Science.gov

Sample records for abc triblock copolymer

  1. Perfluorocyclobutyl Aryl Ether-Based ABC Amphiphilic Triblock Copolymer

    NASA Astrophysics Data System (ADS)

    Xu, Binbin; Yao, Wenqiang; Li, Yongjun; Zhang, Sen; Huang, Xiaoyu

    2016-12-01

    A series of fluorine-containing amphiphilic ABC triblock copolymers comprising hydrophilic poly(ethylene glycol) (PEG) and poly(methacrylic acid) (PMAA), and hydrophobic poly(p-(2-(4-biphenyl)perfluorocyclobutoxy)phenyl methacrylate) (PBPFCBPMA) segments were synthesized by successive atom transfer radical polymerization (ATRP). First, PEG-Br macroinitiators bearing one terminal ATRP initiating group were prepared by chain-end modification of monohydroxy-terminated PEG via esterification reaction. PEG-b-PBPFCBPMA-Br diblock copolymers were then synthesized via ATRP of BPFCBPMA monomer initiated by PEG-Br macroinitiator. ATRP polymerization of tert-butyl methacrylate (tBMA) was directly initiated by PEG-b-PBPFCBPMA-Br to provide PEG-b-PBPFCBPMA-b-PtBMA triblock copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.43). The pendant tert-butyoxycarbonyls were hydrolyzed to carboxyls in acidic environment without affecting other functional groups for affording PEG-b-PBPFCBPMA-b-PMAA amphiphilic triblock copolymers. The critical micelle concentrations (cmc) were determined by fluorescence spectroscopy using N-phenyl-1-naphthylamine as probe and the self-assembly behavior in aqueous media were investigated by transmission electron microscopy. Large compound micelles and bowl-shaped micelles were formed in neutral aqueous solution. Interestingly, large compound micelles formed by triblock copolymers can separately or simultaneously encapsulate hydrophilic Rhodamine 6G and hydrophobic pyrene agents.

  2. Perfluorocyclobutyl Aryl Ether-Based ABC Amphiphilic Triblock Copolymer

    PubMed Central

    Xu, Binbin; Yao, Wenqiang; Li, Yongjun; Zhang, Sen; Huang, Xiaoyu

    2016-01-01

    A series of fluorine-containing amphiphilic ABC triblock copolymers comprising hydrophilic poly(ethylene glycol) (PEG) and poly(methacrylic acid) (PMAA), and hydrophobic poly(p-(2-(4-biphenyl)perfluorocyclobutoxy)phenyl methacrylate) (PBPFCBPMA) segments were synthesized by successive atom transfer radical polymerization (ATRP). First, PEG-Br macroinitiators bearing one terminal ATRP initiating group were prepared by chain-end modification of monohydroxy-terminated PEG via esterification reaction. PEG-b-PBPFCBPMA-Br diblock copolymers were then synthesized via ATRP of BPFCBPMA monomer initiated by PEG-Br macroinitiator. ATRP polymerization of tert-butyl methacrylate (tBMA) was directly initiated by PEG-b-PBPFCBPMA-Br to provide PEG-b-PBPFCBPMA-b-PtBMA triblock copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.43). The pendant tert-butyoxycarbonyls were hydrolyzed to carboxyls in acidic environment without affecting other functional groups for affording PEG-b-PBPFCBPMA-b-PMAA amphiphilic triblock copolymers. The critical micelle concentrations (cmc) were determined by fluorescence spectroscopy using N-phenyl-1-naphthylamine as probe and the self-assembly behavior in aqueous media were investigated by transmission electron microscopy. Large compound micelles and bowl-shaped micelles were formed in neutral aqueous solution. Interestingly, large compound micelles formed by triblock copolymers can separately or simultaneously encapsulate hydrophilic Rhodamine 6G and hydrophobic pyrene agents. PMID:28000757

  3. Imidazolium-containing, hydrophobic-ionic-hydrophilic ABC triblock copolymers: synthesis, ordered phase-separation, and supported membrane fabrication

    SciTech Connect

    Wiesenauer, EF; Nguyen, PT; Newell, BS; Bailey, TS; Nobleb, RD; Gin, DL

    2013-01-01

    Novel ABC triblock copolymers containing hydrophobic, imidazolium ionic liquid (IL)-based ionic, and non-charged hydrophilic blocks were synthesized by direct sequential, ring-opening metathesis polymerization (ROMP) of three chemically immiscible norborene monomers. The resulting ABC triblock copolymers were found by small-angle X-ray scattering to phase-separate into different nanostructures in their pure melt states, depending on their block sequence and compositions. Supported composite membranes of these triblock copolymers were successfully fabricated with defect-free, <= 20 microns thick top coatings. Preliminary CO2/light gas transport studies demonstrated the potential of this new type of IL-based block copolymer material for gas separation applications.

  4. Complex microstructures of ABC triblock copolymer thin films directed by polymer brushes based on self-consistent field theory

    PubMed Central

    2014-01-01

    The morphology and the phase diagram of ABC triblock copolymer thin film directed by polymer brushes are investigated by the self-consistent field theory in three dimensions. The polymer brushes coated on the substrate can be used as a good soft template to tailor the morphology of the block copolymer thin films compared with those on the hard substrates. The polymer brush is identical with the middle block B. By continuously changing the composition of the block copolymer, the phase diagrams are constructed for three cases with the fixed film thickness and the brush density: identical interaction parameters, frustrated and non-frustrated cases. Some ordered complex morphologies are observed: parallel lamellar phase with hexagonally packed pores at surfaces (LAM3 ll -HFs), perpendicular lamellar phase with cylinders at the interface (LAM⊥-CI), and perpendicular hexagonally packed cylinders phase with rings at the interface (C2⊥-RI). A desired direction (perpendicular or parallel to the coated surfaces) of lamellar phases or cylindrical phases can be obtained by varying the composition and the interactions between different blocks. The phase diagram of ABC triblock copolymer thin film wetted between the polymer brush-coated surfaces is very useful in designing the directed pattern of ABC triblock copolymer thin film. PMID:25114650

  5. Complex microstructures of ABC triblock copolymer thin films directed by polymer brushes based on self-consistent field theory.

    PubMed

    Jiang, Zhibin; Xu, Chang; Qiu, Yu Dong; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi

    2014-01-01

    The morphology and the phase diagram of ABC triblock copolymer thin film directed by polymer brushes are investigated by the self-consistent field theory in three dimensions. The polymer brushes coated on the substrate can be used as a good soft template to tailor the morphology of the block copolymer thin films compared with those on the hard substrates. The polymer brush is identical with the middle block B. By continuously changing the composition of the block copolymer, the phase diagrams are constructed for three cases with the fixed film thickness and the brush density: identical interaction parameters, frustrated and non-frustrated cases. Some ordered complex morphologies are observed: parallel lamellar phase with hexagonally packed pores at surfaces (LAM3 (ll) -HFs), perpendicular lamellar phase with cylinders at the interface (LAM(⊥)-CI), and perpendicular hexagonally packed cylinders phase with rings at the interface (C2 (⊥)-RI). A desired direction (perpendicular or parallel to the coated surfaces) of lamellar phases or cylindrical phases can be obtained by varying the composition and the interactions between different blocks. The phase diagram of ABC triblock copolymer thin film wetted between the polymer brush-coated surfaces is very useful in designing the directed pattern of ABC triblock copolymer thin film.

  6. Probing the phase behavior of ABC triblock copolymers near network phase windows

    NASA Astrophysics Data System (ADS)

    Tureau, Maeva S.

    ) phase behavior of a model ABC triblock copolymer described by Tyler et al. Minor discrepancies in the size and location of the phase boundaries are rationalized on the basis of the block copolymer parameters. Second, this blending technique allowed for the precise targeting of multiple nanostructures from a single, low molecular weight disordered material. The latter finding is envisioned to be particularly useful for applications requiring materials of small feature sizes while retaining the ease of processability provided by the parent disordered copolymers. Finally, the PI hydrogenation of ISM precursors generated EPSM materials with enhanced resistance to oxidative, thermal, and UV degradation. Their initial morphological characterization permitted the identification of a relatively large Q230 network phase region and highlighted the differences in phase behavior between the EPSM and ISM precursor systems. Altogether, this latter study established a foundation for generating environmentally-stable nanostructured materials, in view of creating functionalized nanoporous membranes able to capture and separate a wide range of biologically active molecules.

  7. Self-Assembly of Asymmetrically Interacting ABC Star Triblock Copolymer Melts.

    PubMed

    Jiang, Kai; Zhang, Juan; Liang, Qin

    2015-11-12

    The phase behavior of asymmetrically interacting ABC star triblock copolymer melts is investigated by the self-consistent field theory (SCFT). Motivated by the experimental systems, in this study, we focus on the systems in which the Flory-Huggins interaction parameters satisfy χAC > χ BC ≈ χAB. Using various initialization strategies, a large number of periodic structures have been obtained in our calculations. A fourth-order pseudospectral algorithm combined with Anderson mixing method is used to compute the free energy of candidate structures carefully. The stability has been analyzed in detail by splitting the free energy into internal and entropic parts. A complete and complex triangular phase diagram is presented for a model with χAC > χBC = χAB in which 15 ordered phases, including two- and three-dimensional structures, have been predicted to be stable from the SCFT calculations. Generally speaking, with the asymmetrical interactions, the hierarchical structures tend to be formed near the B-rich corner of the triangular phase diagram. This work broadens the previous theoretical results from equal interaction systems to unequal interaction systems. The predicted phase behavior is in good agreement with experimental observations and previous theoretical results.

  8. Formation of ordered microphase-separated pattern during spin coating of ABC triblock copolymer.

    PubMed

    Huang, Weihuan; Luo, Chunxia; Zhang, Jilin; Han, Yanchun

    2007-03-14

    In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared. When the film thickness exceeds another definite value (12.0 nm), the crystallization of PEO dominates the surface morphology. For films with thickness between these two values, microphase separation and crystallization can simultaneously occur.

  9. ABC Triblock Copolymer Worms: Synthesis, Characterization, and Evaluation as Pickering Emulsifiers for Millimeter-Sized Droplets

    PubMed Central

    2016-01-01

    Polymerization-induced self-assembly (PISA) is used to prepare linear poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) [PGMA–PHPMA–PBzMA] triblock copolymer nano-objects in the form of a concentrated aqueous dispersion via a three-step synthesis based on reversible addition–fragmentation chain transfer (RAFT) polymerization. First, GMA is polymerized via RAFT solution polymerization in ethanol, then HPMA is polymerized via RAFT aqueous solution polymerization, and finally BzMA is polymerized via “seeded” RAFT aqueous emulsion polymerization. For certain block compositions, highly anisotropic worm-like particles are obtained, which are characterized by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The design rules for accessing higher order morphologies (i.e., worms or vesicles) are briefly explored. Surprisingly, vesicular morphologies cannot be accessed by targeting longer PBzMA blocks—instead, only spherical nanoparticles are formed. SAXS is used to rationalize these counterintuitive observations, which are best explained by considering subtle changes in the relative enthalpic incompatibilities between the three blocks during the growth of the PBzMA block. Finally, the PGMA–PHPMA–PBzMA worms are evaluated as Pickering emulsifiers for the stabilization of oil-in-water emulsions. Millimeter-sized oil droplets can be obtained using low-shear homogenization (hand-shaking) in the presence of 20 vol % n-dodecane. In contrast, control experiments performed using PGMA–PHPMA diblock copolymer worms indicate that these more delicate nanostructures do not survive even these mild conditions. PMID:27795581

  10. Structure of PS/PMMA Blends with Interfacially Active Janus Particles Derived from ABC Triblock Copolymers

    NASA Astrophysics Data System (ADS)

    Bryson, Kyle; Löbling, Tina; Müller, Axel; Hayward, Ryan; Russell, Thomas

    2014-03-01

    Kinetic trapping of bicontinuous polymer morphologies on submicron length scales through the interfacial adsorption of nanoparticles is of interest due to the unique combination of the properties of each component provided by such structures, and their potential for use as membranes and composite materials. However, this strategy is challenging to realize in polymeric systems, due to the difficulties in preparing particles that are neutrally wetted by the two polymer phases. Janus particles afford a route to circumvent the necessity of neutral wettability. Both theory and experiment have shown enhanced interfacial adsorption energies for Janus particles, as well as greater flexibility in controlling particle orientation at the interface, in comparison to homogeneous particles. Janus particles with polystyrene and poly(methyl methacrylate) (PS/PMMA) hemispheres and a crosslinked polybutadiene core were prepared from triblock copolymers. Using blends of PS and PMMA homopolymers and the Janus particles, we examined structures produced by phase separation during solvent casting and thermodynamic demixing transitions via TEM and small-angle light scattering. The results elucidate the role of particle wettability on interfacial behavior and the structure of stabilized emulsions.

  11. Clickable Amphiphilic Triblock Copolymers.

    PubMed

    Isaacman, Michael J; Barron, Kathryn A; Theogarajan, Luke S

    2012-06-15

    Amphiphilic polymers have recently garnered much attention due to their potential use in drug-delivery and other biomedical applications. A modular synthesis of these polymers is extremely desirable since it offers precise individual block characterization and increased yields. We present here for the first time a modular synthesis of poly(oxazoline)-poly(siloxane)-poly(oxazoline) block copolymers that have been clicked together using the copper-catalyzed azide-alkyne cycloaddition reaction. Various click methodologies for the synthesis of these polymers have been carefully evaluated and optimized. The approach using copper nanoparticles was found to be the most optimal among the methods evaluated. Furthermore, these results were extended to allow for a reactive Si-H group-based siloxane middle block to be successfully clicked. This enables the design of more complex amphiphilic block copolymers that have additional functionality, such as stimuli responsiveness, to be synthesized via a simple hydrosilylation reaction.

  12. Thermally Switchable Thin Films of an ABC Triblock Copolymer of Poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    SciTech Connect

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.; He, Lihong; Hong, Kunlun; Mays, Jimmy; Allen, Mark

    2011-01-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  13. Thermally switchable thin films of an ABC triblock copolymer of poly( n -butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.; He, Lihong; Hong, Kunlun; Mays, Jimmy W.; Allen, Mark G.

    2011-09-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly( n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  14. Defect trapping in ABC block copolymers

    NASA Astrophysics Data System (ADS)

    Corte, Laurent; Yamauchi, Kazuhiro; Court, Francois; Cloitre, Michel; Hashimoto, Takeji; Leibler, Ludwik

    2004-03-01

    Equilibrium morphologies in molten ABC triblock terpolymers are much more difficult to attain than in AB diblocks. In practice, it is important to know whether and how synthesis conditions influence the morphology and properties of copolymer materials. It is also relevant to understand the mechanisms of defect formation and annihilation. Indeed, a potential use of copolymers in new applications such as lithography highly depends on the ability to produce regular structures with no or few defects. We show that even the simplest lamellar structures exhibit high sensitivity to preparation conditions and that strongly trapped structural defects inherent to ABC triblock architecture cannot be removed by long annealing. Annealing can induce a transition from a lamellar structure in which A and C blocks are mixed to a lamellar structure where A, B and C are segregated. We propose reorganization mechanisms that are at the origin of some characteristic defects.

  15. Self-Assembled Morphologies of Linear and Miktoarm Star Triblock Copolymer Monolayers.

    PubMed

    Deng, Hanlin; Li, Weihua; Qiu, Feng; Shi, An-Chang

    2017-04-12

    Monolayers of linear and miktoarm star ABC triblock copolymers with equal A and C blocks are investigated using the self-consistent field theory. The monolayers of ABC triblock copolymers are formed between two parallel surfaces that are attractive to the A and C blocks. The repulsive interaction parameter $\\chi_{AC}N$ between the A and C blocks is chosen to be weaker than the A/B and B/C interactions, quantified by $\\chi_{AB}N$ and $\\chi_{BC}N$, such that the B blocks are confined at the A/C interface, resulting in various B-domains with different geometries and arrangements. It is observed that two variables, the strength of the surface fields and the film thickness, are dominant factors controlling the self-assembly of the B blocks into various morphologies. For the linear triblock copolymers, the morphologies of B domains include disks, stripes (parallel cylinders), and hexagonal network (inverse disks). For the miktoarm star triblock copolymers, the competition between the tendency to align the junction points along a straight line and the constraint on their arrangement from the surface interactions leads to richer ordered morphologies. As a result of packing the junction points of the ABC miktoarm star copolymers, a counterintuitive phase sequence from low curvature phases to high curvature phases with increasing the length of B block is predicted. The study indicates that the self-assembly of monolayers of ABC triblock copolymers provides an interesting platform to engineer novel morphologies.

  16. Effects of PEO Content on the Morphological Behavior of PS-PI-PEO Triblock Copolymers

    NASA Astrophysics Data System (ADS)

    Bailey, Travis S.; Bates, Frank S.

    2000-03-01

    Many studies involving ABC triblock copolymers have focused on the unique morphologies that particular molecules or blends express. However, investigations of thermally induced morphological changes in these molecules have been limited. A series of poly(styrene-isoprene-ethyleneoxide) ABC-triblock copolymers were sythesized with increasing PEO content. Consistency among all triblocks was achieved through ethylene oxide addition to the same hydroxy-functionalized poly(styrene-isoprene) diblock (MW = 18000g/mol, vol. frac. PS =0.5). Final triblock PEO volume fractions ranged from 0.029 to 0.207. All triblocks in the series showed order-to-disorder transitions (ODTs), ranging from 84C to 215C. Interestingly, initial addition of PEO resulted in a marked depression of the ODT relative to the parent diblock (116C). Characterization of these triblocks, using a combination of techniques including reology, SAXS, and TEM, shows multiple changes in morphology over the range of compositions studied, as well as possible order-to-order transitions (OOTs) associated with triblocks of specific compositions. Progression of these morphological changes with increasing PEO content will be discussed.

  17. Phase Behavior of Neat Triblock Copolymers and Copolymer/Homopolymer Blends Near Network Phase Windows

    SciTech Connect

    M Tureau; L Rong; B Hsiao; T Epps

    2011-12-31

    The phase behavior of poly(isoprene-b-styrene-b-methyl methacrylate) (ISM) copolymers near the styrene-rich network phase window was examined through the use of neat triblock copolymers and copolymer/homopolymer blends. Both end-block and middle-block blending protocols were employed using poly(isoprene) (PI), poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) homopolymers. Blended specimens exhibited phase transformations to well-ordered nanostructures (at homopolymer loadings up to 26 vol % of the total blend volume). Morphological consistency between neat and blended specimens was established at various locations in the ISM phase space. Copolymer/homopolymer blending permitted the refinement of lamellar, hexagonally packed cylinder, and disordered melt phase boundaries as well as the identification of double gyroid (Q{sup 230}), alternating gyroid (Q{sup 214}), and orthorhombic (O{sup 70}) network regimes. Additionally, the experimental phase diagram exhibited similar trends to those found in a theoretical ABC triblock copolymer phase diagram with symmetric interactions and statistical segments lengths generated by Tyler et al.

  18. Antimicrobial Behavior of Semifluorinated-Quaternized Triblock Copolymers against Airborne and Marine Microorganisms

    SciTech Connect

    Park, D.; Finlay, J; Ward, R; Weinman, C; Krishnan, S; Park, M; Sohn, K; Callow, M; Callow, J; et. al.

    2010-01-01

    Semifluorinated-quaternized triblock copolymers (SQTCs) were synthesized by chemical modification of polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymers. Surface characterization of the polymers was performed by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) analysis. The surface of the SQTC showed very high antibacterial activity against the airborne bacterium Staphylococcus aureus with >99 % inhibition of growth. In contrast in marine fouling assays, zoospores of the green alga Ulva settled on the SQTC, which can be attributed to the positively charged surface. The adhesion strength of sporelings (young plants) of Ulva and Navicula diatoms (a unicellular alga) was high. The SQTC did not show marked algicidal activity.

  19. Rational design of ABC triblock terpolymer solution nanostructures with controlled patch morphology

    NASA Astrophysics Data System (ADS)

    Löbling, Tina I.; Borisov, Oleg; Haataja, Johannes S.; Ikkala, Olli; Gröschel, André H.; Müller, Axel H. E.

    2016-06-01

    Block copolymers self-assemble into a variety of nanostructures that are relevant for science and technology. While the assembly of diblock copolymers is largely understood, predicting the solution assembly of triblock terpolymers remains challenging due to complex interplay of block/block and block/solvent interactions. Here we provide guidelines for the self-assembly of linear ABC triblock terpolymers into a large variety of multicompartment nanostructures with C corona and A/B cores. The ratio of block lengths NC/NA thereby controls micelle geometry to spheres, cylinders, bilayer sheets and vesicles. The insoluble blocks then microphase separate to core A and surface patch B, where NB controls the patch morphology to spherical, cylindrical, bicontinuous and lamellar. The independent control over both parameters allows constructing combinatorial libraries of unprecedented solution nanostructures, including spheres-on-cylinders/sheets/vesicles, cylinders-on-sheets/vesicles, and sheets/vesicles with bicontinuous or lamellar membrane morphology (patchy polymersomes). The derived parameters provide a logical toolbox towards complex self-assemblies for soft matter nanotechnologies.

  20. Rational design of ABC triblock terpolymer solution nanostructures with controlled patch morphology

    PubMed Central

    Löbling, Tina I.; Borisov, Oleg; Haataja, Johannes S.; Ikkala, Olli; Gröschel, André H.; Müller, Axel H. E.

    2016-01-01

    Block copolymers self-assemble into a variety of nanostructures that are relevant for science and technology. While the assembly of diblock copolymers is largely understood, predicting the solution assembly of triblock terpolymers remains challenging due to complex interplay of block/block and block/solvent interactions. Here we provide guidelines for the self-assembly of linear ABC triblock terpolymers into a large variety of multicompartment nanostructures with C corona and A/B cores. The ratio of block lengths NC/NA thereby controls micelle geometry to spheres, cylinders, bilayer sheets and vesicles. The insoluble blocks then microphase separate to core A and surface patch B, where NB controls the patch morphology to spherical, cylindrical, bicontinuous and lamellar. The independent control over both parameters allows constructing combinatorial libraries of unprecedented solution nanostructures, including spheres-on-cylinders/sheets/vesicles, cylinders-on-sheets/vesicles, and sheets/vesicles with bicontinuous or lamellar membrane morphology (patchy polymersomes). The derived parameters provide a logical toolbox towards complex self-assemblies for soft matter nanotechnologies. PMID:27352897

  1. Molecular Design of Sulfonated Triblock Copolymer Permselective Membranes

    DTIC Science & Technology

    2008-07-03

    membrane morphology at environmental conditions, and the membrane sorption and transport properties with respect to water and nerve gas simulant...transport properties with respect to water and nerve gas simulant dimethylmethylphosphonate (DMMP). The methods developed include: a) quantum...triblock copolymers of styrene and lower olefins, which may provide desired protective, comfort, and mechanical properties . In our earlier works, we

  2. Segmented helical structures formed by ABC star copolymers in nanopores

    NASA Astrophysics Data System (ADS)

    Liu, Meijiao; Li, Weihua; Qiu, Feng

    2013-03-01

    Self-assembly of ABC star triblock copolymers confined in cylindrical nanopores is studied using self-consistent mean-field theory. With an ABC terpolymer forming hexagonally-arranged cylinders, segmented into alternative B and C domains, in the bulk, we observe the formation in the nanopore of a segmented single circular and non-circular cylinder, a segmented single-helix, and a segmented double-helix as stable phases, and a metastable stacked-disk phase with fourfold symmetry. The phase sequence from single-cylinder, to single-helix, and then to double-helix, is similar as that in the cylindrically-confined diblock copolymers except for the absence of an equilibrium stacked-disk phase. It is revealed that the arrangement of the three-arm junctions plays a critical role for the structure formation. One of the most interesting features in the helical structures is that there are two periods: the period of the B/C domains in the helix and the helical period. We demonstrate that the period numbers of the B/C domains contained in each helical period can be tuned by varying the pore diameter. In addition, it is predicted that the period number of B/C domains can be any rational in real helical structures whose helical period can be tuned freely.

  3. Multifunctional triblock copolymers for intracellular messenger RNA delivery.

    PubMed

    Cheng, Connie; Convertine, Anthony J; Stayton, Patrick S; Bryers, James D

    2012-10-01

    Messenger RNA (mRNA) is a promising alternative to plasmid DNA (pDNA) for gene vaccination applications, but safe and effective delivery systems are rare. Reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to synthesize a series of triblock copolymers designed to enhance the intracellular delivery of mRNA. These materials are composed of a cationic dimethylaminoethyl methacrylate (DMAEMA) segment to mediate mRNA condensation, a hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) segment to enhance stability and biocompatibility, and a pH-responsive endosomolytic copolymer of diethylaminoethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) designed to facilitate cytosolic entry. The blocking order and PEGMA segment length were systematically varied to investigate the effect of different polymer architectures on mRNA delivery efficacy. These polymers were monodisperse, exhibited pH-dependent hemolytic activity, and condensed mRNA into 86-216 nm particles. mRNA polyplexes formed from polymers with the PEGMA segment in the center of the polymer chain displayed the greatest stability to heparin displacement and were associated with the highest transfection efficiencies in two immune cell lines, RAW 264.7 macrophages (77%) and DC2.4 dendritic cells (50%). Transfected DC2.4 cells were shown to be capable of subsequently activating antigen-specific T cells, demonstrating the potential of these multifunctional triblock copolymers for mRNA-based vaccination strategies.

  4. Supramolecular association of a triblock copolymer in water.

    PubMed

    Gente, Giacomo; Iovino, Alessandro; La Mesa, Camillo

    2004-06-15

    Solutions of a poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymer, Pluronic F(68), were investigated in isothermal and isopleth mode. Surface tension, sigma, dynamic shear viscosity, n(omega), QELS experiments, and volumetric, colligative, and refractive index measurements characterize the system behavior in a wide range of compositions and temperatures. The thermodynamic properties associated with micelle formation, above the critical micellar temperature, were determined by different experimental methods. The large entropic contributions to the system stability are ascribed to significant dehydration of the oxypropylene portion in the copolymer, consequent to micelle formation. Temperature has a pronounced effect on the association features of F(68). It gives rise to abrupt changes in QELS and rheological properties when the critical micellar temperature is approached. Such effects are explained in terms of thermally driven micellization processes and interconnection between micelles.

  5. Hierarchical Sol-Gel Transition Induced by Thermosensitive Self-Assembly of an ABC Triblock Polymer in an Ionic Liquid

    SciTech Connect

    Kitazawa, Yuzo; Ueki, Takeshi; McIntosh, Lucas D.; Tamura, Saki; Niitsuma, Kazuyuki; Imaizumi, Satoru; Lodge, Timothy P.; Watanabe, Masayoshi

    2016-04-29

    Here we investigate a hierarchical morphology change and accompanying sol–gel transition using a doubly thermosensitive ABC-triblock copolymer in an ionic liquid (IL). The triblock copolymer contains two different lower critical solution temperature (LCST) thermosensitive polymers, poly(benzyl methacrylate) (PBnMA) and poly(2-phenylethyl methacrylate) (PPhEtMA), as the end blocks and poly(methyl methacrylate) (PMMA) as the middle block (PBnMA-b-PMMA-b-PPhEtMA: BMP). BMP undergoes a hierarchical phase transition corresponding to the self-assembly of each of the thermosensitive blocks in the IL, and a sol–gel transition was observed in concentrated, above 10 wt %, polymer solutions. The gelation behavior was affected by polymer concentration, and at 20 wt %, the BMP/IL composite showed a phase transition, with increasing temperature, from solution through a jammed micelle suspension to a physically cross-linked gel. For each phase was formed reversibly and rapidly over the corresponding temperature range. Finally, the jammed micelle and cross-linked gel states were characterized using viscoelastic measurements and small-angle X-ray scattering (SAXS).

  6. Effects of PEO-PPO-PEO triblock copolymers on phospholipid membrane integrity under osmotic stress.

    PubMed

    Wang, Jia-Yu; Chin, Jaemin; Marks, Jeremy D; Lee, Ka Yee C

    2010-08-03

    The effects of PEO-PPO-PEO triblock copolymers, mainly Poloxamer 188, on phospholipid membrane integrity under osmotic gradients were explored using giant unilamellar vesicles (GUVs). Fluorescence leakage assays showed two opposing effects of P188 on the structural integrity of GUVs depending on the duration of their incubation time. A two-state transition mechanism of interaction between the triblock copolymers and the phospholipid membrane is proposed: an adsorption (I) and an insertion (II) state. While the triblock copolymer in state I acts to moderately retard the leakage, their insertion in state II perturbs the lipid packing, thus increasing the membrane permeability. Our results suggest that the biomedical application of PEO-PPO-PEO triblock copolymers, either as cell membrane resealing agents or as accelerators for drug delivery, is directed by the delicate balance between these two states.

  7. Morphological Consequences of Frustration in ABC Triblock Polymers

    SciTech Connect

    Radlauer, Madalyn R.; Sinturel, Christophe; Asai, Yusuke; Arora, Akash; Bates, Frank S.; Dorfman, Kevin D.; Hillmyer, Marc A.

    2016-12-19

    Three poly(styrene)-block-poly(isoprene)-block-poly(lactide) (PS-b-PI-b-PLA, SIL) triblock terpolymers were synthesized and characterized in the bulk and as thin films. The pronounced incompatibility of the covalently connected PI and PLA led to significant frustration and the tendency to minimize their intermaterial dividing surface area. This resulted in the formation of a core–shell cylinder morphology with exaggerated nonconstant mean curvature from triblock polymers with equal block volume fractions rather than the more typical lamellar morphology. The effect of frustration was magnified in thin films by both confinement and interfacial interactions such that the PI domains became discontinuous. Self-consistent field theory (SCFT) calculations emphasize that the marked difference in the PS/PI and PI/PLA interaction parameters promotes the formation of nonlamellar morphologies. However, SCFT predicts that lamellar morphology is more stable than the observed cylindrical morphology, demonstrating a limitation that arises from the underlying assumptions.

  8. RAFT synthesis of ABA triblock copolymers as ionic liquid-containing electroactive membranes.

    PubMed

    Wu, Tianyu; Wang, Dong; Zhang, Mingqiang; Heflin, James R; Moore, Robert B; Long, Timothy E

    2012-12-01

    2-(Dimethylamino)ethyl acrylate (DMAEA) imparts versatile functionality to poly[Sty-b-(nBA-co-DMAEA)-b-Sty] ABA triblock copolymers. A controlled synthetic strategy minimized chain transfer reactions and enabled the preparation of high-molecular-weight ABA triblock copolymers with relatively narrow PDIs between 1.39 and 1.44 using reversible addition-fragmentation chain transfer (RAFT) polymerization. The presence of tertiary amine functionality and their zwitterionic derivatives in the central blocks of the triblock copolymers afforded tunable polarity toward ionic liquids. Gravimetric measurements determined the swelling capacity of the triblock copolymers for ionic liquids (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMIm TfO) and 1-ethyl-3-methylimidazolium ethylsulfate (EMIm ES). A correlation of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and small-angle X-ray scattering (SAXS) results revealed the impact of ionic liquid incorporation on the thermal transitions, thermomechanical properties, and morphologies of the triblock copolymers. IL-containing membranes of DMAEA-derived triblock copolymers and EMIm TfO exhibited desirable rubbery plateau moduli of ~100 MPa and electromechanical actuation to a 4 V electrical stimulus. Maintaining the mechanical ductility of polymer matrices while increasing their ion-conductivity is paramount for future electroactive devices.

  9. Structure-Property Relationships of Poly(lactide)-based Triblock and Multiblock Copolymers

    NASA Astrophysics Data System (ADS)

    Panthani, Tessie Rose

    Replacing petroleum-based plastics with alternatives that are degradable and synthesized from annually renewable feedstocks is a critical goal for the polymer industry. Achieving this goal requires the development of sustainable analogs to commodity plastics which have equivalent or superior properties (e.g. mechanical, thermal, optical etc.) compared to their petroleum-based counterparts. This work focuses on improving and modulating the properties of a specific sustainable polymer, poly(lactide) (PLA), by incorporating it into triblock and multiblock copolymer architectures. The multiblock copolymers in this work are synthesized directly from dihydroxy-terminated triblock copolymers by a simple step-growth approach: the triblock copolymer serves as a macromonomer and addition of stoichiometric quantities of either an acid chloride or diisocyanate results in a multiblock copolymer. This work shows that over wide range of compositions, PLA-based multiblock copolymers have superior mechanical properties compared to triblock copolymers with equivalent chemical compositions and morphologies. The connectivity of the blocks within the multiblock copolymers has other interesting consequences on properties. For example, when crystallizable poly(L-lactide)-based triblock and multiblock copolymers are investigated, it is found that the multiblock copolymers have much slower crystallization kinetics. Additionally, the total number of blocks connected together is found to effect the linear viscoelastic properties as well as the alignment of lamellar domains under uniaxial extension. Finally, the synthesis and characterization of pressure-sensitive adhesives based upon renewable PLA-containing triblock copolymers and a renewable tackifier is detailed. Together, the results give insight into the effect of chain architecture, composition, and morphology on the mechanical behavior, thermal properties, and rheological properties of PLA-based materials.

  10. Imidazolium-Containing ABA Triblock Copolymers as Electroactive Devices.

    PubMed

    Margaretta, Evan; Fahs, Gregory B; Inglefield, David L; Jangu, Chainika; Wang, Dong; Heflin, James R; Moore, Robert B; Long, Timothy E

    2016-01-20

    Two-step reversible addition-fragmentation chain transfer (RAFT) polymerization and two subsequent postpolymerization modification steps afforded well-defined ABA triblock copolymers featuring mechanically reinforcing polystyrene outer blocks and 1-methylimidazole-neutralized poly(acrylic acid)-based central blocks. Size exclusion chromatography and (1)H NMR spectroscopy confirmed predictable molecular weights and narrow distributions. The ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm][OTf]) was incorporated at 30 wt % into polymeric films. Thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis determined the thermomechanical properties of the polymers and polymer-IL composites. Atomic force microscopy, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) determined surface and bulk morphologies, and poly(Sty-b-AA(MeIm)-b-Sty) exhibited a change from packed cylindrical to lamellar morphology in SAXS upon IL incorporation. Electrochemical impedance spectroscopy determined the in-plane ionic conductivities of the polymer-IL membranes (σ ∼ 10(-4) S/cm). A device fabricated from poly(Sty-b-AA(MeIm)-b-Sty) with 30 wt % incorporated IL demonstrated mechanical actuation under a low applied voltage of 4 V.

  11. Unexpected Consequences of Block Polydispersity on the Self-Assembly of ABA Triblock Copolymers

    SciTech Connect

    Widin, Joan M.; Schmitt, Adam K.; Schmitt, Andrew L.; Im, Kyuhyun; Mahanthappa, Mahesh K.

    2012-05-09

    Controlled/'living' polymerizations and tandem polymerization methodologies offer enticing opportunities to enchain a wide variety of monomers into new, functional block copolymer materials with unusual physical properties. However, the use of these synthetic methods often introduces nontrivial molecular weight polydispersities, a type of chain length heterogeneity, into one or more of the copolymer blocks. While the self-assembly behavior of monodisperse AB diblock and ABA triblock copolymers is both experimentally and theoretically well understood, the effects of broadening the copolymer molecular weight distribution on block copolymer phase behavior are less well-explored. We report the melt-phase self-assembly behavior of SBS triblock copolymers (S = poly(styrene) and B = poly(1,4-butadiene)) comprised of a broad polydispersity B block (M{sub w}/M{sub n} = 1.73-2.00) flanked by relatively narrow dispersity S blocks (M{sub w}/M{sub n} = 1.09-1.36), in order to identify the effects of chain length heterogeneity on block copolymer self-assembly. Based on synchrotron small-angle X-ray scattering and transmission electron microscopy analyses of seventeen SBS triblock copolymers with poly(1,4-butadiene) volume fractions 0.27 {le} f{sub B} {le} 0.82, we demonstrate that polydisperse SBS triblock copolymers self-assemble into periodic structures with unexpectedly enhanced stabilities that greatly exceed those of equivalent monodisperse copolymers. The unprecedented stabilities of these polydisperse microphase separated melts are discussed in the context of a complete morphology diagram for this system, which demonstrates that narrow dispersity copolymers are not required for periodic nanoscale assembly.

  12. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate.

    PubMed

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-02

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  13. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  14. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    PubMed Central

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-01-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances. PMID:28252049

  15. Use of amphiphilic triblock copolymers for enhancing removal efficiency of organic pollutant from contaminated media

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk

    2015-11-01

    We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.

  16. Inducing Order from Disordered Copolymers: On Demand Generation of Triblock Morphologies Including Networks

    SciTech Connect

    Tureau, Maëva S.; Kuan, Wei-Fan; Rong, Lixia; Hsiao, Benjamin S.; Epps, III, Thomas H.

    2015-10-15

    Disordered block copolymers are generally impractical in nanopatterning applications due to their inability to self-assemble into well-defined nanostructures. However, inducing order in low molecular weight disordered systems permits the design of periodic structures with smaller characteristic sizes. Here, we have induced nanoscale phase separation from disordered triblock copolymer melts to form well-ordered lamellae, hexagonally packed cylinders, and a triply periodic gyroid network structure, using a copolymer/homopolymer blending approach, which incorporates constituent homopolymers into selective block domains. This versatile blending approach allows one to precisely target multiple nanostructures from a single disordered material and can be applied to a wide variety of triblock copolymer systems for nanotemplating and nanoscale separation applications requiring nanoscale feature sizes and/or high areal feature densities.

