorescence sensor (eUnaG) to detect transporter-coupled influx/efflux of organic compounds. This sensor can be used in live cells to measure transporter activity, as excretion of BR depends on ABC and SLC transporters. Applying eUnaG in functional RNAi screens, we characterize l(2)03659 as a Drosophila multidrug resistant-associated ABC transporter. PMID:28176814
NASA Astrophysics Data System (ADS)
Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Urbanelli, Sandra; Sassera, Davide; De Marco, Leone; Mereghetti, Valeria; Montagna, Matteo; Ricci, Irene; Favia, Guido; Bandi, Claudio
2014-12-01
In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABC gene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps.
Fichant, Gwennaele; Basse, Marie-Jeanne; Quentin, Yves
2006-03-01
The ATP-binding cassette (ABC) transporters are one of the major classes of active transporters. They are widespread in archaea, bacteria, and eukaryota, indicating that they have arisen early in evolution. They are involved in many essential physiological processes, but the majority import or export a wide variety of compounds across cellular membranes. These systems share a common architecture composed of four (exporters) or five (importers) domains. To identify and reconstruct functional ABC transporters encoded by archaeal and bacterial genomes, we have developed a bioinformatic strategy. Cross-reference to the transport classification system is used to predict the type of compound transported. A high quality of annotation is achieved by manual verification of the predictions. However, in order to face the rapid increase in the number of published genomes, we also include analyses of genomes issuing directly from the automated strategy. Querying the database (http://www-abcdb.biotoul.fr) allows to easily retrieve ABC transporter repertories and related data. Additional query tools have been developed for the analysis of the ABC family from both functional and evolutionary perspectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning
Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABCmore » gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.« less
2013-01-01
Background Resistance to radiation treatment remains a major clinical problem for patients with brain cancer. Medulloblastoma is the most common malignant brain tumor of childhood, and occurs in the cerebellum. Though radiation treatment has been critical in increasing survival rates in recent decades, the presence of resistant cells in a substantial number of medulloblastoma patients leads to relapse and death. Methods Using the established medulloblastoma cell lines UW228 and Daoy, we developed a novel model system to enrich for and study radiation tolerant cells early after radiation exposure. Using fluorescence-activated cell sorting, dead cells and cells that had initiated apoptosis were removed, allowing surviving cells to be investigated before extensive proliferation took place. Results Isolated surviving cells were tumorigenic in vivo and displayed elevated levels of ABCG2, an ABC transporter linked to stem cell behavior and drug resistance. Further investigation showed another family member, ABCA1, was also elevated in surviving cells in these lines, as well as in early passage cultures from pediatric medulloblastoma patients. We discovered that the multi-ABC transporter inhibitors verapamil and reserpine sensitized cells from particular patients to radiation, suggesting that ABC transporters have a functional role in cellular radiation protection. Additionally, verapamil had an intrinsic anti-proliferative effect, with transient exposure in vitro slowing subsequent in vivo tumor formation. When expression of key ABC transporter genes was assessed in medulloblastoma tissue from 34 patients, levels were frequently elevated compared with normal cerebellum. Analysis of microarray data from independent cohorts (n = 428 patients) showed expression of a number of ABC transporters to be strongly correlated with certain medulloblastoma subtypes, which in turn are associated with clinical outcome. Conclusions ABC transporter inhibitors are already being trialed clinically, with the aim of decreasing chemotherapy resistance. Our findings suggest that the inhibition of ABC transporters could also increase the efficacy of radiation treatment for medulloblastoma patients. Additionally, the finding that certain family members are associated with particular molecular subtypes (most notably high ABCA8 and ABCB4 expression in Sonic Hedgehog pathway driven tumors), along with cell membrane location, suggests ABC transporters are worthy of consideration for the diagnostic classification of medulloblastoma. PMID:24219920
A Neisseria meningitidis fbpABC mutant is incapable of using nonheme iron for growth.
Khun, H H; Kirby, S D; Lee, B C
1998-05-01
The neisserial fbpABC locus has been proposed to act as an iron-specific ABC transporter system. To confirm this assigned function, we constructed an fbpABC mutant in Neisseria meningitidis by insertional inactivation of fbpABC with a selectable antibiotic marker. The mutant was unable to use iron supplied from human transferrin, human lactoferrin, or iron chelates. However, the use of iron from heme and human hemoglobin was unimpaired. These results support the obligatory participation of fbpABC in neisserial periplasmic iron transport and do not indicate a role for this genetic locus in the heme iron pathway.
A Neisseria meningitidis fbpABC Mutant Is Incapable of Using Nonheme Iron for Growth
Khun, Heng H.; Kirby, Shane D.; Lee, B. Craig
1998-01-01
The neisserial fbpABC locus has been proposed to act as an iron-specific ABC transporter system. To confirm this assigned function, we constructed an fbpABC mutant in Neisseria meningitidis by insertional inactivation of fbpABC with a selectable antibiotic marker. The mutant was unable to use iron supplied from human transferrin, human lactoferrin, or iron chelates. However, the use of iron from heme and human hemoglobin was unimpaired. These results support the obligatory participation of fbpABC in neisserial periplasmic iron transport and do not indicate a role for this genetic locus in the heme iron pathway. PMID:9573125
Okuda, Ken-ichi; Yanagihara, Sae; Sugayama, Tomomichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji
2010-06-01
Lantibiotics are peptide-derived antibacterial substances produced by some Gram-positive bacteria and characterized by the presence of unusual amino acids, like lanthionines and dehydrated amino acids. Because lantibiotic producers may be attacked by self-produced lantibiotics, they express immunity proteins on the cytoplasmic membrane. An ATP-binding cassette (ABC) transport system mediated by the LanFEG protein complex is a major system in lantibiotic immunity. Multiple-sequence alignment analysis revealed that LanF proteins contain the E loop, a variant of the Q loop, which is a well-conserved motif in the nucleotide-binding domains (NBDs) of general ABC transporters. To elucidate E loop function, we introduced a mutation in the NukF protein, which is involved in the nukacin-ISK-1 immunity system. Amino acid replacement of glutamic acid in the E loop with glutamine (E85Q) resulted in slight decreases in the immunity level and transport activity. Additionally, the E85A mutation severely impaired the immunity level and transport activity. On the other hand, ATPase activities of purified E85Q and E85A mutants were almost similar to that of the wild type. These results suggested that the E loop found in ABC transporters involved in lantibiotic immunity plays a significant role in the function of these transporters, especially in the structural change of transmembrane domains.
Karanjin interferes with ABCB1, ABCC1, and ABCG2.
Michaelis, Martin; Rothweiler, Florian; Nerreter, Thomas; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich
2014-01-01
The prominent ATP-binding cassette (ABC) transporters ABCB1, ABCC1, and ABCG2 are involved in substance transport across physiological barriers and therefore in drug absorption, distribution, and elimination. They also mediate multi-drug resistance in cancer cells. Different flavonoids are known to interfere with different ABC transporters. Here, the effect of the furanoflavonol karanjin, a potential drug with antiglycaemic, gastroprotective, antifungal, and antibacterial effects, was investigated on ABCB1, ABCC1, and ABCG2-mediated drug transport in comparison to the flavonoids apigenin, genistein, and naringenin. Cells expressing the relevant transporters (ABCB1: UKF-NB-3(ABCB1), UKF-NB-3(r)VCR¹⁰; ABCC1: G62, PC-3(r)VCR²⁰; ABCG2: UKF-NB-3(ABCG2)) were used in combination with specific fluorescent and cytotoxic ABC transporter substrates and ABC transporter inhibitors to study ABC transporter function. Moreover, the effects of the investigated flavonoids were determined on the ABC transporter ATPase activities. Karanjin interfered with drug efflux mediated by ABCB1, ABCC1, and ABCG2 and enhanced the ATPase activity of all three transporters. Moreover, karanjin exerted more pronounced effects than the control flavonoids apigenin, genistein, and naringenin on all three transporters. Most notably, karanjin interfered with ABCB1 at low concentrations being about 1 µM. Taken together, these findings should be taken into account during further consideration of karanjin as a potential drug for different therapeutic indications. The effects on ABCB1, ABCC1, and ABCG2 may affect the pharmacokinetics of co-administered drugs.
Harnessing Drug Resistance: Using ABC Transporter Proteins To Target Cancer Cells
Leitner, Heather M.; Kachadourian, Remy; Day, Brian J.
2007-01-01
The ATP-binding cassette (ABC) class of proteins is one of the most functionally diverse transporter families found in biological systems. Although the abundance of ABC proteins varies between species, they are highly conserved in sequence and often demonstrate similar functions across prokaryotic and eukaryotic organisms. Beginning with a brief summary of the events leading to our present day knowledge of ABC transporters, the purpose of this review is to discuss the potential for utilizing ABC transporters as a means for cellular glutathione (GSH) modulation. GSH is one of the most abundant thiol antioxidants in cells. It is involved in cellular division, protein and DNA synthesis, maintenance of cellular redox status and xenobiotic metabolism. Cellular GSH levels are often altered in many disease states including cancer. Over the past two decades there has been considerable emphasis on methods to sensitize cancer cells to chemotherapeutics and ionization radiation therapy by GSH depletion. We contend that ABC transporters, particularly multi-drug resistant proteins (MRPs), may be used as therapeutic targets for applications aimed at modulation of GSH levels. This review will emphasize MRP-mediated modulation of intracellular GSH levels as a potential alternative and adjunctive approach for cancer therapy. PMID:17585883
ATP-binding cassette exporters: structure and mechanism with a focus on P-glycoprotein and MRP1.
Arana, Maite Rocío; Altenberg, Guillermo
2017-10-12
The majority of proteins that belong to the ATP-binding cassette (ABC) superfamily are transporters that mediate the efflux of substrates from cells. These exporters include multidrug resistance proteins of the ABCB and ABCC subfamilies, such as P-glycoprotein (Pgp) and MRP1, respectively. These proteins are not only involved in the resistance of cancer to cytotoxic agents, but also in the protection from endo and xenobiotics, and the determination of drug pharmacokinetics, as well as in the pathophysiology of a variety of disorders. Here, we present a review of the information available on ABC exporters, with a focus on Pgp, MRP1 and related proteins. We describe tissue localization and function of these transporters in health and disease, and discuss the mechanisms of substrate transport. We also correlate recent structural information with the function of the exporters, and discuss details of their molecular mechanism with a focus on the nucleotide-binding domains. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Doliwa, Christelle; Escotte-Binet, Sandie; Aubert, Dominique; Sauvage, Virginie; Velard, Frédéric; Schmid, Aline; Villena, Isabelle
2013-01-01
Several treatment failures have been reported for the treatment of toxoplasmic encephalitis, chorioretinitis, and congenital toxoplasmosis. Recently we found three Toxoplasma gondii strains naturally resistant to sulfadiazine and we developed in vitro two sulfadiazine resistant strains, RH-RSDZ and ME-49-RSDZ, by gradual pressure. In Plasmodium, common mechanisms of drug resistance involve, among others, mutations and/or amplification within genes encoding the therapeutic targets dhps and dhfr and/or the ABC transporter genes family. To identify genotypic and/or phenotypic markers of resistance in T. gondii, we sequenced and analyzed the expression levels of therapeutic targets dhps and dhfr, three ABC genes, two Pgp, TgABC.B1 and TgABC.B2, and one MRP, TgABC.C1, on sensitive strains compared to sulfadiazine resistant strains. Neither polymorphism nor overexpression was identified. Contrary to Plasmodium, in which mutations and/or overexpression within gene targets and ABC transporters are involved in antimalarial resistance, T. gondii sulfadiazine resistance is not related to these toxoplasmic genes studied. PMID:23707894
Xiao, Lin-Fan; Zhang, Wei; Jing, Tian-Xing; Zhang, Meng-Yi; Miao, Ze-Qing; Wei, Dan-Dan; Yuan, Guo-Rui; Wang, Jin-Jun
2018-03-01
The ATP-binding cassette (ABC) is the largest transporter gene family and the genes play key roles in xenobiotic resistance, metabolism, and development of all phyla. However, the specific functions of ABC gene families in insects is unclear. We report a genome-wide identification, phylogenetic, and transcriptional analysis of the ABC genes in the oriental fruit fly, Bactrocera dorsalis (Hendel). We identified a total of 47 ABC genes (BdABCs) from the transcriptomic and genomic databases of B. dorsalis and classified these genes into eight subfamilies (A-H), including 7 ABCAs, 7 ABCBs, 9 ABCCs, 2 ABCDs, 1 ABCE, 3 ABCFs, 15 ABCGs, and 3 ABCHs. Comparative phylogenetic analysis of the ABCs suggests an orthologous relationship between B. dorsalis and other insect species in which these genes have been related to pesticide resistance and essential biological processes. Comparison of transcriptome and relative expression patterns of BdABCs indicated diverse multifunctions within different B. dorsalis tissues. The expression of 4, 10, and 14 BdABCs from 18 BdABCs was significantly upregulated after exposure to LD 50 s of malathion, avermectin, and beta-cypermethrin, respectively. The maximum expression level of most BdABCs (including BdABCFs, BdABCGs, and BdABCHs) occurred at 48h post exposures, whereas BdABCEs peaked at 24h after treatment. Furthermore, RNA interference-mediated suppression of BdABCB7 resulted in increased toxicity of malathion against B. dorsalis. These data suggest that ABC transporter genes might play key roles in xenobiotic metabolism and biosynthesis in B. dorsalis. Copyright © 2017 Elsevier Inc. All rights reserved.
2017-01-01
Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron–siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron–siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron–siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Å resolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2–3 Å shifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs. PMID:29095164
Poudyal, Bandita; Sauer, Karin
2018-02-01
A hallmark of biofilms is their tolerance to killing by antimicrobial agents. In Pseudomonas aeruginosa , biofilm drug tolerance requires the c-di-GMP-responsive MerR transcriptional regulator BrlR. However, the mechanism by which BrlR mediates biofilm drug tolerance has not been elucidated. Here, we demonstrate that BrlR activates the expression of at least 7 ABC transport systems, including the PA1874-PA1875-PA1876-PA1877 (PA1874-77) operon, with chromatin immunoprecipitation and DNA binding assays confirming BrlR binding to the promoter region of PA1874-77. Insertional inactivation of the 7 ABC transport systems rendered P. aeruginosa PAO1 biofilms susceptible to tobramycin or norfloxacin. Susceptibility was linked to drug accumulation, with BrlR contributing to norfloxacin accumulation in a manner dependent on multidrug efflux pumps and the PA1874-77 ABC transport system. Inactivation of the respective ABC transport system, furthermore, eliminated the recalcitrance of biofilms to killing by tobramycin but not norfloxacin, indicating that drug accumulation is not linked to biofilm drug tolerance. Our findings indicate for the first time that BrlR, a MerR-type transcriptional activator, activates genes encoding several ABC transport systems, in addition to multiple multidrug efflux pump genes. Moreover, our data confirm a BrlR target contributing to drug tolerance, likely countering the prevailing dogma that biofilm tolerance arises from a multiplicity of factors. Copyright © 2018 American Society for Microbiology.
Spartano, N. L.; Lamon-Fava, S.; Matthan, N. R.; Ronxhi, J.; Greenberg, A. S.; Obin, M. S.; Lichtenstein, A. H.
2014-01-01
Purpose Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. 2 models were used to assess this potential relationship: human monocytes/leukocytes and murine bone marrow-derived macrophages (BMDM). Methods 10 subjects (4 F/6 M, 50–85 years, BMI 25–35 kg/m2) underwent an oral glucose challenge. Baseline and 1- and 2-h post-challenge ABC-transporter mRNA expression was determined in monocytes, leukocytes and peripheral blood mononuclear cells (PBMC). In a separate study, murine-BMDM were exposed to 5 mmol/L D-glucose (control) or additional 20 mmol/L D-or L-glucose and 25 ug/mL oxidized low density lipoprotein (oxLDL). High density lipoprotein (HDL)-mediated cholesterol efflux and ABC-transporter (ABCA1 and ABCG1) expression were determined. Results Baseline ABCA1and ABCG1 expression was lower (> 50 %) in human monocytes and PBMC than leukocytes (p < 0.05). 1 h post-challenge leukocyte ABCA1 and ABCG1 expression increased by 37 % and 30 %, respectively (p < 0.05), and began to return to baseline thereafter. There was no significant change in monocyte ABC-transporter expression. In murine BMDM, higher glucose concentrations suppressed HDL-mediated cholesterol efflux (10 %; p < 0.01) without significantly affecting ABCA1 and ABCG1 expression. Data demonstrate that leukocytes are not a reliable indicator of monocyte ABC-transporter expression. Conclusions Human monocyte ABC-transporter gene expression was unresponsive to a glucose challenge. Correspondingly, in BMDM, hyperglycemia attenuated macrophage cholesterol efflux in the absence of altered ABC-transporter expression, suggesting that hyperglycemia, per se, suppresses cholesterol transporter activity. This glucose-related impairment in cholesterol efflux may potentially contribute to diabetes-associated atherosclerosis. PMID:24838154
Wong, Kelvin; Briddon, Stephen J; Holliday, Nicholas D; Kerr, Ian D
2016-01-01
ABCG2 is one of three human ATP binding cassette (ABC) transporters involved in the export from cells of a chemically and structurally diverse range of compounds. This multidrug efflux capability, together with a broad tissue distribution in the body, means that ABCG2 exerts a range of effects on normal physiology such as kidney urate transport, as well as contributing towards the pharmacokinetic profiles of many exogenous drugs. The primary sequence of ABCG2 contains only half the number of domains required for a functioning ABC transporter and so it must oligomerise in order to function, yet its oligomeric state in intact cell membranes remains uncharacterized. We have analysed ABCG2 in living cell membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, and stepwise photobleaching to demonstrate a predominantly tetrameric structure for ABCG2 in the presence or absence of transport substrates. These results provide the essential basis for exploring pharmacological manipulation of oligomeric state as a strategy to modulate ABCG2 activity in future selective therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism.
Joyce, Helena; McCann, Andrew; Clynes, Martin; Larkin, Annemarie
2015-05-01
Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.
Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters.
Baral, Bikash
2017-01-01
The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Qi, Weiping; Ma, Xiaoli; He, Weiyi; Chen, Wei; Zou, Mingmin; Gurr, Geoff M; Vasseur, Liette; You, Minsheng
2016-09-27
ATP-binding cassette (ABC) transporters are one of the major transmembrane protein families found in all organisms and play important roles in transporting a variety of compounds across intra and extra cellular membranes. In some species, ABC transporters may be involved in the detoxification of substances such as insecticides. The diamondback moth, Plutella xylostella (L.), a destructive pest of cruciferous crops worldwide, is an important species to study as it is resistant to many types of insecticides as well as biological control Bacillus thuringiensis toxins. A total of 82 ABC genes were identified from our published P. xylostella genome, and grouped into eight subfamilies (ABCA-H) based on phylogenetic analysis. Genes of subfamilies ABCA, ABCC and ABCH were found to be expanded in P. xylostella compared with those in Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens. Phylogenetic analysis indicated that many of the ABC transporters in P. xylostella are orthologous to the well-studied ABC transporter genes in the seven other species. Transcriptome- and qRT-PCR-based analysis elucidated physiological effects of ABC gene expressions of P. xylostella which were developmental stage- and tissue-specific as well as being affected by whether or not the insects were from an insecticide-resistant strain. Two ABCC and one ABCA genes were preferentially expressed in midgut of the 4th-instar larvae of a susceptible strain (Fuzhou-S) suggesting their potential roles in metabolizing plant defensive chemicals. Most of the highly expressed genes in insecticide-resistant strains were also predominantly expressed in the tissues of Malpighian tubules and midgut. This is the most comprehensive study on identification, characterization and expression profiling of ABC transporter genes in P. xylostella to date. The diversified features and expression patterns of this gene family may be associated with the evolutionary capacity of this species to develop resistance to a wide range of insecticides and biological toxins. Our findings provide a solid foundation for future functional studies on specific ABC transporter genes in P. xylostella, and for further understanding of their physiological roles and regulatory pathways in insecticide resistance.
Zhao, Jinlei
2014-01-01
Monosaccharides available in the extracellular milieu of Agrobacterium tumefaciens can be transported into the cytoplasm, or via the periplasmic sugar binding protein, ChvE, play a critical role in controlling virulence gene expression. The ChvE-MmsAB ABC transporter is involved in the utilization of a wide range of monosaccharide substrates but redundant transporters are likely given the ability of a chvE-mmsAB deletion strain to grow, albeit more slowly, in the presence of particular monosaccharides. In this study, a putative ABC transporter encoded by the gxySBA operon is identified and shown to be involved in the utilization of glucose, xylose, fucose, and arabinose, which are also substrates for the ChvE-MmsAB ABC transporter. Significantly, GxySBA is also shown to be the first characterized glucosamine ABC transporter. The divergently transcribed gene gxyR encodes a repressor of the gxySBA operon, the function of which can be relieved by a subset of the transported sugars, including glucose, xylose, and glucosamine, and this substrate-induced expression can be repressed by glycerol. Furthermore, deletion of the transporter can increase the sensitivity of the virulence gene expression system to certain sugars that regulate it. Collectively, the results reveal a remarkably diverse set of substrates for the GxySBA transporter and its contribution to the repression of sugar sensitivity by the virulence-controlling system, thereby facilitating the capacity of the bacterium to distinguish between the soil and plant environments. PMID:24957625
Tournier, Nicolas; Declèves, Xavier; Saubaméa, Bruno; Scherrmann, Jean-Michel; Cisternino, Salvatore
2011-01-01
Some of the ATP-binding cassette (ABC) transporters like P-glycoprotein (P-gp; ABCB1, MDR1), BCRP (ABCG2) and MRPs (ABCCs) that are present at the blood-brain barrier (BBB) influence the brain pharmacokinetics (PK) of their substrates by restricting their uptake or enhancing their clearance from the brain into the blood, which has consequences for their CNS pharmacodynamics (PD). Opioid drugs have been invaluable tools for understanding the PK-PD relationships of these ABC-transporters. The effects of morphine, methadone and loperamide on the CNS are modulated by P-gp. This review examines the ways in which other opioid drugs and some of their active metabolites interact with ABC transporters and suggests new mechanisms that may be involved in the variability of the response of the CNS to these drugs like carrier-mediated system belonging to the solute carrier (SLC) superfamily. Exposure to opioids may also alter the expression of ABC transporters. P-gp can be overproduced during morphine treatment, suggesting that the drug has a direct or, more likely, an indirect action. Variations in cerebral neurotransmitters during exposure to opioids and the release of cytokines during pain could be new endogenous stimuli affecting transporter synthesis. This review concludes with an analysis of the pharmacotherapeutic and clinical impacts of the interactions between ABC transporters and opioids.
Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara; Bremer, Erhard
2012-05-01
Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent K(D) (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine.
Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara
2012-01-01
Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent KD (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine. PMID:22408163
Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.
2016-01-01
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639
USDA-ARS?s Scientific Manuscript database
ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic cle...
Hyde, B B; Liesa, M; Elorza, A A; Qiu, W; Haigh, S E; Richey, L; Mikkola, H K; Schlaeger, T M; Shirihai, O S
2012-07-01
The mitochondrial transporter ATP binding cassette mitochondrial erythroid (ABC-me/ABCB10) is highly induced during erythroid differentiation by GATA-1 and its overexpression increases hemoglobin production rates in vitro. However, the role of ABC-me in erythropoiesis in vivo is unknown. Here we report for the first time that erythrocyte development in mice requires ABC-me. ABC-me-/- mice die at day 12.5 of gestation, showing nearly complete eradication of primitive erythropoiesis and lack of hemoglobinized cells at day 10.5. ABC-me-/- erythroid cells fail to differentiate because they exhibit a marked increase in apoptosis, both in vivo and ex vivo. Erythroid precursors are particularly sensitive to oxidative stress and ABC-me in the heart and its yeast ortholog multidrug resistance-like 1 have been shown to protect against oxidative stress. Thus, we hypothesized that increased apoptosis in ABC-me-/- erythroid precursors was caused by oxidative stress. Within this context, ABC-me deletion causes an increase in mitochondrial superoxide production and protein carbonylation in erythroid precursors. Furthermore, treatment of ABC-me-/- erythroid progenitors with the mitochondrial antioxidant MnTBAP (superoxide dismutase 2 mimetic) supports survival, ex vivo differentiation and increased hemoglobin production. Altogether, our findings demonstrate that ABC-me is essential for erythropoiesis in vivo.
High-Affinity Vanadate Transport System in the Cyanobacterium Anabaena variabilis ATCC 29413
Pratte, Brenda S.; Thiel, Teresa
2006-01-01
High-affinity vanadate transport systems have not heretofore been identified in any organism. Anabaena variabilis, which can fix nitrogen by using an alternative V-dependent nitrogenase, transported vanadate well. The concentration of vanadate giving half-maximum V-nitrogenase activity when added to V-starved cells was about 3 × 10−9 M. The genes for an ABC-type vanadate transport system, vupABC, were found in A. variabilis about 5 kb from the major cluster of genes encoding the V-nitrogenase, and like those genes, the vupABC genes were repressed by molybdate; however, unlike the V-nitrogenase genes the vanadate transport genes were expressed in vegetative cells. A vupB mutant failed to grow by using V-nitrogenase unless high levels of vanadate were provided, suggesting that there was also a low-affinity vanadate transport system that functioned in the vupB mutant. The vupABC genes belong to a family of putative metal transport genes that include only one other characterized transport system, the tungstate transport genes of Eubacterium acidaminophilum. Similar genes are not present in the complete genomes of other bacterial strains that have a V-nitrogenase, including Azotobacter vinelandii, Rhodopseudomonas palustris, and Methanosarcina barkeri. PMID:16385036
The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion.
Khunweeraphong, Narakorn; Stockner, Thomas; Kuchler, Karl
2017-10-23
The human ABC transporter ABCG2 (Breast Cancer Resistance Protein, BCRP) is implicated in anticancer resistance, in detoxification across barriers and linked to gout. Here, we generate a novel atomic model of ABCG2 using the crystal structure of ABCG5/G8. Extensive mutagenesis verifies the structure, disclosing hitherto unrecognized essential residues and domains in the homodimeric ABCG2 transporter. The elbow helix, the first intracellular loop (ICL1) and the nucleotide-binding domain (NBD) constitute pivotal elements of the architecture building the transmission interface that borders a central cavity which acts as a drug trap. The transmission interface is stabilized by salt-bridge interactions between the elbow helix and ICL1, as well as within ICL1, which is essential to control the conformational switch of ABCG2 to the outward-open drug-releasing conformation. Importantly, we propose that ICL1 operates like a molecular spring that holds the NBD dimer close to the membrane, thereby enabling efficient coupling of ATP hydrolysis during the catalytic cycle. These novel mechanistic data open new opportunities to therapeutically target ABCG2 in the context of related diseases.
Jeong, Chang-Bum; Kim, Hui-Su; Kang, Hye-Min; Lee, Jae-Seong
2017-04-01
The ATP-binding cassette (ABC) protein superfamily is known to play a fundamental role in biological processes and is highly conserved across animal taxa. The ABC proteins function as active transporters for multiple substrates across the cellular membrane by ATP hydrolysis. As this superfamily is derived from a common ancestor, ABC genes have evolved via lineage-specific duplications through the process of adaptation. In this review, we summarized information about the ABC gene families in aquatic invertebrates, considering their evolution and putative functions in defense mechanisms. Phylogenetic analysis was conducted to examine the evolutionary significance of ABC gene families in aquatic invertebrates. Particularly, a massive expansion of multixenobiotic resistance (MXR)-mediated efflux transporters was identified in the absence of the ABCG2 (BCRP) gene in Ecdysozoa and Platyzoa, suggesting that a loss of Abcg2 gene occurred sporadically in these species during divergence of Protostome to Lophotrochozoa. Furthermore, in aquatic invertebrates, the ecotoxicological significance of MXR is discussed while considering the role of MXR-mediated efflux transporters in response to various environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.
Marques-Santos, Luis Fernando; Hégaret, Hélène; Lima-Santos, Leonardo; Queiroga, Fernando Ramos; da Silva, Patricia Mirella
2017-11-01
ABC transporters activity and expression have been associated with the multixenobiotic resistance phenotype (MXR). The activity of these proteins leads to a reduction in the intracellular concentration of several xenobiotics, thus reducing their toxicity. However, little attention has been given to the expression of ABC transporters in marine invertebrates and few studies have investigated their role in immune system cells of sea urchins and shellfish bivalves. The aim of the present study was to investigate the activity of the ABC transporters ABCB1 and ABCC1 in immune system cells of sea urchins (coelomocytes) and oysters (hemocytes) from different climatic regions (Brazil and France). Sea urchins and oysters were collected at Paraíba coast; Brazil (Echinometra lucunter and Crassostrea gasar) and Rade of Brest; France (Echinus esculentus and Crassostrea gigas). Coelomocytes and hemocytes were stained with the ABC transporter substrate calcein-AM and dye accumulation analyzed under flow cytometry. Reversin 205 (ABCB1 transporter blocker) and MK571 (ABCC1 transporter blocker) were used as pharmacological tools to investigate ABC transporter activity. A different pattern of calcein accumulation was observed in coelomocytes: phagocytes > colorless spherulocytes > vibrate cells > red spherulocytes. The treatment with MK571 increased calcein fluorescence levels in coelomocytes from both species. However, reversin 205 treatment was not able to increase calcein fluorescence in E. esculentus coelomocytes. These data suggest that ABCC1-like transporter activity is present in both sea urchin species, but ABCB1-like transporter activity might only be present in E. lucunter coelomocytes. The activity of ABCC1-like transporter was observed in all cell types from both bivalve species. However, reversin 205 only increased calcein accumulation in hyalinocytes of the oyster C. gasar, suggesting the absence of ABCB1-like transporter activity in all other cell types, including hyalinocytes from the oyster C. gigas. Additionally, our results showed that C. gigas exhibited higher activity of ABCC1-like transporter in all hemocyte types than C. gasar. The present work is the first to characterize ABCB1 and ABCC1-like transporter activity in the immune system cells of sea urchins E. lucunter and E. esculentus and oysters. Our findings encourage the performing studies regarding ABC transporters activity/expression in immune system cells form marine invertebrates under stress conditions and the possible use of ABC transporters as biomarkers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hida, Kyoko; Kikuchi, Hiroshi; Maishi, Nako; Hida, Yasuhiro
2017-08-01
Drug resistance is a major problem in anticancer therapy. ATP-binding cassette (ABC) transporters have a role in the multidrug resistance. A new regimen of chemotherapy has been proposed, called "metronomic chemotherapy". Metronomic chemotherapy is the frequent, regular administration of drug doses designed to maintain low, but active, concentrations of chemotherapeutic drugs over prolonged periods of time, without causing serious toxicities. Metronomic chemotherapy regimens were developed to optimize the antitumor efficacy of agents that target the tumor vasculature instead of tumor cells, and to reduce toxicity of antineoplastic drugs [1]. Nevertheless, recent studies revealed that ABC transporters are expressed at a higher level in the endothelium in the tumor. To avoid resistance to metronomic anti-angiogenic chemotherapy, ABC transporter inhibition of tumor endothelial cells may be a promising strategy. In this mini-review, we discuss the possible mechanism of resistance to metronomic chemotherapy from the viewpoint of tumor endothelial cell biology, focusing on ABC transporters. Copyright © 2017. Published by Elsevier B.V.
Jonsson, Ing-Marie; Juuti, Jarmo T; François, Patrice; AlMajidi, Rana; Pietiäinen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J; Driessen, Arnold J M; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P
2010-12-02
Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown. In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine. Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.
Valenzuela-Muñoz, Valentina; Sturm, Armin; Gallardo-Escárate, Cristian
2015-04-09
ATP-binding cassette (ABC) protein family encode for membrane proteins involved in the transport of various biomolecules through the cellular membrane. These proteins have been identified in all taxa and present important physiological functions, including the process of insecticide detoxification in arthropods. For that reason the ectoparasite Caligus rogercresseyi represents a model species for understanding the molecular underpinnings involved in insecticide drug resistance. llumina sequencing was performed using sea lice exposed to 2 and 3 ppb of deltamethrin and azamethiphos. Contigs obtained from de novo assembly were annotated by Blastx. RNA-Seq analysis was performed and validated by qPCR analysis. From the transcriptome database of C. rogercresseyi, 57 putative members of ABC protein sequences were identified and phylogenetically classified into the eight subfamilies described for ABC transporters in arthropods. Transcriptomic profiles for ABC proteins subfamilies were evaluated throughout C. rogercresseyi development. Moreover, RNA-Seq analysis was performed for adult male and female salmon lice exposed to the delousing drugs azamethiphos and deltamethrin. High transcript levels of the ABCB and ABCC subfamilies were evidenced. Furthermore, SNPs mining was carried out for the ABC proteins sequences, revealing pivotal genomic information. The present study gives a comprehensive transcriptome analysis of ABC proteins from C. rogercresseyi, providing relevant information about transporter roles during ontogeny and in relation to delousing drug responses in salmon lice. This genomic information represents a valuable tool for pest management in the Chilean salmon aquaculture industry.
Iowa ABC connections : [tech transfer summary].
DOT National Transportation Integrated Search
2015-06-01
The Iowa Department of Transportation (DOT) and other organizations have : been developing accelerated bridge construction (ABC) concepts, details, and : processes, and Iowa has come to be viewed as a national leader in the area of : ABC. However, th...
Reilman, Ewoud; Mars, Ruben A. T.; van Dijl, Jan Maarten; Denham, Emma L.
2014-01-01
Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology, we demonstrate a temporally controlled transcriptional activation of the bmrCD genes in response to antibiotics that target protein synthesis. Intriguingly, bmrCD expression only occurs during the late-exponential and stationary growth stages, irrespective of the timing of the antibiotic challenge. We show that this is due to tight transcriptional control by the transition state regulator AbrB. Moreover, our results show that the bmrCD genes are co-transcribed with bmrB (yheJ), a small open reading frame immediately upstream of bmrC that harbors three alternative stem-loop structures. These stem-loops are apparently crucial for antibiotic-induced bmrCD transcription. Importantly, the antibiotic-induced bmrCD expression requires translation of bmrB, which implies that BmrB serves as a regulatory leader peptide. Altogether, we demonstrate for the first time that a ribosome-mediated transcriptional attenuation mechanism can control the expression of a multidrug ABC transporter. PMID:25217586
Shah, Abdul Haseeb; Banerjee, Atanu; Rawal, Manpreet Kaur; Saxena, Ajay Kumar; Mondal, Alok Kumar; Prasad, Rajendra
2015-08-01
The ABC transporter Cdr1 protein of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The 12 transmembrane helices of TMDs that are interconnected by extracellular and intracellular loops (ICLs) mainly harbor substrate recognition sites where drugs bind while cytoplasmic NBDs hydrolyze ATP which powers drug efflux. The coupling of ATP hydrolysis to drug transport requires proper communication between NBDs and TMDs typically accomplished by ICLs. This study examines the role of cytoplasmic ICLs of Cdr1p by rationally predicting the critical residues on the basis of their interatomic distances. Among nine pairs that fall within a proximity of <4 Å, an ion pair between K577 of ICL1 and E315 of NBD1 was found to be critical. The substitution, swapping and changing of the length or charge of K577 or E315 by directed mutagenesis led to a misfolded, non-rescuable protein entrapped in intracellular structures. Furthermore, the equipositional ionic pair-forming residues from ICL3 and NBD2 (R1260 and E1014) did not impact protein trafficking. These results point to a new role for ICL/NBD interacting residues in PDR ABC transporters in protein folding and trafficking. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi
2005-10-01
In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.
Hyde, B B; Liesa, M; Elorza, A A; Qiu, W; Haigh, S E; Richey, L; Mikkola, H K; Schlaeger, T M; Shirihai, O S
2012-01-01
The mitochondrial transporter ATP binding cassette mitochondrial erythroid (ABC-me/ABCB10) is highly induced during erythroid differentiation by GATA-1 and its overexpression increases hemoglobin production rates in vitro. However, the role of ABC-me in erythropoiesis in vivo is unknown. Here we report for the first time that erythrocyte development in mice requires ABC-me. ABC-me−/− mice die at day 12.5 of gestation, showing nearly complete eradication of primitive erythropoiesis and lack of hemoglobinized cells at day 10.5. ABC-me−/− erythroid cells fail to differentiate because they exhibit a marked increase in apoptosis, both in vivo and ex vivo. Erythroid precursors are particularly sensitive to oxidative stress and ABC-me in the heart and its yeast ortholog multidrug resistance-like 1 have been shown to protect against oxidative stress. Thus, we hypothesized that increased apoptosis in ABC-me−/− erythroid precursors was caused by oxidative stress. Within this context, ABC-me deletion causes an increase in mitochondrial superoxide production and protein carbonylation in erythroid precursors. Furthermore, treatment of ABC-me−/− erythroid progenitors with the mitochondrial antioxidant MnTBAP (superoxide dismutase 2 mimetic) supports survival, ex vivo differentiation and increased hemoglobin production. Altogether, our findings demonstrate that ABC-me is essential for erythropoiesis in vivo. PMID:22240895
Mechanisms of Drug Resistance in Veterinary Oncology—A Review with an Emphasis on Canine Lymphoma
Zandvliet, Maurice; Teske, Erik
2015-01-01
Drug resistance (DR) is the major limiting factor in the successful treatment of systemic neoplasia with cytotoxic chemotherapy. DR can be either intrinsic or acquired, and although the development and clinical implications are different, the underlying mechanisms are likely to be similar. Most causes for DR are pharmacodynamic in nature, result from adaptations within the tumor cell and include reduced drug uptake, increased drug efflux, changes in drug metabolism or drug target, increased capacity to repair drug-induced DNA damage or increased resistance to apoptosis. The role of active drug efflux transporters, and those of the ABC-transporter family in particular, have been studied extensively in human oncology and to a lesser extent in veterinary medicine. Methods reported to assess ABC-transporter status include detection of the actual protein (Western blot, immunohistochemistry), mRNA or ABC-transporter function. The three major ABC-transporters associated with DR in human oncology are ABCB1 or P-gp, ABCC1 or MRP1, and ABCG2 or BCRP, and have been demonstrated in canine cell lines, healthy dogs and dogs with cancer. Although this supports a causative role for these ABC-transporters in DR cytotoxic agents in the dog, the relative contribution to the clinical phenotype of DR in canine cancer remains an area of debate and requires further prospective studies. PMID:29061939
ABC Transporters and Isothiocyanates: Potential for Pharmacokinetic Diet–Drug Interactions
Telang, Urvi; Ji, Yan; Morris, Marilyn E.
2013-01-01
Isothiocyanates, a class of anti-cancer agents, are derived from cruciferous vegetables such as broccoli, cabbage and watercress, and have demonstrated chemopreventive activity in a number of cancer models and epidemiologic studies. Due to public interest in cancer prevention and alternative therapies in cancer, the consumption of herbal supplements and vegetables containing these compounds is widespread and increasing. Isothiocyanates interact with ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, MRP1, MRP2 and BCRP, and may influence the pharmacokinetics of substrates of these transporters. This review discusses the pharmacokinetic properties of isothiocyanates, their interactions with ABC transporters, and presents some data describing the potential for isothiocyanate-mediated diet–drug interactions. PMID:19623673
Bošnjak, Ivana; Pleić, Ivana Lepen; Borra, Marco; Mladineo, Ivona
2013-12-01
A multixenobiotic resistance (MXR) mechanism mediated by ABC binding cassette (ABC) transport proteins is an efficient chemical defence mechanism in sea urchin embryos. The aim of our work was to evidence whether exposure to sub-lethal doses of specific contaminants (oxybenzone (OXI), mercuric chloride (HgCl2) and trybutiltin (TBT)) would induce MXR transporter activity during embryonic development (from zygote to blastula stage) in purple sea urchin (Paracentrotus lividus) embryos. Further, we present data on molecular identification, transport function, expression levels and gene localisation of two ABC efflux transporters-P-glycoprotein (ABCB1/P-gp) and sulfonylurea-receptor-like protein (ABCC9/SUR-like). Partial cDNA sequences of abcb1 and abcc9 were identified and quantitative PCR (qPCR) evidenced an increase in mRNA transcript levels of both ABC transporters during the two-cell, as well as an overall decrease during the blastulae stage. Calcein-AM efflux activity assay indicated the activation of multidrug resistance-associated protein/ABCC-like transport in the presence of HgCl2 and TBT in exposed blastulae. The in situ hybridisation of the two-cell and blastula stages showed ubiquitous localisation of both transcripts within cells, supporting qPCR data. In conclusion, ABCB1 and ABCC9 are constitutive, as are HgCl2, TBT and OXI-inducible ABC membrane transporters, coexpressed in the zygote, two-cell and blastula stages of the P. lividus. Their ubiquitous cell localisation further fortifies their protective role in early embryonic development.
Dubey, Mukesh; Jensen, Dan Funck; Karlsson, Magnus
2016-04-01
For successful biocontrol interactions, biological control organisms must tolerate toxic metabolites produced by themselves or plant pathogens during mycoparasitic/antagonistic interactions, by host plant during colonization of the plant, and xenobiotics present in the environment. ATP-binding cassette (ABC) transporters can play a significant role in tolerance of toxic compounds by mediating active transport across the cellular membrane. This paper reports on functional characterization of an ABC transporter ABCG29 in the biocontrol fungus Clonostachys rosea strain IK726. Gene expression analysis showed induced expression of abcG29 during exposure to the Fusarium spp. mycotoxin zearalenone (ZEA) and the fungicides Cantus, Chipco Green and Apron. Expression of abcG29 in C. rosea was significantly higher during C. rosea-C. rosea (Cr-Cr) interaction or in exposure to C. rosea culture filtrate for 2 h, compared to interaction with Fusarium graminearum or 2 h exposure to F. graminearum culture filtrate. In contrast with gene expression data, ΔabcG29 strains did not display reduced tolerance towards ZEA, fungicides or chemical agents known for inducing oxidative, cell wall or osmotic stress, compared to C. rosea WT. The exception was a significant reduction in tolerance to H2O2 (10 mM) in ΔabcG29 strains when conidia were used as an inoculum. The antagonistic ability of ΔabcG29 strains towards F. graminearum, Fusarium oxysporum or Botrytis cinerea in dual plate assays were not different compared with WT. However, in biocontrol assays ΔabcG29 strains displayed reduced ability to protect Arabidopsis thaliana leaves from B. cinerea, and barley seedling from F. graminearum as measured by an A. thaliana detached leaf assay and a barley foot rot disease assay, respectively. These data show that the ABCG29 is dispensable for ZEA and fungicides tolerance, and antagonism but not H2O2 tolerance and biocontrol effects in C. rosea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Nidhi; Manoharlal, Raman; Sharma, Monika
2011-01-07
Research highlights: {yields} First report to demonstrate an in vivo expression system of an ABC multidrug transporter CgCdr1p of C. glabrata. {yields} First report on the structure and functional characterization of CgCdr1p. {yields} Functional conservation of divergent but typical residues of CgCdr1p. {yields} CgCdr1p elicits promiscuity towards substrates and has a large drug binding pocket with overlapping specificities. -- Abstract: We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplishedmore » by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the arte-factual concerns encountered in using heterologous systems are totally excluded.« less
Pletzer, Daniel; Weingart, Helge
2014-07-11
The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the efflux pumps are involved in resistance to plant antimicrobials, maybe including flavonoids, which were identified as substrates of both pumps. Furthermore, we found that the mdtABC operon belongs to the regulon of the two-component regulator BaeR suggesting a role of this RND transporter in the cell envelope stress response of E. amylovora.
2014-01-01
Background The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. Results To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. Conclusions The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the efflux pumps are involved in resistance to plant antimicrobials, maybe including flavonoids, which were identified as substrates of both pumps. Furthermore, we found that the mdtABC operon belongs to the regulon of the two-component regulator BaeR suggesting a role of this RND transporter in the cell envelope stress response of E. amylovora. PMID:25012600
USDA-ARS?s Scientific Manuscript database
ATP-binding cassette (ABC) transporters are essential for membrane translocation in diverse biological processes, such as plant development and defense response. Here, a general control non-derepressible (GCN)-type ABC transporter gene, designated LrABCF1, was identified from Cucumber mosaic virus (...
A phylogenomic analysis of the Actinomycetales mce operons.
Casali, Nicola; Riley, Lee W
2007-02-26
The genome of Mycobacterium tuberculosis harbors four copies of a cluster of genes termed mce operons. Despite extensive research that has demonstrated the importance of these operons on infection outcome, their physiological function remains obscure. Expanding databases of complete microbial genome sequences facilitate a comparative genomic approach that can provide valuable insight into the role of uncharacterized proteins. The M. tuberculosis mce loci each include two yrbE and six mce genes, which have homology to ABC transporter permeases and substrate-binding proteins, respectively. Operons with an identical structure were identified in all Mycobacterium species examined, as well as in five other Actinomycetales genera. Some of the Actinomycetales mce operons include an mkl gene, which encodes an ATPase resembling those of ABC uptake transporters. The phylogenetic profile of Mkl orthologs exactly matched that of the Mce and YrbE proteins. Through topology and motif analyses of YrbE homologs, we identified a region within the penultimate cytoplasmic loop that may serve as the site of interaction with the putative cognate Mkl ATPase. Homologs of the exported proteins encoded adjacent to the M. tuberculosis mce operons were detected in a conserved chromosomal location downstream of the majority of Actinomycetales operons. Operons containing linked mkl, yrbE and mce genes, resembling the classic organization of an ABC importer, were found to be common in Gram-negative bacteria and appear to be associated with changes in properties of the cell surface. Evidence presented suggests that the mce operons of Actinomycetales species and related operons in Gram-negative bacteria encode a subfamily of ABC uptake transporters with a possible role in remodeling the cell envelope.
Varmanen, P; Rantanen, T; Palva, A
1996-12-01
A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.
2013-06-01
The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).
Multidrug Resistance in Breast Cancer: From In Vitro Models to Clinical Studies
Wind, N. S.; Holen, I.
2011-01-01
The development of multidrug resistance (MDR) and subsequent relapse on therapy is a widespread problem in breast cancer, but our understanding of the underlying molecular mechanisms is incomplete. Numerous studies have aimed to establish the role of drug transporter pumps in MDR and to link their expression to response to chemotherapy. The ATP-binding cassette (ABC) transporters are central to breast cancer MDR, and increases in ABC expression levels have been shown to correlate with decreases in response to various chemotherapy drugs and a reduction in overall survival. But as there is a large degree of redundancy between different ABC transporters, this correlation has not been seen in all studies. This paper provides an introduction to the key molecules associated with breast cancer MDR and summarises evidence of their potential roles reported from model systems and clinical studies. We provide possible explanations for why despite several decades of research, the precise role of ABC transporters in breast cancer MDR remains elusive. PMID:22332018
The interaction of gut microbes with host ABC transporters
Mercado-Lubo, Regino
2010-01-01
ATP binding cassette (ABC) transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, secretion and toxicity of xenobiotics. In addition to their essential function in drug resistance, there is also emerging evidence documenting the important role ABC transporters play in tissue defense. In this respect, the gastrointestinal tract represents a critical vanguard of defense against oral exposure of drugs while at the same time functions as a physical barrier between the lumenal contents (including bacteria) and the intestinal epithelium. Given emerging evidence suggesting that multidrug resistance protein (MDR) plays an important role in host-bacterial interactions in the gastrointestinal tract, this review will discuss the interplay between MDR of the intestinal epithelial cell barrier and gut microbes in health and disease. In particular, we will explore host-microbe interactions involving three apically restricted ABC transporters of the intestinal epithelium; P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2) and cystic fibrosis transmembrane regulator (CFTR). PMID:21327038
Dai, Fuhong; Yoo, Won Gi; Lee, Ji-Yun; Lu, Yanyan; Pak, Jhang Ho; Sohn, Woon-Mok; Hong, Sung-Jong
2017-11-21
Multidrug resistance-associated protein 4 (MRP4) is a member of the C subfamily of the ABC family of ATP-binding cassette (ABC) transporters. MRP4 regulates ATP-dependent efflux of various organic anionic substrates and bile acids out of cells. Since Clonorchis sinensis lives in host's bile duct, accumulation of bile juice can be toxic to the worm's tissues and cells. Therefore, C. sinensis needs bile transporters to reduce accumulation of bile acids within its body. We cloned MRP4 (CsMRP4) from C. sinensis and obtained a cDNA encoding an open reading frame of 1469 amino acids. Phylogenetic analysis revealed that CsMRP4 belonged to the MRP/SUR/CFTR subfamily. A tertiary structure of CsMRP4 was generated by homology modeling based on multiple structures of MRP1 and P-glycoprotein. CsMRP4 had two membrane-spanning domains (MSD1 & 2) and two nucleotide-binding domains (NBD1 & 2) as common structural folds. Docking simulation with nine bile acids showed that CsMRP4 transports bile acids through the inner cavity. Moreover, it was found that CsMRP4 mRNA was more abundant in the metacercariae than in the adults. Mouse immune serum, generated against the CsMRP4-NBD1 (24.9 kDa) fragment, localized CsMRP4 mainly in mesenchymal tissues and oral and ventral suckers of the metacercariae and the adults. Our findings shed new light on MRPs and their homologs and provide a platform for further structural and functional investigations on the bile transporters and parasites' survival.
Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla
2015-01-01
AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that ABCB1 expression identifies a subpopulation of pro-inflammatory Th17 cells which were resistant to treatment with glucocorticoids. The evidence for the involvement of ABCC2 and ABCG2 in colonic pathophysiology was weak. CONCLUSION: ABCB1, diet, and gut microbes mutually interact in colonic inflammation, a well-known risk factor for CRC. Further insight may be translated into preventive and treatment strategies. PMID:26557010
Dutheil, Fabien; Jacob, Aude; Dauchy, Sandrine; Beaune, Philippe; Scherrmann, Jean-Michel; Declèves, Xavier; Loriot, Marie-Anne
2010-10-01
The identification of xenobiotic metabolizing enzymes (i.e., CYP) and transporters (i.e., ABC transporters) (XMET) in the human brain, including the BBB, raises the question whether these transporters and enzymes have specific functions in brain physiology, neuropharmacology and toxicology. Relevant literature was identified using PubMed search articles published up to March 2010. Search terms included 'ABC transporters and P450 or CYP', 'drug metabolism, effect and toxicity' and 'neurodegenerative disease (Alzheimer and Parkinson diseases)' restricted to the field of 'brain or human brain'. This review aims to provide a better understanding of XMET functions in the human brain and show their pharmacological importance for improving drug delivery and efficacy and also for managing their side effects. Finally, the impact of brain XMET activity during neurodegenerative processes is discussed, giving an opportunity to identify new markers of human brain diseases. During the last 2 decades, much evidence concerning the specific distribution patterns of XMET, their induction by xenobiotics and endobiotics and their genetic variations have made cerebral ABC transporters and CYP enzymes key elements in the way individual patients respond to centrally acting drugs.
Wang, Yi-Jun; Zhang, Yun-Kai; Kathawala, Rishil J.; Chen, Zhe-Sheng
2014-01-01
The phenomenon of multidrug resistance (MDR) has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC) transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs), such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance. PMID:25268163
Dietrich, Daniela; Schmuths, Heike; Lousa, Carine De Marcos; Baldwin, Jocelyn M.; Baldwin, Stephen A.; Baker, Alison; Holdsworth, Michael J.
2009-01-01
COMATOSE (CTS), the Arabidopsis homologue of human Adrenoleukodystrophy protein (ALDP), is required for import of substrates for peroxisomal β-oxidation. A new allelic series and a homology model based on the bacterial ABC transporter, Sav1866, provide novel insights into structure-function relations of ABC subfamily D proteins. In contrast to ALDP, where the majority of mutations result in protein absence from the peroxisomal membrane, all CTS mutants produced stable protein. Mutation of conserved residues in the Walker A and B motifs in CTS nucleotide-binding domain (NBD) 1 resulted in a null phenotype but had little effect in NBD2, indicating that the NBDs are functionally distinct in vivo. Two alleles containing mutations in NBD1 outside the Walker motifs (E617K and C631Y) exhibited resistance to auxin precursors 2,4-dichlorophenoxybutyric acid (2,4-DB) and indole butyric acid (IBA) but were wild type in all other tests. The homology model predicted that the transmission interfaces are domain-swapped in CTS, and the differential effects of mutations in the conserved “EAA motif” of coupling helix 2 supported this prediction, consistent with distinct roles for each NBD. Our findings demonstrate that CTS functions can be separated by mutagenesis and the structural model provides a framework for interpretation of phenotypic data. PMID:19019987
Crystal structure of E. coli ZinT with one zinc-binding mode and complexed with citrate.
Chen, Jinli; Wang, Lulu; Shang, Fei; Dong, Yuesheng; Ha, Nam-Chul; Nam, Ki Hyun; Quan, Chunshan; Xu, Yongbin
2018-06-02
The ZnuABC ATP-binding cassette transporter found in gram-negative bacteria has been implicated in ensuring adequate zinc import into Zn(II)-poor environments. ZinT is an essential component of ZnuABC and contributes to metal transport by transferring metals to ZnuA, which delivers them to ZnuB in periplasmic zinc recruitment. Although several structures of E. coli ZinT have been reported, its zinc-binding sites and oligomeric state have not been clearly identified. Here, we report the crystal structure of E. coli ZinT at 1.76 Å resolution. This structure contains one zinc ion in its calycin-like domain, and this ion is coordinated by three highly conserved histidine residues (His167, His176 and His178). Moreover, three oxygen atoms (O 1 , O 6 and O 7 ) from the citrate molecule interact with zinc, giving the zinc ion stable octahedral coordination. Our EcZinT structure shows the fewest zinc ions bound of all reported EcZinT structures. Crystallographic packing and size exclusion chromatography suggest that EcZinT prefers to form monomers in solution. Our results provide insights into the molecular function of ZinT. Copyright © 2018. Published by Elsevier Inc.
Significant interspecies differences exist between human and rodent with respect to absorption, distribution, and excretion of bisphenol A (BPA) and its primary metabolite, BPA-glucuronide (BPA-G). ATP-Binding Cassette (ABC) transporter enzymes play important roles in these physi...
Reilman, Ewoud; Mars, Ruben A T; van Dijl, Jan Maarten; Denham, Emma L
2014-10-01
Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology, we demonstrate a temporally controlled transcriptional activation of the bmrCD genes in response to antibiotics that target protein synthesis. Intriguingly, bmrCD expression only occurs during the late-exponential and stationary growth stages, irrespective of the timing of the antibiotic challenge. We show that this is due to tight transcriptional control by the transition state regulator AbrB. Moreover, our results show that the bmrCD genes are co-transcribed with bmrB (yheJ), a small open reading frame immediately upstream of bmrC that harbors three alternative stem-loop structures. These stem-loops are apparently crucial for antibiotic-induced bmrCD transcription. Importantly, the antibiotic-induced bmrCD expression requires translation of bmrB, which implies that BmrB serves as a regulatory leader peptide. Altogether, we demonstrate for the first time that a ribosome-mediated transcriptional attenuation mechanism can control the expression of a multidrug ABC transporter. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes.
Meng, Sitong; Wu, Hang; Wang, Lei; Zhang, Buchang; Bai, Linquan
2017-07-01
Nitrate is necessary for primary and secondary metabolism of actinomycetes and stimulates the production of a few antibiotics, such as lincomycin and rifamycin. However, the mechanism of this nitrate-stimulating effect was not fully understood. Two putative ABC-type nitrate transporters were identified in Streptomyces lincolnensis NRRL2936 and verified to be involved in lincomycin biosynthesis. With nitrate supplementation, the transcription of nitrogen assimilation genes, nitrate-specific ABC1 transporter genes, and lincomycin exporter gene lmrA was found to be enhanced and positively regulated by the global regulator GlnR, whose expression was also improved. Moreover, heterologous expression of ABC2 transporter genes in Streptomyces coelicolor M145 resulted in an increased actinorhodin production. Further incorporation of a nitrite-specific transporter gene nirC, as in nirC-ABC2 cassette, led to an even higher actinorhodin production. Similarly, the titers of salinomycin, ansamitocin, lincomycin, and geldanamycin were increased with the integration of this cassette to Streptomyces albus BK3-25, Actinosynnema pretiosum ATCC31280, S. lincolnensis LC-G, and Streptomyces hygroscopicus XM201, respectively. Our work expanded the nitrate-stimulating effect to many antibiotic producers by utilizing the nirC-ABC2 cassette for enhanced nitrate utilization, which could become a general tool for titer increase of antibiotics in actinomycetes.
Hierarchy of Iron Uptake Systems: Yfu and Yiu Are Functional in Yersinia pestis▿
Kirillina, Olga; Bobrov, Alexander G.; Fetherston, Jacqueline D.; Perry, Robert D.
2006-01-01
In addition to the yersiniabactin (Ybt) siderophore-dependent system, two inorganic iron ABC transport systems of Yersinia pestis, Yfe and Yfu, have been characterized. Here we show that the Yfu system functions in Y. pestis: a Ybt− Yfe− Yfu− mutant exhibited a greater growth defect under iron-deficient conditions than its Ybt− Yfe− parental strain. We also demonstrate that another putative Y. pestis iron uptake system, Yiu, which potentially encodes an outer membrane receptor, YiuR, and an ABC iron transport cassette, YiuABC, is functional. The cloned yiuABC operon restored growth of an enterobactin-deficient mutant Escherichia coli strain, 1017, under iron-chelated conditions. Iron uptake by the Yiu system in Y. pestis was demonstrated only when the Ybt, Yfe, and Yfu systems were mutated. Using a yiuA::lacZ fusion, we show that the yiuABC promoter is repressed by iron through Fur. A mouse model of bubonic plague failed to show a significant role for the Yiu system in the disease process. These results demonstrate that two additional iron transporters are functional in Y. pestis and indicate that there is a hierarchy of iron transporters, with Ybt being most effective and Yiu being the least effective of those systems which have been characterized. PMID:16954402
Toussaint, Frédéric; Pierman, Baptiste; Bertin, Aurélie; Lévy, Daniel; Boutry, Marc
2017-05-04
Pleiotropic drug resistance (PDR) transporters belong to the ABCG subfamily of ATP-binding cassette (ABC) transporters and are involved in the transport of various molecules across plasma membranes. During evolution, PDR genes appeared independently in fungi and in plants from a duplication of a half-size ABC gene. The enzymatic properties of purified PDR transporters from yeast have been characterized. This is not the case for any plant PDR transporter, or, incidentally, for any purified plant ABC transporter. Yet, plant PDR transporters play important roles in plant physiology such as hormone signaling or resistance to pathogens or herbivores. Here, we describe the expression, purification, enzymatic characterization and 2D analysis by electron microscopy of NpABCG5/NpPDR5 from Nicotiana plumbaginifolia , which has been shown to be involved in the plant defense against herbivores. We constitutively expressed NpABCG5/NpPDR5, provided with a His-tag in a homologous system: suspension cells from Nicotiana tabacum (Bright Yellow 2 line). NpABCG5/NpPDR5 was targeted to the plasma membrane and was solubilized by dodecyl maltoside and purified by Ni-affinity chromatography. The ATP-hydrolyzing specific activity (27 nmol min -1 mg -1 ) was stimulated seven-fold in the presence of 0.1% asolectin. Electron microscopy analysis indicated that NpABCG5/NpPDR5 is monomeric and with dimensions shorter than those of known ABC transporters. Enzymatic data (optimal pH and sensitivity to inhibitors) confirmed that plant and fungal PDR transporters have different properties. These data also show that N. tabacum suspension cells are a convenient host for the purification and biochemical characterization of ABC transporters. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
A phylogenomic analysis of the Actinomycetales mce operons
Casali, Nicola; Riley, Lee W
2007-01-01
Background The genome of Mycobacterium tuberculosis harbors four copies of a cluster of genes termed mce operons. Despite extensive research that has demonstrated the importance of these operons on infection outcome, their physiological function remains obscure. Expanding databases of complete microbial genome sequences facilitate a comparative genomic approach that can provide valuable insight into the role of uncharacterized proteins. Results The M. tuberculosis mce loci each include two yrbE and six mce genes, which have homology to ABC transporter permeases and substrate-binding proteins, respectively. Operons with an identical structure were identified in all Mycobacterium species examined, as well as in five other Actinomycetales genera. Some of the Actinomycetales mce operons include an mkl gene, which encodes an ATPase resembling those of ABC uptake transporters. The phylogenetic profile of Mkl orthologs exactly matched that of the Mce and YrbE proteins. Through topology and motif analyses of YrbE homologs, we identified a region within the penultimate cytoplasmic loop that may serve as the site of interaction with the putative cognate Mkl ATPase. Homologs of the exported proteins encoded adjacent to the M. tuberculosis mce operons were detected in a conserved chromosomal location downstream of the majority of Actinomycetales operons. Operons containing linked mkl, yrbE and mce genes, resembling the classic organization of an ABC importer, were found to be common in Gram-negative bacteria and appear to be associated with changes in properties of the cell surface. Conclusion Evidence presented suggests that the mce operons of Actinomycetales species and related operons in Gram-negative bacteria encode a subfamily of ABC uptake transporters with a possible role in remodeling the cell envelope. PMID:17324287
Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast.
Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D; Andersen, Tonni G; Pomorski, Thomas G
2014-12-01
Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been implicated in sterol uptake, but key features of their activity remain to be elucidated. Here, we apply fluorescent cholesterol (NBD-cholesterol) to monitor sterol uptake under anaerobic and aerobic conditions in two fungal species, Candida glabrata (Cg) and Saccharomyces cerevisiae (Sc). We found that in both fungal species, ABC transporter-dependent uptake of cholesterol under anaerobic conditions and in mutants lacking HEM1 gene is promoted in the presence of the serum protein albumin that is able to bind the sterol molecule. Furthermore, the C. glabrata ABC transporter CgAus1p expressed in S. cerevisiae requires the presence of serum or albumin for efficient cholesterol uptake. These results suggest that albumin can serve as sterol donor in ABC transporter-dependent sterol uptake, a process potentially important for growth of C. glabrata inside infected humans. © 2014 The Authors. FEMS Yeast Research published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.
USDA-ARS?s Scientific Manuscript database
The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in defense against multiple pathogens. Perception of PAMPs by pattern recognition receptors initiates recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whet...
Menges, R; Muth, G; Wohlleben, W; Stegmann, E
2007-11-01
All known gene clusters for glycopeptide antibiotic biosynthesis contain a conserved gene supposed to encode an ABC-transporter. In the balhimycin-producer Amycolatopsis balhimycina this gene (tba) is localised between the prephenate dehydrogenase gene pdh and the peptide synthetase gene bpsA. Inactivation of tba in A. balhimycina by gene replacement did not interfere with growth and did not affect balhimycin resistance. However, in the supernatant of the tba mutant RM43 less balhimycin was accumulated compared to the wild type; and the intra-cellular balhimycin concentration was ten times higher in the tba mutant RM43 than in the wild type. These data suggest that the ABC transporter encoded in the balhimycin biosynthesis gene cluster is not involved in resistance but is required for the efficient export of the antibiotic. To elucidate the activity of Tba it was heterologously expressed in Escherichia coli with an N-terminal His-tag and purified by nickel chromatography. A photometric assay revealed that His(6)-Tba solubilised in dodecylmaltoside possesses ATPase activity, characteristic for ABC-transporters.
Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila
Seong, Keon Mook; Sun, Weilin; Clark, John M.; Pittendrigh, Barry R.
2016-01-01
The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R. PMID:27003579
Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila.
Seong, Keon Mook; Sun, Weilin; Clark, John M; Pittendrigh, Barry R
2016-03-22
The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R.
A bacterial-type ABC transporter is involved in aluminum tolerance in rice.
Huang, Chao Feng; Yamaji, Naoki; Mitani, Namiki; Yano, Masahiro; Nagamura, Yoshiaki; Ma, Jian Feng
2009-02-01
Aluminum (Al) toxicity is a major factor limiting crop production in acidic soil, but the molecular mechanisms of Al tolerance are poorly understood. Here, we report that two genes, STAR1 (for sensitive to Al rhizotoxicity1) and STAR2, are responsible for Al tolerance in rice. STAR1 encodes a nucleotide binding domain, while STAR2 encodes a transmembrane domain, of a bacterial-type ATP binding cassette (ABC) transporter. Disruption of either gene resulted in hypersensitivity to aluminum toxicity. Both STAR1 and STAR2 are expressed mainly in the roots and are specifically induced by Al exposure. Expression in onion epidermal cells, rice protoplasts, and yeast showed that STAR1 interacts with STAR2 to form a complex that localizes to the vesicle membranes of all root cells, except for those in the epidermal layer of the mature zone. When expressed together in Xenopus laevis oocytes, STAR1/2 shows efflux transport activity specific for UDP-glucose. Furthermore, addition of exogenous UDP-glucose rescued root growth in the star1 mutant exposed to Al. These results indicate that STAR1 and STAR2 form a complex that functions as an ABC transporter, which is required for detoxification of Al in rice. The ABC transporter transports UDP-glucose, which may be used to modify the cell wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, Dominik; Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg; Daniel, Volker
2010-04-16
Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity ofmore » P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.« less
Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan
2015-04-01
Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite scaffolds occurring more likely in taxonomically distant producers but suggest that the antibiotic selection of gene pools is also influenced by site conditions.
Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Lee, Young Hwan; Kim, Hui-Su; Kim, Il-Chan; Lee, Jae-Seong
2017-02-01
The ATP-binding cassette (ABC) protein superfamily is one of the largest gene families and is highly conserved in all domains. The ABC proteins play roles in several biological processes, including multi-xenobiotic resistance (MXR), by functioning as transporters in the cellular membrane. They also mediate the cellular efflux of a wide range of substrates against concentration gradients. In this study, 37 ABC genes belonging to eight distinct subfamilies were identified in the marine copepod Paracyclopina nana and annotated based on a phylogenetic analysis. Also, the functions of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRPs), conferring MXR, were verified using fluorescent substrates and specific inhibitors. The activities of MXR-mediated ABC proteins and their transcriptional level were examined in response to polyaromatic hydrocarbons (PAHs), main components of the water-accommodated fraction. This study increases the understanding of the protective role of MXR in response to PAHs over the comparative evolution of ABC gene families. Copyright © 2016 Elsevier B.V. All rights reserved.
Escudero, Leticia; Mariscal, Vicente; Flores, Enrique
2015-08-01
In the diazotrophic filaments of heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients, including some amino acids. In the model organism Anabaena sp. strain PCC 7120, the SepJ protein, composed of periplasmic and integral membrane (permease) sections, is located at the intercellular septa joining adjacent cells in the filament. The unicellular cyanobacterium Synechococcus elongatus strain PCC 7942 bears a gene, Synpcc7942_1024 (here designated dmeA), encoding a permease homologous to the SepJ permease domain. Synechococcus strains lacking dmeA or lacking dmeA and expressing Anabaena sepJ were constructed. The Synechococcus dmeA mutant showed a significant 22 to 32% decrease in the uptake of aspartate, glutamate, and glutamine, a phenotype that could be partially complemented by Anabaena sepJ. Synechococcus mutants of an ATP-binding-cassette (ABC)-type transporter for polar amino acids showed >98% decreased uptake of glutamate irrespective of the presence of dmeA or Anabaena sepJ in the same strain. Thus, Synechococcus DmeA or Anabaena SepJ is needed to observe full (or close to full) activity of the ABC transporter. An Anabaena sepJ deletion mutant was significantly impaired in glutamate and aspartate uptake, which also in this cyanobacterium requires the activity of an ABC-type transporter for polar amino acids. SepJ appears therefore to generally stimulate the activity of cyanobacterial ABC-type transporters for polar amino acids. Conversely, an Anabaena mutant of three ABC-type transporters for amino acids was impaired in the intercellular transfer of 5-carboxyfluorescein, a SepJ-related property. Our results unravel possible functional interactions in transport elements important for diazotrophic growth. Membrane transporters are essential for many aspects of cellular life, from uptake and export of substances in unicellular organisms to intercellular molecular exchange in multicellular organisms. Heterocyst-forming cyanobacteria such as Anabaena represent a unique case of multicellularity, in which two cell types exchange nutrients and regulators. The SepJ protein located at the intercellular septa in the filaments of Anabaena contains a permease domain of the drug/metabolite transporter (DMT) superfamily that somehow contributes to intercellular molecular transfer. In this work, we have found that SepJ stimulates the activity of a polar amino acid uptake transporter of the ATP-binding-cassette (ABC) superfamily, which could itself affect an intercellular transfer activity related to SepJ, thus unraveling possible functional interactions between these different transporters. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier
2017-01-01
Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can act as regulators of the activity of various ABC and SLC drug transporters, but only when used at high and non-relevant concentrations, making unlikely any contribution of these transporter activity alterations to pyrethroid toxicity in environmentally exposed humans. PMID:28099443
The molecular basis of the specificity of action of KATP channel openers
Moreau, Christophe; Jacquet, Hélène; Prost, Anne-Lise; D’hahan, Nathalie; Vivaudou, Michel
2000-01-01
KATP channels incorporate a regulatory subunit of the ATP-binding cassette (ABC) transporter family, the sulfonylurea receptor (SUR), which defines their pharmacology. The therapeutically important K+ channel openers (e.g. pinacidil, cromakalim, nicorandil) act specifically on the SUR2 muscle isoforms but, except for diazoxide, remain ineffective on the SUR1 neuronal/pancreatic isoform. This SUR1/2 dichotomy underpinned a chimeric strategy designed to identify the structural determinants of opener action, which led to a minimal set of two residues within the last transmembrane helix of SUR. Transfer of either residue from SUR2A to SUR1 conferred opener sensitivity to SUR1, while the reverse operation abolished SUR2A sensitivity. It is therefore likely that these residues form part of the site of interaction of openers with the channel. Thus, openers would target a region that, in other ABC transporters, is known to be tightly involved with the binding of substrates and other ligands. This first glimpse of the site of action of pharmacological openers should permit rapid progress towards understanding the structural determinants of their affinity and specificity. PMID:11118199
Overcoming Multidrug Resistance in Human Cancer Cells by Natural Compounds
Nabekura, Tomohiro
2010-01-01
Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC) transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (-)-epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized. PMID:22069634
Lemmen, Julia; Tozakidis, Iasson E P; Bele, Prachee; Galla, Hans-Joachim
2013-03-21
ATP-driven efflux transporters are considered to be the major hurdle in the treatment of central nervous system (CNS) diseases. Abcb1 (P-glycoprotein) and Abcg2 (breast cancer resistance protein/brain multidrug resistance protein) belong to the best known ABC-transporters. These ABC-transporters limit the permeability of the blood-brain barrier and protect the brain against toxic compounds in the blood but on the other hand they also reduce the efficacy of CNS pharmacotherapy. Even after 40 years of extensive research, the regulatory mechanisms of these efflux transporters are still not completely understood. To unravel the efflux transporter regulation, we analyzed the effect of the nuclear receptor CAR (constitutive androstane receptor) on the expression of Abcb1 and Abcg2 in primary cultures of porcine brain capillary endothelial cells (PBCEC). CAR is a xenobiotic-activated transcription factor, which is, like the other important nuclear receptor pregnane X receptor (PXR), highly expressed in barrier tissue and known to be a positive regulator of ABC-transporters. We demonstrate that activation of porcine CAR by the human CAR (hCAR) ligand CITCO (6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde) leads to an up-regulation of both transporters, whereas the mouse-specific CAR ligand TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene) had no effect on transporter expression. The stimulation of PBCEC with CITCO caused a significant up-regulation of both efflux-transporters on RNA-level, protein level and transport level. Furthermore the additional application of a CAR inhibitor significantly decreased the transporter expression to control niveau. In conclusion our data prove CAR activation only by the human ligand CITCO leading to an increased ABC-transporter expression and transport activity. Copyright © 2013 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
2015-06-01
For several years the Iowa Department of Transportation (DOT), Iowa State University, the Federal Highway Administration, : and several Iowa counties have been working to develop accelerated bridge construction (ABC) concepts, details, and processes....
Chen, Chiliang; Malek, Adel A.; Wargo, Matthew J.; Hogan, Deborah A.; Beattie, Gwyn A.
2017-01-01
Summary We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (Km, 2.6 μM) and, although it also binds betaine (Km, 24.2 μM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (Km, 24 μM) and the betaine-specific SBP BetX (Km, 0.6 μM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs. PMID:19919675
Chen, Chiliang; Malek, Adel A; Wargo, Matthew J; Hogan, Deborah A; Beattie, Gwyn A
2010-01-01
We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (K(m), 2.6 microM) and, although it also binds betaine (K(m), 24.2 microM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (K(m), 24 microM) and the betaine-specific SBP BetX (K(m), 0.6 microM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs.
Fredslund, Folmer; Vujičić Žagar, Andreja; Andersen, Thomas Lars; Svensson, Birte; Slotboom, Dirk Jan
2016-01-01
The molecular details and impact of oligosaccharide uptake by distinct human gut microbiota (HGM) are currently not well understood. Non-digestible dietary galacto- and gluco-α-(1,6)-oligosaccharides from legumes and starch, respectively, are preferentially fermented by mainly bifidobacteria and lactobacilli in the human gut. Here we show that the solute binding protein (BlG16BP) associated with an ATP binding cassette (ABC) transporter from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 binds α-(1,6)-linked glucosides and galactosides of varying size, linkage, and monosaccharide composition with preference for the trisaccharides raffinose and panose. This preference is also reflected in the α-(1,6)-galactoside uptake profile of the bacterium. Structures of BlG16BP in complex with raffinose and panose revealed the basis for the remarkable ligand binding plasticity of BlG16BP, which recognizes the non-reducing α-(1,6)-diglycoside in its ligands. BlG16BP homologues occur predominantly in bifidobacteria and a few Firmicutes but lack in other HGMs. Among seven bifidobacterial taxa, only those possessing this transporter displayed growth on α-(1,6)-glycosides. Competition assays revealed that the dominant HGM commensal Bacteroides ovatus was out-competed by B. animalis subsp. lactis Bl-04 in mixed cultures growing on raffinose, the preferred ligand for the BlG16BP. By comparison, B. ovatus mono-cultures grew very efficiently on this trisaccharide. These findings suggest that the ABC-mediated uptake of raffinose provides an important competitive advantage, particularly against dominant Bacteroides that lack glycan-specific ABC-transporters. This novel insight highlights the role of glycan transport in defining the metabolic specialization of gut bacteria. PMID:27502277
Biswas-Fiss, Esther E.; Kurpad, Deepa S.; Joshi, Kinjalben; Biswas, Subhasis B.
2010-01-01
The retina-specific ATP-binding cassette (ABC) transporter, ABCA4, is essential for transport of all-trans-retinal from the rod outer segment discs in the retina and is associated with a broad range of inherited retinal diseases, including Stargardt disease, autosomal recessive cone rod dystrophy, and fundus flavimaculatus. A unique feature of the ABCA subfamily of ABC transporters is the presence of highly conserved, long extracellular loops or domains (ECDs) with unknown function. The high degree of sequence conservation and mapped disease-associated mutations in these domains suggests an important physiological significance. Conformational analysis using CD spectroscopy of purified, recombinant ECD2 protein demonstrated that it has an ordered and stable structure composed of 27 ± 3% α-helix, 20 ± 3% β-pleated sheet, and 53 ± 3% coil. Significant conformational changes were observed in disease-associated mutant proteins. Using intrinsic tryptophan fluorescence emission spectrum of ECD2 polypeptide and fluorescence anisotropy, we have demonstrated that this domain specifically interacts with all-trans-retinal. Furthermore, the retinal interaction appeared preferential for the all-trans-isomer and was directly measurable through fluorescence anisotropy analysis. Our results demonstrate that the three macular degeneration-associated mutations lead to significant changes in the secondary structure of the ECD2 domain of ABCA4, as well as in its interaction with all-trans-retinal. PMID:20404325
Peroxisomal ATP-binding cassette transporters form mainly tetramers
Geillon, Flore; Gondcaille, Catherine; Raas, Quentin; Dias, Alexandre M. M.; Pecqueur, Delphine; Truntzer, Caroline; Lucchi, Géraldine; Ducoroy, Patrick; Falson, Pierre; Savary, Stéphane; Trompier, Doriane
2017-01-01
ABCD1 and its homolog ABCD2 are peroxisomal ATP-binding cassette (ABC) half-transporters of fatty acyl-CoAs with both distinct and overlapping substrate specificities. Although it is established that ABC half-transporters have at least to dimerize to generate a functional unit, functional equivalents of tetramers (i.e. dimers of full-length transporters) have also been reported. However, oligomerization of peroxisomal ABCD transporters is incompletely understood but is of potential significance because more complex oligomerization might lead to differences in substrate specificity. In this work, we have characterized the quaternary structure of the ABCD1 and ABCD2 proteins in the peroxisomal membrane. Using various biochemical approaches, we clearly demonstrate that both transporters exist as both homo- and heterotetramers, with a predominance of homotetramers. In addition to tetramers, some larger molecular ABCD assemblies were also found but represented only a minor fraction. By using quantitative co-immunoprecipitation assays coupled with tandem mass spectrometry, we identified potential binding partners of ABCD2 involved in polyunsaturated fatty-acid metabolism. Interestingly, we identified calcium ATPases as ABCD2-binding partners, suggesting a role of ABCD2 in calcium signaling. In conclusion, we have shown here that ABCD1 and its homolog ABCD2 exist mainly as homotetramers in the peroxisomal membrane. PMID:28258215
Moretti, Marcelo L; Alárcon-Reverte, Rocio; Pearce, Stephen; Morran, Sarah; Hanson, Bradley D
2017-01-01
Herbicide resistance is a challenge for modern agriculture further complicated by cases of resistance to multiple herbicides. Conyza bonariensis and Conyza canadensis are invasive weeds of field crops, orchards, and non-cropped areas in many parts of the world. In California, USA, Conyza populations resistant to the herbicides glyphosate and paraquat have recently been described. Although the mechanism conferring resistance to glyphosate and paraquat in these species was not elucidated, reduced translocation of these herbicides was observed under experimental conditions in both species. Glyphosate and paraquat resistance associated with reduced translocation are hypothesized to be a result of sequestration of herbicides into the vacuole, with the possible involvement of over-expression of genes encoding tonoplast transporters of ABC-transporter families in cases of glyphosate resistance or cationic amino acid transporters (CAT) in cases of paraquat resistance. However, gene expression in response to herbicide treatment has not been studied in glyphosate and paraquat resistant populations. In the current study, we evaluated the transcript levels of genes possibly involved in resistance using real-time PCR. First, we evaluated eight candidate reference genes following herbicide treatment and selected three genes that exhibited stable expression profiles; ACTIN, HEAT-SHOCK-PROTEIN-70, and CYCLOPHILIN. The reference genes identified here can be used for further studies related to plant-herbicide interactions. We used these reference genes to assay the transcript levels of EPSPS, ABC transporters, and CAT in response to herbicide treatment in susceptible and resistant Conyza spp. lines. No transcription changes were observed in EPSPS or CAT genes after glyphosate or paraquat treatment, suggesting that these genes are not involved in the resistance mechanism. Transcription of the two ABC transporter genes increased following glyphosate treatment in all Conyza spp. lines. Transcription of ABC transporters also increased after paraquat treatment in all three lines of C. bonariensis. However, in C. canadensis, paraquat treatment increased transcription of only one ABC transporter gene in the susceptible line. The increase in transcription of ABC transporters after herbicide treatment is likely a stress response based on similar response observed across all Conyza lines regardless of resistance or sensitivity to glyphosate or paraquat, thus these genes do not appear to be directly involved in the mechanism of resistance in Conyza spp.
Alárcon-Reverte, Rocio; Pearce, Stephen; Morran, Sarah; Hanson, Bradley D.
2017-01-01
Herbicide resistance is a challenge for modern agriculture further complicated by cases of resistance to multiple herbicides. Conyza bonariensis and Conyza canadensis are invasive weeds of field crops, orchards, and non-cropped areas in many parts of the world. In California, USA, Conyza populations resistant to the herbicides glyphosate and paraquat have recently been described. Although the mechanism conferring resistance to glyphosate and paraquat in these species was not elucidated, reduced translocation of these herbicides was observed under experimental conditions in both species. Glyphosate and paraquat resistance associated with reduced translocation are hypothesized to be a result of sequestration of herbicides into the vacuole, with the possible involvement of over-expression of genes encoding tonoplast transporters of ABC-transporter families in cases of glyphosate resistance or cationic amino acid transporters (CAT) in cases of paraquat resistance. However, gene expression in response to herbicide treatment has not been studied in glyphosate and paraquat resistant populations. In the current study, we evaluated the transcript levels of genes possibly involved in resistance using real-time PCR. First, we evaluated eight candidate reference genes following herbicide treatment and selected three genes that exhibited stable expression profiles; ACTIN, HEAT-SHOCK-PROTEIN-70, and CYCLOPHILIN. The reference genes identified here can be used for further studies related to plant-herbicide interactions. We used these reference genes to assay the transcript levels of EPSPS, ABC transporters, and CAT in response to herbicide treatment in susceptible and resistant Conyza spp. lines. No transcription changes were observed in EPSPS or CAT genes after glyphosate or paraquat treatment, suggesting that these genes are not involved in the resistance mechanism. Transcription of the two ABC transporter genes increased following glyphosate treatment in all Conyza spp. lines. Transcription of ABC transporters also increased after paraquat treatment in all three lines of C. bonariensis. However, in C. canadensis, paraquat treatment increased transcription of only one ABC transporter gene in the susceptible line. The increase in transcription of ABC transporters after herbicide treatment is likely a stress response based on similar response observed across all Conyza lines regardless of resistance or sensitivity to glyphosate or paraquat, thus these genes do not appear to be directly involved in the mechanism of resistance in Conyza spp. PMID:28700644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giulliani, S. E.; Frank, A. E.; Collart, F. R.
2008-12-08
We have used a fluorescence-based thermal shift (FTS) assay to identify amino acids that bind to solute-binding proteins in the bacterial ABC transporter family. The assay was validated with a set of six proteins with known binding specificity and was consistently able to map proteins with their known binding ligands. The assay also identified additional candidate binding ligands for several of the amino acid-binding proteins in the validation set. We extended this approach to additional targets and demonstrated the ability of the FTS assay to unambiguously identify preferential binding for several homologues of amino acid-binding proteins with known specificity andmore » to functionally annotate proteins of unknown binding specificity. The assay is implemented in a microwell plate format and provides a rapid approach to validate an anticipated function or to screen proteins of unknown function. The ABC-type transporter family is ubiquitous and transports a variety of biological compounds, but the current annotation of the ligand-binding proteins is limited to mostly generic descriptions of function. The results illustrate the feasibility of the FTS assay to improve the functional annotation of binding proteins associated with ABC-type transporters and suggest this approach that can also be extended to other protein families.« less
Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.
2015-01-01
In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new molecular mechanism of resistance to pesticides. PMID:26258982
Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.
2008-01-01
Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone, but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). They inhibited the binding of [125I]-Iodoarylazidoprazosin (IAAP), a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC50 values of 7.3 and 22.6 μM, respectively, but had no effect on the binding of this photoaffinity analog to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of this transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared to the control cells, suggesting that they are substrates of this transporter. Collectively, these data demonstrate for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function. PMID:18065489
NASA Astrophysics Data System (ADS)
Zhao, Qin; Wang, Chengcheng; Wang, Chengyuan; Guo, Hui; Bao, Zhihao; Zhang, Minhua; Zhang, Peng
2015-07-01
Energy-coupling factor (ECF) transporters are a new family of ABC transporters that consist of four subunits, two cytoplasmic ATPases EcfA and EcfA' and two transmembrane proteins namely EcfS for substrate-specific binding and EcfT for energy coupling. Here, we report the 3.2-Å resolution crystal structure of the EcfS protein of a folate ECF transporter from Enterococcus faecalis-EfFolT, a close homologue of FolT from Lactobacillus brevis-LbFolT. Structural and biochemical analyses reveal the residues constituting the folate-binding pocket and determining the substrate-binding specificity. Structural comparison of the folate-bound EfFolT with the folate-free LbFolT contained in the holotransporter complex discloses significant conformational change at the L1 loop, and reveals a gating mechanism of ECF transporters in which the L1 loop of EcfS acts as a gate in the substrate binding and release.
Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.
2013-01-01
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386
ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...
Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.
2016-01-01
Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556
Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C
2016-01-01
Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.
The Yeast Plasma Membrane ATP Binding Cassette (ABC) Transporter Aus1
Marek, Magdalena; Milles, Sigrid; Schreiber, Gabriele; Daleke, David L.; Dittmar, Gunnar; Herrmann, Andreas; Müller, Peter; Pomorski, Thomas Günther
2011-01-01
The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter. PMID:21521689
Marek, Magdalena; Milles, Sigrid; Schreiber, Gabriele; Daleke, David L; Dittmar, Gunnar; Herrmann, Andreas; Müller, Peter; Pomorski, Thomas Günther
2011-06-17
The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter.
Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.
2015-01-01
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396
Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O
2015-05-29
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Regulation of Expression of abcA and Its Response to Environmental Conditions
Villet, Regis A.; Truong-Bolduc, Que Chi; Wang, Yin; Estabrooks, Zoe; Medeiros, Heidi
2014-01-01
The ATP-dependent transporter gene abcA in Staphylococcus aureus confers resistance to hydrophobic β-lactams. In strain ISP794, abcA is regulated by the transcriptional regulators MgrA and NorG and shares a 420-nucleotide intercistronic region with the divergently transcribed pbp4 gene, which encodes the transpeptidase Pbp4. Exposure of exponentially growing cells to iron-limited media, oxidative stress, and acidic pH (5.5) for 0.5 to 2 h had no effect on abcA expression. In contrast, nutrient limitation produced a significant increase in abcA transcripts. We identified three additional regulators (SarA, SarZ, and Rot) that bind to the overlapping promoter region of abcA and pbp4 in strain MW2 and investigated their role in the regulation of abcA expression. Expression of abcA is decreased by 10.0-fold in vivo in a subcutaneous abscess model. In vitro, abcA expression depends on rot and sarZ regulators. Moenomycin A exposure of strain MW2 produced an increase in abcA transcripts. Relative to MW2, the MIC of moenomycin was decreased 8-fold for MW2ΔabcA and increased 10-fold for the MW2 abcA overexpresser, suggesting that moenomycin is a substrate of AbcA. PMID:24509312
Nieves-Morión, Mercedes; Flores, Enrique
2018-02-01
Cyanobacteria are generally capable of photoautotrophic growth and are widely distributed on Earth. The model filamentous, heterocyst-forming strain Anabaena sp. PCC 7120 has long been considered as a strict photoautotroph but is now known to be able to assimilate fructose. We have previously described two components of ABC glucoside uptake transporters from Anabaena that are involved in uptake of the sucrose analog esculin: GlsC [a nucleotide-binding domain subunit (NBD)] and GlsP [a transmembrane component (TMD)]. Here, we created Anabaena mutants of genes encoding three further ABC transporter components needed for esculin uptake: GlsD (NBD), GlsQ (TMD) and GlsR (periplasmic substrate-binding protein). Phototrophic growth of Anabaena was significantly stimulated by sucrose, fructose and glucose. Whereas the glsC and glsD mutants were drastically hampered in sucrose-stimulated growth, the different gls mutants were generally impaired in sugar-dependent growth. Our results suggest the participation of Gls and other ABC transporters encoded in the Anabaena genome in sugar-stimulated growth. Additionally, Gls transporter components influence the function of septal junctions in the Anabaena filament. We suggest that mixotrophic growth is important in cyanobacterial physiology and may be relevant for the wide success of these organisms in diverse environments. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Specific stabilization of CFTR by phosphatidylserine.
Hildebrandt, Ellen; Khazanov, Netaly; Kappes, John C; Dai, Qun; Senderowitz, Hanoch; Urbatsch, Ina L
2017-02-01
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, ABCC7) is a plasma membrane chloride ion channel in the ABC transporter superfamily. CFTR is a key target for cystic fibrosis drug development, and its structural elucidation would advance those efforts. However, the limited in vivo and in vitro stability of the protein, particularly its nucleotide binding domains, has made structural studies challenging. Here we demonstrate that phosphatidylserine uniquely stimulates and thermally stabilizes the ATP hydrolysis function of purified human CFTR. Among several lipids tested, the greatest stabilization was observed with brain phosphatidylserine, which shifted the Tm for ATPase activity from 22.7±0.8°C to 35.0±0.2°C in wild-type CFTR, and from 26.6±0.7°C to 42.1±0.2°C in a more stable mutant CFTR having deleted regulatory insertion and S492P/A534P/I539T mutations. When ATPase activity was measured at 37°C in the presence of brain phosphatidylserine, Vmax for wild-type CFTR was 240±60nmol/min/mg, a rate higher than previously reported and consistent with rates for other purified ABC transporters. The significant thermal stabilization of CFTR by phosphatidylserine may be advantageous in future structural and biophysical studies of CFTR. Copyright © 2016. Published by Elsevier B.V.
[Biological characteristics of an enteroinvasive Escherichia coli strain with tatABC deletion].
Gong, Zhaolong; Ye, Changyun; Liu, Xiaobing; Zhang, Min; Zhuo, Qin
2013-05-04
To study the relationship between twin-arginine translocation system (Tat) system with the biological characteristics of enteroinvasive Escherichia coli (EIEC). Through homologous recombination, we constructed EIEC's tatABC gene deletion strain and complementary strain, and explored their impact on bacterial form, substrate transport function as well as on HeLa cells and guinea pig's corneal invasion force. The tatABC gene deletion strain had apparent changes in bacterial form, loss of substrate transporter function, and significant weakened bacterial invasion force (the number of the deletion strain invading into HeLa cells was decreased significantly, and the ability of its corneal lesion capacity of the guinea pig was significantly weakened), while the complementary strain was similar to the wild strain in the above respects. EIEC's Tat protein transport system is closely related with the biological characteristics of EIEC.
Multidrug efflux transporter, AcrB--the pumping mechanism.
Murakami, Satoshi
2008-08-01
Resistance nodulation cell division (RND) transporters are one of the main causes of the bacterial multidrug resistance. They pump a wide range of antibiotics out of the cell by proton motive force. AcrB is the major RND transporter in Escherichia coli. Recently, the crystal structures of AcrB have been determined by different space groups. All these structures are consistent with asymmetric trimer. Each monomer has different conformation corresponding to one of the three functional states of the transport cycle. Transporting hydrophobic drug was bound in the periplasmic domain on one of the three monomers. The transport pathway with alternating access mechanism is located at the hydrophilic domain protruded into the periplasmic space while this mechanism of other transporter families like ATP binding cassette (ABC) and major facilitator superfamily (MFS) transporter is located in the membrane-embedded region. For the RND, protonation might also take place asymmetrically at the functionally important charged residues in the transmembrane (TM) region. The structures indicate that drugs are transported by a three-step functional rotation in which substrates undergo ordered binding change.
Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki
2012-01-01
Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197
Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers.
Efferth, Thomas; Volm, Manfred
2017-07-01
The detoxification of toxic substances is of general relevance in all biological systems. The plethora of exogenous xenobiotic compounds and endogenous toxic metabolic products explains the evolutionary pressure of all organisms to develop molecular mechanisms to detoxify and excrete harmful substances from the body. P-glycoprotein and other members of the ATP-binding cassette (ABC) transporter family extrude innumerous chemical compounds out of cells. Their specific expression in diverse biological contexts cause different phenotypes: (1) multidrug resistance (MDR) and thus failure of cancer chemotherapy, (2) avoidance of accumulation of carcinogens and prevention of carcinogenesis in healthy tissues, (3) absorption, distribution, metabolization and excretion (ADME) of pharmacological drugs in human patients, (4) protection from environmental toxins in aquatic organisms (multi-xenobiotic resistance, MXR). Hence ABC-transporters may have opposing effects for organismic health reaching from harmful in MDR of tumors to beneficial for maintenance of health in MXR. While their inhibition by specific inhibitors may improve treatment success in oncology and avoid carcinogenesis, blocking of ABC-transporter-driven efflux by environmental pollutants leads to ecotoxicological consequences in marine biotopes. Poisoned seafood may enter the food-chain and cause intoxications in human beings. As exemplified with ABC-transporters, joining forces in interdisciplinary research may, therefore, be a wise strategy to fight problems in human medicine and environmental sciences.
NMR resonance assignments of the lantibiotic immunity protein NisI from Lactococcus lactis.
Hacker, Carolin; Christ, Nina Alexandra; Duchardt-Ferner, Elke; Korn, Sophie; Berninger, Lucija; Kötter, Peter; Entian, Karl-Dieter; Wöhnert, Jens
2015-10-01
The lantibiotic nisin is a small antimicrobial peptide which acts against a wide range of Gram-positive bacteria. Nisin-producing Lactococcus lactis strains express four genes for self-protection against their own antimicrobial compound. This immunity system consists of the lipoprotein NisI and the ABC transporter NisFEG. NisI is attached to the outside of the cytoplasmic membrane via a covalently linked diacylglycerol anchor. Both the lipoprotein and the ABC transporter are needed for full immunity but the exact immunity mechanism is still unclear. To gain insights into the highly specific immunity mechanism of nisin producing strains on a structural level we present here the backbone resonance assignment of NisI (25.8 kDa) as well as the virtually complete (1)H,(15)N,(13)C chemical shift assignments for the isolated 12.7 kDa N-terminal and 14.6 kDa C-terminal domains of NisI.
The feoABC Locus of Yersinia pestis Likely Has Two Promoters Causing Unique Iron Regulation
O'Connor, Lauren; Fetherston, Jacqueline D.; Perry, Robert D.
2017-01-01
The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis Fur protein but to DNA sequences that regulate transcription. We have used truncations, alterations, and deletions of the feoA::lacZ reporter to assess the mechanism behind the failure of iron to repress transcription under aerobic conditions. These studies plus EMSAs and DNA sequence analysis have led to our proposal that the feoABC locus has two promoters: an upstream P1 promoter whose expression is relatively iron-independent but repressed under microaerobic conditions and the known downstream Fur-regulated P2 promoter. In addition, we have identified two regions that bind Y. pestis protein(s), although we have not identified these protein(s) or their function. Finally we used iron uptake assays to demonstrate that both FeoABC and YfeABCD transport ferrous iron in an energy-dependent manner and also use ferric iron as a substrate for uptake. PMID:28785546
Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; ...
2014-11-07
The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the converved aspartate, whichmore » coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. As a result, our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.« less
Kamou, Nathalie N; Dubey, Mukesh; Tzelepis, Georgios; Menexes, Georgios; Papadakis, Emmanouil N; Karlsson, Magnus; Lagopodi, Anastasia L; Jensen, Dan Funck
2016-05-01
This study was carried out to assess the compatibility of the biocontrol fungus Clonostachys rosea IK726 with the phenazine-producing Pseudomonas chlororaphis ToZa7 or with the prodigiosin-producing Serratia rubidaea S55 against Fusarium oxysporum f. sp. radicis-lycopersici. The pathogen was inhibited by both strains in vitro, whereas C. rosea displayed high tolerance to S. rubidaea but not to P. chlororaphis. We hypothesized that this could be attributed to the ATP-binding cassette (ABC) proteins. The results of the reverse transcription quantitative PCR showed an induction of seven genes (abcB1, abcB20, abcB26, abcC12, abcC12, abcG8 and abcG25) from subfamilies B, C and G. In planta experiments showed a significant reduction in foot and root rot on tomato plants inoculated with C. rosea and P. chlororaphis. This study demonstrates the potential for combining different biocontrol agents and suggests an involvement of ABC transporters in secondary metabolite tolerance in C. rosea.
Jump into a New Fold—A Homology Based Model for the ABCG2/BCRP Multidrug Transporter
László, Laura; Sarkadi, Balázs
2016-01-01
ABCG2/BCRP is a membrane protein, involved in xenobiotic and endobiotic transport in key pharmacological barriers and drug metabolizing organs, in the protection of stem cells, and in multidrug resistance of cancer. Pharmacogenetic studies implicated the role of ABCG2 in response to widely used medicines and anticancer agents, as well as in gout. Its Q141K variant exhibits decreased functional expression thus increased drug accumulation and decreased urate secretion. Still, there has been no reliable molecular model available for this protein, as the published structures of other ABC transporters could not be properly fitted to the ABCG2 topology and experimental data. The recently published high resolution structure of a close homologue, the ABCG5-ABCG8 heterodimer, revealed a new ABC transporter fold, unique for ABCG proteins. Here we present a structural model of the ABCG2 homodimer based on this fold and detail the experimental results supporting this model. In order to describe the effect of mutations on structure and dynamics, and characterize substrate recognition and cholesterol regulation we performed molecular dynamics simulations using full length ABCG2 protein embedded in a membrane bilayer and in silico docking simulations. Our results show that in the Q141K variant the introduced positive charge diminishes the interaction between the nucleotide binding and transmembrane domains and the R482G variation alters the orientation of transmembrane helices. Moreover, the R482 position, which plays a role the substrate specificity of the transporter, is located in one of the substrate binding pockets identified by the in silico docking calculations. In summary, the ABCG2 model and in silico simulations presented here may have significant impact on understanding drug distribution and toxicity, as well as drug development against cancer chemotherapy resistance or gout. PMID:27741279
Francisco, Rita Maria; Regalado, Ana; Ageorges, Agnès; Burla, Bo J.; Bassin, Barbara; Eisenach, Cornelia; Zarrouk, Olfa; Vialet, Sandrine; Marlin, Thérèse; Chaves, Maria Manuela; Martinoia, Enrico; Nagy, Réka
2013-01-01
Accumulation of anthocyanins in the exocarp of red grapevine (Vitis vinifera) cultivars is one of several events that characterize the onset of grape berry ripening (véraison). Despite our thorough understanding of anthocyanin biosynthesis and regulation, little is known about the molecular aspects of their transport. The participation of ATP binding cassette (ABC) proteins in vacuolar anthocyanin transport has long been a matter of debate. Here, we present biochemical evidence that an ABC protein, ABCC1, localizes to the tonoplast and is involved in the transport of glucosylated anthocyanidins. ABCC1 is expressed in the exocarp throughout berry development and ripening, with a significant increase at véraison (i.e., the onset of ripening). Transport experiments using microsomes isolated from ABCC1-expressing yeast cells showed that ABCC1 transports malvidin 3-O-glucoside. The transport strictly depends on the presence of GSH, which is cotransported with the anthocyanins and is sensitive to inhibitors of ABC proteins. By exposing anthocyanin-producing grapevine root cultures to buthionine sulphoximine, which reduced GSH levels, a decrease in anthocyanin concentration is observed. In conclusion, we provide evidence that ABCC1 acts as an anthocyanin transporter that depends on GSH without the formation of an anthocyanin-GSH conjugate. PMID:23723325
Reznicek, Josef; Ceckova, Martina; Ptackova, Zuzana; Martinec, Ondrej; Tupova, Lenka; Cerveny, Lukas
2017-01-01
ABSTRACT Rilpivirine (TMC278) is a highly potent nonnucleoside reverse transcriptase inhibitor (NNRTI) representing an effective component of combination antiretroviral therapy (cART) in the treatment of HIV-positive patients. Many antiretroviral drugs commonly used in cART are substrates of ATP-binding cassette (ABC) and/or solute carrier (SLC) drug transporters and, therefore, are prone to pharmacokinetic drug-drug interactions (DDIs). The aim of our study was to evaluate rilpivirine interactions with abacavir and lamivudine on selected ABC and SLC transporters in vitro and assess its importance for pharmacokinetics in vivo. Using accumulation assays in MDCK cells overexpressing selected ABC or SLC drug transporters, we revealed rilpivirine as a potent inhibitor of MDR1 and BCRP, but not MRP2, OCT1, OCT2, or MATE1. Subsequent transport experiments across monolayers of MDCKII-MDR1, MDCKII-BCRP, and Caco-2 cells demonstrated that rilpivirine inhibits MDR1- and BCRP-mediated efflux of abacavir and increases its transmembrane transport. In vivo experiments in male Wistar rats confirmed inhibition of MDR1/BCRP in the small intestine, leading to a significant increase in oral bioavailability of abacavir. In conclusion, rilpivirine inhibits MDR1 and BCRP transporters and may affect pharmacokinetic behavior of concomitantly administered substrates of these transporters, such as abacavir. PMID:28696229
Staud, Frantisek; Cerveny, Lukas; Ceckova, Martina
2012-11-01
Pharmacotherapy during pregnancy is often inevitable for medical treatment of the mother, the fetus or both. The knowledge of drug transport across placenta is, therefore, an important topic to bear in mind when deciding treatment in pregnant women. Several drug transporters of the ABC and SLC families have been discovered in the placenta, such as P-glycoprotein, breast cancer resistance protein, or organic anion/cation transporters. It is thus evident that the passage of drugs across the placenta can no longer be predicted simply on the basis of their physical-chemical properties. Functional expression of placental drug transporters in the trophoblast and the possibility of drug-drug interactions must be considered to optimize pharmacotherapy during pregnancy. In this review we summarize current knowledge on the expression and function of ABC and SLC transporters in the trophoblast. Furthermore, we put this data into context with medical conditions that require maternal and/or fetal treatment during pregnancy, such as gestational diabetes, HIV infection, fetal arrhythmias and epilepsy. Proper understanding of the role of placental transporters should be of great interest not only to clinicians but also to pharmaceutical industry for future drug design and development to control the degree of fetal exposure.
Cystic Fibrosis Transmembrane Conductance Regulator (ABCC7) Structure
Hunt, John F.; Wang, Chi; Ford, Robert C.
2013-01-01
Structural studies of the cystic fibrosis transmembrane conductance regulator (CFTR) are reviewed. Like many membrane proteins, full-length CFTR has proven to be difficult to express and purify, hence much of the structural data available is for the more tractable, independently expressed soluble domains. Therefore, this chapter covers structural data for individual CFTR domains in addition to the sparser data available for the full-length protein. To set the context for these studies, we will start by reviewing structural information on model proteins from the ATP-binding cassette (ABC) transporter superfamily, to which CFTR belongs. PMID:23378596
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meineke, Birthe; Shuman, Stewart, E-mail: s-shuman@ski.mskcc.org
2012-06-05
Breakage of tRNA by Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection. Expression of EcoPrrC is cytocidal in yeast, signifying that PrrC ribotoxicity crosses phylogenetic domain boundaries. EcoPrrC consists of an N-terminal NTPase module that resembles ABC transporters and a C-terminal nuclease module that is sui generis. PrrC homologs are prevalent in many other bacteria. Here we report that Haemophilus influenzae PrrC is toxic in E. coli and yeast. To illuminate structure-activity relations, we conducted a new round of mutational analysis of EcoPrrC guided by primary structure conservation among toxic PrrC homologs. Wemore » indentify 17 candidate active site residues in the NTPase module that are essential for toxicity in yeast when EcoPrrC is expressed at high gene dosage. Their functions could be educed by integrating mutational data with the atomic structure of the transition-state complex of a homologous ABC protein.« less
Bevers, Loes E.; Hagedoorn, Peter-Leon; Krijger, Gerard C.; Hagen, Wilfred R.
2006-01-01
A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [KD] of 17 ± 7 pM) and molybdate (KD of 11 ± 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low KD values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein. PMID:16952940
Hinrichs, John W J; Klappe, Karin; van Riezen, Manon; Kok, Jan W
2005-11-01
We have recently shown that two ATP binding cassette (ABC) transporters are enriched in Lubrol-resistant noncaveolar membrane domains in multidrug-resistant human cancer cells [Hinrichs, J. W. J., K. Klappe, I. Hummel, and J. W. Kok. 2004. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells. J. Biol. Chem. 279: 5734-5738]. Here, we show that aminophospholipids are relatively enriched in Lubrol-resistant membrane domains compared with Triton X-100-resistant membrane domains, whereas sphingolipids are relatively enriched in the latter. Moreover, Lubrol-resistant membrane domains contain more protein and lipid mass. Based on these results, we postulate a model for detergent-insoluble glycosphingolipid-enriched membrane domains consisting of a Lubrol-insoluble/Triton X-100-insoluble region and a Lubrol-insoluble/Triton X-100-soluble region. The latter region contains most of the ABC transporters as well as lipids known to be necessary for their efflux activity. Compared with drug-sensitive cells, the detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in drug-resistant cells differ specifically in sphingolipid content and not in protein, phospholipid, or cholesterol content. In drug-resistant cells, sphingolipids with specific fatty acids (especially C24:1) are enriched in these membrane domains. Together, these data show that multidrug resistance-associated changes in both sphingolipids and ABC transporters occur in DIGs, but in different regions of these domains.
Ben Cheikh, Yosra; Xuereb, Benoit; Boulangé-Lecomte, Céline; Le Foll, Frank
2018-02-01
Among the cellular protection arsenal, ABC transporters play an important role in xenobiotic efflux in marine organisms. Two pumps belonging to B and C subfamily has been identified in Mytilus edulis. In this study, we investigated the presence of the third major subtype ABCG2/BCRP protein in mussel tissues. Transcript was expressed in hemocytes and with higher level in gills. Molecular characterization revealed that mussel ABCG2 transporter shares the sequence and organizational structure with mammalian and molluscan orthologs. Overall identity of the predicted amino acid sequence with corresponding homologs from other organisms was between 49% and 98%. Moreover, protein efflux activity was demonstrated using a combination of fluorescent allocrites and specific inhibitors. The accumulation of bodipy prazosin and pheophorbide A was heterogeneous in gills and hemocytes. Most of the used blockers enhanced probe accumulation at different levels, most significantly for bodipy prazosin. Moreover, Mrp classical blocker MK571 showed a polyspecificity. In conclusion, our data demonstrate that several ABC transporters contribute to MXR phenotype in the blue mussel including ABCG2 that forms an active pump in hemocytes and gills. Efforts are needed to distinguish between the different members and to explore their single function and specificity towards allocrites and chemosensitizers. Copyright © 2017 Elsevier B.V. All rights reserved.
Accelerated bridge construction (ABC) decision making and economic modeling tool.
DOT National Transportation Integrated Search
2011-12-01
In this FHWA-sponsored pool funded study, a set of decision making tools, based on the Analytic Hierarchy Process (AHP) was developed. This tool set is prepared for transportation specialists and decision-makers to determine if ABC is more effective ...