  17. Fluorine-Containing ABC Linear Triblock Terpolymers: Synthesis and Self-assembly in Solution

    SciTech Connect

    He, Lihong; Hinestrosa Salazar, Juan P; Pickel, Joseph M; Kilbey, II, S Michael; Mays, Jimmy; Zhang, Shanju; Bucknall, David G.; Hong, Kunlun

    2011-01-01

    In this paper a fluorine-containing monomer, 2-fluroroethyl methacrylate (2FEMA) was used to synthesize the linear triblock terpolymer poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBMA-PMMA-P2FEMA). A kinetic study of the homopolymerization of 2FEMA by reversible addition-fragmentation chain transfer (RAFT) polymerization showed that it demonstrates living character and produces well defined polymers with reasonably narrow polydispersities (~1.30). Triblock terpolymers were prepared sequentially using a purified Macro-CTA at 70 oC, resulting in final terpolymers with high Dp for each block (>150) and with polydispersities between 1.6 and 2.1. The structure and molecular weights of the resultant PnBMA-PMMA-P2FEMA triblock terpolymers were characterized via 1H NMR, 19F NMR, and gel permeation chromatography (GPC). Self-assembly of these polymers was carried out in a selective solvent and the micellar aggregates (MAs) thereby formed were analyzed using scanning electron microscopy (SEM) and dynamic light scattering (DLS). It was confirmed from SEM that these copolymers could directly self-organize into large compound micelles in tetrahydrofuran/methanol with different diameters, depending on polymer composition.

  18. Triblock copolymer assisted synthesis of periodic mesoporous organosilicas (PMOs) with large pores.

    PubMed

    Muth, O; Schellbach, C; Fröba, M

    2001-10-07

    Periodic mesoporous organosilicas (PMOs) with unusually large pores and high BET surface areas have been synthesized using triblock PEO-PPO-PEO copolymer P123 as the structure-directing agent and 1,2-bis(trimethoxysilyl)ethane (BTME) as the organically bridged silica source.

  19. Synthesis and Melt Self-Assembly of PS-PMMA-PLA Triblock Bottlebrush Copolymers

    SciTech Connect

    Bolton, Justin; Rzayev, Javid

    2014-07-03

    Polystyrene–poly(methyl methacrylate)–polylactide (PS–PMMA–PLA) triblock bottlebrush copolymer with nearly symmetric volume fractions was synthesized by grafting from a symmetrical triblock backbone and the resulting melt was characterized by scanning electron microscopy and small-angle X-ray scattering. The copolymer backbone was prepared by sequential reversible addition–fragmentation chain transfer (RAFT) polymerization of solketal methacrylate (SM), 2-(bromoisobutyryl)ethyl methacrylate (BIEM), and 5-(trimethylsilyl)-4-pentyn-1-ol methacrylate (TPYM). PMMA branches were grafted by atom transfer radical polymerization from the poly(BIEM) segment, PS branches were grafted by RAFT polymerization from the poly(TPYM) block after installment of the RAFT agents, while PLA side chains were grafted from the deprotected poly(SM) block. The resulting copolymer was found to exhibit a lamellae morphology with a domain spacing of 79 nm. Differential scanning calorimetry analysis indicated that PMMA was preferentially mixing with PS while phase separating from PLA domains.

  20. Study of Low Molecular Weight Impurities in Pluronic Triblock Copolymers using MALDI, Interaction Chromatography, and NMR

    NASA Astrophysics Data System (ADS)

    Helming, Z.; Zagorevski, D.; Ryu, C. Y.

    2014-03-01

    Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers are a group of commercial macromolecular amphiphilic surfactants that have been widely studied for their applications in polymer-based nanotechnology and drug-delivery. It has been well-established that the synthesis of commercial Pluronic triblocks results in low molecular weight ``impurities,'' which are generally disregarded in the applications and study of these polymers. These species have been shown to have significant effects on the rheological properties of the material, as well as altering the supramolecular ``micellar'' structures for which the polymers are most often used. We have isolated the impurities from the bulk Pluronic triblock using Interaction Chromatography (IC) techniques, and subjected them to analysis by H1 NMR and MALDI (Matrix-Assisted Laser Desorption Ionization) Mass Spectrometry to identify relative block composition and molecular weight information. We report significant evidence of at least two polymeric components: a low-molecular-weight homopolymer of poly(ethylene oxide) and a ``blocky'' copolymer of both poly(ethylene oxide) and poly(propylene oxide). This has significant implications, not only for the applied usage of Pluronic triblock copolymers, but for the general scientific acceptance of the impurities and their effects on Pluronic micelle and hydrogel formation.

  1. Magnetic hydrogels from alkyne/cobalt carbonyl-functionalized ABA triblock copolymers

    DOE PAGES

    Jiang, Bingyin; Hom, Wendy L.; Chen, Xianyin; ...

    2016-03-09

    A series of alkyne-functionalized poly(4-(phenylethynyl)styrene)-block-poly(ethylene oxide)-block-poly(4-(phenylethynyl)styrene) (PPES-b-PEO-b-PPES) ABA triblock copolymers was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. PESn[Co2(CO)6]x-EO800-PESn[Co2(CO)6]x ABA triblock copolymer/cobalt adducts (10–67 wt % PEO) were subsequently prepared by reaction of the alkyne-functionalized PPES block with Co2(CO)8 and their phase behavior was studied by TEM. Heating triblock copolymer/cobalt carbonyl adducts at 120 °C led to cross-linking of the PPES/Co domains and the formation of magnetic cobalt nanoparticles within the PPES/Co domains. Magnetic hydrogels could be prepared by swelling the PEO domains of the cross-linked materials with water. Furthermore, swelling tests, rheological studies and actuation tests demonstrated thatmore » the water capacity and modulus of the hydrogels were dependent upon the composition of the block copolymer precursors.« less

  2. Magnetic hydrogels from alkyne/cobalt carbonyl-functionalized ABA triblock copolymers

    SciTech Connect

    Jiang, Bingyin; Hom, Wendy L.; Chen, Xianyin; Yu, Pengqing; Pavelka, Laura C.; Kisslinger, Kim; Parise, John B.; Bhatia, Surita R.; Grubbs, Robert B.

    2016-03-09

    A series of alkyne-functionalized poly(4-(phenylethynyl)styrene)-block-poly(ethylene oxide)-block-poly(4-(phenylethynyl)styrene) (PPES-b-PEO-b-PPES) ABA triblock copolymers was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. PESn[Co2(CO)6]x-EO800-PESn[Co2(CO)6]x ABA triblock copolymer/cobalt adducts (10–67 wt % PEO) were subsequently prepared by reaction of the alkyne-functionalized PPES block with Co2(CO)8 and their phase behavior was studied by TEM. Heating triblock copolymer/cobalt carbonyl adducts at 120 °C led to cross-linking of the PPES/Co domains and the formation of magnetic cobalt nanoparticles within the PPES/Co domains. Magnetic hydrogels could be prepared by swelling the PEO domains of the cross-linked materials with water. Furthermore, swelling tests, rheological studies and actuation tests demonstrated that the water capacity and modulus of the hydrogels were dependent upon the composition of the block copolymer precursors.

  3. Alignment of Fatty Acid-Derived Triblock Copolymers under Large Amplitude Oscillatory Shear

    NASA Astrophysics Data System (ADS)

    Ding, Wenyue; Wang, Shu; Kesava, Sameer; Gomez, Enrique; Robertson, Megan

    Linear ABA triblock copolymers find widespread utilization as thermoplastic elastomers (TPEs): materials which exhibit elastomeric behavior at room temperature and can be readily processed at elevated temperatures. Traditional TPEs are derived from fossil fuels; however, the finite availability of petroleum and the environmental impact of petroleum processing has led to an increased interest in developing alternative sources for polymers. Vegetable oils and their fatty acids are promising replacements for petroleum sources due to their abundance, low cost, lack of toxicity, biodegradability and ease of functionalization that provides convenient routes to polymerization. In this study, triblock copolymer TPEs were synthesized containing lauryl and stearyl acrylate, derived from fatty acids found in vegetable oils. Small-angle X-ray scattering experiments revealed highly aligned triblock copolymer morphologies after the application of large amplitude oscillatory shear. The temperature and frequency dependence of the degree of alignment was investigated. In contrast to prior studies on shear-aligned morphologies in bulk and thin film block copolymers, hexagonal close packed and face centered cubic spherical structures were observed.

  4. ABC triblock terpolymer self-assembled core-shell-corona nanotubes with high aspect ratios.

    PubMed

    Wang, Lulu; Huang, Haiying; He, Tianbai

    2014-08-01

    Nanotubes have attracted considerable attention due to their unique 1D hollow structure; however, the fabrication of pure nanotubes via block copolymer self-assembly remains a challenge. In this work, the successful preparation of core-shell-corona (CSC) nanotubular micelles with uniform diameter and high aspect ratio is reported, which is achieved via self-assembly of a poly (styrene-b-4-vinyl pyridine-b-ethylene oxide) triblock terpolymer in binary organic solvents with assistance of solution thermal annealing. Via direct visualization of trapped intermediates, the nanotube is believed to be formed via large sphere-large solid cylinderical aggregates-nanotube transformations, wherein the unique solid to hollow transition accompanied with the unidirectional growth is distinct from conventional pathway. In addition, by virtue of the CSC structure, gold nanoparticles are able to be selectively incorporated into different micellar domains of the nanotubes, which may have potential applications in nanoscience and nanotechnology.

  5. Amphiphilic surface active triblock copolymers with mixed hydrophobic and hydrophilic side chains for tuned marine fouling-release properties.

    PubMed

    Park, Daewon; Weinman, Craig J; Finlay, John A; Fletcher, Benjamin R; Paik, Marvin Y; Sundaram, Harihara S; Dimitriou, Michael D; Sohn, Karen E; Callow, Maureen E; Callow, James A; Handlin, Dale L; Willis, Carl L; Fischer, Daniel A; Kramer, Edward J; Ober, Christopher K

    2010-06-15

    Two series of amphiphilic triblock surface active block copolymers (SABCs) were prepared through chemical modification of two polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymer precursors. The methyl ether of poly(ethylene glycol) [M(n) approximately 550 g/mol (PEG550)] and a semifluorinated alcohol (CF(3)(CF(2))(9)(CH(2))(10)OH) [F10H10] were attached at different molar ratios to impart both hydrophobic and hydrophilic groups to the isoprene segment. Coatings on glass slides consisting of a thin layer of the amphiphilic SABC deposited on a thicker layer of an ABA polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene thermoplastic elastomer were prepared for biofouling assays with algae. Dynamic water contact angle analysis, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) measurements were utilized to characterize the surfaces. Clear differences in surface structure were realized as the composition of attached side chains was varied. In biofouling assays, the settlement (attachment) of zoospores of the green alga Ulva was higher for surfaces incorporating a large proportion of the hydrophobic F10H10 side chains, while surfaces with a large proportion of the PEG550 side chains inhibited settlement. The trend in attachment strength of sporelings (young plants) of Ulva did not show such an obvious pattern. However, amphiphilic SABCs incorporating a mixture of PEG550 and F10H10 side chains performed the best. The number of cells of the diatom Navicula attached after exposure to flow decreased as the content of PEG550 to F10H10 side chains increased.

  6. Amphiphilic Surface Active Triblock Copolymers with Mixed Hydrophobic and Hydrophilic Side Chains for Tuned Marine Fouling-Release Properties

    SciTech Connect

    Park, D.; Weinman, C; Finlay, J; Fletcher, B; Paik, M; Sundaram, H; Dimitriou, M; Sohn, K; Callow, M; et al.

    2010-01-01

    Two series of amphiphilic triblock surface active block copolymers (SABCs) were prepared through chemical modification of two polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymer precursors. The methyl ether of poly(ethylene glycol) [M{sub n} {approx} 550 g/mol (PEG550)] and a semifluorinated alcohol (CF{sub 3}(CF{sub 2}){sub 9}(CH{sub 2}){sub 10}OH) [F10H10] were attached at different molar ratios to impart both hydrophobic and hydrophilic groups to the isoprene segment. Coatings on glass slides consisting of a thin layer of the amphiphilic SABC deposited on a thicker layer of an ABA polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene thermoplastic elastomer were prepared for biofouling assays with algae. Dynamic water contact angle analysis, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) measurements were utilized to characterize the surfaces. Clear differences in surface structure were realized as the composition of attached side chains was varied. In biofouling assays, the settlement (attachment) of zoospores of the green alga Ulva was higher for surfaces incorporating a large proportion of the hydrophobic F10H10 side chains, while surfaces with a large proportion of the PEG550 side chains inhibited settlement. The trend in attachment strength of sporelings (young plants) of Ulva did not show such an obvious pattern. However, amphiphilic SABCs incorporating a mixture of PEG550 and F10H10 side chains performed the best. The number of cells of the diatom Navicula attached after exposure to flow decreased as the content of PEG550 to F10H10 side chains increased.

  7. Interaction between amphipathic triblock copolymers and L-α-dipalmitoyl phosphatidylcholine large unilamellar vesicles.

    PubMed

    Palominos, M A; Vilches, D; Bossel, E; Soto-Arriaza, M A

    2016-12-01

    This study contributes to an understanding of how different polymeric structures, in special triblock copolymers can interact with the lipid bilayer. To study the phospholipid-copolymer vesicles system, we report the effect of two amphipathic triblock copolymers of the type BAB, i.e., hydrophobic-hydrophilic-hydrophobic triblock copolymers arranged as poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) (PCLn-PEOm-PCLn), where n=12 and m=45 for COP1 and n=16 and m=104 for COP2, on the dynamic and structural properties of dipalmitoyl-phosphatidylcholine (DPPC) large unilamellar vesicles (LUVs). The interaction between the copolymers and DPPC LUVs was evaluated by means of several techniques: (a) Photographs of the dispersion for evaluation of colloidal stability; (b) Thermotropic behavior from generalized polarization of Laurdan and fluorescence anisotropy of DPH (c) Main phase transition temperature determination; (d) Order parameters and limiting anisotropy by time-resolved fluorescence anisotropy measurements; (e) Water outflow through the lipid bilayer and (f) Calcein release from DPPC LUVs. Steady-state fluorescence measurements as a function of temperature show a typical behavior. Laurdan and DPH are fluorescent probes that sense the interface and the inner part of the bilayer, respectively. Both copolymers increase the Tm value of DPPC LUVs sensed by DPH, i.e., in the inner part of the bilayer. On the contrary, only COP2 had an effect on increasing the Tm value at the interface of the bilayer. At low temperature, in the gel phase, the presence of the copolymers produced a slight decrease in generalized polarization of Laurdan sensed in the interface of the lipid bilayer, but in the liquid-crystalline phase it produced an increase. In contrast, the order parameters obtained from time-resolved fluorescence anisotropy of DPH show an increase in the presence of the copolymers in the gel phase, but a decrease in the liquid-crystalline phase. COP2

  8. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration

    PubMed Central

    Li, Jingguo; Li, Zhanrong; Zhou, Tianyang; Zhang, Junjie; Xia, Huiyun; Li, Heng; He, Jijun; He, Siyu; Wang, Liya

    2015-01-01

    Purpose The cornea is a main barrier to drug penetration after topical application. The aim of this study was to evaluate the abilities of micelles generated from a positively charged triblock copolymer to penetrate the cornea after topical application. Methods The triblock copolymer poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine was synthesized, and the physicochemical properties of the self-assembled polymeric micelles were investigated, including hydrodynamic size, zeta potential, morphology, drug-loading content, drug-loading efficiency, and in vitro drug release. Using fluorescein diacetate as a model drug, the penetration capabilities of the polymeric micelles were monitored in vivo using a two-photon scanning fluorescence microscopy on murine corneas after topical application. Results The polymer was successfully synthesized and confirmed using nuclear magnetic resonance and Fourier transform infrared. The polymeric micelles had an average particle size of 28 nm, a zeta potential of approximately +12 mV, and a spherical morphology. The drug-loading efficiency and drug-loading content were 75.37% and 3.47%, respectively, which indicates that the polymeric micelles possess a high drug-loading capacity. The polymeric micelles also exhibited controlled-release behavior in vitro. Compared to the control, the positively charged polymeric micelles significantly penetrated through the cornea. Conclusion Positively charged micelles generated from a triblock copolymer are a promising vehicle for the topical delivery of hydrophobic agents in ocular applications. PMID:26451109

  9. Modeling Viscoelastic Properties of Triblock Copolymers: A DPD Simulation Study

    DTIC Science & Technology

    2009-08-01

    et al .17,18 studied the micellar organization and rheology of the triblock gels and found that equilibrium...Rousseau, B. Polymer 2007, 48, 3584–3592. 51 Masubuchi, Y.; Ianniruberto, G.; Greco, F.; Marrucci, G. J Non-Cryst Solids 2006, 352, 5001–5007. ARTICLE MODELING VISCOELASTIC PROPERTIES, SLIOZBERG ET AL . 25 ...SLIOZBERG ET AL . 15 as: r(x) ¼ Ax (G0(x)sin(xt)þ G00(x)cos(xt)), where Ax is the amplitude. The storage modulus, G0(x), characterizes the

  10. Effects of Solvent Composition on the Assembly and Relaxation of Triblock Copolymer-Based Polyelectrolyte Gels

    SciTech Connect

    Henderson, Kevin J.; Shull, Kenneth R.

    2012-03-26

    The role of solvent selectivity has been explored extensively with regard to its role in the phase behavior of block copolymer assemblies. Traditionally, thermally induced phase separation is employed for generating micelles upon cooling a block copolymer dissolved in a selective solvent. However few amphiphilic, polyelectrolyte-containing block copolymers demonstrate a thermally accessible route of micellization, and solvent exchange routes are frequently employed instead. Here, we describe the use of mixed solvents for obtaining thermoreversible gelation behavior of poly(methyl methacrylate)-poly(methacrylic acid)-poly(methyl methacrylate) (PMMA-PMAA-PMMA) triblock copolymers. One solvent component (dimethyl sulfoxide) is a good solvent for both blocks, and the second solvent component (water) is a selective solvent for the polymer midblock. Rheological frequency sweeps at variable solvent compositions and temperatures demonstrate an adherence to time-temperature-composition superposition, so that changes in the solvent composition are analogous to changes in the Flory-Huggins interaction parameter between end block and solvent. Shift factors used for this superposition are related to the effective activation energy describing the viscosity and stress relaxation response of the triblock copolymer gels. The effectiveness of solvent exchange processes for producing hydrogels with this system is shown to originate from the ability of a small amount of added water to greatly increase the relaxation times of the self-assembled polymer gels that are formed by this process.

  11. Adsorption and functionality of fibrinogen on triblock copolymer-coated surfaces

    NASA Astrophysics Data System (ADS)

    O'Connor, Stephen Moss

    To assess the influence of the surface microenvironment on the adsorption and biologic activity of fibrinogen, a series of poly(ethylene oxide)/poly(propylene oxide) triblock copolymers were adsorbed to solid, hydrophobic polystyrene-divinylbenzene beads. The copolymers, which were of the form PEOsb{b}PPOsb{a}PEOsb{b}, varied in their hydrophile/lipophile balances (HLB) due only to differences in their PEO chain length (5 to 129 EO units) as the hydrophobic PPO core segment was of fixed length (56 or 69 PO units). The surface coverage of copolymers was determined first and after exposing the beads to fibrinogen or to human plasma, the total amount of protein adsorbed to their surface was measured. The functionality of fibrinogen bound to copolymer-modified beads was assessed in terms of fibrin clot formation and by the adherence of macrophages (THP-1 tumor cells). Enzymatic processing was used to probe the surface orientation of fibrinogen. The copolymers appear to adsorb in an expanded fashion, a conclusion supported by surface pressure-area isotherms of the copolymers spread at the air-water interface. As compared to copolymer-free surfaces, protein adsorption decreases by up to 90% as the PEO chain length of the copolymers increases. The copolymer coatings appear to lower fibrinogen adsorption by limiting the available surface area. On surfaces coated with the hydrophobic versions of the copolymers, the biologic assays demonstrate that fibrinogen is as reactive/coagulable as for surfaces with saturated coverages of fibrin despite that these copolymer-coated surfaces have 60% less fibrinogen adsorbed to them. When adsorbed at the same low surface concentration in the absence of copolymer, fibrinogen is not active. Enzymatic processing of bound fibrinogen suggests that the presence of the copolymers promote the adsorption of the protein in end-on fashion. It is proposed here, that when adsorbed end-on, fibrinogen is functional because its reactive sites are

  12. Triblock copolymer matrix-based capillary electrophoretic microdevice for high-resolution multiplex pathogen detection.

    PubMed

    Kim, Se Jin; Shin, Gi Won; Choi, Seok Jin; Hwang, Hee Sung; Jung, Gyoo Yeol; Seo, Tae Seok

    2010-03-01

    Rapid and simple analysis for the multiple target pathogens is critical for patient management. CE-SSCP analysis on a microchip provides high speed, high sensitivity, and a portable genetic analysis platform in molecular diagnostic fields. The capability of separating ssDNA molecules in a capillary electrophoretic microchannel with high resolution is a critical issue to perform the precise interpretation in the electropherogram. In this study, we explored the potential of poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer as a sieving matrix for CE-SSCP analysis on a microdevice. To demonstrate the superior resolving power of PEO-PPO-PEO copolymers, 255-bp PCR amplicons obtained from 16S ribosomal RNA genes of four bacterial species, namely Proteus mirabilis, Haemophilus ducreyi, Pseudomonas aeruginosa, and Neisseria meningitidis, were analyzed in the PEO-PPO-PEO matrix in comparison with 5% linear polyacrylamide and commercial GeneScan gel. Due to enhanced dynamic coating and sieving ability, PEO-PPO-PEO copolymer displayed fourfold enhancement of resolving power in the CE-SSCP to separate same-sized DNA molecules. Fivefold input of genomic DNA of P. aeruginosa and/or N. meningitidis produced proportionally increased corresponding amplicon peaks, enabling correct quantitative analysis in the pathogen detection. Besides the high-resolution sieving capability, a facile loading and replenishment of gel in the microchannel due to thermally reversible gelation property makes PEO-PPO-PEO triblock copolymer an excellent matrix in the CE-SSCP analysis on the microdevice.

  13. Stimuli-Responsive, Concentrated Aqueous Solutions of DMAEMA-containing Amphiphilic Di- and Triblock Copolymers

    NASA Astrophysics Data System (ADS)

    Guice, Kyle; Loo, Yueh-Lin

    2008-03-01

    Poly(dimethyoaminoethyl methacrylate), poly(DMAEMA), has generated considerable interest due to its responsiveness to changes in temperature and pH. The pendant tertiary amine groups of DMAEMA are easily protonated below its pKa, and the polymer undergoes a hydrophilic-to-hydrophobic transition when heated above its lower critical solution temperature (LCST) in water. We have investigated di- and triblock copolymers containing statistical copolymers of DMAEMA and hydroxyethyl methacrylate (HEMA), a biocompatible but nonresponsive monomer, as stimuli-responsive concentrated aqueous solutions. The swelling characteristics of these concentrated aqueous block copolymer solutions depend highly on the DMAEMA composition. Further, by selecting an appropriate hydrophobic block, we are able to design stimuli-responsive concentrated aqueous solutions that undergo reversible phase transformations over a narrow temperature window.

  14. Effects of a PPO-PEO-PPO triblock copolymer on micellization and gelation of a PEO-PPO-PEO triblock copolymer in aqueous solution.

    PubMed

    Wang, Qiqiang; Li, Lin; Jiang, Sanping

    2005-09-27

    The effects of a PPO-PEO-PPO triblock copolymer (25R4, PO(19)-EO(33)-PO(19)) on thermoreversible micellization and gelation properties of a PEO-PPO-PEO triblock copolymer (F108, EO(133)-PO(50)-EO(133)) in water were studied by means of micro-DSC and rheology. A complete, mirror-image like thermoreversible behavior has been observed for all of the samples with various molar ratios of 25R4 to F108. At a given concentration of F108, the addition of 25R4 results in the salt-out like effect on the primary micellization of F108; that is, the critical micellization temperature (CMT) of F108 shifts to lower temperatures with increasing the content of 25R4. The enthalpy changes for micellization are a linear function of the 25R4/F108 molar ratio at a fixed F108 concentration. Beyond the primary peak for the micellization of F108, a secondary peak or shoulder is observed in the DSC curves for the samples with the higher 25R4/F108 molar ratios, due to the formation of the hydrophobic aggregates from both the PPO blocks of F108 and those (i.e., PPO blocks) of 25R4. Furthermore, as an example, the dynamic viscoelastic properties of 18 wt % F108 solutions with various contents of 25R4 have been examined. It is found that, when the 25R4/F108 molar ratio < or =1, 25R4 does not affect the gelation of F108 notably. When the ratio is greater than 1, however, the formation of the 25R4-bridged micellar aggregates delays the gelation of F108 significantly. A schematic model has been proposed to explain the mechanism for the 25R4-influenced micellization and gelation of F108.

  15. Basic physical properties/structure of polystyrene-polyisobutylene-polystyrene triblock copolymers

    SciTech Connect

    Kaszas, G.

    1993-12-31

    Polystyrene-b-polyisobutylene-b-polystyrene (PSt-PIB-PSt) triblock copolymers, with various molecular architectures, have been synthesized to establish basic physical properties/structure correlations for this novel thermoplastics elastomer (TPE). The test results have confirmed that these triblock copolymers have a unique combination of physical properties which is currently unavailable on the TPE market. The fully saturated character of the PIB backbone provides excellent ozone resistance. Barrier, electrical, and low-temperature properties, were measured, and found to be equivalent to those of conventional butyl vulcanizates. The low initial modules of PIB, and the fact that the PSt content can be kept low without significant loss in tensile properties, renders the material soft. The high incompatibility of PIB and PSt allows the overall chain length and, therefore, the melt viscosity, to be kept low. This could bring an important advantage, in processing, over other TPE`s. The combination of the above properties, and the inherent properties of PIB, makes this material in excellent candidate for wire and cable coating, seal and gasket, adhesive and vibration damping applications.

  16. Mimicking Conjugated Polymer Thin Film Photophysics with a Well-Defined Triblock Copolymer in Solution

    SciTech Connect

    Brazard, Johanna; Ono, Robert J.; Bielawski, Christopher W.; Barbara, Paul F.; Vanden Bout, David A.

    2013-04-25

    Conjugated polymers (CPs) are promising materials for use in electronic applications, such as low-cost, easily processed organic photovoltaic (OPV) devices. Improving OPV efficiencies is hindered by a lack of a fundamental understanding of the photophysics in CP-based thin films that is complicated by their heterogeneous nanoscale morphologies. Here, we report on a poly(3-hexylthiophene)-block-poly(tert-butyl acrylate)-block-poly(3-hexylthiophene) rod–coil–rod triblock copolymer. In good solvents, this polymer resembles solutions of P3HT; however, upon the addition of a poor solvent, the two P3HT chains within the triblock copolymer collapse, affording a material with electronic spectra identical to those of a thin film of P3HT. Using this new system as a model for thin films of P3HT, we can attribute the low fluorescence quantum yield of films to the presence of a charge-transfer state, providing fundamental insights into the condensed phase photophysics that will help to guide the development of the next generation of materials for OPVs.

  17. Mimicking conjugated polymer thin-film photophysics with a well-defined triblock copolymer in solution.

    PubMed

    Brazard, Johanna; Ono, Robert J; Bielawski, Christopher W; Barbara, Paul F; Vanden Bout, David A

    2013-04-25

    Conjugated polymers (CPs) are promising materials for use in electronic applications, such as low-cost, easily processed organic photovoltaic (OPV) devices. Improving OPV efficiencies is hindered by a lack of a fundamental understanding of the photophysics in CP-based thin films that is complicated by their heterogeneous nanoscale morphologies. Here, we report on a poly(3-hexylthiophene)-block-poly(tert-butyl acrylate)-block-poly(3-hexylthiophene) rod-coil-rod triblock copolymer. In good solvents, this polymer resembles solutions of P3HT; however, upon the addition of a poor solvent, the two P3HT chains within the triblock copolymer collapse, affording a material with electronic spectra identical to those of a thin film of P3HT. Using this new system as a model for thin films of P3HT, we can attribute the low fluorescence quantum yield of films to the presence of a charge-transfer state, providing fundamental insights into the condensed phase photophysics that will help to guide the development of the next generation of materials for OPVs.

  18. Nanostructure of PEO-polyurethane-PEO triblock copolymer micelles in water.

    PubMed

    Caba, Beth L; Zhang, Qian; Carroll, Matthew R J; Woodward, Robert C; St Pierre, Timothy G; Gilbert, Elliot P; Riffle, Judy S; Davis, Richey M

    2010-04-01

    Novel hydrophilic triblock copolymers which form micelles in aqueous solution were studied by static and dynamic light scattering (SLS and DLS), small angle neutron scattering (SANS) and densitometry. The polymers were symmetric A-B-A block copolymers having two poly(ethylene oxide) (PEO) tail blocks and a polyurethane (PU) center segment that contained pendant carboxylic acids. The aggregation number of the micelles decreased with increasing PEO mass content. When attempting to fit the SANS data it was found that no single model was suitable over the entire range of block lengths and PEO mass concentrations investigated here. For the polymer with the highest aggregation number, the data were fitted with a triblock model consisting of a homogeneous core with a corona of non-interacting Gaussian chains for which only two free parameters were required: the radius of the core and the radius of gyration of the corona. In this case, the core was found to be effectively dry. At lower aggregation numbers, a star polymer model generated significantly better fits, suggesting the absence of any identifiable central core structure. Good agreement was found between the sizes measured by DLS, SANS and theoretical predictions of micelle size from a density distribution theory. These results show that when significant changes in aggregation number occur, the nanostructure of the micelle can change substantially even for polymers that are remarkably similar.

  19. Self-assembly of well-defined ferrocene triblock copolymers and their template synthesis of ordered iron oxide nanoparticles.

    PubMed

    Hardy, Christopher G; Ren, Lixia; Ma, Shuguo; Tang, Chuanbing

    2013-05-14

    Well-defined ferrocene-containing triblock copolymers were synthesized by atom transfer radical polymerization and self-assembled into highly ordered hexagonal arrays of cylinders via solvent annealing. The thin films were further used as a template and converted into highly ordered iron oxide nanoparticles (α-Fe2O3) by UV/ozonolysis and thermal pyrolysis.

  20. Modeling and self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohan; Li, Suming; Coumes, Fanny; Darcos, Vincent; Lai Kee Him, Joséphine; Bron, Patrick

    2013-09-01

    A series of poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) triblock copolymers with symmetric or asymmetric chain structures were synthesized by combination of ring-opening polymerization and copper-catalyzed click chemistry. The resulting copolymers were used to prepare self-assembled aggregates by dialysis. Various architectures such as nanotubes, polymersomes and spherical micelles were observed from transmission electron microscopy (TEM), cryo-TEM and atomic force microscopy (AFM) measurements. The formation of diverse aggregates is explained by modeling from the angle of both geometry and thermodynamics. From the angle of geometry, a ``blob'' model based on the Daoud-Cotton model for star polymers is proposed to describe the aggregate structures and structural changes with copolymer composition and molar mass. In fact, the copolymer chains extend in aqueous medium to form single layer polymersomes to minimize the system's free energy if one of the two PEG blocks is short enough. The curvature of polymersomes is dependent on the chain structure of copolymers, especially on the length of PLA blocks. A constant branch number of aggregates (f) is thus required to preserve the morphology of polymersomes. Meanwhile, the aggregation number (Nagg) determined from the thermodynamics of self-assembly is roughly proportional to the total length of polymer chains. Comparing f to Nagg, the aggregates take the form of polymersomes if Nagg ~ f, and change to nanotubes if Nagg > f to conform to the limits from both curvature and aggregation number. The length of nanotubes is mainly determined by the difference between Nagg and f. However, the hollow structure becomes unstable when both PEG segments are too long, and the aggregates eventually collapse to yield spherical micelles. Therefore, this work gives new insights into the self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution which present great interest for biomedical and

  1. Self-assembly behavior of ABA coil-rod-coil triblock copolymers: A Brownian dynamics simulation approach

    NASA Astrophysics Data System (ADS)

    Li, Yongliang; Lin, Shaoliang; He, Xiaohua; Lin, Jiaping; Jiang, Tao

    2011-07-01

    The self-assembly behavior of ABA coil-rod-coil triblock copolymers in a selective solvent was studied by a Brownian molecular dynamics simulation method. It was found that the rod midblock plays an important role in the self-assembly of the copolymers. With a decrease in the segregation strength, ɛRR, of rod pairs, the aggregate structure first varies from a smecticlike disk shape to a long twisted string micelle and then to small aggregates. The influence of the block length and the asymmetry of the triblock copolymer on the phase behavior were studied and the corresponding phase diagrams were mapped. It was revealed that the variation of these parameters has a profound effect on microstructure. The simulation results are consistent with experimental results. Compared to rod-coil diblock copolymers, the coil-rod-coil triblock copolymers has a larger entropy penalty associated with the interfacial grafting density of the aggregate, leading to a higher ɛRR value for structural transitions.

  2. Stimuli-responsive peptide-based ABA-triblock copolymers: unique morphology transitions with pH.

    PubMed

    Ray, Jacob G; Naik, Sandeep S; Hoff, Emily A; Johnson, Ashley J; Ly, Jack T; Easterling, Charles P; Patton, Derek L; Savin, Daniel A

    2012-05-14

    We report the synthesis and solution characterization of poly(L-lysine)-b-poly(propylene oxide)-b-poly(L-lysine) (KPK) triblock copolymers with high lysine weight fractions (>75 wt%). In contrast to PK diblock copolymers in this composition range, KPK triblock copolymers exhibit morphology transitions as a function of pH. Using a combination of light-scattering and microscopy techniques, we demonstrate spherical micelle-vesicle and spherical micelle-disk micelle transitions for different K fractions. We interpret these morphology changes in terms of the energy penalty associated with folding the core P block to form a spherical micelle in relation to the interfacial curvature associated with different charged states of the K block.

  3. End Group Effects on the Hydrogel Formation of PEO-PPO-PEO Triblock Copolymers

    NASA Astrophysics Data System (ADS)

    Cohen, Aaron; Ryu, Chang Y.; Jung, Gyoo Y.; Hwang, Hee Sung

    2012-02-01

    Pluronic F108, a triblock copolymer consisting of outer polyethylene oxide (PEO) chains and an inner polypropylene oxide (PPO) chains, has been shown to be an effective hydrogel matrix for DNA separation by capillary electrophoresis using single-stranded conformation polymorphism. This presentation will discuss a new pathway to potentially enhance the separation abilities of F108 by altering the chain end groups of the block copolymers. F108 is believed to form a micelle in aqueous solutions with the hydrophobic group in the interior, thus we expect considerable interaction between the DNA sample and the end groups found at the hydrophilic brush layers of the micelle. The rheological properties of end group derivatives of F108, in combination of small angle x-ray scattering, can reveal structural differences in the micelles. In particular, gelation temperature of the end group derivatives can be linked to differences in the micelle structure. Dynamic light scattering can also be used to determine the effects of chain end groups on the hydrodynamic size of the block copolymer micelles in dilute solution.

  4. Triblock siloxane copolymer surfactant: template for spherical mesoporous silica with a hexagonal pore ordering.

    PubMed

    Stébé, M J; Emo, M; Forny-Le Follotec, A; Metlas-Komunjer, L; Pezron, I; Blin, J L

    2013-02-05

    Ordered mesoporous silica materials with a spherical morphology have been prepared for the first time through the cooperative templating mechanism (CTM) by using a silicone triblock copolymer as template. The behavior of the pure siloxane copolymer amphiphile in water was first investigated. A direct micellar phase (L(1)) and a hexagonal (H(1)) liquid crystal were found. The determination of the structural parameters by SAXS measurements leads us to conclude that in the hexagonal liquid crystal phase a part of the ethylene oxide group is not hydrated as observed for the micelles. Mesoporous materials were then synthesized from the cooperative templating mechanism. The recovered materials were characterized by SAXS measurements, nitrogen adsorption-desorption analysis, and transmission and scanning electron microscopy. The results clearly evidence that one can control the morphology and the nanostructuring of the resulting material by modifying the synthesis parameters. Actually, highly ordered mesoporous materials with a spherical morphology have been obtained with a siloxane copolymer/tetramethoxysilane molar ratio of 0.10 after hydrothermal treatment at 100 °C. Our study also supports the fact that the interactions between micelles and the hydrolyzed precursor are one of the key parameters governing the formation of ordered mesostructures through the cooperative templating mechanism. Indeed, we have demonstrated that when the interactions between micelles are important, only wormhole-like structures are recovered.

  5. Protective effects of nonionic tri-block copolymers on bile acid-mediated epithelial barrier disruption.

    SciTech Connect

    Edelstein, A.; Fink, D.; Musch, M.; Valuckaite, V.; Zabornia, O.; Grubjesic, S.; Firestone, M. A.; Matthews, J. B.; Alverdy, J. C.

    2011-11-01

    Translocation of bacteria and other luminal factors from the intestine following surgical injury can be a major driver of critical illness. Bile acids have been shown to play a key role in the loss of intestinal epithelial barrier function during states of host stress. Experiments to study the ability of nonionic block copolymers to abrogate barrier failure in response to bile acid exposure are described. In vitro experiments were performed with the bile salt sodium deoxycholate on Caco-2 enterocyte monolayers using transepithelial electrical resistance to assay barrier function. A bisphenol A coupled triblock polyethylene glycol (PEG), PEG 15-20, was shown to prevent sodium deoxycholate-induced barrier failure. Enzyme-linked immunosorbent assay, lactate dehydrogenase, and caspase 3-based cell death detection assays demonstrated that bile acid-induced apoptosis and necrosis were prevented with PEG 15-20. Immunofluorescence microscopic visualization of the tight junctional protein zonula occludens 1 (ZO-1) demonstrated that PEG 15-20 prevented significant changes in tight junction organization induced by bile acid exposure. Preliminary transepithelial electrical resistance-based studies examining structure-function correlates of polymer protection against bile acid damage were performed with a small library of PEG-based copolymers. Polymer properties associated with optimal protection against bile acid-induced barrier disruption were PEG-based compounds with a molecular weight greater than 10 kd and amphiphilicity. The data demonstrate that PEG-based copolymer architecture is an important determinant that confers protection against bile acid injury of intestinal epithelia.