Structural Characterization of Two Metastable ATP-Bound States of P-Glycoprotein
O’Mara, Megan L.; Mark, Alan E.
2014-01-01
ATP Binding Cassette (ABC) transporters couple the binding and hydrolysis of ATP to the transport of substrate molecules across the membrane. The mechanism by which ATP binding and/or hydrolysis drives the conformational changes associated with substrate transport has not yet been characterized fully. Here, changes in the conformation of the ABC export protein P-glycoprotein on ATP binding are examined in a series of molecular dynamics simulations. When one molecule of ATP is placed at the ATP binding site associated with each of the two nucleotide binding domains (NBDs), the membrane-embedded P-glycoprotein crystal structure adopts two distinct metastable conformations. In one, each ATP molecule interacts primarily with the Walker A motif of the corresponding NBD. In the other, the ATP molecules interacts with both Walker A motif of one NBD and the Signature motif of the opposite NBD inducing the partial dimerization of the NBDs. This interaction is more extensive in one of the two ATP binding site, leading to an asymmetric structure. The overall conformation of the transmembrane domains is not altered in either of these metastable states, indicating that the conformational changes associated with ATP binding observed in the simulations in the absence of substrate do not lead to the outward-facing conformation and thus would be insufficient in themselves to drive transport. Nevertheless, the metastable intermediate ATP-bound conformations observed are compatible with a wide range of experimental cross-linking data demonstrating the simulations do capture physiologically important conformations. Analysis of the interaction between ATP and its cofactor Mg2+ with each NBD indicates that the coordination of ATP and Mg2+ differs between the two NBDs. The role structural asymmetry may play in ATP binding and hydrolysis is discussed. Furthermore, we demonstrate that our results are not heavily influenced by the crystal structure chosen for initiation of the simulations. PMID:24632881
Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente
2015-04-23
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.
Structure of the transporter associated with antigen processing trapped by herpes simplex virus
Oldham, Michael L; Grigorieff, Nikolaus; Chen, Jue
2016-01-01
The transporter associated with antigen processing (TAP) is an ATP-binding cassette (ABC) transporter essential to cellular immunity against viral infection. Some persistent viruses have evolved strategies to inhibit TAP so that they may go undetected by the immune system. The herpes simplex virus for example evades immune surveillance by blocking peptide transport with a small viral protein ICP47. In this study, we determined the structure of human TAP bound to ICP47 by electron cryo-microscopy (cryo-EM) to 4.0 Å. The structure shows that ICP47 traps TAP in an inactive conformation distinct from the normal transport cycle. The specificity and potency of ICP47 inhibition result from contacts between the tip of the helical hairpin and the apex of the transmembrane cavity. This work provides a clear molecular description of immune evasion by a persistent virus. It also establishes the molecular structure of TAP to facilitate mechanistic studies of the antigen presentation process. DOI: http://dx.doi.org/10.7554/eLife.21829.001 PMID:27935481
Hijacking membrane transporters for arsenic phytoextraction
LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.
2012-01-01
Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027
Keung, Hoi Yee; Li, Tsz Kai; Sham, Lok To; Cheung, Man Kit; Cheung, Peter Chi Keung
2017-01-01
ABSTRACT Bifidobacteria exert beneficial effects on hosts and are extensively used as probiotics. However, due to the genetic inaccessibility of these bacteria, little is known about their mechanisms of carbohydrate utilization and regulation. Bifidobacterium breve strain JCM1192 can grow on water-insoluble yeast (Saccharomyces cerevisiae) cell wall glucans (YCWG), which were recently considered as potential prebiotics. According to the results of 1H nuclear magnetic resonance (NMR) spectrometry, the YCWG were composed of highly branched (1→3,1→6)-β-glucans and (1→4,1→6)-α-glucans. Although the YCWG were composed of 78.3% β-glucans and 21.7% α-glucans, only α-glucans were consumed by the B. breve strain. The ABC transporter (malEFG1) and pullulanase (aapA) genes were transcriptionally upregulated in the metabolism of insoluble yeast glucans, suggesting their potential involvement in the process. A nonsense mutation identified in the gene encoding an ABC transporter ATP-binding protein (MalK) led to growth failure of an ethyl methanesulfonate-generated mutant with yeast glucans. Coculture of the wild-type strain and the mutant showed that this protein was responsible for the import of yeast glucans or their breakdown products, rather than the export of α-glucan-catabolizing enzymes. Further characterization of the carbohydrate utilization of the mutant and three of its revertants indicated that this mutation was pleiotropic: the mutant could not grow with maltose, glycogen, dextrin, raffinose, cellobiose, melibiose, or turanose. We propose that insoluble yeast α-glucans are hydrolyzed by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics. IMPORTANCE In general, Bifidobacterium strains are genetically intractable. Coupling classic forward genetics with next-generation sequencing, here we identified an ABC transporter ATP-binding protein (MalK) responsible for the import of insoluble yeast glucan breakdown products by B. breve JCM1192. We demonstrated the pleiotropic effects of the ABC transporter ATP-binding protein in maltose/maltooligosaccharide, raffinose, cellobiose, melibiose, and turanose transport. With the addition of transcriptional analysis, we propose that insoluble yeast glucans are broken down by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics. PMID:28115383
Keung, Hoi Yee; Li, Tsz Kai; Sham, Lok To; Cheung, Man Kit; Cheung, Peter Chi Keung; Kwan, Hoi Shan
2017-04-01
Bifidobacteria exert beneficial effects on hosts and are extensively used as probiotics. However, due to the genetic inaccessibility of these bacteria, little is known about their mechanisms of carbohydrate utilization and regulation. Bifidobacterium breve strain JCM1192 can grow on water-insoluble yeast ( Saccharomyces cerevisiae ) cell wall glucans (YCWG), which were recently considered as potential prebiotics. According to the results of 1 H nuclear magnetic resonance (NMR) spectrometry, the YCWG were composed of highly branched (1→3,1→6)-β-glucans and (1→4,1→6)-α-glucans. Although the YCWG were composed of 78.3% β-glucans and 21.7% α-glucans, only α-glucans were consumed by the B. breve strain. The ABC transporter ( malEFG1 ) and pullulanase ( aapA ) genes were transcriptionally upregulated in the metabolism of insoluble yeast glucans, suggesting their potential involvement in the process. A nonsense mutation identified in the gene encoding an ABC transporter ATP-binding protein (MalK) led to growth failure of an ethyl methanesulfonate-generated mutant with yeast glucans. Coculture of the wild-type strain and the mutant showed that this protein was responsible for the import of yeast glucans or their breakdown products, rather than the export of α-glucan-catabolizing enzymes. Further characterization of the carbohydrate utilization of the mutant and three of its revertants indicated that this mutation was pleiotropic: the mutant could not grow with maltose, glycogen, dextrin, raffinose, cellobiose, melibiose, or turanose. We propose that insoluble yeast α-glucans are hydrolyzed by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics. IMPORTANCE In general, Bifidobacterium strains are genetically intractable. Coupling classic forward genetics with next-generation sequencing, here we identified an ABC transporter ATP-binding protein (MalK) responsible for the import of insoluble yeast glucan breakdown products by B. breve JCM1192. We demonstrated the pleiotropic effects of the ABC transporter ATP-binding protein in maltose/maltooligosaccharide, raffinose, cellobiose, melibiose, and turanose transport. With the addition of transcriptional analysis, we propose that insoluble yeast glucans are broken down by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics. Copyright © 2017 American Society for Microbiology.
Bobrov, Alexander G.; Kirillina, Olga; Fetherston, Jacqueline D.; Miller, M. Clarke; Burlison, Joseph A.; Perry, Robert D.
2014-01-01
Summary Bacterial pathogens must overcome host sequestration of zinc (Zn2+), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn2+ by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn2+-deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn2+ acquisition. Studies with the Zn2+-dependent transcriptional reporter znuA∷lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn2+. However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, that are required for Fe3+ acquisition by Ybt, are not needed for Ybt-dependent Zn2+ uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn2+ uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicemic plague mouse model. PMID:24979062
Ghanem, Carolina I; Rudraiah, Swetha; Bataille, Amy M; Vigo, María B; Goedken, Michael J; Manautou, José E
2015-04-01
Changes in expression of liver ABC transporters have been described during acute APAP intoxication. However, the effect of APAP on brain ABC transporters is poorly understood. The aim of this study was to evaluate the effect of APAP on brain ABC transporters expression and the role of the oxidative stress sensor Nrf2. Male C57BL/6J mice were administered APAP (400mg/kg) for analysis of brain mRNA and protein expression of Mrp1-6, Bcrp and P-gp. The results show induction of P-gp, Mrp2 and Mrp4 proteins, with no changes in Bcrp, Mrp1 or Mrp5-6. The protein values were accompanied by corresponding changes in mRNA levels. Additionally, brain Nrf2 nuclear translocation and expression of two Nrf2 target genes, quinone oxidoreductase 1 (Nqo1) and Hemoxygenase 1 (Ho-1), was evaluated at 6, 12 and 24h after APAP treatment. Nrf2 nuclear content increased by 58% at 12h after APAP along with significant increments in mRNA and protein expression of Nqo1 and Ho-1. Furthermore, APAP treated Nrf2 knockout mice did not increase mRNA or protein expression of Mrp2 and Mrp4 as observed in wildtypes. In contrast, P-gp induction by APAP was observed in both genotypes. In conclusion, acute APAP intoxication induces protein expression of brain P-gp, Mrp2 and Mrp4. This study also suggests that brain changes in Mrp2 and Mrp4 expression may be due to in situ Nrf2 activation by APAP, while P-gp induction is independent of Nrf2 function. The functional consequences of these changes in brain ABC transporters by APAP deserve further attention. Copyright © 2015 Elsevier Inc. All rights reserved.
Puri, Nidhi; Manoharlal, Raman; Sharma, Monika; Sanglard, Dominique; Prasad, Rajendra
2011-01-07
We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the artefactual concerns encountered in using heterologous systems are totally excluded. Copyright © 2010 Elsevier Inc. All rights reserved.
Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin.
Rojas-Pierce, Marcela; Titapiwatanakun, Boosaree; Sohn, Eun Ju; Fang, Fang; Larive, Cynthia K; Blakeslee, Joshua; Cheng, Yan; Cutler, Sean R; Cuttler, Sean; Peer, Wendy A; Murphy, Angus S; Raikhel, Natasha V
2007-12-01
ATP-binding cassette (ABC) transporters have been implicated in a multitude of biological pathways. In plants, some ABC transporters are involved in the polar transport of the plant hormone auxin and the gravitropic response. We previously identified Gravacin as a potent inhibitor of gravitropism in Arabidopsis thaliana. We demonstrate that P-glycoprotein19 (PGP19) is a target for Gravacin and participates in its inhibition of gravitropism. Gravacin inhibited the auxin transport activity of PGP19 and PGP19-PIN complexes. Furthermore, we identified E1174 as an important residue for PGP19 activity and its ability to form active transport complexes with PIN1. Gravacin is an auxin transport inhibitor that inhibits PGPs, particularly PGP19, which can be used to further dissect the role of PGP19 without the inhibition of other auxin transporters, namely PIN proteins.
Adewoye, L O; Worobec, E A
2000-08-08
The Pseudomonas aeruginosa oprB gene encodes the carbohydrate-selective OprB porin, which translocates substrate molecules across the outer membrane to the periplasmic glucose-binding protein. We identified and cloned two open reading frames (ORFs) flanking the oprB gene but are not in operonic arrangement with the oprB gene. The downstream ORF encodes a putative polypeptide homologous to members of a family of transcriptional repressors, whereas the oprB gene is preceded by an ORF encoding a putative product, which exhibits strong homology to several carbohydrate transport ATP-binding cassette (ABC) proteins. The genomic copy of the upstream ORF was mutagenized by homologous recombination. Analysis of the deletion mutant in comparison with the wild type revealed a significant reduction in [14C] glucose transport activity in the mutant strain, suggesting that this ORF likely encodes the inner membrane component of the glucose ABC transporter. It is thus designated gltK gene to reflect its homology to the Pseudomona fluorescens mtlK and its involvement in the high-affinity glucose transport system. Multiple alignment analysis revealed that the P. aeruginosa gltK gene product is a member of the MalK subfamily of ABC proteins.
Reznicek, Josef; Ceckova, Martina; Ptackova, Zuzana; Martinec, Ondrej; Tupova, Lenka; Cerveny, Lukas; Staud, Frantisek
2017-09-01
Rilpivirine (TMC278) is a highly potent nonnucleoside reverse transcriptase inhibitor (NNRTI) representing an effective component of combination antiretroviral therapy (cART) in the treatment of HIV-positive patients. Many antiretroviral drugs commonly used in cART are substrates of ATP-binding cassette (ABC) and/or solute carrier (SLC) drug transporters and, therefore, are prone to pharmacokinetic drug-drug interactions (DDIs). The aim of our study was to evaluate rilpivirine interactions with abacavir and lamivudine on selected ABC and SLC transporters in vitro and assess its importance for pharmacokinetics in vivo Using accumulation assays in MDCK cells overexpressing selected ABC or SLC drug transporters, we revealed rilpivirine as a potent inhibitor of MDR1 and BCRP, but not MRP2, OCT1, OCT2, or MATE1. Subsequent transport experiments across monolayers of MDCKII-MDR1, MDCKII-BCRP, and Caco-2 cells demonstrated that rilpivirine inhibits MDR1- and BCRP-mediated efflux of abacavir and increases its transmembrane transport. In vivo experiments in male Wistar rats confirmed inhibition of MDR1/BCRP in the small intestine, leading to a significant increase in oral bioavailability of abacavir. In conclusion, rilpivirine inhibits MDR1 and BCRP transporters and may affect pharmacokinetic behavior of concomitantly administered substrates of these transporters, such as abacavir. Copyright © 2017 American Society for Microbiology.
Tournier, Nicolas; Saba, Wadad; Cisternino, Salvatore; Peyronneau, Marie-Anne; Damont, Annelaure; Goutal, Sébastien; Dubois, Albertine; Dollé, Frédéric; Scherrmann, Jean-Michel; Valette, Héric; Kuhnast, Bertrand; Bottlaender, Michel
2013-10-01
Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [(11)C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [(11)C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood-brain barrier (BBB). PET revealed the critical role of OATP on liver [(11)C]GLB uptake and its subsequent impact on [(11)C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [(11)C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake.
Mullen, Anna; Hall, Jenny; Diegel, Janika; Hassan, Isa; Fey, Adam; MacMillan, Fraser
2016-06-15
During their mechanistic cycles membrane transporters often undergo extensive conformational changes, sampling a range of orientations, in order to complete their function. Such membrane transporters present somewhat of a challenge to conventional structural studies; indeed, crystallization of membrane-associated proteins sometimes require conditions that vary vastly from their native environments. Moreover, this technique currently only allows for visualization of single selected conformations during any one experiment. EPR spectroscopy is a magnetic resonance technique that offers a unique opportunity to study structural, environmental and dynamic properties of such proteins in their native membrane environments, as well as readily sampling their substrate-binding-induced dynamic conformational changes especially through complementary computational analyses. Here we present a review of recent studies that utilize a variety of EPR techniques in order to investigate both the structure and dynamics of a range of membrane transporters and associated proteins, focusing on both primary (ABC-type transporters) and secondary active transporters which were key interest areas of the late Professor Stephen Baldwin to whom this review is dedicated. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Wilms, Ina; Möller, Philip; Stock, Anna-Maria; Gurski, Rosemarie; Lai, Erh-Min
2012-01-01
The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR1 and its target mRNA atu2422, which codes for the substrate binding protein of an ABC transporter taking up proline and γ-aminobutyric acid (GABA). Several other ABC transporter components were overproduced in an hfq mutant compared to their levels in the parental strain, suggesting that Hfq plays a major role in controlling the uptake systems and metabolic versatility of A. tumefaciens. The hfq mutant showed delayed growth, altered cell morphology, and reduced motility. Although the DNA-transferring type IV secretion system was produced, tumor formation by the mutant strain was attenuated, demonstrating an important contribution of Hfq to plant transformation by A. tumefaciens. PMID:22821981
Marine Natural Products as Models to Circumvent Multidrug Resistance.
Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M
2016-07-08
Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds.
Tanaka, Shiho; Endo, Haruka; Adegawa, Satomi; Iizuka, Ami; Imamura, Kazuhiro; Kikuta, Shingo; Sato, Ryoichi
2017-12-01
Because Bombyx mori ABC transporter C2 (BmABCC2) has 1000-fold higher potential than B. mori cadherin-like protein as a receptor for Bacillus thuringiensis Cry1Aa toxin (Tanaka et al., 2013), the gate-opening ability of the latent pore under six extracellular loops (ECLs) of BmABCC2 was expected to be the reason for its higher potential (Heckel, 2012). In this study, cell swelling assays in Sf9 cells showed that BmABCC2 mutants lacking substrate-excreting activity retained receptor activity, indicating that the gate-opening activity of BmABCC2 is not responsible for Cry1Aa toxicity. The analysis of 29 BmABCC2 mutants demonstrated that 770 DYWL 773 of ECL 4 comprise a putative binding site to Cry1Aa. This suggests that specific toxicity of Cry1Aa toxin to a restricted range of lepidopteran insects is dependent on conservation and variation in the amino acid residues around 770 DYWL 773 of ECL 4 in the ABCC2. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alzheimer’s and ABC transporters - new opportunities for diagnostics and treatment
Pahnke, Jens; Langer, Oliver; Krohn, Markus
2014-01-01
Much has been said about the increasing number of demented patients and the main risk factor ‘age’. Frustratingly, we do not know the precise pattern and all modulating factors that provoke the pathologic changes in the brains of affected elderly. We have to diagnose early to be able to stop the progression of diseases that irreversibly destroy brain substance. Familiar AD cases have mislead some researchers for almost 20 years, which has unfortunately narrowed the scientific understanding and has, thus, lead to insufficient funding of independent approaches. Therefore, basic researchers hardly have been able to develop causative treatments and clinicians still do not have access to prognostic and early diagnostic tools. During the recent years it became clear that insufficient Aβ export, physiologically facilitated by the ABC transporter superfamily at the brain’s barriers, plays a fundamental role in disease initiation and progression. Furthermore, export mechanisms that are deficient in affected elderly are new targets for activation and, thus, treatment, but ideally also for prevention. In sporadic AD disturbed clearance of β-amyloid from the brain is so far the most important factor for its accumulation in the parenchyma and vessel walls. Here, we review findings about the contribution of ABC transporters and of the perivascular drainage/glymphatic system on β-amyloid clearance. We highlight their potential value for innovative early diagnostics using PET and describe recently described, effective ABC transporter-targeting agents as potential causative treatment for neurodegenerative proteopathies/dementias. PMID:24746857
Alzheimer's and ABC transporters--new opportunities for diagnostics and treatment.
Pahnke, Jens; Langer, Oliver; Krohn, Markus
2014-12-01
Much has been said about the increasing number of demented patients and the main risk factor 'age'. Frustratingly, we do not know the precise pattern and all modulating factors that provoke the pathologic changes in the brains of affected elderly. We have to diagnose early to be able to stop the progression of diseases that irreversibly destroy brain substance. Familiar AD cases have mislead some researchers for almost 20 years, which has unfortunately narrowed the scientific understanding and has, thus, lead to insufficient funding of independent approaches. Therefore, basic researchers hardly have been able to develop causative treatments and clinicians still do not have access to prognostic and early diagnostic tools. During the recent years it became clear that insufficient Aβ export, physiologically facilitated by the ABC transporter superfamily at the brain's barriers, plays a fundamental role in disease initiation and progression. Furthermore, export mechanisms that are deficient in affected elderly are new targets for activation and, thus, treatment, but ideally also for prevention. In sporadic AD disturbed clearance of β-amyloid from the brain is so far the most important factor for its accumulation in the parenchyma and vessel walls. Here, we review findings about the contribution of ABC transporters and of the perivascular drainage/glymphatic system on β-amyloid clearance. We highlight their potential value for innovative early diagnostics using PET and describe recently described, effective ABC transporter-targeting agents as potential causative treatment for neurodegenerative proteopathies/dementias. Copyright © 2014 Elsevier Inc. All rights reserved.
Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T; Ruggles, Kelly V; DeGiorgis, Joseph A; Kohlwein, Sepp D; Schon, Eric A; Sturley, Stephen L
2015-11-01
A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins. © FASEB.
Bobrov, Alexander G; Kirillina, Olga; Fetherston, Jacqueline D; Miller, M Clarke; Burlison, Joseph A; Perry, Robert D
2014-08-01
Bacterial pathogens must overcome host sequestration of zinc (Zn(2+) ), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn(2+) by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn(2+) -deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn(2+) acquisition. Studies with the Zn(2+) -dependent transcriptional reporter znuA::lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn(2+) . However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, which are required for Fe(3+) acquisition by Ybt, are not needed for Ybt-dependent Zn(2+) uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn(2+) uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicaemic plague mouse model. © 2014 John Wiley & Sons Ltd.
Characterisation of single domain ATP-binding cassette protien homologues of Theileria parva.
Kibe, M K; Macklin, M; Gobright, E; Bishop, R; Urakawa, T; ole-MoiYoi, O K
2001-09-01
Two distinct genes encoding single domain, ATP-binding cassette transport protein homologues of Theileria parva were cloned and sequenced. Neither of the genes is tandemly duplicated. One gene, TpABC1, encodes a predicted protein of 593 amino acids with an N-terminal hydrophobic domain containing six potential membrane-spanning segments. A single discontinuous ATP-binding element was located in the C-terminal region of TpABC1. The second gene, TpABC2, also contains a single C-terminal ATP-binding motif. Copies of TpABC2 were present at four loci in the T. parva genome on three different chromosomes. TpABC1 exhibited allelic polymorphism between stocks of the parasite. Comparison of cDNA and genomic sequences revealed that TpABC1 contained seven short introns, between 29 and 84 bp in length. The full-length TpABC1 protein was expressed in insect cells using the baculovirus system. Application of antibodies raised against the recombinant antigen to western blots of T. parva piroplasm lysates detected an 85 kDa protein in this life-cycle stage.
Pinto, Rute D; Pereira, Pedro J B; dos Santos, Nuno M S
2011-11-01
The transporters associated with antigen processing (TAP), play an important role in the MHC class I antigen presentation pathway. In this work, sea bass (Dicentrarchus labrax) TAP1 and TAP2 genes and transcripts were isolated and characterized. Only the TAP2 gene is structurally similar to its human orthologue. As other TAP molecules, sea bass TAP1 and TAP2 are formed by one N-terminal accessory domain, one core membrane-spanning domain and one canonical C-terminal nucleotide-binding domain. Homology modelling of the sea bass TAP dimer predicts that its quaternary structure is in accordance with that of other ABC transporters. Phylogenetic analysis segregates sea bass TAP1 and TAP2 into each subfamily cluster of transporters, placing them in the fish class and suggesting that the basic structure of these transport-associated proteins is evolutionarily conserved. Furthermore, the present data provides information that will enable more studies on the class I antigen presentation pathway in this important fish species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Air Pollution, Greenhouse Gases and Climate Change
NASA Astrophysics Data System (ADS)
Ramanathan, V.
2007-12-01
The global build up of greenhouse gases (GHGs), is the most significant environmental issue facing the planet. GHGs warm the surface and the atmosphere with significant implications for, rainfall, retreat of glaciers and sea ice, sea level, among other factors. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that, due to fast long range transport, air pollution is transported across continents and ocean basins, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e, aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols nucleate more cloud drops which makes the clouds reflect more solar radiation. While the solar heating at the surface is reduced by aerosols in ABCs, the atmospheric solar heating increases due to soot solar absorption. The net difference between the dimming and the atmospheric solar heating is estimated be negative which contributes to a global cooling effect. The global cooling from this negative ABC forcing may have masked as much as 50% of the warming due to GHGs. We will identify regional and mega-city hot spots of ABCs. Long range transport from these hot spots gives rise to wide spread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by wide spread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. The large north-south gradient in the ABC dimming has altered the north-south gradients in sea surface temperatures, which in turn has been shown by models to decrease rainfall over the continents. The uncertainties in our understanding of the ABC effects are large, but we are discovering new ways in which human activities are changing the climate and the environment.
Schnabel, Guido; Dait, Qun; Paradkar, Manjiri R
2003-10-01
Brown rot, caused by Moniliniafructicola (G Wint) Honey, is a serious disease of peach in all commercial peach production areas in the USA, including South Carolina where it has been primarily controlled by pre-harvest application of 14-alpha demethylation (DMI) fungicides for more than 15 years. Recently, the Qo fungicide azoxystrobin was registered for brown rot control and is currently being investigated for its potential as a DMI fungicide rotation partner because of its different mode of action. In an effort to investigate molecular mechanisms of DMI and Qo fungicide resistance in M fructicola, the ABC transporter gene MfABC1 and the alternative oxidase gene MfAOX1 were cloned to study their potential role in conferring fungicide resistance. The MfABC1 gene was 4380 bp in length and contained one intron of 71 bp. The gene revealed high amino acid homologies with atrB from Aspergillus nidulans (Eidam) Winter, an ABC transporter conferring resistance to many fungicides, including DMI fungicides. MfABC1 gene expression was induced after myclobutanil and propiconazole treatment in isolates with low sensitivity to the same fungicides, and in an isolate with high sensitivity to propiconazole. The results suggest that the MfABC1 gene may be a DMI fungicide resistance determinant in M fructicola. The alternative oxidase gene MfAOX1 from M fructicola was cloned and gene expression was analyzed. The MfAOX1 gene was 1077 bp in length and contained two introns of 54 and 67 bp. The amino acid sequence was 63.8, 63.8 and 57.7% identical to alternative oxidases from Venturia inaequalis (Cooke) Winter, Aspergillus niger van Teighem and A nidulans, respectively. MfAOX1 expression in some but not all M fructicola isolates was induced in mycelia treated with azoxystrobin. Azoxystrobin at 2 microg ml(-1) significantly induced MfAOX1 expression in isolates with low MfAOX1 constitutive expression levels.
Döring, Barbara; Petzinger, Ernst
2014-08-01
The historical phasing concept of drug metabolism and elimination was introduced to comprise the two phases of metabolism: phase I metabolism for oxidations, reductions and hydrolyses, and phase II metabolism for synthesis. With this concept, biological membrane barriers obstructing the accessibility of metabolism sites in the cells for drugs were not considered. The concept of two phases was extended to a concept of four phases when drug transporters were detected that guided drugs and drug metabolites in and out of the cells. In particular, water soluble or charged drugs are virtually not able to overcome the phospholipid membrane barrier. Drug transporters belong to two main clusters of transporter families: the solute carrier (SLC) families and the ATP binding cassette (ABC) carriers. The ABC transporters comprise seven families with about 20 carriers involved in drug transport. All of them operate as pumps at the expense of ATP splitting. Embedded in the former phase concept, the term "phase III" was introduced by Ishikawa in 1992 for drug export by ABC efflux pumps. SLC comprise 52 families, from which many carriers are drug uptake transporters. Later on, this uptake process was referred to as the "phase 0 transport" of drugs. Transporters for xenobiotics in man and animal are most expressed in liver, but they are also present in extra-hepatic tissues such as in the kidney, the adrenal gland and lung. This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.
Rijpma, Sanna R; van der Velden, Maarten; González-Pons, Maria; Annoura, Takeshi; van Schaijk, Ben C L; van Gemert, Geert-Jan; van den Heuvel, Jeroen J M W; Ramesar, Jai; Chevalley-Maurel, Severine; Ploemen, Ivo H; Khan, Shahid M; Franetich, Jean-Francois; Mazier, Dominique; de Wilt, Johannes H W; Serrano, Adelfa E; Russel, Frans G M; Janse, Chris J; Sauerwein, Robert W; Koenderink, Jan B; Franke-Fayard, Blandine M
2016-03-01
Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development. © 2015 John Wiley & Sons Ltd.
Laub, Katrine Rude; Marek, Magdalena; Stanchev, Lyubomir Dimitrov; Herrera, Sara Abad; Kanashova, Tamara; Bourmaud, Adèle; Dittmar, Gunnar
2017-01-01
The ATP binding cassette (ABC) transporters Pdr11p and its paralog Aus1p are expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and are required for sterol uptake. However, the precise mechanism by which these ABC transporters facilitate sterol movement is unknown. In this study, an overexpression and purification procedure was developed with the aim to characterise the Pdr11p transporter. Engineering of Pdr11p variants fused at the C terminus with green fluorescent protein (Pdr11p-GFP) and containing a FLAG tag at the N terminus facilitated expression analysis and one-step purification, respectively. The detergent-solubilised and purified protein displayed a stable ATPase activity with a broad pH optimum near 7.4. Mutagenesis of the conserved lysine to methionine (K788M) in the Walker A motif abolished ATP hydrolysis. Remarkably, and in contrast to Aus1p, ATPase activity of Pdr11p was insensitive to orthovanadate and not specifically stimulated by phosphatidylserine upon reconstitution into liposomes. Our results highlight distinct differences between Pdr11p and Aus1p and create an experimental basis for further biochemical studies of both ABC transporters to elucidate their function. PMID:28922409
Llop, Sabrina; Engström, Karin; Ballester, Ferran; Franforte, Elisa; Alhamdow, Ayman; Pisa, Federica; Tratnik, Janja Snoj; Mazej, Datja; Murcia, Mario; Rebagliato, Marisa; Bustamante, Mariona; Sunyer, Jordi; Sofianou-Katsoulis, Αikaterini; Prasouli, Alexia; Antonopoulou, Eleni; Antoniadou, Ioanna; Nakou, Sheena; Barbone, Fabio; Horvat, Milena; Broberg, Karin
2014-01-01
Background The genetic background may influence methylmercury (MeHg) metabolism and neurotoxicity. ATP binding cassette (ABC) transporters actively transport various xenobiotics across biological membranes. Objective To investigate the role of ABC polymorphisms as modifiers of prenatal exposure to MeHg. Methods The study population consisted of participants (n = 1651) in two birth cohorts, one in Italy and Greece (PHIME) and the other in Spain (INMA). Women were recruited during pregnancy in Italy and Spain, and during the perinatal period in Greece. Total mercury concentrations were measured in cord blood samples by atomic absorption spectrometry. Maternal fish intake during pregnancy was determined from questionnaires. Polymorphisms (n = 5) in the ABC genes ABCA1, ABCB1, ABCC1 and ABCC2 were analysed in both cohorts. Results ABCB1 rs2032582, ABCC1 rs11075290, and ABCC2 rs2273697 modified the associations between maternal fish intake and cord blood mercury concentrations. The overall interaction coefficient between rs2032582 and log2-transformed fish intake was negative for carriers of GT (β = −0.29, 95%CI −0.47, −0.12) and TT (β = −0.49, 95%CI −0.71, −0.26) versus GG, meaning that for a doubling in fish intake of the mothers, children with the rs2032582 GG genotype accumulated 35% more mercury than children with TT. For rs11075290, the interaction coefficient was negative for carriers of TC (β = −0.12, 95%CI −0.33, 0.09), and TT (β = −0.28, 95%CI −0.51, −0.06) versus CC. For rs2273697, the interaction coefficient was positive when combining GA+AA (β = 0.16, 95%CI 0.01, 0.32) versus GG. Conclusion The ABC transporters appear to play a role in accumulation of MeHg during early development. PMID:24831289
Kinetic control of TolC recruitment by multidrug efflux complexes.
Tikhonova, Elena B; Dastidar, Vishakha; Rybenkov, Valentin V; Zgurskaya, Helen I
2009-09-22
In Gram-negative pathogens, multidrug efflux pumps that provide clinically significant levels of antibiotic resistance function as three-component complexes. They are composed of the inner membrane transporters belonging to one of three superfamilies of proteins, RND, ABC, or MF; periplasmic proteins belonging to the membrane fusion protein (MFP) family; and outer membrane channels exemplified by the Escherichia coli TolC. The three-component complexes span the entire two-membrane envelope of Gram-negative bacteria and expel toxic molecules from the cytoplasmic membrane to the medium. The architecture of these complexes is expected to vary significantly because of the structural diversity of the inner membrane transporters. How the three-component pumps are assembled, their architecture, and their dynamics remain unclear. In this study, we reconstituted interactions and compared binding kinetics of the E. coli TolC with AcrA, MacA, and EmrA, the periplasmic MFPs that function in multidrug efflux with transporters from the RND, ABC, and MF superfamilies, respectively. By using surface plasmon resonance, we demonstrate that TolC interactions with MFPs are highly dynamic and sensitive to pH. The affinity of TolC to MFPs decreases in the order MacA > EmrA > AcrA. We further show that MFPs are prone to oligomerization, but differ dramatically from each other in oligomerization kinetics and stability of oligomers. The propensity of MFPs to oligomerize correlates with the stability of MFP-TolC complexes and structural features of inner membrane transporters. We propose that recruitment of TolC by various MFPs is determined not only by kinetics of MFP-TolC interactions but also by oligomerization kinetics of MFPs and pH.
Pérez-Victoria, José M.; Pérez-Victoria, F. Javier; Parodi-Talice, Adriana; Jiménez, Ignacio A.; Ravelo, Angel G.; Castanys, Santiago; Gamarro, Francisco
2001-01-01
Drug resistance has emerged as a major impediment in the treatment of leishmaniasis. Alkyl-lysophospholipids (ALP), originally developed as anticancer drugs, are considered to be the most promising antileishmanial agents. In order to anticipate probable clinical failure in the near future, we have investigated possible mechanisms of resistance to these drugs in Leishmania spp. The results presented here support the involvement of a member of the ATP-binding cassette (ABC) superfamily, the Leishmania P-glycoprotein-like transporter, in the resistance to ALP. (i) First, a multidrug resistance (MDR) Leishmania tropica line overexpressing a P-glycoprotein-like transporter displays significant cross-resistance to the ALP miltefosine and edelfosine, with resistant indices of 9.2- and 7.1-fold, respectively. (ii) Reduced expression of P-glycoprotein in the MDR line correlates with a significant decrease in ALP resistance. (iii) The ALP were able to modulate the P-glycoprotein-mediated resistance to daunomycin in the MDR line. (iv) We have found a new inhibitor of this transporter, the sesquiterpene C-3, that completely sensitizes MDR parasites to ALP. (v) Finally, the MDR line exhibits a lower accumulation than the wild-type line of bodipy-C5-PC, a fluorescent analogue of phosphatidylcholine that has a structure resembling that of edelfosine. Also, C-3 significantly increases the accumulation of the fluorescent analogue to levels similar to those of wild-type parasites. The involvement of the Leishmania P-glycoprotein-like transporter in resistance to drugs used in the treatment of leishmaniasis also supports the importance of developing new specific inhibitors of this ABC transporter. PMID:11502516
NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum.
Ducos, Eric; Fraysse, Staffan; Boutry, Marc
2005-12-19
In plants, the ABC transporter PDR (pleiotropic drug resistance) subfamily is composed of approximately 15 genes, few of which have been analyzed. We have identified NtPDR3, a Nicotiana tabacum PDR gene belonging to a cluster for which no functional data was previously available. NtPDR3 was found to be induced in suspension cells treated with methyl jasmonate, salicylic acid, 1-naphthalene acetic acid, or cembrene, a macrocyclic diterpene. In agreement with the identification of a putative iron deficiency element in the NtPDR3 transcription promoter region, we found that iron deficiency in the culture medium induced NtPDR3 expression, thus suggesting a new function of the PDR transporter family.
Myllynen, Päivi; Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysä, Jaana; Pirilä, Rauna; Lastumäki, Anni; Vähäkangas, Kirsi H
2008-10-15
We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of (14)C-PhIP (2 microM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72+/-0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of (14)C-PhIP from maternal to fetal circulation (FM ratio 0.90+/-0.08 at 6 h, p<0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75+/-0.10, p=0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of (14)C-PhIP (R=-0.81, p<0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: -0.11, p=0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of (14)C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarcinoma cells.
A Silent ABC Transporter Isolated from Streptomyces rochei F20 Induces Multidrug Resistance
Fernández-Moreno, Miguel A.; Carbó, Lázaro; Cuesta, Trinidad; Vallín, Carlos; Malpartida, Francisco
1998-01-01
In the search for heterologous activators for actinorhodin production in Streptomyces lividans, 3.4 kb of DNA from Streptomyces rochei F20 (a streptothricin producer) were characterized. Subcloning experiments showed that the minimal DNA fragment required for activation was 0.4 kb in size. The activation is mediated by increasing the levels of transcription of the actII-ORF4 gene. Sequencing of the minimal activating fragment did not reveal any clues about its mechanism; nevertheless, it was shown to overlap the 3′ end of two convergent genes, one of whose translated products (ORF2) strongly resembles that of other genes belonging to the ABC transporter superfamily. Computer-assisted analysis of the 3.4-kb DNA sequence showed the 3′ terminus of an open reading frame (ORF), i.e., ORFA, and three complete ORFs (ORF1, ORF2, and ORFB). Searches in the databases with their respective gene products revealed similarities for ORF1 and ORF2 with ATP-binding proteins and transmembrane proteins, respectively, which are found in members of the ABC transporter superfamily. No similarities for ORFA and ORFB were found in the databases. Insertional inactivation of ORF1 and ORF2, their transcription analysis, and their cloning in heterologous hosts suggested that these genes were not expressed under our experimental conditions; however, cloning of ORF1 and ORF2 together (but not separately) under the control of an expressing promoter induced resistance to several chemically different drugs: oleandomycin, erythromycin, spiramycin, doxorubicin, and tetracycline. Thus, this genetic system, named msr, is a new bacterial multidrug ABC transporter. PMID:9696745
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myllynen, Paeivi; Kummu, Maria; Kangas, Tiina
2008-10-15
We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of {sup 14}C-PhIP (2 {mu}M) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72 {+-} 0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of {sup 14}C-PhIP from maternal to fetal circulation (FM ratio 0.90 {+-} 0.08 at 6 h, p < 0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75 {+-}more » 0.10, p = 0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of {sup 14}C-PhIP (R = - 0.81, p < 0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: - 0.11, p = 0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of {sup 14}C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarinoma cells.« less
Underwood, William; Somerville, Shauna C
2017-10-03
The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in defense against a number of pathogens. Perception of PAMPs by pattern recognition receptors initiates recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whether PAMP-induced phosphorylation of PEN3 is important for its defense function or focal recruitment has not been addressed. In this study, we evaluated the role of PEN3 phosphorylation in modulating the localization and defense function of the transporter. We report that PEN3 phosphorylation is critical for its function in defense, but dispensable for recruitment to powdery mildew penetration sites. These results indicate that PAMP-induced phosphorylation is likely to regulate the transport activity of PEN3.
Structural Validity of the Movement ABC-2 Test: Factor Structure Comparisons across Three Age Groups
ERIC Educational Resources Information Center
Schulz, Joerg; Henderson, Sheila E.; Sugden, David A.; Barnett, Anna L.
2011-01-01
Background: The Movement ABC test is one of the most widely used assessments in the field of Developmental Coordination Disorder (DCD). Improvements to the 2nd edition of the test (M-ABC-2) include an extension of the age range and reduction in the number of age bands as well as revision of tasks. The total test score provides a measure of motor…
Fischer, Stephan; Loncar, Jovica; Zaja, Roko; Schnell, Sabine; Schirmer, Kristin; Smital, Tvrtko; Luckenbach, Till
2011-01-25
Permanent fish cell lines have become common model systems for determining ecotoxicological effects of pollutants. For these cell lines little is known on the cellular active transport mechanisms that control the amount of a compound entering the cell, such as the MXR (multixenobiotic resistance) system mediated by ATP binding cassette (ABC) transport proteins. Therefore, for toxic evaluation of chemicals with those cells information on MXR is important. We here present data on constitutive mRNA expression and protein activity levels of a series of ABC efflux transporters in seven permanent cell lines derived from liver (RTL-W1; R1) and liver hepatoma (RTH-149), gill (RTgill-W1), gonad (RTG-2), gut (RTgutGC) and brain (RTbrain) of rainbow trout (Oncorhynchus mykiss). In addition to known transporters abcb1 (designated here abcb1a), abcb11, abcc1-3, abcc5 and abcg2, we quantified expression levels of a newly identified abcb1 isoform (abcb1b) and abcc4, previously unknown in trout. Quantitative real time PCR (qPCR) indicated that mRNA of the examined ABC transporters was constitutively expressed in all cell lines. Transporter mRNA expression patterns were similar in all cell lines, with expression levels of abcc transporters being 80 to over 1000 fold higher than for abcg2, abcb1a/b and abcb11 (abcc1-5>abcg2>abcb1a/b, 11). Transporter activity in the cell lines was determined by measuring uptake of transporter type specific fluorescent substrates in the presence of activity inhibitors. The combination of the ABCB1 and ABCC transporter substrate calcein-AM with inhibitors cyclosporine A, PSC833 and MK571 resulted in a concentration-dependent fluorescence increase of up to 3-fold, whereas reversin 205 caused a slight, but not concentration-dependent fluorescence increase. Accumulation of the dyes Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate was basically unchanged in the presence of Ko134 and taurocholate, respectively, indicating low Abcg2 and Abcb11 activities, in accordance with low abcg2 and abcb11 transcript levels. Our data indicate that transporter expression and activity patterns in the different trout cell lines are irrespective of the tissue of origin, but are determined by factors of cell cultivation. 2010 Elsevier B.V. All rights reserved.
Alvarez, Angel H; Gutiérrez-Ortega, Abel; Hernández-Gutiérrez, Rodolfo
2015-10-01
Mannheimia haemolytica and Histophilus somni are frequently isolated from diseased cattle with bovine respiratory disease (BRD). They compromise animal lung function and the immune responses generated are not sufficient to limit infection. Identification of specific immunogenic antigens for vaccine development represents a great challenge. Immunogenic proteins were identified by immunoproteomic approach with sera from cattle immunized with a commercial cellular vaccine of M. haemolytica and H. somni. Proteins of M. haemolytica were identified as solute ABC transporter, iron-binding protein, and hypothetical protein of capsular biosynthesis. Histophilus somni proteins correspond to porin, amino acid ABC transporter, hypothetical outer membrane protein, cysteine synthase, and outer membrane protein P6. Although these antigens share strong similarities with other proteins from animal pathogens, the ABC system proteins have been associated with virulence and these proteins could be considered as potential vaccine candidates for BRD.
Alvarez, Angel H.; Gutiérrez-Ortega, Abel; Hernández-Gutiérrez, Rodolfo
2015-01-01
Mannheimia haemolytica and Histophilus somni are frequently isolated from diseased cattle with bovine respiratory disease (BRD). They compromise animal lung function and the immune responses generated are not sufficient to limit infection. Identification of specific immunogenic antigens for vaccine development represents a great challenge. Immunogenic proteins were identified by immunoproteomic approach with sera from cattle immunized with a commercial cellular vaccine of M. haemolytica and H. somni. Proteins of M. haemolytica were identified as solute ABC transporter, iron-binding protein, and hypothetical protein of capsular biosynthesis. Histophilus somni proteins correspond to porin, amino acid ABC transporter, hypothetical outer membrane protein, cysteine synthase, and outer membrane protein P6. Although these antigens share strong similarities with other proteins from animal pathogens, the ABC system proteins have been associated with virulence and these proteins could be considered as potential vaccine candidates for BRD. PMID:26424916
Baglieri, Jacopo; Beck, Daniel; Vasisht, Nishi; Smith, Corinne J.; Robinson, Colin
2012-01-01
The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plant thylakoid membranes. Most current models for the translocation mechanism propose the coalescence of a substrate-binding TatABC complex with a separate TatA complex. In Escherichia coli, TatA complexes are widely believed to form the translocation pore, and the size variation of TatA has been linked to the transport of differently sized substrates. Here, we show that the TatA paralog TatE can substitute for TatA and support translocation of Tat substrates including AmiA, AmiC, and TorA. However, TatE is found as much smaller, discrete complexes. Gel filtration and blue native electrophoresis suggest sizes between ∼50 and 110 kDa, and single-particle processing of electron micrographs gives size estimates of 70–90 kDa. Three-dimensional models of the two principal TatE complexes show estimated diameters of 6–8 nm and potential clefts or channels of up to 2.5 nm diameter. The ability of TatE to support translocation of the 90-kDa TorA protein suggests alternative translocation models in which single TatA/E complexes do not contribute the bulk of the translocation channel. The homogeneity of both the TatABC and the TatE complexes further suggests that a discrete Tat translocase can translocate a variety of substrates, presumably through the use of a flexible channel. The presence and possible significance of double- or triple-ring TatE forms is discussed. PMID:22190680
Pletzer, Daniel; Braun, Yvonne; Dubiley, Svetlana; Lafon, Corinne; Köhler, Thilo; Page, Malcolm G P; Mourez, Michael; Severinov, Konstantin; Weingart, Helge
2015-07-01
Analysis of the genome sequence of Pseudomonas aeruginosa PA14 revealed the presence of an operon encoding an ABC-type transporter (NppA1A2BCD) showing homology to the Yej transporter of Escherichia coli. The Yej transporter is involved in the uptake of the peptide-nucleotide antibiotic microcin C, a translation inhibitor that targets the enzyme aspartyl-tRNA synthetase. Furthermore, it was recently shown that the Opp transporter from P. aeruginosa PAO1, which is identical to Npp, is required for uptake of the uridyl peptide antibiotic pacidamycin, which targets the enzyme translocase I (MraY), which is involved in peptidoglycan synthesis. We used several approaches to further explore the substrate specificity of the Npp transporter. Assays of growth in defined minimal medium containing peptides of various lengths and amino acid compositions as sole nitrogen sources, as well as Biolog Phenotype MicroArrays, showed that the Npp transporter is not required for di-, tri-, and oligopeptide uptake. Overexpression of the npp operon increased susceptibility not just to pacidamycin but also to nickel chloride and the peptidyl nucleoside antibiotic blasticidin S. Furthermore, heterologous expression of the npp operon in a yej-deficient mutant of E. coli resulted in increased susceptibility to albomycin, a naturally occurring sideromycin with a peptidyl nucleoside antibiotic. Additionally, heterologous expression showed that microcin C is recognized by the P. aeruginosa Npp system. Overall, these results suggest that the NppA1A2BCD transporter is involved in the uptake of peptidyl nucleoside antibiotics by P. aeruginosa PA14. One of the world's most serious health problems is the rise of antibiotic-resistant bacteria. There is a desperate need to find novel antibiotic therapeutics that either act on new biological targets or are able to bypass known resistance mechanisms. Bacterial ABC transporters play an important role in nutrient uptake from the environment. These uptake systems could also be exploited by a Trojan horse strategy to facilitate the transport of antibiotics into bacterial cells. Several natural antibiotics mimic substrates of peptide uptake routes. In this study, we analyzed an ABC transporter involved in the uptake of nucleoside peptidyl antibiotics. Our data might help to design drug conjugates that may hijack this uptake system to gain access to cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
The Structure of a Cyanobacterial Bicarbonate Transport Protein, CmpA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koropatkin, Nicole M.; Koppenaal, David W.; Pakrasi, Himadri B.
2007-01-26
Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of the food chain by fixing carbon and nitrogen into cellular biomass. To compensate for the low selectivity of Rubisco for CO₂ over O₂, Cyanobacteria have developed highly efficient CO₂concentrating machinery of which the ABC transport system CmpABCD from Synechocystis PCC 6803 is one component. Here we describe the structure of the bicarbonate binding protein, CmpA, in the absence and presence of bicarbonate and carbonic acid. CmpA is highly homologous to the nitrate transport protein, NrtA. CmpA binds carbonic acid at the entrance to themore » ligand-binding pocket whereas bicarbonate binds in nearly an identical location compared to nitrate binding to NrtA. Unexpectedly, bicarbonate binding is accompanied by a metal ion, identified as Ca²⁺ via inductively coupled plasma optical emission spectrometry. The binding of bicarbonate and metal is highly cooperative and suggests that CmpA co-transports bicarbonate and calcium.« less
Transmembrane helical interactions in the CFTR channel pore.
Das, Jhuma; Aleksandrov, Andrei A; Cui, Liying; He, Lihua; Riordan, John R; Dokholyan, Nikolay V
2017-06-01
Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene affect CFTR protein biogenesis or its function as a chloride channel, resulting in dysregulation of epithelial fluid transport in the lung, pancreas and other organs in cystic fibrosis (CF). Development of pharmaceutical strategies to treat CF requires understanding of the mechanisms underlying channel function. However, incomplete 3D structural information on the unique ABC ion channel, CFTR, hinders elucidation of its functional mechanism and correction of cystic fibrosis causing mutants. Several CFTR homology models have been developed using bacterial ABC transporters as templates but these have low sequence similarity to CFTR and are not ion channels. Here, we refine an earlier model in an outward (OWF) and develop an inward (IWF) facing model employing an integrated experimental-molecular dynamics simulation (200 ns) approach. Our IWF structure agrees well with a recently solved cryo-EM structure of a CFTR IWF state. We utilize cysteine cross-linking to verify positions and orientations of residues within trans-membrane helices (TMHs) of the OWF conformation and to reconstruct a physiologically relevant pore structure. Comparison of pore profiles of the two conformations reveal a radius sufficient to permit passage of hydrated Cl- ions in the OWF but not the IWF model. To identify structural determinants that distinguish the two conformations and possible rearrangements of TMHs within them responsible for channel gating, we perform cross-linking by bifunctional reagents of multiple predicted pairs of cysteines in TMH 6 and 12 and 6 and 9. To determine whether the effects of cross-linking on gating observed are the result of switching of the channel from open to close state, we also treat the same residue pairs with monofunctional reagents in separate experiments. Both types of reagents prevent ion currents indicating that pore blockage is primarily responsible.
2006-09-05
NA NA no yes BMAA1128 ABC Transporter 3 GGGAAACGCGAAAC 6 5 yes no BMAA1873 Hypothetical protein 4 No (-C) NA NA no yes BMAA1868 Aconitate hydratase 5...no yes BMAA1868 Aconitate hydratase 3 GTGCTGTC 21 22 no yes BMAA0375 Transcriptional regulator Human Blood 1 TTGGCGC 111 109 no no BMAA1866 Conserved...NA NA no yes BMAA1128 ABC transporter 5 No (-C) NA NA no yes BMAA1868 Aconitate hydratase NA: Not applicable.Page 3 of 11 (page number not for
Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim
2016-09-15
The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.
Crystal structure of a designed, thermostable, heterotrimeric coiled coil.
Nautiyal, S.; Alber, T.
1999-01-01
Electrostatic interactions are often critical for determining the specificity of protein-protein complexes. To study the role of electrostatic interactions for assembly of helical bundles, we previously designed a thermostable, heterotrimeric coiled coil, ABC, in which charged residues were employed to drive preferential association of three distinct, 34-residue helices. To investigate the basis for heterotrimer specificity, we have used multiwavelength anomalous diffraction (MAD) analysis to determine the 1.8 A resolution crystal structure of ABC. The structure shows that ABC forms a heterotrimeric coiled coil with the intended arrangement of parallel chains. Over half of the ion pairs engineered to restrict helix associations were apparent in the experimental electron density map. As seen in other trimeric coiled coils, ABC displays acute knobs-into-holes packing and a buried anion coordinated by core polar amino acids. These interactions validate the design strategy and illustrate how packing and polar contacts determine structural uniqueness. PMID:10210186
Rigalli, Juan Pablo; Tocchetti, Guillermo Nicolás; Arana, Maite Rocío; Villanueva, Silvina Stella Maris; Catania, Viviana Alicia; Theile, Dirk; Ruiz, María Laura; Weiss, Johanna
2016-06-28
Breast cancer is the most frequent malignancy in women. Multidrug resistance due to overexpression of ABC drug transporters is a common cause of chemotherapy failure and disease recurrence. Genistein (GNT) is a phytoestrogen present in soybeans and hormone supplements. We investigated the effect of GNT on the expression and function of ABC transporters in MCF-7 and MDA-MB-231 breast cancer cell lines. Results demonstrated an induction at the protein level of ABCC1 and ABCG2 and of ABCC1 in MCF-7 and MDA-MB-231, respectively. MCF-7 cells showed a concomitant increase in doxorubicin and mitoxantrone efflux and resistance, dependent on ABCG2 activity. ABCC1 induction by GNT in MDA-MB-231 cells modified neither drug efflux nor chemoresistance due to simultaneous acute inhibition of the transporter activity by GNT. All inductions took place at the translational level, as no increment in mRNA was observed and protein increase was prevented by cycloheximide. miR-181a, already demonstrated to inhibit ABCG2 translation, was down-regulated by GNT, explaining translational induction. Effects were independent of classical estrogen receptors. Results suggest potential nutrient-drug interactions that could threaten chemotherapy efficacy, especially in ABCG2-expressing tumors treated with substrates of this transporter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Li, Sen; Lei, Yu; Jia, Yingjie; Li, Na; Wink, Michael; Ma, Yonggang
2011-12-15
Over-expression of P-gp, MRP1 and BCRP in tumor cells is one of the important mechanisms leading to multidrug resistance (MDR), which impairs the efficacy of chemotherapy. P-gp, MRP1 and BCRP are ABC (ATP-Binding Cassette) transporters, which can expel a variety of lipophilic anti-cancer drugs and protect tumor cells. During a screening of MDR reversal agents among alkaloids of various structural types, a piperidine alkaloid, piperine (a main piperidine alkaloid in Piper nigurm) was identified as an inhibitor. Piperine can potentiate the cytotoxicity of anti-cancer drugs in resistant sublines, such as MCF-7/DOX and A-549/DDP, which were derived from MCF-7 and A-549 cell lines. At a concentration of 50 μM piperine could reverse the resistance to doxorubicin 32.16 and 14.14 folds, respectively. It also re-sensitized cells to mitoxantrone 6.98 folds. In addition, long-term treatment of cells by piperine inhibits transcription of the corresponding ABC transporter genes. These results suggest that piperine can reverse MDR by multiple mechanisms and it may be a promising lead compound for future studies. Copyright © 2011 Elsevier GmbH. All rights reserved.