  6. Modified release from lipid bilayer coated mesoporous silica nanoparticles using PEO-PPO-PEO triblock copolymers.

    PubMed

    Rahman, Masoud; Yu, Erick; Forman, Evan; Roberson-Mailloux, Cameron; Tung, Jonathan; Tringe, Joseph; Stroeve, Pieter

    2014-10-01

    Triblock copolymers comprised of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, or trade name Pluronic) interact with lipid bilayers to increase their permeability. Here we demonstrate a novel application of Pluronic L61 and L64 as modification agents in tailoring the release rate of a molecular indicator species from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer-coated superparamagnetic Fe3O4/mesoporous silica core-shell nanoparticles. We show there is a direct relationship between the Pluronics' concentration and the indicator molecule release, suggesting Pluronics may be useful for the controlled release of drugs from lipid bilayer-coated carriers.

  7. Triblock copolymer P104 detailed behavior through a density, sound velocity and DLS study

    NASA Astrophysics Data System (ADS)

    Bravo-Anaya, L. M.; Fierro-Castro, C.; Rharbi, Y.; Martínez, J. F. A. Soltero

    2014-05-01

    Pluronic triblock copolymers usually present complex phase behavior depending on the number of PEO and PPO blocks contained in the polymer. They have a great dependence to temperature and concentration, both considered as key factors in the pluronic phase behavior. The evaluation of physicochemical properties such as densimetry and sound velocity, as well as the determination of the size distribution profile of particles of P-104/water in solution allow obtaining a detailed temperature-concentration behavior of the system. In this work we present a study of P104/water behavior through density, ultrasound velocity and dynamic slight scattering (DLS) measurements in a wide range of temperatures. The critical micellar temperature (CMT) and the sphere-to-rod micelle transition temperature (GMT) were determinate as a function of concentration.

  8. Triblock copolymer gels - structure, fracture behavior and application in ceramic processing

    NASA Astrophysics Data System (ADS)

    Seitz, Michelle E.

    Acrylic triblock copolymer gels transition rapidly from free-flowing liquids to elastic solids and their nanoscale self-assembly leads to reproducible structure and properties. They are an ideal model system for understanding the link between gel structure and the deformation and fracture behavior of soft, self-assembled materials. While a basic understanding of gel structure and linear viscoelastic response exists, this research aims to extend this understanding to include the nonlinear mechanical response and fracture behavior as well as the effect of gel concentration, block length, endblock fraction, and homopolymer solubilization. This expanded understanding will be applied to optimize triblock design for the thermoreversible gelcasting of ceramics. Gel structure was characterized using small angle scattering and self-consistent field theory simulations while mechanical properties were studied using a combination of rheology, swelling, indentation, uniaxial compression, and fracture experiments. Birefringence and shear alignment were used to differentiate between spherical and cylindrical micelle morphologies. An effective energy barrier of 550 kJ/mol describes gels relaxation behavior over a 40°C temperature range where the relaxation times vary by a factor of 1010. At high endblock contents, gels exhibit greater permanent deformation and moduli over an order of magnitude larger than would be expected from rubber elasticity alone due to a transition from spherical to cylindrical micelles. The rate dependence of a gels energy release rate, G , is independent of the gel concentration when G is normalized by the small strain Young's modulus, E. The gels exhibit a transition from rough, slow crack propagation to smooth, fast crack propagation for a well-defined value of the characteristic length, G /E. Crack tip stresses become highly anisotropic at stress values below the failure strength of the gels and are poorly described using linear elastic fracture

  9. Heat capacity anomaly in a self-aggregating system: Triblock copolymer 17R4 in water

    NASA Astrophysics Data System (ADS)

    Dumancas, Lorenzo V.; Simpson, David E.; Jacobs, D. T.

    2015-05-01

    The reverse Pluronic, triblock copolymer 17R4 is formed from poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO): PPO14 - PEO24 - PPO14, where the number of monomers in each block is denoted by the subscripts. In water, 17R4 has a micellization line marking the transition from a unimer network to self-aggregated spherical micelles which is quite near a cloud point curve above which the system separates into copolymer-rich and copolymer-poor liquid phases. The phase separation has an Ising-like, lower consolute critical point with a well-determined critical temperature and composition. We have measured the heat capacity as a function of temperature using an adiabatic calorimeter for three compositions: (1) the critical composition where the anomaly at the critical point is analyzed, (2) a composition much less than the critical composition with a much smaller spike when the cloud point curve is crossed, and (3) a composition near where the micellization line intersects the cloud point curve that only shows micellization. For the critical composition, the heat capacity anomaly very near the critical point is observed for the first time in a Pluronic/water system and is described well as a second-order phase transition resulting from the copolymer-water interaction. For all compositions, the onset of micellization is clear, but the formation of micelles occurs over a broad range of temperatures and never becomes complete because micelles form differently in each phase above the cloud point curve. The integrated heat capacity gives an enthalpy that is smaller than the standard state enthalpy of micellization given by a van't Hoff plot, a typical result for Pluronic systems.

  10. Equilibrium structure of a triblock copolymer system revealed by mesoscale simulation and neutron scattering

    NASA Astrophysics Data System (ADS)

    Do, Changwoo; Chen, Wei-Ren; Hong, Kunlun; Smith, Gregory S.

    2013-12-01

    We have performed both mesoscale simulations and neutron scattering experiments on Pluronic L62, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer system in aqueous solution. The influence of simulation variables such PEO/PPO block ratio, interaction parameters, and coarse-graining methods is extensively investigated by covering all permutations of parameters found in the literatures. Upon increasing the polymer weight fraction from 50 wt% to 90 wt%, the equilibrium structure of the isotropic, reverse micellar, bicontinuous, worm-like micelle network, and lamellar phases are respectively predicted from the simulation depending on the choices of simulation parameters. Small angle neutron scattering (SANS) measurements show that the same polymer systems exhibit the spherical micellar, lamellar, and reverse micellar phases with the increase of the copolymer concentration at room temperature. Detailed structural analysis and comparison with simulations suggest that one of the simulation parameter sets can provide reasonable agreement with the experimentally observed structures.

  11. Equilibrium Structure of a Triblock Copolymer System Revealed by Mesoscale Simulation and Neutron Scattering

    SciTech Connect

    Do, Changwoo; Chen, Wei-Ren; Hong, Kunlun; Smith, Gregory Scott

    2013-01-01

    We have performed both mesoscale simulations and neutron scattering experiments on Pluronic L62, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer system in aqueous solution. The influence of simulation variables such PEO/PPO block ratio, interaction parameters, and coarse-graining methods is extensively investigated by covering all permutations of parameters found in the literatures. Upon increasing the polymer weight fraction from 50 wt% to 90 wt%, the equilibrium structure of the isotropic, reverse micellar, bicontinuous, worm-like micelle network, and lamellar phases are respectively predicted from the simulation depending on the choices of simulation parameters. Small angle neutron scattering (SANS) measurements show that the same polymer systems exhibit the spherical micellar, lamellar, and reverse micellar phases with the increase of the copolymer concentration at room temperature. Detailed structural analysis and comparison with simulations suggest that one of the simulation parameter sets can provide reasonable agreement with the experimentally observed structures.

  12. Stereocomplexes of enantiomeric lactic acid and sebacic acid ester-anhydride triblock copolymers.

    PubMed

    Slivniak, Raia; Domb, Abraham J

    2002-01-01

    A systematic study on the synthesis, characterization, degradation, and drug release of d-, l-, and dl-poly(lactic acid) (PLA)-terminated poly(sebacic acid) (PSA) and their stereocomplexes is reported. PLA-terminated sebacic acid polymers were synthesized by melt condensation of the acetate anhydride derivatives of PLA oligomers and sebacic anhydride oligomers to yield ABA triblock copolymers of molecular weights between 3000 and 9000 that melt at temperatures between 35 and 80 degrees C. Pairs of the corresponding enantiomeric ABA copolymers composed of l-PLA-PSA-l-PLA and d-PLA-PSA-d-PLA were solvent mixed to form stereocomplexes. The formed stereocomplexes exhibited higher crystalline melting temperature than the enantiomeric polymers, which indicate stereocomplex formulation. The PLA terminals had a significant effect on the polymer degradation and drug release rate. PSA with up to 20% w/w of PLA terminals degraded and released the incorporated drug for more than 3 weeks as compared with 10 days for PSA homopolymer.

  13. Dependence of aggregation behavior on concentration in triblock copolymer solutions: The effect of chain architecture

    SciTech Connect

    Han, Xiang-Gang Zhang, Xue-Feng

    2015-12-07

    Using the self-consistent field lattice technique, the effects of concentration and hydrophobic middle block length (where the chain length remains constant) on aggregation behavior are studied in amphiphilic symmetric triblock copolymer solutions. The heat capacity peak for the unimer-micelle transition and the distribution peaks for the different degrees of aggregation for micelles and small aggregates (submicelles) are calculated. Analysis of the conducted computer simulations shows that the transition broadness dependence on concentration is determined by the hydrophobic middle block length, and this dependence is distinctly different when the length of the hydrophobic middle block changes. Different size for small aggregates simultaneously appear in the transition region. As temperature decreases, the number of different size small aggregates for the large hydrophobic middle block length first ascends and then descends in aggregation degree order. These results indicate that any transition broadness change with concentration is related to the mechanism of fragmentation and fusion. These results are helpful for interpreting the aggregation process of amphiphilic copolymers at equilibrium.

  14. Dissipative particle dynamics simulations on self-assembly of rod-coil-rod triblock copolymers in a rod-selective solvent

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Hua; Fan, Zhong-Xiang; Ma, Ze-Xin

    2013-08-01

    Self-assembly of rod-coil-rod ABA triblock copolymers in a rod-selective solvent is investigated by using dissipative particle dynamics simulations. The morphologies of the self-assembled aggregates are dependent on the number of copolymers in the aggregate and the rod length of the copolymer. We observe vesicles at short rod block and bowl-like aggregates at slightly longer rod block. In the vesicle region near the phase boundary, metastable bowl-like aggregates can be observed and be transformed into vesicles by annealing process. A transition from the bowl-like structure to the vesicle is observed by increasing the solvophobicity of the mid-coil block. In this study, the difference between the self-assembly of fully flexible ABA triblock copolymer and that of rod-coil-rod triblock copolymer is also discussed.

  15. Novel ABA type gold copolymer nanoparticles: PNIPAAm-b-PU-b-PNIPAAm tri-block nanopolymer as reducing and stabilizing agent

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Verma, Hemant; Kumar, Chaitnaya; Kumari, Kamlesh; Mehrotra, Gopal K.; Chandra, Ramesh; Tharanikkarrasu, K.

    2012-07-01

    Block copolymers have been used extensively in the synthesis of different types of nanoparticles. A novel ABA type tri-block nanopolymer PNIPAAm-b-PU-b-PNIPAAm has been synthesized via atom transfer radical polymerization (ATRP) technique, using a tertiary bromo-terminated as a macroinitiator. Herein, the triblock copolymer acts as both reducing and stabilizing agent. Gold-copolymer nanoparticles were synthesized in a green solvent using the tri-block copolymer and were well characterized by Transmission Electron Microscopy (TEM), Quassi Elastic Light Scattering (QELS) and UV-Vis. spectroscopy techniques. The shape and size of the obtained nanoparticles are dependent on the concentration ratio of copolymer/gold salt used in the synthesis. This study clearly indicates the average particles size of nanoparticles is ˜70 nm. The resultant gold-tri-block nanopolymer can be used in the fields of controlled release and delivery of drugs, nano-materials, medical devices etc.

  16. Self-assembled, thermoresponsive micelles based on triblock PMMA-b-PNIPAAm-b-PMMA copolymer for drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Zhang, X. Z.; Zhu, J. L.; Cheng, H.; Cheng, S. X.; Zhuo, R. X.

    2007-05-01

    A novel thermosensitive amphiphilic ABA triblock poly(methyl methacrylate)-b-poly(N-isopropylacrylamide)-b-poly(methyl methacrylate) copolymer (PMMA-b-PNIPAAm-b-PMMA) comprised of two hydrophobic PMMA segments and one hydrophilic PNIPAAm segment was designed and synthesized. The structure of the copolymer was characterized by FT-IR, 1HNMR, and GPC analysis. The cytotoxicity study showed that the PMMA-b-PNIPAAm-b-PMMA copolymer exhibited low cytotoxicity. The copolymer was capable of self-assembling into micelles in water and demonstrated temperature sensitivity at around 34.5 °C. Transmission electron microscopy (TEM) showed that the micelles exhibit nanosized spherical morphology within a size range of 60 nm with a critical micellar concentration (CMC) at 10 mg l-1. The drug-loading PMMA-b-PNIPAAm-b-PMMA micelles showed thermosensitive-controlled release which indicates the potential of PMMA-b-PNIPAAm-b-PMMA micelles as drug carriers.

  17. ABC copolymer silicone surfactant templating for biomimetic silicification.

    PubMed

    Sun, Bo; Guo, Caiyun; Yao, Yuan; Che, Shunai

    2012-07-15

    Using the ABC copolymer silicone surfactant polydimethylsiloxane (PDMS)-graft-(polyethylene oxide (PEO)-block-propylene oxide (PPO)) (PSEP, Scheme 1a) as a template and tetraethoxysilane (TEOS) as a silica source, silica particles with various structures and morphologies (i.e., disordered spherical micellar aggregation, two-dimensional p6mm mesostructure, asymmetric multi-layer non-equilibrium vesicles and symmetric monolayer vesicles) were synthesized by changing the synthesis temperature from 30 to 80 °C. Increasing the hydrophobicity of the surfactant by increasing the temperature resulted in an increase in the surfactant packing parameter g, which led to the mesophase transformation from micellar to cylinder and later to a lamellar structure. The good compatibility between the PDMS and the TEOS, the different natures of the hydrophobic PDMS and PPO segments, and the hydrolysis and condensation rates of TEOS enabled the variation of silicification structures. This novel silicone surfactant templating route and a new type of materials with highly ordered mesostructures and asymmetric morphologies provide a new insight into the molecular factors governing inorganic-organic mesophase and biosilicification for fabricating functionalized materials.

  18. Triblock copolymers of ε-caprolactone, L-lactide, and trimethylene carbonate: biodegradability and elastomeric behavior.

    PubMed

    Widjaja, Leonardus Kresna; Kong, Jen Fong; Chattopadhyay, Sujay; Lipik, Vitali T; Liow, Sing Shy; Abadie, Marc J M; Venkatraman, Subbu S

    2011-10-01

    For the triblock copolymer of ε-caprolactone, trimethylene carbonate, and L-lactide, where L-lactide blocks form the two ends, there is a range of compositions over which elastomeric behavior is obtained. Within this composition range, these polymers show good creep and recovery at ambient temperature, and exhibit high elongations to break. Additionally, we demonstrate that the recovery is independent of stress and strain for the elastomer compositions. The range of compositions that yield elastomeric character is rationalized based on the structure; specifically, there must be a minimum crystallinity of the end blocks and no crystallinity in the midblock, in addition to molar mass requirements. These polymers degrade by simple hydrolysis, and the rate of degradation is potentially programmable by manipulation of the molar ratio of hard segment to soft segment. Compared to biodegradable polyurethane, these polymers are expected to yield less harmful degradation products, and offer more variables for manipulation of properties. These polymers are also processable from the melt at temperatures exceeding about 130 °C. We expect to use these polymers in a variety of applications, including stent coatings, fully-degradable stents, and atrial septal defect occluders.

  19. DNA electrophoresis in tri-block copolymer gels--experiments and Brownian dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wei, Ling; van Winkle, David H.

    2015-03-01

    The mobility of double-stranded DNA ladders in Pluronics®P105, P123 and F127, was measured by two-dimensional gel electrophoresis. Pluronics®are triblock copolymers which form gel-like phases of micelles arranged with cubic order at room temperature. A 10 base pair and a 25 base pair DNA ladder were used as samples in gel electrophoresis. The monotonically decreasing mobility with increasing length observed in the agarose separations is not observed in separations in Pluronics®. Rather, a complicated dependence of mobility on DNA length is observed, where mobility vs. length increases for short DNA molecules then decreases for longer molecules. There is also a variation of mobility with length correlated to the micelle diameter. Brownian dynamics simulations of a discrete wormlike chain model were performed to simulate short DNA molecules migrating in free solution and in a face-centered cubic matrix. By incorporating hydrodynamic interactions, the trend of simulated length-dependent mobility qualitatively agrees with experimental measurements.

  20. Self-Assembly and Relaxation Behavior of Graphene Containing Acrylic Triblock Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Zabet, Mahla; Hashemnejad, Seyedmeysam; Kundu, Santanu

    2015-03-01

    Investigation of gel mechanical properties as a function of their structure is a significant research interest. This study presents the effect of graphene (or few-layer graphene) on the self-assembly and the relaxation behavior of a thermoreversible gel consists of a physically cross-linked poly (methyl methacrylate)-poly (n-butyl acrylate)-poly (methyl methacrylate) [PMMA-PnBA-PMMA] triblock copolymer in 2-ethyl-1-hexanol, a midblock selective solvent. Graphene was obtained by sonicating exfoliated graphite in 2-ethyl-1-hexanol at various concentrations. Filtration technique and spectrophotometry were utilized to measure the graphene concentration in the dispersions. The dispersed graphene was then incorporated in a series of gels and the effect of graphene on mechanical properties, including the relaxation behavior were studied. Small angle X-ray scattering (SAXS) was used to investigate the microstructure of these gels at room temperature. SAXS data were analyzed to estimate the number of end blocks per junction zone, the average spacing between the junctions, and the change of these properties as a function of graphene concentration. The results indicate that the presence of graphene affects the self-assembly process.

  1. Bioadhesion of various proteins on random, diblock and triblock copolymer surfaces and the effect of pH conditions

    PubMed Central

    Palacio, Manuel L. B.; Schricker, Scott R.; Bhushan, Bharat

    2011-01-01

    The adhesive interactions of block copolymers composed of poly(methyl methacrylate) (PMMA)/poly(acrylic acid) (PAA) and poly(methyl methacrylate)/poly(2-hydroxyethyl methacrylate) (PHEMA) with the proteins fibronectin, bovine serum albumin and collagen were studied by atomic force microscopy. Adhesion experiments were performed both at physiological pH and at a slightly more acidic condition (pH 6.2) to model polymer–protein interactions under inflammatory or infectious conditions. The PMMA/PAA block copolymers were found to be more sensitive to the buffer environment than PMMA/PHEMA owing to electrostatic interactions between the ionized acrylate groups and the proteins. It was found that random, diblock and triblock copolymers exhibit distinct adhesion profiles although their chemical compositions are identical. This implies that biomaterial nanomorphology can be used to control protein–polymer interactions and potentially cell adhesion. PMID:21147831

  2. Synthesis of zwitterionic polymer-based amphiphilic triblock copolymers by atom transfer radical polymerization for production of extremely stable nanoemlusions

    NASA Astrophysics Data System (ADS)

    Lee, Jin Yong; Kim, Ji Eun; Kim, Jin Woong

    2015-03-01

    In fields of soft matter, there have been growing interests in utilizing amphiphilic block copolymers due to their intriguing properties, such as surface activity as well as self-assembly. In this work, we synthesize a series of poly (2-(methacryloyloxy) ethyl phosphorylcholine)- b-poly (ɛ-caprolactone)- b-poly (2-(methacryloyloxy) ethyl phosphorylcholine) (PMPC- b-PCL- b-PMPC) triblock copolymers by using atom transfer radical polymerization (ATRP). We have a particular interest in using poly (2-(methacryloyloxy) ethyl phosphorylcholine) (PMPC) as a hydrophilic block, since it can have both electrostatic repulsion and steric repulsion in complex fluid systems. Assembling them at the oil-water interface by using the phase inversion method enables production of highly stable nanoemulsions. From the analyses of the crystallography and self-assembly behavior, we have found that the triblock copolymers assemble to form a flexible but tough molecular thin film at the interface, which is essential for the remarkable improvement in the emulsion stability.

  3. Nanostructured assemblies from amphiphilic ABC multiblock polymers

    NASA Astrophysics Data System (ADS)

    Hillmyer, Marc A.

    2012-02-01

    Amphiphilic AB diblock copolymers containing a water compatible segment can self-assemble in aqueous media to give supramolecular structures that include simple spherical micelles and macromolecular vesicles termed polymersomes. Amphiphilic ABA triblocks with hydrophobic end blocks can adopt analogous structures but can also form gels at high polymer concentrations. The structural and chemical diversity demonstrated in block copolymer micelles and gels makes them attractive for applications ranging from drug delivery to personal care products to nanoreactors. The inclusion of a third block in amphiphilic ABC triblock systems can lead to a much wider array of self-assembled structures that depend not only on composition but also on block sequence, architecture and incompatibility considerations. I will present our recent efforts on tuning micelle and gel structure and behavior using controlled architecture ABC triblocks. The combination of diverse polymer segments into a single macromolecule is a powerful method for development of self-assembled structures with both new form and new function.

  4. Adsorption and association of a symmetric PEO-PPO-PEO triblock copolymer on polypropylene, polyethylene, and cellulose surfaces.

    PubMed

    Li, Yan; Liu, Hongyi; Song, Junlong; Rojas, Orlando J; Hinestroza, Juan P

    2011-07-01

    The association of a symmetric polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO(19)-PPO(29)-PEO(19)) triblock copolymer adsorbed from aqueous solutions onto polypropylene (PP), polyethylene (PE), and cellulose surfaces was probed using Atomic Force Microscopy (AFM). Significant morphological differences between the polyolefin substrates (PP and PE) and the cellulose surfaces were observed after immersion of the films in the PEO(19)-PPO(29)-PEO(19) solutions. When the samples were scanned, while immersed in solutions of the triblock copolymer, it was revealed that the structures adsorbed on the polyolefin surfaces were smoothed by the adsorbed PEO(19)-PPO(29)-PEO(19). In contrast, those structures on the hydrophilic cellulose surfaces were sharpened. These observations were related to the roughness of the substrate and the energy of interaction between the surfaces and the PEO and PPO polymer segments. The interaction energy between each of the blocks and the surface was calculated using molecular dynamics simulations. It is speculated that the associative structures amply reported in aqueous solution at concentrations above the critical micelle concentration, CMC, are not necessarily preserved upon adsorption; instead, it appears that molecular arrangements of the anchor-buoy type and hemimicelles prevail. The reported data suggests that the roughness of the surface, as well as its degree of hydrophobicity, have a large influence on the nature of the resulting adsorbed layer. The reported observations are valuable in explaining the behavior of finishing additives and lubricants commonly used in textile and fiber processing, as well as the effect of the morphology of the boundary layers on friction and wear, especially in the case of symmetric triblock copolymers, which are commonly used as antifriction, antiwear additives.

  5. Low-Friction Adsorbed Layers of a Triblock Copolymer Additive in Oil-Based Lubrication.

    PubMed

    Yamada, Shinji; Fujihara, Ami; Yusa, Shin-ichi; Tanabe, Tadao; Kurihara, Kazue

    2015-11-10

    The tribological properties of the dilute solution of an ABA triblock copolymer, poly(11-acrylamidoundecanoic acid)-block-poly(stearyl methacrylate)-block-poly(11-acrylamidoundecanoic acid (A5S992A5), in poly(α-olefin) (PAO) confined between mica surfaces were investigated using the surface forces apparatus (SFA). Friction force was measured as a function of applied load and sliding velocity, and the film thickness and contact geometry during sliding were analyzed using the fringes of equal chromatic order (FECO) in the SFA. The results were contrasted with those of confined PAO films; the effects of the addition of A5S992A5 on the tribological properties were discussed. The thickness of the A5S992A5/PAO system varied with time after surface preparation and with repetitive sliding motions. The thickness was within the range from 40 to 70 nm 1 day after preparation (the Day1 film), and was about 20 nm on the following day (the Day2 film). The thickness of the confined PAO film was thinner than 1.4 nm, indicating that the A5S992A5/PAO system formed thick adsorbed layers on mica surfaces. The friction coefficient was about 0.03 to 0.04 for the Day1 film and well below 0.01 for the Day2 film, which were 1 or 2 orders of magnitude lower than the values for the confined PAO films. The time dependent changes of the adsorbed layer thickness and friction properties should be caused by the relatively low solubility of A5S992A5 in PAO. The detailed analysis of the contact geometry and friction behaviors implies that the particularly low friction of the Day2 film originates from the following factors: (i) shrinkage of the A5S992A5 molecules (mainly the poly(stearyl methacrylate) blocks) that leads to a viscoelastic properties of the adsorbed layers; and (ii) the intervening PAO layer between the adsorbed polymer layers that constitutes a high-fluidity sliding interface. Our results suggest that the block copolymer having relatively low solubility in a lubricant base oil is

  6. Evolution of entanglements during the response to a uniaxial deformation of lamellar triblock copolymers and polymer glasses

    NASA Astrophysics Data System (ADS)

    Léonforte, F.

    2010-10-01

    Using coarse-grained molecular-dynamics simulations, a generic styrene-block-butadiene-block-styrene triblock copolymer under lamellar conformation is used in order to investigate the mutual entanglement evolution when a structure of alternating glassy (S)/rubbery (B) layers is submitted to an imposed deformation. By varying the amount of loop chains between each phase, i.e., noncrossing chains, it is possible to generate different types of S/B interface definitions. A specific boundary driven tensile strain protocol has been developed in order to mimic “real” experiments and measure the stress-strain curve. The same protocol is also applied to a reference state consisting in a directed glassy homopolymers, as well as to an isotropic glassy polymer. The evolution of initial mutual entanglements from the undeformed samples during the whole deformation process is monitored. It is shown for all considered systems that initial entanglements mostly participate to the preyield regime of the stress-strain curve and that this network is debonded during the strain-hardening regime. For triblocks with a non-null amount of crossing chains, the lower the amount is, the longer the memory effect of the initial entanglement network in the postyield regime is. On the fly distributions of entanglements, which depart from the postyield regime, depict memory effects and long-time correlations during the strain-hardening regime. For triblocks, loop chains reinforce these effects.

  7. Evolution of entanglements during the response to a uniaxial deformation of lamellar triblock copolymers and polymer glasses.

    PubMed

    Léonforte, F

    2010-10-01

    Using coarse-grained molecular-dynamics simulations, a generic styrene-block-butadiene-block-styrene triblock copolymer under lamellar conformation is used in order to investigate the mutual entanglement evolution when a structure of alternating glassy (S)/rubbery (B) layers is submitted to an imposed deformation. By varying the amount of loop chains between each phase, i.e., noncrossing chains, it is possible to generate different types of S/B interface definitions. A specific boundary driven tensile strain protocol has been developed in order to mimic "real" experiments and measure the stress-strain curve. The same protocol is also applied to a reference state consisting in a directed glassy homopolymers, as well as to an isotropic glassy polymer. The evolution of initial mutual entanglements from the undeformed samples during the whole deformation process is monitored. It is shown for all considered systems that initial entanglements mostly participate to the preyield regime of the stress-strain curve and that this network is debonded during the strain-hardening regime. For triblocks with a non-null amount of crossing chains, the lower the amount is, the longer the memory effect of the initial entanglement network in the postyield regime is. On the fly distributions of entanglements, which depart from the postyield regime, depict memory effects and long-time correlations during the strain-hardening regime. For triblocks, loop chains reinforce these effects.

  8. An asymmetric A-B-A' metallo-supramolecular triblock copolymer linked by Ni(2+)-bis-terpyridine complexes at one junction.

    PubMed

    Li, Haixia; Wei, Wei; Xiong, Huiming

    2016-02-07

    A metallo-supramolecular triblock copolymer polystyrene-b-polyisoprene-[Ni(2+)]-polystyrene (SI-[Ni(2+)]-S') has been efficiently prepared using a one-pot, two-step procedure, where the blocks are held by bis-terpyridine complexes at the junction of SI-S'. This specific metallo-supramolecular chemistry is demonstrated to be a robust approach to potentially broaden the diversity of block copolymers. The location of the metal-ligand complexes has a profound influence on the phase separation of the triblock copolymer in the bulk, which results in a distinctive phase segregation between the end blocks and leads to an unexpected asymmetry of the triblock copolymer. The metal-ligand complexes are found to be preferentially located on the adjacent spherical domain and form a core-shell structure. The resulting multiphase material exhibits distinct elastomeric properties with significant toughness and creep recovery behavior. This type of triblock copolymer is anticipated to be a novel class of hybrid thermo-plastic elastomeric material with wide tunability and functionality.

  9. Supramolecular Organometallic Polymer Chemistry: Self-Assembly of a Novel Poly(ferrocene)-b-polysiloxane-b-poly(ferrocene) Triblock Copolymer in Solution.

    PubMed

    Resendes; Massey; Dorn; Power; Winnik; Manners

    1999-09-01

    Micelles with unprecedented flowerlike arrangements of the poly(ferrocene) cores (shown in the TEM image) are among the supramolecular architectures generated in the self-assembly of a novel organometallic triblock copolymer from silicon-bridged [1]ferrocenophane monomers and [Me(2)SiO](3) in hexane, a solvent selective for the central polysiloxane block.

  10. Responsive Hydrogels and Ion Gels by Self-Assembly of ABA and ABC Triblock Polymers

    NASA Astrophysics Data System (ADS)

    Lodge, Timothy

    2014-03-01

    Gels - polymeric networks swollen with a substantial amount of solvent - represent a fascinating class of soft materials, with wide-ranging applications in fields as diverse as biomedicine, pharmaceutics, personal care products, foods, sensors, actuators, flexible electronics, oil recovery, and adhesives. Physical gels are held together by non-covalent interactions, which may be as specific as hydrogen bonds, or as general as solvophobic association of insoluble blocks. Among the attractive features of physical gels are reversibility, stimuli-responsiveness, and tunability of macroscopic properties. In this talk two classes of physical gels will be highlighted. In one, the ability of ABC block terpolymers to form novel structures will be demonstrated, where blocks A and C are mutually immiscible and solvophobic, while B is solvophilic. In particular, the formation of gels by sequential association (first A, then C) leads to a remarkably sharp gelation transition, at a relatively low polymer concentration, compared to analogous gels formed from ABA systems. In the second class, gels formed by self-assembly of a variety of ABA systems in ionic liquids will be described, and in particular how gelation can be controlled through factors such as block chemistry, temperature, choice of ionic liquid, and application of light.

  11. Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and γ-cyclodextrin with sustained-release property.

    PubMed

    Khodaverdi, Elham; Heidari, Zinat; Tabassi, Sayyed A Sajadi; Tafaghodi, Mohsen; Alibolandi, Mona; Tekie, Farnaz Sadat Mirzazadeh; Khameneh, Bahman; Hadizadeh, Farzin

    2015-02-01

    Supramolecular hydrogels formed by cyclodextrins and polymers have been widely investigated as a biocompatible, biodegradable and controllable drug delivery system. In this study, a supramolecular hydrogel based on biodegradable poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone) (PCL-PEG-PCL) triblock copolymers and γ-cyclodextrin (γ-CD) was prepared through inclusion complexation as an injectable, sustained-release vehicle for insulin. The triblock copolymer PCL-PEG-PCL was synthesised by the ring-opening polymerisation method, using microwave irradiation. The polymerisation reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The supramolecular hydrogel was prepared in aqueous solution by blending an aqueous γ-CD solution with an aqueous solution of PCL-PEG-PCL triblock copolymer at room temperature. In vitro insulin release through the hydrogel system was studied. The relative surface hydrophobicity of standard and released insulin from the SMGel was estimated using 8-anilino-1-naphthalene sulfonic acid (ANS). Results of (1)HNMR and gel permeation chromatography revealed that microwave irradiation is a simple and reliable method for synthesis of PCL-PEG-PCL copolymer. Gelation occurred within a minute. The supramolecular hydrogel obtained by mixing 10.54% (w/v) γ-CD and 2.5% (w/v) copolymer had an excellent syringeability. Insulin was released up to 80% over a period of 20 days. Insulin kept its initial folding after formulating and releasing from SMGel. A supramolecular hydrogel based on complexation of triblock PCL-PEG-PCL copolymer with γ-cyclodextrin is a suitable system for providing sustained release of therapeutic proteins, with desirable flow behaviour.

  12. Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and γ-cyclodextrin inclusion complex for sustained delivery of dexamethasone

    PubMed Central

    Khodaverdi, Elham; Gharechahi, Marzieh; Alibolandi, Mona; Tekie, Farnaz Sadat Mirzazadeh; Khashyarmanesh, Bibi Zahra; Hadizadeh, Farzin

    2016-01-01

    In this study, thermosensitive, water-soluble, and biodegradable triblock copolymer PCL600-PEG6000-PCL600 was used to form supramolecular hydrogel (SMGel) by inclusion complexation with γ-cyclodextrin (γ-CD). The prepared SMGel was investigated as a carrier for sustained release of dexamethasone. The triblock copolymer PCL-PEG-PCL [where PCL = polycaprolactone, PEG = poly(ethylene glycol)] was synthesized by the ring-opening polymerization method using microwave irradiation. The polymerization reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). SMGel was prepared in aqueous solution by blending an aqueous γ-CD solution with aqueous solution of PCL-PEG-PCL triblock copolymer at room temperature. The sol-to-gel transition time was measured at various concentrations of copolymer and γ-CD. As-prepared SMGel was used to prepare a sustained, controllable drug delivery system of dexamethasone sodium phosphate. The SMGel was also characterized in terms of rheological, morphological, and structural properties. Results obtained from proton nuclear magnetic resonance ( 1H-NMR) and GPC demonstrated that microwave irradiation is a simple and reliable method for synthesis of PEG-PCL copolymer. The SMGel with excellent syringability was prepared by mixing of 20% wt γ-CD and 10% wt of copolymer within 4 s. The SMGel containing 10% wt copolymer, 20% wt γ-CD, and 0.5% or 0.1% wt dexamethasone released approximately 100% and 45% of drug over up to 23 days, respectively. It could be concluded that SMGel based on self-assembly of inclusion complexes between PCL-PEG-PCL copolymer and γ-CD could be used as a basis for injectable drug delivery systems that provide sustained and controlled release of macromolecular drugs such as dexamethasone. PMID:27051627

  13. Behaviors of keratinocytes and fibroblasts on films of PLA50-PEO-PLA50 triblock copolymers with various PLA segment lengths.

    PubMed

    Garric, Xavier; Garreau, Henri; Vert, Michel; Molès, Jean-Pierre

    2008-04-01

    The growth of human primary keratinocytes and fibroblasts on PLA-PEO-PLA copolymer films was investigated as an intermediate stage of a strategy aimed at making implantable dermo-epidermal substitutes. Four PLA-PEO-PLA triblock copolymers with the same PEO block and different DL-lactic acid/ethylene oxide molar ratios (LA/EO) (0.8, 1.4, 1.8 and 2), were synthesized and characterized by 1H-nuclear magnetic resonance and infrared spectroscopy. The films made of these copolymers were more hydrophilic than PLA50 and than tissue culture polystyrene controls according to contact angles with water. Proliferation and adhesion of human skin cells were evaluated by MTT assay and by scanning electron microscopy. The presence of PEO in the triblock copolymers influenced cell adhesion and proliferation of fibroblasts, whereas keratinocyte adhesion and proliferation were not affected. These features emphasize the interest of PLA-PEO-PLA triblock copolymers to serve as better compounds than the racemic PLA previously investigated to make supports for human skin primary cells and scaffolds for skin engineering.

  14. Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO-PPO-PEO

    NASA Astrophysics Data System (ADS)

    Bois, L.; Chassagneux, F.; Parola, S.; Bessueille, F.; Battie, Y.; Destouches, N.; Boukenter, A.; Moncoffre, N.; Toulhoat, N.

    2009-07-01

    Elaboration of mesostructured silica films with a triblock copolymer polyethylene oxide-polypropylene oxide-polyethylene oxide, (PEO-PPO-PEO) and controlled growth of silver nanoparticles in the mesostructure are described. The films are characterized using UV-visible optical absorption spectroscopy, TEM, AFM, SEM, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Organized arrays of spherical silver nanoparticles with diameter between 5 and 8 nm have been obtained by NaBH 4 reduction. The size and the repartition of silver nanoparticles are controlled by the film mesostructure. The localization of silver nanoparticles exclusively in the upper-side part of the silica-block copolymer film is evidenced by RBS experiment. On the other hand, by using a thermal method, 40 nm long silver sticks can be obtained, by diffusion and coalescence of spherical particles in the silica-block copolymer layer. In this case, migration of silver particles toward the glass substrate-film interface is shown by the RBS experiment.

  15. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties.