Dintner, Sebastian; Heermann, Ralf; Fang, Chong; Jung, Kirsten; Gebhard, Susanne
2014-10-03
Resistance against antimicrobial peptides in many Firmicutes bacteria is mediated by detoxification systems that are composed of a two-component regulatory system (TCS) and an ATP-binding cassette (ABC) transporter. The histidine kinases of these systems depend entirely on the transporter for sensing of antimicrobial peptides, suggesting a novel mode of signal transduction where the transporter constitutes the actual sensor. The aim of this study was to investigate the molecular mechanisms of this unusual signaling pathway in more detail, using the bacitracin resistance system BceRS-BceAB of Bacillus subtilis as an example. To analyze the proposed communication between TCS and the ABC transporter, we characterized their interactions by bacterial two-hybrid analyses and could show that the permease BceB and the histidine kinase BceS interact directly. In vitro pulldown assays confirmed this interaction, which was found to be independent of bacitracin. Because it was unknown whether BceAB-type transporters could detect their substrate peptides directly or instead recognized the peptide-target complex in the cell envelope, we next analyzed substrate binding by the transport permease, BceB. Direct and specific binding of bacitracin by BceB was demonstrated by surface plasmon resonance spectroscopy. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the autophosphorylation activity of the histidine kinase. Taken together, our findings clearly show the existence of a sensory complex composed of TCS and ABC transporters and provide the first functional insights into the mechanisms of stimulus perception, signal transduction, and antimicrobial resistance employed by Bce-like detoxification systems. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Dintner, Sebastian; Heermann, Ralf; Fang, Chong; Jung, Kirsten; Gebhard, Susanne
2014-01-01
Resistance against antimicrobial peptides in many Firmicutes bacteria is mediated by detoxification systems that are composed of a two-component regulatory system (TCS) and an ATP-binding cassette (ABC) transporter. The histidine kinases of these systems depend entirely on the transporter for sensing of antimicrobial peptides, suggesting a novel mode of signal transduction where the transporter constitutes the actual sensor. The aim of this study was to investigate the molecular mechanisms of this unusual signaling pathway in more detail, using the bacitracin resistance system BceRS-BceAB of Bacillus subtilis as an example. To analyze the proposed communication between TCS and the ABC transporter, we characterized their interactions by bacterial two-hybrid analyses and could show that the permease BceB and the histidine kinase BceS interact directly. In vitro pulldown assays confirmed this interaction, which was found to be independent of bacitracin. Because it was unknown whether BceAB-type transporters could detect their substrate peptides directly or instead recognized the peptide-target complex in the cell envelope, we next analyzed substrate binding by the transport permease, BceB. Direct and specific binding of bacitracin by BceB was demonstrated by surface plasmon resonance spectroscopy. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the autophosphorylation activity of the histidine kinase. Taken together, our findings clearly show the existence of a sensory complex composed of TCS and ABC transporters and provide the first functional insights into the mechanisms of stimulus perception, signal transduction, and antimicrobial resistance employed by Bce-like detoxification systems. PMID:25118291
Chu, Byron C. H.; Otten, Renee; Krewulak, Karla D.; Mulder, Frans A. A.; Vogel, Hans J.
2014-01-01
The periplasmic binding protein (PBP) FepB plays a key role in transporting the catecholate siderophore ferric enterobactin from the outer to the inner membrane in Gram-negative bacteria. The solution structures of the 34-kDa apo- and holo-FepB from Escherichia coli, solved by NMR, represent the first solution structures determined for the type III class of PBPs. Unlike type I and II PBPs, which undergo large “Venus flytrap” conformational changes upon ligand binding, both forms of FepB maintain similar overall folds; however, binding of the ligand is accompanied by significant loop movements. Reverse methyl cross-saturation experiments corroborated chemical shift perturbation results and uniquely defined the binding pocket for gallium enterobactin (GaEnt). NMR relaxation experiments indicated that a flexible loop (residues 225–250) adopted a more rigid and extended conformation upon ligand binding, which positioned residues for optimal interactions with the ligand and the cytoplasmic membrane ABC transporter (FepCD), respectively. In conclusion, this work highlights the pivotal role that structural dynamics plays in ligand binding and transporter interactions in type III PBPs. PMID:25173704
Weitnauer, G; Gaisser, S; Trefzer, A; Stockert, S; Westrich, L; Quiros, L M; Mendez, C; Salas, J A; Bechthold, A
2001-03-01
Three different resistance factors from the avilamycin biosynthetic gene cluster of Streptomyces viridochromogenes Tü57, which confer avilamycin resistance when expressed in Streptomyces lividans TK66, were isolated. Analysis of the deduced amino acid sequences showed that AviABC1 is similar to a large family of ATP-binding transporter proteins and that AviABC2 resembles hydrophobic transmembrane proteins known to act jointly with the ATP-binding proteins. The deduced amino acid sequence of aviRb showed similarity to those of other rRNA methyltransferases, and AviRa did not resemble any protein in the databases. Independent expression in S. lividans TK66 of aviABC1 plus aviABC2, aviRa, or aviRb conferred different levels of resistance to avilamycin: 5, 10, or 250 microg/ml, respectively. When either aviRa plus aviRb or aviRa plus aviRb plus aviABC1 plus aviABC2 was coexpressed in S. lividans TK66, avilamycin resistance levels reached more than 250 microg/ml. Avilamycin A inhibited poly(U)-directed polyphenylalanine synthesis in an in vitro system using ribosomes of S. lividans TK66(pUWL201) (GWO), S. lividans TK66(pUWL201-Ra) (GWRa), or S. lividans TK66(pUWL201-Rb) (GWRb), whereas ribosomes of S. lividans TK66 containing pUWL201-Ra+Rb (GWRaRb) were highly resistant. aviRa and aviRb were expressed in Escherichia coli, and both enzymes were purified as fusion proteins to near homogeneity. Both enzymes showed rRNA methyltransferase activity using a mixture of 16S and 23S rRNAs from E. coli as the substrate. Coincubation experiments revealed that the enzymes methylate different positions of rRNA.
Velaei, Kobra; Samadi, Nasser; Soltani, Sina; Barazvan, Balal; Soleimani Rad, Jafar
2017-07-01
Shedding light on chemoresistance biology of breast cancer could contribute to enhance the clinical outcome. Intrinsic or acquired resistance to chemotherapy is a major problem in breast cancer treatment. The NFκB pathway by siRNAP65 and JSH-23 as a translocational inhibitor of NFκBP65 in the doxorubicin-resistant MCF-7 (MCF-7/Dox) and MCF-7 cells was blocked. Then, the ABC transporter expression and function were assessed by real-time qRT-PCR and flow cytometry, respectively. Induction of apoptosis was evaluated after inhibition of the NFΚB pathway as well. Our study underlined the upregulation of NFκBP65 and anti-apoptotic Bcl-2 and downregulation of pro-apoptotic Bax in the MCF-7/Dox cells compared with control MCF-7 cells. Here, we showed that interplay between nuclear factor kappa B P65 (NFkBP65) as a transcriptional regulator and ABC transporters in the MCF-7/Dox cancer cells. We found that inhibition of the elevated expression of NFκBP65 in the resistant breast cancer, whether translocational inhibition or silencing by siRNA, decreased the expression and function of MDR1 and MRP1 efflux pumps. Furthermore, the blockade of NFκBP65 promoted apoptosis via modulating Bcl-2 and BAX expression. After inhibition of the NFκBP65 signaling pathway, elevated baseline expression of survival Bcl-2 gene in the resistant breast cells significantly decreased. Suppression of the NFκB pathway has a profound dual impact on promoting the intrinsic apoptotic pathway and reducing ABC transporter function and expression, which are some of the chemoresistance features. It was speculated that the NFκB pathway directly acts on doxorubicin-induced MDR1 and MRP1 expression in MCF-7/Dox cells.
Henrich, Alexander; Kuhlmann, Nora; Eck, Alexander W.; Krämer, Reinhard
2013-01-01
The Gram-positive Corynebacterium glutamicum efficiently metabolizes maltose by a pathway involving maltodextrin and glucose formation by 4-α-glucanotransferase, glucose phosphorylation by glucose kinases, and maltodextrin degradation via maltodextrin phosphorylase and α-phosphoglucomutase. However, maltose uptake in C. glutamicum has not been investigated. Interestingly, the presence of maltose in the medium causes increased expression of ptsG in C. glutamicum by an unknown mechanism, although the ptsG-encoded glucose-specific EII permease of the phosphotransferase system itself is not required for maltose utilization. We identified the maltose uptake system as an ABC transporter encoded by musK (cg2708; ATPase subunit), musE (cg2705; substrate binding protein), musF (cg2704; permease), and musG (cg2703; permease) by combination of data obtained from characterization of maltose uptake and reanalyses of transcriptome data. Deletion of the mus gene cluster in C. glutamicum Δmus abolished maltose uptake and utilization. Northern blotting and reverse transcription-PCR experiments revealed that musK and musE are transcribed monocistronically, whereas musF and musG are part of an operon together with cg2701 (musI), which encodes a membrane protein of unknown function with no homologies to characterized proteins. Characterization of growth and [14C]maltose uptake in the musI insertion strain C. glutamicum IMcg2701 showed that musI encodes a novel essential component of the maltose ABC transporter of C. glutamicum. Finally, ptsG expression during cultivation on different carbon sources was analyzed in the maltose uptake-deficient strain C. glutamicum Δmus. Indeed, maltose uptake by the novel ABC transport system MusEFGK2I is required for the positive effect of maltose on ptsG expression in C. glutamicum. PMID:23543710
Cortes-Hernandez, Paulina
2017-01-01
Periplasmic Binding Proteins (PBPs) trap nutrients for their internalization into bacteria by ABC transporters. Ligand binding triggers PBP closure by bringing its two domains together like a Venus flytrap. The atomic determinants that control PBP opening and closure for nutrient capture and release are not known, although it is proposed that opening and ligand release occur while in contact with the ABC transporter for concurrent substrate translocation. In this paper we evaluated the effect of the isomerization of a conserved proline, located near the binding site, on the propensity of PBPs to open and close. ArgT/LAO from Salmonella typhimurium and HisJ from Escherichia coli were studied through molecular mechanics at two different temperatures: 300 and 323 K. Eight microseconds were simulated per protein to analyze protein opening and closure in the absence of the ABC transporter. We show that when the studied proline is in trans, closed empty LAO and HisJ can open. In contrast, with the proline in cis, opening transitions were much less frequent and characterized by smaller changes. The proline in trans also renders the open trap prone to close over a ligand. Our data suggest that the isomerization of this conserved proline modulates the PBP mechanism: the proline in trans allows the exploration of conformational space to produce trap opening and closure, while in cis it restricts PBP movement and could limit ligand release until in productive contact with the ABC transporter. This is the first time that a proline isomerization has been related to the control of a large conformational change like the PBP flytrap mechanism. PMID:29190818
Remy, Estelle; Duque, Paula
2014-01-01
Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617
A class of tricyclic compounds blocking malaria parasite oocyst development and transmission.
Eastman, Richard T; Pattaradilokrat, Sittiporn; Raj, Dipak K; Dixit, Saurabh; Deng, Bingbing; Miura, Kazutoyo; Yuan, Jing; Tanaka, Takeshi Q; Johnson, Ronald L; Jiang, Hongying; Huang, Ruili; Williamson, Kim C; Lambert, Lynn E; Long, Carole; Austin, Christopher P; Wu, Yimin; Su, Xin-Zhuan
2013-01-01
Malaria is a deadly infectious disease in many tropical and subtropical countries. Previous efforts to eradicate malaria have failed, largely due to the emergence of drug-resistant parasites, insecticide-resistant mosquitoes and, in particular, the lack of drugs or vaccines to block parasite transmission. ATP-binding cassette (ABC) transporters are known to play a role in drug transport, metabolism, and resistance in many organisms, including malaria parasites. To investigate whether a Plasmodium falciparum ABC transporter (Pf14_0244 or PfABCG2) modulates parasite susceptibility to chemical compounds or plays a role in drug resistance, we disrupted the gene encoding PfABCG2, screened the recombinant and the wild-type 3D7 parasites against a library containing 2,816 drugs approved for human or animal use, and identified an antihistamine (ketotifen) that became less active against the PfABCG2-disrupted parasite in culture. In addition to some activity against asexual stages and gametocytes, ketotifen was highly potent in blocking oocyst development of P. falciparum and the rodent parasite Plasmodium yoelii in mosquitoes. Tests of structurally related tricyclic compounds identified additional compounds with similar activities in inhibiting transmission. Additionally, ketotifen appeared to have some activity against relapse of Plasmodium cynomolgi infection in rhesus monkeys. Further clinical evaluation of ketotifen and related compounds, including synthetic new derivatives, in blocking malaria transmission may provide new weapons for the current effort of malaria eradication.
Structural and functional insights into the lipopolysaccharide ABC transporter LptB2FG.
Dong, Haohao; Zhang, Zhengyu; Tang, Xiaodi; Paterson, Neil G; Dong, Changjiang
2017-08-09
The cell surface of most Gram-negative bacteria contains lipopolysaccharide that is essential for their viability and drug resistance. A 134-kDa protein complex LptB 2 FG is unique among ATP-binding cassette transporters because it extracts lipopolysaccharide from the external leaflet of the inner membrane and propels it along a filament that extends across the periplasm to directly deliver lipopolysaccharide into the external leaflet of the outer membrane. Here we report the crystal structure of the lipopolysaccharide transporter LptB 2 FG from Klebsiella pneumoniae, in which both LptF and LptG are composed of a β-jellyroll-like periplasmic domain and six α-helical segments in the transmembrane domain. LptF and LptG form a central cavity containing highly conserved hydrophobic residues. Structural and functional studies suggest that LptB 2 FG uses an alternating lateral access mechanism to extract lipopolysaccharide and traffic it along the hydrophobic cavity toward the transporter's periplasmic domains.Lipopolysaccharides (LPS) are synthesized at the periplasmic side of the inner membrane of Gram-negative bacteria and are then extracted by the LptB 2 FG complex during the first step of LPS transport to the outer membrane. Here the authors present the LptB 2 FG structure, which supports an alternating lateral access mechanism for LPS extraction.
Tieleman, D Peter
2006-10-01
A key function of biological membranes is to provide mechanisms for the controlled transport of ions, nutrients, metabolites, peptides and proteins between a cell and its environment. We are using computer simulations to study several processes involved in transport. In model membranes, the distribution of small molecules can be accurately calculated; we are making progress towards understanding the factors that determine the partitioning behaviour in the inhomogeneous lipid environment, with implications for drug distribution, membrane protein folding and the energetics of voltage gating. Lipid bilayers can be simulated at a scale that is sufficiently large to study significant defects, such as those caused by electroporation. Computer simulations of complex membrane proteins, such as potassium channels and ATP-binding cassette (ABC) transporters, can give detailed information about the atomistic dynamics that form the basis of ion transport, selectivity, conformational change and the molecular mechanism of ATP-driven transport. This is illustrated in the present review with recent simulation studies of the voltage-gated potassium channel KvAP and the ABC transporter BtuCD.
Thangavel, Samikkannu; Mulet, Carmen T; Atluri, Venkata S R; Agudelo, Marisela; Rosenberg, Rhonda; Devieux, Jessy G; Nair, Madhavan P N
2018-02-01
Human immunodeficiency virus (HIV) infection induces oxidative stress and alcohol use accelerates disease progression, subsequently causing immune dysfunction. However, HIV and alcohol impact on lipid rafts-mediated immune dysfunction remains unknown. In this study, we investigate the modulation by which oxidative stress induces reactive oxygen species (ROS) affecting redox expression, lipid rafts caveiloin-1, ATP-binding cassette (ABC) transporters, and transcriptional sterol regulatory element-binding protein (SREBP) gene and protein modification and how these mechanisms are associated with arachidonic acid (AA) metabolites in HIV positive alcohol users, and how they escalate immune dysfunction. In both alcohol using HIV-positive human subjects and in vitro studies of alcohol with HIV-1 gp120 protein in peripheral blood mononuclear cells, increased ROS production significantly affected redox expression in glutathione synthetase (GSS), super oxide dismutase (SOD), and glutathione peroxidase (GPx), and subsequently impacted lipid rafts Cav-1, ABC transporters ABCA1, ABCG1, ABCB1, and ABCG4, and SREBP transcription. The increased level of rate-limiting enzyme 3-hydroxy-3-methylglutaryl HMG-CoA reductase (HMGCR), subsequently, inhibited 7-dehydrocholesterol reductase (DHCR-7). Moreover, the expression of cyclooxygenase-2 (COX-2) and lipoxygenase-5 (5-LOX) mRNA and protein modification tentatively increased the levels of prostaglandin E2 synthases (PGE 2 ) in plasma when compared with either HIV or alcohol alone. This article suggests for the first time that the redox inhibition affects lipid rafts, ABC-transporter, and SREBP transcription and modulates AA metabolites, serving as an important intermediate signaling network during immune cell dysfunction in HIV-positive alcohol users. These findings indicate that HIV infection induces oxidative stress and redox inhibition, affecting lipid rafts and ABC transports, subsequently upregulating AA metabolites and leading to immune toxicity, and further exacerbation with alcohol use. Antioxid. Redox Signal. 28, 324-337.
Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A.; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T.; Ruggles, Kelly V.; DeGiorgis, Joseph A.; Kohlwein, Sepp D.; Schon, Eric A.; Sturley, Stephen L.
2015-01-01
A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53–36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.—Gulati, S., Balderes, D., Kim, C., Guo, Z. A., Wilcox, L., Area-Gomez, E., Snider, J., Wolinski, H., Stagljar, I., Granato, J. T., Ruggles, K. V., DeGiorgis, J. A., Kohlwein, S. D., Schon, E. A., Sturley, S. L. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. PMID:26220175
Ishibashi, Naoki; Himeno, Kohei; Masuda, Yoshimitsu; Perez, Rodney Honrada; Iwatani, Shun; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji
2014-01-01
Enterococcus faecium NKR-5-3, isolated from Thai fermented fish, is characterized by the unique ability to produce five bacteriocins, namely, enterocins NKR-5-3A, -B, -C, -D, and -Z (Ent53A, Ent53B, Ent53C, Ent53D, and Ent53Z). Genetic analysis with a genome library revealed that the bacteriocin structural genes (enkA [ent53A], enkC [ent53C], enkD [ent53D], and enkZ [ent53Z]) that encode these peptides (except for Ent53B) are located in close proximity to each other. This NKR-5-3ACDZ (Ent53ACDZ) enterocin gene cluster (approximately 13 kb long) includes certain bacteriocin biosynthetic genes such as an ABC transporter gene (enkT), two immunity genes (enkIaz and enkIc), a response regulator (enkR), and a histidine protein kinase (enkK). Heterologous-expression studies of enkT and ΔenkT mutant strains showed that enkT is responsible for the secretion of Ent53A, Ent53C, Ent53D, and Ent53Z, suggesting that EnkT is a wide-range ABC transporter that contributes to the effective production of these bacteriocins. In addition, EnkIaz and EnkIc were found to confer self-immunity to the respective bacteriocins. Furthermore, bacteriocin induction assays performed with the ΔenkRK mutant strain showed that EnkR and EnkK are regulatory proteins responsible for bacteriocin production and that, together with Ent53D, they constitute a three-component regulatory system. Thus, the Ent53ACDZ gene cluster is essential for the biosynthesis and regulation of NKR-5-3 enterocins, and this is, to our knowledge, the first report that demonstrates the secretion of multiple bacteriocins by an ABC transporter. PMID:25149515
Approximate Bayesian computation in large-scale structure: constraining the galaxy-halo connection
NASA Astrophysics Data System (ADS)
Hahn, ChangHoon; Vakili, Mohammadjavad; Walsh, Kilian; Hearin, Andrew P.; Hogg, David W.; Campbell, Duncan
2017-08-01
Standard approaches to Bayesian parameter inference in large-scale structure assume a Gaussian functional form (chi-squared form) for the likelihood. This assumption, in detail, cannot be correct. Likelihood free inferences such as approximate Bayesian computation (ABC) relax these restrictions and make inference possible without making any assumptions on the likelihood. Instead ABC relies on a forward generative model of the data and a metric for measuring the distance between the model and data. In this work, we demonstrate that ABC is feasible for LSS parameter inference by using it to constrain parameters of the halo occupation distribution (HOD) model for populating dark matter haloes with galaxies. Using specific implementation of ABC supplemented with population Monte Carlo importance sampling, a generative forward model using HOD and a distance metric based on galaxy number density, two-point correlation function and galaxy group multiplicity function, we constrain the HOD parameters of mock observation generated from selected 'true' HOD parameters. The parameter constraints we obtain from ABC are consistent with the 'true' HOD parameters, demonstrating that ABC can be reliably used for parameter inference in LSS. Furthermore, we compare our ABC constraints to constraints we obtain using a pseudo-likelihood function of Gaussian form with MCMC and find consistent HOD parameter constraints. Ultimately, our results suggest that ABC can and should be applied in parameter inference for LSS analyses.
Marine Natural Products with P-Glycoprotein Inhibitor Properties
Lopez, Dioxelis; Martinez-Luis, Sergio
2014-01-01
P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters. PMID:24451193
Wu, Qiong; Sharma, Soni; Cui, Hang; LeBlanc, Scott E.; Zhang, Hong; Muthuswami, Rohini; Nickerson, Jeffrey A.; Imbalzano, Anthony N.
2016-01-01
Brahma related gene product 1 (BRG1) is an ATPase that drives the catalytic activity of a subset of the mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is overexpressed in most human breast cancer tumors without evidence of mutation and is required for breast cancer cell proliferation. We demonstrate that knockdown of BRG1 sensitized triple negative breast cancer cells to chemotherapeutic drugs used to treat breast cancer. An inhibitor of the BRG1 bromodomain had no effect on breast cancer cell viability, but an inhibitory molecule that targets the BRG1 ATPase activity recapitulated the increased drug efficacy observed in the presence of BRG1 knockdown. We further demonstrate that inhibition of BRG1 ATPase activity blocks the induction of ABC transporter genes by these chemotherapeutic drugs and that BRG1 binds to ABC transporter gene promoters. This inhibition increased intracellular concentrations of the drugs, providing a likely mechanism for the increased chemosensitivity. Since ABC transporters and their induction by chemotherapy drugs are a major cause of chemoresistance and treatment failure, these results support the idea that targeting the enzymatic activity of BRG1 would be an effective adjuvant therapy for breast cancer. PMID:27029062
Murota, Yoshitaka; Tabu, Kouichi; Taga, Tetsuya
2016-11-04
Elucidating the precise properties of cancer stem cells (CSCs) is indispensable for the development of effective therapies against tumors, because CSCs are key drivers of tumor development, metastasis and relapse. We previously reported that the Hoechst 33342 dye-low staining side population (SP) method can enrich for CSCs in the C6 glioma cell line, and that the positively stained main population (MP) cells are non-CSCs. Presence of cancer stem-like SP cells is reported in various types of cancer. Although altered cellular energy metabolism is a hallmark of cancer, very little has been studied on the applicability of fluorescent probes for the understanding of CSC energy metabolism. The metabolic status of C6 SP and MP cells are evaluated by CellROX, MitoTracker Green (MTG) and JC-1 for cellular oxidative stress, mitochondrial amount, and mitochondrial membrane potential, respectively. SP cells were found to exhibit significantly lower fluorescent intensities of CellROX and MTG than MP cells. However, inhibition of ATP binding cassette (ABC) transporters by verapamil enhanced the intensities of these probes in SP cells to the levels similar to those in MP cells, indicating that SP cells expel the probes outside of the cells through ABC transporters. Next, SP cells were stained with JC-1 dye which exhibits membrane potential dependent accumulation in mitochondrial matrix, followed by formation of aggregates. The mitochondrial membrane potential indicated by the aggregates of JC-1 was 5.0-fold lower in SP cells than MP cells. Inhibition of ABC transporters enhanced the fluorescent intensities of the JC-1 aggregates in both SP and MP cells, the former of which was still 2.2-fold lower than the latter. This higher JC-1 signal in MP cells was further found to be due to the Hoechst 33342 dye existing in MP cells. When SP and MP cells were recultured to deprive the intracellular Hoechst 33342 dye and then stained with JC-1 in the presence of verapamil, the intensities of JC-1 aggregates in such SP and MP cells became comparable. Inhibiting ABC transporters and depriving Hoechst 33342 dye are required for the accurate assessment of side population-defined C6 glioma stem cell metabolism using fluorescent probes.
Maruyama, Yukie; Itoh, Takafumi; Kaneko, Ai; Nishitani, Yu; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku
2015-09-01
The acidic polysaccharide alginate represents a promising marine biomass for the microbial production of biofuels, although the molecular and structural characteristics of alginate transporters remain to be clarified. In Sphingomonas sp. A1, the ATP-binding cassette transporter AlgM1M2SS is responsible for the import of alginate across the cytoplasmic membrane. Here, we present the substrate-transport characteristics and quaternary structure of AlgM1M2SS. The addition of poly- or oligoalginate enhanced the ATPase activity of reconstituted AlgM1M2SS coupled with one of the periplasmic solute-binding proteins, AlgQ1 or AlgQ2. External fluorescence-labeled oligoalginates were specifically imported into AlgM1M2SS-containing proteoliposomes in the presence of AlgQ2, ATP, and Mg(2+). The crystal structure of AlgQ2-bound AlgM1M2SS adopts an inward-facing conformation. The interaction between AlgQ2 and AlgM1M2SS induces the formation of an alginate-binding tunnel-like structure accessible to the solvent. The translocation route inside the transmembrane domains contains charged residues suitable for the import of acidic saccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.
Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Le; Ghimire-Rijal, Sudipa; Lucas, Sarah L.
Here, the ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimericmore » apo PBP leads to a tightening of the interface alpha-helices so that the hydrogen bonding pattern shifts to that of a 3 10 helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand.« less
Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding
Li, Le; Ghimire-Rijal, Sudipa; Lucas, Sarah L.; ...
2017-09-06
Here, the ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimericmore » apo PBP leads to a tightening of the interface alpha-helices so that the hydrogen bonding pattern shifts to that of a 3 10 helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand.« less
NASA Astrophysics Data System (ADS)
Ben Abdessalem, Anis; Dervilis, Nikolaos; Wagg, David; Worden, Keith
2018-01-01
This paper will introduce the use of the approximate Bayesian computation (ABC) algorithm for model selection and parameter estimation in structural dynamics. ABC is a likelihood-free method typically used when the likelihood function is either intractable or cannot be approached in a closed form. To circumvent the evaluation of the likelihood function, simulation from a forward model is at the core of the ABC algorithm. The algorithm offers the possibility to use different metrics and summary statistics representative of the data to carry out Bayesian inference. The efficacy of the algorithm in structural dynamics is demonstrated through three different illustrative examples of nonlinear system identification: cubic and cubic-quintic models, the Bouc-Wen model and the Duffing oscillator. The obtained results suggest that ABC is a promising alternative to deal with model selection and parameter estimation issues, specifically for systems with complex behaviours.
DOT National Transportation Integrated Search
2017-03-30
The objective of the research outlined in this presentation was to propose adjacent band transmit power levels that could be : tolerated by existing GNSS receivers for civil applications : [excluding certified aviation applications, which were : cons...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prouillac, Caroline, E-mail: c.prouillac@vetagro-sup.fr; Koraichi, Farah; Videmann, Bernadette
2012-03-15
Zearalenone (ZEN) is a non-steroid estrogen mycotoxin produced by numerous strains of Fusarium which commonly contaminate cereals. After oral administration, ZEN is reduced via intestinal and hepatic metabolism to α- and β-zearalenol (αZEL and βZEL). These reduced metabolites possess estrogenic properties, αZEL showing the highest affinity for ERs. ZEN and reduced metabolites cause hormonal effects in animals, such as abnormalities in the development of the reproductive tract and mammary gland in female offspring, suggesting a fetal exposure to these contaminants. In our previous work, we have suggested the potential impact of ZEN on placental cells considering this organ as amore » potential target of xenobiotics. In this work, we first compared the in vitro effects of αZEL and βΖΕL on cell differentiation to their parental molecule on human trophoblast (BeWo cells). Secondly, we investigated their molecular mechanisms of action by investigating the expression of main differentiation biomarkers and the implication of nuclear receptor by docking prediction. Conversely to ZEN, reduced metabolites did not induce trophoblast differentiation. They also induced significant changes in ABC transporter expression by potential interaction with nuclear receptors (LXR, PXR, PR) that could modify the transport function of placental cells. Finally, the mechanism of ZEN differentiation induction seemed not to involve nuclear receptor commonly involved in the differentiation process (PPARγ). Our results demonstrated that in spite of structure similarities between ZEN, αZEL and βZEL, toxicological effects and toxicity mechanisms were significantly different for the three molecules. -- Highlights: ► ZEN and metabolites have differential effect on trophoblast differentiation. ► ZEN and metabolites have differential effect on ABC transporter expression. ► ZEN and metabolites effects involved nuclear receptors interaction.« less
Export of extracellular polysaccharides modulates adherence of the Cyanobacterium synechocystis.
Fisher, Michael L; Allen, Rebecca; Luo, Yingqin; Curtiss, Roy
2013-01-01
The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.
Dharmapuri, Gangappa; Doneti, Ravinder; Philip, Gundala Harold; Kalle, Arunasree M
2015-07-01
Imatinib mesylate, a tyrosine kinase inhibitor, is very effective in the treatment of chronic myeloid leukemia (CML). However, development of resistance to imatinib therapy is also a very common mechanism observed with long-term administration of the drug. Our previous studies have highlighted the role of cyclooxygenase-2 (COX-2) in regulating the expression of multidrug resistant protein-1 (MDR1), P-gp, in imatinib-resistant K562 cells (IR-K562) via PGE2-cAMP-PKC-NF-κB pathway and inhibition of COX-2 by celecoxib, a COX-2 specific inhibitor, inhibits this pathway and reverses the drug resistance. Studies have identified that not only MDR1 but other ATP-binding cassette transport proteins (ABC transporters) are involved in the development of imatinib resistance. Here, we tried to study the role of COX-2 in the regulation of other ABC transporters such as MRP1, MRP2, MRP3, ABCA2 and ABCG2 that have been already implicated in imatinib resistance development. The results of the study clearly indicated that overexpression of COX-2 lead to upregulation of MRP family proteins in IR-K562 cells and celecoxib down-regulated the ABC transporters through Wnt and MEK signaling pathways. The study signifies that celecoxib in combination with the imatinib can be a good alternate treatment strategy for the reversal of imatinib resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Williams, Danielle M.; Ovchinnikova, Olga G.; Koizumi, Akihiko; Mainprize, Iain L.; Kimber, Matthew S.; Lowary, Todd L.
2017-01-01
Lipopolysaccharides (LPS) are essential outer membrane glycolipids in most gram-negative bacteria. Biosynthesis of the O-antigenic polysaccharide (OPS) component of LPS follows one of three widely distributed strategies, and similar processes are used to assemble other bacterial surface glycoconjugates. This study focuses on the ATP-binding cassette (ABC) transporter-dependent pathway, where glycans are completed on undecaprenyl diphosphate carriers at the cytosol:membrane interface, before export by the ABC transporter. We describe Raoultella terrigena WbbB, a prototype for a family of proteins that, remarkably, integrates several key activities in polysaccharide biosynthesis into a single polypeptide. WbbB contains three glycosyltransferase (GT) modules. Each of the GT102 and GT103 modules characterized here represents a previously unrecognized GT family. They form a polymerase, generating a polysaccharide of [4)-α-Rhap-(1→3)-β-GlcpNAc-(1→] repeat units. The polymer chain is terminated by a β-linked Kdo (3-deoxy-d-manno-oct-2-ulosonic acid) residue added by a third GT module belonging to the recently discovered GT99 family. The polymerase GT modules are separated from the GT99 chain terminator by a coiled-coil structure that forms a molecular ruler to determine product length. Different GT modules in the polymerase domains of other family members produce diversified OPS structures. These findings offer insight into glycan assembly mechanisms and the generation of antigenic diversity as well as potential tools for glycoengineering. PMID:28137848
Lee, Si Hyeock; Kang, Jae Soon; Min, Jee Sun; Yoon, Kyong Sup; Strycharz, Joseph P.; Johnson, Reed; Mittapalli, Omprakash; Margam, Venu M.; Sun, Weilin; Li, Hong-Mei; Xie, Jun; Wu, Jing; Kirkness, Ewen F.; Berenbaum, May R.; Pittendrigh, Barry R.; Clark, J. Marshall
2010-01-01
The human body louse, Pediculus humanus humanus, has one of the smallest insect genomes, containing ~10,775 annotated genes (Kirkness et al. 2010). Annotation of detoxification [cytochrome P450 monooxygenase (P450), glutathione-S-transferase (GST), esterase (Est), and ATP-binding cassette transporter (ABC transporter)] genes revealed that they are dramatically reduced in P. h. humanus compared to other insects except for Apis mellifera. There are 37 P450, 13 GST and 17 Est genes present in P. h. humanus, approximately half of that found in Drosophila melanogaster and Anopheles gambiae. The number of putatively functional ABC transporter genes in P. h. humanus and A. mellifera are the same (36) but both have fewer than An. gambiae (44) or D. melanogaster (65). The reduction of detoxification genes in P. h. humanus may be due to their simple life history, where they do not encounter a wide variety of xenobiotics. Neuronal component genes are highly conserved across different insect species as expected due to their critical function. Although reduced in number, P. h. humanus still retains at least a minimum repertoire of genes known to confer metabolic or toxicokinetic resistance to xenobiotics (e.g., Cyp3 clade P450s, Delta GSTs, B clade Ests and B/C subfamily ABC transporters), suggestive of its high potential for resistance development. PMID:20561088
Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels.
Barr, Travis P; Albrecht, Phillip J; Hou, Quanzhi; Mongin, Alexander A; Strichartz, Gary R; Rice, Frank L
2013-01-01
Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.
Zha, W J; Li, S H; Zhou, L; Chen, Z J; Liu, K; Yang, G C; Hu, G; He, G C; You, A Q
2015-03-30
The ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins that have important physiological functions in all living organisms. In insects, ABC transporters have important functions in the transport of molecules, and are also involved in insecticide resistance, metabolism, and development. In this study, the Nilaparvata lugens Stal (Hemiptera: Delphacidae) ABCG (NlABCG) gene was identified and characterized. The complete mRNA sequence of NlABCG was 2608-bp long, with an open reading frame of 2064 bp encoding a protein comprised of 687 amino acids. The conserved regions include three N-glycosylation and 34 phosphorylation sites, as well as seven transmembrane domains. The amino acid identity with the closely related species Acyrthosiphon pisum was 42.8%. Developmental expression analysis using quantitative real-time reverse transcriptase PCR suggested that the NlABCG transcript was expressed at all developmental stages of N. lugens. The lowest expression of NlABCG was in the 1st instar, and levels increased with larval growth. The transcript profiles of NlABCG were analyzed in various tissues from a 5th instar nymph, and the highest expression was observed in the midgut. These results suggest that the sequence, characteristics, and expression of NlABCG are highly conserved, and basic information is provided for its functional analysis.
Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia ur; Liu, Liping; Qin, Yuan
2017-01-01
Pineapple (Ananas comosus L.) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs, 20 ABCBs, 16 ABCCs, 2 ABCDs, one ABCEs, 5 ABCFs, 42 ABCGs and 9 ABCIs). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4, AcABCC7, AcABCC9, AcABCG26, AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production. PMID:29312399
Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia Ur; Liu, Liping; Qin, Yuan
2017-01-01
Pineapple ( Ananas comosus L .) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs , 20 ABCB s, 16 ABCCs , 2 ABCDs , one ABCEs , 5 ABCFs , 42 ABCGs and 9 ABCIs ). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4 , AcABCC7 , AcABCC9 , AcABCG26 , AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production.
Isolation and Applications of Prostate Side Population Cells Based on Dye Cycle Violet Efflux
Gangavarapu, Kalyan J.; Huss, Wendy J.
2011-01-01
This unit describes methods for the digestion of human prostate clinical specimens, dye cycle violet (DCV) staining procedure for the identification, isolation, and quantitation of radiolabeled dihydrotestosterone (DHT) retention of side population cells. The principle of the side population assay is based on differential efflux of DCV, a cell membrane permeable fluorescent dye, by cells with high ATP binding cassette (ABC) transporter activity. Cells with high ABC transporter activity efflux DCV and fall in the lower left quadrant of a flow cytograph are designated as “side population” cells. This unit emphasizes tissue digestion, DCV staining, flow settings for sorting side population cells and quantitation of radiolabeled DHT retention. PMID:21400686
Oswald, Christine; Jenewein, Stefan; Smits, Sander H J; Holland, I Barry; Schmitt, Lutz
2008-04-01
TNP-modified nucleotides have been used extensively to study protein-nucleotide interactions. In the case of ABC-ATPases, application of these powerful tools has been greatly restricted due to the significantly higher affinity of the TNP-nucleotide for the corresponding ABC-ATPase in comparison to the non-modified nucleotides. To understand the molecular changes occurring upon binding of the TNP-nucleotide to an ABC-ATPase, we have determined the crystal structure of the TNP-ADP/HlyB-NBD complex at 1.6A resolution. Despite the higher affinity of TNP-ADP, no direct fluorophore-protein interactions were observed. Unexpectedly, only water-mediated interactions were detected between the TNP moiety and Tyr(477), that is engaged in pi-pi stacking with the adenine ring, as well as with two serine residues (Ser(504) and Ser(509)) of the Walker A motif. Interestingly, the side chains of these two serine residues adopt novel conformations that are not observed in the corresponding ADP structure. However, in the crystal structure of the S504A mutant, which binds TNP-ADP with similar affinity to the wild type enzyme, a novel TNP-water interaction compensates for the missing serine side chain. Since this water molecule is not present in the wild type enzyme, these results suggest that only water-mediated interactions provide a structural explanation for the increased affinity of TNP-nucleotides towards ABC-ATPases. However, our results also imply that in silico approaches such as docking or modeling cannot directly be applied to generate 'affinity-adopted' ADP- or ATP-analogs for ABC-ATPases.
Matowo, Johnson; Jones, Christopher M; Kabula, Bilali; Ranson, Hilary; Steen, Keith; Mosha, Franklin; Rowland, Mark; Weetman, David
2014-06-19
Pyrethroid resistance has been slower to emerge in Anopheles arabiensis than in An. gambiae s.s and An. funestus and, consequently, studies are only just beginning to unravel the genes involved. Permethrin resistance in An. arabiensis in Lower Moshi, Tanzania has been linked to elevated levels of both P450 monooxygenases and β-esterases. We have conducted a gene expression study to identify specific genes linked with metabolic resistance in the Lower Moshi An. arabiensis population. Microarray experiments employing an An. gambiae whole genome expression chip were performed on An. arabiensis, using interwoven loop designs. Permethrin-exposed survivors were compared to three separate unexposed mosquitoes from the same or a nearby population. A subsection of detoxification genes were chosen for subsequent quantitative real-time PCR (qRT-PCR). Microarray analysis revealed significant over expression of 87 probes and under expression of 85 probes (in pairwise comparisons between permethrin survivors and unexposed sympatric and allopatric samples from Dar es Salaam (controls). For qRT-PCR we targeted over expressed ABC transporter genes (ABC '2060'), a glutathione-S-transferase, P450s and esterases. Design of efficient, specific primers was successful for ABC '2060'and two P450s (CYP6P3, CYP6M2). For the CYP4G16 gene, we used the primers that were previously used in a microarray study of An. arabiensis from Zanzibar islands. Over expression of CYP4G16 and ABC '2060' was detected though with contrasting patterns in pairwise comparisons between survivors and controls. CYP4G16 was only up regulated in survivors, whereas ABC '2060' was similar in survivors and controls but over expressed in Lower Moshi samples compared to the Dar es Salaam samples. Increased transcription of CYP4G16 and ABC '2060' are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis. Increased transcription of a P450 (CYP4G16) and an ABC transporter (ABC 2060) are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis. Our study provides replication of CYP4G16 as a candidate gene for pyrethroid resistance in An. arabiensis, although its role may not be in detoxification, and requires further investigation.
Yan, Zhen
2017-01-01
ABSTRACT Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO2-reducing methanogenic anaerobes (methanogens) from the domain Archaea. Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea. The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F420 (F420H2) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F420H2 and reduction of ferredoxin with the exergonic oxidation of F420H2 and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting. PMID:28174314
Use of novel chitosan hydrogels for chemical tissue bonding of autologous chondral transplants.
Gittens, Jamila; Haleem, Amgad M; Grenier, Stephanie; Smyth, Niall A; Hannon, Charles P; Ross, Keir A; Torzilli, Peter A; Kennedy, John G
2016-07-01
The objective of this study was to evaluate the effect of chemical tissue bonding (CTB) on adhesion strength, fluid permeability, and cell viability across a cartilaginous graft-host interface in an in vitro autologous chondral transplant (ACT) model. Chitosan-based cross-linkers; Chitosan-Rose Bengal [Chi-RB (Ch-ABC)], Chitosan-Genipin [Chi-GP (Ch-ABC)], and Chitosan-Rose Bengal-Genipin [Chi-RB-GP (Ch-ABC)] were applied to bovine immature cartilage explants after pre-treatment with surface degrading enzyme, Chondroitinase-ABC (Ch-ABC). Adhesion strength, fluid permeability and cell viability were assessed via mechanical push-out shear testing, fluid transport and live/dead cell staining, respectively. All three chitosan-based cross-linkers significantly increased the adhesion strength at the graft-host interface, however, only a statistically significant decrease in fluid permeability was noted in Chi-GP (Ch-ABC) specimen compared to untreated controls. Cell viability was maintained for 7 days of culture across all three treatment groups. These results show the potential clinical relevance of novel chitosan-based hydrogels in enhancing tissue integration and reducing synovial fluid penetration after ACT procedures in diarthoidal joints such as the knee and ankle. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1139-1146, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Javitt, Norman B
2013-01-01
Evidence is emerging that during the development of Alzheimer's disease (AD), changes in the synthesis and metabolism of cholesterol and progesterone are occurring that may or may not affect the progression of the disease. The concept arose from the recognition that dehydrocholesterol 24-reductase (DHCR24/Seladin-1), one of the nine enzymes in the endoplasmic reticulum that determines the transformation of lanosterol to cholesterol, is selectively reduced in late AD. As a consequence, the tissue level of desmosterol increases, affecting the expression of ABC transporters and the structure of lipid rafts, both determinants of amyloid-β processing. However, the former effect is considered beneficial and the latter detrimental to processing. Other determinants of desmosterol tissue levels are 24,25 epoxycholesterol and the ABCG1 and ABCG4 transporters. Progesterone and its metabolites are determinants of tissue levels of desmosterol and several other sterol intermediates in cholesterol synthesis. Animal models indicate marked elevations in the tissue levels of these sterols at early time frames in the progression of neurodegenerative diseases. The low level of neuroprogesterone and metabolites in AD are consonant with the low level of desmosterol and may have a role in amyloid-β processing. The sparse data that has accumulated appears to be a sufficient basis for proposing a systematic evaluation of the biologic roles of sterol intermediates in the slowly progressive neurodegeneration characteristic of AD.
Weitnauer, Gabriele; Gaisser, Sibylle; Trefzer, Axel; Stockert, Sigrid; Westrich, Lucy; Quiros, Luis M.; Mendez, Carmen; Salas, Jose A.; Bechthold, Andreas
2001-01-01
Three different resistance factors from the avilamycin biosynthetic gene cluster of Streptomyces viridochromogenes Tü57, which confer avilamycin resistance when expressed in Streptomyces lividans TK66, were isolated. Analysis of the deduced amino acid sequences showed that AviABC1 is similar to a large family of ATP-binding transporter proteins and that AviABC2 resembles hydrophobic transmembrane proteins known to act jointly with the ATP-binding proteins. The deduced amino acid sequence of aviRb showed similarity to those of other rRNA methyltransferases, and AviRa did not resemble any protein in the databases. Independent expression in S. lividans TK66 of aviABC1 plus aviABC2, aviRa, or aviRb conferred different levels of resistance to avilamycin: 5, 10, or 250 μg/ml, respectively. When either aviRa plus aviRb or aviRa plus aviRb plus aviABC1 plus aviABC2 was coexpressed in S. lividans TK66, avilamycin resistance levels reached more than 250 μg/ml. Avilamycin A inhibited poly(U)-directed polyphenylalanine synthesis in an in vitro system using ribosomes of S. lividans TK66(pUWL201) (GWO), S. lividans TK66(pUWL201-Ra) (GWRa), or S. lividans TK66(pUWL201-Rb) (GWRb), whereas ribosomes of S. lividans TK66 containing pUWL201-Ra+Rb (GWRaRb) were highly resistant. aviRa and aviRb were expressed in Escherichia coli, and both enzymes were purified as fusion proteins to near homogeneity. Both enzymes showed rRNA methyltransferase activity using a mixture of 16S and 23S rRNAs from E. coli as the substrate. Coincubation experiments revealed that the enzymes methylate different positions of rRNA. PMID:11181344
Zhou, Cao; Yang, Hong; Wang, Zhao; Long, Gui-Yun; Jin, Dao-Chao
2018-06-08
White-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), one of the main agricultural insect pests in China, is resistant to a wide variety of insecticides. We used transcriptome analysis to compare the expression patterns of resistance- and stress-response genes in S. furcifera subjected to imidacloprid, deltamethrin, and triazophos stress, to determine the molecular mechanisms of resistance to these insecticides. A comparative analysis of gene expression under imidacloprid, deltamethrin, and triazophos stress revealed 1,123, 841, and 316 upregulated unigenes, respectively, compared to the control. These upregulated genes included seven P450s (two CYP2 clade, three CYP3 clade, and two CYP4 clade), one GST, one ABC transporter (ABCF), and seven Hsps (one 90 and six Hsp70s) under imidacloprid stress; one P450 (CYP3 clade), two ABC transporters (one ABCF and one ABCD), and one Hsp (Hsp90) under deltamethrin stress; one P450 (CYP3 clade) and one ABC transporter (ABCF) under triazophos stress. In addition, 80 genes were commonly upregulated in response to the three insecticide treatments, including laminin, larval cuticle protein, and fasciclin, which are associated with epidermal formation. These results provide a valuable resource for the molecular characterisation of insecticide action in S. furcifera, especially the molecular characteristics of insecticide cross resistance.
Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G
2018-07-01
Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.
Zhang, Lihan; Hoshino, Shotaro; Awakawa, Takayoshi; Wakimoto, Toshiyuki; Abe, Ikuro
2016-08-03
Natural products have enormous structural diversity, yet little is known about how such diversity is achieved in nature. Here we report the structural diversification of a cyanotoxin-lyngbyatoxin A-and its biosynthetic intermediates by heterologous expression of the Streptomyces-derived tleABC biosynthetic gene cluster in three different Streptomyces hosts: S. lividans, S. albus, and S. avermitilis. Notably, the isolated lyngbyatoxin derivatives, including four new natural products, were biosynthesized by crosstalk between the heterologous tleABC gene cluster and the endogenous host enzymes. The simple strategy described here has expanded the structural diversity of lyngbyatoxin A and its biosynthetic intermediates, and provides opportunities for investigation of the currently underestimated hidden biosynthetic crosstalk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cheung, Leanna; Flemming, Claudia L; Watt, Fujiko; Masada, Nanako; Yu, Denise M T; Huynh, Tony; Conseil, Gwenaëlle; Tivnan, Amanda; Polinsky, Alexander; Gudkov, Andrei V; Munoz, Marcia A; Vishvanath, Anasuya; Cooper, Dermot M F; Henderson, Michelle J; Cole, Susan P C; Fletcher, Jamie I; Haber, Michelle; Norris, Murray D
2014-09-01
Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application. Copyright © 2014 Elsevier Inc. All rights reserved.
Bobrov, Alexander G; Kirillina, Olga; Fosso, Marina Y; Fetherston, Jacqueline D; Miller, M Clarke; VanCleave, Tiva T; Burlison, Joseph A; Arnold, William K; Lawrenz, Matthew B; Garneau-Tsodikova, Sylvie; Perry, Robert D
2017-06-21
A number of bacterial pathogens require the ZnuABC Zinc (Zn 2+ ) transporter and/or a second Zn 2+ transport system to overcome Zn 2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn 2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn 2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic plague while a ybtX mutant retains high virulence in both plague models. While sequestration of host Zn is a key nutritional immunity factor, excess Zn appears to have a significant antimicrobial role in controlling intracellular bacterial survival. Here, we demonstrate that ZntA, a Zn 2+ exporter, plays a role in resistance to Zn toxicity in vitro, but that a zntA zur double mutant retains high virulence in both pneumonic and bubonic plague models and survival in macrophages. We also confirm that Ybt does not directly bind Zn 2+ in vitro under the conditions tested. However, we detect a significant increase in Zn 2+ -binding ability of filtered supernatants from a Ybt + strain compared to those from a strain unable to produce the siderophore, supporting our previously published data that Ybt biosynthetic genes are involved in the production of a secreted Zn-binding molecule (zincophore). Our data suggest that Ybt or a modified Ybt participate in or promote Zn-binding activity in culture supernatants and is involved in Zn acquisition in Y. pestis.
Stindt, Jan; Smits, Sander H. J.; Schmitt, Lutz
2013-01-01
The human liver ATP-binding cassette (ABC) transporters bile salt export pump (BSEP/ABCB11) and the multidrug resistance protein 3 (MDR3/ABCB4) fulfill the translocation of bile salts and phosphatidylcholine across the apical membrane of hepatocytes. In concert with ABCG5/G8, these two transporters are responsible for the formation of bile and mutations within these transporters can lead to severe hereditary diseases. In this study, we report the heterologous overexpression and purification of human BSEP and MDR3 as well as the expression of the corresponding C-terminal GFP-fusion proteins in the yeast Pichia pastoris. Confocal laser scanning microscopy revealed that BSEP-GFP and MDR3-GFP are localized in the plasma membrane of P. pastoris. Furthermore, we demonstrate the first purification of human BSEP and MDR3 yielding ∼1 mg and ∼6 mg per 100 g of wet cell weight, respectively. By screening over 100 detergents using a dot blot technique, we found that only zwitterionic, lipid-like detergents such as Fos-cholines or Cyclofos were able to extract both transporters in sufficient amounts for subsequent functional analysis. For MDR3, fluorescence-detection size exclusion chromatography (FSEC) screens revealed that increasing the acyl chain length of Fos-Cholines improved monodispersity. BSEP purified in n-dodecyl-β-D-maltoside or Cymal-5 after solubilization with Fos-choline 16 from P. pastoris membranes showed binding to ATP-agarose. Furthermore, detergent-solubilized and purified MDR3 showed a substrate-inducible ATPase activity upon addition of phosphatidylcholine lipids. These results form the basis for further biochemical analysis of human BSEP and MDR3 to elucidate the function of these clinically relevant ABC transporters. PMID:23593265
Export of Extracellular Polysaccharides Modulates Adherence of the Cyanobacterium Synechocystis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, ML; Allen, R; Luo, YQ
2013-09-10
The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter),more » slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.« less
A new ABC half-transporter in Leishmania major is involved in resistance to antimony.
Manzano, J I; García-Hernández, R; Castanys, S; Gamarro, F
2013-08-01
The characterization of ABCI4, a new intracellular ATP-binding cassette (ABC) half-transporter in Leishmania major, is described. We show that ABCI4 is involved in heavy metal export, thereby conferring resistance to Pentostam, to Sb(III), and to As(III) and Cd(II). Parasites overexpressing ABCI4 showed a lower mitochondrial toxic effect of antimony by decreasing reactive oxygen species production and maintained higher values of both the mitochondrial electrochemical potential and total ATP levels with respect to controls. The ABCI4 half-transporter forms homodimers as determined by a coimmunoprecipitation assay. A combination of subcellular localization studies under a confocal microscope and a surface biotinylation assay using parasites expressing green fluorescent protein- and FLAG-tagged ABCI4 suggests that the transporter presents a dual localization in both mitochondria and the plasma membrane. Parasites overexpressing ABCI4 present an increased replication in mouse peritoneal macrophages. We have determined that porphyrins are substrates for ABCI4. Consequently, the overexpression of ABCI4 confers resistance to some toxic porphyrins, such as zinc-protoporphyrin, due to the lower accumulation resulting from a significant efflux, as determined using the fluorescent zinc-mesoporphyrin, a validated heme analog. In addition, ABCI4 has a significant ability to efflux thiol after Sb(III) incubation, thus meaning that ABCI4 could be considered to be a potential thiol-X-pump that is able to recognize metal-conjugated thiols. In summary, we have shown that this new ABC transporter is involved in drug sensitivity to antimony and other compounds by efflux as conjugated thiol complexes.
Engström, Karin; Love, Tanzy M; Watson, Gene E; Zareba, Grazyna; Yeates, Alison; Wahlberg, Karin; Alhamdow, Ayman; Thurston, Sally W; Mulhern, Maria; McSorley, Emeir M; Strain, JJ; Davidson, Philip W; Shamlaye, Conrad F; Myers, GJ; Rand, Matthew D; van Wijngaarden, Edwin; Broberg, Karin
2016-01-01
Background ATP-binding cassette (ABC) transporters have been associated with methylmercury (MeHg) toxicity in experimental animal models. Aims To evaluate the association of single nucleotide polymorphisms (SNPs) in maternal ABC transporter genes with 1) maternal hair MeHg concentrations during pregnancy and 2) child neurodevelopmental outcomes. Materials and methods Nutrition Cohort 2 (NC2) is an observational mother-child cohort recruited in the Republic of Seychelles from 2008–2011. Total mercury (Hg) was measured in maternal hair growing during pregnancy as a biomarker for prenatal MeHg exposure (N=1313) (mean 3.9 ppm). Infants completed developmental assessments by Bayley Scales of Infant Development II (BSID-II) at 20 months of age (N=1331). Genotyping for fifteen SNPs in ABCC1, ABCC2 and ABCB1 was performed for the mothers. Results Seven of fifteen ABC SNPs (ABCC1 rs11075290, rs212093, and rs215088; ABCC2 rs717620; ABCB1 rs10276499, rs1202169, and rs2032582) were associated with concentrations of maternal hair Hg (p<0.001 to 0.013). One SNP (ABCC1 rs11075290) was also significantly associated with neurodevelopment; children born to mothers with rs11075290 CC genotype (mean hair Hg 3.6 ppm) scored on average 2 points lower on the Mental Development Index (MDI) and 3 points lower on the Psychomotor Development Index (PDI) than children born to mothers with TT genotype (mean hair Hg 4.7 ppm) while children with the CT genotype (mean hair Hg 4.0 ppm) had intermediate BSID scores. Discussion Genetic variation in ABC transporter genes was associated with maternal hair Hg concentrations. The implications for MeHg dose in the developing child and neurodevelopmental outcomes need to be further investigated. PMID:27262785
Engström, Karin; Love, Tanzy M; Watson, Gene E; Zareba, Grazyna; Yeates, Alison; Wahlberg, Karin; Alhamdow, Ayman; Thurston, Sally W; Mulhern, Maria; McSorley, Emeir M; Strain, J J; Davidson, Philip W; Shamlaye, Conrad F; Myers, G J; Rand, Matthew D; van Wijngaarden, Edwin; Broberg, Karin
2016-09-01
ATP-binding cassette (ABC) transporters have been associated with methylmercury (MeHg) toxicity in experimental animal models. To evaluate the association of single nucleotide polymorphisms (SNPs) in maternal ABC transporter genes with 1) maternal hair MeHg concentrations during pregnancy and 2) child neurodevelopmental outcomes. Nutrition Cohort 2 (NC2) is an observational mother-child cohort recruited in the Republic of Seychelles from 2008-2011. Total mercury (Hg) was measured in maternal hair growing during pregnancy as a biomarker for prenatal MeHg exposure (N=1313) (mean 3.9ppm). Infants completed developmental assessments by Bayley Scales of Infant Development II (BSID-II) at 20months of age (N=1331). Genotyping for fifteen SNPs in ABCC1, ABCC2 and ABCB1 was performed for the mothers. Seven of fifteen ABC SNPs (ABCC1 rs11075290, rs212093, and rs215088; ABCC2 rs717620; ABCB1 rs10276499, rs1202169, and rs2032582) were associated with concentrations of maternal hair Hg (p<0.001 to 0.013). One SNP (ABCC1 rs11075290) was also significantly associated with neurodevelopment; children born to mothers with rs11075290 CC genotype (mean hair Hg 3.6ppm) scored on average 2 points lower on the Mental Development Index (MDI) and 3 points lower on the Psychomotor Development Index (PDI) than children born to mothers with TT genotype (mean hair Hg 4.7ppm) while children with the CT genotype (mean hair Hg 4.0ppm) had intermediate BSID scores. Genetic variation in ABC transporter genes was associated with maternal hair Hg concentrations. The implications for MeHg dose in the developing child and neurodevelopmental outcomes need to be further investigated. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Reddy, T B K; Cimermančič, Peter; Fischbach, Michael A; Ivanova, Natalia N; Markowitz, Victor M; Kyrpides, Nikos C; Pati, Amrita
2015-07-14
In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of "big" genomic data for discovering small molecules. IMG-ABC relies on IMG's comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC's focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in Alphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG's extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to expand, with the goal of becoming an essential component of any bioinformatic exploration of the secondary metabolism world. Copyright © 2015 Hadjithomas et al.
Szabó, Edit; Türk, Dóra; Telbisz, Ágnes; Kucsma, Nóra; Horváth, Tamás; Szakács, Gergely; Homolya, László; Sarkadi, Balázs; Várady, György
2018-01-01
ABC multidrug transporters are key players in cancer multidrug resistance and in general xenobiotic elimination, thus their functional assays provide important tools for research and diagnostic applications. In this study we have examined the potential interactions of three key human ABC multidrug transporters with PhenGreen diacetate (PGD), a cell permeable fluorescent metal ion indicator. The non-fluorescent, hydrophobic PGD rapidly enters the cells and, after cleavage by cellular esterases, in the absence of quenching metal ions, PhenGreen (PG) becomes highly fluorescent. We found that in cells expressing functional ABCG2, ABCB1, or ABCC1 transporters, cellular PG fluorescence is strongly reduced. This fluorescence signal in the presence of specific transporter inhibitors is increased to the fluorescence levels in the control cells. Thus the PG accumulation assay is a new, unique tool for the parallel determination of the function of the ABCG2, ABCB1, and ABCC1 multidrug transporters. Since PG has very low cellular toxicity, the PG accumulation assay also allows the selection, separation and culturing of selected cell populations expressing either of these transporters.
Haider, Ameena J; Cox, Megan H; Jones, Natalie; Goode, Alice J; Bridge, Katherine S; Wong, Kelvin; Briggs, Deborah; Kerr, Ian D
2015-07-17
ABCG2 is an ABC (ATP-binding cassette) transporter with a physiological role in urate transport in the kidney and is also implicated in multi-drug efflux from a number of organs in the body. The trafficking of the protein and the mechanism by which it recognizes and transports diverse drugs are important areas of research. In the current study, we have made a series of single amino acid mutations in ABCG2 on the basis of sequence analysis. Mutant isoforms were characterized for cell surface expression and function. One mutant (I573A) showed disrupted glycosylation and reduced trafficking kinetics. In contrast with many ABC transporter folding mutations which appear to be 'rescued' by chemical chaperones or low temperature incubation, the I573A mutation was not enriched at the cell surface by either treatment, with the majority of the protein being retained in the endoplasmic reticulum (ER). Two other mutations (P485A and M549A) showed distinct effects on transport of ABCG2 substrates reinforcing the role of TM helix 3 in drug recognition and transport and indicating the presence of intracellular coupling regions in ABCG2. © 2015 Authors.
Air-Stimulated ATP Release from Keratinocytes Occurs through Connexin Hemichannels
Barr, Travis P.; Albrecht, Phillip J.; Hou, Quanzhi; Mongin, Alexander A.; Strichartz, Gary R.; Rice, Frank L.
2013-01-01
Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease. PMID:23457608
Lee, S H; Kang, J S; Min, J S; Yoon, K S; Strycharz, J P; Johnson, R; Mittapalli, O; Margam, V M; Sun, W; Li, H-M; Xie, J; Wu, J; Kirkness, E F; Berenbaum, M R; Pittendrigh, B R; Clark, J M
2010-10-01
The human body louse, Pediculus humanus humanus, has one of the smallest insect genomes, containing ∼10 775 annotated genes. Annotation of detoxification [cytochrome P450 monooxygenase (P450), glutathione-S-transferase (GST), esterase (Est) and ATP-binding cassette transporter (ABC transporter)] genes revealed that they are dramatically reduced in P. h. humanus compared to other insects except for Apis mellifera. There are 37 P450, 13 GST and 17 Est genes present in P. h. humanus, approximately half the number found in Drosophila melanogaster and Anopheles gambiae. The number of putatively functional ABC transporter genes in P. h. humanus and Ap. mellifera are the same (36) but both have fewer than An. gambiae (44) or Dr. melanogaster (65). The reduction of detoxification genes in P. h. humanus may be a result of this louse's simple life history, in which it does not encounter a wide variety of xenobiotics. Neuronal component genes are highly conserved across different insect species as expected because of their critical function. Although reduced in number, P. h. humanus still retains at least a minimum repertoire of genes known to confer metabolic or toxicokinetic resistance to xenobiotics (eg Cyp3 clade P450s, Delta GSTs, B clade Ests and B/C subfamily ABC transporters), suggestive of its high potential for resistance development. © 2010 The Authors. Insect Molecular Biology © 2010 The Royal Entomological Society.
Pan, Chao; Weng, Jingwei; Wang, Wenning
2016-01-01
ATP binding cassette (ABC) transporters utilize the energy of ATP hydrolysis to uni-directionally transport substrates across cell membrane. ATP hydrolysis occurs at the nucleotide-binding domain (NBD) dimer interface of ABC transporters, whereas substrate translocation takes place at the translocation pathway between the transmembrane domains (TMDs), which is more than 30 angstroms away from the NBD dimer interface. This raises the question of how the hydrolysis energy released at NBDs is “transmitted” to trigger the conformational changes at TMDs. Using molecular dynamics (MD) simulations, we studied the post-hydrolysis state of the vitamin B12 importer BtuCD. Totally 3-μs MD trajectories demonstrate a predominantly asymmetric arrangement of the NBD dimer interface, with the ADP-bound site disrupted and the ATP-bound site preserved in most of the trajectories. TMDs response to ATP hydrolysis by separation of the L-loops and opening of the cytoplasmic gate II, indicating that hydrolysis of one ATP could facilitate substrate translocation by opening the cytoplasmic end of translocation pathway. It was also found that motions of the L-loops and the cytoplasmic gate II are coupled with each other through a contiguous interaction network involving a conserved Asn83 on the extended stretch preceding TM3 helix plus the cytoplasmic end of TM2/6/7 helix bundle. These findings entail a TMD-NBD communication mechanism for type II ABC importers. PMID:27870912
Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation
Mendiondo, Guillermina M.; Medhurst, Anne; van Roermund, Carlo W.; Zhang, Xuebin; Devonshire, Jean; Scholefield, Duncan; Fernández, José; Axcell, Barry; Ramsay, Luke; Waterham, Hans R.; Waugh, Robbie; Theodoulou, Frederica L.; Holdsworth, Michael J.
2014-01-01
In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ. PMID:24913629
Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter.
Adebesin, Funmilayo; Widhalm, Joshua R; Boachon, Benoît; Lefèvre, François; Pierman, Baptiste; Lynch, Joseph H; Alam, Iftekhar; Junqueira, Bruna; Benke, Ryan; Ray, Shaunak; Porter, Justin A; Yanagisawa, Makoto; Wetzstein, Hazel Y; Morgan, John A; Boutry, Marc; Schuurink, Robert C; Dudareva, Natalia
2017-06-30
Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of a Petunia hybrida adenosine triphosphate-binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport. PhABCG1 down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer
Hedditch, Ellen L.; Gao, Bo; Russell, Amanda J.; Lu, Yi; Emmanuel, Catherine; Beesley, Jonathan; Johnatty, Sharon E.; Chen, Xiaoqing; Harnett, Paul; George, Joshy; Williams, Rebekka T.; Flemming, Claudia; Lambrechts, Diether; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter; Beckmann, Matthias W.; Ekici, Arif B.; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Nakanishi, Toru; Yatabe, Yasushi; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susan K.; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen; Iversen, Ed; Weber, Rachel P.; Berchuck, Andrew; Goode, Ellen; Bowtell, David D.; Chenevix-Trench, Georgia; deFazio, Anna; Norris, Murray D.; MacGregor, Stuart; Haber, Michelle; Henderson, Michelle J.
2014-01-01
Background ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. Methods The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA–mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan–Meier analysis and log-rank tests. All statistical tests were two-sided. Results Associations with outcome were observed with ABC transporters of the “A” subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e−6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P = .001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Conclusions Expression of ABCA transporters was associated with poor outcome in serous ovarian cancer, implicating lipid trafficking as a potentially important process in EOC. PMID:24957074
Okamoto, Takumi; Kawaguchi, Kosuke; Watanabe, Shiro; Agustina, Rina; Ikejima, Toshiki; Ikeda, Keisuke; Nakano, Minoru; Morita, Masashi; Imanaka, Tsuneo
2018-02-19
In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1‒3 are located on peroxisomal membrane and play an important role in the transportation of various fatty acid-CoA derivatives, including very long chain fatty acid-CoA, into peroxisomes. ABCD4 is located on lysosomal membrane and is suggested to be involved in the transport of vitamin B 12 from lysosomes to the cytosol. However, the precise transport mechanism by which these ABC transporters facilitate the import or export of substrate has yet to be well elucidated. In this study, the overexpression of human ABCD1‒4 in the methylotrophic yeast Pichia pastoris and a purification procedure were developed. The detergent-solubilized proteins were reconstituted into liposomes. ABCD1‒4 displayed stable ATPase activity, which was inhibited by AlF 3 . Furthermore, ABCD1‒4 were found to possess an equal levels of acyl-CoA thioesterase activity. Proteoliposomes is expected to be an aid in the further biochemical characterization of ABCD transporters. Copyright © 2018 Elsevier Inc. All rights reserved.
Dong, Haohao; Tang, Xiaodi; Zhang, Zhengyu; Dong, Changjiang
2017-11-01
Lipopolysaccharide (LPS) is an important component of the outer membrane (OM) of Gram-negative bacteria, playing essential roles in protecting bacteria from harsh environments, in drug resistance and in pathogenesis. LPS is synthesized in the cytoplasm and translocated to the periplasmic side of the inner membrane (IM), where it matures. Seven lipopolysaccharide transport proteins, LptA-G, form a trans‑envelope complex that is responsible for LPS extraction from the IM and transporting it across the periplasm to the OM. The LptD/E of the complex transports LPS across the OM and inserts it into the outer leaflet of the OM. In this review we focus upon structural and mechanistic studies of LPS transport proteins, with a particular focus upon the LPS ABC transporter LptB 2 FG. This ATP binding cassette transporter complex consists of twelve transmembrane segments and has a unique mechanism whereby it extracts LPS from the periplasmic face of the IM through a pair of lateral gates and then powers trans‑periplasmic transport to the OM through a slide formed by either of the periplasmic domains of LptF or LptG, LptC, LptA and the N-terminal domain of LptD. The structural and functional studies of the seven lipopolysaccharide transport proteins provide a platform to explore the unusual mechanisms of LPS extraction, transport and insertion from the inner membrane to the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2017 Elsevier B.V. All rights reserved.
Drosophila ABC Transporter DmHMT-1 Confers Tolerance to Cadmium.
USDA-ARS?s Scientific Manuscript database
Half molecule ATP-binding cassette transporters of the HMT1(heavy metal tolerance factor 1)subfamily are required for Cd2+ tolerance in Schizosaccharomyces pombe, Caenorhabditis elegans and Chlamydomonas reinhardtii, and have homologs in other species, including plants and humans. Based on studies i...
A Novel Class of Modular Transporters for Vitamins in Prokaryotes ▿ †
Rodionov, Dmitry A.; Hebbeln, Peter; Eudes, Aymerick; ter Beek, Josy; Rodionova, Irina A.; Erkens, Guus B.; Slotboom, Dirk J.; Gelfand, Mikhail S.; Osterman, Andrei L.; Hanson, Andrew D.; Eitinger, Thomas
2009-01-01
The specific and tightly controlled transport of numerous nutrients and metabolites across cellular membranes is crucial to all forms of life. However, many of the transporter proteins involved have yet to be identified, including the vitamin transporters in various human pathogens, whose growth depends strictly on vitamin uptake. Comparative analysis of the ever-growing collection of microbial genomes coupled with experimental validation enables the discovery of such transporters. Here, we used this approach to discover an abundant class of vitamin transporters in prokaryotes with an unprecedented architecture. These transporters have energy-coupling modules comprised of a conserved transmembrane protein and two nucleotide binding proteins similar to those of ATP binding cassette (ABC) transporters, but unlike ABC transporters, they use small integral membrane proteins to capture specific substrates. We identified 21 families of these substrate capture proteins, each with a different specificity predicted by genome context analyses. Roughly half of the substrate capture proteins (335 cases) have a dedicated energizing module, but in 459 cases distributed among almost 100 gram-positive bacteria, including numerous human pathogens, different and unrelated substrate capture proteins share the same energy-coupling module. The shared use of energy-coupling modules was experimentally confirmed for folate, thiamine, and riboflavin transporters. We propose the name energy-coupling factor transporters for the new class of membrane transporters. PMID:18931129
Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production
Catlett, Jennie L.; Ortiz, Alicia M.
2015-01-01
Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885
Lewis, Daniel R; Miller, Nathan D; Splitt, Bessie L; Wu, Guosheng; Spalding, Edgar P
2007-06-01
Two Arabidopsis thaliana ABC transporter genes linked to auxin transport by various previous results were studied in a reverse-genetic fashion. Mutations in Multidrug Resistance-Like1 (MDR1) reduced acropetal auxin transport in roots by 80% without affecting basipetal transport. Conversely, mutations in MDR4 blocked 50% of basipetal transport without affecting acropetal transport. Developmental and auxin distribution phenotypes associated with these altered auxin flows were studied with a high-resolution morphometric system and confocal microscopy, respectively. Vertically grown mdr1 roots produced positive and negative curvatures threefold greater than the wild type, possibly due to abnormal auxin distribution observed in the elongation zone. However, upon 90 degrees reorientation, mdr1 gravitropism was inseparable from the wild type. Thus, acropetal auxin transport maintains straight growth but contributes surprisingly little to gravitropism. Conversely, vertically maintained mdr4 roots grew as straight as the wild type, but their gravitropism was enhanced. Upon reorientation, curvature in this mutant developed faster, was distributed more basally, and produced a greater total angle than the wild type. An amplified auxin asymmetry may explain the mdr4 hypertropism. Double mutant analysis indicated that the two auxin transport streams are more independent than interdependent. The hypothesis that flavanols regulate MDR-dependent auxin transport was supported by the epistatic relationship of mdr4 to the tt4 phenylpropanoid pathway mutation.
DOT National Transportation Integrated Search
2017-03-30
This presentation was given during the GPS-ABC Workshop VI in Washington, DC on March 30, 2017. It provides a summary of loss-of-lock results : of two types in the presence of 10-MHz LTE signals: 1. Interference level for which low-elevation sa...
Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D
2014-10-06
ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.
Sushida, Hirotoshi; Ishibashi, Naoki; Zendo, Takeshi; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji
2018-02-13
EnkT is a novel ATP-binding cassette (ABC) transporter responsible for secretion of four bacteriocins, enterocins NKR-5-3A, C, D, and Z (Ent53A, C, D, and Z), produced by Enterococcus faecium NKR-5-3. It is generally recognized that the secretion of a bacteriocin requires a dedicated ABC transporter, although molecular mechanisms of this secretion are yet to be revealed. In order to characterize the unique ability of EnkT to secrete multiple bacteriocins, the role of N-terminal leader peptides of bacteriocin precursors was evaluated using Ent53C precursor as a model. The 18-amino acid leader peptide of Ent53C (Lc) was modified by site-directed mutagenesis to generate various point mutations, truncations, or extensions, and substitutions with other leader peptides. The impact of these Lc mutations on Ent53C secretion was evaluated using a quantitative antimicrobial activity assay. We observed that Ent53C production increased with Ala substitution of the highly conserved C-terminal double glycine residues that are recognized as the cleavage site. In contrast, Ent53C antimicrobial activity decreased, with decrease in the length of the putative α-helix-forming region of Lc. Furthermore, EnkT recognized and transported Ent53C of the transformants possessing heterologous leader peptides of enterocin A, pediocin PA-1, brochocins A and B, and lactococcins Qα and Qβ. These results indicated that EnkT shows significant tolerance towards the sequence and length of leader peptides, to secrete multiple bacteriocins. This further demonstrates the functional diversity of bacteriocin ABC transporters and the importance of leader peptides as their recognition motif. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Yao, Jie; Shang, Kexin; Huang, Jinhu; Ran, Wei; Kashif, Jam; Wang, Liping
2014-04-01
Streptococcus suis is a pathogen of zoonotic diseases. Moreover, the emergence of fluoro-quinolones (FQs) resistance in this pathogen has severe consequences for pigs and human health. In this study, the molecular mechanism of FQs resistance in S. suis type 2 (SS2) sensitive strains isolated from pigs was assessed after in vitro induction of resistance against the most frequently used FQs: ciprofloxacin, norfloxacin, and enrofloxacin. Proteome analysis, sequencing and real-time RT-PCR results strongly established an overexpression of an ABC transporter protein (other than SatAB) and topoisomerase mutations in GyrA (Ser81Arg), GyrB (Glu354Lys), and ParC (Ser79Phe) in contributing to high level ciprofloxacin resistance in SS2. Due to the overexpression of the ABC transporter, intracellular ciprofloxacin concentrations were significantly lower in the resistant strains than those of sensitive strains after 20, 35, and 60 min exposures to ciprofloxacin (p < 0.05). It was concluded that improper use of FQs is one of the main causes of the emergence of this zoonotic pathogen as a multiresistant organism against commonly used antibiotics. The existence of an efflux-like protein is an incentive to find new drug targets to avoid the spread of FQs-resistant S. suis isolates in pigs and the human population.
Sletvold, H; Johnsen, P J; Hamre, I; Simonsen, G S; Sundsfjord, A; Nielsen, K M
2008-07-01
Glycopeptide resistant Enterococcus faecium (GREF) persists on Norwegian poultry farms despite the ban on the growth promoter avoparcin. The biological basis for long-term persistence of avoparcin resistance is not fully understood. This study presents the complete DNA sequence of the E. faecium R-plasmid pVEF3 and functional studies of some plasmid-encoded traits (a toxin-antitoxin (TA) system and an ABC transporter) that may be of importance for plasmid persistence. The pVEF3 (63.1 kbp), isolated from an E. faecium strain of poultry origin sampled in Norway in 1999, has 71 coding sequences including the vanA avoparcin/vancomycin resistance encoding gene cluster. pVEF3 encodes the TA system omega-epsilon-zeta, and plasmid stability tests and transcription analysis show that omega-epsilon-zeta is functional in Enterococcus faecalis OGIX, although with decreasing effect over time. The predicted ABC transporter was not found to confer reduced susceptibility to any of the 28 substances tested. The TA system identified in the pVEF-type plasmids may contribute to vanA plasmid persistence on Norwegian poultry farms. However, size and compositional heterogeneity among E. faecium vanA plasmids suggest that additional plasmid maintenance systems in combination with host specific factors and frequent horizontal gene transfer and rearrangement causes the observed plasmid composition and distribution patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhen; Wang, Mingyu; Ferry, James G.
Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; but, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO 2-reducing methanogenic anaerobes (methanogens) from the domainArchaea. Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogenMethanosarcina acetivoranswith unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologsmore » of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domainsBacteriaandArchaea. The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes inEscherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F 420(F 420H 2) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F 420H 2and reduction of ferredoxin with the exergonic oxidation of F 420H 2and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) byM. acetivoransand uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth ofM. acetivoransand proposed to be essential for growth in the environment when acetate is limiting.IMPORTANCEDiscovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO 2-reducing methanogens to include diverse prokaryotes from the domainsBacteriaandArchaea. Furthermore, the unprecedented coenzyme F 420-dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH 4-oxidizing pathways. Our results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth’s biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation.« less
Yan, Zhen; Wang, Mingyu; Ferry, James G.; ...
2017-02-07
Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; but, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO 2-reducing methanogenic anaerobes (methanogens) from the domainArchaea. Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogenMethanosarcina acetivoranswith unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologsmore » of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domainsBacteriaandArchaea. The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes inEscherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F 420(F 420H 2) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F 420H 2and reduction of ferredoxin with the exergonic oxidation of F 420H 2and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) byM. acetivoransand uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth ofM. acetivoransand proposed to be essential for growth in the environment when acetate is limiting.IMPORTANCEDiscovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO 2-reducing methanogens to include diverse prokaryotes from the domainsBacteriaandArchaea. Furthermore, the unprecedented coenzyme F 420-dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH 4-oxidizing pathways. Our results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth’s biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation.« less
Yan, Zhen; Wang, Mingyu; Ferry, James G
2017-02-07
Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO 2 -reducing methanogenic anaerobes (methanogens) from the domain Archaea Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F 420 (F 420 H 2 ) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F 420 H 2 and reduction of ferredoxin with the exergonic oxidation of F 420 H 2 and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting. Discovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO 2 -reducing methanogens to include diverse prokaryotes from the domains Bacteria and Archaea The unprecedented coenzyme F 420 -dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH 4 -oxidizing pathways. The results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth's biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation. Copyright © 2017 Yan et al.
Karasawa, Akira; Erkens, Guus B.; Berntsson, Ronnie P.-A.; Otten, Renee; Schuurman-Wolters, Gea K.; Mulder, Frans A. A.; Poolman, Bert
2011-01-01
The cystathionine β-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine β-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity. PMID:21878634
Architectures of Lipid Transport Systems for the Bacterial Outer Membrane.
Ekiert, Damian C; Bhabha, Gira; Isom, Georgia L; Greenan, Garrett; Ovchinnikov, Sergey; Henderson, Ian R; Cox, Jeffery S; Vale, Ronald D
2017-04-06
How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E. coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein complex. In contrast, EM structures of two other E. coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles. Copyright © 2017 Elsevier Inc. All rights reserved.
Inertial objects in complex flows
NASA Astrophysics Data System (ADS)
Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip
2017-11-01
Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.
Wagner, Tristan; Koch, Jürgen; Ermler, Ulrich; Shima, Seigo
2017-08-18
In methanogenic archaea, the carbon dioxide (CO 2 ) fixation and methane-forming steps are linked through the heterodisulfide reductase (HdrABC)-[NiFe]-hydrogenase (MvhAGD) complex that uses flavin-based electron bifurcation to reduce ferredoxin and the heterodisulfide of coenzymes M and B. Here, we present the structure of the native heterododecameric HdrABC-MvhAGD complex at 2.15-angstrom resolution. HdrB contains two noncubane [4Fe-4S] clusters composed of fused [3Fe-4S]-[2Fe-2S] units sharing 1 iron (Fe) and 1 sulfur (S), which were coordinated at the CCG motifs. Soaking experiments showed that the heterodisulfide is clamped between the two noncubane [4Fe-4S] clusters and homolytically cleaved, forming coenzyme M and B bound to each iron. Coenzymes are consecutively released upon one-by-one electron transfer. The HdrABC-MvhAGD atomic model serves as a structural template for numerous HdrABC homologs involved in diverse microbial metabolic pathways. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Kiosze-Becker, Kristin; Ori, Alessandro; Gerovac, Milan; Heuer, André; Nürenberg-Goloub, Elina; Rashid, Umar Jan; Becker, Thomas; Beckmann, Roland; Beck, Martin; Tampé, Robert
2016-01-01
Ribosome recycling orchestrated by the ATP binding cassette (ABC) protein ABCE1 can be considered as the final—or the first—step within the cyclic process of protein synthesis, connecting translation termination and mRNA surveillance with re-initiation. An ATP-dependent tweezer-like motion of the nucleotide-binding domains in ABCE1 transfers mechanical energy to the ribosome and tears the ribosome subunits apart. The post-recycling complex (PRC) then re-initiates mRNA translation. Here, we probed the so far unknown architecture of the 1-MDa PRC (40S/30S·ABCE1) by chemical cross-linking and mass spectrometry (XL-MS). Our study reveals ABCE1 bound to the translational factor-binding (GTPase) site with multiple cross-link contacts of the helix–loop–helix motif to the S24e ribosomal protein. Cross-linking of the FeS cluster domain to the ribosomal protein S12 substantiates an extreme lever-arm movement of the FeS cluster domain during ribosome recycling. We were thus able to reconstitute and structurally analyse a key complex in the translational cycle, resembling the link between translation initiation and ribosome recycling. PMID:27824037
Reid-Hresko, John
2014-01-01
ABC-based HIV-prevention programmes have been widely employed in northern Tanzanian wildlife conservation settings in an attempt to (re)shape the sexual behaviours of conservation actors. Utilising findings from 66 semi-structured interviews conducted in 2009-2010, this paper examines ABC prevention as a form of Foucauldian governmentality--circulating technologies of power that mobilise disciplinary technologies and attempt to transform such efforts into technologies of the self--and explores how individuals understand and respond to attempts to govern their behaviour. ABC regimes attempt to rework subjectivity, positioning HIV-related behaviours within a risk-based neoliberal rationality. However, efforts to use ABC as a technology to govern populations and individual bodies are largely incommensurate with existing Tanzanian sociocultural formations, including economic and gendered inequalities, and local understandings of sexuality. The language research participants used to talk about ABC and the justifications they offered for non-compliance illuminate this discrepancy. Data reveal that the recipients of ABC campaigns are active producers of understandings that work for them in their lives, but may not produce the behavioural shifts envisioned by programme goals. These findings corroborate previous research, which questions the continued plausibility of ABC as a stand-alone HIV- prevention framework.
USDA-ARS?s Scientific Manuscript database
Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. Two models were used...
Molday, Robert S.; Zhong, Ming; Quazi, Faraz
2009-01-01
ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone-rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders. PMID:19230850
Truong-Bolduc, Que Chi; Hooper, David C.
2007-01-01
MgrA is a known regulator of the expression of several multidrug transporters in Staphylococcus aureus. We identified another regulator of multiple efflux pumps, NorG, by its ability, like that of MgrA, to bind specifically to the promoter of the gene encoding the NorA efflux pump. NorG is a member of the family of the GntR-like transcriptional regulators, and it binds specifically to the putative promoters of the genes encoding multidrug efflux pumps NorA, NorB, NorC, and AbcA. Overexpression of norG produces a threefold increase in norB transcripts associated with a fourfold increase in the level of resistance to quinolones. In contrast, disruption of norG produces no change in the level of transcripts of norA, norB, and norC but causes an increase of at least threefold in the transcript level of abcA, associated with a fourfold increase in resistance to methicillin, cefotaxime, penicillin G, and nafcillin. Overexpression of cloned abcA caused an 8- to 128-fold increase in the level of resistance to all four β-lactam antibiotics. Furthermore, MgrA and NorG have opposite effects on norB and abcA expression. MgrA acts as an indirect repressor for norB and a direct activator for abcA, whereas NorG acts as a direct activator for norB and a direct repressor for abcA. PMID:17277059
Interaction of Food Additives with Intestinal Efflux Transporters.
Sjöstedt, Noora; Deng, Feng; Rauvala, Oskari; Tepponen, Tuomas; Kidron, Heidi
2017-11-06
Breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2) and P-glycoprotein (P-gp) are ABC transporters that are expressed in the intestine, where they are involved in the efflux of many drugs from enterocytes back into the intestinal lumen. The inhibition of BCRP, MRP2, and P-gp can result in enhanced absorption and exposure of substrate drugs. Food additives are widely used by the food industry to improve the stability, flavor, and consistency of food products. Although they are considered safe for consumption, their interactions with intestinal transporters are poorly characterized. Therefore, in this study, selected food additives, including preservatives, colorants, and sweeteners, were studied in vitro for their inhibitory effects on intestinal ABC transporters. Among the studied compounds, several colorants were able to inhibit BCRP and MRP2, whereas P-gp was fairly insensitive to inhibition. Additionally, one sweetener was identified as a potent inhibitor of BCRP. Dose-response studies revealed that the IC 50 values of the inhibitors were lower than the estimated intestinal concentrations after the consumption of beverages containing food colorants. This suggests that there is potential for previously unrecognized transporter-mediated food additive-drug interactions.
Alvarez, Angeles; Rios-Navarro, Cesar; Blanch-Ruiz, Maria Amparo; Collado-Diaz, Victor; Andujar, Isabel; Martinez-Cuesta, Maria Angeles; Orden, Samuel; Esplugues, Juan V
2017-05-01
The controversy connecting Abacavir (ABC) with cardiovascular disease has been fuelled by the lack of a credible mechanism of action. ABC shares structural similarities with endogenous purines, signalling molecules capable of triggering prothrombotic/proinflammatory programmes. Platelets are leading actors in the process of thrombosis. Our study addresses the effects of ABC on interactions between platelets and other vascular cells, while exploring the adhesion molecules implicated and the potential interference with the purinergic signalling pathway. The effects of ABC on platelet aggregation and platelet-endothelium interactions were evaluated, respectively, with an aggregometer and a flow chamber system that reproduced conditions in vivo. The role of adhesion molecules and purinergic receptors in endothelial and platelet populations was assessed by selective pre-incubation with specific antagonists and antibodies. ABC and carbovir triphosphate (CBT) levels were evaluated by HPLC. The results showed that ABC promoted the adherence of platelets to endothelial cells, a crucial step for the formation of thrombi. This was not a consequence of a direct effect of ABC on platelets, but resulted from activation of the endothelium via purinergic ATP-P2X 7 receptors, which subsequently triggered an interplay between P-selectin and ICAM-1 on endothelial cells with constitutively expressed GPIIb/IIIa and GPIbα on platelets. ABC did not induce platelet activation (P-selectin expression or Ca 2+ mobilization) or aggregation, even at high concentrations. CBT levels in endothelial cells were lower than those required to induce platelet-endothelium interactions. Thus, ABC interference with endothelial purinergic signalling leads to platelet recruitment. This highlights the endothelium as the main cell target of ABC in this interaction, which is in line with previous experimental evidence that ABC induces manifestations of vascular inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.
Setia, Namrata; Abbas, Ossama; Sousa, Yessica; Garb, Jane L; Mahalingam, Meera
2012-08-01
Distinct ABCB5 forms and ABCF2, members of the ATP-binding cassette (ABC) superfamily of transporters, are normally expressed in various tissues and cells, and enhanced expression of both has been demonstrated in select cancers. In melanoma cell lines, gene expression profiling of ABC transporters has revealed enhanced expression of melanocyte-specific ABCB5 and ABCF2 proteins. Given this, our primary aim was to ascertain immunohistochemical expression of the ABC transporters ABCB5 and ABCF2 and, the stem cell marker, nestin in a spectrum of benign and malignant nevomelanocytic proliferations, including nevi (n=30), in situ (n=31) and invasive (n=24) primary cutaneous melanomas to assess their role in the stepwise development of malignancy. In addition, their expression was compared with established melanoma prognosticators to ascertain their utility as independent prognosticators. A semiquantitative scoring system was utilized by deriving a cumulative score (based on percentage positivity cells and intensity of expression) and statistical analyses was carried out using analysis of variance with linear contrasts. Mean cumulative score in nevi, in situ and invasive melanoma were as follows: 3.8, 4.4 and 5.3 for ABCB5, respectively (P<0.005 for all), and 4.6, 4.6 and 5.3 for nestin, respectively (P=not significant for all). No appreciable expression of ABCF2 was noted in any of the groups. While ulcerated lesions of melanoma demonstrated lower levels of expression of ABCB5 and nestin than non-ulcerated lesions, and nestin expression was lower in lesions with mitoses >1, after controlling for the presence of ulceration and mitotic activity, the expression of both proteins did not significantly correlate with known melanoma prognosticators. The gradual increase in the expression of ABCB5 from benign nevus to in situ to invasive melanoma suggests that it plays a role in melanomagenesis. On the basis of our findings, a prospective study with follow-up data is required to ascertain the utility of ABCB5 as a therapeutic target.
Gyroid structure via highly asymmetric ABC and AB blends
NASA Astrophysics Data System (ADS)
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; Kim, Jin Kon
Gyroid structures are very important because of their co-continuous and network structures. However, a block copolymer shows gyroid structures only at 35 % volume fraction of one block. In this study, we designed ABC/AB blend system. B (polystyrene (PS)) is the matrix, while A (polyisoprene (PI)) and C (poly(2-vinyl pridine (P2VP)) are the core part. This blend shows gyroid structures at 20 % volume fraction, that is smaller than that observed at diblock copolymer. Morphologies of neat block copolymers and blends were characterized by TEM and small angle X-ray scattering.
Tan, Mei-Fang; Gao, Ting; Liu, Wan-Quan; Zhang, Chun-Yan; Yang, Xi; Zhu, Jia-Wen; Teng, Mu-Ye; Li, Lu; Zhou, Rui
2015-01-01
Acquisition and metabolism of carbohydrates are essential for host colonization and pathogenesis of bacterial pathogens. Different bacteria can uptake different lines of carbohydrates via ABC transporters, in which ATPase subunits energize the transport though ATP hydrolysis. Some ABC transporters possess their own ATPases, while some share a common ATPase. Here we identified MsmK, an ATPase from Streptococcus suis, an emerging zoonotic bacterium causing dead infections in pigs and humans. Genetic and biochemistry studies revealed that the MsmK was responsible for the utilization of raffinose, melibiose, maltotetraose, glycogen and maltotriose. In infected mice, the msmK-deletion mutant showed significant defects of survival and colonization when compared with its parental and complementary strains. Taken together, MsmK is an ATPase that contributes to multiple carbohydrates utilization and host colonization of S. suis. This study gives new insight into our understanding of the carbohydrates utilization and its relationship to the pathogenesis of this zoonotic pathogen.
Tan, Mei-Fang; Gao, Ting; Liu, Wan-Quan; Zhang, Chun-Yan; Yang, Xi; Zhu, Jia-Wen; Teng, Mu-Ye; Li, Lu; Zhou, Rui
2015-01-01
Acquisition and metabolism of carbohydrates are essential for host colonization and pathogenesis of bacterial pathogens. Different bacteria can uptake different lines of carbohydrates via ABC transporters, in which ATPase subunits energize the transport though ATP hydrolysis. Some ABC transporters possess their own ATPases, while some share a common ATPase. Here we identified MsmK, an ATPase from Streptococcus suis, an emerging zoonotic bacterium causing dead infections in pigs and humans. Genetic and biochemistry studies revealed that the MsmK was responsible for the utilization of raffinose, melibiose, maltotetraose, glycogen and maltotriose. In infected mice, the msmK-deletion mutant showed significant defects of survival and colonization when compared with its parental and complementary strains. Taken together, MsmK is an ATPase that contributes to multiple carbohydrates utilization and host colonization of S. suis. This study gives new insight into our understanding of the carbohydrates utilization and its relationship to the pathogenesis of this zoonotic pathogen. PMID:26222651
Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis.
Nakayama, Motokazu; Shimatani, Kanami; Ozawa, Tadahiro; Shigemune, Naofumi; Tomiyama, Daisuke; Yui, Koji; Katsuki, Mao; Ikeda, Keisuke; Nonaka, Ai; Miyamoto, Takahisa
2015-01-01
Catechins are a class of polyphenols and have high anti-bacterial activity against various microorganisms. Here, we report the mechanism for antibacterial activity of epigallocatechin gallate (EGCg) against Gram-positive bacteria Bacillus subtilis, which is highly sensitive to EGCg. Transmission electron microscope analysis revealed that deposits containing EGCg were found throughout the cell envelope from the outermost surface to the outer surface of cytoplasmic membrane. Aggregating forms of proteins and EGCg were identified as spots that disappeared or showed markedly decreased intensity after the treatment with EGCg compared to the control by two-dimensional electrophoresis. Among the identified proteins included 4 cell surface proteins, such as oligopeptide ABC transporter binding lipoprotein, glucose phosphotransferase system transporter protein, phosphate ABC transporter substrate-binding protein, and penicillin-binding protein 5. Observations of glucose uptake of cells and cell shape B. subtilis after the treatment with EGCg suggested that EGCg inhibits the major functions of these proteins, leading to growth inhibition of B. subtilis.
Air pollution, greenhouse gases and climate change: Global and regional perspectives
NASA Astrophysics Data System (ADS)
Ramanathan, V.; Feng, Y.
Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. About 30 years ago, it was recognized that the increase in tropospheric ozone from air pollution (NO x, CO and others) is an important greenhouse forcing term. In addition, the recognition of chlorofluorocarbons (CFCs) on stratospheric ozone and its climate effects linked chemistry and climate strongly. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that air pollution is transported across continents and ocean basins due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e., aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols may nucleate more cloud droplets, which makes the clouds reflect more solar radiation. The dimming has a surface cooling effect and decreases evaporation of moisture from the surface, thus slows down the hydrological cycle. On the other hand, absorption of solar radiation by black carbon and some organics increase atmospheric heating and tend to amplify greenhouse warming of the atmosphere. ABCs are concentrated in regional and mega-city hot spots. Long-range transport from these hot spots causes widespread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by widespread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. In S. Asia and N. Africa, the large north-south gradient in the ABC dimming has altered both the north-south gradients in sea surface temperatures and land-ocean contrast in surface temperatures, which in turn slow down the monsoon circulation and decrease rainfall over the continents. On the other hand, heating by black carbon warms the atmosphere at elevated levels from 2 to 6 km, where most tropical glaciers are located, thus strengthening the effect of GHGs on retreat of snow packs and glaciers in the Hindu Kush-Himalaya-Tibetan glaciers. Globally, the surface cooling effect of ABCs may have masked as much 47% of the global warming by greenhouse gases, with an uncertainty range of 20-80%. This presents a dilemma since efforts to curb air pollution may unmask the ABC cooling effect and enhance the surface warming. Thus efforts to reduce GHGs and air pollution should be done under one common framework. The uncertainties in our understanding of the ABC effects are large, but we are discovering new ways in which human activities are changing the climate and the environment.
Computational models for predicting interactions with membrane transporters.
Xu, Y; Shen, Q; Liu, X; Lu, J; Li, S; Luo, C; Gong, L; Luo, X; Zheng, M; Jiang, H
2013-01-01
Membrane transporters, including two members: ATP-binding cassette (ABC) transporters and solute carrier (SLC) transporters are proteins that play important roles to facilitate molecules into and out of cells. Consequently, these transporters can be major determinants of the therapeutic efficacy, toxicity and pharmacokinetics of a variety of drugs. Considering the time and expense of bio-experiments taking, research should be driven by evaluation of efficacy and safety. Computational methods arise to be a complementary choice. In this article, we provide an overview of the contribution that computational methods made in transporters field in the past decades. At the beginning, we present a brief introduction about the structure and function of major members of two families in transporters. In the second part, we focus on widely used computational methods in different aspects of transporters research. In the absence of a high-resolution structure of most of transporters, homology modeling is a useful tool to interpret experimental data and potentially guide experimental studies. We summarize reported homology modeling in this review. Researches in computational methods cover major members of transporters and a variety of topics including the classification of substrates and/or inhibitors, prediction of protein-ligand interactions, constitution of binding pocket, phenotype of non-synonymous single-nucleotide polymorphisms, and the conformation analysis that try to explain the mechanism of action. As an example, one of the most important transporters P-gp is elaborated to explain the differences and advantages of various computational models. In the third part, the challenges of developing computational methods to get reliable prediction, as well as the potential future directions in transporter related modeling are discussed.
Nerada, Zsuzsanna; Hegyi, Zoltán; Szepesi, Áron; Tóth, Szilárd; Hegedüs, Csilla; Várady, György; Matula, Zsolt; Homolya, László; Sarkadi, Balázs; Telbisz, Ágnes
2016-09-01
ABC multidrug transporters are key players in cancer multidrug resistance and in determining the ADME-Tox properties of drugs and xenobiotics. The most sensitive and specific detection of these transporters is based on functional assays. Assessment of the transporter-dependent reduction of cellular uptake of the fluorescent dyes, such as Hoechst 33342 (Ho) and more recently DyeCycle Violet (DCV), have been widely advocated for the characterization of both ABCB1 and ABCG2 multidrug transporters. Detailed comparison of these supravital DNA-binding dyes revealed that DCV is less toxic to ABCG2- and ABCB1-expressing cells than Ho. ATPase measurements imply that DCV and Ho are similarly handled by ABCB1, whereas ABCG2 seems to transport DVC more effectively. In addition, we have developed an image-based high content microscopy screening method for simultaneous in situ measurement of the cellular activity and expression of the ABCG2 multidrug transporter. We demonstrated the applicability of this method for identifying ABCG2-positive cells in heterogeneous cell population by a single dye uptake measurement. These results may promote multidrug transporter studies at a single cell level and allow the quantitative detection of clinically important drug-resistant sub-populations. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.
ABCA transporter gene expression and poor outcome in epithelial ovarian cancer.
Hedditch, Ellen L; Gao, Bo; Russell, Amanda J; Lu, Yi; Emmanuel, Catherine; Beesley, Jonathan; Johnatty, Sharon E; Chen, Xiaoqing; Harnett, Paul; George, Joshy; Williams, Rebekka T; Flemming, Claudia; Lambrechts, Diether; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter; Beckmann, Matthias W; Ekici, Arif B; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Nakanishi, Toru; Yatabe, Yasushi; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susan K; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen; Iversen, Ed; Weber, Rachel P; Berchuck, Andrew; Goode, Ellen; Bowtell, David D; Chenevix-Trench, Georgia; deFazio, Anna; Norris, Murray D; MacGregor, Stuart; Haber, Michelle; Henderson, Michelle J
2014-07-01
ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA-mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan-Meier analysis and log-rank tests. All statistical tests were two-sided. Associations with outcome were observed with ABC transporters of the "A" subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e-6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P = .001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Expression of ABCA transporters was associated with poor outcome in serous ovarian cancer, implicating lipid trafficking as a potentially important process in EOC. © The Author 2014. Published by Oxford University Press. All rights reserved.
Caenorhabditis elegans ABCRNAi Transporters Interact Genetically With rde-2 and mut-7
Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa
2008-01-01
RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABCRNAi mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABCRNAi gene class. Genetic complementation tests reveal functions for ABCRNAi transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABCRNAi proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABCRNAi mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABCRNAi gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABCRNAi transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity. PMID:18245353
Zhang, Yao; Li, Yanchang; Zhang, Yongguang; Wang, Zhiqiang; Zhao, Mingzhi; Su, Na; Zhang, Tao; Chen, Lingsheng; Wei, Wei; Luo, Jing; Zhou, Yanxia; Xu, Yongru; Xu, Ping; Li, Wenjun; Tao, Yong
2016-01-04
The genus Nocardiopsis is one of the most dominant Actinobacteria that survives in hypersaline environments. However, the adaptation mechanisms for halophilism are still unclear. Here, we performed isobaric tags for relative and absolute quantification based quantitative proteomics to investigate the functions of the membrane proteome after salt stress. A total of 683 membrane proteins were identified and quantified, of which 126 membrane proteins displayed salt-induced changes in abundance. Intriguingly, bioinformatics analyses indicated that these differential proteins showed two expression patterns, which were further validated by phenotypic changes and functional differences. The majority of ABC transporters, secondary active transporters, cell motility proteins, and signal transduction kinases were up-regulated with increasing salt concentration, whereas cell differentiation, small molecular transporter (ions and amino acids), and secondary metabolism proteins were significantly up-regulated at optimum salinity, but down-regulated or unchanged at higher salinity. The small molecule transporters and cell differentiation-related proteins acted as sensing proteins that played a more important biological role at optimum salinity. However, the ABC transporters for compatible solutes, Na(+)-dependent transporters, and cell motility proteins acted as adaptive proteins that actively counteracted higher salinity stress. Overall, regulation of membrane proteins may provide a major protection strategy against hyperosmotic stress.
Ma, Yu-Hua; Ye, Gui-Sheng
2018-06-11
In this study, we screened differentially expressed genes in a multidrug-resistant isolate strain of Clostridium perfringens by RNA sequencing. We also separated and identified differentially expressed proteins (DEPs) in the isolate strain by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). The RNA sequencing results showed that, compared with the control strain, 1128 genes were differentially expressed in the isolate strain, and these included 227 up-regulated genes and 901 down-regulated genes. Bioinformatics analysis identified the following genes and gene categories that are potentially involved in multidrug resistance (MDR) in the isolate strain: drug transport, drug response, hydrolase activity, transmembrane transporter, transferase activity, amidase transmembrane transporter, efflux transmembrane transporter, bacterial chemotaxis, ABC transporter, and others. The results of the 2-DE showed that 70 proteins were differentially expressed in the isolate strain, 45 of which were up-regulated and 25 down-regulated. Twenty-seven DEPs were identified by MS and these included the following protein categories: ribosome, antimicrobial peptide resistance, and ABC transporter, all of which may be involved in MDR in the isolate strain of C. perfringens. The results provide reference data for further investigations on the drug resistant molecular mechanisms of C. perfringens.
Zhang, Minhua; Bao, Zhihao; Zhao, Qin; Guo, Hui; Xu, Ke; Wang, Chengcheng
2014-01-01
Energy-coupling factor (ECF) transporters are a unique group of ATP-binding cassette (ABC) transporters responsible for micronutrient uptake from the environment. Each ECF transporter is composed of an S component (or EcfS protein) and T/A/A′ components (or EcfT/A/A′ proteins; ECF module). Among the group II ECF transporters, several EcfS proteins share one ECF module; however, the underlying mechanism remains unknown. Here we report the structure of a group II ECF transporter–pantothenate transporter from Lactobacillus brevis (LbECF-PanT), which shares the ECF module with the folate and hydroxymethylpyrimidine transporters (LbECF-FolT and LbECF-HmpT). Structural and mutational analyses revealed the residues constituting the pantothenate-binding pocket. We found that although the three EcfS proteins PanT, FolT, and HmpT are dissimilar in sequence, they share a common surface area composed of the transmembrane helices 1/2/6 (SM1/2/6) to interact with the coupling helices 2/3 (CH2/3) of the same EcfT. CH2 interacts mainly with SM1 via hydrophobic interactions, which may modulate the sliding movement of EcfS. CH3 binds to a hydrophobic surface groove formed by SM1, SM2, and SM6, which may transmit the conformational changes from EcfA/A′ to EcfS. We also found that the residues at the intermolecular surfaces in LbECF-PanT are essential for transporter activity, and that these residues may mediate intermolecular conformational transmission and/or affect transporter complex stability. In addition, we found that the structure of EcfT is conformationally dynamic, which supports its function as a scaffold to mediate the interaction of the ECF module with various EcfS proteins to form different transporter complexes. PMID:25512487
Larsen, Paul B; Geisler, Matt J B; Jones, Carol A; Williams, Kelly M; Cancel, Jesse D
2005-02-01
Aluminum (Al) toxicity in acid soils is a worldwide agricultural problem that severely limits crop productivity through inhibition of root growth. Previously, Arabidopsis mutants with increased Al sensitivity were isolated in order to identify genes important for Al tolerance in plants. One mutant, als3, exhibited extreme root growth inhibition in the presence of Al, suggesting that this mutation negatively impacts a gene required for Al tolerance. Map-based cloning of the als3-1 mutation resulted in the isolation of a novel gene that encodes a previously undescribed ABC transporter-like protein, which is highly homologous to a putative bacterial metal resistance protein, ybbM. Northern analysis for ALS3 expression revealed that it is found in all organs examined, which is consistent with the global nature of Al sensitivity displayed by als3, and that expression increases in roots following Al treatment. Based on GUS fusion and in situ hybridization analyses, ALS3 is primarily expressed in leaf hydathodes and the phloem throughout the plant, along with the root cortex following Al treatment. Immunolocalization indicates that ALS3 predominantly accumulates in the plasma membrane of cells that express ALS3. From our results, it appears that ALS3 encodes an ABC transporter-like protein that is required for Al resistance/tolerance and may function to redistribute accumulated Al away from sensitive tissues in order to protect the growing root from the toxic effects of Al.
Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; ...