    PubMed

    Zhong, Zhiyuan; Feijen, Jan; Lok, Martin C; Hennink, Wim E; Christensen, Lane V; Yockman, James W; Kim, Yong-Hee; Kim, Sung Wan

    2005-01-01

    Novel ABA triblock copolymers consisting of low molecular weight linear polyethylenimine (PEI) as the A block and poly(ethylene glycol) (PEG) as the B block were prepared and evaluated as polymeric transfectant. The cationic polymerization of 2-methyl-2-oxazoline (MeOZO) using PEG-bis(tosylate) as a macroinitiator followed by acid hydrolysis afforded linear PEI-PEG-PEI triblock copolymers with controlled compositions. Two copolymers, PEI-PEG-PEI 2100-3400-2100 and 4000-3400-4000, were synthesized. Both copolymers were shown to interact with and condense plasmid DNA effectively to give polymer/DNA complexes (polyplexes) of small sizes (<100 nm) and moderate zeta-potentials (approximately +10 mV) at polymer/plasmid weight ratios > or =1.5/1. These polyplexes were able to efficiently transfect COS-7 cells and primary bovine endothelial cells (BAECs) in vitro. For example, PEI-PEG-PEI 4000-3400-4000 based polyplexes showed a transfection efficiency comparable to polyplexes of branched PEI 25000. The transfection activity of polyplexes of PEI-PEG-PEI 4000-3400-4000 in BAECs using luciferase as a reporter gene was 3-fold higher than that for linear PEI 25000/DNA formulations. Importantly, the presence of serum in the transfection medium had no inhibitive effect on the transfection activity of the PEI-PEG-PEI polyplexes. These PEI-PEG-PEI triblock copolymers displayed also an improved safety profile in comparison with high molecular weight PEIs, since the cytotoxicity of the polyplex formulations was very low under conditions where high transgene expression was found. Therefore, linear PEI-PEG-PEI triblock copolymers are an attractive novel class of nonviral gene delivery systems.

  16. Model photo-responsive elastomers based on the self-assembly of side group liquid crystal triblock copolymers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kurji, Zuleikha; Kornfield, Julia A.; Kuzyk, Mark G.

    2015-10-01

    We report the synthesis of azobenzene-containing coil-liquid crystal-coil triblock copolymers that form uniform and highly reproducible elastomers by self-assembly. To serve as actuators to (non-invasively) steer a fiber optic, for example in deep brain stimulation, the polymers are designed to become monodomain "single liquid crystal" elastomers during the fiber-draw process and to have a large stress/strain response to stimulation with either light or heat. A fundamental scientific question that we seek to answer is how the interplay between the concentration of photoresponsive mesogens and the proximity to the nematic-isotropic transition governs the sensitivity of the material to stimuli. Specifically, a matched pair of polymers, one with ~5% azobenzene-containing side groups (~95% cyanobiphenyl side groups) and the other with 100% cyanobiphenyl side groups were synthesized from identical triblock pre-polymers (with polystyerene end blocks and 1,2-polybutadiene midblocks). These can be blended in various ratios to prepare a series of elastomers that are precisely matched in terms of the backbone length between physical crosslinks (because each polymer is derived from the same pre-polymer), while differing in % azobenzene side groups, allowing the effect of concentration of photoresponsive groups to be unambiguously determined.

  17. Sequentially Different AB Diblock and ABA Triblock Copolymers as P3HT:PCBM Interfacial Compatibilizers for Bulk-Heterojunction Photovoltaics.

    PubMed

    Fujita, Hiroyuki; Michinobu, Tsuyoshi; Fukuta, Seijiro; Koganezawa, Tomoyuki; Higashihara, Tomoya

    2016-03-02

    The P3HT:PCBM (P3HT = poly(3-hexylthiophene, PCBM = phenyl-C61-butyric acid methyl ester) bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells using the AB diblock and ABA triblock copolymers (A = polystyrene derivative with donor-acceptor units (PTCNE) and B = P3HT) as compatibilizers were fabricated. Under the optimized blend ratio of the block copolymer, the power conversion efficiency (PCE) was enhanced. This PCE enhancement was clearly related to the increased short-circuit current (J(sc)) and fill factor (FF). The incident photon to current efficiency (IPCE) measurement suggested that the P3HT crystallinity was improved upon addition of the block copolymers. The increased P3HT crystallinity was consistent with the increased photovoltaic parameters, such as J(sc), FF, and consequently the PCE. The surface energies of these block copolymers suggested their thermodynamically stable location at the interface of P3HT:PCBM, showing the efficient compatibilizing performance, resulting in enlarging and fixing the interfacial area and suppressing the recombination of the generated carriers. Grazing incidence X-ray scattering (GIXS) results confirmed the superior compatibilizing performance of the ABA triblock copolymer when compared to the AB diblock copolymer by the fact that, after blending the ABA triblock copolymer in the P3HT:PCBM system, the enhanced crystallinity of matrix P3HT was observed in the excluded areas of the less-aggregated PCBM domains, changing the P3HT crystalline domain orientation from "edge-on" to "isotropic". This is, to the best of our knowledge, the first sequential effect (AB vs ABA) of the block copolymers on the compatibilizing performances based on BHJ OPV device systems.

  18. Mesoscopic Simulations of Adsorption and Association of PEO-PPO-PEO Triblock Copolymers on a Hydrophobic Surface: From Mushroom Hemisphere to Rectangle Brush.

    PubMed

    Song, Xianyu; Zhao, Shuangliang; Fang, Shenwen; Ma, Yongzhang; Duan, Ming

    2016-11-08

    The dissipative particle dynamics (DPD) method is used to investigate the adsorption behavior of PEO-PPO-PEO triblock copolymers at the liquid/solid interface. The effect of molecular architecture on the self-assembled monolayer adsorption of PEO-PPO-PEO triblock copolymers on hydrophobic surfaces is elucidated by the adsorption process, film properties, and adsorption morphologies. The adsorption thicknesses on hydrophobic surfaces and the diffusion coefficient as well as the aggregation number of Pluronic copolymers in aqueous solution observed in our simulations agree well with previous experimental and numerical observations. The radial distribution function revealed that the ability of self-assembly on hydrophobic surfaces is P123 > P84 > L64 > P105 > F127, which increased with the EO ratio of the Pluronic copolymers. Moreover, the shape parameter and the degree of anisotropy increase with increasing molecular weight and mole ratio of PO of the Pluronic copolymers. Depending on the conformation of different Pluronic copolymers, the morphology transition of three regimes on hydrophobic surfaces is present: mushroom or hemisphere, progressively semiellipsoid, and rectangle brush regimes induced by decreasing molecular weight and mole ratio of EO of Pluronic copolymers.

  19. Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO-PPO-PEO

    SciTech Connect

    Bois, L.; Chassagneux, F.; Parola, S.; Bessueille, F.; Battie, Y.; Destouches, N.; Boukenter, A.; Moncoffre, N.

    2009-07-15

    Elaboration of mesostructured silica films with a triblock copolymer polyethylene oxide-polypropylene oxide-polyethylene oxide, (PEO-PPO-PEO) and controlled growth of silver nanoparticles in the mesostructure are described. The films are characterized using UV-visible optical absorption spectroscopy, TEM, AFM, SEM, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Organized arrays of spherical silver nanoparticles with diameter between 5 and 8 nm have been obtained by NaBH{sub 4} reduction. The size and the repartition of silver nanoparticles are controlled by the film mesostructure. The localization of silver nanoparticles exclusively in the upper-side part of the silica-block copolymer film is evidenced by RBS experiment. On the other hand, by using a thermal method, 40 nm long silver sticks can be obtained, by diffusion and coalescence of spherical particles in the silica-block copolymer layer. In this case, migration of silver particles toward the glass substrate-film interface is shown by the RBS experiment. - Graphical abstract: Growth of silver nanoparticles in a mesostructured block copolymer F127-silica film is performed either by a chemical route involving NaBH{sub 4} reduction or by a thermal method. An array of spherical silver nanoparticles with 10 nm diameter on the upper-side of the mesostructured film or silver sticks long of 40 nm with a preferential orientation are obtained according to the method used. a: TEM image of the Fag5SiNB sample illustrating the silver nanoparticles array obtained by the chemical process; b: HR-TEM image of the Fag20Sid2 sample illustrating the silver nanosticks obtained by the thermal process.

  20. Enhancing covalent mechanochemistry in bulk polymers using electrospun ABA triblock copolymers.

    PubMed

    Ramirez, A L Black; Schmitt, A K; Mahanthappa, M K; Craig, S L

    2014-01-01

    The mechanochemical activation of covalent bonds in bulk polymers is often characterized by low conversions. Here we report that the activation of gem-dibromocyclopropane (gDBC) mechanophores embedded in a poly(1,4-butadiene) (PB) is enhanced when a central gDBC-PB block is flanked by two polystyrene (PS) end blocks in an ABA-type triblock architecture. Electrospinning the PS-(gDBC)PB-PS leads to even greater activation in aligned fiber mats under tension.

  1. Styrene-butadiene-styrene Tri-block Copolymers Modified wit Polyhedral Oligomeric Silsesquioxanes

    DTIC Science & Technology

    2006-05-31

    morphology.1-6 Polymer nano -composites are a new and active research area in the field of block copolymers. Block copolymers reinforced by various nano -sized...fillers have been prepared and studied; layered silicates-based nano -composites have drawn the most attention thus far. 7- 9 Although domain...morphology is not strongly influenced by the blending of layered- silicates, these nano -reinforced block copolymers have shown promising property enhancements

  2. Multiple phase transition and scaling law for poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution.

    PubMed

    Liu, Sijun; Li, Lin

    2015-02-04

    The multiple phase transition and the scaling behavior of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer (Pluronic F127, PEO100-PPO65-PEO100) have been studied by micro-differential scanning calorimetry and rheology. The scaling behavior of the triblock copolymer was examined using the Winter-Chambon criterion to obtain the critical gel temperature Tgel and the scaling exponent n. n was found to decrease linearly with increasing copolymer concentration. A stable hard gel was formed, but the hard gel was transformed into a soft gel upon further heating. Increasing copolymer concentration led to the increase in the temperature of hard-soft gel transition, while the sol-gel transition temperature decreased with increasing copolymer concentration. A phase diagram has been determined, which is able to classify unimers, micelles, hard gel, and soft gel regions upon heating. In addition, the scaling relation of the plateau modulus Ge with copolymer concentration was also obtained as Ge ≈ c(3.0) for both soft gel and hard gel.

  3. Photo-responsive and thermoreversible networks from the self-assembly of azobenzene-containing liquid crystal triblock copolymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kurji, Zuleikha; Kornfield, Julia A.; Kuzyk, Mark G.

    2016-09-01

    We report the synthesis of azobenzene-containing coil-liquid crystal-coil triblock copolymers that can serve as mechano-optic actuators for applications that include non-invasively steering fiber optics. The coil (polystyrene) end-blocks phase segregate from the liquid crystal midblock forming of uniform and uniformly-spaced physical crosslinks, resulting in highly reproducible and thermoreversible networks by self-assembly. These polymers are elastic in the melt (at room temperature) and can be easily spun, coated or molded. Mechanical stretching results in a temporary monodomain alignment. Starting from identical triblock prepolymers (with polystyerene end blocks and 1,2-polybutadiene midblocks), a matched pair (azobenzene-containing, and non-azobenzene-containing) of liquid crystal triblock copolymers was synthesized. These triblocks were then be blended to prepare a series of elastomers with 0 to 5% azobenzene groups, while matching in nearly all other physical properties (cross-link density, modulus, birefringence, etc.), allowing the effect of concentration of photo-responsive groups to be unambiguously determined. Results will be presented that demonstrate this approach to independent control of optical density and photo-mechanical sensitivity.

  4. Combining Ring-Opening Metathesis Polymerization and Cyclic Ester Ring-Opening Polymerization To Form ABA Triblock Copolymers from 1,5-Cyclooctadiene and D,L-Lactide

    SciTech Connect

    Pitet, Louis M.; Hillmyer, Marc A.

    2009-07-31

    ABA triblock copolymers were synthesized by combining ring-opening metathesis polymerization (ROMP) of 1,5-cyclooctadiene (COD) with ring-opening polymerization of D,L-lactide. Hydroxyl-functionalized telechelic polyCOD was prepared by taking advantage of chain transfer during ROMP of COD using the acyclic chain transfer agent cis-1,4-diacetoxy-2-butene. These hydroxy-terminated macroinitiators were used as initiators for the polymerization of lactide to form a series of triblock copolymers with compositions in the range 0.24 {le} f{sub PLA} {le} 0.89 and molecular weights ranging from 22 to 196 kg mol{sup -1}. The ordered-state morphologies of the triblocks were determined using small-angle X-ray scattering; well-ordered microstructures were observed for several samples, in accordance with the predicted dependence of morphology on composition. The mechanical properties of these materials were also investigated by performing tensile measurements; the triblocks were considerably tougher than poly(D,L-lactide), most markedly in samples with low polyCOD midblock content.

  5. Triblock Copolymers with Grafted Fluorine-Free Amphiphilic Non-Ionic Side Chains for Antifouling and Fouling-Release Applications

    SciTech Connect

    Y Cho; H Sundaram; C Weinman; M Paik; M Dimitriou; J Finlay; M Callow; J Callow; E Kramer; C Ober

    2011-12-31

    Fluorine-free, amphiphilic, nonionic surface active block copolymers (SABCs) were synthesized through chemical modification of a polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene triblock copolymer precursor with selected amphiphilic nonionic Brij and other surfactants. Amphiphilicity was imparted by a hydrophobic aliphatic group combined with a hydrophilic poly(ethylene glycol) (PEG) group-containing moiety. The surfaces were characterized by dynamic water contact angle, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) analysis. In biofouling assays, settlement (attachment) of both spores of the green alga Ulva and cells of the diatom Navicula on SABCs modified with Brij nonionic side chains was significantly reduced relative to a PDMS standard, with a nonionic surfactant combining a PEG group and an aliphatic moiety demonstrating the best performance. Additionally, a fouling-release assay using sporelings (young plants) of Ulva and Navicula suggested that the SABC derived from nonionic Brij side chains also out-performed PDMS as a fouling-release material. Good antifouling and fouling-release properties were not demonstrated for the other two amphiphilic surfaces derived from silicone and aromatic group containing nonionic surfactants included in this study. The results suggest that small differences in chemical surface functionality impart more significant changes with respect to the antifouling settlement and fouling-release performance of materials than overall wettability behavior.

  6. Effects of interaction of ionic and nonionic surfactants on self-assembly of PEO-PPO-PEO triblock copolymer in aqueous solution.

    PubMed

    Nambam, J S; Philip, John

    2012-02-09

    We study the effects of interaction of surfactants on the self-assembly of a triblock copolymer in aqueous solution by measuring percolation transition temperature (T(p)), micellar size, zeta potential, and rheological properties. We use PEO-PPO-PEO triblock copolymer (Pluronics-F108) with anionic sodium dodecyl sulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB), and nonionic nonylphenolethoxylate (NP9) for our investigations. The addition of SDS in pluronics solution leads to a dramatic reduction in the viscoelastic properties, while it remains almost unaffected with CTAB and NP9. The 2 orders of magnitude decrease in the elastic modulus in the presence of SDS indicates a soft solid-like microstructure formed by aggregating self-assembled triblock polymers. Our results indicate a strong electrostatic barrier imparted by the headgroup of SDS at the core-corona interface that inhibits the formation of hexagonally packed layers of micelles and the packing order. The analysis of autocorrelation function at high concentrations of ionic surfactant indicates that pure surfactant micelles coexist with large intermicellar structures. With increasing surfactant concentration, the zeta potential of the pluronic micelle is found to decrease. These results suggest that the microstructure and elastic properties of block copolymer micelles can be tuned by varying the concentrations of ionic surfactant that enhances their potential in applications as nanocarriers for drug delivery systems.

  7. Separation of parent homopolymers from polystyrene-b-poly(ethylene oxide)-b-polystyrene triblock copolymers by means of liquid chromatography: 1. comparison of different methods.

    PubMed

    Rollet, Marion; Pelletier, Bérengère; Altounian, Anaïs; Berek, Dusan; Maria, Sébastien; Beaudoin, Emmanuel; Gigmes, Didier

    2014-03-04

    Separation of parent homopolymers, polystyrene and poly(ethylene oxide), from the triblock copolymer polystyrene-b-poly(ethylene oxide)-b-polystyrene was investigated by means of liquid chromatography techniques. Overall suitability was evaluated and compared for size exclusion chromatography, (SEC), liquid chromatography under critical conditions of enthalpic interactions (LC CC), and liquid chromatography under limiting conditions of desorption (LC LCD). Among these techniques, LC LCD was the only one able to fully separate block copolymers from both their parent homopolymers in one single run. The efficiency of the separation was proven by (1)H NMR analysis of previously collected fractions.

  8. The effect of self-assembly conditions on the size of di- and tri-block copolymer micelles: solicitation from response surface methodology.

    PubMed

    Honary, Soheila; Lavasanifar, Afsaneh

    2014-08-27

    Abstract The objective of this study was to assess the application of Response Surface Methodology in defining the effect of self-assembly condition on the average diameter of polymeric micelles. Di- and tri-block copolymers of poly(ethylene oxide)-b-poly(α-benzylcarboxylate-ϵ-caprolactone) (PEO-PBCL) and PBCL-b-poly(ethylene glycol)-b-PBCL (PBCL-PEG-PBCL) were synthesized through ring opening polymerization of α-benzyl-ε-carboxylate using MePEO or dihydroxy PEG as initiator, respectively. Polymeric micelles were formed through solubilization of block copolymers in acetone followed by drop-wise addition of this solution to water. Polymer concentration was changed and the intensity mean diameter of self-assembled structures was measured by dynamic light scattering. The experimental data were fitted to a mathematical model. The experimental conditions leading to the production of micelles of certain size (30, 60 or 90 nm for tri-block and 30 nm for di-block copolymers) was predicted. A good match between predicted and experimental data was observed. The results showed it would be possible to obtain micelles of certain size using block copolymers of different molecular weights or obtain micelles of different size at a given block copolymer molecular weight, by manipulating the polymer concentration. These observations show reproducible micelles of defined average diameter can be prepared by co-solvent evaporation by controlling the used polymer concentration.

  9. Synthesis and SAXS Characterization of Sulfonated Styrene-Ethylene/Propylene-Styrene Triblock Copolymers

    DTIC Science & Technology

    2006-07-05

    entanglement is the specific focus of this work. Small-angle X-ray scattering (SAXS) is critical to the investigation of morphology of traditional ionomers ...such as Nafion™), block copolymers, and block copolymer ionomers ,4,5 providing evidence of morphological structure in microphase separated...containing polymers usually shows a characteristic “ ionomer peak” corresponding to a characteristic length scale of 2-6 nm, generally assigned to

  10. Linear elasticity and phase behavior of block copolymer melts by self consistent field theory

    NASA Astrophysics Data System (ADS)

    Tyler, Christopher Austin

    Self Consistent Field Theory (SCFT) is a well established theory for describing the thermodynamics of block copolymer melts and blends. Although the theory is approximate, it has been quite successful in describing the phase behavior of diblock copolymers. We have applied SCFT to study the linear elastic behavior and the phase behavior of block copolymer melts. First, we calculate the linear elastic response of block copolymer melts ordered on a cubic lattice, with either body-centered or gyroid symmetry. We compare our results to experiments. A large, low-frequency plateau in the elastic storage modulus, corresponding to approximately 0.2kT per polymer chain, has been experimentally observed. By calculating the free energy of block copolymer melts on deformed lattices, we find that SOFT correctly predicts the elastic behavior of these three-dimensionally-ordered structures. We also investigate the phase behavior of triblock copolymer melts. Recent experimental work has identified a new, non-cubic, three-dimensional network phase, termed the O70 phase, in ABC triblock copolymers. We investigate the phase behavior of ABC triblock copolymer melts by calculating the free energy of several candidate phases, including the O70 phase. We find that O 70 is an equilibrium structure in triblock copolymer melts and that the SCFT and experimentally observed phase boundaries agree qualitatively. We also find that O70 is an equilibrium phase in diblock copolymer melts.

  11. Ultrafast photoinduced electron transfer in the micelle and the gel phase of a PEO-PPO-PEO triblock copolymer

    SciTech Connect

    Mandal, Ujjwal; Ghosh, Subhadip; Dey, Shantanu; Adhikari, Aniruddha; Bhattacharyya, Kankan

    2008-04-28

    Ultrafast photoinduced electron transfer (PET) from N,N-dimethylaniline (DMA) to coumarin dyes is studied in the micelle and the gel phase of a triblock copolymer, (PEO){sub 20}-(PPO){sub 70}-(PEO){sub 20} (Pluronic P123) by picosecond and femtosecond emission spectroscopies. The rate of PET in a P123 micelle and gel is found to be nonexponential and faster than the slow components of solvation dynamics. In a P123 micelle and gel, PET occurs on multiple time scales ranging from a subpicosecond time scale to a few nanoseconds. In the gel phase, the highest rate constant (9.3x10{sup 9} M{sup -1} s{sup -1}) of ET for C152 is about two times higher than that (3.8x10{sup 9} M{sup -1} s{sup -1}) observed in micelle phase. The ultrafast components of electron transfer (ET) exhibits a bell shaped dependence with the free energy change which is similar to the Marcus inversion. Possible reasons for slower PET in P123 micelle compared to other micelles and relative to P123 gel are discussed.

  12. Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers

    PubMed Central

    Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O.; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B.; Ebenso, Eno E.

    2016-01-01

    Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results. PMID:27515383

  13. Dual roles of amphiphilic triblock copolymer P123 in synthesis of α-Fe nanoparticle/ordered mesoporous silica composites

    NASA Astrophysics Data System (ADS)

    Li, Jiansheng; Li, Huijun; Zhu, Ye; Hao, Yanxia; Sun, Xiuyun; Wang, Lianjun

    2011-11-01

    A simple and effective method for in situ synthesis of α-Fe nanoparticle/ordered mesoporous silica (OMS) composites is reported. Evaporation induced self-assembly (EISA) and carbothermal reduction (CR) are strategically combined by using amphiphilic triblock copolymer P123 as not only a template and but also a precursor of carbon material. P123 plays dual roles in assembly of mesostructure and reduction of ferric species. Thermogravimetric analysis-mass spectrometer was used to investigate the pyrolysis process of the wet gels. The synthesized composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS) and N2 adsorption. The results showed that the composites possess ordered hexagonal mesoporous structure and the α-Fe nanoparticles with about 16 nm were well dispersed in mesoporous matrix. The carbon material resulting from P123 can reduce ferric species to α-Fe nanoparticles at 800 °C. Moreover, the formation mechanism for Fe nanoparticles in OMS matrix is proposed.

  14. Impact of solvent quality on the density profiles of looped triblock copolymer brushes by neutron reflectivity measurements

    SciTech Connect

    Huang, Zhenyu; Alonzo, Jose; Liu, Ming; Ji, Haining; Yin, Fang; Smith, Grant; Mays, Jimmy; Kilbey, II, S Michael; Dadmun, Mark D

    2008-01-01

    Preferential adsorption of poly(2-vinylpyridine)-deuterated polystyrene-poly(2-vinylpyridine) (PVP-dPS-PVP) triblock copolymers from toluene onto silicon leads to the formation of dPS loops tethered by the PVP end blocks. Using neutron reflectometry, we have determined the segment density profiles of these looped polymer brushes in toluene, a good solvent for the dPS block, and in cyclohexane at 20 C (poor solvent), 32 C, (near- solvent), and 50 C (marginal solvent). While the swelling behavior qualitatively agrees with that observed for singly grafted brushes, there are interesting differences in the local structural details: In a good solvent, the segment density profiles are composed of an inner parabolic region and a long, extended tail. In cyclohexane, the profiles are described by exponential decays. We ascribe these features to a novel polydispersity effect that arises due to tethering the PS loops by both ends. The results also show that the less dense layers undergo more significant changes in swollen height as solvent quality is changed and that the looped brushes of different molecular weight, asymmetry, and tethering density adhere to scaling relationships derived for lightly cross-linked polymer gels.

  15. Zonisamide-loaded triblock copolymer nanomicelles as a novel drug delivery system for the treatment of acute spinal cord injury

    PubMed Central

    Li, JingLun; Deng, JiaoJiao; Yuan, JinXian; Fu, Jie; Li, XiaoLing; Tong, AiPing; Wang, YueLong; Chen, YangMei; Guo, Gang

    2017-01-01

    Spinal cord injury (SCI) commonly leads to lifelong disability due to the limited regenerative capacity of the adult central nervous system. Nanomicelles can be used as therapeutic systems to provide effective treatments for SCI. In this study, a novel triblock monomethyl poly(ethylene glycol)-poly(l-lactide)-poly(trimethylene carbonate) copolymer was successfully synthesized. Next, polymeric nanomicelles loaded with zonisamide (ZNS), a Food and Drug Administration-approved antiepileptic drug, were prepared and characterized. The ZNS-loaded micelles (ZNS-M) were further utilized for the treatment of SCI in vitro and in vivo. The obtained ZNS-M were ~50 nm in diameter with good solubility and dispersibility. Additionally, these controlled-release micelles showed significant antioxidative and neuron-protective effects in vitro. Finally, our results indicated that ZNS-M treatment could promote motor function recovery and could increase neuron and axon density in a hemisection SCI model. In summary, these results may provide an experimental basis for the use of ZNS-M as a clinically applicable therapeutic drug for the treatment of SCI in the future.

  16. Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers.

    PubMed

    Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B; Ebenso, Eno E

    2016-08-12

    Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results.

  17. Triblock copolymers encapsulated poly (aryl benzyl ether) dendrimer zinc(II) phthalocyanine nanoparticles for enhancement in vitro photodynamic efficacy.

    PubMed

    Huang, Yide; Yu, Huizhen; Lv, Huafei; Zhang, Hong; Ma, Dongdong; Yang, Hongqin; Xie, Shusen; Peng, Yiru

    2016-12-01

    A novel series of nanoparticles formed via an electrostatic interaction between the periphery of negatively charged 1-2 generation aryl benzyl ether dendrimer zinc (II) phthalocyanines and positively charged poly(L-lysin) segment of triblock copolymer, poly(L-lysin)-block-poly(ethylene glycol)-block-poly(L-lysin), was developed for the use as an effective photosensitizers in photodynamic therapy. The dynamic light scattering, atomic force microscopy showed that two nanoparticles has a relevant size of 80-150nm. The photophysical properties and singlet oxygen quantum yields of free dendrimer phthalocyanines and nanoparticles exhibited generation dependence. The intracellular uptake of dendrimer phthalocyanines in Hela cells was significantly elevated as they were incorporated into the micelles, but was inversely correlated with the generation of dendrimer phthalocyanines. The photocytotoxicity of dendrimer phthalocyanines incorporated into polymeric micelles was also increased. The presence of nanoparticles induced efficient cell death. Using a mitochondrial-sepcific dye rhodamine 123 (Rh123), our fluorescence microscopic result indicated that nanoparticles localized to the mitochondria.

  18. Amphiphilic triblock copolymer-assisted synthesis of hierarchical NiCo nanoflowers by homogeneous nucleation in liquid polyols

    NASA Astrophysics Data System (ADS)

    Arief, Injamamul; Mukhopadhyay, P. K.

    2014-12-01

    Rose-like NiCo nanoflowers were synthesized by homogeneous, one-pot polyol reduction of Ni and Co-acetates in presence of an amphiphilic triblock copolymer and KOH. 1,2-propanediol was used as solvent-cum-reducing agent as no external reducing agent was found to be necessary in this process. Detailed x-ray diffraction and morphological characterizations confirmed formation of fcc hierarchical NiCo nanoflowers containing 2D nanosheet-like subunits (thickness of about 30 nm) with an average diameter of ~700 nm. Amphiphilic polymer played a pivotal role in the growth of nanorose as it favored a preferential growth of nanocrystals along a particular crystal plane as was observed in transmission electron microscopy. Effects of other parameters like use of hydrophilic polymer, surfactants, ratio of initial metal concentrations, choice of polyol media and concentration of KOH on the morphology of nanoflowers were also investigated. Room temperature magnetic studies revealed higher saturation magnetization and low coercivity (108.6 emu/g and 78.4 Oe) of nanorose. Based on LaMer model, a kinetically-controlled growth mechanism for the formation of NiCo nanorose is also proposed.

  19. Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers

    NASA Astrophysics Data System (ADS)

    Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O.; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B.; Ebenso, Eno E.

    2016-08-01

    Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results.

  20. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.

    PubMed

    Torabinejad, Bahman; Mohammadi-Rovshandeh, Jamshid; Davachi, Seyed Mohammad; Zamanian, Ali

    2014-09-01

    The employment of biodegradable polymer scaffolds is one of the main approaches for achieving a tissue engineered construct to reproduce bone tissues, which provide a three dimensional template to regenerate desirable tissues for different applications. The main goal of this study is to design a novel triblock scaffold reinforced with nano-hydroxyapatite (nHA) for hard tissue engineering using gas foaming/salt leaching method with minimum solvent usage. With this end in view, the biodegradable triblock copolymers of l-lactide and ε-caprolactone with different mol% were synthesized by ring-opening polymerization method in the presence of Sn(Oct)2 catalyst as initiator and ethylene glycol as co-initiator. The chemical compositions of biodegradable copolymers were characterized by means of FTIR and NMR. The thermal and crystallization behaviors of copolymers were characterized using TGA and DSC thermograms. Moreover, nano-hydroxyapatite was synthesized by the chemical precipitation process and was thoroughly characterized by FTIR, XRD and TEM. Additionally, the nanocomposites with different contents of nHA were prepared by mixing triblock copolymer with nHA. Mechanical properties of the prepared nanocomposites were evaluated by stress-strain measurements. It was found that the nanocomposite with 30% of nHA showed the optimum result. Therefore, nanocomposite scaffolds with 30% nHA were fabricated by gas foaming/salt leaching method and SEM images were used to observe the microstructure and morphology of nanocomposites and nanocomposite scaffolds before and after cell culture. The in-vitro and cell culture tests were also carried out to further evaluate the biological properties. The results revealed that the porous scaffolds were biocompatible to the osteoblast cells because the cells spread and grew well. The resultant nanocomposites could be considered as good candidates for use in bone tissue engineering.

  1. A numerical study of the phase behaviors of drug particle/star triblock copolymer mixtures in dilute solutions for drug carrier application

    SciTech Connect

    Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin

    2014-04-14

    The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. When the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.

  2. Coating of poly(p-xylylene) by PLA-PEO-PLA triblock copolymers with excellent polymer-polymer adhesion for stent applications.

    PubMed

    Hanefeld, Phillip; Westedt, Ullrich; Wombacher, Ralf; Kissel, Thomas; Schaper, Andreas; Wendorff, Joachim H; Greiner, Andreas

    2006-07-01

    Poly(p-xylylene) (PPX) was deposited by chemical vapor deposition (CVD) on stainless steel substrates. These PPX films were coated by solution casting of poly(lactide)-poly(ethylene oxide)-poly(lactide) triblock copolymers (PLA-PEO-PLA) loaded with 14C-labeled paclitaxel. Adhesion of PLA-PEO-PLA on PPX substrate coatings was measured using the blister test method. Excellent adhesion of the block copolymers on PPX substrates was found. Stress behavior and film integrity of PLA-PEO-PLA was compared to pure PLA on unexpanded and expanded stent bodies and was found to be superior for the block copolymers. The release of paclitaxel from the biodegradable coatings was studied under physiological conditions using the scintillation counter method. Burst release of paclitaxel was observed from PLA-PEO-PLA layers regardless of composition, but an increase in paclitaxel loading was observed with increasing content of PEO.

  3. Morphological Behavior of Sulfonated Styrene-Ethylene/Propylene-Styrene Triblock Copolymers

    DTIC Science & Technology

    2006-02-01

    ionomers possessing short (1K g/mol) styrene blocks and various rubber block lengths were synthesized via sequential anionic polymerization of styrene...isoprene, and styrene followed by hydrogenation and sulfonation. The ionomers were then characterized by small-angle x-ray scattering (SAXS) and atomic...spherical. 15. SUBJECT TERMS block copolymer, SAXS, ionomer , sulfonated polystyrene, SEPS 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE

  4. Efficient repairing effect of PEG based tri-block copolymer on mechanically damaged PC12 cells and isolated spinal cord.

    PubMed

    Rad, Iman; Mobasheri, Hamid; Najafi, Farhood; Rezaei, Maryam

    2014-06-01

    Membrane sealing effects of polymersomes made of tri-block copolymer, PEG-co-FA/SC-co-PEG, (PFSP) were studied on isolated spinal cord strips, PC12 cell lines and artificial bilayer following mechanical impact implemented by aneurism clip, sonication and electric shock, respectively. The homogeneity and size of PFSP, membrane permeability and cell viability were assessed by dynamic light scattering, LDH release and MTT assays. According to the results, the biocompatible, physico-chemical, size, surface charge and amphipathic nature of PFSP polymersome makes it an ideal macromolecule to rapidly reseal damaged membranes of cells in injured spinal cord as well as in culture medium. Compound action potentials recorded from intentionally damaged spinal cord strips incubated with PFSP showed restoration of neural excitability by 82.24 % and conduction velocity by 96.72 % after 5 min that monitored in real time. Thus, they triggered efficient instant and sustained sealing of membrane and reactivation of temporarily inactivated axons. Treatment of ultrasonically damaged PC12 cells by PFSP caused efficient cell membrane repair and led to their increased viability. The optimum effects of PFSP on stabilization and impermeabilizing of the lipid bilayer occurred at the same concentrations applied to the damaged cells and spinal cord fibers and was approved by restoration of membrane conductance and calcein release manifested by NanoDrop technique. The unique physico-chemical characteristics of novel polymersomes introduced here, make them capable to reorganize membrane lipid molecules, reseal the breaches and restore the hydrophobic insulation in spinal cord damaged cells. Thus, they might be considered in the clinical treatment of SCI at early stages.

  5. Thermosensitive aqueous gels with tunable sol-gel transition temperatures from thermo- and pH-responsive hydrophilic ABA triblock copolymer.

    PubMed

    O'Lenick, Thomas G; Jiang, Xueguang; Zhao, Bin

    2010-06-01

    This article reports on the synthesis of a well-defined hydrophilic ABA triblock copolymer composed of a poly(ethylene oxide) (PEO) middle block and thermo- and pH-sensitive outer blocks and the study of sol-gel transitions of its aqueous solutions at various pH values. The doubly responsive linear triblock copolymer, poly(methoxydi(ethylene glycol) methacrylate-co-methacrylic acid)-b-PEO-b-poly(methoxydi(ethylene glycol) methacrylate-co-methacrylic acid) (P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA)), was prepared by atom transfer radical polymerization of a mixture of DEGMMA and tert-butyl methacrylate with a molar ratio of 100: 5 from a difunctional PEO macroinitiator and subsequent removal of tert-butyl groups using trifluoroacetic acid. Dynamic light scattering studies showed that the critical micellization temperature (CMT) of this ABA triblock copolymer in a 0.2 wt % aqueous solution was dependent on the solution pH and can be varied in a large temperature range (>20 degrees C). To study the sol-gel transitions, a 12.0 wt % aqueous solution of the triblock copolymer with a pH of 4.89 was made; its pH value can be readily changed and well controlled by the injection of either a 1.0 M HCl or a 1.0 M KOH solution. From rheological measurements, the sol-gel transition temperature (T(sol-gel)) versus pH curve was found to closely trace the CMT versus pH curve, though there was a shift. By cycling the solution pH between 3.2 and 5.4, we showed that the T(sol-gel) at a specific pH was reproducible. Moreover, multiple sol-gel-sol transitions were realized by judiciously controlling the temperature and pH simultaneously, demonstrating the possibility of achieving on-demand sol-gel transitions by using two external stimuli. In addition, the effect of polymer concentration on T(sol-gel) at pH = 4.0 was investigated. The sol-gel transition temperature increased with the decrease of polymer concentration and the critical gelation concentration was found to be between 4 and

  6. Cooperative preassociation stages of PEO-PPO-PEO triblock copolymers: NMR and theoretical study.

    PubMed

    Kríz, Jaroslav; Dybal, Jirí

    2010-03-11

    Using (1)H and (13)C 1D and 2D NMR spectra, pulsed field-gradient (PFG) diffusion measurements, and (13)C relaxations supported by density functional theory (DFT) calculations, the temperature-dependent behavior of (EO)(m)(PO)(n)(EO)(m) block copolymers (m/n = 31/14, 31/72, and 17/1) in D(2)O below and at the critical micellar temperature (CMT) was investigated in order to understand the nature of primary self-association acts and their true driving force. It was shown that a conformation change of the PO block followed by mild and reversible association with other PO blocks and eventually with the inner parts of EO blocks starts at temperatures 10-12 K below the CMT. The primary process is the entropy-driven disintegration of the PPO hydration envelope based on cooperation of hydrophobic hydration and hydrogen bonding. The partial dehydration of PPO is followed by its conformation change. Both processes are cooperative and reversible with a correlation time of the order 0.01 s and an activation energy of 51.3 kJ/mol. The PPO chain in a staggered conformation is prone to self-association starting at temperatures 5-6 K below CMT. In (EO)(m)(PO)(n)(EO)(m) block copolymers, this process is complicated by the stripping of PEO chains of a part of hydrogen-bound water and entwining them with PPO. It is shown that only inner (PPO-near) parts of PEO take part in the process, the end-groups remaining free.

  7. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries.

    PubMed

    Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid; Aboulaich, Abdelmaula; Lienafa, Livie; Bonnet, Jean-Pierre; Phan, Trang N T; Bertin, Denis; Gigmes, Didier; Devaux, Didier; Denoyel, Renaud; Armand, Michel

    2013-05-01

    Electrochemical energy storage is one of the main societal challenges of this century. The performances of classical lithium-ion technology based on liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues. Solid polymer electrolytes would be a perfect solution to those safety issues, miniaturization and enhancement of energy density. However, as in liquids, the fraction of charge carried by lithium ions is small (<20%), limiting the power performances. Solid polymer electrolytes operate at 80 °C, resulting in poor mechanical properties and a limited electrochemical stability window. Here we describe a multifunctional single-ion polymer electrolyte based on polyanionic block copolymers comprising polystyrene segments. It overcomes most of the above limitations, with a lithium-ion transport number close to unity, excellent mechanical properties and an electrochemical stability window spanning 5 V versus Li(+)/Li. A prototype battery using this polyelectrolyte outperforms a conventional battery based on a polymer electrolyte.

  8. Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers

    SciTech Connect

    Enlow, Drew Lenzen

    2006-01-01

    In an effort to mimic the growth of natural bone, self-assembling, micelle and gel-forming copolymers were used as a template for calcium phosphate precipitation. Because of the cationic characteristics imparted by PDEAEM end group additions to commercially available Pluronic{reg_sign} Fl27, a direct ionic attraction mechanism was utilized and a polymer-brushite nanocomposite spheres were produced. Brushite coated spherical micelles with diameters of ~40 nm, and agglomerates of these particles (on the order of 0.5 μm) were obtained. Thickness and durability of the calcium phosphate coating, and the extent of agglomeration were studied. The coating has been shown to be robust enough to retain its integrity even below polymer critical micelle concentration and/or temperature. Calcium phosphate-polymer gel nanocomposites were also prepared. Gel samples appeared as a single phase network of agglomerated spherical micelles, and had a final calcium phosphate concentration of up to 15 wt%. Analysis with x-ray diffraction and NMR indicated a disordered brushite phase with the phosphate groups linking inorganic phase to the polymer.

  9. Mechanical and thermal behaviour of an acrylic bone cement modified with a triblock copolymer.

    PubMed

    Paz, E; Abenojar, J; Ballesteros, Y; Forriol, F; Dunne, N; Del Real, J C

    2016-04-01

    The basic formulation of an acrylic bone cement has been modified by the addition of a block copolymer, Nanostrength(®) (NS), in order to augment the mechanical properties and particularly the fracture toughness of the bone cement. Two grades of NS at different levels of loading, between 1 and 10 wt.%, have been used. Mechanical tests were conducted to study the behaviour of the modified cements; specific tests measured the bend, compression and fracture toughness properties. The failure mode of the fracture test specimens was analysed using scanning electron microscopy (SEM). The effect of NS addition on the thermal properties was also determined, and the polymerisation reaction using differential scanning calorimetry. It was observed that the addition of NS produced an improvement in the fracture toughness and ductility of the cement, which could have a positive contribution by reducing the premature fracture of the cement mantle. The residual monomer content was reduced when the NS was added. However this also produced an increase in the maximum temperature and the heat delivered during the polymerisation of the cement.

  10. Experimental and computational study of the effect of alcohols on the solution and adsorption properties of a nonionic symmetric triblock copolymer.

    PubMed

    Liu, Xiaomeng; He, Feng; Salas, Carlos; Pasquinelli, Melissa A; Genzer, Jan; Rojas, Orlando J

    2012-02-02

    This study investigates the effect of alcohols on the solution and adsorption properties of symmetric triblock nonionic copolymers comprising blocks of ethylene oxide (EO) and propylene oxide (PO) (EO(37)PO(56)EO(37)). The cloud point, surface tension, critical micelle concentration (CMC), and maximum packing at the air-water interface are determined, and the latter is compared to the amount of polymer that adsorbs from solution onto polypropylene (PP) and cellulose surfaces. The interaction energy and radius of micelles are calculated by using molecular dynamics (MD) simulations. Equivalent MD bead parameters were used in dynamic density functional theory (DDFT) simulations to study the influence of alcohols on the phase behavior of EO(37)PO(56)EO(37) and its adsorption on PP from aqueous solutions. The simulation results agree qualitatively with the experimental observations. Ethanol acts as a good cosolvent for EO(37)PO(56)EO(37) and reduces the amount of EO(37)PO(56)EO(37) that adsorbs on PP surfaces; however, little or no influence is observed on the adsorption on cellulose. Interestingly, longer chain alcohols, such as 1-pentanol, produce the opposite effect. Overall, the solution and adsorption properties of nonionic symmetric triblock copolymers in the presence of alcohols are rationalized by changes in solvency and the hydrophobic effect.

  11. "Near perfect" amphiphilic conetwork based on end-group cross-linking of polydimethylsiloxane triblock copolymer via atom transfer radical polymerization.

    PubMed

    Xu, Jianfeng; Qiu, Ming; Ma, Bomou; He, Chunju

    2014-09-10

    Novel amphiphilic conetworks (APCNs) with uniform channel size were synthesized through end-cross-linking of well-defined amphiphilic triblock copolymers via atom transfer radical polymerization (ATRP). A new ditelechelic polydimethylsiloxane macroinitiator was synthesized to initiate the polymerization of N,N-dimethylacrylamide. The resulting triblock copolymers show well-defined molecular weight with narrow polydisperisty, which are telechelic modified by allylamine and fully cross-linked with polyhydrosiloxanes through hydrosilylation. Transmission electron microscopy shows that the APCN has the behavior of microphase separation with small channel size and uniform phase domain. The resulting APCNs with idealized microstructure exhibit a combination of excellent properties, i.e., superhigh mechanical strength (4 ± 1 MPa) and elongation ratio (175 ± 25%), outstanding oxygen permeability (350 ± 150 barrers), a high water uptake property, and excellent biocompatibility, indicating that in this way, "near perfect" networks are obtained. These results are better than those reported in the literature, suggesting a promising semipermeable barrier for islet encapsulation in relative biomaterial fields.

  12. Multicomponent Nanomaterials with Complex Networked Architectures from Orthogonal Degradation and Binary Metal Backfilling in ABC Triblock Terpolymers

    PubMed Central

    2015-01-01

    Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etching and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures. PMID:25836760

  13. Multicomponent nanomaterials with complex networked architectures from orthogonal degradation and binary metal backfilling in ABC triblock terpolymers

    SciTech Connect

    Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee; Hovden, Robert; Gu, Yibei; Andrejevic, Nina; Muller, David; Coates, Geoffrey W.; Wiesner, Ulrich

    2015-04-02

    Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etching and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Lastly, multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.

  14. Multicomponent nanomaterials with complex networked architectures from orthogonal degradation and binary metal backfilling in ABC triblock terpolymers

    DOE PAGES

    Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee; ...

    2015-04-02

    Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etchingmore » and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Lastly, multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.« less

  15. Multicomponent Nanomaterials with Complex Networked Architectures from Orthogonal Degradation and Binary Metal Backfilling in ABC Triblock Terpolymers.

    PubMed

    Cowman, Christina D; Padgett, Elliot; Tan, Kwan Wee; Hovden, Robert; Gu, Yibei; Andrejevic, Nina; Muller, David; Coates, Geoffrey W; Wiesner, Ulrich

    2015-05-13

    Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etching and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer-inorganic hybrid materials with two distinct metal networks. Multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.

  16. Computer simulations on the pH-sensitive tri-block copolymer containing zwitterionic sulfobetaine as a novel anti-cancer drug carrier.

    PubMed

    Min, Wenfeng; Zhao, Daohui; Quan, Xuebo; Sun, Delin; Li, Libo; Zhou, Jian

    2017-04-01

    In this work, dissipative particle dynamics (DPD) simulations were performed to study the self-assembled microstructures and doxorubicin (DOX) loading/release properties of pH-sensitive amphiphilic triblock copolymer: poly(ε-caprolactone)-b-poly(diethylaminoethyl methacrylate)-b-poly(sulfobetaine methacrylate) or poly (ethylene glycol methacrylate) (PCL-PDEA-PSBMA/PEGMA). Our results show that both copolymers can self-assemble into core-shell-corona micelles in aqueous environment. However, the corona structures are quite different for the two copolymer micelles. The shell layers formed by PEGMA have heterogeneous sizes while the shell layers in PCL-PDEA-PSBMA micelles are homogenous. This is mainly attributed to the stronger hydrophilicity of PSBMA than PEGMA. As the mole concentration of copolymer is increased from 10% to 50%, the microstructures formed by PCL-PDEA-PSBMA and DOX remains spherical micelles whereas PCL-PDEA-PEGMA undergoes structural transition from spherical to cylindrical and finally to lamellar micelles. Interestingly, the studied micelles have a pH-responsive drug release property, owing to the protonation of the PDEA block. The drug release process follows a "swelling-demicellization-release" mode. The multi-scale simulations demonstrate an avenue to the optimal design of nanomaterials for drug delivery with desired properties.

  17. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (I) effect of polymer hydrophobicity on its ability to protect liposomes from peroxidation.

    PubMed

    Wang, Jia-Yu; Marks, Jeremy; Lee, Ka Yee C

    2012-09-10

    PEO-PPO-PEO triblock copolymers have opposing effects on lipid membrane integrity: they can behave either as membrane sealants or as membrane permeabilizers. To gain insights into their biomembrane activities, the fundamental interactions between a series of PEO-based polymers and phospholipid vesicles were investigated. Specifically, the effect of copolymer hydrophobicity on its ability to prevent liposomes from peroxidation was evaluated, and partitioning free energy and coefficient involved in the interactions were derived. Our results show that the high degree of hydrophilicity is a key feature of the copolymers that can effectively protect liposomes from peroxidation and the protective effect of the copolymers stems from their adsorption at the membrane surface without penetrating into the bilayer core. The origin of this protective effect induced by polymer absorption is attributed to the retardation of membrane hydration dynamics, which is further illustrated in the accompanying study on dynamic nuclear polarization (DNP)-derived hydration dynamics (Cheng, C.-Y.; Wang, J.-Y.; Kausik, R.; Lee, K. Y. C.; Han S. Biomacromolecules, 2012, DOI: 10.1021/bm300848c).

  18. Tertiary-amine-containing thermo- and pH-sensitive hydrophilic ABA triblock copolymers: effect of different tertiary amines on thermally induced sol-gel transitions.

    PubMed

    Henn, Daniel M; Wright, Roger A E; Woodcock, Jeremiah W; Hu, Bin; Zhao, Bin

    2014-03-11

    This Article reports on the synthesis of a series of well-defined, tertiary-amine-containing ABA triblock copolymers, composed of a poly(ethylene oxide) (PEO) central block and thermo- and pH-sensitive outer blocks, and the study of the effect of different tertiary amines on thermally induced sol-gel transition temperatures (T(sol-gel)) of their 10 wt % aqueous solutions. The doubly responsive ABA triblock copolymers were prepared from a difunctional PEO macroinitiator by atom transfer radical polymerization of methoxydi(ethylene glycol) methacrylate and ethoxydi(ethylene glycol) methacrylate at a feed molar ratio of 30:70 with ∼5 mol % of either N,N-diethylaminoethyl methacrylate (DEAEMA), N,N-diisopropylaminoethyl methacrylate, or N,N-di(n-butyl)aminoethyl methacrylate. The chain lengths of thermosensitive outer blocks and the molar contents of tertiary amines were very similar for all copolymers. Using rheological measurements, we determined the pH dependences of T(sol-gel) of 10 wt % aqueous solutions of these copolymers in a phosphate buffer. The T(sol-gel) versus pH curves of all polymers exhibited a sigmoidal shape. The T(sol-gel) increased with decreasing pH; the changes were small on both high and low pH sides. At a specific pH, the T(sol-gel) decreased with increasing the hydrophobicity of the tertiary amine, and upon decreasing pH the onset pH value for the T(sol-gel) to begin to increase noticeably was lower for the more hydrophobic tertiary amine-containing copolymer. In addition, we studied the effect of different tertiary amines on the release behavior of FITC-dextran from 10 wt % micellar gels in an acidic medium at 37 and 27 °C. The release profiles for three studied hydrogels at 37 °C were essentially the same, suggesting that the release was dominated by the diffusion of FITC-dextran. At 27 °C, the release was significantly faster for the DEAEMA-containing copolymer, indicating that both diffusion and gel dissolution contributed to the

  19. In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lactic acid)/poly(ethylene glycol) copolymers.

    PubMed

    Mao, Hailiang; Pan, Pengju; Shan, Guorong; Bao, Yongzhong

    2015-05-28

    A novel in situ formed gel system with potential biodegradability and biocompatibility is developed by mixing the diblock and triblock poly(lactic acid)/poly(ethylene glycol) (PLA/PEG) copolymers with opposite configurations of PLA blocks. In situ gelation of such system is extremely fast, which happens within 10 s after mixing. In situ gelation, gel-to-sol transition, crystalline structure, microstructures, and mechanical properties of PLA-PEG/PLA-PEG-PLA enantiomerically mixed gels are significantly influenced by the mixing ratio, degree of polymerization for PEG block in triblock (DPPEG,tri) and diblock copolymers (DPPEG,di). It is found that in situ gelation of PLA-PEG/PLA-PEG-PLA enantiomeric mixture just happen at relatively smaller PLA-PEG/PLA-PEG-PLA mass ratio and larger DPPEG,tri. Hydrodynamic diameters of PLA-PEG and PLA-PEG-PLA copolymers in dilute solution increase remarkably upon mixing, indicating the formation of bridging networks. Stereocomplexed crystallites are formed for the PLA hydrophobic domains in PLA-PEG/PLA-PEG-PLA enantiomeric mixtures. As indicated by synchrotron-radiation SAXS analysis, the enantiomeric mixture changes from a compactly to loosely aggregated structure and the intermicellar distance enhances with increasing DPPEG,tri, DPPEG,di, or PLA-PEG-PLA fraction. Gelation mechanism of PLA-PEG/PLA-PEG-PLA enantiomeric mixture is proposed, in which part of PLA-PEG-PLA chains act as the connecting bridges between star and flower-like micelles and the stereocomplexed crystallites in micelle cores act as physically cross-linked points.

  20. The clouding behaviour of PEO-PPO based triblock copolymers in aqueous ionic surfactant solutions: a new approach for cloud point measurements.

    PubMed

    Patel, Tejas; Bahadur, Pratap; Mata, Jitendra

    2010-05-15

    The cloud points (CP) of 1 g/dl solutions of polyethylene oxide-polypropylene oxide (PEO-PPO) based triblock copolymers (Pluronics® P84, L64, L44 and Reverse Pluronics® 10R5, 25R4, 17R4) were measured as a function of their molecular weight and added ionic surfactant. For identical PEO/PPO ratios, copolymers with lower molecular weight show a larger increase in the cloud point in the presence of surfactants than polymers with higher molecular weight. The opposite trend has been observed for reverse Pluronics. The cloud points of polymers with different PEO/PPO ratios have also been reported. An increase in the size of the middle PEO block in reverse Pluronics has a more significant effect on cloud points than molecular weight increment. Ionic surfactants produced marked increases in the cloud points of copolymer solutions. The effect was much larger for surfactants with higher hydrophobicity. Cationic surfactants with different chain lengths were used to examine the surfactant-polymer interaction. A novel approach for normalising the cloud points to their relative values has been carried out to see the clear effect of ionic surfactants. Tri component systems, comprising polymers, cetyltrimethylammonium bromide (C(16)TABr) surfactant and salt (NaBr), have also been studied to see the effect of salt on the phase separation behaviour of solutions within the framework of our new cloud point approach.

  1. Stick-slip phenomenon in measurements of dynamic contact angles and surface viscoelasticity of poly(styrene-b-isoprene-b-styrene) triblock copolymers.

    PubMed

    Zuo, Biao; Zheng, Fan Fan; Zhao, Yu Rong; Chen, TianYu; Yan, Zhuo Hua; Ni, Huagang; Wang, Xinping

    2012-03-06

    In this paper, a series of poly(styrene-b-isoprene-b-styrene) triblock copolymers (SIS), with different chemical components, was synthesized by anionic polymerization. The relationships between surface structures of these block copolymers and their stick-slip phenomena were investigated. There is a transition from stick-slip to a closely smooth motion for the SIS films with increasing PS content; the patterns almost vanish and the three-phase line appears to move overall smoothly on the film surface. The results show that the observed stick-slip pattern is strongly dependent on surface viscoelasticity. The jumping angle Δθ, which is defined as θ(1) - θ(2) (when a higher limit to θ(1) is obtained, the triple line "jumps" from θ(1) to θ(2) with increases in drop volume), was employed to scale the stick-slip behavior on various SIS film surfaces. Scanning force microscopy/atomic force microscopy (AFM) and sum frequency generation methods were used to investigate the surface structures of the films and the contributions of various possible factors to the observed stick-slip behavior. It was found that there is a linear relationship between jumping angle Δθ and the slope of the approach curve obtained from AFM force measurement. This means that the stick-slip behavior may be attributed mainly to surface viscoelasticity for SIS block copolymers. The measurement of jumping angle Δθ may be a valuable method for studying surface structure relaxation of polymer films.

  2. Synthesis of single-crystal PbS nanorods via a simple hydrothermal process using PEO-PPO-PEO triblock copolymer as a structure-directing agent

    NASA Astrophysics Data System (ADS)

    Bu, Junfu; Nie, Chageng; Liang, Jinxia; Sun, Lan; Xie, Zhaoxiong; Wu, Qi; Lin, Changjian

    2011-03-01

    Single-crystal PbS nanorods were successfully synthesized through a simple hydrothermal route using PEO-PPO-PEO triblock copolymer (P123) as a structure-directing agent. The XRD pattern indicates that the crystal structure of the nanorods is face-centre-cubic rocksalt. A SEM image shows that the nanorods have a diameter of 40-70 nm and a length of 200-600 nm, and both tips exhibit taper-like structures. HRTEM and SAED images reveal the single-crystalline nature of the nanorods with the growth along the lang111rang direction. The experimental results indicated that the P123 concentration and reaction temperature played important roles in controlling the morphology of the PbS nanostructures. The optical property of PbS nanorods was investigated by UV-Vis absorption spectroscopy and the band structure was calculated by the B3LYP hybrid density functional theory.

  3. PNIPAm(x)-PPO(36)-PNIPAm(x) thermo-sensitive triblock copolymers: chain conformation and adsorption behavior on a hydrophobic gold surface.

    PubMed

    Li, Jianyuan; Zhang, Zhijun; Zhou, Xianjing; Chen, Tongquan; Nie, Jingjing; Du, Binyang

    2016-01-07

    The chain conformations and adsorption behaviors of four thermo-sensitive poly(N-isopropylacrylamide)x-poly(propylene oxide)36-poly(N-isopropylacrylamide)x (PNIPAmx-PPO36-PNIPAmx) triblock copolymers with x values of 15, 33, 75, and 117 in dilute aqueous solutions were investigated by combined techniques of micro-differential scanning calorimetry (micro-DSC), static and dynamic light scattering (SLS & DLS), and the quartz crystal microbalance (QCM). PNIPAm15-PPO36-PNIPAm15 only exhibited the lower critical solution temperature (LCST) of the PPO block, i.e. 25 °C, because the PNIPAm block with x = 15 was too short to maintain its own LCST. With middle lengths x of 33 and 75, the LCSTs of PPO and PNIPAm blocks were observed, respectively. For the longest PNIPAm block with x = 117, only LCST of PNIPAm block dominated, i.e. 32.3 °C. DLS results revealed that the four PNIPAmx-PPO36-PNIPAmx triblock copolymers formed "associate" structures in their dilute aqueous solutions at 20 °C, which was well below the LCSTs of the PPO and PNIPAm blocks. QCM results indicated that the adsorption time constant decreased with increasing adsorption temperature but tended to increase with increasing length x of the PNIPAm block. A complex adsorption behavior with large adsorption amounts was only observed at the corresponding LCST of the PNIPAm block for PNIPAmx-PPO36-PNIPAmx with longer PNIPAm blocks with x = 33, 75, and 117. Furthermore, the adsorbed PNIPAmx-PPO36-PNIPAmx layers obtained at 20 °C were rigid with less energy dissipation.

  4. Synthesis and characterization of triblock copolymers of methoxy poly(ethylene glycol) and poly(propylene fumarate).

    PubMed

    Behravesh, Esfandiar; Shung, Albert K; Jo, Seongbong; Mikos, Antonios G

    2002-01-01

    Amphiphilic block copolymers were synthesized by transesterification of hydrophilic methoxy poly(ethylene glycol) (mPEG) and hydrophobic poly(propylene fumarate) (PPF) and characterized. Four block copolymers were synthesized with a 2:1 mPEG:PPF molar ratio and mPEGs of molecular weights 570, 800, 1960, and 5190 and PPF of molecular weight 1570 as determined by NMR. The copolymers synthesized with mPEG of molecular weights 570 and 800 had 1.9 and 1.8 mPEG blocks per copolymer, respectively, as measured by NMR, representing an ABA-type block copolymer. The number of mPEG blocks of the copolymer decreased with increasing mPEG block length to as low as 1.5 mPEG blocks for copolymer synthesized with mPEG of molecular weight 5190. At a concentration range of 5-25 wt % in phosphate-buffered saline, copolymers synthesized with mPEG molecular weights of 570 and 800 possessed lower critical solution temperatures (LCST) between 40 and 45 degrees C and between 55 and 60 degrees C, respectively. Aqueous solutions of copolymer synthesized with mPEG 570 and 800 also experienced thermoreversible gelation. The sol-gel transition temperature was dependent on the sodium chloride concentration as well as the mPEG block length. The copolymer synthesized from mPEG 570 had a transition temperature between 40 and 20 degrees C with salt concentrations between 1 and 10 wt %, while the sol-gel transition temperatures of the copolymer synthesized from mPEG molecular weight 800 were higher in the range 75-30 degrees C with salt concentrations between 1 and 15 wt %. These novel thermoreversible copolymers are the first biodegradable copolymers with unsaturated double bonds along their macromolecular chain that can undergo both physical and chemical gelation and hold great promise for drug delivery and tissue engineering applications.

  5. Interaction, solubilization and location of p-hydroxybenzoic acid and its sodium salt in micelles of moderately hydrophilic PEO-PPO-PEO triblock copolymers.

    PubMed

    Khimani, Mehul; Parekh, Paresh; Aswal, Vinod K; Bahadur, Pratap

    2014-05-01

    Micelles of ABA type triblock copolymers (where A is polyethylene oxide PEO and B is polypropylene oxide PPO) viz. Pluronic® P103, P104 and P105 (each containing almost the same PPO mol wt. ~ 3250 g/mol and 30, 40 and 50 wt.% of PEO, respectively) in the presence of p -hydroxybenzoic acid (PHBA) and its sodium salt (Na-PHBA) were examined by viscosity, dynamic light scattering (DLS), small angle neutron scattering (SANS) and NMR. Spherical polymeric micelles (apparent hydrodynamic diameter ~ 20 nm) in water at 30 °C grow in the presence of PHBA and transform into prolate-ellipsoidal shape with an increased aggregation number. The micellar transition was favored at higher PHBA concentration, temperature and for copolymers with more hydrophobicity. The PHBA salt, however, increased cloud point and showed only a marginal decrease in aggregation number even at much higher concentrations. The location of PHBA in micelle was elucidated by nuclear Overhauser enhancement spectroscopy (NOESY).

  6. Adsorption of a PEO-PPO-PEO triblock copolymer on metal oxide surfaces with a view to reducing protein adsorption and further biofouling.

    PubMed

    Yang, Y; Poleunis, C; Románszki, L; Telegdi, J; Dupont-Gillain, C C

    2013-01-01

    Abstract Biomolecule adsorption is the first stage of biofouling. The aim of this work was to reduce the adsorption of proteins on stainless steel (SS) and titanium surfaces by modifying them with a poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO triblock copolymer. Anchoring of the central PPO block of the copolymer is known to be favoured by hydrophobic interaction with the substratum. Therefore, the surfaces of metal oxides were first modified by self-assembly of octadecylphosphonic acid. PEO-PPO-PEO preadsorbed on the hydrophobized surfaces of titanium or SS was shown to prevent the adsorption of bovine serum albumin (BSA), fibrinogen and cytochrome C, as monitored by quartz crystal microbalance (QCM). Moreover, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry were used to characterize the surfaces of the SS and titanium after competitive adsorption of PEO-PPO-PEO and BSA. The results show that the adsorption of BSA is well prevented on hydrophobized surfaces, in contrast to the surfaces of native metal oxides.

  7. RGD Peptides-Conjugated Pluronic Triblock Copolymers Encapsulated with AP-2α Expression Plasmid for Targeting Gastric Cancer Therapy in Vitro and in Vivo.

    PubMed

    Wang, Wei; Liu, Zhimin; Sun, Peng; Fang, Cheng; Fang, Hongwei; Wang, Yueming; Ji, Jiajia; Chen, Jun

    2015-07-17

    Gastric cancer, a high-risk malignancy, is a genetic disease developing from a cooperation of multiple gene mutations and a multistep process. Gene therapy is a novel treatment method for treating gastric cancer. Here, we developed a novel Arg-Gly-Asp (RGD) peptides conjugated copolymers nanoparticles-based gene delivery system in order to actively targeting inhibit the growth of gastric cancer cells. These transcription factor (AP-2α) expression plasmids were also encapsulated into pluronic triblock copolymers nanoparticles which was constituted of poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol) (PEO-block-PPO-block-PEO, P123). The size, morphology and composition of prepared nanocomposites were further characterized by nuclear magnetic resonance (NMR), transmission electron microscopy (TEM) and dynamic light scattering (DLS). In MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide) analysis, these nanocomposites have minor effects on the proliferation of GES-1 cells but significantly decreased the viability of MGC-803, suggesting they own low cytotoxicity but good antitumor activity. The following in vivo evaluation experiments confirmed that these nanocomposites could prevent the growth of gastric cancer cells in the tumor xenograft mice model. In conclusion, these unique RGD peptides conjugated P123 encapsulated AP-2α nanocomposites could selectively and continually kill gastric cancer cells by over-expression of AP-2α in vitro and in vivo; this exhibits huge promising applications in clinical gastric cancer therapy.

  8. Small angle x-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers.

    SciTech Connect

    Firestone, M. A.; Wolf, A. C.; Seifert, S.; Univ. Chicago

    2003-11-01

    The relationship between molecular architecture and the nature of interactions with lipid bilayers has been studied for a series of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers using small-angle X-ray scattering (SAXS) and thermal analysis (differential scanning calorimetry, DSC). The number of molecular repeat units in the hydrophobic poly(propylene oxide), PPO, block has been found to be a critical determinant of the nature of triblock copolymer-lipid bilayer association. For dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based biomembrane structures, polymers possessing a PPO chain length commensurate with the acyl chain dimensions of the lipid bilayer yield highly ordered, swollen lamellar structures consistent with well-integrated (into the lipid bilayer) PPO blocks. Triblock copolymers of lesser PPO chain length yield materials with structural characteristics similar to a simple dispersion of DMPC in water. Increasing the concentration (from 4 to 12 mol %) of well-integrated triblock copolymers enhances the structural ordering of the lamellar phase, while concentrations exceeding 16 mol % result in the formation of a hexagonal phase. Examination of temperature-induced changes in the structure of these mesophases (complex fluids) reveals that if the temperature is reduced sufficiently, all compositions exclude polymer and thus exhibit the characteristic SAXS pattern for hydrated DMPC bilayers. Increasing the temperature promotes better insertion of the polymers possessing PPO chain lengths sufficient for membrane insertion. No temperature-induced structural changes are observed in compositions prepared with PEO-PPO-PEO polymers that feature PPO length insufficient to permit full incorporation into the lipid bilayer.

  9. Highly ordered mesoporous carbonaceous frameworks from a template of a mixed amphiphilic triblock-copolymer system of PEO-PPO-PEO and reverse PPO-PEO-PPO.

    PubMed

    Huang, Yan; Cai, Huaqiang; Yu, Ting; Sun, Xiuli; Tu, Bo; Zhao, Dongyuan

    2007-10-01

    A series of highly ordered mesoporous carbonaceous frameworks with diverse symmetries have been successfully synthesized by using phenolic resols as a carbon precursor and mixed amphiphilic surfactants of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) and reverse PPO-PEO-PPO as templates by the strategy of evaporation-induced organic-organic self-assembly (EISA). The transformation of the ordered mesostructures from face-centered (Fd3m) to body-centered cubic (Im3m), then 2D hexagonal (P6mm), and eventually to cubic bicontinuous (Ia3d) symmetry has been achieved by simply adjusting the ratio of triblock copolymers to resol precursor and the relative content of PEO-PPO-PEO copolymer F127, as confirmed by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and nitrogen-sorption measurements. The blends of block copolymers can interact with resol precursors and tend to self-assemble into cross-linking micellar structures during the solvent-evaporation process, which provides a suitable template for the construction of mesostructures. The assembly force comes from the hydrogen-bonding interactions between organic mixed micelles and the resol-precursor matrix. The BET surface area for the mesoporous carbonaceous samples calcined at 600 degrees C under nitrogen atmosphere is around 600 m2 g(-1), and the pore size can be adjusted from 2.8 to 5.4 nm. An understanding of the organic-organic self-assembly behavior in the mixed amphiphilic surfactant system would pave the way for the synthesis of mesoporous materials with controllable structures.

  10. Aggregation behavior of poly(ethylene glycol-bl-propylene sulfide) di- and triblock copolymers in aqueous solution.

    PubMed

    Cerritelli, Simona; O'Neil, Conlin P; Velluto, Diana; Fontana, Antonella; Adrian, Marc; Dubochet, Jacques; Hubbell, Jeffrey A

    2009-10-06

    Block copolymers of poly(ethylene glycol)-bl-poly(propylene sulfide) (PEG-PPS) have recently emerged as a new macromolecular amphiphile capable of forming a wide range of morphologies when dispersed in water. To understand better the relationship between stability and morphology in terms of the relative and absolute block compositions, we have synthesized a collection of PEG-PPS block copolymers and quantified their critical aggregation concentration and observed their morphology using cryogenic transmission electron microscopy after thin film hydration with extrusion and after solvent dispersion from tetrahydrofuran, a solvent for both blocks. By understanding the relationship between aggregate character and block copolymer architecture, we have observed that whereas the relative block lengths control morphology, the stability of the aggregates upon dilution is determined by the absolute block length of the hydrophobic PPS block. We have compared results obtained with PEG-PPS to those obtained with poly(ethylene glycol)-bl-poly(propylene oxide)-bl-poly(ethylene glycol) block copolymers (Pluronics). The results reveal that the PEG-PPS aggregates are substantially more stable than Pluronic aggregates, by more than an order of magnitude. PEG-PPS can form a wide variety of stable or metastable morphologies in dilute solution within normal time and temperature ranges, whereas Pluronics can generally form only spherical micelles under the same conditions. On the basis of these results, block copolymers of PEG with poly(propylene sulfide) may present distinct advantages over those with poly(propylene glycol) for a number of applications.

  11. Surface modification of paclitaxel-loaded tri-block copolymer PLGA- b-PEG- b-PLGA nanoparticles with protamine for liver cancer therapy

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Chen, Zhihong; Xiao, Xiaojun; Ruan, Changshun; Mei, Lin; Liu, Zhigang; Zeng, Xiaowei

    2015-08-01

    In order to enhance the therapeutic effect of chemotherapy on liver cancer, a biodegradable formulation of protamine-modified paclitaxel-loaded poly(lactide- co-glycolide)- b-poly(ethylene glycol)- b-poly(lactide- co-glycolide) (PLGA- b-PEG- b-PLGA) nanoparticles (PTX-loaded/protamine NPs) was prepared. Tri-block copolymer PLGA- b-PEG- b-PLGA was synthesized by ring-opening polymerization and characterized by 1H NMR spectroscopy and gel permeation chromatography. PTX-loaded and PTX-loaded/protamine NPs were characterized in terms of size, size distribution, zeta potential, surface morphology, drug encapsulation efficiency, and drug release. Confocal laser scanning microscopy showed that coumarin 6-loaded/protamine NPs were internalized by hepatocellular carcinoma cell line HepG2. The cellular uptake efficiency of NPs was obviously elevated after protamine modification. With commercial formulation Taxol® as the reference, HepG2 cells were also used to study the cytotoxicity of the NPs. PTX-loaded/protamine NPs exhibited significantly higher cytotoxicity than PTX-loaded NPs and Taxol® did. All the results suggested that surface modification of PTX-loaded PLGA- b-PEG- b-PLGA NPs with protamine boosted the therapeutic efficacy on liver cancer.

  12. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    PubMed

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  13. Mean-field coarse-grained model for poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer systems.

    PubMed

    García Daza, Fabián A; Colville, Alexander J; Mackie, Allan D

    2015-03-31

    The microscopic modeling of surfactant systems is of the utmost importance in understanding the mechanisms related to the micellization process because it allows for prediction and comparison with experimental data of diverse equilibrium system properties. In this work, we present a coarse-grained model for Pluronics, a trademarked type of triblock copolymer, from simulations based on a single-chain mean-field theory (SCMF). This microscopic model is used to quantify the micellization process of these nonionic surfactants at 37 °C and has been shown to be able to quantitatively reproduce experimental data of the critical micelle concentration (CMC) along with other equilibrium properties. In particular, these results correctly capture the experimental behavior with respect to the lengths of the hydrophobic and hydrophilic moieties of the surfactants for low and medium hydrophobicities. However, for the more highly hydrophobic systems with low CMCs, a deviation is found which has been previously attributed to nonequilibrium effects in the experimental data (Garcı́a Daza, F. A.; Mackie, A. D. Low Critical Micelle Concentration Discrepancy between Theory and Experiment. J. Phys. Chem. Lett. 2014, 5, 2027-2032).

  14. Studies on a novel multi-sensitive hydrogel: influence of the biomimetic phosphorylcholine end-groups on the PEO-PPO-PEO tri-block co-polymers.

    PubMed

    Meng, Sheng; Guo, Zhang; Wang, Qiong; Liu, ZongJun; Wang, QiHong; Zhong, Wei; Du, QiangGuo

    2011-01-01

    In the present study, a biomimetic phosphorylcholine group was employed in the end-capping modification of PEO-PPO-PEO tri-block co-polymers (Pluronic(®)). The structures of the resulting materials were characterized by (1)H-NMR and GPC. The effects of the additional phosphorylcholine end-groups to the thermo-sensitive sol-gel transition behaviors of the aqueous solutions of the resulting polymers were studied by rheology test in neutral (0.1 M NaCl) aqueous solutions and in acidic solutions (pH 3). It was found that the phosphorylcholine-end-capped Pluronic hydrogels still kept their thermo-sensitive mechanical properties with a slight change on the sol-gel transition behaviors. The phosphorylcholine-modified Pluronics exhibited a response to the change of the pH value, which made this kind of material a multi-sensitive hydrogel system. Also, the resulting polymers showed improved hemocompatibilities in the blood coagulation test using full human blood.

  15. Magnetic solid-phase extraction of phthalate esters (PAEs) in apparel textile by core-shell structured Fe3O4@silica@triblock-copolymer magnetic microspheres.

    PubMed

    Xu, Mei; Liu, Minhua; Sun, Meirong; Chen, Kun; Cao, Xiujun; Hu, Yaoming

    2016-04-01

    In this paper, novel core-shell structured magnetic Fe3O4/silica nanocomposites with triblock-copolymer grafted on their surface (Fe3O4@SiO2@MDN) were successfully fabricated by combining a sol-gel method with a seeded aqueous-phase radical copolymerization approach. Owing to the excellent characteristics of the strong magnetic responsivity, outstanding hydrophilicity and abundant π-electron system, the obtained core-shell structured microspheres showed great potential as a magnetic solid phase extraction (MSPE) adsorbent. Several kinds of phthalate esters (PAEs) were selected as model analytes to systematically evaluate the applicability of adsorbents for extraction followed by gas chromatography-mass spectrometry (GC-MS) analyses. Various parameters, including adsorbents amounts, adsorption time, species of eluent, and desorption time were optimized. Under the optimized conditions, Validation experiments such as recovery, reproducibility, and limit of detection were carried on and showed satisfactory results. The analysis method showed excellent linearity with a wide range of 0.2-10mg/kg (R(2)>0.9974) and low limits of detection (LOD) of 0.02-0.09 mg/kg (S/N=3). Ultimately, the novel magnetic adsorbents were successfully employed to detect the PAEs in apparel textile samples. And the results indicated that this novel approach brought forward in the present work offered an attractive alternative for rapid, efficient and sensitive MSPE for PAEs compounds.

  16. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association

    SciTech Connect

    Alexandridis, P.; Hatton, T.A. . Dept. of Chemical Engineering); Holzwarth, J.F. )

    1994-04-25

    The critical micellization temperature (cmt) and critical micellization concentration (cmc) values of 12 Pluronic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, covering a wide range of molecular weights (2,900--14,600) and PPO/PEO ratios (0.19--1.79), were determined employing a dye solubilization method. A closed association model was found to describe adequately the copolymer micellization process for the majority of the Pluronics and used to obtain the standard free energies ([Delta]G[degree]), enthalpies ([Delta]H[degree]), and entropies ([Delta]S[degree]) of micellization. It was determined that the micellization process is entropy-driven and has an endothermic micellization enthalpy. The hydrophobic part of the Pluronics, PPO, was responsible for the micellization, apparently due to diminishing hydrogen bonding between water and PPO with increasing temperature. The cmc dependence on temperature and size of headgroup (PEO) of Pluronics follows a similar trend with lower molecular weight C[sub i]E[sub j] nonionic surfactants, the effect of temperature being more pronounced with the Pluronics. The PEO-PPO-PEO block copolymers were compared to PPO-PEO-PPO block and PEO-PPO random copolymers, in an attempt to probe the effect of molecular architecture in the formation of micelles. No micelles were observed in aqueous PPO-PEO-PPO block copolymer solutions with increasing temperature, up to the cloud point.