2015-07-14
In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of “big” genomic data for discovering small molecules. IMG-ABC relies on IMG’s comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve asmore » the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC’s focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in lphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG’s extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to expand, with the goal of becoming an essential component of any bioinformatic exploration of the secondary metabolism world.« less
Fierro, Camila; López-Cristoffanini, Camilo; Meynard, Andrés; Lovazzano, Carlos; Castañeda, Francisco; Guajardo, Eduardo; Contreras-Porcia, Loretto
2017-06-01
The transcriptional modulation of desiccation tolerance factors in P. orbicularis explains its successful recuperation after water deficit. Differential responses to air exposure clarify seaweed distribution along intertidal rocky zones. Desiccation-tolerant seaweed species, such as Pyropia orbicularis, can tolerate near 96% water loss during air exposure. To understand the phenotypic plasticity of P. orbicularis to desiccation, several tolerance factors were assessed by RT-qPCR, Western-blot analysis, and enzymatic assays during the natural desiccation-rehydration cycle. Comparative enzymatic analyses were used to evidence differential responses between P. orbicularis and desiccation-sensitive species. The results showed that during desiccation, the relative mRNA levels of genes associated with basal metabolism [trehalose phosphate synthase (tps) and pyruvate dehydrogenase (pdh)] were overexpressed in P. orbicularis. Transcript levels related to antioxidant metabolism [peroxiredoxin (prx); thioredoxin (trx); catalase (cat); lipoxygenase (lox); ferredoxin (fnr); glutathione S-transferase (gst)], cellular detoxification [ABC transporter (abc) and ubiquitin (ubq)], and signal transduction [calmodulin (cam)] increased approximately 15- to 20-fold, with the majority returning to basal levels during the final hours of rehydration. In contrast, actin (act) and transcription factor 1 (tf1) transcripts were down-regulated. ABC transporter protein levels increased in P. orbicularis during desiccation, whereas PRX transcripts decreased. The antioxidant enzymes showed higher specific activity in P. orbicularis under desiccation, and sensitive species exhibited enzymatic inactivation and scarce ABC and PRX protein detection following prolonged desiccation. In conclusion, the reported findings contribute towards understanding the ecological distribution of intertidal seaweeds at the molecular and functional levels.
ROLE OF ATP BINDING CASSETTE SUB-FAMILY MEMBER 2 (ABCG2) IN MOUSE EMBRYONIC STEM CELL DEVELOPMENT.
ATP binding cassette sub-family member 2 (ABCG2), is a member of the ABC transporter superfamily and a principal xenobiotic transporter. ABCG2 is also highly expressed in certain stem cell populations where it is thought to be related to stem cell plasticity, although the role o...
The minimal-ABC trees with B1-branches.
Dimitrov, Darko; Du, Zhibin; Fonseca, Carlos M da
2018-01-01
The atom-bond connectivity index (or, for short, ABC index) is a molecular structure descriptor bridging chemistry to graph theory. It is probably the most studied topological index among all numerical parameters of a graph that characterize its topology. For a given graph G = (V, E), the ABC index of G is defined as [Formula: see text], where di denotes the degree of the vertex i, and ij is the edge incident to the vertices i and j. A combination of physicochemical and the ABC index properties are commonly used to foresee the bioactivity of different chemical composites. Additionally, the applicability of the ABC index in chemical thermodynamics and other areas of chemistry, such as in dendrimer nanostars, benzenoid systems, fluoranthene congeners, and phenylenes is well studied in the literature. While finding of the graphs with the greatest ABC-value is a straightforward assignment, the characterization of the tree(s) with minimal ABC index is a problem largely open and has recently given rise to numerous studies and conjectures. A B1-branch of a graph is a pendent path of order 2. In this paper, we provide an important step forward to the full characterization of these minimal trees. Namely, we show that a minimal-ABC tree contains neither 4 nor 3 B1-branches. The case when the number of B1-branches is 2 is also considered.
Chowdhury, Sayan; Mukhopadhyay, Rupkatha; Saha, Sourav; Mishra, Amartya; Sengupta, Souvik; Roy, Syamal; Majumder, Hemanta K.
2014-01-01
In parasites, ATP-binding cassette (ABC) transporters represent an important family of proteins related to drug resistance and other biological activities. Resistance of leishmanial parasites to therapeutic drugs continues to escalate in developing countries, and in many instances, it is due to overexpressed ABC efflux pumps. Progressively adapted baicalein (BLN)-resistant parasites (pB25R) show overexpression of a novel ABC transporter, which was classified as ABCC2 or Leishmania donovani multidrug resistance protein 2 (LdMRP2). The protein is primarily localized in the flagellar pocket region and in internal vesicles. Overexpressed LdABCC2 confers substantial BLN resistance to the parasites by rapid drug efflux. The BLN-resistant promastigotes when transformed into amastigotes in macrophage cells cannot be cured by treatment of macrophages with BLN. Amastigote resistance is concomitant with the overexpression of macrophage MRP2 transporter. Reporter analysis and site-directed mutagenesis assays demonstrated that antioxidant response element 1 is activated upon infection. The expression of this phase II detoxifying gene is regulated by NFE2-related factor 2 (Nrf2)-mediated antioxidant response element activation. In view of the fact that the signaling pathway of phosphoinositol 3-kinase controls microfilament rearrangement and translocation of actin-associated proteins, the current study correlates with the intricate pathway of phosphoinositol 3-kinase-mediated nuclear translocation of Nrf2, which activates MRP2 expression in macrophages upon infection by the parasites. In contrast, phalloidin, an agent that prevents depolymerization of actin filaments, inhibits Nrf2 translocation and Mrp2 gene activation by pB25R infection. Taken together, these results provide insight into the mechanisms by which resistant clinical isolates of L. donovani induce intracellular events relevant to drug resistance. PMID:24706751
Wong, Iris L. K.; Chan, Kin-Fai; Burkett, Brendan A.; Zhao, Yunzhe; Chai, Yi; Sun, Hongzhe; Chan, Tak Hang; Chow, Larry M. C.
2007-01-01
Drug resistance by overexpression of ATP-binding cassette (ABC) transporters is an impediment in the treatment of leishmaniasis. Flavonoids are known to reverse multidrug resistance (MDR) in Leishmania and mammalian cancers by inhibiting ABC transporters. Here, we found that synthetic flavonoid dimers with three (compound 9c) or four (compound 9d) ethylene glycol units exhibited a significantly higher reversing activity than other shorter or longer ethylene glycol-ligated dimers, with ∼3-fold sensitization of pentamidine and sodium stibogluconate (SSG) resistance in Leishmania, respectively. This modulatory effect was dosage dependent and not observed in apigenin monomers with the linker, suggesting that the modulatory effect is due to its bivalent nature. The mechanism of reversal activity was due to increased intracellular accumulation of pentamidine and total antimony in Leishmania. Compared to other MDR modulators such as verapamil, reserpine, quinine, quinacrine, and quinidine, compounds 9c and 9d were the only agents that can reverse SSG resistance. In terms of reversing pentamidine resistance, 9c and 9d have activities comparable to those of reserpine and quinacrine. Modulators 9c and 9d exhibited reversal activity on pentamidine resistance among LeMDR1−/−, LeMDR1+/+, and LeMDR1-overexpressed mutants, suggesting that these modulators are specific to a non-LeMDR1 pentamidine transporter. The LeMDR1 copy number is inversely related to pentamidine resistance, suggesting that it might be involved in importing pentamidine into the mitochondria. In summary, bivalency could be a useful strategy for the development of more potent ABC transporter modulators and flavonoid dimers represent a promising reversal agent for overcoming pentamidine and SSG resistance in parasite Leishmania. PMID:17194831
Howlett, Robert M; Hughes, Bethan M; Hitchcock, Andrew; Kelly, David J
2012-06-01
Campylobacter jejuni is a human pathogen of worldwide significance. It is commensal in the gut of many birds and mammals, where hydrogen is a readily available electron donor. The bacterium possesses a single membrane-bound, periplasmic-facing NiFe uptake hydrogenase that depends on the acquisition of environmental nickel for activity. The periplasmic binding protein Cj1584 (NikZ) of the ATP binding cassette (ABC) transporter encoded by the cj1584c-cj1580c (nikZYXWV) operon in C. jejuni strain NCTC 11168 was found to be nickel-repressed and to bind free nickel ions with a submicromolar K(d) value, as measured by fluorescence spectroscopy. Unlike the Escherichia coli NikA protein, NikZ did not bind EDTA-chelated nickel and lacks key conserved residues implicated in metallophore interaction. A C. jejuni cj1584c null mutant strain showed an approximately 22-fold decrease in intracellular nickel content compared with the wild-type strain and a decreased rate of uptake of (63)NiCl(2). The inhibition of residual nickel uptake at higher nickel concentrations in this mutant by hexa-ammine cobalt (III) chloride or magnesium ions suggests that low-affinity uptake occurs partly through the CorA magnesium transporter. Hydrogenase activity was completely abolished in the cj1584c mutant after growth in unsupplemented media, but was fully restored after growth with 0.5 mM nickel chloride. Mutation of the putative metallochaperone gene slyD (cj0115) had no effect on either intracellular nickel accumulation or hydrogenase activity. Our data reveal a strict dependence of hydrogenase activity in C. jejuni on high-affinity nickel uptake through an ABC transporter that has distinct properties compared with the E. coli Nik system.
Current Developments in Measuring Academic Behavioural Confidence
ERIC Educational Resources Information Center
Sander, Paul
2009-01-01
Using published findings and by further analyses of existing data, the structure, validity and utility of the Academic Behavioural Confidence scale (ABC) is critically considered. Validity is primarily assessed through the scale's relationship with other existing scales as well as by looking for predicted differences. The utility of the ABC scale…
Electronic and magnetic properties of bare armchair BC2N nanoribbons
NASA Astrophysics Data System (ADS)
Li, Hong; Xiao, Xiang; Tie, Jun; Lu, Jing
2017-03-01
We present the electronic and magnetic properties of bare armchair BC2N nanoribbons (ABC2NNRs) in the view of density functional calculations. We consider three types of edge terminations with a width of 0.75 2.10 nm. All the investigated ribbons exhibit magnetic ground states with the magnetic moments mainly located on the edge C atoms. Room temperature accessible magnetic stabilities are obtained for ABC2NNRs with NC-NC and NC-BC edge alignments. We find the ABC2NNRs have various electronic structures, where half-metal, metal, and semiconductor are all acquired depend on the edge alignment and magnetic coupling state. The results show the ABC2NNRs can be a promising candidate material in nanoelectronics and nanospintronics.
Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing.
Gökirmak, Tufan; Campanale, Joseph P; Reitzel, Adam M; Shipp, Lauren E; Moy, Gary W; Hamdoun, Amro
2016-06-01
The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals. Copyright © 2016 the American Physiological Society.
Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing
Gökirmak, Tufan; Campanale, Joseph P.; Reitzel, Adam M.; Shipp, Lauren E.; Moy, Gary W.
2016-01-01
The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals. PMID:27053522
Abe, Koichi; Sunagawa, Naoki; Terada, Tohru; Takahashi, Yuta; Arakawa, Takatoshi; Igarashi, Kiyohiko; Samejima, Masahiro; Nakai, Hiroyuki; Taguchi, Hayao; Nakajima, Masahiro; Fushinobu, Shinya
2018-06-08
β-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several β-1,2-glucan-associated enzymes have been characterized, little is known about how β-1,2-glucan and its shorter oligosaccharides (Sop n s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop n -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Listeria innocua Calorimetric analysis revealed that SO-BP specifically binds to Sop n s with a degree of polymerization of 3 or more, with K d values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop 3-5 ) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop n , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop 3-5 by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop n s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop n s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial β-1,2-glucan metabolism and promote the discovery of unidentified β-1,2-glucan-associated proteins. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Research on evaluation and standardization of accelerated bridge construction techniques, part II.
DOT National Transportation Integrated Search
2015-09-01
The Michigan Department of Transportation (MDOT) uses Accelerated bridge construction : (ABC) to reduce delays and minimize construction impacts. MDOT contracted and completed : several bridges using prefabricated bridge elements and systems (PBES). ...
Research on evaluation and standardization of accelerated bridge construction techniques, part I.
DOT National Transportation Integrated Search
2015-09-01
The Michigan Department of Transportation (MDOT) uses Accelerated bridge construction : (ABC) to reduce delays and minimize construction impacts. MDOT contracted and completed : several bridges using prefabricated bridge elements and systems (PBES). ...
Simpson, Brent W; Owens, Tristan W; Orabella, Matthew J; Davis, Rebecca M; May, Janine M; Trauger, Sunia A; Kahne, Daniel; Ruiz, Natividad
2016-10-18
The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB 2 FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB 2 FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. Lipopolysaccharide (LPS) is synthesized at the cytoplasmic membrane of Gram-negative bacteria and transported across several compartments to the cell surface, where it forms a barrier that protects these organisms from antibiotics. The LptB 2 FG proteins form an ATP-binding cassette (ABC) transporter that uses energy from ATP hydrolysis in the cytoplasm to facilitate extraction of LPS from the outer face of the cytoplasmic membrane prior to transport to the cell surface. How ATP hydrolysis is coupled with LPS release from the membrane is not understood. We have identified residues at the interface between the ATPase and the transmembrane domains of this heteromeric ABC complex that are important for LPS transport, some of which coordinate ATPase activity with LPS release. Copyright © 2016 Simpson et al.
Wolber, Jeffrey M; Urbanek, Bailey L; Meints, Lisa M; Piligian, Brent F; Lopez-Casillas, Irene C; Zochowski, Kailey M; Woodruff, Peter J; Swarts, Benjamin M
2017-10-10
Mycobacteria, including the bacterial pathogen that causes human tuberculosis, possess distinctive pathways for synthesizing and utilizing the non-mammalian disaccharide trehalose. Trehalose metabolism is essential for mycobacterial viability and has been linked to in vitro biofilm formation, which may bear relevance to in vivo drug tolerance. Previous research has shown that some trehalose analogues bearing modifications at the 6-position inhibit growth of various mycobacterial species. In this work, 2-, 5-, and 6-position-modified trehalose analogues were synthesized using our previously reported one-step chemoenzymatic method and shown to inhibit growth and biofilm formation in the two-to three-digit micromolar range in Mycobacterium smegmatis. The trehalose-specific ABC transporter LpqY-SugABC was essential for antimicrobial and anti-biofilm activity, suggesting that inhibition by monosubstituted trehalose analogues requires cellular uptake and does not proceed via direct action on extracellular targets such as antigen 85 acyltransferases or trehalose dimycolate hydrolase. Although the potency of the described compounds in in vitro growth and biofilm assays is moderate, this study reports the first trehalose-based mycobacterial biofilm inhibitors and reinforces the concept of exploiting unique sugar uptake pathways to deliver inhibitors and other chemical cargo to mycobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S; Bilalis, Dimitrios
2016-04-20
Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha(-1)) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance.
Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S.; Bilalis, Dimitrios
2016-01-01
Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha−1) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532
Marquez, Béatrice; Van Bambeke, Françoise
2011-05-01
Nine proteins of the ABC superfamily (P-glycoprotein, 7 MRPs and BCRP) are involved in multidrug transport. Being localised at the surface of endothelial or epithelial cells, they expel drugs back to the external medium (if located at the apical side [P-glycoprotein, BCRP, MRP2, MRP4 in the kidney]) or to the blood (if located at the basolateral side [MRP1, MRP3, MRP4, MRP5]), modulating thereby their absorption, distribution, and elimination. In the CNS, most transporters are oriented to expel drugs to the blood. Transporters also cooperate with Phase I/Phase II metabolism enzymes by eliminating drug metabolites. Their major features are (i) their capacity to recognize drugs belonging to unrelated pharmacological classes, and (ii) their redundancy, a single molecule being possibly substrate for different transporters. This ensures an efficient protection of the body against invasion by xenobiotics. Competition for transport is now characterized as a mechanism of interaction between co-administered drugs, one molecule limiting the transport of the other, potentially affecting bioavailability, distribution, and/or elimination. Again, this mechanism reinforces drug interactions mediated by cytochrome P450 inhibition, as many substrates of P-glycoprotein and CYP3A4 are common. Induction of the expression of genes coding for MDR transporters is another mechanism of drug interaction, which could affect all drug substrates of the up-regulated transporter. Overexpression of MDR transporters confers resistance to anticancer agents and other therapies. All together, these data justify why studying drug active transport should be part of the evaluation of new drugs, as recently recommended by the FDA.
ERIC Educational Resources Information Center
Bain, Sherry K.
1993-01-01
Analysis of Kaufman Assessment Battery for Children (K-ABC) Sequential and Simultaneous Processing scores of 94 children (ages 6-12) with learning disabilities produced factor patterns generally supportive of the traditional K-ABC Mental Processing structure with the exception of Spatial Memory. The sample exhibited relative processing strengths…
The Origin and Early Evolution of Membrane Proteins
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.
2006-01-01
The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.
Afanasyev, Pavel; Seer-Linnemayr, Charlotte; Ravelli, Raimond B G; Matadeen, Rishi; De Carlo, Sacha; Alewijnse, Bart; Portugal, Rodrigo V; Pannu, Navraj S; Schatz, Michael; van Heel, Marin
2017-09-01
Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the 'Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous ('four-dimensional') cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, 'random-startup' three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external 'starting models'. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive 'ABC-4D' pipeline is based on the two-dimensional reference-free 'alignment by classification' (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Å is presented as an example of the use of the ABC-4D procedure.
ATP-Binding Cassette Efflux Transporters in Human Placenta
Ni, Zhanglin; Mao, Qingcheng
2010-01-01
Pregnant women are often complicated with diseases including viral or bacterial infections, epilepsy, hypertension, or pregnancy-induced conditions such as depression and gestational diabetes that require treatment with medication. In addition, substance abuse during pregnancy remains a major public health problem. Many drugs used by pregnant women are off label without the necessary dose, efficacy, and safety data required for rational dosing regimens of these drugs. Thus, a major concern arising from the widespread use of drugs by pregnant women is the transfer of drugs across the placental barrier, leading to potential toxicity to the developing fetus. Knowledge regarding the ATP-binding cassette (ABC) efflux transporters, which play an important role in drug transfer across the placental barrier, is absolutely critical for optimizing the therapeutic strategy to treat the mother while protecting the fetus during pregnancy. Such transporters include P-glycoprotein (P-gp, gene symbol ABCB1), the breast cancer resistance protein (BCRP, gene symbol ABCG2), and the multidrug resistance proteins (MRPs, gene symbol ABCCs). In this review, we summarize the current knowledge with respect to developmental expression and regulation, membrane localization, functional significance, and genetic polymorphisms of these ABC transporters in the placenta and their relevance to fetal drug exposure and toxicity. PMID:21118087
Computer Simulation of the Virulome of Bacillus anthracis Using Proteomics
2006-07-31
hypothetical protein gi|47526566 spermidine /putrescine ABC transporter, spermidine /putrescine-binding protein gi|47526625 oligoendopeptidase F, putative gi...glutamyl-trna(gln) amidotransferase, a subunit x gi|50196927 aspartate aminotransferase x gi|50196970 spermidine synthase x
Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent
2016-01-01
ABSTRACT The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. IMPORTANCE A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae. This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. PMID:27672194
Mitterbauer, R; Heinrich, M; Rauscher, R; Lemmens, M; Bürstmayr, H; Adam, G
2003-03-01
Infection withFusarium graminearum andF. culmorum not only causes severe yield and quality losses, the most relevant concern is the contamination of cereal foods and feeds with trichothecenes (e.g. deoxynivalenol, DON). The ability to synthesize trichothecenes has been shown to be a virulence factor ofF. graminearum on wheat and, on the other hand, toxin resistance is most likely an important component of field resistance. Our hypothesis is that pleiotropic drug resistance mediated by PDR-type ABC transporter proteins (acting as membrane located drug efflux pumps) is a relevant mechanism of DON resistance not only in yeast but also in wheat. Goal of this project is the development of molecular markers for this gene family for use in marker-assisted plant breeding programs. The technical difficulties caused by the large size of the PDR-family are discussed.
Choline Uptake in Agrobacterium tumefaciens by the High-Affinity ChoXWV Transporter▿
Aktas, Meriyem; Jost, Kathinka A.; Fritz, Christiane; Narberhaus, Franz
2011-01-01
Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called “Venus flytrap mechanism” of substrate binding. PMID:21803998
IMG-ABC: An Atlas of Biosynthetic Gene Clusters to Fuel the Discovery of Novel Secondary Metabolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, I-Min; Chu, Ken; Ratner, Anna
2014-10-28
In the discovery of secondary metabolites (SMs), large-scale analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of relevant computational resources. We present IMG-ABC (https://img.jgi.doe.gov/abc/) -- An Atlas of Biosynthetic gene Clusters within the Integrated Microbial Genomes (IMG) system1. IMG-ABC is a rich repository of both validated and predicted biosynthetic clusters (BCs) in cultured isolates, single-cells and metagenomes linked with the SM chemicals they produce and enhanced with focused analysis tools within IMG. The underlying scalable framework enables traversal of phylogenetic dark matter and chemical structure space -- serving as a doorwaymore » to a new era in the discovery of novel molecules.« less
Lin, Blossom Yen-Ju; Chao, Te-Hsin; Yao, Yuh; Tu, Shu-Min; Wu, Chun-Ching; Chern, Jin-Yuan; Chao, Shiu-Hsiung; Shaw, Keh-Yuong
2007-04-01
Previous studies have shown the advantages of using activity-based costing (ABC) methodology in the health care industry. The potential values of ABC methodology in health care are derived from the more accurate cost calculation compared to the traditional step-down costing, and the potentials to evaluate quality or effectiveness of health care based on health care activities. This project used ABC methodology to profile the cost structure of inpatients with surgical procedures at the Department of Colorectal Surgery in a public teaching hospital, and to identify the missing or inappropriate clinical procedures. We found that ABC methodology was able to accurately calculate costs and to identify several missing pre- and post-surgical nursing education activities in the course of treatment.
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel
2012-11-21
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
NASA Astrophysics Data System (ADS)
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel
2012-11-01
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
Westerterp, Marit; Murphy, Andrew J; Wang, Mi; Pagler, Tamara A; Vengrenyuk, Yuliya; Kappus, Mojdeh S; Gorman, Darren J; Nagareddy, Prabhakara R; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S; Welch, Carrie; Fisher, Edward A; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R
2013-05-24
Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. To assess the role of macrophage cholesterol efflux pathways in atherogenesis. We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.
Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz
2015-01-01
The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. PMID:25533467
Tian, Lihong; Dai, Ling Ling; Yin, Zhi Jie; Fukuda, Masako; Kumamaru, Toshihiro; Dong, Xiang Bai; Xu, Xiu Ping; Qu, Le Qing
2013-07-01
Rice seed storage proteins glutelin and α-globulin are synthesized in the endoplasmic reticulum (ER) and deposited in protein storage vacuoles (PSVs). Sar1, a small GTPase, acts as a molecular switch to regulate the assembly of coat protein complex II, which exports secretory protein from the ER to the Golgi apparatus. To reveal the route by which glutelin and α-globulin exit the ER, four putative Sar1 genes (OsSar1a/b/c/d) were cloned from rice, and transgenic rice were generated with Sar1 overexpressed or suppressed by RNA interference (RNAi) specifically in the endosperm under the control of the rice glutelin promoter. Overexpression or suppression of any OsSar1 did not alter the phenotype. However, simultaneous knockdown of OsSar1a/b/c resulted in floury and shrunken seeds, with an increased level of glutelin precursor and decreased level of the mature α- and β-subunit. OsSar1abc RNAi endosperm generated numerous, spherical, novel protein bodies with highly electron-dense matrixes containing both glutelin and α-globulin. Notably, the novel protein bodies were surrounded by ribosomes, showing that they were derived from the ER. Some of the ER-derived dense protein bodies were attached to a blebbing structure containing prolamin. These results indicated that OsSar1a/b/c play a crucial role in storage proteins exiting from the ER, with functional redundancy in rice endosperm, and glutelin and α-globulin transported together from the ER to the Golgi apparatus by a pathway mediated by coat protein complex II.
Role of the Fur Regulon in Iron Transport in Bacillus subtilis
Ollinger, Juliane; Song, Kyung-Bok; Antelmann, Haike; Hecker, Michael; Helmann, John D.
2006-01-01
The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding ∼40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT. PMID:16672620
Role of the Fur regulon in iron transport in Bacillus subtilis.
Ollinger, Juliane; Song, Kyung-Bok; Antelmann, Haike; Hecker, Michael; Helmann, John D
2006-05-01
The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding approximately 40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT.
Transporter-mediated natural product-drug interactions for the treatment of cardiovascular diseases.
Zha, Weibin
2018-04-01
The growing use of natural products in cardiovascular (CV) patients has been greatly raising the concerns about potential natural product-CV drug interactions. Some of these may lead to unexpected cardiovascular adverse effects and it is, therefore, essential to identify or predict potential natural product-CV drug interactions, and to understand the underlying mechanisms. Drug transporters are important determinants for the pharmacokinetics of drugs and alterations of drug transport has been recognized as one of the major causes of natural product-drug interactions. In last two decades, many CV drugs (e.g., angiotensin II receptor blockers, beta-blockers and statins) have been identified to be substrates and inhibitors of the solute carrier (SLC) transporters and the ATP-binding cassette (ABC) transporters, which are two major transporter superfamilies. Meanwhile, in vitro and in vivo studies indicate that a growing number of natural products showed cardioprotective effects (e.g., gingko biloba, danshen and their active ingredients) are also substrates and inhibitors of drug transporters. Thus, to understand transporter-mediated natural product-CV drug interactions is important and some transporter-mediated interactions have already shown to have clinical relevance. In this review, we review the current knowledge on the role of ABC and SLC transporters in CV therapy, as well as transporter modulation by natural products used in CV diseases and their induced natural product-CV drug interactions through alterations of drug transport. We hope our review will aid in a comprehensive summary of transporter-mediated natural product-CV drug interactions and help public and physicians understand these type of interactions. Copyright © 2017. Published by Elsevier B.V.
Direct Spectroscopic Detection of ATP Turnover Reveals Mechanistic Divergence of ABC Exporters.
Collauto, Alberto; Mishra, Smriti; Litvinov, Aleksei; Mchaourab, Hassane S; Goldfarb, Daniella
2017-08-01
We have applied high-field (W-band) pulse electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR)-detected nuclear magnetic resonance (EDNMR) to characterize the coordination sphere of the Mn 2+ co-factor in the nucleotide binding sites (NBSs) of ABC transporters. MsbA and BmrCD are two efflux transporters hypothesized to represent divergent catalytic mechanisms. Our results reveal distinct coordination of Mn 2+ to ATP and transporter residues in the consensus and degenerate NBSs of BmrCD. In contrast, the coordination of Mn 2+ at the two NBSs of MsbA is similar, which provides a mechanistic rationale for its higher rate constant of ATP hydrolysis relative to BmrCD. Direct detection of vanadate ion, trapped in a high-energy post-hydrolysis intermediate, further supports the notion of asymmetric hydrolysis by the two NBSs of BmrCD. The integrated spectroscopic approach presented here, which link energy input to conformational dynamics, can be applied to a variety of systems powered by ATP turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bhongsatiern, Jiraganya; Ohtsuki, Sumio; Tachikawa, Masanori; Hori, Satoko; Terasaki, Tetsuya
2005-03-01
ATP-binding cassette (ABC) transporter A4 is a member of the ABC transporter subfamily A which has been reported to be exclusively expressed in the retina. In contrast, a previous report has suggested a possible relationship between ABCA4 and CNS function. The purpose of the present study was to investigate the localization of ABCA4 mRNA and protein in rat brain. In situ hybridization analysis revealed that ABCA4 mRNA was localized in the lateral ventricles. RT-PCR analysis detected ABCA4 mRNA in isolated rat choroid plexus and conditionally immortalized rat choroid plexus epithelial cells (TR-CSFB). Furthermore, ABCA4 protein was also detected in the isolated rat choroid plexus at about 250 kDa by western blot analysis, and its apparent molecular size was reduced by N-glycosidase F treatment. These results suggest that glycosylated ABCA4 protein is expressed in rat choroid plexus epithelial cells. ABCA4 may play a role in the function of the blood-cerebrospinal fluid barrier and affect CSF conditions.
Martinelli, Axel; Henriques, Gisela; Cravo, Pedro; Hunt, Paul
2011-01-01
In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates. PMID:20858498
GPS/GNSS Antenna Characterization : GPS-ABC Workshop V RTCA Washington, DC October 14, 2016.
DOT National Transportation Integrated Search
2016-10-14
One component of the Department of Transportations GPS Adjacent Band : Compatibility Study is the characterization of GPS/GNSS receiver antennas : Such characterization is needed to: : Compare radiated and conducted (wired) test result...
Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator.
Zhang, Zhe; Chen, Jue
2016-12-01
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from the ATP-binding cassette (ABC) transporter family. In this study, we determined the structure of zebrafish CFTR in the absence of ATP by electron cryo-microscopy to 3.7 Šresolution. Human and zebrafish CFTR share 55% sequence identity, and 42 of the 46 cystic-fibrosis-causing missense mutational sites are identical. In CFTR, we observe a large anion conduction pathway lined by numerous positively charged residues. A single gate near the extracellular surface closes the channel. The regulatory domain, dephosphorylated, is located in the intracellular opening between the two nucleotide-binding domains (NBDs), preventing NBD dimerization and channel opening. The structure also reveals why many cystic-fibrosis-causing mutations would lead to defects either in folding, ion conduction, or gating and suggests new avenues for therapeutic intervention. Copyright © 2016 Elsevier Inc. All rights reserved.
Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
NASA Astrophysics Data System (ADS)
Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas
2017-02-01
A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally, locally and un-identifiable model classes, and then to model updating of a two degree-of-freedom nonlinear structure with Duffing nonlinearities in its interstory force-deflection relationship.
Factorial validity of the Movement Assessment Battery for Children-2 (age band 2).
Wagner, Matthias Oliver; Kastner, Julia; Petermann, Franz; Bös, Klaus
2011-01-01
The Movement Assessment Battery for Children-2 (M-ABC-2) is one of the most commonly used tests for the diagnosis of specific developmental disorders of motor function (F82). The M-ABC-2 comprises eight subtests per age band (AB) that are assigned to three dimensions: manual dexterity, aiming and catching, and balance. However, while previous exploratory findings suggested the correctness of the assumption of factorial validity, there is no empirical evidence that the M-ABC-2 subtests allow for a valid reproduction of the postulated factorial structure. The purpose of this study was to empirically confirm the factorial validity of the M-ABC-2. The German normative sample of AB2 (7-10 years; N=323) was used as the study sample for the empirical analyses. Confirmatory factor analysis was used to verify the factorial validity of the M-ABC-2 (AB2). The incremental fit indices (χ2=28.675; df=17; Bollen-Stine p value=0.318; RMSEA=0.046 [0.011-0.075]; SRMR=0.038; CFI=0.960) provided evidence for the factorial validity of the M-ABC-2 (AB2). However, because of a lack of empirical verification for convergent and discriminant validity, there is still no evidence that F82 can be diagnosed using M-ABC-2 (AB2). Copyright © 2010 Elsevier Ltd. All rights reserved.
He, Xiaoyuan; Zhao, Mingfeng; Chen, Jinyan; Wu, Rimao; Zhang, Jianlei; Cui, Rui; Jiang, Yanyu; Chen, Jie; Cao, Xiaoli; Xing, Yi; Zhang, Yuchen; Meng, Juanxia; Deng, Qi; Sui, Tao
2015-01-01
Objective To study the main molecular mechanisms responsible for itraconazole resistance in clinical isolates of Candida krusei. Methods The 14α-demethylases encoded by ERG11 gene in the 16 C.krusei clinical isolates were amplified by polymerase chain reaction (PCR), and their nucleotide sequences were determined to detect point mutations. Meanwhile, ERG11 and efflux transporters (ABC1 and ABC2) genes were determined by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) for their expression in itraconazole-resistant (R), itraconazole-susceptible dose dependent (SDD) and itraconazole-susceptible (S) C.krusei at the mRNA level. Results We found 7-point mutations in ERG11 gene of all the C.krusei clinical isolates, including 6 synonymous mutations and 1 missense mutation (C44T). However, the missense mutation was found in the three groups. The mRNA levels of ERG11 gene in itraconazole-resistant isolates showed higher expression compared with itraconazole-susceptible dose dependent and itraconazole-susceptible ones (P = 0.015 and P = 0.002 respectively). ABC2 gene mRNA levels in itraconazole-resistant group was significantly higher than the other two groups, and the levels of their expression in the isolates appeared to increase with the decrease of susceptibility to itraconazole (P = 0.007 in SDD compared with S, P = 0.016 in SDD with R, and P<0.001 in S with R respectively). While ABC1 gene presented lower expression in itraconazole resistant strains. However, the mRNA levels of ERG11, ABC1 and ABC2 in a C.krusei (CK10) resistant to both itraconazole and voriconazole were expressed highest in all the itraconazole-resistant isolates. Conclusions There are ERG11 gene polymorphisms in clinical isolates of C.krusei. ERG11 gene mutations may not be involved in the development of itraconazole resistance in C.krusei. ERG11 and ABC2 overexpression might be responsible for the acquired itraconazole resistance of these clinical isolates. PMID:26308936
Synthetic single domain antibodies for the conformational trapping of membrane proteins
Arnold, Fabian M; Stohler, Peter; Bocquet, Nicolas; Hug, Melanie N; Huber, Sylwia; Siegrist, Martin; Hetemann, Lisa; Gera, Jennifer; Gmür, Samira; Spies, Peter; Gygax, Daniel
2018-01-01
Mechanistic and structural studies of membrane proteins require their stabilization in specific conformations. Single domain antibodies are potent reagents for this purpose, but their generation relies on immunizations, which impedes selections in the presence of ligands typically needed to populate defined conformational states. To overcome this key limitation, we developed an in vitro selection platform based on synthetic single domain antibodies named sybodies. To target the limited hydrophilic surfaces of membrane proteins, we designed three sybody libraries that exhibit different shapes and moderate hydrophobicity of the randomized surface. A robust binder selection cascade combining ribosome and phage display enabled the generation of conformation-selective, high affinity sybodies against an ABC transporter and two previously intractable human SLC transporters, GlyT1 and ENT1. The platform does not require access to animal facilities and builds exclusively on commercially available reagents, thus enabling every lab to rapidly generate binders against challenging membrane proteins. PMID:29792401
Dai, Fuhong; Yoo, Won Gi; Lee, Ji-Yun; Lu, Yanyan; Pak, Jhang Ho; Sohn, Woon-Mok; Hong, Sung-Jong
2017-03-01
Multidrug resistance-associated protein 7 (MRP7, ABCC10) is a C subfamily member of the ATP-binding cassette (ABC) superfamily. MRP7 is a lipophilic anion transporter that pumps endogenous and xenobiotic substrates from the cytoplasm to the extracellular milieu. Here, we cloned and characterized CsMRP7 as a novel ABC transporter from the Chinese liver fluke, Clonorchis sinensis. Full-length cDNA of CsMRP7 was 5174 nt, encoded 1636 amino acids (aa), and harbored a 147-bp 5'-untranslated region (5'-UTR) and 116-bp 3'-UTR. Phylogenetic analysis confirmed that CsMRP7 was closer to the ABCC subfamily than the ABCB subfamily. Tertiary structures of the N-terminal region (1-322 aa) and core region (323-1621 aa) of CsMRP7 were generated by homology modeling using glucagon receptor (PDB ID: 5ee7_A) and P-glycoprotein (PDB ID: 4f4c_A) as templates, respectively. CsMRP7 nucleotide-binding domain 2 (NBD2) was conserved more than NBD1, which was the sites of ATP binding and hydrolysis. Like typical long MRPs, CsMRP7 has an additional membrane-spanning domain 0 (MSD0) and cytoplasmic loop, along with a common structural fold consisting of MSD1-NBD1-MSD2-NBD2 as a single polypeptide assembly. MSD0, MSD1, and MSD2 consisted of TM1-7, TM8-13, and TM14-19, respectively. The CsMRP7 transcript was more abundant in the metacercariae than in the adult worms. Truncated NBD1 (39 kDa) and NBD2 (44 kDa) were produced in bacteria and mouse immune sera were raised. CsMRP7 was localized in the apical side of the intestinal epithelium, sperm in the testes and seminal receptacle, receptacle membrane, and mesenchymal tissue around intestine in the adult worm. These results provide molecular information and insights into structural and functional characteristics of CsMRP7 and homologs of flukes.
Energetic evolution of cellular Transportomes.
Darbani, Behrooz; Kell, Douglas B; Borodina, Irina
2018-05-30
Transporter proteins mediate the translocation of substances across the membranes of living cells. Many transport processes are energetically expensive and the cells use 20 to 60% of their energy to power the transportomes. We hypothesized that there may be an evolutionary selection pressure for lower energy transporters. We performed a genome-wide analysis of the compositional reshaping of the transportomes across the kingdoms of bacteria, archaea, and eukarya. We found that the share of ABC transporters is much higher in bacteria and archaea (ca. 27% of the transportome) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5-6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants with (ca. 13%), when compared to bacteria and archaea with only 6-7%. Therefore, our results show a move to a preference for the low-energy-demanding transporters (ion channels and carriers) over the more energy-costly transporter classes (ATP-dependent families, and ABCs in particular) as part of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues of modern mitochondrial solute carriers. The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important in the development of tissues performing energetically costly cellular functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuliani, Sarah E; Frank, Ashley M; Corgliano, Danielle M
Abstract Background: Transporter proteins are one of an organism s primary interfaces with the environment. The expressed set of transporters mediates cellular metabolic capabilities and influences signal transduction pathways and regulatory networks. The functional annotation of most transporters is currently limited to general classification into families. The development of capabilities to map ligands with specific transporters would improve our knowledge of the function of these proteins, improve the annotation of related genomes, and facilitate predictions for their role in cellular responses to environmental changes. Results: To improve the utility of the functional annotation for ABC transporters, we expressed and purifiedmore » the set of solute binding proteins from Rhodopseudomonas palustris and characterized their ligand-binding specificity. Our approach utilized ligand libraries consisting of environmental and cellular metabolic compounds, and fluorescence thermal shift based high throughput ligand binding screens. This process resulted in the identification of specific binding ligands for approximately 64% of the purified and screened proteins. The collection of binding ligands is representative of common functionalities associated with many bacterial organisms as well as specific capabilities linked to the ecological niche occupied by R. palustris. Conclusion: The functional screen identified specific ligands that bound to ABC transporter periplasmic binding subunits from R. palustris. These assignments provide unique insight for the metabolic capabilities of this organism and are consistent with the ecological niche of strain isolation. This functional insight can be used to improve the annotation of related organisms and provides a route to evaluate the evolution of this important and diverse group of transporter proteins.« less
The ABCs of membrane transporters in health and disease (SLC series): Introduction☆☆☆
Hediger, Matthias A.; Clémençon, Benjamin; Burrier, Robert E.; Bruford, Elspeth A.
2013-01-01
The field of transport biology has steadily grown over the past decade and is now recognized as playing an important role in manifestation and treatment of disease. The SLC (solute carrier) gene series has grown to now include 52 families and 395 transporter genes in the human genome. A list of these genes can be found at the HUGO Gene Nomenclature Committee (HGNC) website (see www.genenames.org/genefamilies/SLC). This special issue features mini-reviews for each of these SLC families written by the experts in each field. The existing online resource for solute carriers, the Bioparadigms SLC Tables (www.bioparadigms.org), has been updated and significantly extended with additional information and cross-links to other relevant databases, and the nomenclature used in this database has been validated and approved by the HGNC. In addition, the Bioparadigms SLC Tables functionality has been improved to allow easier access by the scientific community. This introduction includes: an overview of all known SLC and “non-SLC” transporter genes; a list of transporters of water soluble vitamins; a summary of recent progress in the structure determination of transporters (including GLUT1/SLC2A1); roles of transporters in human diseases and roles in drug approval and pharmaceutical perspectives. PMID:23506860
Seer-Linnemayr, Charlotte; Ravelli, Raimond B. G.; Matadeen, Rishi; De Carlo, Sacha; Alewijnse, Bart; Portugal, Rodrigo V.; Pannu, Navraj S.; Schatz, Michael; van Heel, Marin
2017-01-01
Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the ‘Einstein from random noise’ problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous (‘four-dimensional’) cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, ‘random-startup’ three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external ‘starting models’. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive ‘ABC-4D’ pipeline is based on the two-dimensional reference-free ‘alignment by classification’ (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Å is presented as an example of the use of the ABC-4D procedure. PMID:28989723
ERIC Educational Resources Information Center
Department of the Interior, Washington, DC. Office of Water Research and Technology.
This publication provides a simple explanation of how various processes convert sea or brackish water to fresh water. Included are descriptions of the membrane processes (reverse osmosis, electrodialysis, transport depletion, and piezodialysis); the distillation processes (multistage flash distillation, vertical tube distillation, multieffect…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
...-Mouth Disease 3ABC ELISA Diagnostic Kit AGENCY: Science and Technology Directorate, Plum Island Animal... Center (PIADC), is seeking industry collaborators to aid DHS S&T in developing an ELISA diagnostic test... and Mouth Disease virus (FMDV) non-structural proteins (NSP): 3A, 3B, or 3C. This new FMDV 3ABC ELISA...
Quiroz-Valenzuela, Soledad; Sukuru, Sai Chetan K.; Hausinger, Robert P.; Kuhn, Leslie A.; Heller, William T.
2008-01-01
Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC)3 induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle x-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD)3, and (UreABC-UreDF)3 confirm that UreD and UreF bind near UreB at the periphery of the (UreAC)3 structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF)3 allows CO2 and nickel ions to gain access to the nascent active site. PMID:18823937
Applying activity-based costing in long-term care.
Wodchis, W P
1998-01-01
As greater numbers of the elderly use health services, and as health care costs climb, effective financial tracking is essential. Cost management in health care can benefit if costs are linked to the care activities where they are incurred. Activity-based costing (ABC) provides a useful approach. The framework aligns costs (inputs), through activities (process), to outputs and outcomes. It allocates costs based on client care needs rather than management structure. The ABC framework was tested in a residential care facility and in supportive housing apartments. The results demonstrate the feasibility and advantages of ABC for long term care agencies, including community-based care.
Schott, Nadja
2008-12-01
The present study investigates the psychometric properties and the factorial structure of the German adaptation of the Activities-Specific Balance Confidence (ABC) scale (Powell & Myers, 1995) for the evaluation of falls-related self-efficacy in community-dwelling older adults. The German adaptation of the ABC using a forward-backward procedure was administered to 113 older adults (age 68.9+/-8.5 years). The following internationally accepted instruments were used for validation: The Short Form Health Survey SF 36, the Geriatric Depression Scale (GDS), the Trail Making Test and the Letter Number Sequencing Test, and motor tests (balance, strength, mobility). The internal consistency (0.91-0.95) as well as the test-retest reliability of the subscales was excellent (0.94-0.98). The correlation coefficients with the validation instruments ranged between 0.33 and 0.58. Significant differences in the ABC-D scores were found in older adults with and without falls. Older adults with a recent fall history scored lower on the ABC-D than older adults without a recent fall history. To conclude, the German version of the ABC has properties analogous to the original English version and is apparently useful in assessing falls-related self-efficacy.
The systems biology of uric acid transporters: the role of remote sensing and signaling.
Nigam, Sanjay K; Bhatnagar, Vibha
2018-07-01
Uric acid homeostasis in the body is mediated by a number of SLC and ABC transporters in the kidney and intestine, including several multispecific 'drug' transporters (e.g., OAT1, OAT3, and ABCG2). Optimization of uric acid levels can be viewed as a 'systems biology' problem. Here, we consider uric acid transporters from a systems physiology perspective using the framework of the 'Remote Sensing and Signaling Hypothesis.' This hypothesis explains how SLC and ABC 'drug' and other transporters mediate interorgan and interorganismal communication (e.g., gut microbiome and host) via small molecules (e.g., metabolites, antioxidants signaling molecules) through transporters expressed in tissues lining body fluid compartments (e.g., blood, urine, cerebrospinal fluid). The list of uric acid transporters includes: SLC2A9, ABCG2, URAT1 (SLC22A12), OAT1 (SLC22A6), OAT3 (SLC22A8), OAT4 (SLC22A11), OAT10 (SLC22A13), NPT1 (SLC17A1), NPT4 (SLC17A3), MRP2 (ABCC2), MRP4 (ABCC4). Normally, SLC2A9, - along with URAT1, OAT1 and OAT3, - appear to be the main transporters regulating renal urate handling, while ABCG2 appears to regulate intestinal transport. In chronic kidney disease (CKD), intestinal ABCG2 becomes much more important, suggesting remote organ communication between the injured kidney and the intestine. The remote sensing and signaling hypothesis provides a useful systems-level framework for understanding the complex interplay of uric acid transporters expressed in different tissues involved in optimizing uric acid levels under normal and diseased (e.g., CKD, gut microflora dysbiosis) conditions.
Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent; Hiron, Aurélia
2016-12-15
The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Verstraelen, Jessica; Reichl, Stephan
2013-01-30
Ocular drug absorption studies are required for the development of new drugs or drug delivery systems for eye treatment. Such preclinical investigations on transcorneal drug absorption are performed ex vivo with the excised corneas of experimental animals or in vitro using corneal cell culture models. The data currently available on the expression of ABC transporter proteins in corneal tissue is limited or contradictory. This study describes, for the first time, the comparison of the expression of ABC transporters, in particular, MDR1, BCRP and MRP3, between human cornea cell culture models and the most commonly used ex vivo models, namely, rabbit and porcine corneas, conducted in the same laboratory. The expression levels and functionality were determined by means of PCR, western blot, immunohistochemistry and bidirectional permeation studies using specific substrates and inhibitors. The results clearly indicate species-dependent expression of the studied efflux transporters. In the rabbit cornea, the expression and activity of MDR1 transporter was confirmed, whereas human cell culture models and porcine corneas did not show MDR1 expression. However, human cornea models possessed MRP3 and BCRP expression, whereas no functional expression was found in rabbit and porcine corneas. Therefore, the translation of transcorneal permeation data from animal experiments to humans should be performed with caution. Copyright © 2012 Elsevier B.V. All rights reserved.
Rapid Identification of Bacterial Virulence Factors
2014-04-15
protein sorting and transport. F/’/wyi-deletion mutants had decreased invasiveness of HeLa cells when compared to their parental strain, and it has...mileux. Bacteria with intracellular life styles and have reductive genomes often have many different ABC transporters. This is certainly the case in...34 Microbiology 151:2975-2986. Newman , R.M., P. Salunkhe, A. Godzik, J.C. Reed. 2006. Identification and Characterization of a Novel Bacterial
ATP-binding cassette (ABC) transporters in caprine preantral follicles: gene and protein expression.
Guerreiro, Denise Damasceno; de Lima, Laritza Ferreira; Mbemya, Gildas Tetaping; Maside, Carolina Mielgo; Miranda, André Marrocos; Tavares, Kaio César Simiano; Alves, Benner Geraldo; Faustino, Luciana Rocha; Smitz, Johan; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro
2018-06-01
The multidrug resistance proteins ABCB1, ABCC2 and ABCG2 are an energy-dependent efflux pump that functions in systemic detoxification processes. Physiologically expressed in a variety of tissues, most abundantly in the liver and intestinal epithelia, placenta, blood-brain barrier and various stem cells, until now, these pumps were not identified in goat ovarian tissue. Therefore, the aim of this study is to analyze ABCB1, ABCC2, and ABCG2 mRNA and protein expression in goat preantral follicles. Fragments (3 × 3 × 1 mm) from five pairs of ovary (n = 10) obtained from five goat were collected and immediately submitted to qPCR, Western blot, and immunofluorescence assay for mRNA detection and identification and localization of the ABC transporters, respectively. mRNA for ABCB1, ABCC2, and ABCG2 and the presence of their proteins were observed on ovarian tissue samples. Positive marks were observed for the three transport proteins in all follicular categories studied. However, the marks were primarily localized in the oocyte of primordial, transition and primary follicle categories. In conclusion, goat ovarian tissue expresses mRNA for the ABCB1, ABCC2 and ABCG2 transporters and the expression of these proteins in the preantral follicles is a follicle-dependent stage.
Transport capabilities of environmental Pseudomonads for sulfur compounds
Zerbs, Sarah; Korajczyk, Peter J.; Noirot, Philippe H.; ...
2017-01-27
Sulfur is an essential element in plant rhizospheres and microbial activity plays a key role in increasing the biological availability of sulfur in soil environments. To better understand the mechanisms facilitating the exchange of sulfur-containing molecules in soil, we profiled the binding specificities of eight previously uncharacterized ABC transporter solute-binding proteins from plant-associated Pseudomonads. A high-throughput screening procedure indicated eighteen significant organosulfur binding ligands, with at least one high-quality screening hit for each protein target. Calorimetric and spectroscopic methods were used to validate the best ligand assignments and catalog the thermodynamic properties of the protein-ligand interactions. Two novel high-affinity ligandmore » binding activities were identified and quantified in this set of solute binding proteins. Bacteria were cultured in minimal media with screening library components supplied as the sole sulfur sources, demonstrating that these organosulfur compounds can be metabolized and confirming the relevance of ligand assignments. These results expand the set of experimentally validated ligands amenable to transport by this ABC transporter family and demonstrate the complex range of protein-ligand interactions that can be accomplished by solute-binding proteins. As a result, characterizing new nutrient import pathways provides insight into Pseudomonad metabolic capabilities which can be used to further interrogate bacterial survival and participation in soil and rhizosphere communities.« less
Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM
Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J.; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R.
2012-01-01
The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota. PMID:23028535
Hawkins, H; Langer, J; Padua, E; Reaves, J
2001-06-01
Activity-based costing (ABC) is a process that enables the estimation of the cost of producing a product or service. More accurate than traditional charge-based approaches, it emphasizes analysis of processes, and more specific identification of both direct and indirect costs. This accuracy is essential in today's healthcare environment, in which managed care organizations necessitate responsible and accountable costing. However, to be successfully utilized, it requires time, effort, expertise, and support. Data collection can be tedious and expensive. By integrating ABC with information management (IM) and systems (IS), organizations can take advantage of the process orientation of both, extend and improve ABC, and decrease resource utilization for ABC projects. In our case study, we have examined the process of a multidisciplinary breast center. We have mapped the constituent activities and established cost drivers. This information has been structured and included in our information system database for subsequent analysis.
Reis de Sá, Leandro Figueira; Toledo, Fabiano Travanca; de Sousa, Bruno Artur; Gonçalves, Augusto César; Tessis, Ana Claudia; Wendler, Edison P; Comasseto, João V; Dos Santos, Alcindo A; Ferreira-Pereira, Antonio
2014-07-26
Resistance to fluconazole, a commonly used azole antifungal, is a challenge for the treatment of fungal infections. Resistance can be mediated by overexpression of ABC transporters, which promote drug efflux that requires ATP hydrolysis. The Pdr5p ABC transporter of Saccharomyces cerevisiae is a well-known model used to study this mechanism of antifungal resistance. The present study investigated the effects of 13 synthetic compounds on Pdr5p. Among the tested compounds, four contained a tellurium-butane group and shared structural similarities that were absent in the other tested compounds: a lateral hydrocarbon chain and an amide group. These four compounds were capable of inhibiting Pdr5p ATPase activity by more than 90%, they demonstrated IC50 values less than 2 μM and had an uncompetitive pattern of Pdr5p ATPase activity inhibition. These organotellurides did not demonstrate cytotoxicity against human erythrocytes or S. cerevisiae mutant strains (a strain that overexpress Pdr5p and a null mutant strain) even in concentrations above 100 μM. When tested at 100 μM, they could reverse the fluconazole resistance expressed by both the S. cerevisiae mutant strain that overexpress Pdr5p and a clinical isolate of Candida albicans. We have identified four organotellurides that are promising candidates for the reversal of drug resistance mediated by drug efflux pumps. These molecules will act as scaffolds for the development of more efficient and effective efflux pump inhibitors that can be used in combination therapy with available antifungals.
Pardo-López, Liliana; Soberón, Mario; Bravo, Alejandra
2013-01-01
Bacillus thuringiensis bacteria are insect pathogens that produce different Cry and Cyt toxins to kill their hosts. Here we review the group of three-domain Cry (3d-Cry) toxins. Expression of these 3d-Cry toxins in transgenic crops has contributed to efficient control of insect pests and a reduction in the use of chemical insecticides. The mode of action of 3d-Cry toxins involves sequential interactions with several insect midgut proteins that facilitate the formation of an oligomeric structure and induce its insertion into the membrane, forming a pore that kills midgut cells. We review recent progress in our understanding of the mechanism of action of these Cry toxins and focus our attention on the different mechanisms of resistance that insects have evolved to counter their action, such as mutations in cadherin, APN and ABC transporter genes. Activity of Cry1AMod toxins, which are able to form toxin oligomers in the absence of receptors, against different resistant populations, including those affected in the ABC transporter and the role of dominant negative mutants as antitoxins, supports the hypothesis that toxin oligomerization is a limiting step in the Cry insecticidal activity. Knowledge of the action of 3d-Cry toxin and the resistance mechanisms to these toxins will set the basis for a rational design of novel toxins to overcome insect resistance, extending the useful lifespan of Cry toxins in insect control programs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
2014-01-01
Background Resistance to fluconazole, a commonly used azole antifungal, is a challenge for the treatment of fungal infections. Resistance can be mediated by overexpression of ABC transporters, which promote drug efflux that requires ATP hydrolysis. The Pdr5p ABC transporter of Saccharomyces cerevisiae is a well-known model used to study this mechanism of antifungal resistance. The present study investigated the effects of 13 synthetic compounds on Pdr5p. Results Among the tested compounds, four contained a tellurium-butane group and shared structural similarities that were absent in the other tested compounds: a lateral hydrocarbon chain and an amide group. These four compounds were capable of inhibiting Pdr5p ATPase activity by more than 90%, they demonstrated IC50 values less than 2 μM and had an uncompetitive pattern of Pdr5p ATPase activity inhibition. These organotellurides did not demonstrate cytotoxicity against human erythrocytes or S. cerevisiae mutant strains (a strain that overexpress Pdr5p and a null mutant strain) even in concentrations above 100 μM. When tested at 100 μM, they could reverse the fluconazole resistance expressed by both the S. cerevisiae mutant strain that overexpress Pdr5p and a clinical isolate of Candida albicans. Conclusions We have identified four organotellurides that are promising candidates for the reversal of drug resistance mediated by drug efflux pumps. These molecules will act as scaffolds for the development of more efficient and effective efflux pump inhibitors that can be used in combination therapy with available antifungals. PMID:25062749
Brautigam, Chad A; Deka, Ranjit K; Liu, Wei Z; Norgard, Michael V
2016-01-01
Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs) of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein's topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum's physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen.