  17. Influence of triblock copolymer (pluronic F127) on enhancing the physico-chemical properties and photocatalytic response of mesoporous TiO2

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Hamid, Sharifah Bee Abd; Juan, Joon Ching; Basirun, Wan Jefrey

    2015-11-01

    The utilization of triblock copolymer, pluronic F127 as a structure directing agent for the preparation of TiO2 played an important role in enhancing the photocatalytic degradation rate of atrazine by a factor of 1.7. The mesoporous F127-TiO2 showed significant modification of morphology, particle and crystallite size, and presence of defect energy belt within the catalyst forbidden band as proven via photoluminescence spectra and x-ray photon spectroscopy. Hence the photogenerated carriers have longer lifespan to migrate to the catalyst surface for redox activities. Furtherance, surface reactive {0 0 1} facets proven by the formation of new geometrical single crystal of square and rhombus surfaces in F127-TiO2 facilitates atrazine degradation as well. The increased surface area of F127-TiO2 promotes greater atrazine absorption, thus governs improved interaction between absorbed atrazine molecules and surface generated active radicals as a pre-requisite for good photocatalytic activity. Interestingly, using the same synthesis procedure, it was observed that the addition of pluronic F127 significantly affects anatase crystal structure as opposed to the more thermodynamically stable rutile, generating 61% and 25% of total crystallite size modification for anatase and rutile, respectively. However, there were no changes on the final composition of anatase and rutile crystal structure. In overall, enhancement of the photocatalytic degradation of atrazine is ruled out to the following factors (1) modification of geometrical structures and size, (2) narrowing of band gap due to defect energy belt, (3) longer lifespan of photoexcited charges to the catalyst surface, (4) enhanced surface textural properties and (5) increased exposure of reactive {0 0 1} facets, which were all observed in F127-TiO2.

  18. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  19. Interaction of premicellar states of a PEO-PPO-PEO triblock copolymer with partially hydrophobic substances: NMR study.

    PubMed

    Kříž, Jaroslav

    2012-04-12

    According to (1)H and (13)C NMR spectra, relaxations, and PFG NMR self-diffusion measurements, partially hydrophobic additives methyl-ethyl ketone (MEK), methyl-isopropyl ketone (MIPK), and methyl-t-butyl ketone (MTBK) facilitate the conformation change and subsequent self-association of the copolymer Pluronic L64. The correlation time (4-9 ms) and activation energy (43-52 kJ/mol) of transition between its conformation states decrease with the increasing hydrophobicity and bulkiness of the additive. The temperature of the first PPO self-association decreases in the same order (by 4 K for MTBK). The interaction of the additives was indirectly proved by the decrease of their rotational and translational mobility in the presence of L64. The rotational correlation time τ(c) is between 3 and 6 × 10(-11) s, whereas that of the same molecules in the absence of L64 is lower than 6 × 10(-12) s. The normalized self-diffusion coefficient decreases to about 0.7 of its original value in the presence of L64. The interaction of the additive with the PPO block is transient but effective enough to facilitate its conformational change and self-association. Its mediation by a water molecule bound to PPO as a possible mechanism is suggested.

  20. Molecular arrangement of symmetric and non-symmetric triblock copolymers of poly(ethylene oxide) and poly(isobutylene) at the air/water interface.

    PubMed

    Fuchs, Christian; Hussain, Hazrat; Schwieger, Christian; Schulz, Matthias; Binder, Wolfgang H; Kressler, Jörg

    2015-01-01

    The behavior of a series of amphiphilic triblock copolymers of poly(ethylene oxide) (PEO) and poly(isobutylene) (PIB); including both symmetric (same degree of polymerization (DP) of the terminal PEO blocks) PEOm-b-PIBn-b-PEOm and non-symmetric (different DP of the terminal PEO blocks) PEOm-b-PIBn-b-PEOz, is investigated at the air/water interface by measuring surface pressure vs mean molecular area isotherms (π vs mmA), Langmuir-Blodgett (LB) technique, and infrared reflection-absorption spectroscopy (IRRAS). The block copolymer (PEO32-b-PIB160-b-PEO32) with longer PEO segments forms a stable monolayer and the isotherm reveals a pseudo-plateau starting at π∼5.7 mN/m, also observed in the IRRAS, which is assigned to the pancake-to-brush transition related to the PEO dissolution into the subphase and subsequent PEO brush dehydration. Another plateau is observed at π∼40 mN/m, which is attributed to the film collapse due to multilayer formation. The pancake-to-brush transition could not be observed for samples with smaller PEO chains. The isotherms for block copolymers, with short PEO chains, both symmetric (PEO3-b-PIBn-b-PEO3) and non-symmetric (PEO12-b-PIBn-b-PEO3), reveal another transition at π∼20-25 mN/m. This is interpreted to be due to the conformational transition from a folded state where the middle PIB block is anchored to the water surface at both ends by the terminal hydrophilic segments to an unfolded state with PIB anchored to the water surface at one end. It is assumed that this transition involves the removal of PEO3 chains from the water surface in case of non-symmetric PEO12-b-PIB85-b-PEO3 and in case of symmetric, probably one PEO3 of each PEO3-b-PIB85-b-PEO3 chain. Because of the weaker interaction of the short PEO3 chains with the water surface as compared with the relatively longer PEO12 chains, the film of PEO3-b-PIB85-b-PEO3 collapses at much lower surface pressure after the transition as compared with the PEO12-b-PIB85-b-PEO3. The

  1. Thermo-responsive release of curcumin from micelles prepared by self-assembly of amphiphilic P(NIPAAm-co-DMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymers.

    PubMed

    Hu, Yanfei; Darcos, Vincent; Monge, Sophie; Li, Suming; Zhou, Yang; Su, Feng

    2014-12-10

    Thermo-responsive micelles are prepared by self-assembly of amphiphilic triblock copolymers composed of a poly(l-lactide) (PLLA) central block and two poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (P(NIPAAm-co-DMAAm)) lateral blocks, using solvent evaporation/film hydration method. The resulting micelles exhibit very low critical micelle concentration (CMC) which slightly increases from 0.0113 to 0.0144 mg mL(-1) while the DMAAm content increases from 31.8 to 39.4% in the hydrophilic P(NIPAAm-co-DMAAm) blocks. The lower critical solution temperatures (LCST) of copolymers varies from 44.7 °C to 49.4 °C in water as determined by UV spectroscopy, and decreases by ca. 3.5 °C in phosphate buffered saline (PBS). Curcumin was encapsulated in the core of micelles. High drug loading up to 20% is obtained with high loading efficiency (>94%). The LCST of drug loaded micelles ranges from 37.5 to 38.0 °C with drug loading increasing from 6.0 to 20%. The micelles with diameters ranging from 47.5 to 88.2 nm remain stable over one month due to the negative surface charge as determined by zeta potential (-12.4 to -18.7 mV). Drug release studies were performed under in vitro conditions at 37 °C and 40 °C, i.e. below and above the LCST, respectively. Initial burst release is observed in all cases, followed by a slower release. The release rate is higher at 40 °C than that at 37 °C due to thermo-responsive release across the LCST. On the other hand, micelles with lower drug loading exhibit higher release rate than those with higher drug loading, which is assigned to the solubility effect. Peppas' theory was applied to describe the release behaviors. Moreover, the in vitro cytotoxicity of copolymers was evaluated using MTT assay. The results show that the copolymers present good cytocompatibility. Therefore, the nano-scale size, low CMC, high drug loading and stability, as well as good biocompatibility indicate that these thermo-responsive triblock copolymer micelles

  2. Quasicrystalline long-range order in an ABC star block copolymer

    NASA Astrophysics Data System (ADS)

    Dotera, Tomonari

    2009-03-01

    We report the formation of a dodecagonal quasicrystal (DDQC) in a lattice Monte Carlo simulation of a star-shaped three component polymeric alloy. We have observed a series of Archimedean and quasicrystalline phases (4.8^2) ->(3^2.4.3.4) ->DDQC ->(4.6.12) with increase of one component of ABC star polymers. This phase behavior can be regarded as a transition from square tiling to triangle tiling via square-triangle tiling. The simulation is associated with the recent striking experimental manifestation of quasicrystalline order: A mesoscopic tiling pattern with twelvefold symmetry in a three-component star polymer system composed of polyisoprene, polystyrene, and poly (2-vinylpyridine). Since, the same kind of quasicrystalline structures have been found for metal alloys, chalcogenides, and liquid crystals, the present result confirms the universal nature of quasicrystalline long-range order over several hierarchical length scales. [4pt] T. Dotera and T. Gemma, Philos. Mag. 86, 1085 (2006).[0pt] T. Dotera, Phil. Mag. 88, 2245 (2008). [0pt] K. Hayashida, et al., Phys. Rev. Lett. 98, 195502 (2007).

  3. BLOCK COPOLYMER THIN FILMS: Physics and Applications1

    NASA Astrophysics Data System (ADS)

    Fasolka, Michael J.; Mayes, Anne M.

    2001-08-01

    A two-part review of research concerning block copolymer thin films is presented. The first section summarizes experimental and theoretical studies of the fundamental physics of these systems, concentrating upon the forces that govern film morphology. The role of film thickness and surface energetics on the morphology of compositionally symmetric, amorphous diblock copolymer films is emphasized, including considerations of boundary condition symmetry, so-called hybrid structures, and surface chemical expression. Discussions of compositionally asymmetric systems and emerging research areas, e.g., liquid-crystalline and A-B-C triblock systems, are also included. In the second section, technological applications of block copolymer films, e.g., as lithographic masks and photonic materials, are considered. Particular attention is paid to means by which microphase domain order and orientation can be controlled, including exploitation of thickness and surface effects, the application of external fields, and the use of patterned substrates.

  4. Mixed micelles of a PEO-PPO-PEO triblock copolymer (P123) and a nonionic surfactant (C12EO6) in water. a dynamic and static light scattering study.

    PubMed

    Schillén, Karin; Jansson, Jörgen; Löf, David; Costa, Telma

    2008-05-08

    The present article reports on static and dynamic light scattering (SLS and DLS) studies of aqueous solutions of the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) at temperatures between 25 and 45 degrees C. In water, P123 self-assembles into spherical micelles with a hydrodynamic radius of 10 nm, and at 40 degrees C, these micelles consist of 131 unimers. Addition of C12EO6 leads to an association of the surfactant molecules to the P123 micelles and mixed micelles are formed. The size and structure of the mixed micelles as well as interparticle interactions were studied by varying the surfactant-to-copolymer (C12EO6/P123) molar ratio. The novelty of this study consists of a composition-induced structural change of the mixed micelles at constant temperature. They gradually change from being spherical to polymer-like with increasing C12EO6 content. At low C12EO6/P123 molar ratios (below 12), the SLS measurements showed that the molar mass of the mixed micelles decreases with an increasing amount of C12EO6 in the micelles for all investigated temperatures. In this regime, the mixed micelles are spherical and the DLS measurements revealed a decrease in the hydrodynamic radius of the mixed micelles. An exception was found for C12EO6/P123 molar ratios between 2 and 3, where the mixed micelles become rodlike at 40 degrees C. This was the subject of a previous study and has hence not been investigated here. At high molar ratios (48 and above), the polymer-like micelles present a concentration-induced growth, similar to that observed in the pure C12EO6/water system.

  5. The Membrane-Active Tri-Block Copolymer Pluronic F-68 Profoundly Rescues Rat Hippocampal Neurons from Oxygen–Glucose Deprivation-Induced Death through Early Inhibition of Apoptosis

    PubMed Central

    Shelat, Phullara B.; Plant, Leigh D.; Wang, Janice C.; Lee, Elizabeth

    2013-01-01

    Pluronic F-68, an 80% hydrophilic member of the Pluronic family of polyethylene-polypropylene-polyethylene tri-block copolymers, protects non-neuronal cells from traumatic injuries and rescues hippocampal neurons from excitotoxic and oxidative insults. F-68 interacts directly with lipid membranes and restores membrane function after direct membrane damage. Here, we demonstrate the efficacy of Pluronic F-68 in rescuing rat hippocampal neurons from apoptosis after oxygen–glucose deprivation (OGD). OGD progressively decreased neuronal survival over 48 h in a severity-dependent manner, the majority of cell death occurring after 12 h after OGD. Administration of F-68 for 48 h after OGD rescued neurons from death in a dose-dependent manner. At its optimal concentration (30 μm), F-68 rescued all neurons that would have died after the first hour after OGD. This level of rescue persisted when F-68 administration was delayed 12 h after OGD. F-68 did not alter electrophysiological parameters controlling excitability, NMDA receptor-activated currents, or NMDA-induced increases in cytosolic calcium concentrations. However, F-68 treatment prevented phosphatidylserine externalization, caspase activation, loss of mitochondrial membrane potential, and BAX translocation to mitochondria, indicating that F-68 alters apoptotic mechanisms early in the intrinsic pathway of apoptosis. The profound neuronal rescue provided by F-68 after OGD and the high level of efficacy with delayed administration indicate that Pluronic copolymers may provide a novel, membrane-targeted approach to rescuing neurons after brain ischemia. The ability of membrane-active agents to block apoptosis suggests that membranes or their lipid components play prominent roles in injury-induced apoptosis. PMID:23884935

  6. Facile Synthesis of Novel Polyethylene-Based A-B-C Block Copolymers Containing Poly(methyl methacrylate) Using a Living Polymerization System.

    PubMed

    Song, Xiangyang; Ma, Qiong; Cai, Zhengguo; Tanaka, Ryo; Shiono, Takeshi; Grubbs, Robert B

    2016-02-01

    Ethylene-propylene-methyl methacrylate (MMA) and ethylene-hexene-MMA A-B-C block copolymers with high molecular weight (>100,000) are synthesized using fluorenylamide-ligated titanium complex activated by modified methylaluminoxane and 2,6-di-tert-butyl-4-methylphenol for the first time. After diblock copolymerization of olefin is conducted completely, MMA is added and activated by aluminum Lewis acid to promote anionic polymerization. The length of polyolefin and poly (methyl methacrylate) (PMMA) is controllable precisely by the change of the additive amount of olefin and polymerization time, respectively. A soft amorphous polypropylene or polyhexene segment is located between two hard segments of semicrystalline polyethylene and glassy PMMA blocks.

  7. Toward Anisotropic Hybrid Materials: Directional Crystallization of Amphiphilic Polyoxazoline-Based Triblock Terpolymers.

    PubMed

    Rudolph, Tobias; von der Lühe, Moritz; Hartlieb, Matthias; Norsic, Sebastien; Schubert, Ulrich S; Boisson, Christophe; D'Agosto, Franck; Schacher, Felix H

    2015-10-27

    We present the design and synthesis of a linear ABC triblock terpolymer for the bottom-up synthesis of anisotropic organic/inorganic hybrid materials: polyethylene-block-poly(2-(4-(tert-butoxycarbonyl)amino)butyl-2-oxazoline)-block-poly(2-iso-propyl-2-oxazoline) (PE-b-PBocAmOx-b-PiPrOx). The synthesis was realized via the covalent linkage of azide-functionalized polyethylene and alkyne functionalized poly(2-alkyl-2-oxazoline) (POx)-based diblock copolymers exploiting copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry. After purification of the resulting triblock terpolymer, the middle block was deprotected, resulting in a primary amine in the side chain. In the next step, solution self-assembly into core-shell-corona micelles in aqueous solution was investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Subsequent directional crystallization of the corona-forming block, poly(2-iso-propyl-2-oxazoline), led to the formation of anisotropic superstructures as demonstrated by electron microscopy (SEM and TEM). We present hypotheses concerning the aggregation mechanism as well as first promising results regarding the selective loading of individual domains within such anisotropic nanostructures with metal nanoparticles (Au, Fe3O4).

  8. Effects of Bile Salt Sodium Glycodeoxycholate on the Self-Assembly of PEO-PPO-PEO Triblock Copolymer P123 in Aqueous Solution.

    PubMed

    Bayati, Solmaz; Galantini, Luciano; Knudsen, Kenneth D; Schillén, Karin

    2015-12-22

    A comprehensive experimental study on the interaction between the PEO-PPO-PEO block copolymer P123 (EO20PO68EO20) and the anionic bile salt sodium glycodeoxycholate (NaGDC) in water has been performed. The work was aimed at investigating the suitability of using P123 as bile salt sequestrant beside the fundamental aspects of PEO-PPO-PEO block copolymer-bile salt interactions. Various experimental techniques including dynamic and static light scattering, small-angle X-ray scattering, and differential scanning calorimetry (DSC) were employed in combination with electrophoretic mobility measurements. The system was investigated at a constant P123 concentration of 1.74 mM and with varying bile salt concentrations up to approximately 250 mM NaGDC (or a molar ratio n(NaGDC)/n(P123) = 144). In the mixed P123-NaGDC solutions, the endothermic process related to the self-assembly of P123 was observed to gradually decrease in enthalpy and shift to higher temperatures upon progressive addition of NaGDC. To explain this effect, the formation of NaGDC micelles carrying partly dehydrated P123 unimers was proposed and translated into a stoichiometric model, which was able to fit the experimental DSC data. In the mixtures at low molar ratios, NaGDC monomers associated with the P123 micelle forming a charged "P123 micelle-NaGDC" complex with a dehydrated PPO core. These complexes disintegrated upon increasing NaGDC concentration to form small "NaGDC-P123" complexes visualized as bile salt micelles including one or a few P123 copolymer chains.

  9. Influence of electrolytes on the microenvironment of F127 triblock copolymer micelles: a solvation and rotational dynamics study of coumarin dyes.

    PubMed

    Kumbhakar, Manoj; Ganguly, Rajib

    2007-04-19

    Dynamic Stokes' shift and fluorescence anisotropy measurements of coumarin 153 (C153) and coumarin 151 (C151) as fluorescence probes have been carried out to understand the influence of electrolytes (NaCl and LiCl) on the hydration behavior of aqueous (ethylene oxide)100-(propylene oxide)70-(ethylene oxide)100 (EO100-PO70-EO100, F127) block copolymer micelles. A small blue shift in the fluorescence spectra of C153 has been observed in presence of electrolytes due to the dehydration of the oxyethylene chains in the PEO-PPO region, although fluorescence spectra of C151 remain unaltered. The close vicinity of bulk water for C151 probably negates the effect of dehydration in the PEO region. Fluorescence anisotropy measurements indicate a gradual increase in microviscosity with electrolyte concentrations. The partial collapse of copolymer blocks in the presence of electrolytes has been suggested as a reason for the increase in microviscosity along with the strong hydration of ions in the corona region. The interplay between the ion hydration and the mechanically trapped water content, and specific interaction of ions, such as complexation of Li+ ions with the copolymer block, is found to control solvation dynamics in the corona region. In addition to that, it has been established that Na+ ions reside deep into the corona region whereas Li+ ions prefer to reside closer to the surface. Owing to its higher lyotropicity, LiCl influences the corona hydration to a greater extent than NaCl and sets in micelle-micelle interaction above the 2 M LiCl concentration, as reflected in the saturation of solvation time constants. The formation of larger clusters of F127 micelles above 2 M LiCl has been confirmed by dynamic light scattering measurements; however, such cluster formation is not evident with NaCl.

  10. Mixing thermodynamics of block-random copolymers

    NASA Astrophysics Data System (ADS)

    Beckingham, Bryan Scott

    regular mixing prediction, XA-ArB = fB2 XA-B, thereby confirming the utility of this simple relationship in designing block copolymers with targeted interaction strengths using only these two common monomers. Thus, this fB 2 scaling is a useful "design rule" for tuning the interblock segregation strength in A-ArB (and B-ArB) block-random copolymers using styrene and isoprene as constituents. The reduction in XA-ArB over X A-B permits the synthesis of polymers having much larger M and domain spacing d while maintaining a thermally-accessible ODT; measured domain spacings are found to closely follow the expected scaling, d ~ X1/6M2/3. The decoupling of the order-disorder transition temperature from polymer molecular weight---and thereby interdomain spacing---provides an additional means to alter the polymer structure-property dynamic through synthesis, in addition to more common molecular variations, such as changes in block sequence, length of the blocks, and number of blocks. A similar examination of the interaction energy densities between E (hydrogenated Bd) and both hydrogenated derivatives of random copolymers of styrene and isoprene (SrhI and VCHrhI) found large positive deviations from regular mixing in the E-SrhI system and smaller but significant negative deviations in the E-VCHrhI system. Nevertheless, a ternary mixing model ("copolymer equation"), using independently-determined values of the three component interaction energy densities, is found to provide a good representation of the experimental interaction energies. Random copolymer blocks are also incorporated into linear A-B-C triblock copolymers, and the extent of block microphase separation in nonfrustrated E-hI-ArhI, where A is either S or VCH, triblock copolymers forming a "three-domain, four-layer" lamellar morphology is examined. Specifically, the extent of separation between the B and C blocks is probed, for the case where the B and C blocks are sufficiently compatible that they would not be

  11. Integrated method of thermosensitive triblock copolymer-salt aqueous two phase extraction and dialysis membrane separation for purification of lycium barbarum polysaccharide.

    PubMed

    Wang, Yun; Hu, Xiaowei; Han, Juan; Ni, Liang; Tang, Xu; Hu, Yutao; Chen, Tong

    2016-03-01

    A polymer-salt aqueous two-phase system (ATPS) consisting of thermosensitive copolymer ethylene-oxide-b-propylene-oxide-b-ethylene-oxide (EOPOEO) and NaH2PO4 was employed in deproteinization for lycium barbarum polysaccharide (LBP). The effects of salt type and concentration, EOPOEO concentration, amount of crude LBP solution and temperature were studied. In the primary extraction process, LBP was preferentially partitioned to the bottom (salt-rich) phase with high recovery ratio of 96.3%, while 94.4% of impurity protein was removed to the top (EOPOEO-rich) phase. Moreover, the majority of pigments could be discarded to top phase. After phase-separation, the LBP in the bottom phase was further purified by dialysis membrane to remove salt and other small molecular impurities. The purity of LBP was enhanced to 64%. Additionally, the FT-IR spectrum was used to identify LBP. EOPOEO was recovered by a temperature-induced separation, and reused in a new ATPS. An ideal extraction and recycle result were achieved.

  12. Asymmetric block copolymers for supramolecular templating of inorganic nanospace materials.

    PubMed

    Bastakoti, Bishnu Prasad; Li, Yunqi; Kimura, Tatsuo; Yamauchi, Yusuke

    2015-05-06

    This review focuses on polymeric micelles consisting of asymmetric block copolymers as designed templates for several inorganic nanospace materials with a wide variety of compositions. The presence of chemically distinct domains of asymmetric triblock and diblock copolymers provide self-assemblies with more diverse morphological and functional features than those constructed by EOn POm EOn type symmetric triblock copolymers, thereby affording well-designed nanospace materials. This strategy can produce unprecedented nanospace materials, which are very difficult to prepare through other conventional organic templating approaches. Here, the recent development on the synthesis of inorganic nanospace materials are mainly focused on, such as hollow spheres, tubes, and porous oxides, using asymmetric triblock copolymers.

  13. pH-Responsive chimaeric pepsomes based on asymmetric poly(ethylene glycol)-b-poly(l-leucine)-b-poly(l-glutamic acid) triblock copolymer for efficient loading and active intracellular delivery of doxorubicin hydrochloride.

    PubMed

    Chen, Peipei; Qiu, Min; Deng, Chao; Meng, Fenghua; Zhang, Jian; Cheng, Ru; Zhong, Zhiyuan

    2015-04-13

    pH-Responsive chimaeric polypeptide-based polymersomes (refer to as pepsomes) were designed and developed from asymmetric poly(ethylene glycol)-b-poly(l-leucine)-b-poly(l-glutamic acid) (PEG-PLeu-PGA, PEG is longer than PGA) triblock copolymers for efficient encapsulation and triggered intracellular delivery of doxorubicin hydrochloride (DOX·HCl). PEG-PLeu-PGA was conveniently prepared by sequential ring-opening polymerization of l-leucine N-carboxyanhydride and γ-benzyl-l-glutamate N-carboxyanhydride using PEG-NH2 as an initiator followed by deprotection. Pepsomes formed from PEG-PLeu-PGA had unimodal distribution and small sizes of 64-71 nm depending on PLeu block lengths. Interestingly, these chimaeric pepsomes while stable at pH 7.4 were quickly disrupted at pH 5.0, likely due to alternation of ionization state of the carboxylic groups in PGA that shifts PGA blocks from hydrophilic and random coil structure into hydrophobic and α-helical structure. DOX·HCl could be actively loaded into the watery core of pepsomes with a high loading efficiency. Remarkably, the in vitro release studies revealed that release of DOX·HCl was highly dependent on pH, in which about 24.0% and 75.7% of drug was released at pH 7.4 and 5.0, respectively, at 37 °C in 24 h. MTT assays demonstrated that DOX·HCl-loaded pepsomes exhibited high antitumor activity, similar to free DOX·HCl in RAW 264.7 cells. Moreover, they were also potent toward drug-resistant MCF-7 cancer cells (MCF-7/ADR). Confocal microscopy studies showed that DOX·HCl-loaded pepsomes delivered and released drug into the cell nuclei of MCF-7/ADR cells in 4 h, while little DOX·HCl fluorescence was observed in MCF-7/ADR cells treated with free drug under otherwise the same conditions. These chimaeric pepsomes with facile synthesis, efficient drug loading, and pH-triggered drug release behavior are an attractive alternative to liposomes for targeted cancer chemotherapy.

  14. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  15. Gel phase formation in dilute triblock copolyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  16. Gel phase formation in dilute triblock copolyelectrolyte complexes

    PubMed Central

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-01-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics. PMID:28230046

  17. Triblock Terpolymers by Simultaneous Tandem Block Polymerization (STBP).

    PubMed

    Freudensprung, Ines; Klapper, Markus; Müllen, Klaus

    2016-02-01

    A route of synthesizing triblock terpolymers in a one-pot, "one-step" polymerization approach is presented. The combination of two distinct polymerization techniques through orthogonal catalyst/initiator functionalities attached to a polymeric linker furnishes novel pathways to ABC-terpolymers. Both polymerizations have to be compatible regarding mechanisms, chosen monomers, and solvents. Here, an α,ω-heterobifunctional poly(ethylene glycol) serves as poly-meric catalyst/initiator to obtain triblock terpolymers of poly(norbornene)-b-poly(ethylene glycol)-b-poly(L-lactic acid) PNB-PEG-PLLA via simultaneous ring opening metathesis poly-merization and ring opening polymerization in a fast one-pot polymerization. Structural characterization of the polymers is provided via (1)H-, DOSY-, and (1)H,(1)H-COSY-NMR, while solution and thin film self-assembly are investigated by dynamic light scattering and atomic force microscopy.

  18. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery.

    PubMed

    Yang, You Qiang; Zhao, Bin; Li, Zhen Dong; Lin, Wen Jing; Zhang, Can Yang; Guo, Xin Dong; Wang, Ju Fang; Zhang, Li Juan

    2013-08-01

    A series of amphiphilic 4- and 6-armed star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (4/6AS-PCL-b-PDEAEMA-b-PPEGMA) were developed by a combination of ring opening polymerization and continuous activators regenerated by electron transfer atom transfer radical polymerization. The critical micelle concentration values of the star co-polymers in aqueous solution were extremely low (2.2-4.0mgl(-1)), depending on the architecture of the co-polymers. The self-assembled blank and doxorubicin (DOX)-loaded three layer micelles were spherical in shape with an average size of 60-220nm determined by scanning electron microscopy and dynamic light scattering. The in vitro release behavior of DOX from the three layer micelles exhibited pH-dependent properties. The DOX release rate was significantly accelerated by decreasing the pH from 7.4 to 5.0, due to swelling of the micelles at lower pH values caused by the protonation of tertiary amine groups in DEAEMA in the middle layer of the micelles. The in vitro cytotoxicity of DOX-loaded micelles to HepG2 cells suggested that the 4/6AS-PCL-b-PDEAEMA-b-PPEGMA micelles could provide equivalent or even enhanced anticancer activity and bioavailability of DOX and thus a lower dosage is sufficient for the same therapeutic efficacy. The results demonstrate that the pH-sensitive multilayer micelles could have great potential application in delivering hydrophobic anticancer drugs for improved cancer therapy.

  19. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    PubMed Central

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  20. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    PubMed

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  1. Self-assembly of the triblock copolymer 17R4 poly(propylene oxide)₁₄-poly(ethylene oxide)₂₄-poly(propylene oxide)₁₄ in D₂O.

    PubMed

    Kumi, Bryna C; Hammouda, Boualem; Greer, Sandra C

    2014-11-15

    Our recent investigation of the three regions of the phase diagram of 17R4 in D2O (Huff et al., 2011) has led us to study the copolymer structure in this system by small-angle neutron scattering, rheometry, and dynamic light scattering. In region I at low temperatures and copolymer concentrations (0-30°C, 0.1-0.2 mass fraction ω), the cloudy solution contains the copolymer in large clusters made of hydrophobic PPO-rich "knots" bridged by dissolved hydrophilic PEO chains. These clusters vanish in region I at the lower temperatures and concentrations (below 39°C and ω=0.01). In region I over long times (weeks) at 25°C, a white liquid/gel film forms at the air-D2O interface. In region II at temperatures above the micellization line (above about 35°C, at ω=0.22) the large clusters dissipate and unimers coexist with "flower micelles," where the PPO blocks are the centers of the micelles and the PEO blocks loop into the solvent. In region III at still higher temperatures (above about 40°C at ω=0.2), the solution separates into coexisting liquid phases, where the upper phase of higher copolymer concentration is in region II, and the lower phase is in region I. The concentrated upper phase may contain micelles so crowded as to form a network.

  2. Complexation of AB+, AB+C, ACB+, and A(B+-stat-C) block copolymer micelles with poly(styrene sulfonate) as models for tunable gene delivery vectors

    NASA Astrophysics Data System (ADS)

    Laaser, Jennifer; Jiang, Yaming; Lohmann, Elise; Reineke, Theresa; Lodge, Timothy

    We investigate the complexation of poly(styrene sulfonate) with micelles with mixed cationic/hydrophilic coronas as models for tunable gene delivery vectors. The micelles are self-assembled from AB+, AB+C, ACB+, and A(B+-stat-C) block polymer architectures, where the hydrophobic A blocks (poly(styrene)) form the micelle cores, and the cationic B blocks (poly(dimethylamino ethyl methacrylate)) and hydrophilic, nonionic C blocks (poly(poly(ethylene glycol) methyl ether methacrylate)) form the coronas. We find that hydrophilic units do not change the colloidal stability of the complexes, and complexes based on all four micelle architectures form broad, multimodal size distributions. While complexes based on the AB+, AB+C, and ACB+polymer architectures are kinetically trapped at low ionic strength, however, those based on the A(B+-stat-C) architecture rapidly rearrange into single-micelle complexes when the linear polyanion is in excess. This suggests that the randomly-placed hydrophilic units break up the ion pairing between the cationic and anionic chains and promote formation of over-charged complexes. Design of the micelle architecture may thus provide a powerful way control the structure and stability of micelle-polyelectrolyte complexes for gene delivery applications.

  3. Multiblock copolymers exhibiting spatio-temporal structure with autonomous viscosity oscillation

    PubMed Central

    Onoda, Michika; Ueki, Takeshi; Shibayama, Mitsuhiro; Yoshida, Ryo

    2015-01-01

    Here we report an ABA triblock copolymer that can express microscopic autonomous formation and break-up of aggregates under constant condition to generate macroscopic viscoelastic self-oscillation of the solution. The ABA triblock copolymer is designed to have hydrophilic B segment and self-oscillating A segment at the both sides by RAFT copolymerization. In the A segment, a metal catalyst of chemical oscillatory reaction, i.e., the Belousov-Zhabotinsky (BZ) reaction, is introduced as a chemomechanical transducer to change the aggregation state of the polymer depending on the redox states. Time-resolved DLS measurements of the ABA triblock copolymer confirm the presence of a transitional network structure of micelle aggregations in the reduced state and a unimer structure in the oxidized state. This autonomous oscillation of a well-designed triblock copolymer enables dynamic biomimetic softmaterials with spatio-temporal structure. PMID:26511660

  4. Multiblock copolymers exhibiting spatio-temporal structure with autonomous viscosity oscillation

    NASA Astrophysics Data System (ADS)

    Onoda, Michika; Ueki, Takeshi; Shibayama, Mitsuhiro; Yoshida, Ryo

    2015-10-01

    Here we report an ABA triblock copolymer that can express microscopic autonomous formation and break-up of aggregates under constant condition to generate macroscopic viscoelastic self-oscillation of the solution. The ABA triblock copolymer is designed to have hydrophilic B segment and self-oscillating A segment at the both sides by RAFT copolymerization. In the A segment, a metal catalyst of chemical oscillatory reaction, i.e., the Belousov-Zhabotinsky (BZ) reaction, is introduced as a chemomechanical transducer to change the aggregation state of the polymer depending on the redox states. Time-resolved DLS measurements of the ABA triblock copolymer confirm the presence of a transitional network structure of micelle aggregations in the reduced state and a unimer structure in the oxidized state. This autonomous oscillation of a well-designed triblock copolymer enables dynamic biomimetic softmaterials with spatio-temporal structure.

  5. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE PAGES

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; ...

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  6. Controlling Domain Orientations in Thin Films of AB and ABA Block Copolymers

    SciTech Connect

    Vu, Thai; Mahadevapuram, Nikhila; Perera, Ginusha M.; Stein, Gila E.

    2012-03-15

    Domain orientations in thin films of lamellar copolymers are evaluated as a function of copolymer architecture, film thickness, and processing conditions. Two copolymer architectures are considered: An AB diblock of poly(styrene-b-methyl methacrylate) and an ABA triblock of poly(methyl methacrylate-b-styrene-b-methyl methacrylate). All films are cast on substrates that are energetically neutral with respect to the copolymer constituents. Film structures are evaluated with optical microscopy, atomic force microscopy, and grazing-incidence small-angle X-ray scattering. For AB diblock copolymers, the domain orientations are very sensitive to film thickness, annealing temperature, and imperfections in the 'neutral' substrate coating: Diblock domains are oriented perpendicular to the substrate when annealing temperature is elevated ({>=} 220 C) and defects in the substrate coating are minimized; otherwise, parallel or mixed parallel/perpendicular domain orientations are detected for most film thicknesses. For ABA triblock copolymers, the perpendicular domain orientation is stable for all the film thicknesses and processing conditions that were studied. The orientations of diblock and triblock copolymers are consistent with recent works that consider architectural effects when calculating the copolymer surface tension (Macromolecules 2006, 39, 9346 and Macromolecules 2010, 43, 1671). Significantly, the data demonstrate that triblocks are easier to process for applications in nanopatterning - in particular, when high-aspect-ratio nanostructures are required. However, both diblock and triblock films contain a high density of 'tilted' or bent domains, and these kinetically trapped defects should be minimized for most patterning applications.

  7. Mechanistic analysis of Zein nanoparticles/PLGA triblock in situ forming implants for glimepiride

    PubMed Central

    Ahmed, Osama Abdelhakim Aly; Zidan, Ahmed Samir; Khayat, Maan

    2016-01-01

    Objectives The study aims at applying pharmaceutical nanotechnology and D-optimal fractional factorial design to screen and optimize the high-risk variables affecting the performance of a complex drug delivery system consisting of glimepiride–Zein nanoparticles and inclusion of the optimized formula with thermoresponsive triblock copolymers in in situ gel. Methods Sixteen nanoparticle formulations were prepared by liquid–liquid phase separation method according to the D-optimal fractional factorial design encompassing five variables at two levels. The responses investigated were glimepiride entrapment capacity (EC), particle size and size distribution, zeta potential, and in vitro drug release from the prepared nanoparticles. Furthermore, the feasibility of embedding the optimized Zein-based glimepiride nanoparticles within thermoresponsive triblock copolymers poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) in in situ gel was evaluated for controlling glimepiride release rate. Results Through the systematic optimization phase, improvement of glimepiride EC of 33.6%, nanoparticle size of 120.9 nm with a skewness value of 0.2, zeta potential of 11.1 mV, and sustained release features of 3.3% and 17.3% drug released after 2 and 24 hours, respectively, were obtained. These desirability functions were obtained at Zein and glimepiride loadings of 50 and 75 mg, respectively, utilizing didodecyldimethylammonium bromide as a stabilizer at 0.1% and 90% ethanol as a common solvent. Moreover, incorporating this optimized formulation in triblock copolymers-based in situ gel demonstrated pseudoplastic behavior with reduction of drug release rate as the concentration of polymer increased. Conclusion This approach to control the release of glimepiride using Zein nanoparticles/triblock copolymers-based in situ gel forming intramuscular implants could be useful for improving diabetes treatment effectiveness. PMID:26893561

  8. Asymmetric Membranes from Two Chemically Distinct Triblock Terpolymers Blended during Standard Membrane Fabrication.

    PubMed

    Li, Yuk Mun; Srinivasan, Divya; Vaidya, Parth; Gu, Yibei; Wiesner, Ulrich

    2016-10-01

    Deviating from the traditional formation of block copolymer derived isoporous membranes from one block copolymer chemistry, here asymmetric membranes with isoporous surface structure are derived from two chemically distinct block copolymers blended during standard membrane fabrication. As a first proof of principle, the fabrication of asymmetric membranes is reported, which are blended from two chemically distinct triblock terpolymers, poly(isoprene-b-styrene-b-(4-vinyl)pyridine) (ISV) and poly(isoprene-b-styrene-b-(dimethylamino)ethyl methacrylate) (ISA), differing in the pH-responsive hydrophilic segment. Using block copolymer self-assembly and nonsolvent induced phase separation process, pure and blended membranes are prepared by varying weight ratios of ISV to ISA. Pure and blended membranes exhibit a thin, selective layer of pores above a macroporous substructure. Observed permeabilities at varying pH values of blended membranes depend on relative triblock terpolymer composition. These results open a new direction for membrane fabrication through the use of mixtures of chemically distinct block copolymers enabling the tailoring of membrane surface chemistries and functionalities.

  9. Strategies for controlling intra- and intermicellar packing in block copolymer solutions: illustrating the flexibility of the self-assembly toolbox.