Inhibition of the Human ABC Efflux Transporters P-gp and ...
High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity.
Porteous, Carolyn M.; Menon, David K.; Aigbirhio, Franklin I.; Smith, Robin A.J.; Murphy, Michael P.
2013-01-01
Background Mitochondrial dysfunction contributes to degenerative neurological disorders, consequently there is a need for mitochondria-targeted therapies that are effective within the brain. One approach to deliver pharmacophores is by conjugation to the lipophilic triphenylphosphonium (TPP) cation that accumulates in mitochondria driven by the membrane potential. While this approach has delivered TPP-conjugated compounds to the brain, the amounts taken up are lower than by other organs. Methods To discover why uptake of hydrophobic TPP compounds by the brain is relatively poor, we assessed the role of the P-glycoprotein (Mdr1a/b) and breast cancer resistance protein (Bcrp) ATP binding cassette (ABC) transporters, which drive the efflux of lipophilic compounds from the brain thereby restricting the uptake of lipophilic drugs. We used a triple transgenic mouse model lacking two isoforms of P-glycoprotein (Mdr1a/1b) and the Bcrp. Results There was a significant increase in the uptake into the brain of two hydrophobic TPP compounds, MitoQ and MitoF, in the triple transgenics following intra venous (IV) administration compared to control mice. Greater amounts of the hydrophobic TPP compounds were also retained in the liver of transgenic mice compared to controls. The uptake into the heart, white fat, muscle and kidneys was comparable between the transgenic mice and controls. Conclusion Efflux of hydrophobic TPP compounds by ABC transporters contributes to their lowered uptake into the brain and liver. General significance These findings suggest that strategies to bypass ABC transporters in the BBB will enhance delivery of mitochondria-targeted antioxidants, probes and pharmacophores to the brain. PMID:23454352
Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun
2015-04-01
Biopesticides or transgenic crops based on Cry toxins from the soil bacterium Bacillus thuringiensis (Bt) effectively control agricultural insect pests. The sustainable use of Bt biopesticides and Bt crops is threatened, however, by the development of Cry resistance in the target pests. The diamondback moth, Plutella xylostella (L.), is the first pest that developed resistance to a Bt biopesticide in the field, and a recent study has shown that the resistance of P. xylostella to Cry1Ac is caused by a mutation in an ATP-binding cassette (ABC) transporter gene (ABCC2). In this study, we report that down-regulation of a novel ABC transporter gene from ABCG subfamily (Pxwhite) is associated with Cry1Ac resistance in P. xylostella. The full-length cDNA sequence of Pxwhite was cloned and analyzed. Spatial-temporal expression detection revealed that Pxwhite was expressed in all tissues and developmental stages, and highest expressed in Malpighian tubule tissue and in egg stage. Sequence variation analysis of Pxwhite indicated the absence of constant non-synonymous mutations between susceptible and resistant strains, whereas midgut transcript analysis showed that Pxwhite was remarkably reduced in all resistant strains and further reduced when larvae of the moderately resistant SZ-R strain were subjected to selection with Cry1Ac toxin. Furthermore, RNA interference (RNAi)-mediated suppression of Pxwhite gene expression significantly reduced larval susceptibility to Cry1Ac toxin, and genetic linkage analysis confirmed that down-regulation of Pxwhite gene is tightly linked to Cry1Ac resistance in P. xylostella. To our knowledge, this is the first report indicating that Pxwhite gene is involved in Cry1Ac resistance in P. xylostella. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gaddelapati, Sharath Chandra; Kalsi, Megha; Roy, Amit; Palli, Subba Reddy
2018-08-01
The Colorado potato beetle (CPB), Leptinotarsa decemlineata developed resistance to imidacloprid after exposure to this insecticide for multiple generations. Our previous studies showed that xenobiotic transcription factor, cap 'n' collar isoform C (CncC) regulates the expression of multiple cytochrome P450 genes, which play essential roles in resistance to plant allelochemicals and insecticides. In this study, we sought to obtain a comprehensive picture of the genes regulated by CncC in imidacloprid-resistant CPB. We performed sequencing of RNA isolated from imidacloprid-resistant CPB treated with dsRNA targeting CncC or gene coding for green fluorescent protein (control). Comparative transcriptome analysis showed that CncC regulated the expression of 1798 genes, out of which 1499 genes were downregulated in CncC knockdown beetles. Interestingly, expression of 79% of imidacloprid induced P450 genes requires CncC. We performed quantitative real-time PCR to verify the reduction in the expression of 20 genes including those coding for detoxification enzymes (P450s, glutathione S-transferases, and esterases) and ABC transporters. The genes coding for ABC transporters are induced in insecticide resistant CPB and require CncC for their expression. Knockdown of genes coding for ABC transporters simultaneously or individually caused an increase in imidacloprid-induced mortality in resistant beetles confirming their contribution to insecticide resistance. These studies identified CncC as a transcription factor involved in regulation of genes responsible for imidacloprid resistance. Small molecule inhibitors of CncC or suppression of CncC by RNAi could provide effective synergists for pest control or management of insecticide resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Handali, Melody; Neupane, Durga P.; Roychowdhury, Hridindu; Yukl, Erik T.
2015-01-01
ATP-binding cassette (ABC) transporters of the cluster 9 family are ubiquitous among bacteria and essential for acquiring Zn2+ and Mn2+ from the environment or, in the case of pathogens, from the host. These rely on a substrate-binding protein (SBP) to coordinate the relevant metal with high affinity and specificity and subsequently release it to a membrane permease for translocation into the cytoplasm. Although a number of cluster 9 SBP structures have been determined, the structural attributes conferring Zn2+ or Mn2+ specificity remain ambiguous. Here we describe the gene expression profile, in vitro metal binding properties, and crystal structure of a new cluster 9 SBP from Paracoccus denitrificans we have called AztC. Although all of our results strongly indicate Zn2+ over Mn2+ specificity, the Zn2+ ion is coordinated by a conserved Asp residue only observed to date as a metal ligand in Mn2+-specific SBPs. The unusual sequence properties of this protein are shared among close homologues, including members from the human pathogens Klebsiella pneumonia and Enterobacter aerogenes, and would seem to suggest a subclass of Zn2+-specific transporters among the cluster 9 family. In any case, the unusual coordination environment of AztC expands the already considerable range of those available to Zn2+-specific SBPs and highlights the presence of a His-rich loop as the most reliable indicator of Zn2+ specificity. PMID:25787075
Handali, Melody; Neupane, Durga P.; Roychowdhury, Hridindu; ...
2015-03-18
Here, ATP-binding cassette (ABC) transporters of the cluster 9 family are ubiquitous among bacteria and essential for acquiring Zn 2+ and Mn 2+ from the environment or, in the case of pathogens, from the host. These rely on a substrate-binding protein (SBP) to coordinate the relevant metal with high affinity and specificity and subsequently release it to a membrane permease for translocation into the cytoplasm. Although a number of cluster 9 SBP structures have been determined, the structural attributes conferring Zn 2+ or Mn 2+ specificity remain ambiguous. Here we describe the gene expression profile, in vitro metal binding properties,more » and crystal structure of a new cluster 9 SBP from Paracoccus denitrificans we have called AztC. Although all of our results strongly indicate Zn 2+ over Mn 2+ specificity, the Zn 2+ ion is coordinated by a conserved Asp residue only observed to date as a metal ligand in Mn 2+-specific SBPs. The unusual sequence properties of this protein are shared among close homologues, including members from the human pathogens Klebsiella pneumonia and Enterobacter aerogenes, and would seem to suggest a subclass of Zn 2+-specific transporters among the cluster 9 family. In any case, the unusual coordination environment of AztC expands the already considerable range of those available to Zn 2+-specific SBPs and highlights the presence of a His-rich loop as the most reliable indicator of Zn 2+ specificity.« less
Molecular structure of human KATP in complex with ATP and ADP
Lee, Kenneth Pak Kin
2017-01-01
In many excitable cells, KATP channels respond to intracellular adenosine nucleotides: ATP inhibits while ADP activates. We present two structures of the human pancreatic KATP channel, containing the ABC transporter SUR1 and the inward-rectifier K+ channel Kir6.2, in the presence of Mg2+ and nucleotides. These structures, referred to as quatrefoil and propeller forms, were determined by single-particle cryo-EM at 3.9 Å and 5.6 Å, respectively. In both forms, ATP occupies the inhibitory site in Kir6.2. The nucleotide-binding domains of SUR1 are dimerized with Mg2+-ATP in the degenerate site and Mg2+-ADP in the consensus site. A lasso extension forms an interface between SUR1 and Kir6.2 adjacent to the ATP site in the propeller form and is disrupted in the quatrefoil form. These structures support the role of SUR1 as an ADP sensor and highlight the lasso extension as a key regulatory element in ADP’s ability to override ATP inhibition. PMID:29286281
Medrano, Francisco Javier; de Souza, Cristiane Santos; Romero, Antonio; Balan, Andrea
2014-01-01
The uptake of maltose and related sugars in Gram-negative bacteria is mediated by an ABC transporter encompassing a periplasmic component (the maltose-binding protein or MalE), a pore-forming membrane protein (MalF and MalG) and a membrane-associated ATPase (MalK). In the present study, the structure determination of the apo form of the putative maltose/trehalose-binding protein (Xac-MalE) from the citrus pathogen Xanthomonas citri in space group P6522 is described. The crystals contained two protein molecules in the asymmetric unit and diffracted to 2.8 Å resolution. Xac-MalE conserves the structural and functional features of sugar-binding proteins and a ligand-binding pocket with similar characteristics to eight different orthologues, including the residues for maltose and trehalose interaction. This is the first structure of a sugar-binding protein from a phytopathogenic bacterium, which is highly conserved in all species from the Xanthomonas genus. PMID:24817711
Assembly and mechanism of a group II ECF transporter.
Karpowich, Nathan K; Wang, Da-Neng
2013-02-12
Energy-coupling factor (ECF) transporters are a recently discovered family of primary active transporters for micronutrients and vitamins, such as biotin, thiamine, and riboflavin. Found exclusively in archaea and bacteria, including the human pathogens Listeria, Streptococcus, and Staphylococcus, ECF transporters may be the only means of vitamin acquisition in these organisms. The subunit composition of ECF transporters is similar to that of ATP binding cassette (ABC) importers, whereby both systems share two homologous ATPase subunits (A and A'), a high affinity substrate-binding subunit (S), and a transmembrane coupling subunit (T). However, the S subunit of ECF transporters is an integral membrane protein, and the transmembrane coupling subunits do not share an obvious sequence homology between the two transporter families. Moreover, the subunit stoichiometry of ECF transporters is controversial, and the detailed molecular interactions between subunits and the conformational changes during substrate translocation are unknown. We have characterized the ECF transporters from Thermotoga maritima and Streptococcus thermophilus. Our data suggests a subunit stoichiometry of 2S:2T:1A:1A' and that S subunits for different substrates can be incorporated into the same transporter complex simultaneously. In the first crystal structure of the A-A' heterodimer, each subunit contains a novel motif called the Q-helix that plays a key role in subunit coupling with the T subunits. Taken together, these findings suggest a mechanism for coupling ATP binding and hydrolysis to transmembrane transport by ECF transporters.
A Large Animal Model that Recapitulates the Spectrum of Human Intervertebral Disc Degeneration
Gullbrand, Sarah E.; Malhotra, Neil R.; Schaer, Thomas P.; Zawacki, Zosia; Martin, John T.; Bendigo, Justin R.; Milby, Andrew H.; Dodge, George R.; Vresilovic, Edward J.; Elliott, Dawn M.; Mauck, Robert L.; Smith, Lachlan J.
2016-01-01
Objective The objective of this study was to establish a large animal model that recapitulates the spectrum of intervertebral disc degeneration that occurs in humans and which is suitable for pre-clinical evaluation of a wide range of experimental therapeutics. Design Degeneration was induced in the lumbar intervertebral discs of large frame goats by either intradiscal injection of chondroitinase ABC (ChABC) over a range of dosages (0.1U, 1U or 5U) or subtotal nucleotomy. Radiographs were used to assess disc height changes over 12 weeks. Degenerative changes to the discs and endplates were assessed via magnetic resonance imaging (MRI), semi-quantitative histological grading, micro-computed tomography (µCT), and measurement of disc biomechanical properties. Results Degenerative changes were observed for all interventions that ranged from mild (0.1U ChABC) to moderate (1U ChABC and nucleotomy) to severe (5U ChABC). All groups showed progressive reductions in disc height over 12 weeks. Histological scores were significantly increased in the 1U and 5U ChABC groups. Reductions in T2 and T1ρ, and increased Pfirrmann grade were observed on MRI. Resorption and remodeling of the cortical boney endplate adjacent to ChABC injected discs also occurred. Spine segment range of motion was greater and compressive modulus was lower in 1U ChABC and nucleotomy discs compared to intact. Conclusions A large animal model of disc degeneration was established that recapitulates the spectrum of structural, compositional and biomechanical features of human disc degeneration. This model may serve as a robust platform for evaluating the efficacy of therapeutics targeted towards varying degrees of disc degeneration. PMID:27568573
Shimada, Hiroshi; Ohno, Ryoichi; Shibata, Masaru; Ikegami, Isamu; Onai, Kiyoshi; Ohto, Masa-aki; Takamiya, Ken-ichiro
2005-02-01
Phylloquinone, a substituted 1,4-naphthoquinone with an 18-carbon-saturated phytyl tail, functions as a bound one-electron carrier cofactor at the A1 site of photosystem I (PSI). A Feldmann tag line mutant, no. 2755 (designated as abc4 hereafter), showed pale-green young leaves and white old leaves. The mutated nuclear gene encoded 1,4-dihydroxy-2-naphtoic acid phytyltransferase, an enzyme of phylloquinone biosynthesis, and high-performance liquid chromatography analysis revealed that the abc4 mutant contained no phylloquinone, and only about 3% plastoquinone. Photooxidation of P700 of PSI in the abc4 mutant was not observed, and reduced-versus-oxidized difference spectroscopy indicated that the abc4 mutant had no P700. The maximum quantum yield of photosystem II (PSII) in the abc4 mutant was much decreased, and the electron transfer from PSII to PSI in the abc4 mutant did not occur. For the pale-green leaves of the abc4 mutant plant, the ultrastructure of the chloroplasts was almost the same as that of the wild-type plant. However, the chloroplasts in the albino leaves of the mutant were smaller and had a lot of grana thylakoids and few stroma thylakoids. The amounts of PSI and PSII core subunits in the abc4 mutant were significantly decreased compared with those in the wild type. These results suggested that a deficiency of phylloquinone in PSI caused the abolishment of PSI and a partial defect of PSII due to a significant decrease of plastoquinone, but did not influence the ultrastructure of the chloroplasts in young leaves.
“ABC”—The Awareness-Body-Chart: A new tool assessing body awareness
Avian, Alexander; Macheiner, Tanja; Salchinger, Beate; Dalkner, Nina; Fellendorf, Frederike T.; Birner, Armin; Bengesser, Susanne A.; Platzer, Martina; Kapfhammer, Hans-Peter; Probst, Michel; Reininghaus, Eva Z.
2017-01-01
Background Despite the importance of body awareness for health and well-being there is still a lack of valid assessment tools to scan proper body awareness. To respond to the limitations of questionnaires (reading/interpretation problems) the Awareness-Body-Chart (ABC) was designed to assess body awareness by colouring 51 regions according to their awareness. The objective of this study was to investigate the psychometric characteristics of the ABC. Methods In a questionnaire-study, 106 students in Graz (79 females, 27 males, age median 21 (IQR 20–23) years) filled in the ABC, furthermore a German body awareness questionnaire „KEKS”, and the Beck Depression Inventory II. Factor structure, internal consistency, and retest reliability of the ABC were investigated. Correlations of the ABC with the KEKS and the Beck Depression Inventory II and comparisons of subgroups were conducted. Results Through factor analyses, 14 factors with clear assignments to body parts could be categorized: cranium, face, cervical/lumbar region, chest/abdomen, back, shoulder, upper arm, lower arm/elbow, hand, genital area, thigh/hip, knee, lower leg, and foot. The 14 body parts and the total score showed acceptable to high Cronbach’s alphas (α = .64 - .97). The test-retest reliability showed values between ρ = .71 and ρ = .96. The correlation of the ABC and KEKS (r = .66, p < .001) confirmed validity. Further indications of validity could be seen in comparisons of subgroups and in correlations with the Beck Depression Inventory II. Conclusion The ABC proved good psychometric properties with acceptable to high internal consistency, acceptable to high retest reliability and high construct validity. It is an easy-to-use tool for clinical settings and research. The ABC opens new insights into body awareness-patterns of various subgroups. PMID:29036217
Gilchrist, Samuel E; Alcorn, Jane
2010-04-01
Since solute carrier (SLC) and ATP-binding cassette (ABC) transporters play pivotal roles in the transport of both nutrients and drugs into breast milk, drug-nutrient transport interactions at the lactating mammary gland are possible. Our purpose was to characterize lactation stage-dependent changes in transporter expression in rat mammary gland and isolated mammary epithelial organoids (MEO) to provide additional insight for the safe use of maternal medications during breastfeeding. We used quantitative reverse transcription-polymerase chain reaction to assess the temporal expression patterns of SLC and ABC transporters in rat mammary gland and isolated MEO at different stages of lactation. In whole mammary gland five distinct patterns of expression emerged relative to late gestation: (i) decreasing throughout lactation (Mdr1a, Mdr1b, Mrp1, Octn2, Ent2, Ent3, Ncbt2, Mtx1); (ii) prominent increase in early lactation, which may remain elevated or decline with advancing lactation (Octn1, Cnt2, Cnt3, Ent1, Pept1, Pept2); (iii) constant but decreasing later in lactation (Octn3, Dmt1); (iv) increasing until mid-to-late lactation (Oct1, Cnt1); and (v) prominent increase late in lactation (Ncbt1). In isolated MEO (an enriched source of mammary epithelial cells) major differences in expression patterns were noted for Octn3, Ncbt1, and Mtx1, but otherwise were reasonably similar with the whole mammary gland. In conclusion our study augments existing data on transporter expression in the lactating mammary gland. These data should facilitate investigations into lactation-stage dependent changes in drug or nutrient milk-to-serum concentration ratios, the potential for drug- or disease-transporter interactions, and mechanistic studies of transporter function in the lactating mammary gland.
Rice, Austin J; Harrison, Alistair; Alvarez, Frances J D; Davidson, Amy L; Pinkett, Heather W
2014-05-23
Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Chirullo, Barbara; Ammendola, Serena; Leonardi, Leonardo; Falcini, Roberto; Petrucci, Paola; Pistoia, Claudia; Vendetti, Silvia; Battistoni, Andrea; Pasquali, Paolo
2015-07-10
Salmonella Typhimurium has been shown to be highly effective as antitumor agent. The aim of this study was to investigate the tumor targeting efficacy and the mechanism of action of a specific attenuated mutant strain of Salmonella Typhimurium (STM) devoid of the whole operon coding for the high-affinity zinc transporter ZnuABC, which is required for bacterial growth in environments poor in zinc and for conferring full virulence to different Gram-negative pathogens.We showed that STM is able to penetrate and replicate into tumor cells in in vitro and in vivo models. The subcutaneous administration of STM in mammary adenocarcinoma mouse model led to both reduction of tumor growth and increase in life expectancy of STM treated mice. Moreover, investigating the potential mechanism behind the favorable clinical outcomes, we provide evidence that STM stimulates a potent inflammatory response and a specific immune pattern, recruiting a large number of innate and adaptive immune cells capable to contrast the immunosuppressive environment generated by tumors.
Solitary BioY Proteins Mediate Biotin Transport into Recombinant Escherichia coli
Finkenwirth, Friedrich; Kirsch, Franziska
2013-01-01
Energy-coupling factor (ECF) transporters form a large group of vitamin uptake systems in prokaryotes. They are composed of highly diverse, substrate-specific, transmembrane proteins (S units), a ubiquitous transmembrane protein (T unit), and homo- or hetero-oligomeric ABC ATPases. Biotin transporters represent a special case of ECF-type systems. The majority of the biotin-specific S units (BioY) is known or predicted to interact with T units and ABC ATPases. About one-third of BioY proteins, however, are encoded in organisms lacking any recognizable T unit. This finding raises the question of whether these BioYs function as transporters in a solitary state, a feature ascribed to certain BioYs in the past. To address this question in living cells, an Escherichia coli K-12 derivative deficient in biotin synthesis and devoid of its endogenous high-affinity biotin transporter was constructed as a reference strain. This organism is particularly suited for this purpose because components of ECF transporters do not naturally occur in E. coli K-12. The double mutant was viable in media containing either high levels of biotin or a precursor of the downstream biosynthetic path. Importantly, it was nonviable on trace levels of biotin. Eight solitary bioY genes of proteobacterial origin were individually expressed in the reference strain. Each of the BioYs conferred biotin uptake activity on the recombinants, which was inferred from uptake assays with [3H]biotin and growth of the cells on trace levels of biotin. The results underscore that solitary BioY transports biotin across the cytoplasmic membrane. PMID:23836870
Evidence for cryptic northern refugia in the last glacial period in Cryptomeria japonica
Kimura, Megumi K.; Uchiyama, Kentaro; Nakao, Katsuhiro; Moriguchi, Yoshinari; San Jose-Maldia, Lerma; Tsumura, Yoshihiko
2014-01-01
Background and Aims Distribution shifts and natural selection during past climatic changes are important factors in determining the genetic structure of forest species. In particular, climatic fluctuations during the Quaternary appear to have caused changes in the distribution ranges of plants, and thus strongly affected their genetic structure. This study was undertaken to identify the responses of the conifer Cryptomeria japonica, endemic to the Japanese Archipelago, to past climatic changes using a combination of phylogeography and species distribution modelling (SDM) methods. Specifically, this study focused on the locations of refugia during the last glacial maximum (LGM). Methods Genetic diversity and structure were examined using 20 microsatellite markers in 37 populations of C. japonica. The locations of glacial refugia were assessed using STRUCTURE analysis, and potential habitats under current and past climate conditions were predicted using SDM. The process of genetic divergence was also examined using the approximate Bayesian computation procedure (ABC) in DIY ABC to test the divergence time between the gene pools detected by the STRUCTURE analysis. Key Results STRUCTURE analysis identified four gene pools: northern Tohoku district; from Chubu to Chugoku district; from Tohoku to Shikoku district on the Pacific Ocean side of the Archipelago; and Yakushima Island. DIY ABC analysis indicated that the four gene pools diverged at the same time before the LGM. SDM also indicated potential northern cryptic refugia. Conclusions The combined evidence from microsatellites and SDM clearly indicates that climatic changes have shaped the genetic structure of C. japonica. The gene pool detected in northern Tohoku district is likely to have been established by cryptic northern refugia on the coast of the Japan Sea to the west of the Archipelago. The gene pool in Yakushima Island can probably be explained simply by long-term isolation from the other gene pools since the LGM. These results are supported by those of SDM and the predicted divergence time determined using ABC analysis. PMID:25355521
On Topological Indices of Certain Dendrimer Structures
NASA Astrophysics Data System (ADS)
Aslam, Adnan; Bashir, Yasir; Ahmad, Safyan; Gao, Wei
2017-05-01
A topological index can be considered as transformation of chemical structure in to real number. In QSAR/QSPR study, physicochemical properties and topological indices such as Randić, Zagreb, atom-bond connectivity ABC, and geometric-arithmetic GA index are used to predict the bioactivity of chemical compounds. Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. In this paper we determine generalised Randić, general Zagreb, general sum-connectivity indices of poly(propyl) ether imine, porphyrin, and zinc-Porphyrin dendrimers. We also compute ABC and GA indices of these families of dendrimers.
Role of Abcg2 During Mouse Embroyonic Stem Cell Diffferentiation
Role of Abcg2 During Mouse Embryonic Stem Cell Differentiation. Abcg2 is a multidrug resistance ATP-binding cassette (ABC) transporter whose activity may be considered a hallmark of stem cell plasticity. The role of Abcg2 during early embryogenesis, however, is unclear. Studies...
Ravna, Aina W; Sylte, Ingebrigt; Sager, Georg
2007-01-01
Background Multidrug resistance is a particular limitation to cancer chemotherapy, antibiotic treatment and HIV medication. The ABC (ATP binding cassette) transporters human P-glycoprotein (ABCB1) and the human MRP5 (ABCC5) are involved in multidrug resistance. Results In order to elucidate structural and molecular concepts of multidrug resistance, we have constructed a molecular model of the ATP-bound outward facing conformation of the human multidrug resistance protein ABCB1 using the Sav1866 crystal structure as a template, and compared the ABCB1 model with a previous ABCC5 model. The electrostatic potential surface (EPS) of the ABCB1 substrate translocation chamber, which transports cationic amphiphilic and lipophilic substrates, was neutral with negative and weakly positive areas. In contrast, EPS of the ABCC5 substrate translocation chamber, which transports organic anions, was generally positive. Positive-negative ratios of amino acids in the TMDs of ABCB1 and ABCC5 were also analyzed, and the positive-negative ratio of charged amino acids was higher in the ABCC5 TMDs than in the ABCB1 TMDs. In the ABCB1 model residues Leu65 (transmembrane helix 1 (TMH1)), Ile306 (TMH5), Ile340 (TMH6) and Phe343 (TMH6) may form a binding site, and this is in accordance with previous site directed mutagenesis studies. Conclusion The Sav1866 X-ray structure may serve as a suitable template for the ABCB1 model, as it did with ABCC5. The EPS in the substrate translocation chambers and the positive-negative ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and lipophilic substrates by ABCB1, and the transport of organic anions by ABCC5. PMID:17803828
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiroz, Soledad; Sukuru, Sai Chetan K.; Hausinger, Robert P.
2008-01-01
Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC){sub 3} induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle X-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complexmore » that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD){sub 3}, and (UreABC-UreDF){sub 3} confirm that UreD and UreF bind near UreB at the periphery of the (UreAC){sub 3} structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF){sub 3} allows CO{sub 2} and nickel ions to gain access to the nascent active site.« less
Muñoz-Martínez, Francisco; Reyes, Carolina P; Pérez-Lomas, Antonio L; Jiménez, Ignacio A; Gamarro, Francisco; Castanys, Santiago
2006-01-01
Dihydro-beta-agarofuran sesquiterpenes from Celastraceae have been recently shown to bind to human P-glycoprotein (Pgp), functioning as specific, mixed-type inhibitors of its drug transport activity, as well as multidrug resistance (MDR) modulators in vitro. However, nothing is known about whether such compounds are themselves transported by Pgp, or whether they affect Pgp expression as well as its activity, or about the location of their binding site within the protein. We performed transport experiments with a newly synthesized fluorescent sesquiterpene derivative, which retains the anti-Pgp activity of its natural precursor. This probe was poorly transported by Pgp, MRP1, MRP2 and BCRP transporters, compared with classical MDR substrates. Moreover, Pgp did not confer cross-resistance to the most potent dihydro-beta-agarofurans, which did not affect Pgp expression levels in several MDR cell lines. Finally, we observed competitive and non-competitive interactions between one of such dihydro-beta-agarofurans (Mama12) and classical Pgp modulators such as cyclosporin A, verapamil, progesterone, vinblastine and GF120918. These findings suggest that multidrug ABC transporters do not confer resistance to dihydro-beta-agarofurans and could not affect their absorption and biodistribution in the body. Moreover, we mapped their binding site(s) within Pgp, which may prove useful for the rational design of improved modulators based on the structure of dihydro-beta-agarofurans.
Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz
2015-02-20
The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro
Kievit, Forrest M.; Wang, Freddy Y.; Fang, Chen; Mok, Hyejung; Wang, Kui; Silber, John R.; Ellenbogen, Richard G.; Zhang, Miqin
2011-01-01
Multidrug resistance (MDR) is characterized by the overexpression of ATP-binding cassette (ABC) transporters that actively pump a broad class of hydrophobic chemotherapeutic drugs out of cancer cells. MDR is a major mechanism of treatment resistance in a variety of human tumors, and clinically applicable strategies to circumvent MDR remain to be characterized. Here we describe the fabrication and characterization of a drug-loaded iron oxide nanoparticle designed to circumvent MDR. Doxorubicin (DOX), an anthracycline antibiotic commonly used in cancer chemotherapy and substrate for ABC-mediated drug efflux, was covalently bound to polyethylenimine via a pH sensitive hydrazone linkage and conjugated to an iron oxide nanoparticle coated with amine terminated polyethylene glycol. Drug loading, physiochemical properties and pH lability of the DOX-hydrazone linkage were evaluated in vitro. Nanoparticle uptake, retention, and dose-dependent effects on viability were compared in wild-type and DOX-resistant ABC transporter over-expressing rat glioma C6 cells. We found that DOX release from nanoparticles was greatest at acidic pH, indicative of cleavage of the hydrazone linkage. DOX-conjugated nanoparticles were readily taken up by wild-type and drug-resistant cells. In contrast to free drug, DOX-conjugated nanoparticles persisted in drug-resistant cells, indicating that they were not subject to drug efflux. Greater retention of DOX-conjugated nanoparticles was accompanied by reduction of viability relative to cells treated with free drug. Our results suggest that DOX-conjugated nanoparticles could improve the efficacy of chemotherapy by circumventing MDR. PMID:21277920
Su, Wendy; Pasternak, Gavril W.
2013-01-01
The blood brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance associated protein (MRP), a 190 kDa protein similar to Pgp is also ABC transport that has been implicated in the blood brain barrier. The current study explores its role in opioid action. Immunohistochemically, it is localized in the choroid plexus in ratsand can be selectively downregulated by antisense treatment at both the level of mRNA, as shown by RT-PCR, and protein, as demonstrated immunohistochemically. Behaviorally, downregulation of MRP significantly enhances the analgesic potency of systemic morphine in MRP knockout mice and in antisense-treated rats by lowering the blood brain barrier. Following intracerebroventricular administration, a number of compounds, including some opioids, are rapidly secreted from the brain into the blood where they contribute to the overall analgesic effects by activating peripheral systems. MRP plays a role in this efflux. Downregulating MRP expression leads to a corresponding decrease in the transport and a diminished analgesic response from opioids administered intracerebroventricularly. Thus, the transporter protein MRP plays a role in maintaining the blood-brain barrier and modulates the activity of opioids. PMID:23508590
dos Santos Castro, Lilian; de Paula, Renato G.; Antoniêto, Amanda C. C.; Persinoti, Gabriela F.; Silva-Rocha, Rafael; Silva, Roberto N.
2016-01-01
We defined the role of the transcriptional factor—XYR1—in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields. PMID:26909077
Dos Santos Castro, Lilian; de Paula, Renato G; Antoniêto, Amanda C C; Persinoti, Gabriela F; Silva-Rocha, Rafael; Silva, Roberto N
2016-01-01
We defined the role of the transcriptional factor-XYR1-in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields.
Neutron Reflectometry and Small Angle Neutron Scattering of ABC Miktoarm Terpolymer Thin-Films
NASA Astrophysics Data System (ADS)
Arras, Matthias M. L.; Wang, Weiyu; Mahalik, Jyoti P.; Hong, Kunlun; Sumpter, Bobby G.; Smith, Gregory S.; Chernyy, Sergey; Kim, Hyeyoung; Russell, Thomas P.
Due to the constraint of the junction point in miktoarm terpolymers, where three chains meet, ABC miktoarm terpolymers are promising to obtain nanostructured, long-range ordered materials. We present details of the thin-film structure of ABC miktoarm terpolymers in the poly(styrene), poly(isoprene), poly(2-vinylpyridine) (PS-PI-P2VP) system, investigated by neutron reflectometry and small angle neutron scattering. To this end, we synthesized partially deuterated versions of the PS-PI-P2VP and investigated annealed samples, spin-coated to various thicknesses of the bulk repeat period. Furthermore, we investigated the structural change upon selective blending with homopolymers or fullerenes. We find that thin-film constraints on the morphology can vanish after only twice the repetition period. In addition, it is indicated that nanoparticles improve the ordering in these systems, however, this seems to be not necessarily true for homopolymer blending. This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.
Analysis of rice PDR-like ABC transporter genes in sheath blight resistance
USDA-ARS?s Scientific Manuscript database
Sheath blight caused by Rhizoctonia solani is one of the most damaging diseases of rice worldwide. To understand the molecular mechanism of resistance, we identified 450 differentially expressed genes in a resistant rice cultivar Jasmine 85 after R. solani infection with a combination of DNA microar...
78 FR 57633 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
..., Washington, DC 20573, by telephone at (202) 523-5843 or by email at [email protected] . ABC Logistics, Inc. (NVO...), Alexander Mednikow, President, Application Type: New NVO License. AfriCom Logistics, Incorporated (NVO & OFF.... dba Beaumont Logistics Group (OFF), 1485 Wellington Circle, Suite 101, Beaumont, TX 77706, Officers...
77 FR 35384 - Ocean Transportation Intermediary License; Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... telephone at (202) 523-5843 or by email at [email protected] . ABC Trucking and Logistics L.L.C. (OFF), 3080...), Lawrence R. Lammers, President/CEO, Application Type: License Transfer Atlantic Cargo Logistics LLC (NVO... Logistics LLC (NVO), 9814 Goldenglade Drive, Houston, TX 77064, Officer: Sandra Lesage, Member/Manager...
Pasta, Saloni Yatin; Raman, Bakthisaran; Ramakrishna, Tangirala; Rao, Ch Mohan
2002-11-29
Several small heat shock proteins contain a well conserved alpha-crystallin domain, flanked by an N-terminal domain and a C-terminal extension, both of which vary in length and sequence. The structural and functional role of the C-terminal extension of small heat shock proteins, particularly of alphaA- and alphaB-crystallins, is not well understood. We have swapped the C-terminal extensions between alphaA- and alphaB-crystallins and generated two novel chimeric proteins, alphaABc and alphaBAc. We have investigated the domain-swapped chimeras for structural and functional alterations. We have used thermal and non-thermal models of protein aggregation and found that the chimeric alphaB with the C-terminal extension of alphaA-crystallin, alphaBAc, exhibits dramatically enhanced chaperone-like activity. Interestingly, however, the chimeric alphaA with the C-terminal extension of alphaB-crystallin, alphaABc, has almost lost its activity. Pyrene solubilization and bis-1-anilino-8-naphthalenesulfonate binding studies show that alphaBAc exhibits more solvent-exposed hydrophobic pockets than alphaA, alphaB, or alphaABc. Significant tertiary structural changes are revealed by tryptophan fluorescence and near-UV CD studies upon swapping the C-terminal extensions. The far-UV CD spectrum of alphaBAc differs from that of alphaB-crystallin whereas that of alphaABc overlaps with that of alphaA-crystallin. Gel filtration chromatography shows alteration in the size of the proteins upon swapping the C-terminal extensions. Our study demonstrates that the unstructured C-terminal extensions play a crucial role in the structure and chaperone activity, in addition to generally believed electrostatic "solubilizer" function.
Lohscheider, Jens N; Río Bártulos, Carolina
2016-08-01
Plastoglobules (PG) are lipophilic droplets attached to thylakoid membranes in higher plants and green algae and are implicated in prenyl lipid biosynthesis. They might also represent a central hub for integration of plastid signals under stress and therefore the adaptation of the thylakoid membrane under such conditions. In Arabidopsis thaliana, PG contain around 30 specific proteins of which Fibrillins (FBN) and Activity of bc1 complex kinases (ABC1K) represent the majority with respect to both number and protein mass. However, nothing is known about the presence of PG in most algal species, which are responsible for about 50% of global primary production. Therefore, we searched the genomes of publicly available algal genomes for components of PG and the associated functional network in order to predict their presence and potential evolutionary conservation of physiological functions. We could identify homologous sequences for core components of PG, like FBN and ABC1K, in most investigated algal species. Furthermore, proteins at central and interesting positions within the PG functional coexpression network were identified. Phylogenetic sequence analysis revealed diversity within FBN and ABC1K sequences among algal species with complex plastids of the red lineage and large differences compared with green lineage species. Two types of FBN were detected that differ in their isoelectric point which seems to correlate with subcellular localization. Subgroups of FBN were shared between many investigated species and modeling of their 3D-structure implied a conserved structure. FBN and ABC1K are essential structural and functional components of PG. Their occurrence in investigated algal species suggests presence of PG therein and functions in prenyl lipid metabolism and adaptation of the thylakoid membrane that are conserved during evolution. Copyright © 2016 Elsevier B.V. All rights reserved.
Prochlorococcus Genetic Transformation and the Genomics of Nitrogen Metabolism
2005-09-01
MIT9313 and MED4 have ABC-type urea transporters and urease genes. Prochlorococcus PCC 9511 urease activity is independent of the nitrogen source in the...medium (Palinska et al., 2000), suggesting that the urease genes lack genetic regulation. MIT9313 has genes for nitrite transport and utilization...cyanobacterium, synthesizes the smallest urease ." Microbiology 146 Pt 12: 3099-107. Palinska, K. A., W. Laloui, et al. (2002). "The signal transducer P-Il and
Rethinking Drug Treatment Approaches in ALS by Targeting ABC Efflux Transporters
2014-12-01
for ALS patients. One of the problems in finding highly efficacious treatments in ALS may derive from the so far underestimated issue of disease... efficacy the SOD1-G93A ALS mice. 15. SUBJECT TERMS Drug resistance, ALS, Therapy, Riluzole, Drug Efflux Transporters 16. SECURITY CLASSIFICATION OF...improves efficacy of ALS therapeutics Michael R. Jablonski1, Shashirekha S. Markandaiah1, Dena Jacob1, Ni J. Meng1, Ke Li2, Victoria Gennaro1, Angelo
Kehl-Fie, Thomas E.; Zhang, Yaofang; Moore, Jessica L.; Farrand, Allison J.; Hood, M. Indriati; Rathi, Subodh; Chazin, Walter J.; Caprioli, Richard M.
2013-01-01
During infection, vertebrates limit access to manganese and zinc, starving invading pathogens, such as Staphylococcus aureus, of these essential metals in a process termed “nutritional immunity.” The manganese and zinc binding protein calprotectin is a key component of the nutrient-withholding response, and mice lacking this protein do not sequester manganese from S. aureus liver abscesses. One potential mechanism utilized by S. aureus to minimize host-imposed manganese and zinc starvation is the expression of the metal transporters MntABC and MntH. We performed transcriptional analyses of both mntA and mntH, which revealed increased expression of both systems in response to calprotectin treatment. MntABC and MntH compete with calprotectin for manganese, which enables S. aureus growth and retention of manganese-dependent superoxide dismutase activity. Loss of MntABC and MntH results in reduced staphylococcal burdens in the livers of wild-type but not calprotectin-deficient mice, suggesting that these systems promote manganese acquisition during infection. During the course of these studies, we observed that metal content and the importance of calprotectin varies between murine organs, and infection leads to profound changes in the anatomical distribution of manganese and zinc. In total, these studies provide insight into the mechanisms utilized by bacteria to evade host-imposed nutrient metal starvation and the critical importance of restricting manganese availability during infection. PMID:23817615
Kim, Jin-Sik; Song, Saemee; Lee, Minho; Lee, Seunghwa; Lee, Kangseok; Ha, Nam-Chul
2016-03-01
The protein toxin HlyA of Escherichia coli is exported without a periplasmic intermediate by the type I secretion system (T1SS). The T1SS is composed of an inner membrane ABC transporter HlyB, an outer-membrane channel protein TolC, and a membrane fusion protein HlyD. However, the assembly of the T1SS remains to be elucidated. In this study, we determine the crystal structure of a part of the C-terminal periplasmic domain of HlyD. The long α-helical domain consisting of three α helices and a lipoyl domain was identified in the crystal structure. Based on the HlyD structure, we modeled the hexameric assembly of HlyD with a long α-helical barrel, which formed a complex with TolC in an intermeshing cogwheel-to-cogwheel manner, as observed in tripartite RND-type drug efflux pumps. These observations provide a structural blueprint for understanding the type I secretion system in pathogenic Gram-negative bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, S.; Yoon, S.; Venkata Ramana, M.; Ramanathan, V.; Nguyen, H.; Park, S.; Kim, M.
2009-12-01
Cheju Atmospheric Brown Cloud (ABC) Plume-Monsoon Experiment (CAPMEX), comprehsensive ground-based measurements and a series of data-gathering flights by specially equipped autonomous unmanned aerial vehicles (AUAVs) for aerosol and cloud, had conducted at Jeju (formerly, Cheju), South Korea during August-September 2008, to improve our understanding of how the reduction of anthropogenic emissions in China (so-called “great shutdown” ) during and after the Summer Beijing Olympic Games 2008 effcts on the air quliaty and radiation budgets and how atmospheric brown clouds (ABCs) influences solar radiation budget off Asian continent. Large numbers of in-situ and remote sensing instruments at the Gosan ABC observatory and miniaturized instruments on the aircraft measure a range of properties such as the quantity of soot, size-segregated aerosol particle numbers, total particle numbers, size-segregated cloud droplet numbers (only AUAV), aerosol scattering properties (only ground), aerosol vertical distribution, column-integrated aerosol properties, and meteorological variables. By integrating ground-level and high-elevation AUAV measurements with NASA-satellite observations (e.g., MODIS, CALIPSO), we investigate the long range transport of aerosols, the impact of ABCs on clouds, and the role of biogenic and anthropogenic aerosols on cloud condensation nuclei (CCN). In this talk, we will present the results from CAPMEX focusing on: (1) the characteristics of aerosol optical, physical and chemical properties at Gosan observatory, (2) aerosol solar heating calculated from the ground-based micro-pulse lidar and AERONET sun/sky radiometer synergy, and comparison with direct measurements from UAV, and (3) aerosol-cloud interactions in conjunction with measurements by satellites and Gosan observatory.
Ferreira, E L; Batista, M T; Cavalcante, R C M; Pegos, V R; Passos, H M; Silva, D A; Balan, A; Ferreira, L C S; Ferreira, R C C
2016-10-01
Bacterial ATP-binding cassette (ABC) transporters play a crucial role in the physiology and pathogenicity of different bacterial species. Components of ABC transporters have also been tested as target antigens for the development of vaccines against different bacterial species, such as those belonging to the Streptococcus genus. Streptococcus mutans is the etiological agent of dental caries, and previous studies have demonstrated that deletion of the gene encoding PstS, the substrate-binding component of the phosphate uptake system (Pst), reduced the adherence of the bacteria to abiotic surfaces. In the current study, we generated a recombinant form of the S. mutans PstS protein (rPstS) with preserved structural features, and we evaluated the induction of antibody responses in mice after sublingual mucosal immunization with a formulation containing the recombinant protein and an adjuvant derived from the heat-labile toxin from enterotoxigenic Escherichia coli strains. Mice immunized with rPstS exhibited systemic and secreted antibody responses, measured by the number of immunoglobulin A-secreting cells in draining lymph nodes. Serum antibodies raised in mice immunized with rPstS interfered with the adhesion of bacteria to the oral cavity of naive mice challenged with S. mutans. Similarly, mice actively immunized with rPstS were partially protected from oral colonization after challenge with the S. mutans NG8 strain. Therefore, our results indicate that S. mutans PstS is a potential target antigen capable of inducing specific and protective antibody responses after sublingual administration. Overall, these observations raise interesting perspectives for the development of vaccines to prevent dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wang, Ying; Loo, Tip W; Bartlett, M Claire; Clarke, David M
2007-03-01
Cystic fibrosis transmembrane conductance regulator (CFTR) and P-glycoprotein (P-gp) are ATP-binding cassette (ABC) transporters that have two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). Defective folding of CFTR lacking phenylalanine 508 (DeltaPhe508) in NBD1 is the most common cause of cystic fibrosis. The Phe508 position seems to be universally important in ABC transporters because deletion of the equivalent residue (Tyr490) in P-gp also inhibits maturation of the protein. The pharmacological chaperone VRT-325 can repair the DeltaPhe508-type folding defects in P-gp or CFTR. VRT-325 may repair the folding defects by promoting dimerization of the two NBDs or by promoting folding of the TMDs. To distinguish between these two mechanisms, we tested the ability of VRT-325 to promote folding of truncation mutants lacking one or both NBDs. Sensitivity to glycosidases was used as an indirect indicator of folding. It was found that VRT-325 could promote maturation of truncation mutants lacking NBD2. Truncation mutants of CFTR or P-gp lacking both NBDs showed deficiencies in core-glycosylation that could be partially reversed by carrying out expression in the presence of VRT-325. The results show that dimerization of the two NBDs to form a "nucleotide-sandwich" structure or NBD interactions with the TMDs are not essential for VRT-325 enhancement of folding. Instead, VRT-325 can promote folding of the TMDs alone. The ability of VRT-325 to promote core-glycosylation of the NBD-less truncation mutants suggests that one mechanism whereby the compound enhances folding is by promoting proper insertion of TM segments attached to the glycosylated loops so that they adopt an orientation favorable for glycosylation.
Elion, Richard A; Althoff, Keri N; Zhang, Jinbing; Moore, Richard D; Gange, Stephen J; Kitahata, Mari M; Crane, Heidi M; Drozd, Daniel R; Stein, James H; Klein, Marina B; Eron, Joseph J; Silverberg, Michael J; Mathews, William C; Justice, Amy C; Sterling, Timothy R; Rabkin, Charles S; Mayor, Angel M; Klein, Daniel B; Horberg, Michael A; Bosch, Ronald J; Eyawo, Oghenowede; Palella, Frank J
2018-05-01
There is persistent confusion as to whether abacavir (ABC) increases the risk of myocardial infarction (MI), and whether such risk differs by type 1 (T1MI) or 2 (T2MI) MI in adults with HIV. Incident MIs in North American Cohort Collaboration on Research and Design participants were identified from 2001 to 2013. Discrete time marginal structural models addressed channeling biases and time-dependent confounding to estimate crude hazard ratio (HR) and adjusted hazard ratio (aHR) and 95% confidence intervals; analyses were performed for T1MI and T2MI separately. A sensitivity analysis evaluated whether Framingham risk score (FRS) modified the effect of ABC on MI occurrence. Eight thousand two hundred sixty-five adults who initiated antiretroviral therapy contributed 29,077 person-years and 123 MI events (65 T1MI and 58 T2MI). Median follow-up time was 2.9 (interquartile range 1.4-5.1) years. ABC initiators were more likely to have a history of injection drug use, hepatitis C virus infection, hypertension, diabetes, impaired kidney function, hyperlipidemia, low (<200 cells/mm) CD4 counts, and a history of AIDS. The risk of the combined MI outcome was greater for persons who used ABC in the previous 6 months [aHR = 1.84 (1.17-2.91)]; and persisted for T1MI (aHR = 1.62 [1.01]) and T2MI [aHR = 2.11 (1.08-4.29)]. FRS did not modify the effect of ABC on MI (P = 0.14) and inclusion of FRS in the MSM did not diminish the effect of recent ABC use on the combined outcome. Recent ABC use was associated with MI after adjustment for known risk factors and for FRS. However, screening for T1MI risks may not identify all or even most persons at risk of ABC use-associated MIs.
Kawahara, Kunimitsu; Kawasumi, Hiromi; Nagano, Teruaki; Sasada, Shinji; Okamoto, Norio
2008-04-01
More than 1 asbestos body (AB) per ml of bronchoalveolar lavage fluid (BALF) under light microscopy was defined as AB positive (ABP) and suggests an occupational asbestos exposure. We microscopically evaluated the AB number per one ml of BALF, which we defined as the AB concentration (ABC), using bronchoalveolar lavage (BAL) cytocentrifuge slides obtained from 35 patients having pulmonary nodular lesions (20 carcinoma and 15 nonneoplastic disease) and examined the correlation between ABC and clinicopathological data including findings on Helical computed tomography scan (HCTS) and occupational history of asbestos exposure (OHAE). BAL was performed by the standard technique without removing mucous with a gauze filter. AB was microscopically defined as a structure consisting of a core of transparent asbestos surrounded by an iron-protein coat. Twenty of 35 patients were ABP (ABP rate; 57%) and ABC ranged from 0 to 207.98/ml (mean ABC; 11.33/ml). Mean ABC was significantly higher in patients with OHAE (15.04/ml) compared to that in patients without OHAE (3.23/ml). Twenty-two of 35 patients (63%) lacked abnormality on HCTS and among these, 12 patients (55%) were ABP. In 20 pulmonary carcinoma patients, the ABP rate was 85% and ABC ranged from 0 to 31.1/ml (Mean ABC; 2.99/ml). The ABP rate of pulmonary carcinoma patients was 40% (8 patients) and among these, 5 patients (63%) did not show any abnormality on HCTS. In conclusion, our method was simple and useful and should be applied to patients with pulmonary nodular lesions and OHAE, even if there are no abnormalities on HCTS.
Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.
Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J M; Thunnissen, Andy-Mark W H
2009-01-21
LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here, we present crystal structures of LmrR in an apo state and in two drug-bound states complexed with Hoechst 33342 and daunomycin. LmrR shows a common topology containing a typical beta-winged helix-turn-helix domain with an additional C-terminal helix involved in dimerization. Its dimeric organization is highly unusual with a flat-shaped hydrophobic pore at the dimer centre serving as a multidrug-binding site. The drugs bind in a similar manner with their aromatic rings sandwiched in between the indole groups of two dimer-related tryptophan residues. Multidrug recognition is facilitated by conformational plasticity and the absence of drug-specific hydrogen bonds. Combined analyses using site-directed mutagenesis, fluorescence-based drug binding and protein-DNA gel shift assays reveal an allosteric coupling between the multidrug- and DNA-binding sites of LmrR that most likely has a function in the induction mechanism.
Zhang, Xiao-Yu; Zhang, Yun-Kai; Wang, Yi-Jun; Gupta, Pranav; Zeng, Leli; Xu, Megan; Wang, Xiu-Qi; Yang, Dong-Hua; Chen, Zhe-Sheng
2016-09-15
In recent years, tyrosine kinase inhibitors (TKIs) have been shown capable of inhibiting the ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR). In this study, we determine whether osimertinib, a novel selective, irreversible EGFR (epidermal growth factor receptor) TKI, could reverse ABC transporter-mediated MDR. The results showed that, at non-toxic concentrations, osimertinib significantly sensitized both ABCB1-transfected and drug-selected cell lines to substrate anticancer drugs colchicine, paclitaxel, and vincristine. Osimertinib significantly increased the accumulation of [³H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant alteration in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 0.3 µM osimertinib for 72 h. In addition, ATPase assay showed osimertinib stimulated ABCB1 ATPase activity. Molecular docking and molecular dynamic simulations showed osimertinib has strong and stable interactions at the transmembrane domain of human homology ABCB1. Taken together, our findings suggest that osimertinib, a clinically-approved third-generation EGFR TKI, can reverse ABCB1-mediated MDR, which supports the combination therapy with osimertinib and ABCB1 substrates may potentially be a novel therapeutic stategy in ABCB1-positive drug resistant cancers.
Qiu, Jingfan; Zhuo, Ying; Zhu, Dongqing; Zhou, Xiufen; Zhang, Lixin; Bai, Linquan; Deng, Zixin
2011-10-01
Avermectins are 16-membered macrocyclic polyketides with potent antiparasitic activities, produced by Streptomyces avermitilis. Upstream of the avermectin biosynthetic gene cluster, there is the avtAB operon encoding the ABC transporter AvtAB, which is highly homologous to the mammalian multidrug efflux pump P-glycoprotein (Pgp). Inactivation of avtAB had no effect, but increasing the concentration of avtAB mRNA 30-500-fold, using a multi-copy plasmid in S. avermitilis, enhanced avermectin production about two-fold both in the wild-type and in a high-yield producer strain on agar plates. In liquid industrial fermentation medium, the overall productivity of avermectin B1a in the engineered high-yield producer was improved for about 50%, from 3.3 to 4.8 g/l. In liquid YMG medium, moreover, the ratio of intracellular to extracellular accumulation of avermectin B1a was dropped from 6:1 to 4.5:1 in response to multiple copies of avtAB. Additionally, the overexpression of avtAB did not cause any increased expression of the avermectin biosynthetic genes through RT-PCR analysis. We propose that the AvtAB transporter exports avermectin, and thus reduces the feedback inhibition on avermectin production inside the cell. This strategy may be useful for enhancing the production of other antibiotics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerbs, Sarah; Korajczyk, Peter J.; Noirot, Philippe H.
Sulfur is an essential element in plant rhizospheres and microbial activity plays a key role in increasing the biological availability of sulfur in soil environments. To better understand the mechanisms facilitating the exchange of sulfur-containing molecules in soil, we profiled the binding specificities of eight previously uncharacterized ABC transporter solute-binding proteins from plant-associated Pseudomonads. A high-throughput screening procedure indicated eighteen significant organosulfur binding ligands, with at least one high-quality screening hit for each protein target. Calorimetric and spectroscopic methods were used to validate the best ligand assignments and catalog the thermodynamic properties of the protein-ligand interactions. Two novel high-affinity ligandmore » binding activities were identified and quantified in this set of solute binding proteins. Bacteria were cultured in minimal media with screening library components supplied as the sole sulfur sources, demonstrating that these organosulfur compounds can be metabolized and confirming the relevance of ligand assignments. These results expand the set of experimentally validated ligands amenable to transport by this ABC transporter family and demonstrate the complex range of protein-ligand interactions that can be accomplished by solute-binding proteins. As a result, characterizing new nutrient import pathways provides insight into Pseudomonad metabolic capabilities which can be used to further interrogate bacterial survival and participation in soil and rhizosphere communities.« less
Adam, Helene; Jouannic, Stefan; Morcillo, Fabienne; Verdeil, Jean-Luc; Duval, Yves; Tregear, James W.
2007-01-01
Aims In this article a review is made of data recently obtained on the structural diversity and possible functions of MADS box genes in the determination of flower structure in the African oil palm (Elaeis guineensis). MADS box genes play a dominant role in the ABC model established to explain how floral organ identity is determined in model dicotyledon species such as Arabidopsis thaliana and Antirrhinum majus. In the monocotyledons, although there appears to be a broad general conservation of ABC gene functions, the model itself needs to be adapted in some cases, notably for certain species which produce flowers with sepals and petals of similar appearance. For the moment, ABC genes remain unstudied in a number of key monocot clades, so only a partial picture is available for the Liliopsida as a whole. The aim of this article is to summarize data recently obtained for the African oil palm Elaeis guineensis, a member of the family Arecaceae (Arecales), and to discuss their significance with respect to knowledge gained from other Angiosperm groups, particularly within the monocotyledons. Scope The essential details of reproductive development in oil palm are discussed and an overview is provided of the structural and functional characterization of MADS box genes likely to play a homeotic role in flower development in this species. Conclusions The structural and functional data provide evidence for a general conservation of the generic ‘ABC’ model in oil palm, rather than the ‘modified ABC model’ proposed for some other monocot species which produce homochlamydeous flowers (i.e. with morphologically similar organs in both perianth whorls), such as members of the Liliales. Our oil palm data therefore follow a similar pattern to those obtained for other Commelinid species in the orders Commelinales and Poales. The significance of these findings is discussed. PMID:17355996
The ABC Model and its Applicability to Basal Angiosperms
Soltis, Douglas E.; Chanderbali, André S.; Kim, Sangtae; Buzgo, Matyas; Soltis, Pamela S.
2007-01-01
Background Although the flower is the central feature of the angiosperms, little is known of its origin and subsequent diversification. The ABC model has long been the unifying paradigm for floral developmental genetics, but it is based on phylogenetically derived eudicot models. Synergistic research involving phylogenetics, classical developmental studies, genomics and developmental genetics has afforded valuable new insights into floral evolution in general, and the early flower in particular. Scope and Conclusions Genomic studies indicate that basal angiosperms, and by inference the earliest angiosperms, had a rich tool kit of floral genes. Homologues of the ABCE floral organ identity genes are also present in basal angiosperm lineages; however, C-, E- and particularly B-function genes are more broadly expressed in basal lineages. There is no single model of floral organ identity that applies to all angiosperms; there are multiple models that apply depending on the phylogenetic position and floral structure of the group in question. The classic ABC (or ABCE) model may work well for most eudicots. However, modifications are needed for basal eudicots and, the focus of this paper, basal angiosperms. We offer ‘fading borders’ as a testable hypothesis for the basal-most angiosperms and, by inference, perhaps some of the earliest (now extinct) angiosperms. PMID:17616563
Identification of a Third Osmoprotectant Transport System, the OsmU System, in Salmonella enterica
Frossard, Stephen M.; Khan, Aftab A.; Warrick, Eric C.; Gately, Jonathan M.; Hanson, Andrew D.; Oldham, Michael L.; Sanders, David Avram
2012-01-01
The growth of Salmonella enterica serovar Typhimurium mutants lacking the ProP and ProU osmoprotectant transport systems is stimulated by glycine betaine in high-osmolarity media, suggesting that this organism has an additional osmoprotectant transport system. Bioinformatic analysis revealed that the genome of this organism contains a hitherto-unidentified operon, designated osmU, consisting of four genes whose products show high similarity to ABC-type transport systems for osmoprotectants in other bacteria. The osmU operon was inactivated by a site-directed deletion, which abolished the ability of glycine betaine to alleviate the inhibitory effect of high osmolarity and eliminated the accumulation of [14C]glycine betaine and [14C]choline-O-sulfate in high-osmolarity media in a strain lacking the ProP and ProU systems. Although the OsmU system can take up glycine betaine and choline-O-sulfate, these two osmoprotectants are recognized at low affinity by this transporter, suggesting that there might be more efficient substrates that are yet to be discovered. The transcription of osmU is induced 23-fold by osmotic stress (0.3 M NaCl). The osmU operon is present in the genomes of a number of Enterobacteriaceae, and orthologs of the OsmU system can be recognized in a wide variety of Bacteria and Archaea. The structure of the periplasmic binding protein component of this transporter, OsmX, was modeled on the crystallographic structure of the glycine betaine-binding protein ProX of Archaeoglobus fulgidus; the resultant model indicated that the amino acids that constitute substrate-binding site, including an “aromatic cage” made up of four tyrosines, are conserved between these two proteins. PMID:22609924
USDA-ARS?s Scientific Manuscript database
Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present stu...
76 FR 14395 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
..., Manager/President. Application Type: QI Change. Geoffrey Au dba ABC Logistics Company (NVO), 2250 Gellert... at (202) 523-5843 or by e-mail at [email protected] . Arkman Logistics Inc. (NVO), 1001 Fargo Avenue, Elk... Type: New NVO & OFF License. BCargo Logistics, S.A. de C.V. (NVO), Av. Revolucion 725-A, Col. Jardin...
78 FR 20106 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... Solutions Inc. dba T T Logistics (NVO), 18747 S. Laurel Park Road, Rancho Dominguez, CA 90220. Officer: Tino..., Washington, DC 20573, by telephone at (202) 523-5843 or by email at [email protected] . ABC Logistics, Inc. (NVO.... Philip) Yuen, COO (QI), Xiaojun Wang, President. Application Type: QI Change. East-West Logistics, Inc...
Kawaguchi, Kosuke; Okamoto, Takumi; Morita, Masashi; Imanaka, Tsuneo
2016-07-26
We previously demonstrated that ABCD4 does not localize to peroxisomes but rather, the endoplasmic reticulum (ER), because it lacks the NH2-terminal hydrophilic region required for peroxisomal targeting. It was recently reported that mutations in ABCD4 result in a failure to release vitamin B12 from lysosomes. A similar phenotype is caused by mutations in LMBRD1, which encodes the lysosomal membrane protein LMBD1. These findings suggested to us that ABCD4 translocated from the ER to lysosomes in association with LMBD1. In this report, it is demonstrated that ABCD4 interacts with LMBD1 and then localizes to lysosomes, and this translocation depends on the lysosomal targeting ability of LMBD1. Furthermore, endogenous ABCD4 was localized to both lysosomes and the ER, and its lysosomal localization was disturbed by knockout of LMBRD1. To the best of our knowledge, this is the first report demonstrating that the subcellular localization of the ABC transporter is determined by its association with an adaptor protein.
Afroz, Amber; Khan, Muhammad Rashid; Komatsu, Setsuko
2010-07-01
Jasmonic acid (JA) and salicylic acid (SA) are signaling molecules that play key roles in the regulation of metabolic processes, reproduction, and defense against pathogens. The proteomics approach was used to identify proteins that are induced by JA and SA in the tomato cultivars Roma and Pant Bahr, which are susceptible and resistant to bacterial wilt, respectively. Threonine deaminase and leucine amino peptidase were upregulated, and ribulose-1,5-bisphosphate carboxylase/oxygenase small chain was downregulated by time-course application of JA. Translationally controlled tumor protein was upregulated by time-course application of SA. Protein disulfide isomerase was upregulated by application of either JA or SA. Proteins related to defense, energy, and protein destination/storage are suspected to be responsible for the susceptibility or resistance of the cultivars. Furthermore, in Roma, iron ABC transporter was upregulated by JA and down-regulated by SA. Iron ABC transporter plays a part in the signal transduction of both JA and SA in cultivars of tomato that are resistant to bacterial wilt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Němcová-Fürstová, Vlasta, E-mail: vlasta.furstova@
Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100 nM and 300 nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublinesmore » of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells. - Highlights: • Expression of all ABC transporters in paclitaxel-resistant sublines of SK-BR-3 and MCF-7 cells was analyzed. • SK-BR-3 and MCF-7 cells are unable to develop resistance to some taxanes. • Some taxanes are able to overcome developed resistance to paclitaxel. • Paclitaxel resistance was associated with increased levels of ABCB1 and ABCC3 protein. • ABCB1 silencing increased significantly sensitivity to both paclitaxel and doxorubicin.« less
The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability.
Meng, Xin; Clews, Jack; Kargas, Vasileios; Wang, Xiaomeng; Ford, Robert C
2017-01-01
The cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for the disease cystic fibrosis (CF). It is a membrane protein belonging to the ABC transporter family functioning as a chloride/anion channel in epithelial cells around the body. There are over 1500 mutations that have been characterised as CF-causing; the most common of these, accounting for ~70 % of CF cases, is the deletion of a phenylalanine at position 508. This leads to instability of the nascent protein and the modified structure is recognised and then degraded by the ER quality control mechanism. However, even pharmacologically 'rescued' F508del CFTR displays instability at the cell's surface, losing its channel function rapidly and it is rapidly removed from the plasma membrane for lysosomal degradation. This review will, therefore, explore the link between stability and structure/function relationships of membrane proteins and CFTR in particular and how approaches to study CFTR structure depend on its stability. We will also review the application of a fluorescence labelling method for the assessment of the thermostability and the tertiary structure of CFTR.
The jABC Approach to Rigorous Collaborative Development of SCM Applications
NASA Astrophysics Data System (ADS)
Hörmann, Martina; Margaria, Tiziana; Mender, Thomas; Nagel, Ralf; Steffen, Bernhard; Trinh, Hong
Our approach to the model-driven collaborative design of IKEA's P3 Delivery Management Process uses the jABC [9] for model driven mediation and choreography to complement a RUP-based (Rational Unified Process) development process. jABC is a framework for service development based on Lightweight Process Coordination. Users (product developers and system/software designers) easily develop services and applications by composing reusable building-blocks into (flow-) graph structures that can be animated, analyzed, simulated, verified, executed, and compiled. This way of handling the collaborative design of complex embedded systems has proven to be effective and adequate for the cooperation of non-programmers and non-technical people, which is the focus of this contribution, and it is now being rolled out in the operative practice.
Study of formation of green eggshell color in ducks through global gene expression.
Xu, Fa Qiong; Li, Ang; Lan, Jing Jing; Wang, Yue Ming; Yan, Mei Jiao; Lian, Sen Yang; Wu, Xu
2018-01-01
The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC) transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC) supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated) with ABCG2 (up-regulated) and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.
2012-01-01
Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic fermentation performance for sustainable bio-ethanol production. PMID:22839110
Schepens, Stacey; Goldberg, Allon; Wallace, Melissa
2010-01-01
A shortened version of the ABC 16-item scale (ABC-16), the ABC-6, has been proposed as an alternative balance confidence measure. We investigated whether the ABC-6 is a valid and reliable measure of balance confidence and examined its relationship to balance impairment and falls in older adults. Thirty-five community-dwelling older adults completed the ABC-16, including the 6 questions of the ABC-6. They also completed the following clinical balance tests: unipedal stance time (UST), functional reach (FR), Timed Up and Go (TUG), and maximum step length (MSL). Participants reported 12-month falls history. Balance confidence on the ABC-6 was significantly lower than on the ABC-16, however scores were highly correlated. Fallers reported lower balance confidence than non-fallers as measured by the ABC-6 scale, but confidence did not differ between the groups with the ABC-16. The ABC-6 significantly correlated with all balance tests assessed and number of falls. The ABC-16 significantly correlated with all balance tests assessed, but not with number of falls. Test-retest reliability for the ABC-16 and ABC-6 was good to excellent. The ABC-6 is a valid and reliable measure of balance confidence in community-dwelling older adults, and shows stronger relationships to falls than does the ABC-16. The ABC-6 may be a more useful balance confidence assessment tool than the ABC-16. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Quan, Yong; Jin, Yisheng; Faria, Teresa N; Tilford, Charles A; He, Aiqing; Wall, Doris A; Smith, Ronald L; Vig, Balvinder S
2012-06-18
The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5-7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells.
Quan, Yong; Jin, Yisheng; Faria, Teresa N.; Tilford, Charles A.; He, Aiqing; Wall, Doris A.; Smith, Ronald L.; Vig, Balvinder S.
2012-01-01
The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells. PMID:24300234
Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins.
Nissen-Meyer, Jon; Oppegård, Camilla; Rogne, Per; Haugen, Helen Sophie; Kristiansen, Per Eugen
2010-03-01
This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15-30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure-function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix-helix structure involving helix-helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix-helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death.
Benedet, Mattia; Falchi, Federica A.; Puccio, Simone; Di Benedetto, Cristiano; Peano, Clelia; Polissi, Alessandra
2016-01-01
The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in γ-Proteobacteria. LptBFG constitute the IM ABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable ΔlptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptFSupC). In complementation tests, lptFSupC mutants suppress lethality of both ΔlptC and lptC conditional expression mutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine. PMID:27529623
Benedet, Mattia; Falchi, Federica A; Puccio, Simone; Di Benedetto, Cristiano; Peano, Clelia; Polissi, Alessandra; Dehò, Gianni
2016-01-01
The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in γ-Proteobacteria. LptBFG constitute the IM ABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable ΔlptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptFSupC). In complementation tests, lptFSupC mutants suppress lethality of both ΔlptC and lptC conditional expression mutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine.
Bray, T C; Hall, S J G; Bruford, M W
2014-02-01
Investigation of historic population processes using molecular data has been facilitated by the use of approximate Bayesian computation (ABC), which enables the consideration of multiple alternative demographic scenarios. The Lincoln Red cattle breed provides a relatively simple example of two well-documented admixture events. Using molecular data for this breed, we found that structure did not resolve very low (<5% levels) of introgression, possibly due to sampling limitations. We evaluated the performance of two ABC approaches (2BAD and DIYABC) against those of two earlier methodologies, ADMIX and LEADMIX, by comparing their interpretations with the conclusions drawn from herdbook analysis. The ABC methods gave credible values for the proportions of the Lincoln Red genotype that are attributable to Aberdeen Angus and Limousin, although estimates of effective population size and event timing were not realistic. We suggest ABC methods are a valuable supplement to pedigree-based studies but that the accuracy of admixture determination is likely to diminish with increasing complexity of the admixture scenario. © 2013 Blackwell Verlag GmbH.
Metal Ion-Assembled Micro-Collagen Heterotrimers
LeBruin, Lyndelle Toni; Banerjee, Sunandan; O'Rourke, Bruce Delany; Case, Martin Ashley
2011-01-01
Collagen mimetic peptides (CMPs) provide critical insight into the assembly, stability and structure of the triple helical collagen protein. The majority of natural fibrous collagens are aab or abc heterotrimers, yet few examples of heterotrimeric CMPs have been reported. Previously CMP heterotrimers have only been accessible by total syntheses or by introducing complementary interstrand electrostatic or steric interactions. Here we describe an abc CMP heterotrimer in which each contributing CMP consists of only three amino acids: glycine, proline and 4-hydroxyproline. Assembly of the heterotrimeric triple helix is directed by a combination of metal-ion coordination to set the relative register of the CMPs, and minimization of valence frustration to direct heterotrimerization. Assembly of the four-component mixture is facile and extremely rapid, and equilibration to the abc heterotrimer occurs within a few hours at modestly elevated temperatures. The melting temperatures of the metal-assembled collagen trimers are higher by some 30 °C than the apopeptide assemblies. Two iterations of the design are described, and the outcomes suggest possibilities for designing self-assembling abc and abb heterotrimers. PMID:21590759
[Cost of therapy for neurodegenerative diseases. Applying an activity-based costing system].
Sánchez-Rebull, María-Victoria; Terceño Gómez, Antonio; Travé Bautista, Angeles
2013-01-01
To apply the activity based costing (ABC) model to calculate the cost of therapy for neurodegenerative disorders in order to improve hospital management and allocate resources more efficiently. We used the case study method in the Francolí long-term care day center. We applied all phases of an ABC system to quantify the cost of the activities developed in the center. We identified 60 activities; the information was collected in June 2009. The ABC system allowed us to calculate the average cost per patient with respect to the therapies received. The most costly and commonly applied technique was psycho-stimulation therapy. Focusing on this therapy and on others related to the admissions process could lead to significant cost savings. ABC costing is a viable method for costing activities and therapies in long-term day care centers because it can be adapted to their structure and standard practice. This type of costing allows the costs of each activity and therapy, or combination of therapies, to be determined and aids measures to improve management. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.
ATP Hydrolysis Mechanism in a Maltose Transporter Explored by QM/MM Metadynamics Simulation.
Hsu, Wei-Lin; Furuta, Tadaomi; Sakurai, Minoru
2016-11-03
Translocation of substrates across the cell membrane by adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporters depends on the energy provided by ATP hydrolysis within the nucleotide-binding domains (NBDs). However, the detailed mechanism remains unclear. In this study, we focused on maltose transporter NBDs (MalK 2 ) and performed a quantum mechanical/molecular mechanical (QM/MM) well-tempered metadynamics simulation to address this issue. We explored the free-energy profile along an assigned collective variable. As a result, it was determined that the activation free energy is approximately 10.5 kcal/mol, and the reaction released approximately 3.8 kcal/mol of free energy, indicating that the reaction of interest is a one-step exothermic reaction. The dissociation of the ATP γ-phosphate seems to be the rate-limiting step, which supports the so-called dissociative model. Moreover, Glu159, located in the Walker B motif, acts as a base to abstract the proton from the lytic water, but is not the catalytic base, which corresponds to an atypical general base catalysis model. We also observed two interesting proton transfers: transfer from the His192 ε-position nitrogen to the dissociated inorganic phosphate, Pi, and transfer from the Lys42 side chain to adenosine 5'-diphosphate β-phosphate. These proton transfers would stabilize the posthydrolysis state. Our study provides significant insight into the ATP hydrolysis mechanism in MalK 2 from a dynamical viewpoint, and this insight would be applicable to other ABC transporters.
High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-bindin...
USDA-ARS?s Scientific Manuscript database
Deposition of cell wall-reinforcing papillae is an integral component of the plant immune response. The Arabidopsis PENETRATION 3 (PEN3) ATP binding cassette (ABC) transporter plays a role in defense against numerous pathogens and is recruited to sites of pathogen detection where it accumulates with...
USDA-ARS?s Scientific Manuscript database
Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the dou...
Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawadzka, A. M.; Kim, Y.; Maltseva, N
2009-12-22
Iron deprivation activates the expression of components of the siderophore-mediated iron acquisition systems in Bacillus subtilis, including not only the synthesis and uptake of its siderophore bacillibactin but also expression of multiple ABC transporters for iron scavenging using xenosiderophores. The yclNOPQ operon is shown to encode the complete transporter for petrobactin (PB), a photoreactive 3,4-catecholate siderophore produced by many members of the B. cereus group, including B. anthracis. Isogenic disruption mutants in the yclNOPQ transporter, including permease YclN, ATPase YclP, and a substrate-binding protein YclQ, are unable to use either PB or the photoproduct of FePB (FePB{sup {nu}}) for ironmore » delivery and growth, in contrast to the wild-type B. subtilis. Complementation of the mutations with the copies of the respective genes restores this capability. The YclQ receptor binds selectively iron-free and ferric PB, the PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and FePB{sup {nu}} with high affinity; the ferric complexes are seen in ESI-MS, implying strong electrostatic interaction between the protein-binding pocket and siderophore. The first structure of a Gram-positive siderophore receptor is presented. The 1.75-{angstrom} crystal structure of YclQ reveals a bilobal periplasmic binding protein (PBP) fold consisting of two {alpha}/{beta}/{alpha} sandwich domains connected by a long {alpha}-helix with the binding pocket containing conserved positively charged and aromatic residues and large enough to accommodate FePB. Orthologs of the B. subtilis PB-transporter YclNOPQ in PB-producing Bacilli are likely contributors to the pathogenicity of these species and provide a potential target for antibacterial strategies.« less
Efflux proteins at the blood-brain barrier: review and bioinformatics analysis.
Saidijam, Massoud; Karimi Dermani, Fatemeh; Sohrabi, Sareh; Patching, Simon G
2018-05-01
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handali, Melody; Neupane, Durga P.; Roychowdhury, Hridindu
Here, ATP-binding cassette (ABC) transporters of the cluster 9 family are ubiquitous among bacteria and essential for acquiring Zn 2+ and Mn 2+ from the environment or, in the case of pathogens, from the host. These rely on a substrate-binding protein (SBP) to coordinate the relevant metal with high affinity and specificity and subsequently release it to a membrane permease for translocation into the cytoplasm. Although a number of cluster 9 SBP structures have been determined, the structural attributes conferring Zn 2+ or Mn 2+ specificity remain ambiguous. Here we describe the gene expression profile, in vitro metal binding properties,more » and crystal structure of a new cluster 9 SBP from Paracoccus denitrificans we have called AztC. Although all of our results strongly indicate Zn 2+ over Mn 2+ specificity, the Zn 2+ ion is coordinated by a conserved Asp residue only observed to date as a metal ligand in Mn 2+-specific SBPs. The unusual sequence properties of this protein are shared among close homologues, including members from the human pathogens Klebsiella pneumonia and Enterobacter aerogenes, and would seem to suggest a subclass of Zn 2+-specific transporters among the cluster 9 family. In any case, the unusual coordination environment of AztC expands the already considerable range of those available to Zn 2+-specific SBPs and highlights the presence of a His-rich loop as the most reliable indicator of Zn 2+ specificity.« less
Alluin, Olivier; Fehlings, Michael G.; Rossignol, Serge; Karimi-Abdolrezaee, Soheila
2014-01-01
While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI) in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC), can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA) treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However, additional approaches such as stem cell therapies or a more adapted treadmill training protocol may be required to optimize this repair strategy in order to induce sustained functional locomotor improvement. PMID:25350665
Interaction of the P-Glycoprotein Multidrug Transporter with Sterols.
Clay, Adam T; Lu, Peihua; Sharom, Frances J
2015-11-03
The ABC transporter P-glycoprotein (Pgp, ABCB1) actively exports structurally diverse substrates from within the lipid bilayer, leading to multidrug resistance. Many aspects of Pgp function are altered by the phospholipid environment, but its interactions with sterols remain enigmatic. In this work, the functional interaction between purified Pgp and various sterols was investigated in detergent solution and proteoliposomes. Fluorescence studies showed that dehydroergosterol, cholestatrienol, and NBD-cholesterol interact intimately with Pgp, resulting in both quenching of protein Trp fluorescence and enhancement of sterol fluorescence. Kd values indicated binding affinities in the range of 3-9 μM. Collisional quenching experiments showed that Pgp-bound NBD-cholesterol was protected from the external milieu, resonance energy transfer was observed between Pgp Trp residues and the sterol, and the fluorescence emission of bound sterol was enhanced. These observations suggested an intimate interaction of bound sterols with the transporter at a protected nonpolar site. Cholesterol hemisuccinate altered the thermal unfolding of Pgp and greatly stabilized its basal ATPase activity in both a detergent solution and reconstituted proteoliposomes of certain phospholipids. Other sterols, including dehydroergosterol, did not stabilize the basal ATPase activity of detergent-solubilized Pgp, which suggests that this is not a generalized sterol effect. The phospholipid composition and cholesterol hemisuccinate content of Pgp proteoliposomes altered the basal ATPase and drug transport cycles differently. Sterols may interact with Pgp and modulate its structure and function by occupying part of the drug-binding pocket or by binding to putative consensus cholesterol-binding (CRAC/CARC) motifs located within the transmembrane domains.
Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo
Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit.more » Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.« less
Mechanisms of Membrane Transport of Folates into Cells and Across Epithelia
Zhao, Rongbao; Diop-Bove, Ndeye; Visentin, Michele; Goldman, I. David
2013-01-01
Until recently, the transport of folates into cells and across epithelia has been interpreted primarily within the context of two transporters with high affinity and specificity for folates, the reduced folate carrier and the folate receptors. However, there were discrepancies between the properties of these transporters and characteristics of folate transport in many tissues, most notably the intestinal absorption of folates, in terms of pH dependency and substrate specificity. With the recent cloning of the proton-coupled folate transporter (PCFT) and the demonstration that this transporter is mutated in hereditary folate malabsorption, an autosomal recessive disorder, the molecular basis for this low-pH transport activity is now understood. This review focuses on the properties of PCFT and briefly addresses the two other folate-specific transporters along with other facilitative and ATP-binding cassette (ABC) transporters with folate transport activities. The role of these transporters in the vectorial transport of folates across epithelia is considered. PMID:21568705
Multidrug Resistance Proteins (MRPs/ABCCs) in Cancer Chemotherapy and Genetic Diseases
Chen, Zhe-Sheng; Tiwari, Amit K.
2011-01-01
The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the ‘C’ subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so-called Multidrug Resistance Proteins (MRPs) 1-9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C4 and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this review article, the current biochemical and physiological knowledge of MRP1-MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin-Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed. PMID:21740521
Bartsevich, V V; Pakrasi, H B
1995-01-01
During photosynthesis, the photosystem II (PSII) pigment-protein complex catalyzes oxygen evolution, a reaction in which a four-manganese ensemble plays a crucial role. Using a newly developed selection scheme, we have isolated BP13, a random photosynthesis-deficient mutant strain of the cyanobacterium, Synechocystis 6803. This mutant grew slowly under photoautotrophic conditions, and had a low oxygen evolution activity. Biochemical analysis revealed that the lesion in this mutant strain had specifically affected the Mn ensemble in PSII. Interestingly, incubation of BP13 cells with micromolar levels of added Mn induced rapid recovery of oxygen evolution activity. The mutant could be complemented with a fragment of wild-type chromosomal DNA containing three closely linked genes, mntA, mntB and mntC. These gene products showed significant sequence similarities with polypeptide components of bacterial permeases that are members of the 'ABC (ATP binding cassette) superfamily' of transporter proteins. We determined that in the BP13 strain, a single nucleotide change had resulted in the replacement of an alanine by an aspartic acid residue in MntA, a soluble protein containing ATP binding motifs. These results suggest that the mntCAB gene cluster encodes polypeptide components of a Mn transporter, the first such protein complex identified in any organism. PMID:7743991
Role of the Caenorhabditis elegans multidrug resistance gene, mrp-4, in gut granule differentiation.
Currie, Erin; King, Brian; Lawrenson, Andrea L; Schroeder, Lena K; Kershner, Aaron M; Hermann, Greg J
2007-11-01
Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly. mrp-4(+) activity is required for the extracellular mislocalization of birefringent material, body-length retraction, and NaCl sensitivity, phenotypes associated with defective gut granule biogenesis exhibited by embryos lacking the activity of GLO-1/Rab38, a putative GLO-1 guanine nucleotide exchange factor GLO-4, and the AP-3 complex. Multidrug resistance protein (MRP)-4 localizes to the gut granule membrane, consistent with it playing a direct role in the transport of molecules that compose and/or facilitate the formation of birefringent crystals within the gut granule. However, MRP-4 is also present in oocytes and early embryos, and our genetic analyses indicate that its site of action in the formation of birefringent material may not be limited to just the gut granule in embryos. In a search for genes that function similarly to mrp-4(+), we identified WHT-2, another ABC transporter that acts in parallel to MRP-4 for the formation of birefringent material in the gut granule.
Yang, Xiao-Dan; Wang, Chun; Zhou, Peng; Yu, Jun; Asenso, James; Ma, Yong; Wei, Wei
2016-09-01
1. Paeoniflorin-6'-O-benzene sulfonate (CP-25) was synthesized to improve the poor oral absorption of paeoniflorin (Pae). 2. This study was performed to investigate the absorptive behavior and mechanism of CP-25 in in situ single-pass intestinal perfusion in rats, using Pae as a control. 3. The results showed that intestinal absorption of CP-25 was neither segmental nor sex dependent. However, the main segment of intestine that absorbed Pae was the duodenum. Furthermore, passive transport was confirmed to be the main absorption pattern of CP-25. More importantly, the absorption of CP-25 was much higher than Pae in the small intestine. 4. Among the ABC transporter inhibitors, the absorption rate of Pae increased in the presence of P-gp inhibitors verapamil and GF120918, which indicated that Pae was a substrate of P-glycoprotein (P-gp), however, such was not observed in the presence of breast cancer resistance protein and multidrug resistance-associated protein 2. Finally, the ABC transporter inhibitors did not have any significant impact on CP-25 as demonstrated in the parallel studies. 5. CP-25 could improve the poor absorption of Pae, which may be attributed to both the lipid solubility enhancement and its resistance to P-gp-mediated efflux.
Zhang, Hui; Wang, Yi-Jun; Zhang, Yun-Kai; Wang, De-Shen; Kathawala, Rishil J; Patel, Atish; Talele, Tanaji T; Chen, Zhe-Sheng; Fu, Li-Wu
2014-08-01
AST1306, an inhibitor of EGFR and ErbB2, is currently in phase I of clinical trials. We evaluated the effect of AST306 on the reversal of multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters. We found that AST1306 significantly sensitized the ABC subfamily G member 2 (ABCG2)-overexpressing cells to ABCG2 substrate chemotherapeutics. AST1306 significantly increased intracellular accumulation of [(3)H]-mitoxantrone in ABCG2-overexpressing cells by blocking ABCG2 efflux function. Moreover, AST1306 stimulated the ATPase activity of ABCG2. Homology modeling predicted the binding conformation of AST1306 to be within the transmembrane region of ABCG2. In conclusion, AST1306 could notably reverse ABCG2-mediated MDR. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Study on the mesophase development of pressure-responsive ABC triblock copolymers
NASA Astrophysics Data System (ADS)
Cho, Junhan
Here we focus on the revelation of new nanoscale morphologies for a molten compressible polymeric surfactant through a compressible self-consistent field approach. A linear ABC block copolymer is set to allow a disparity in the propensities for curved interfaces and in pressure responses of ij-pairs. Under these conditions, the copolymer evolves into noble morphologies at selected segregation levels such as networks with tetrapod connections, rectangularly packed cylinders in a 2-dimensional array, and also body-centered cubic phases. Those new structures are considered to turn up by interplay between disparity in the densities of block domains and packing frustration. Comparison with the classical mesophase structures is also given. The author acknowledges the support from the Center for Photofunctional Energy Materials (GRRC).
Narita, Shin-ichiro; Tokuda, Hajime
2009-07-07
Seven Lpt proteins (A through G) are thought to be involved in lipopolysaccharide transport from the inner to outer membrane of Escherichia coli. LptB belongs to the ATP-binding cassette transporter superfamily. Although the lptB gene lacks neighboring genes encoding membrane subunits, bioinformatic analyses recently indicated that two distantly located consecutive genes, lptF and lptG, could encode membrane subunits. To examine this possibility, LptB was expressed with LptF and LptG. We report here that both LptF and LptG formed a complex with LptB. Furthermore, an inner membrane protein, LptC, which had been implicated in lipopolysaccharide transport, was also included in this complex.
On Certain Topological Indices of Boron Triangular Nanotubes
NASA Astrophysics Data System (ADS)
Aslam, Adnan; Ahmad, Safyan; Gao, Wei
2017-08-01
The topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randić (Rα), first Zagreb (M1) and second Zagreb (M2), atom-bond connectivity (ABC), and geometric-arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC4) and the fifth version of geometric-arithmetic (GA5) indices of boron triangular nanotubes.
The Vertical Structure of Urban Soils and Their Convergence Across Cities
The theoretical patterns for vertical soil structure (e.g., A-B-C ordering of horizons) are a basis for research methods and our understanding of ecosystem structure and function in general. A general understanding of how urban soils differ from non-urban soils vertically is need...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seike, Kiho; Sato, Junji; Tomoo, Koji, E-mail: tomoo@gly.oups.ac.jp
2007-07-01
To clarify the structural basis of sugar binding by BxlE at the atomic level, recombinant BxlE was crystallized using the hanging-drop vapour-diffusion method at 290 K. Together with the integral membrane proteins BxlF and BxlG, BxlE isolated from Streptomyces thermoviolaceus OPC-520 forms an ATP-binding cassette (ABC) transport system that mediates the uptake of xylan. To clarify the structural basis of sugar binding by BxlE at the atomic level, recombinant BxlE was crystallized using the hanging-drop vapour-diffusion method at 290 K. The crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 44.63, b = 63.27, cmore » = 66.40 Å, β = 103.05°, and contained one 48 kDa molecule per asymmetric unit (V{sub M} = 1.96 Å{sup 3} Da{sup −1}). Diffraction data collected to a resolution of 1.65 Å using a rotating-anode X-ray source gave a data set with an overall R{sub merge} of 2.6% and a completeness of 91.3%. A data set from a platinum derivative is being used for phasing by the SAD method.« less
Neupane, Durga P; Avalos, Dante; Fullam, Stephanie; Roychowdhury, Hridindu; Yukl, Erik T
2017-10-20
Bacteria can acquire the essential metal zinc from extremely zinc-limited environments by using ATP-binding cassette (ABC) transporters. These transporters are critical virulence factors, relying on specific and high-affinity binding of zinc by a periplasmic solute-binding protein (SBP). As such, the mechanisms of zinc binding and release among bacterial SBPs are of considerable interest as antibacterial drug targets. Zinc SBPs are characterized by a flexible loop near the high-affinity zinc-binding site. The function of this structure is not always clear, and its flexibility has thus far prevented structural characterization by X-ray crystallography. Here, we present intact structures for the zinc-specific SBP AztC from the bacterium Paracoccus denitrificans in the zinc-bound and apo-states. A comparison of these structures revealed that zinc loss prompts significant structural rearrangements, mediated by the formation of a sodium-binding site in the apo-structure. We further show that the AztC flexible loop has no impact on zinc-binding affinity, stoichiometry, or protein structure, yet is essential for zinc transfer from the metallochaperone AztD. We also found that 3 His residues in the loop appear to temporarily coordinate zinc and then convey it to the high-affinity binding site. Thus, mutation of any of these residues to Ala abrogated zinc transfer from AztD. Our structural and mechanistic findings conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaperone AztD, yielding critical insights into metal binding by AztC from both solution and AztD. These proteins are highly conserved in human pathogens, making this work potentially useful for the development of novel antibiotics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Crowley, R. C.; Leigh, J. A.; Ward, P. N.; Lappin-Scott, H. M.; Bowler, L. D.
2011-01-01
The bovine pathogen Streptococcus uberis was assessed for biofilm growth. The transition from planktonic to biofilm growth in strain 0140J correlated with an upregulation of several gene products that have been shown to be important for pathogenesis, including a glutamine ABC transporter (SUB1152) and a lactoferrin binding protein (gene lbp; protein SUB0145). PMID:21075893
USDA-ARS?s Scientific Manuscript database
Bacillus thuringiensis (Bt) crystalline protein (Cry) toxins cause mortality by a mechanism involving pore formation or signal transduction following toxin binding to receptors along the midgut lumen of susceptible insects, but this mechanism and mutations therein that lead to resistance remain poor...
Genome‐wide identification of tolerance mechanisms toward p‐coumaric acid in Pseudomonas putida
Calero, Patricia; Jensen, Sheila I.; Bojanovič, Klara; Lennen, Rebecca M.; Koza, Anna
2017-01-01
Abstract The soil bacterium Pseudomonas putida KT2440 has gained increasing biotechnological interest due to its ability to tolerate different types of stress. Here, the tolerance of P. putida KT2440 toward eleven toxic chemical compounds was investigated. P. putida was found to be significantly more tolerant toward three of the eleven compounds when compared to Escherichia coli. Increased tolerance was for example found toward p‐coumaric acid, an interesting precursor for polymerization with a significant industrial relevance. The tolerance mechanism was therefore investigated using the genome‐wide approach, Tn‐seq. Libraries containing a large number of miniTn5‐Km transposon insertion mutants were grown in the presence and absence of p‐coumaric acid, and the enrichment or depletion of mutants was quantified by high‐throughput sequencing. Several genes, including the ABC transporter Ttg2ABC and the cytochrome c maturation system (ccm), were identified to play an important role in the tolerance toward p‐coumaric acid of this bacterium. Most of the identified genes were involved in membrane stability, suggesting that tolerance toward p‐coumaric acid is related to transport and membrane integrity. PMID:29131301
Zeng, Zhu; Zuo, Fanglei; Yu, Rui; Zhang, Bo; Ma, Huiqin; Chen, Shangwu
2017-09-01
A novel lactose-responsive promoter of the ATP-binding cassette (ABC) transporter gene Lba1680 of Lactobacillus acidophilus strain 05-172 isolated from a traditionally fermented dairy product koumiss was characterized. In L. acidophilus 05-172, expression of Lba1680 was induced by lactose, with lactose-induced transcription of Lba1680 being 6.1-fold higher than that induced by glucose. This is in contrast to L. acidophilus NCFM, a strain isolated from human feces, in which expression of Lba1680 and Lba1679 is induced by glucose. Both gene expression and enzyme activity assays in L. paracasei transformed with a vector containing the inducible Lba1680 promoter (PLba1680) of strain 05-172 and a heme-dependent catalase gene as reporter confirmed that PLba1680 is specifically induced by lactose. Its regulatory expression could not be repressed by glucose, and was independent of cAMP receptor protein. This lactose-responsive promoter might be used in the expression of functional genes in L. paracasei incorporated into a lactose-rich environment, such as dairy products. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ATP-Binding Cassette Proteins: Towards a Computational View of Mechanism
NASA Astrophysics Data System (ADS)
Liao, Jielou
2004-03-01
Many large machine proteins can generate mechanical force and undergo large-scale conformational changes (LSCC) to perform varying biological tasks in living cells by utilizing ATP. Important examples include ATP-binding cassette (ABC) transporters. They are membrane proteins that couple ATP binding and hydrolysis to the translocation of substrates across membranes [1]. To interpret how the mechanical force generated by ATP binding and hydrolysis is propagated, a coarse-grained ATP-dependent harmonic network model (HNM) [2,3] is applied to the ABC protein, BtuCD. This protein machine transports vitamin B12 across membranes. The analysis shows that subunits of the protein move against each other in a concerted manner. The lowest-frequency modes of the BtuCD protein are found to link the functionally critical domains, and are suggested to be responsible for large-scale ATP-coupled conformational changes. [1] K. P. Locher, A. T. Lee and D. C. Rees. Science 296, 1091-1098 (2002). [2] Atilgan, A. R., S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar. Biophys. J. 80, 505-515(2002); M. M Tirion, Phys. Rev. Lett. 77, 1905-1908 (1996). [3] J. -L. Liao and D. N. Beratan, 2003, to be published.
Milane, Lara; Ganesh, Shanthi; Shah, Shruti; Duan, Zhen-feng; Amiji, Mansoor
2011-01-01
Inefficiency in systemic drug delivery and tumor residence as well microenvironmental selection pressures contribute to the development of multidrug resistance (MDR) in cancer. Characteristics of MDR include abnormal vasculature, regions of hypoxia, up-regulation of ABC-transporters, aerobic glycolysis, and an elevated apoptotic threshold. Nano-sized delivery vehicles are ideal for treating MDR cancer as they can improve the therapeutic index of drugs and they can be engineered to achieve multifunctional parameters. The multifunctional ability of nanocarriers makes them more adept at treating heterogeneous tumor mass than traditional chemotherapy. Nanocarriers also have preferential tumor accumulation via the EPR effect; this accumulation can be further enhanced by actively targeting the biological profile of MDR cells. Perhaps the most significant benefit of using nanocarrier drug delivery to treat MDR cancer is that nanocarrier delivery diverts the effects of ABC-transporter mediated drug efflux; which is the primary mechanism of MDR. This review discusses the capabilities, applications, and examples of multifunctional nanocarriers for the treatment of MDR. This review emphasizes multifunctional nanocarriers that enhance drug delivery efficiency, the application of RNAi, modulation of the tumor apoptotic threshold, and physical approaches to overcome MDR. PMID:21497176
Bani, MariaRosa; Decio, Alessandra; Giavazzi, Raffaella; Ghilardi, Carmen
2017-05-01
Tumor endothelial cells (TEC) differ from the normal counterpart, in both gene expression and functionality. TEC may acquire drug resistance, a characteristic that is maintained in vitro. There is evidence that TEC are more resistant to chemotherapeutic drugs, substrates of ATP-binding cassette (ABC) transporters. TEC express p-glycoprotein (encoded by ABCB1), while no difference in other ABC transporters was revealed compared to normal endothelia. A class of tyrosine kinase inhibitors (TKI), used as angiostatic compounds, interferes with the ATPase activity of p-glycoprotein, thus impairing its functionality. The exposure of ovarian adenocarcinoma TEC to the TKIs sunitinib or sorafenib was found to abrogate resistance (proliferation and motility) to doxorubicin and paclitaxel in vitro, increasing intracellular drug accumulation. A similar effect has been reported by the p-glycoprotein inhibitor verapamil. No beneficial effect was observed in combination with cytotoxic drugs that are not p-glycoprotein substrates. The current paper reviews the mechanisms of TEC chemoresistance and shows the role of p-glycoprotein in mediating such resistance. Inhibition of p-glycoprotein by anti-angiogenic TKI might contribute to the beneficial effect of these small molecules, when combined with chemotherapy, in counteracting acquired drug resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegos, Vanessa R.; Hey, Louis; LaMirande, Jacob
Phosphate-binding proteins (PBPs) are key proteins that belong to the bacterial ABC-type phosphate transporters. PBPs are periplasmic (or membrane-anchored) proteins that capture phosphate anions from the environment and release them to the transmembrane transporter. Recent work has suggested that PBPs have evolved for high affinity as well as high selectivity. In particular, a short, unique hydrogen bond between the phosphate anion and an aspartate residue has been shown to be critical for selectivity, yet is not strictly conserved in PBPs. Here, the PBP fromPolaromonasJS666 is focused on. Interestingly, this PBP is predicted to harbor different phosphate-binding residues to currently knownmore » PBPs. Here, it is shown that the PBP fromPolaromonasJS666 is capable of binding phosphate, with a maximal binding activity at pH 8. Its structure is expected to reveal its binding-cleft configuration as well as its phosphate-binding mode. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.35 Å resolution of the PBP fromPolaromonasJS666 are reported.« less
Zaja, Roko; Klobucar, Roberta Sauerborn; Smital, Tvrtko
2007-03-30
The PLHC-1 hepatoma cell line derived from topminnow (Poeciliopsis lucida) is one of the most frequently used fish cell lines in aquatic ecotoxicology. These cells have been well characterized regarding the presence of phase I and phase II enzymes involved in the metabolism of xenobiotics. However, the presence of the ABC transport proteins possibly involved in the MultiXenobiotic Resistance (MXR) mechanism as phase III of cellular detoxification has never been described in the PLHC-1 cells. The main goal of this study was the detection and functional characterization of toxicologically relevant xenobiotic efflux transporters from ABCB and ABCC subfamily in the PLHC-1 cells. Using specific primer pairs two PCR products 1769 and 1023bp in length were successfully cloned and sequenced. Subsequent multiple alignment and phylogenetic analysis showed that these sequences share a high degree of homology with the P-glycoprotein (Pgp1; ABCB1) and the MRP3 (ABCC3). Functional experiments with fluorescent model substrates and specific inhibitors were used to verify that transport activities of Pgp- and MRP-related proteins are indeed present in PLHC-1 cells. Accumulation or efflux/retention rates of rhodamine 123, calcein-AM or monochlorbimane were time- and concentration-dependent. Cyclosporine A, MK571, verapamil, reversine 205, indomethacine and probenecid were used as specific inhibitors of Pgp1 and/or MRPs transport activities, resulting in a dose dependent inhibition of related transport activities in PLHC-1 cells. Similar to mammalian systems, the obtained IC(50) values were in the lower micromolar range. Taken together these data demonstrate that: (1) the PLHC-1 cells do express a functional MXR mechanism mediated by toxicologically relevant ABC efflux transporters; and (2) the presence of all three critical phases of cellular detoxification additionally affirms the PLHC-1 cells as a reliable in vitro model in aquatic toxicology.
Yamazaki, Yasuhiro; Yasui, Kenta; Hashizume, Takahiro; Suto, Arisa; Mori, Ayaka; Murata, Yuzuki; Yamaguchi, Masahiko; Ikari, Akira; Sugatani, Junko
2015-10-01
The adenosine triphosphate-binding cassette (ABC) half-transporters Abcg5 and Abcg8 promote the secretion of neutral sterol into bile. Studies have demonstrated the diet-induced gene expression of these transporters, but the regulation of their trafficking when the nutritional status changes in the liver remains to be elucidated. Here, we generated a novel in vivo kinetic analysis that can monitor the intracellular trafficking of Abcg5/Abcg8 in living mouse liver by in vivo transfection of the genes of fluorescent protein-tagged transporters and investigated how hypernutrition affects the canalicular trafficking of these transporters. The kinetic analysis showed that lithogenic diet consumption accelerated the translocation of newly synthesized fluorescent-tagged transporters to intracellular pools in an endosomal compartment and enhanced the recruitment of these pooled gene products into the bile canalicular membrane in mouse liver. Because some ABC transporters are reported to be recruited from intracellular pools to the bile canaliculi by cyclic adenosine monophosphate (cAMP) signaling, we next evaluated the involvement of this machinery in a diet-induced event. Administration of a protein kinase A inhibitor, N-(2-{[3-(4-bromophenyl)-2-propenyl]amino}ethyl)-5-isoquinolinesulfonamide, decreased the canalicular expression of native Abcg5/Abcg8 in lithogenic diet-fed mice, and injection of a cAMP analog, dibutyryl cAMP, transiently increased their levels in standard diet-fed mice, indicating the involvement of cAMP signaling. Indeed, canalicular trafficking of the fluorescent-tagged Abcg5/Abcg8 was enhanced by dibutyryl cAMP administration. These observations suggest that diet-induced lipid loading into liver accelerates the trafficking of Abcg5/Abcg8 to the bile canalicular membrane through cAMP signaling machinery. © 2015 by the American Association for the Study of Liver Diseases.
Lévy flight artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Sharma, Harish; Bansal, Jagdish Chand; Arya, K. V.; Yang, Xin-She
2016-08-01
Artificial bee colony (ABC) optimisation algorithm is a relatively simple and recent population-based probabilistic approach for global optimisation. The solution search equation of ABC is significantly influenced by a random quantity which helps in exploration at the cost of exploitation of the search space. In the ABC, there is a high chance to skip the true solution due to its large step sizes. In order to balance between diversity and convergence in the ABC, a Lévy flight inspired search strategy is proposed and integrated with ABC. The proposed strategy is named as Lévy Flight ABC (LFABC) has both the local and global search capability simultaneously and can be achieved by tuning the Lévy flight parameters and thus automatically tuning the step sizes. In the LFABC, new solutions are generated around the best solution and it helps to enhance the exploitation capability of ABC. Furthermore, to improve the exploration capability, the numbers of scout bees are increased. The experiments on 20 test problems of different complexities and five real-world engineering optimisation problems show that the proposed strategy outperforms the basic ABC and recent variants of ABC, namely, Gbest-guided ABC, best-so-far ABC and modified ABC in most of the experiments.
Neurochemical binding profiles of novel indole and benzofuran MDMA analogues.
Shimshoni, Jakob A; Winkler, Ilan; Golan, Ezekiel; Nutt, David
2017-01-01
3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-ol, 5-IT). These compounds were screened as potential second-generation anti-PTSD drugs, against a battery of human and non-human receptors, transporters, and enzymes, and their potencies as 5-HT 2 receptor agonist and monoamine uptake inhibitors determined. All MDMA analogues displayed high binding affinities for 5-HT 2a,b,c and NE α2 receptors, as well as significant 5-HT, DA, and NE uptake inhibition. 5-APB revealed significant agonist activity at the 5-HT 2a,b,c receptors, while 6-MAPB, 5-MAPB, and 5-IT exhibited significant agonist activity at the 5-HT 2c receptor. There was a lack of correlation between the results of functional uptake and the monoamine transporter binding assay. MDMA analogues emerged as potent and selective monoamine oxidase A inhibitors. Based on 6-MAPB favorable pharmacological profile, it was further subjected to IC 50 determination for monoamine transporters. Overall, all MDMA analogues displayed higher monoamine receptor/transporter binding affinities and agonist activity at the 5-HT 2a,c receptors as compared to MDMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gribenko, Alexey; Mosyak, Lidia; Ghosh, Sharmistha
MntC is a metal-binding protein component of the Mn 2 +-specific mntABC transporter from the pathogen Staphylococcus aureus. The protein is expressed during the early stages of infection and was proven to be effective at reducing both S. aureus and Staphylococcus epidermidis infections in a murine animal model when used as a vaccine antigen. MntC is currently being tested in human clinical trials as a component of a multiantigen vaccine for the prevention of S. aureus infections. To better understand the biological function of MntC, we are providing structural and biophysical characterization of the protein in this work. The three-dimensionalmore » structure of the protein was solved by X-ray crystallography at 2.2 Å resolution and suggests two potential metal binding modes, which may lead to reversible as well as irreversible metal binding. Precise Mn 2 +-binding affinity of the protein was determined from the isothermal titration calorimetry experiments using a competition approach. Differential scanning calorimetry experiments confirmed that divalent metals can indeed bind to MntC reversibly as well as irreversibly. Finally, Mn 2 +-induced structural and dynamics changes have been characterized using spectroscopic methods and deuterium–hydrogen exchange mass spectroscopy. Results of the experiments show that these changes are minimal and are largely restricted to the structural elements involved in metal coordination. Therefore, it is unlikely that antibody binding to this antigen will be affected by the occupancy of the metal-binding site by Mn 2 +.« less
On Topological Indices of Certain Families of Nanostar Dendrimers.
Husin, Mohamad Nazri; Hasni, Roslan; Arif, Nabeel Ezzulddin; Imran, Muhammad
2016-06-24
A topological index of graph G is a numerical parameter related to G which characterizes its molecular topology and is usually graph invariant. In the field of quantitative structure-activity (QSAR)/quantitative structure-activity structure-property (QSPR) research, theoretical properties of the chemical compounds and their molecular topological indices such as the Randić connectivity index, atom-bond connectivity (ABC) index and geometric-arithmetic (GA) index are used to predict the bioactivity of different chemical compounds. A dendrimer is an artificially manufactured or synthesized molecule built up from the branched units called monomers. In this paper, the fourth version of ABC index and the fifth version of GA index of certain families of nanostar dendrimers are investigated. We derive the analytical closed formulas for these families of nanostar dendrimers. The obtained results can be of use in molecular data mining, particularly in researching the uniqueness of tested (hyper-branched) molecular graphs.
Contribution of Long-Range Interactions to the Secondary Structure of an Unfolded Globin
Fedyukina, Daria V.; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C.; Eun, Ye-Jin; Cavagnero, Silvia
2010-01-01
This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an α-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable α-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. PMID:20816043
Loo, Tip W; Clarke, David M
2016-04-01
P-glycoprotein (P-gp) is an ABC (ATP-Binding Cassette) drug pump. A common feature of ABC proteins is that they are organized into two wings. Each wing contains a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates and ATP bind at the interface between the TMDs and NBDs, respectively. Drug transport involves ATP-dependent conformational changes between inward- (open, NBDs far apart) and outward-facing (closed, NBDs close together) conformations. P-gps crystallized in the presence of detergent show an open structure. Human P-gp is inactive in detergent but basal ATPase activity is restored upon addition of lipids. The lipids might cause closure of the wings to bring the NBDs close together to allow ATP hydrolysis. We show however, that cross-linking the wings together did not activate ATPase activity when lipids were absent suggesting that lipids may induce other structural changes required for ATPase activity. We then tested the effect of lipids on disulfide cross-linking of mutants at the first transmission interface between intracellular loop 4 (TMD2) and NBD1. Mutants L443C/S909C and L443C/R905C but not G471C/S909C and V472C/S909C were cross-linked with oxidant when in membranes. The mutants were then purified and cross-linked with or without lipids. Mutants G471C/S909C and V472C/S909C cross-linked only in the absence of lipids whereas mutants L443C/S909C and L443C/R905C were cross-linked only in the presence of lipids. The results suggest that lipids activate a switch at the first transmission interface and that the structure of P-gp is different in detergents and lipids. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun
2015-10-01
Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.