    PubMed

    Lodge, Timothy L; Bang, Joona; Li, Zhibo; Hillmyer, Marc A; Talmon, Yeshayhu

    2005-01-01

    Block copolymers constitute a class of self-assembling macromolecules that offer remarkable flexibility for controlling nanostructure, both in discrete objects and in bulk materials. Block copolymer micelles may be formed with multiple compartments by judicious choice of ingredients in an ABC triblock copolymer. For example, we have shown that a poly(ethylene oxide-b-styrene-b-fluorinated butadiene) triblock assembles in dilute aqueous solution into large, flat core/shell/corona disks, with the fluorine containing block forming the core. In contrast, the unfluorinated precursor generates large spherical micelles. A numerical analysis suggests that the disk-like motif is characteristic of the so-called superstrong segregation regime, whereby the interfacial tension becomes so large as to overwhelm the conformational entropy of the core blocks. For ABC miktoarm stars comprising polyethylene oxide, polyethylethylene, and polyhexafluoropropylene oxide arms, a much richer variety of micellar structures are observed. Prominent amongst these is a "segmented worm", in which alternating layers (5-7 nm thick) of hydrocarbon and fluorocarbon blocks form disks (6-10 nm in radius) that stack into cylindrical aggregates. The disk radii suggest almost fully stretched blocks, again consistent with the superstrong segregation regime. These structures are rationalized in terms of the constraints imposed by the star architecture, combined with the extremely strong interfacial tensions. In contrast, for lipids, surfactants, and aqueous diblock copolymers, increasing the interfacial tension can induce a transition from spheres to cylinders to flat bilayers; the disk-like motif is not usually seen. Interestingly, in aqueous diblocks both worm-like micelles and vesicles have been well-documented, whereas in "simple" organic systems they have not. We have shown that by suitable choice of block composition and solvent selectivity, the curvature sequence sphere/cylinder/vesicle can also be

  10. Bioinspired catecholic copolymers for antifouling surface coatings.

    PubMed

    Cho, Joon Hee; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2013-05-01

    We report here a synthetic approach to prepare poly(methyl methacrylate)-polydopamine diblock (PMMA-PDA) and triblock (PDA-PMMA-PDA) copolymers combining mussel-inspired catecholic oxidative chemistry and atom transfer radical polymerization (ATRP). These copolymers display very good solubility in a range of organic solvents and also a broad band photo absorbance that increases with increasing PDA content in the copolymer. Spin-cast thin films of the copolymer were stable in water and showed a sharp reduction (by up to 50%) in protein adsorption compared to those of neat PMMA. Also the peak decomposition temperature of the copolymers was up to 43°C higher than neat PMMA. The enhanced solvent processability, thermal stability and low protein adsorption characteristics of this copolymer makes it attractive for variety of applications including antifouling coatings on large surfaces such as ship hulls, buoys, and wave energy converters.

  11. Thermo Stability of Highly Sulfonated Poly(Styrene-Isobutylene-Styrene) Block Copolymers: Effects of Sulfonation and Counter-Ion Substitution

    DTIC Science & Technology

    2008-01-01

    poly(styrene-isobutylene- styrene) (SIBS) tri-block co-polymer (2, 3). The major component of the tri-block co-polymer is polyisobutylene ( PIB ...which comprises 70% by weight of the base polymer. The PIB gives the material low temperature flexibility as well as excellent barrier properties. The... PIB matrix (4). The fraction of PS controls the resultant morphology, which can be for example cylinders, lamellae, spheres, or a complex mixture

  12. Baroplastic Block copolymers

    NASA Astrophysics Data System (ADS)

    Hewlett, Sheldon A.

    2005-03-01

    Block copolymers with rubbery and glassy components have been observed to have pressure induced miscibility. These microphase-separated materials, termed baroplastics, were able to flow and be processed at temperatures below the Tg of the glassy component by simple compression molding and extrusion. Diblock and triblock copolymers of polystyrene and poly(butyl acrylate) or poly(2-ethyl hexyl acrylate) were synthesized by atom transfer radical polymerization (ATRP) and processed at room temperature into well defined transparent objects. SAXS and SANS measurements demonstrated partial mixing between components as a result of pressure during processing. DSC results also show the presence of distinct domains even after several processing cycles. Their mechanical properties after processing were tested and compared with commercial thermoplastic elastomers.

  13. Effect of nanoscale morphology on selective ethanol transport through block copolymer membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the effect of block copolymer domain size on transport of liquid mixtures through the membranes by presenting pervaporation data of an 8 wt% ethanol/water mixture through A-B-A and B-A-B triblock copolymer membranes. The A-block was chosen to facilitate ethanol transport while the B-blo...

  14. Plastic deformation of triblock elastomers by molecular simulation

    NASA Astrophysics Data System (ADS)

    Parker, Amanda; Rottler, Jörg

    2015-03-01

    The mechanical properties of thermoplastic elastomers (TPE) can be greatly enhanced by exploiting the complex morphology of triblock copolymers. A common strategy consists of confining chain ends into hard glassy regions that effectively crosslink a soft rubbery phase. We present molecular dynamics simulations that provide insight into key microscopic behaviour of the copolymer chains during deformation. First, a coarse-grained polymer model with an ABA type configuration and soft interactions is employed to achieve equilibrated spherical morphologies. Our model TPEs contain at least 30 spheres in order to ensure configurational averaging. Elastoplastic deformation with uniaxial extension or volume conserving shear is then studied after hard excluded volume interactions have been reintroduced. We consider trends of stress-strain curves for different chain lengths, and compare to equivalent homopolymeric systems. During deformation we simultaneously track the evolution of the number and shape of the minority spheres, the proportion of chains bridging from one sphere to another, as well as local plastic deformation. The simulations reveal strong differences between deformation modes, the evolution of sphere morphology and chain anisotropy.

  15. Nanostructured Block Copolymer Coatings for Biofouling Inhibition

    DTIC Science & Technology

    2015-06-30

    despite similar contact angles) indicating that the amphiphilic nature and patterning of the coating was deterring spore settlement . The two PS-P2VP-PEO...involved settlement and release of algal spores/sporelings, barnacle cyprids/adults, and tubeworm adults, against these phase segregated block...Our previous studies investigated the antifouling properties of a triblock copolymer system PS-b-P2VP-b- PEO in the field in Florida. No settlement of

  16. Temperature effects on the stability of gold nanoparticles in the presence of a cationic thermoresponsive copolymer

    NASA Astrophysics Data System (ADS)

    Pamies, Ramón; Zhu, Kaizheng; Kjøniksen, Anna-Lena; Nyström, Bo

    2016-11-01

    New hybrid complexes composed by a thermoresponsive copolymer and gold nanoparticles (Rh = 22 nm) have been characterized by dynamic light scattering (DLS) and UV-visible spectroscopy. A cationic thermoresponsive triblock copolymer, methoxy-poly(ethylene glycol)- block-poly( N-isopropylacrylamide)- block-poly((3-acrylamidopropyl) trimethyl ammonium chloride), abbreviated as MPEG- b-PNIPAAM- b-PN(+), has been synthesized by atom transfer radical polymerization (ATRP). We have evaluated the thermal response at low concentrations of this triblock copolymer in bulk solution and the effect of concentration on the interaction between this thermosensitive copolymer and the gold nanoparticles (AuNPs) to form new hybrid complexes (60-1000 nm) at different temperatures. The thermosensitive nature of the copolymer causes both aggregation and contraction of the aggregates at elevated temperatures. The AuNPs were found to be separately embedded in the hybrid complexes. Interestingly, the AuNPs prevent macroscopic phase separation of the system at high temperatures.

  17. Process-Accessible States of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sun, De-Wen; Müller, Marcus

    2017-02-01

    Process-directed self-assembly of block copolymers refers to thermodynamic processes that reproducibly direct the kinetics of structure formation from a starting, unstable state into a selected, metastable mesostructure. We investigate the kinetics of self-assembly of linear A C B triblock copolymers after a rapid transformation of the middle C block from B to A . This prototypical process (e.g., photochemical transformation) converts the initial, equilibrium mesophase of the A B B copolymer into a well-defined but unstable, starting state of the A A B copolymer. The spontaneous structure formation that ensues from this unstable state becomes trapped in a metastable mesostructure, and we systematically explore which metastable mesostructures can be fabricated by varying the block copolymer composition of the initial and final states. In addition to the equilibrium mesophases of linear A B diblock copolymers, this diagram of process-accessible states includes 7 metastable periodic mesostructures, inter alia, Schoen's F-RD periodic minimal surface. Generally, we observe that the final, metastable mesostructure of the A A B copolymer possesses the same symmetry as the initial, equilibrium mesophase of the A B B copolymer.

  18. Process-Accessible States of Block Copolymers.

    PubMed

    Sun, De-Wen; Müller, Marcus

    2017-02-10

    Process-directed self-assembly of block copolymers refers to thermodynamic processes that reproducibly direct the kinetics of structure formation from a starting, unstable state into a selected, metastable mesostructure. We investigate the kinetics of self-assembly of linear ACB triblock copolymers after a rapid transformation of the middle C block from B to A. This prototypical process (e.g., photochemical transformation) converts the initial, equilibrium mesophase of the ABB copolymer into a well-defined but unstable, starting state of the AAB copolymer. The spontaneous structure formation that ensues from this unstable state becomes trapped in a metastable mesostructure, and we systematically explore which metastable mesostructures can be fabricated by varying the block copolymer composition of the initial and final states. In addition to the equilibrium mesophases of linear AB diblock copolymers, this diagram of process-accessible states includes 7 metastable periodic mesostructures, inter alia, Schoen's F-RD periodic minimal surface. Generally, we observe that the final, metastable mesostructure of the AAB copolymer possesses the same symmetry as the initial, equilibrium mesophase of the ABB copolymer.

  19. Multicompartment Core Micelles of Triblock Terpolymers in Organic Media

    SciTech Connect

    Schacher, Felix; Walther, Andreas; Ruppel, Markus A; Drechsler, Markus; Muller, Axel

    2009-01-01

    The formation of multicompartment micelles featuring a spheres on sphere core morphology in acetone as a selective solvent is presented. The polymers investigated are ABC triblock terpolymers, polybutadieneb-poly(2-vinyl pyridine)-b-poly(tert-butyl methacrylate) (BVT), which were synthesized via living sequential anionic polymerization in THF. Two polymers with different block lengths of the methacrylate moiety were studied with respect to the formation of multicompartmental aggregates. The micelles were analyzed by static and dynamic light scattering as well as by transmission electron microscopy. Cross-linking of the polybutadiene compartment could be accomplished via two different methods, cold vulcanization and with photopolymerization after the addition of a multifunctional acrylate. In both cases, the multicompartmental character of the micellar core is fully preserved, and the micelles could be transformed into core-stabilized nanoparticles. The successful cross-linking of the polybutadiene core is indicated by 1H NMR and by the transfer of the aggregates into nonselective solvents such as THF or dioxane.

  20. Light-emitting block copolymers composition, process and use

    DOEpatents

    Ferraris, John P.; Gutierrez, Jose J.

    2006-11-14

    Generally, and in one form, the present invention is a composition of light-emitting block copolymer. In another form, the present invention is a process producing a light-emitting block copolymers that intends polymerizing a first di(halo-methyl) aromatic monomer compound in the presence of an anionic initiator and a base to form a polymer and contacting a second di(halo-methyl) aromatic monomer compound with the polymer to form a homopolymer or block copolymer wherein the block copolymer is a diblock, triblock, or star polymer. In yet another form, the present invention is an electroluminescent device comprising a light-emitting block copolymer, wherein the electroluminescent device is to be used in the manufacturing of optical and electrical devices.

  1. ABC transporters: bacterial exporters.

    PubMed Central

    Fath, M J; Kolter, R

    1993-01-01

    The ABC transporters (also called traffic ATPases) make up a large superfamily of proteins which share a common function and a common ATP-binding domain. ABC transporters are classified into three major groups: bacterial importers (the periplasmic permeases), eukaryotic transporters, and bacterial exporters. We present a comprehensive review of the bacterial ABC exporter group, which currently includes over 40 systems. The bacterial ABC exporter systems are functionally subdivided on the basis of the type of substrate that each translocates. We describe three main groups: protein exporters, peptide exporters, and systems that transport nonprotein substrates. Prototype exporters from each group are described in detail to illustrate our current understanding of this protein family. The prototype systems include the alpha-hemolysin, colicin V, and capsular polysaccharide exporters from Escherichia coli, the protease exporter from Erwinia chrysanthemi, and the glucan exporters from Agrobacterium tumefaciens and Rhizobium meliloti. Phylogenetic analysis of the ATP-binding domains from 29 bacterial ABC exporters indicates that the bacterial ABC exporters can be divided into two primary branches. One branch contains the transport systems where the ATP-binding domain and the membrane-spanning domain are present on the same polypeptide, and the other branch contains the systems where these domains are found on separate polypeptides. Differences in substrate specificity do not correlate with evolutionary relatedness. A complete survey of the known and putative bacterial ABC exporters is included at the end of the review. PMID:8302219

  2. Toward Strong Thermoplastic Elastomers with Asymmetric Miktoarm Block Copolymer Architectures

    DTIC Science & Technology

    2014-03-05

    Road, Berkeley, California 94720, United States *S Supporting Information ABSTRACT: Thermoplastic elastomers ( TPEs ) are designed by embedding discrete...glassy or semicrystalline domains in an elastomeric matrix. Typical styrenic-based amorphous TPEs are made of linear ABA-type triblock copolymers...are a dominant category in the family of commercial thermoplastic elastomers ( TPEs ). Typical examples are polystyrene−poly(butadiene)−polystyrene (SBS

  3. ABA and ABC type thermoplastic elastomer toughening of epoxy matrices and its effect on carbon fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Pitchiaya, Gomatheeshwar

    Epoxy-matrices have high modulus, strength, excellent creep resistance, but lacks ductility. One approach to improve the mechanical toughness is the addition of thermoplastic elastomers (TPEs). The TPEs investigated here are triblock copolymers of styrene-butadiene-methyl methacrylate (SBM) and methylmethacrylate-butylacrylate-methylmethacrylate (MAM) of the ABC and ABA type, respectively. The effect of concentration (1-12.5 wt %) of these TPEs on a diglycidyl ether of bisphenol-A (DGEBA) epoxy cured with metaphenylenediamine (mPDA), has been investigated. The TPE-DGEBA epoxies were characterized by TGA, DMA, SEM and impact. The flexural modulus, flexural strength and thermal resistance remained unaffected up to 5 wt% loading of TPEs, and exhibited less than 10% decrease at higher weight percent. T g was unaffected for all concentrations. Fracture toughness was improved 250% and up to 375% (when non- stoichiometric amount of curing agent was used) with TPE addition to epoxy/mPDA matrix. A SBM(1phr)EPON system was chosen to be the matrix of choice for a fiber reinforced composite system with a 4wt% aromatic epoxy sizing on a AS4 (UV-treated) carbon fiber. The 0° and 90° flexural modulus and strength of a SBM modified system was compared with the neat and their fracture surfaces were analyzed. A 89% increase in flexural strength was observed in a 90° flexural test for the modified system when compared with the neat. Novel sizing agents were also developed to enhance interfacial shear strength (IFSS) and the fiber-matrix adhesion and their birefringence pattern were analyzed.

  4. Junction-Controlled Elasticity of Single-Walled Carbon Nanotube Dispersions in Acrylic Copolymer Gels and Solutions

    SciTech Connect

    Schoch, Andrew B.; Shull, Kenneth R.; Brinson, L. Catherine

    2008-08-26

    Oscillatory shear rheometry is used to study the mechanical response of single-walled carbon nanotubes dispersed in solutions of acrylic diblock or triblock copolymers in 2-ethyl-1-hexanol. Thermal transitions in the copolymer solutions provide a route for the easy processing of these composite materials, with excellent dispersion of the nanotubes as verified by near-infrared photoluminescence spectroscopy. The nanotube dispersions form elastic networks with properties that are controlled by the junction points between nanotubes, featuring a temperature-dependent elastic response that is controlled by the dynamic properties of the matrix copolymer solution. The data are consistent with the formation of micelle-like aggregates around the nanotubes. At low temperatures the core-forming poly(methyl methacrylate) blocks are glassy, and the overall mechanical response of the composite does not evolve with time. At higher temperatures the enhanced mobility of the core-forming blocks enables the junctions to achieve more intimate nanotube-nanotube contact, and the composite modulus increases with time. These aging effects are observed in both diblock and triblock copolymer solutions but are partially reversed in the triblock solutions by cooling through the gel transition of the triblock copolymer. This result is attributed to the generation of internal stresses during gelation and the ability of these stresses to break or weaken the nanotube junctions.

  5. Acrylic AB and ABA block copolymers based on poly(2-ethylhexyl acrylate) (PEHA) and poly(methyl methacrylate) (PMMA) via ATRP.

    PubMed

    Haloi, Dhruba J; Ata, Souvik; Singha, Nikhil K; Jehnichen, Dieter; Voit, Brigitte

    2012-08-01

    Acrylic block copolymers have several advantages over conventional styrenic block copolymers, because of the presence of a saturated backbone and polar pendant groups. This investigation reports the preparation and characterization of di- and triblock copolymers (AB and ABA types) of 2-ethylhexyl acrylate (EHA) and methyl methacrylate (MMA) via atom transfer radical polymerization (ATRP). A series of block copolymers, PEHA-block-PMMA(AB diblock) and PMMA-block-PEHA-block-PMMA(ABA triblock) were prepared via ATRP at 90 °C using CuBr as catalyst in combination with N,N,N',N″,N″-pentamethyl diethylenetriamine (PMDETA) as ligand and acetone as additive. The chemical structure of the macroinitiators and molar composition of block copolymers were characterized by (1)H NMR analysis, and molecular weights of the polymers were analyzed by GPC analysis. DSC analysis showed two glass transition temperatures (T(g)), indicating formation of two domains, which was corroborated by AFM analysis. Small-angle X-ray scattering (SAXS) analysis of AB and ABA block copolymers showed scattering behavior inside the measuring limits indicating nanophase separation. However, SAXS pattern of AB diblock copolymers indicated general phase separation only, whereas for ABA triblock copolymer an ordered or mixed morphology could be deduced, which is assumed to be the reason for the better mechanical properties achieved with ABA block copolymers than with the AB analogues.

  6. On the Use of Self-Assembling Block Copolymers to Toughen A Model Epoxy

    NASA Astrophysics Data System (ADS)

    Chen, Yilin

    Block copolymers have been receiving considerable attention in toughening epoxy due to their ability to form a wide variety of nanostructures. This study focuses on using both triblock and diblock copolymers to improve the fracture toughness of an aromatic-amine cured epoxy system. The curing system consisted of 1,3- phenylenediamine (mPDA) as curing agent and aniline as a chain extender. Three triblock copolymers and three diblock copolymers were incorporated in the same lightly crosslinked model epoxy system, which was chosen to mimic an underfill material in flip-chip packaging for the microelectronics industry. In this research, rubber particles were formed in situ using self-assembling block copolymers. Mechanical, thermal and microscopic studies were conducted with the main goal to study the relationship between the block parameters and the final morphologies and their effects on static and dynamic mechanical properties of the toughened resin, especially fracture toughness. In these block-copolymer-modified epoxies, spherical micelles and wormlike micelles were obtained by varying block lengths, molecular weight, polarities and compositions. It was found that miscibility of the epoxy-miscible block played a crucial role in the formation of different types of morphologies. At a low loading level, diblock copolymers were able to toughen the model epoxy as effectively as triblock copolymers. The fracture toughness was improved to almost three times with respect to that of the neat resin with addition of 10 phr AM*-27. At the same time, other mechanical properties, such as yield strength and modulus, were well retained. Incorporation of block copolymers did not have a significant effect on glass transition temperature but caused an increase in coefficient of thermal expansion (CTE) of the modified epoxy. Particle cavitation and matrix void growth were proved to be the toughening mechanisms for SBM-Modified epoxies. However, these typical toughening mechanisms for

  7. Mitochondrial ABC transporters.

    PubMed

    Lill, R; Kispal, G

    2001-01-01

    In contrast to bacteria, mitochondria contain only a few ATP binding cassette (ABC) transporters in their inner membrane. The known mitochondrial ABC proteins fall into two major classes that, in the yeast Saccharomyces cerevisiae, are represented by the half-transporter Atm1p and the two closely homologous proteins Mdl1p and Mdl2p. In humans two Atm1p orthologues (ABC7 and MTABC3) and two proteins homologous to Mdll/2p have been localized to mitochondria. The Atm1p-like proteins perform an important function in mitochondrial iron homeostasis and in the maturation of Fe/S proteins in the cytosol. Mutations in ABC7 are causative of hereditary X-linked sideroblastic anemia and cerebellar ataxia (XLSA/A). MTABC3 may be a candidate gene for the lethal neonatal syndrome. The function of the mitochondrial Mdl1/2p-like proteins is not clear at present with the notable exception of murine ABC-me that may transport intermediates of heme biosynthesis from the matrix to the cytosol in erythroid tissues.

  8. Micellar Packing in Aqueous Solutions of As-Received and Pure Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Park, Han Jin

    2013-03-01

    Pluronic block copolymers (Pluronics) are produced on a commercial scale to enable wide range of novel applications from emulsification and colloidal stabilization as nonionic surfactants. While the Pluronic block copolymers offer the advantages of being readily available for such applications, it contains non-micellizable low molecular weight (MW) impurities that would interfere with the self-assembly and micellar packing of PEO-PPO-PEO triblock copolymers in aqueous solutions. The impacts of the low MW impurities will be discussed on the micellar packing of Pluronics F108 and F127 solutions, which form BCC and FCC. While as-received Pluronic samples typically contain about 20 wt.% low MW impurities, we were able to reduce the impurity level to less than 2 wt.% using our large scale purification technique. Comparative studies on small angle x-ray scattering (SAXS) experiments on as-received and purified Pluronics solutions revealed that the contents of triblock copolymers in solutions essentially governs the inter-micellar distance of Pluronic cubic structures. A universal relationship between triblock copolymer concentration and SAXS-based domain spacing has been finally discussed. Funding from Agency for Defense Development, Korea.

  9. Solid-supported block copolymer membranes through interfacial adsorption of charged block copolymer vesicles.

    PubMed

    Rakhmatullina, Ekaterina; Meier, Wolfgang

    2008-06-17

    The properties of amphiphilic block copolymer membranes can be tailored within a wide range of physical parameters. This makes them promising candidates for the development of new (bio)sensors based on solid-supported biomimetic membranes. Here we investigated the interfacial adsorption of polyelectrolyte vesicles on three different model substrates to find the optimum conditions for formation of planar membranes. The polymer vesicles were made from amphiphilic ABA triblock copolymers with short, positively charged poly(2,2-dimethylaminoethyl methacrylate) (PDMAEMA) end blocks and a hydrophobic poly( n-butyl methacrylate) (PBMA) middle block. We observed reorganization of the amphiphilic copolymer chains from vesicular structures into a 1.5+/-0.04 nm thick layer on the hydrophobic HOPG surface. However, this film starts disrupting and dewetting upon drying. In contrast, adsorption of the vesicles on the negatively charged SiO2 and mica substrates induced vesicle fusion and formation of planar, supported block copolymer films. This process seems to be controlled by the surface charge density of the substrate and concentration of the block copolymers in solution. The thickness of the copolymer membrane on mica was comparable to the thickness of phospholipid bilayers.

  10. In vitro drug release behavior, mechanism and antimicrobial activity of rifampicin loaded low molecular weight PLGA-PEG-PLGA triblock copolymeric nanospheres.

    PubMed

    Gajendiran, M; Divakar, S; Raaman, N; Balasubramanian, S

    2013-12-01

    Poly (lactic-co-glycolic acid) (PLGA (92:8)) and a series of PLGA-PEG-PLGA tri block copolymers were synthesized by direct melt polycondensation. The copolymers were characterized by FTIR, and 1HNMR spectroscopic techniques, viscosity, gel permeation chromatography (GPC) and powder x-ray diffraction (XRD). The rifampicin (RIF) loaded polymeric nanospheres (NPs) were prepared by ultrasonication-W/O emulsification technique. The NPs have been characterized by field emission scanning electron microscopy (FESEM), TEM, powder X-ray diffraction (XRD), UVvisible spectroscopy and DLS measurements. The drug loaded triblock copolymeric NPs have five folds higher drug content and drug loading efficiency than that of PLGA microspheres (MPs). The in vitro drug release study shows that the drug loaded NPs showed an initial burst release after that sustained release up to 72 h. All the triblock copolymeric NPs follow anomalous drug diffusion mechanism while the PLGA MPs follow non-Fickian super case-II mechanism up to 12 h. The overall in-vitro release follows second order polynomial kinetics up to 72 h. The antimicrobial activity of the RIF loaded polymer NPs was compared with that of pure RIF and tetracycline (TA). The RIF loaded triblock copolymeric NPs inhibited the bacterial growth more effectively than the pure RIF and TA.

  11. ABC's of Being Smart

    ERIC Educational Resources Information Center

    Foster, Joanne

    2011-01-01

    Determining what giftedness is all about means focusing on many aspects of the individual. In this paper, the author focuses on letter D of the ABC's of being smart. She starts with specifics about giftedness (details), and then moves on to some ways of thinking (dispositions).

  12. 1968 ABC Summer Program.

    ERIC Educational Resources Information Center

    Kerr, Frances M.; Russell, Valerie E.

    A talent development project at Mount Holyoke College, part of A Better Chance (ABC)-Independent Schools Talent Search program, was offered during the summer of 1968 to 71 disadvantaged high school students from 13 states. Major aims of the program were to help these students with college potential to strengthen their academic skills and…

  13. Plant ABC Transporters

    PubMed Central

    Kang, Joohyun; Park, Jiyoung; Choi, Hyunju; Burla, Bo; Kretzschmar, Tobias; Lee, Youngsook; Martinoia, Enrico

    2011-01-01

    ABC transporters constitute one of the largest protein families found in all living organisms. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. The plant genome encodes for more than 100 ABC transporters, largely exceeding that of other organisms. In Arabidopsis, only 22 out of 130 have been functionally analyzed. They are localized in most membranes of a plant cell such as the plasma membrane, the tonoplast, chloroplasts, mitochondria and peroxisomes and fulfill a multitude of functions. Originally identified as transporters involved in detoxification processes, they have later been shown to be required for organ growth, plant nutrition, plant development, response to abiotic stresses, pathogen resistance and the interaction of the plant with its environment. To fulfill these roles they exhibit different substrate specifies by e.g. depositing surface lipids, accumulating phytate in seeds, and transporting the phytohormones auxin and abscisic acid. The aim of this review is to give an insight into the functions of plant ABC transporters and to show their importance for plant development and survival. PMID:22303277

  14. High-temperature solvent stability of sol-gel germania triblock polymer coatings in capillary microextraction on-line coupled to high-performance liquid chromatography.

    PubMed

    Segro, Scott S; Malik, Abdul

    2010-09-10

    Germania-based sol-gel organic-inorganic hybrid coatings were prepared for on-line coupling of capillary microextraction with high-performance liquid chromatography. For this, a germania-based sol-gel precursor, tetra-n-butoxygermane and a hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) were used. These sol-gel germania triblock polymer coatings were chemically anchored to the inner walls of a fused silica capillary (0.25 mm I.D.) in course of its evolution from the sol solution. Scanning electron microscopy images of the sol-gel germania triblock polymer coating were obtained to estimate the coating thickness. For the first time, the analyte distribution constants between a sol-gel germania organic-inorganic hybrid coating and the samples (K(cs)) were determined. For a variety of analytes from different chemical classes, including polycyclic aromatic hydrocarbons (PAHs), ketones, alcohols, phenols and amines, the K(cs) values ranged from 8.1 x 10(1) to 5.6 x 10(4). Also, for the first time, the stability of the sol-gel germania-based coating in high-temperature reversed-phase solvent environment was evaluated. The sol-gel germania triblock polymer coatings were capable of surviving exposure to high-temperature solvent conditions (200 degrees C) with little change in extraction capabilities. This demonstrates that sol-gel germania triblock polymer hybrid materials might be suitable for further applications in high-temperature HPLC. The reproducibility of the method for preparation of the sol-gel germania triblock polymer coatings was also evaluated, and the capillary-to-capillary RSD values ranged from 5.3 to 6.5%. The use of higher flow rates in extraction was found to significantly reduce the time required (from 30-40 to 10-15 min) to reach equilibrium between the sol-gel germania triblock polymer coating and the analytes in the sample solution.

  15. Ionization of amphiphilic acidic block copolymers.

    PubMed

    Colombani, Olivier; Lejeune, Elise; Charbonneau, Céline; Chassenieux, Christophe; Nicolai, Taco

    2012-06-28

    The ionization behavior of an amphiphilic diblock copolymer poly(n-butyl acrylate(50%)-stat-acrylic acid(50%))(100)-block-poly(acrylic acid)(100) (P(nBA(50%)-stat-AA(50%))(100)-b-PAA(100), DH50) and of its equivalent triblock copolymer P(nBA(50%)-stat-AA(50%))(100)-b-PAA(200)-b-P(nBA(50%)-stat-AA(50%))(100) (TH50) were studied by potentiometric titration either in pure water or in 0.5 M NaCl. These polymers consist of a hydrophilic acidic block (PAA) connected to a hydrophobic block, P(nBA(50%)-stat-AA(50%))(100), whose hydrophobic character has been mitigated by copolymerization with hydrophilic units. We show that all AA units, even those in the hydrophobic block could be ionized. However, the AA units within the hydrophobic block were less acidic than those in the hydrophilic block, resulting in the preferential ionization of the latter block. The preferential ionization of PAA over that of P(nBA(50%)-stat-AA(50%))(100) was stronger at higher ionic strength. Remarkably, the covalent bonds between the PAA and P(nBA(50%)-stat-AA(50%))(100) blocks in the diblock or the triblock did not affect the ionization of each block, although the self-association of the block copolymers into spherical aggregates modified the environment of the PAA blocks compared to when PAA was molecularly dispersed.

  16. Effects of Blockiness on the phase behavior of random copolymers

    NASA Astrophysics Data System (ADS)

    Vanderwoude, Gordon; Shi, An-Chang

    Theoretical study of random block copolymers remains a challenging topic due in part to the sheer enormity of their phase space. In this study we use the self-consistent field theory to investigate the phase behaviour of linear (AB)n-type and (AB)n-C-type multiblock copolymers with randomly distributed A and B blocks. In particular, we examine the effect of ``blockiness'' of the random copolymers on the formation of ordered phases. The blockiness can be quantified by the average length of individual A or B blocks, which can be taken as a measure of the heterogeneity of the random copolymers. We observed that the critical value of the χ parameter, at which the order-disorder transition occurs, decreases with increasing blockiness in the (AB)n copolymers. We also observed that the phase behaviour of the (AB)n-C copolymers depends strongly on the blockiness of the random chain. In particular, the blockiness governs whether or not the A/B blocks can phase separate within the A/B domains, thus dictating whether the (AB)n-C behaves as A/B-C diblock copolymers or as ABC terpolymers. The theoretical phase diagrams will be compared with available experiments.

  17. Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers

    SciTech Connect

    McGrath, Alaina J.; Shi, Weichao; Rodriguez, Christina G.; Kramer, Edward J.; Hawker, Craig J.; Lynd, Nathaniel A.

    2014-12-11

    Here, we report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic (R or S) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock. The resultant triblock copolymers were highly isotactic (meso triads [mm]% ~ 90%) with optical microscopy, differential scanning calorimetry, wide angle x-ray scattering and small angle x-ray scattering being used to probe the impact of the isotacticity on the resultant polymer and hydrogel properties.

  18. Synthetic Strategy for Preparing Chiral Double-semicrystalline Polyether Block Copolymers

    PubMed Central

    McGrath, Alaina J.; Shi, Weichao; Rodriguez, Christina G.; Kramer, Edward J.

    2014-01-01

    We report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic (R or S) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock. The resultant triblock copolymers were highly isotactic (meso triads [mm]% ~ 90%) with optical microscopy, differential scanning calorimetry, wide angle x-ray scattering and small angle x-ray scattering being used to probe the impact of the isotacticity on the resultant polymer and hydrogel properties. PMID:25914726

  19. Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers

    DOE PAGES

    McGrath, Alaina J.; Shi, Weichao; Rodriguez, Christina G.; ...

    2014-12-11

    Here, we report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic (R or S) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock. The resultant triblock copolymers were highly isotactic (meso triads [mm]% ~ 90%) with optical microscopy, differential scanning calorimetry, wide angle x-ray scattering and small angle x-ray scatteringmore » being used to probe the impact of the isotacticity on the resultant polymer and hydrogel properties.« less

  20. Rheology and Relaxation Timescales of ABA Triblock Polymer Gels

    NASA Astrophysics Data System (ADS)

    Peters, Andrew; Lodge, Timothy

    When dissolved in a midblock selective solvent, ABA polymers form gels composed of aggregated end block micelles bridged by the midblocks. While much effort has been devoted to the study of the structure of these systems, the dynamics of these systems has received less attention. We examine the underlying mechanism of shear relaxation of ABA triblock polymer gels, especially as a function of chain length, composition, and concentration. Recent work using time-resolved small-angle neutron scattering of polystyrene (PS)-block-poly(ethylene-alt-propylene) (PEP) in squalane has elucidated many aspects of the dynamics of diblock chain exchange. By using rheology to study bulk relaxation phenomena of the triblock equivalent, PS-PEP-PS, we apply the knowledge gained from the chain exchange studies to bridge the gap between the molecular and macroscopic relaxation phenomena in PS-PEP-PS triblock gels.

  1. Do You Know Your ABC?

    ERIC Educational Resources Information Center

    Neale, Claire

    2013-01-01

    Within primary schools, the core subjects of literacy and numeracy are highly regarded, and rightly so, as children need to learn to read, write and be numerically literate. This means that all children learn their ABCs at an early age, But, what about the "other ABC"--"Airway, Breathing and Circulation?" Accidents and medical…

  2. Amphiphilic poly[(propylene glycol)-block-(2-methyl-2-oxazoline)] copolymers for gene transfer in skeletal muscle.

    PubMed

    Brissault, Blandine; Kichler, Antoine; Leborgne, Christian; Jarroux, Nathalie; Cheradame, Hervé; Guis, Christine

    2007-08-01

    Amphiphilic triblock copolymers such as poly(ethylene glycol-b-propylene glycol-b-ethylene glycol) PE6400 (PEG(13)-PPG(30)-PEG(13)) have been recently shown to promote gene transfer in muscle. Herein we investigated the effect of a chemical change of the PEG moiety on the transfection activity of these compounds. We synthesized new amphiphilic copolymers in which the PEG end blocks are replaced by more hydrophilic poly(2-methyl-2-oxazoline) (PMeOxz) chains of various lengths. The resulting triblock PMeOxz-PPG-PMeOxz compounds were characterized by NMR, SEC, TGA, and DSC techniques and assayed for in vivo muscle gene transfer. The results confirm both the block structure and the monomer unit composition (DP(PG)/DP(MeOxz)) of the new PPG(34)-PMeOxz(41) and PPG(34)-PMeOxz(21) triblock copolymers. Furthermore, in vivo experiments show that these copolymers are able to significantly increase DNA transfection efficiency, despite the fact that their chemical nature and hydrophilic character are different from the poloxamers. Overall, these results show that the capacity to enhance DNA transfection in skeletal muscle is not restricted to PEG-PPG-PEG arrangements.

  3. Synthesis and Structure - Property Relationships for Regular Multigraft Copolymers

    SciTech Connect

    Mays, Jimmy; Uhrig, David; Gido, Samuel; Zhu, Yuqing; Weidisch, Roland; Iatrou, Hermis; Hadjichristidis, Nikos; Hong, Kunlun; Beyer, Frederick; Lach, Ralph

    2004-01-01

    Multigraft copolymers with polyisoprene backbones and polystyrene branches, having multiple regularly spaced branch points, were synthesized by anionic polymerization high vacuum techniques and controlled chlorosilane linking chemistry. The functionality of the branch points (1, 2 and 4) can be controlled, through the choice of chlorosilane linking agent. The morphologies of the various graft copolymers were investigated by transmission electron microscopy and X-ray scattering. It was concluded that the morphology of these complex architectures is governed by the behavior of the corresponding miktoarm star copolymer associated with each branch point (constituting block copolymer), which follows Milner's theoretical treatment for miktoarm stars. By comparing samples having the same molecular weight backbone and branches but different number of branches it was found that the extent of long range order decreases with increasing number of branch points. The stress-strain properties in tension were investigated for some of these multigraft copolymers. For certain compositions thermoplastic elastomer (TPE) behavior was observed, and in many instances the elongation at break was much higher (2-3X) than that of conventional triblock TPEs.

  4. Controlling block copolymer phase behavior using ionic surfactant

    NASA Astrophysics Data System (ADS)

    Ray, D.; Aswal, V. K.

    2016-05-01

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO26PO39EO26)] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle-surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  5. Chain bridging in a model of semicrystalline multiblock copolymers

    NASA Astrophysics Data System (ADS)

    Shah, Manas; Ganesan, Venkat

    2009-02-01

    Recent experimental observations have suggested an intimate connection between the chain conformations and mechanical properties of semicrystalline multiblock copolymers. Motivated by these studies, we present a theoretical study evaluating the bridging/looping fractions in a model of semicrystalline multiblock copolymers. We model the noncrystalline block (A) as a flexible Gaussian chain and the crystalline block (B) as a semiflexible chain with a temperature dependent rigidity and interactions that favor the formation of parallel oriented bonds. Using self-consistent field theory, the bridging fractions of the various domains in different multiblock copolymers (ABA, BAB, ABABA, and BABAB) are evaluated and compared with their flexible counterparts. In general, we observe that for both triblock and pentablock copolymers, rendering one of the blocks crystallizable promotes bridging in that component while reducing the bridging in the other noncrystallizable component. Moreover, the bridging fractions in tri- and pentablock copolymers were seen to be quantitatively similar except insofar as being normalized by the volume fraction of bridgeable units.

  6. RAFT polymerization of temperature- and salt-responsive block copolymers as reversible hydrogels

    PubMed Central

    Hemp, Sean T.; Smith, Adam E.; Bunyard, W. Clayton; Rubinstein, Michael H.; Long, Timothy E.

    2016-01-01

    Reversible-addition fragmentation chain transfer (RAFT) polymerization enabled the synthesis of novel, stimuli-responsive, AB and ABA block copolymers. The B block contained oligo(ethylene glycol) methyl ether methacrylate (OEG) and was permanently hydrophilic in the conditions examined. The A block consisted of diethylene glycol methyl ether methacrylate (DEG) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMA). The A block displayed both salt- and temperature-response with lower critical solution temperatures (LCSTs) dependent on the molar content of TMA and the presence of salt. Higher TMA content in the AB diblock copolymers increased the critical micelle temperatures (CMT) in HPLC-grade water due to an increased hydrophilicity of the A block. Upon addition of 0.9 wt% NaCl, the CMTs of poly(OEG-b-DEG95TMA5) decreased from 50 °C to 36 °C due to screening of electrostatic repulsion between the TMA units. ABA triblock copolymers displayed excellent hydrogel properties with salt- and temperature-dependent gel points. TMA incorporation in the A block increased the gel points for all triblock copolymers, and salt-response increased with higher TMA composition in the A block. For example, poly(DEG98TMA2-b-OEG-b-DEG98TMA2) formed a hydrogel at 40 °C in HPLC-grade water and 26 °C in 0.9 wt% NaCl aqueous solution. These salt- and temperature-responsive AB diblock and ABA triblock copolymers find applications as drug delivery vehicles, adhesives, and hydrogels. PMID:27041771

  7. Novel pentablock copolymer (PLA-PCL-PEG-PCL-PLA) based nanoparticles for controlled drug delivery: Effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles.

    PubMed

    Tamboli, Viral; Mishra, Gyan P; Mitra, Ashim K

    2013-05-01

    The purpose of this investigation was to design novel pentablock copolymers (polylatide-polycaprolactone-polyethylene glycol- polycaprolactone-polylatide) (PLA-PCL-PEG-PCL-PLA) to prepare nanoparticle formulations which provide continuous delivery of steroids over a longer duration with minimal burst effect. Another purpose was to evaluate the effect of poly (L-lactide) (PLLA) or poly (D, L-lactide) (PDLLA) incorporation on crystallinity of pentablock copolymers and in vitro release profile of triamcinolone acetonide (selected as model drug) from nanoparticles. PLA-PCL-PEG-PCL-PLA copolymers with different block ratio of PCL/PLA segment were synthesized. Release of triamcinolone acetonide from nanoparticles was significantly affected by crystallinity of the copolymers. Burst release of triamcinolone acetonide from nanoparticles was significantly minimized with incorporation of proper ratio of PDLLA in the existing triblock (PCL-PEG-PCL) copolymer. Moreover, pentablock copolymer based nanoparticles exhibited continuous release of triamcinolone acetonide. Pentablock copolymer based nanoparticles can be utilized to achieve continuous near zero-order delivery of corticosteroids from nanoparticles without any burst effect.

  8. Novel pentablock copolymer (PLA-PCL-PEG-PCL-PLA) based nanoparticles for controlled drug delivery: Effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles

    PubMed Central

    Tamboli, Viral; Mishra, Gyan P.; Mitra, Ashim K.

    2012-01-01

    The purpose of this investigation was to design novel pentablock copolymers (polylatide-polycaprolactone-polyethylene glycol- polycaprolactone-polylatide) (PLA-PCL-PEG-PCL-PLA) to prepare nanoparticle formulations which provide continuous delivery of steroids over a longer duration with minimal burst effect. Another purpose was to evaluate the effect of poly (L-lactide) (PLLA) or poly (D, L-lactide) (PDLLA) incorporation on crystallinity of pentablock copolymers and in vitro release profile of triamcinolone acetonide (selected as model drug) from nanoparticles. PLA-PCL-PEG-PCL-PLA copolymers with different block ratio of PCL/PLA segment were synthesized. Release of triamcinolone acetonide from nanoparticles was significantly affected by crystallinity of the copolymers. Burst release of triamcinolone acetonide from nanoparticles was significantly minimized with incorporation of proper ratio of PDLLA in the existing triblock (PCL-PEG-PCL) copolymer. Moreover, pentablock copolymer based nanoparticles exhibited continuous release of triamcinolone acetonide. Pentablock copolymer based nanoparticles can be utilized to achieve continuous near zero-order delivery of corticosteroids from nanoparticles without any burst effect. PMID:23626400

  9. The ABCs of Sex Ed.

    ERIC Educational Resources Information Center

    Sroka, Stephen R.

    2002-01-01

    Cites statistics on extent of sexually transmitted diseases and pregnancies among adolescents; describes ideological dispute over how to teach sex education; advocates teaching the ABCs of sex education: Abstinence, Be Monogamous, and Condoms. (PKP)

  10. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives.

    PubMed

    Boffito, Monica; Sirianni, Paolo; Di Rienzo, Anna Maria; Chiono, Valeria

    2015-03-01

    This review focuses on the challenges associated with the design and development of injectable hydrogels of synthetic origin based on FDA approved blocks, such as polyethylene glycol (PEG) and poly(ɛ-caprolactone) (PCL). An overview of recent studies on inverse thermosensitive PEG/PCL hydrogels is provided. These systems have been proposed to overcome the limitations of previously introduced degradable thermosensitive hydrogels [e.g., PEG/poly(lactide-co-glycolic acid) hydrogels]. PEG/PCL hydrogels are advantageous due to their higher gel strength, slower degradation rate and availability in powder form. Particularly, triblock PEG/PCL copolymers have been widely investigated, with PCL-PEG-PCL (PCEC) hydrogels showing superior gel strength and slower degradation kinetics than PEG-PCL-PEG (PECE) hydrogels. Compared to triblock PEG/PCL copolymers, concentrated solutions of multiblock PEG/PCL copolymers were stable due to their slower crystallization rate. However, the resulting hydrogel gel strength was low. Inverse thermosensitive triblock PEG/PCL hydrogels have been mainly applied in tissue engineering, to decrease tissue adherence or, in combination with bioactive molecules, to promote tissue regeneration. They have also found application as in situ drug delivery carriers. On the other hand, the wide potentialities of multiblock PEG/PCL hydrogels, associated with the stability of their water-based solutions under storage, their higher degradation time compared to triblock copolymer hydrogels and the possibility to insert bioactive building blocks along the copolymer chains, have not been fully exploited yet. A critical discussion is provided to highlight advantages and limitations of currently developed themosensitive PEG/PCL hydrogels, suggesting future strategies for the realization of PEG/PCL-based copolymers with improved performance in the different application fields.

  11. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.

    PubMed

    Worm, Matthias; Kang, Biao; Dingels, Carsten; Wurm, Frederik R; Frey, Holger

    2016-05-01

    Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand."

  12. Network of nano-droplets by a tri-block polymer

    NASA Astrophysics Data System (ADS)

    Sharifi, Soheil; Doodman, Esmaeil

    2014-11-01

    Mixtures of oil in water nano-droplets with two molecular weights of a tri-block polymer was studied by quasi elastic light scattering and small angle X-ray scattering. The results showed that the size and interaction of droplets didn't change with increase of the tri-block polymer length but the order parameters increased. The increase of length of the tri-block biopolymer changed the dynamics of the droplets. A network formation is resulted with increase of the amount of tri-block polymer in the microemulsions.

  13. pH-Responsive Triblock Copolymeric Micelles Decorated with a Cell-Penetrating Peptide Provide Efficient Doxorubicin Delivery

    NASA Astrophysics Data System (ADS)

    Ng, Khen Eng; Amin, Mohd Cairul Iqbal Mohd; Katas, Haliza; Amjad, Muhammad Wahab; Butt, Adeel Masood; Kesharwani, Prashant; Iyer, Arun K.

    2016-12-01

    This study developed novel triblock pH-responsive polymeric micelles (PMs) using cholic acid-polyethyleneimine-poly- l-arginine (CA-PEI-pArg) copolymers. PEI provided pH sensitivity, while the hydrophilic cell-penetrating pArg peptide promoted cellular PM internalization. The copolymers self-assembled into PMs in aqueous solution at above the critical micelle concentration (2.98 × 10-7 M) and encapsulated doxorubicin in the core region, with a 34.2% ( w/ w) entrapment efficiency. PMs showed pH-dependent swelling, increasing in size by almost sevenfold from pH 7.4 to 5.0. Doxorubicin release was pH-dependent, with about 65% released at pH 5.0, and 32% at pH 7.4. Cellular uptake, assessed by confocal microscopy and flow cytometry, was enhanced by using doxorubicin-loaded CA-PEI-pArg PMs, as compared to free doxorubicin and DOX-loaded CA-PEI PMs. Moreover, 24-h incubation of these PMs with a human breast cancer cell line produced greater cytotoxicity than free doxorubicin. These results indicate that pH-responsive CA-PEI-pArg micelles could provide a versatile delivery system for targeted cancer therapy using hydrophobic drugs.

  14. Hierarchical porous polymer scaffolds from block copolymers.

    PubMed

    Sai, Hiroaki; Tan, Kwan Wee; Hur, Kahyun; Asenath-Smith, Emily; Hovden, Robert; Jiang, Yi; Riccio, Mark; Muller, David A; Elser, Veit; Estroff, Lara A; Gruner, Sol M; Wiesner, Ulrich

    2013-08-02

    Hierarchical porous polymer materials are of increasing importance because of their potential application in catalysis, separation technology, or bioengineering. Examples for their synthesis exist, but there is a need for a facile yet versatile conceptual approach to such hierarchical scaffolds and quantitative characterization of their nonperiodic pore systems. Here, we introduce a synthesis method combining well-established concepts of macroscale spinodal decomposition and nanoscale block copolymer self-assembly with porosity formation on both length scales via rinsing with protic solvents. We used scanning electron microscopy, small-angle x-ray scattering, transmission electron tomography, and nanoscale x-ray computed tomography for quantitative pore-structure characterization. The method was demonstrated for AB- and ABC-type block copolymers, and resulting materials were used as scaffolds for calcite crystal growth.

  15. Peptide surface modification of P(HEMA-co-MMA)-b-PIB-b-P(HEMA-co-MMA) block copolymers.

    PubMed

    Ojha, Umaprasana; Feng, Dingsong; Chandekar, Amol; Whitten, James E; Faust, Rudolf

    2009-06-02

    Peptide surface modification of poly[(methyl methacrylate-co-hydroxyethyl methacrylate)-b-isobutylene-b-(methyl methacrylate-co-hydroxyethyl methacrylate)] P(MMA-co-HEMA)-b-PIB-b-P(MMA-co-HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished using an efficient synthetic procedure. The triblock copolymers were reacted with 4-fluorobenzenesulfonyl chloride (fosyl chloride) in pyridine to obtain the activated polymers [poly{(methyl methacrylate-co-fosyloxyethyl methacrylate)-b-isobutylene-b-(methyl methacrylate-co-fosyloxyethyl methacrylate)}] P(MMA-co-FEMA)-b-PIB-b-P(MMA-co-FEMA), with an activating efficiency of 80-90%. The resulting polymers were soluble in chloroform, and their solutions were used to coat thin uniform films with a predetermined thickness on smooth steel surfaces. The presence of reactive activating groups on the film surface was confirmed by X-ray photoelectron spectroscopy (XPS), dye labeling, and confocal laser scanning microscopic studies. Activation of the triblock copolymer films was also achieved under heterogeneous conditions in polar (acetonitrile) and nonpolar (hexanes) media. The extent of activation was controlled by varying the dipping time and polarity of the medium. Peptide attachment was accomplished by immersing the coated steel strips into aqueous buffer solution of Gly-Gly or GYIGSR. XPS and solubility studies revealed successful attachment of peptides to the polymer surface. Virtually all remaining activating groups were successfully replaced in the subsequent step by a treatment with Tris(hydroxymethyl)amino methane in a buffered methanol/water mixture.

  16. Anomalous Micellization of Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  17. Synthesis of amphipathic block copolymers based on polyisobutylene and polyoxyethylene and their application in emulsion polymerization

    SciTech Connect

    Sar, B.

    1992-12-31

    Polymer colloids stabilized by polymeric surfactants are of great interest both commercially and academically. It has been found that these materials enhance latex stabilization in a number of applications. The polymeric surfactants are amphipathic block and graft copolymers containing both hydrophilic and hydrophobic moieties. The current study involved the synthesis of a series of amphipathic triblock copolymers, polyisobutylene-block-polyoxyethylene-block-polyisobutylene (PIB-b-POE-b-PIB), for use in the emulsion polymerization of styrene (STY), methyl methacrylate (MMA), and vinyl acetate (VAc). The stabilizing effectiveness of these triblock copolymers was studied as a function of their blocklength. When the molecular weight of the POE center block was changed from M{sub n} = 2,000 to 20,000 g/mole, stable lattices were obtained in emulsion polymerization with MMA, STY, and VAc as the monomers. In all cases, the polymerization rates remained constant, while the number of particles/volume decreased with increasing POE chain length. When the molecular weight of the PIB end blocks was changed from M{sub n} = 400 to 2,600 g/mole keeping the molecular weight of the POE center block constant at M{sub n} = 20,000 g/mole, the poly(methyl methacrylate) and poly(vinyl acetate) lattices exhibited similar behavior, i.e., the number of particles and particle sizes remained the same, but the rate of polymerization reached a maximum at 87 wt% POE content. In the case of poly(styrene) both the rate of polymerization and the number of particles remained constant. The emulsion polymerization of other monomers such as butadiene, acrylonitrile, methyl acrylate, ethyl acrylate, and butyl acrylate was carried out by using one triblock copolymer, i.e., PIB(400)-b-POE (8,000)-b-PIB-(400). Stable lattices were also formed in all cases.

  18. Poly(citric acid)-block-poly(ethylene glycol) copolymers--new biocompatible hybrid materials for nanomedicine.

    PubMed

    Naeini, Ashkan Tavakoli; Adeli, Mohsen; Vossoughi, Manouchehr

    2010-08-01

    Linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks were synthesized through polycondensation. The molecular self-assembly of synthesized PCA-PEG-PCA copolymers in water led to formation of nanoparticles and fibers in different sizes and shapes depending on the time and size of PCA blocks. Ten days after dissolving PCA-PEG-PCA copolymers in water, the size of fibers had reached several millimeters. Mixing a water solution of fluorescein as a small guest molecule and PCA-PEG-PCA copolymers led to the encapsulation of fluorescein by products of molecular self-assembly. To investigate their potential application in nanomedicine and to understand the limitations and capabilities of these materials as nanoexcipients in biological systems, different types of short-term in vitro cytotoxicity experiments on the HT1080 cell line (human fibrosarcoma) and hemocompatibility tests were performed. From the clinical editor: This manuscript investigates the potentials of linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks for future applications in nanomedicine.

  19. Macroscopic Modeling of A3B15A3 Triblock Copolymers in B Solvent

    DTIC Science & Technology

    2010-11-01

    collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD...Acknowledgements v  1 .  Introduction 1   2.  Models and Methods 2  3.  Results and Discussion 3  4.  Conclusion 9  5.  References 11  List of Symbols

  20. Crystallization of bifonazole and acetaminophen within the matrix of semicrystalline, PEO-PPO-PEO triblock copolymers.

    PubMed

    Chen, Zhen; Liu, Zhengsheng; Qian, Feng

    2015-02-02

    The morphology and microstructure of crystalline drug/polymer solid dispersions could influence their physical stability and dissolution performance. In this study, the drug crystallization mechanism within PEG, PPG, and poloxamer matrix was investigated, and the resultant microstructure of various solid dispersions of acetaminophen (ACM) and bifonazole (BFZ) in the aforementioned polymers was characterized by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide/small-angle X-ray diffraction (WAXD/SAXS). With a stronger molecular interaction with the PEG segments, ACM decreased the crystallization onset temperature and crystallinity of PEG and poloxamers much more than BFZ. The stronger molecular interaction and better miscibility between ACM and PEG also induced a more defective lamellar structure in the ACM solid dispersions compared with that in the BFZ systems, as revealed by DSC and SAXS investigation. Observed under polarized optical microscopy, PEG, PPG, and poloxamer could all significantly improve the crystallization rate of ACM and BFZ, because of the largely reduced Tg of the solid dispersions by these low Tg polymers. Moreover, when the drug loading was below 60%, crystallization of BFZ in PEG or poloxamer occurred preferably along the radial direction of PEG spherulite, rather than the perpendicular direction, which was attributed to the geometric restriction of well-ordered polymer lamellar structure in the BFZ solid dispersions. Similar phenomena were not observed in the ACM solid dispersions regardless of the drug loading, presumably because ACM could diffuse freely across the perpendicular direction of the PEG spherulite, through the well-connected interlamellar or interfibrillar spaces produced by the defective PEG lamellar structure. The different drug-polymer interaction also caused a difference in the microstructure of polymer crystal, as well as a difference in drug distribution within the polymer matrix, which then synergistically facilitated a "confined crystallization" process to reduce the drug crystallite size below 100 nm.

  1. Hemocompatibility of styrenic block copolymers for use in prosthetic heart valves.

    PubMed

    Brubert, Jacob; Krajewski, Stefanie; Wendel, Hans Peter; Nair, Sukumaran; Stasiak, Joanna; Moggridge, Geoff D

    2016-02-01

    Certain styrenic thermoplastic block copolymer elastomers can be processed to exhibit anisotropic mechanical properties which may be desirable for imitating biological tissues. The ex-vivo hemocompatibility of four triblock (hard-soft-hard) copolymers with polystyrene hard blocks and polyethylene, polypropylene, polyisoprene, polybutadiene or polyisobutylene soft blocks are tested using the modified Chandler loop method using fresh human blood and direct contact cell proliferation of fibroblasts upon the materials. The hemocompatibility and durability performance of a heparin coating is also evaluated. Measures of platelet and coagulation cascade activation indicate that the test materials are superior to polyester but inferior to expanded polytetrafluoroethylene and bovine pericardium reference materials. Against inflammatory measures the test materials are superior to polyester and bovine pericardium. The addition of a heparin coating results in reduced protein adsorption and ex-vivo hemocompatibility performance superior to all reference materials, in all measures. The tested styrenic thermoplastic block copolymers demonstrate adequate performance for blood contacting applications.

  2. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants.

    PubMed

    Wagner, Olaf; Thiele, Julian; Weinhart, Marie; Mazutis, Linas; Weitz, David A; Huck, Wilhelm T S; Haag, Rainer

    2016-01-07

    In droplet-based microfluidics, non-ionic, high-molecular weight surfactants are required to stabilize droplet interfaces. One of the most common structures that imparts stability as well as biocompatibility to water-in-oil droplets is a triblock copolymer surfactant composed of perfluoropolyether (PFPE) and polyethylene glycol (PEG) blocks. However, the fast growing applications of microdroplets in biology would benefit from a larger choice of specialized surfactants. PEG as a hydrophilic moiety, however, is a very limited tool in surfactant modification as one can only vary the molecular weight and chain-end functionalization. In contrast, linear polyglycerol offers further side-chain functionalization to create custom-tailored, biocompatible droplet interfaces. Herein, we describe the synthesis and characterization of polyglycerol-based triblock surfactants with tailored side-chain composition, and exemplify their application in cell encapsulation and in vitro gene expression studies in droplet-based microfluidics.

  3. The ABCs of Student Engagement

    ERIC Educational Resources Information Center

    Parsons, Seth A.; Nuland, Leila Richey; Parsons, Allison Ward

    2014-01-01

    Student engagement is an important consideration for teachers and administrators because it is explicitly associated with achievement. What the authors call the ABC's of engagement they outline as: Affective engagement, Behavioral engagement, and Cognitive engagement. They also present "Three Things Every Teacher Needs to Know about…

  4. Phase separations in a copolymer copolymer mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Jun; Jin, Guojun; Ma, Yuqiang

    2006-01-01

    We propose a three-order-parameter model to study the phase separations in a diblock copolymer-diblock copolymer mixture. The cell dynamical simulations provide rich information about the phase evolution and structural formation, especially the appearance of onion-rings. The parametric dependence and physical reason for the domain growth of onion-rings are discussed.

  5. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    SciTech Connect

    Determan, Michael Duane

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  6. Poly(lactide)-block-poly([epsilon]-caprolactone-co-[epsilon]-decalactone)-block-poly(lactide) copolymer elastomers

    SciTech Connect

    Schneiderman, Deborah K.; Hill, Erin M.; Martello, Mark T.; Hillmyer, Marc A.

    2015-08-28

    Batch ring opening transesterification copolymerization of ε-caprolactone and ε-decalactone was used to generate statistical copolymers over a wide range of compositions and molar masses. Reactivity ratios determined for this monomer pair, rCL = 5.9 and rDL = 0.03, reveal ε-caprolactone is added preferentially regardless of the propagating chain end. Relative to poly(ε-caprolactone) the crystallinity and melting point of these statistical copolymers were depressed by the addition of ε-decalactone; copolymers containing greater than 31 mol% (46 wt%) ε-decalactone were amorphous. Poly(lactide)-block-poly(ε-caprolactone-co-ε-decalactone)-block-poly(lactide) triblock polymers were also prepared and used to explore the influence of midblock composition on the temperature dependent Flory-Huggins interaction parameter (χ). In addition, uniaxial extension tests were used to determine the effects of midblock composition, poly(lactide) content, and molar mass on the mechanical properties of these new elastomeric triblocks.

  7. Phase Behavior and Micellar Packing of Impurity-Free Pluronic Block Copolymers in Water

    NASA Astrophysics Data System (ADS)

    Ryu, Chang Yeol; Park, Hanjin

    We have investigated the impacts of the non-micellizable polymeric impurities on the micellar packing and solution phase behavior of Pluronic block copolymers in water. In particular, small angle x-ray scattering, rheology and dynamic light scattering techniques have been employed to elucidate how the low MW impurities affect the micellar packing and solution phase diagram in water, when ordered cubic structures of spherical micelles are formed. A silica slurry method has been developed using the competitive adsorption of the PEO-PPO-PEO triblock copolymers over the low MW polymeric impurities for a large scale purification of Pluronics and it purity of Pluronics has been assessed by interaction chromatography. Based on the comparative studies on micellar packing between As-Received (AR) and Purified (Pure) Pluronic F108 solutions, we found experimental evidence to support the hypothesis that the inter-micellar distance of Pluronic cubic structures in aqueous solution is governed by the effective polymer concentration in terms of PEO-PPO-PEO triblock copolymers. Removal of the impurities in AR F108 offers an important clue on window into the onset of BCC ordering via hydrodynamic contact between micelles in solution. NSF DMR Polymers.

  8. Transparent nanostructured cellulose acetate films based on the self assembly of PEO-b-PPO-b-PEO block copolymer.

    PubMed

    Gutierrez, Junkal; Carrasco-Hernandez, Sheyla; Barud, Hernane S; Oliveira, Rafael L; Carvalho, Renata A; Amaral, André C; Tercjak, Agnieszka

    2017-06-01

    In this study fabrication and characterization of transparent nanostructured composite films based on cellulose triacetate (CTA) and poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (EPE) triblock copolymer were presented. The effect of the addition of EPE triblock copolymer on the thermal stability, morphology, and mechanical properties of cellulose triacetate films was investigated. The triblock EPE was chosen since PEO blocks interact favorably with CTA, whereas, PPO blocks remain immiscible which provokes a microphase separation. This allows to obtain EPE/CTA composite films with ordered microphase-separated structures where PPO spherical microdomains are well-dispersed in PEO/CTA matrix by simple solvent-evaporation process. During this process, PEO block chains selectively interact with CTA by strong interpolymer hydrogen-bonding while PPO block microseparated. The addition even 40wt% of EPE leads to nanostructured EPE/CTA composite. The cytotoxicity assay of CTA and EPE/CTA composite films confirm non-toxic character of designed transparent nanostructured composites based on sustainable matrices.

  9. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    SciTech Connect

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; Lindsey, Melanie B.; Chen, Jihua; Elgammal, Ramez A.; Zawodzinski, Thomas A.; Fujiwara, Tomoko

    2016-02-16

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  10. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    DOE PAGES

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; ...

    2016-02-16

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  11. (Electro)Mechanical Properties of Olefinic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Spontak, Richard

    2014-03-01

    Conventional styrenic triblock copolymers (SBCs) swollen with a midblock-selective oil have been previously shown to exhibit excellent electromechanical properties as dielectric elastomers. In this class of electroactive polymers, compliant electrodes applied as active areas to opposing surfaces of an elastomer attract each other, and thus compress the elastomer due to the onset of a Maxwell stress, upon application of an external electric field. This isochoric process is accompanied by an increase in lateral area, which yields the electroactuation strain (measuring beyond 300% in SBC systems). Performance parameters such as the Maxwell stress, transverse strain, dielectric breakdown, energy density and electromechanical efficiency are determined directly from the applied electric field and resulting electroactuation strain. In this study, the same principle used to evaluate SBC systems is extended to olefinic block copolymers (OBCs), which can be described as randomly-coupled multiblock copolymers that consist of crystallizable polyethylene hard segments and rubbery poly(ethylene-co-octene) soft segments. Considerations governing the development of a methodology to fabricate electroresponsive OBC systems are first discussed for several OBCs differing in composition and bulk properties. Evidence of electroactuation in selectively-solvated OBC systems is presented and performance metrics measured therefrom are quantitatively compared with dielectric elastomers derived from SBC and related materials.

  12. ABC transporters in the CNS - an inventory.

    PubMed

    Hartz, A M S; Bauer, B

    2011-04-01

    In the present review we provide a summary of ATP-binding cassette (ABC) transporters in the central nervous system (CNS). Our review is focused on transporters of the ABC A, B, C, D, and G families that have been detected in the cells of the neurovascular unit/blood-brain barrier including brain capillary endothelial cells, pericytes, astrocytes, and neurons, as well as in other brain cells, such as microglia, oligodendrocytes, and choroid plexus epithelial cells. In this review, we provide an overview, organized by ABC family, of transporter expression, localization, and function. We summarize recent findings on ABC transporter regulation in the CNS and address the role of ABC transporters in CNS diseases including brain cancer, seizures/epilepsy, and Alzheimer's disease. Finally, we discuss new therapeutic strategies focused on ABC transporters in CNS disease.

  13. Development of new generation of copolymers via reactive extrusion in a twin screw extruder and application in various PVC blends

    NASA Astrophysics Data System (ADS)

    Kim, In

    Polymerization in twin screw extruders has largely involved homopolymers. Here we generalize this and polymerize a range of copolymers and terpolymers including epsilon-caprolactam(CA), o-lauryl lactam(LA), epsilon-caprolactone(CL), and gamma-butyrolactone(GBL) in a modular intermeshing co-rotating twin screw extruder. We considered different types of copolymer structures (di-block, tri-block, and random-block) and different backbones of copolymer(lactams-lactones) as well as the variables of temperature profile, screw speed, monomer feed rate, the ratio of monomer to initiator, and feeding order of co-monomers on reactive extrusion of polyamides-polylactones based (co)polymers. Specially designed block copolymers have played a role as compatibilizing agents in the system of immiscible polymer blends. We apply the di-block copolymer(P(LA-b-CL)) and random block copolymer (P(LA/CA-b-CL)) produced by reactive extrusion as a compatibilizing agent in immiscible polymer blend systems: (i) poly(vinyl chloride) (PVC)/polyamide 12 (PA12), (ii) PVC/polypropylene(PP), and (iii) PVC/Ethylene-propylene-non-conjugated diene elastomer(EPDM).

  14. Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations

    NASA Astrophysics Data System (ADS)

    Zheng, Wang; Bao-Hui, Li

    2016-01-01

    Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanometers, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applications; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB diblock copolymers, junction point-grafted AB diblock copolymers (i.e., Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress. Project supported by the National Natural Science Foundation of China (Grant Nos. 20990234, 20925414, and 91227121), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1257), the Programme of Introducing Talents of Discipline to Universities, China, and by the Tianhe No. 1, China.

  15. Mesoporous Silica Films with Long-Range Order Prepared from Strongly Segregated Block Copolymer/Homopolymer Blend Templates

    SciTech Connect

    Tirumala, Vijay R.; Pai, Rajaram A.; Agarwal, Sumit; Testa, Jason J.; Bhatnagar, Gaurav; Romang, Alvin H.; Chandler, Curran; Gorman, Brian P.; Jones, Ronald L.; Lin, Eric K.; Watkins, James J.

    2008-06-30

    Well-ordered mesoporous silica films were prepared by infusion and selective condensation of Si alkoxides within preorganized block copolymer/homopolymer blend templates using supercritical CO{sub 2} as the delivery medium. The morphologies of the mesoporous silica films reflect significant improvements in the strength of segregation and long-range order of template blends of poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymers with selectively associating homopolymers such as poly(acrylic acid) or poly(4-hydroxystyrene) prior as compared to templates comprised of the neat copolymer. Control over film porosity, pore ordering, and morphology of the films is achieved through simple variations in the homopolymer concentration. The films were characterized using X-ray reflectivity, small-angle X-ray scattering, and transmission electron microscopy.

  16. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  17. Nanoscale buckling deformation in layered copolymer materials

    PubMed Central

    Makke, Ali; Perez, Michel; Lame, Olivier; Barrat, Jean-Louis

    2012-01-01

    In layered materials, a common mode of deformation involves buckling of the layers under tensile deformation in the direction perpendicular to the layers. The instability mechanism, which operates in elastic materials from geological to nanometer scales, involves the elastic contrast between different layers. In a regular stacking of “hard” and “soft” layers, the tensile stress is first accommodated by a large deformation of the soft layers. The inhibited Poisson contraction results in a compressive stress in the direction transverse to the tensile deformation axis. The hard layers sustain this transverse compression until buckling takes place and results in an undulated structure. Using molecular simulations, we demonstrate this scenario for a material made of triblock copolymers. The buckling deformation is observed to take place at the nanoscale, at a wavelength that depends on strain rate. In contrast to what is commonly assumed, the wavelength of the undulation is not determined by defects in the microstructure. Rather, it results from kinetic effects, with a competition between the rate of strain and the growth rate of the instability. PMID:22203970

  18. Amphiphilic copolymers reduce aggregation of unfolded lysozyme more effectively than polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Chin, Jaemin; Mustafi, Devkumar; Poellmann, Michael J.; Lee, Raphael C.

    2017-02-01

    Certain amphiphilic block copolymers are known to prevent aggregation of unfolded proteins. To better understand the mechanism of this effect, the optical properties of heat-denatured and dithiothreitol reduced lysozyme were evaluated with respect to controls using UV–Vis spectroscopy, transmission electron microscopy (TEM) and circular dichroism (CD) measurements. Then, the effects of adding Polyethylene Glycol (8000 Da), the triblock surfactant Poloxamer 188 (P188), and the tetrablock copolymer Tetronic 1107 (T1107) to the lysozyme solution were compared. Overall, T1107 was found to be more effective than P188 in inhibiting aggregation, while PEG exhibited no efficacy. TEM imaging of heat-denatured and reduced lysozymes revealed spherical aggregates with on average 250–450 nm diameter. Using CD, more soluble lysozyme was recovered with T1107 than P188 with β-sheet secondary structure. The greater effectiveness of the larger T1107 in preventing aggregation of unfolded lysozyme than the smaller P188 and PEG points to steric hindrance at play; signifying the importance of size match between the hydrophobic region of denatured protein and that of amphiphilic copolymers. Thus, our results corroborate that certain multi-block copolymers are effective in preventing heat-induced aggregation of reduced lysozymes and future studies warrant more detailed focus on specific applications of these copolymers.

  19. The ABC transporters in Candidatus Liberibacter asiaticus

    PubMed Central

    Li, Wenlin; Cong, Qian; Pei, Jimin; Kinch, Lisa N; Grishin, Nick V

    2012-01-01

    Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a Gram-negative bacterium and the pathogen of Citrus Greening disease (Huanglongbing, HLB). As a parasitic bacterium, Ca. L. asiaticus harbors ABC transporters that play important roles in exchanging chemical compounds between Ca. L. asiaticus and its host. Here, we analyzed all the ABC transporter-related proteins in Ca. L. asiaticus. We identified 14 ABC transporter systems and predicted their structures and substrate specificities. In-depth sequence and structure analysis including multiple sequence alignment, phylogenetic tree reconstruction, and structure comparison further support their function predictions. Our study shows that this bacterium could use these ABC transporters to import metabolites (amino acids and phosphates) and enzyme cofactors (choline, thiamine, iron, manganese, and zinc), resist to organic solvent, heavy metal, and lipid-like drugs, maintain the composition of the outer membrane (OM), and secrete virulence factors. Although the features of most ABC systems could be deduced from the abundant experimental data on their orthologs, we reported several novel observations within ABC system proteins. Moreover, we identified seven nontransport ABC systems that are likely involved in virulence gene expression regulation, transposon excision regulation, and DNA repair. Our analysis reveals several candidates for further studies to understand and control the disease, including the type I virulence factor secretion system and its substrate that are likely related to Ca. L. asiaticus pathogenicity and the ABC transporter systems responsible for bacterial OM biosynthesis that are good drug targets. PMID:22807026

  20. Identification and functional characterization of Penicillium marneffei pleiotropic drug resistance transporters ABC1 and ABC2.

    PubMed

    Panapruksachat, Siribun; Iwatani, Shun; Oura, Takahiro; Vanittanakom, Nongnuch; Chindamporn, Ariya; Niimi, Kyoko; Niimi, Masakazu; Lamping, Erwin; Cannon, Richard D; Kajiwara, Susumu

    2016-07-01

    Penicilliosis caused by the dimorphic fungus Penicillium marneffei is an endemic, AIDS-defining illness and, after tuberculosis and cryptococcosis, the third most common opportunistic infection of AIDS patients in tropical Southeast Asia. Untreated, patients have poor prognosis; however, primary amphotericin B treatment followed by prolonged itraconazole prophylaxis is effective. To identify ATP-binding cassette (ABC) transporters that may play a role in potential multidrug resistance of P. marneffei, we identified and classified all 46 P. marneffei ABC transporters from the genome sequence. PmABC1 and PmABC2 were most similar to the archetype Candida albicans multidrug efflux pump gene CDR1. P. marneffei Abc1p (PmAbc1p) was functionally expressed in Saccharomyces cerevisiae, although at rather low levels, and correctly localized to the plasma membrane, causing cells to be fourfold to eightfold more resistant to azoles and many other xenobiotics than untransformed cells. P. marneffei Abc2p (PmAbc2p) was expressed at similarly low levels, but it had no efflux activity and did not properly localize to the plasma membrane. Interestingly, PmAbc1p mislocalized and lost its transport activity when cells were shifted to 37 °C. We conclude that expression of PmAbc1p in S. cerevisiae confers resistance to several xenobiotics indicating that PmAbc1p may be a multidrug efflux pump.

  1. Thin films from hydrophilic poly(N,N-dimethyl acrylamide) copolymers as optical indicators for humidity

    NASA Astrophysics Data System (ADS)

    Lazarova, K.; Todorova, L.; Christova, D.; Vasileva, M.; Georgiev, R.; Madjarova, V.; Babeva, T.

    2017-01-01

    In the present paper we study thin films from poly(N,N-dimethyl acrylamide)-poly(ethylene oxide) (PDMAA/PEO) copolymers of different composition and structure in order to implement them as sensitive media for optical indicators for humidity. PDMAA/PEO di- and triblock copolymers were synthesized via redox polymerization in aqueous media. Thin films were deposited on silicon substrates by spin coating method using polymers solutions with appropriate concentrations. Refractive index, extinction coefficient and thickness of the films are calculated from reflectance spectra of the films deposited on silicon substrates using non-linear curve fitting method. Sensing properties of the films were tested by films exposure to different humidity levels followed by in-situ monitoring of the changes in the optical properties. The influence of the polymer structure and postdeposition annealing on the optical and sensing properties of the films was investigated. The potential application of selected polymers for optical sensing of humidity were demonstrated and discussed.

  2. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  3. Preparation and characterization of tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) nanogels for controlled release of naltrexone.

    PubMed

    Asadi, H; Rostamizadeh, K; Salari, D; Hamidi, M

    2011-09-15

    Tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) copolymers and related acrylated derivative were synthesized and used to prepare micelles and nanogels for controlled release of naltrexone. The resulting copolymers, micelles and nanogels were characterized by various techniques such as proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, gel permeation chromatography, fluorescence spectrometry, differential scanning calorimetry, photon correlation spectroscopy and scanning electron microscopy. The nanogels exhibited high encapsulation efficiency around 60% and excellent stability for long periods of time. The drug release profiles of micelles and nanogels were compared and it was found that the naltrexone loaded nanogels offered a steady and long-term release pattern for different periods of time up to 35 days, depending on the crosslinker concentration, compared to the micelles. The size of nanogels could be manipulated easily in the range of 128-200nm by variations in polymer concentration used in the nanogels preparation step. From the results obtained it can be concluded that PLA-PEG-PLA nanogels can be considered as a promising carrier for drug delivery purpose.

  4. An ABC for decision making*

    PubMed Central

    Garcia, Luiz Henrique Costa; Ferreira, Bruna Cortez

    2015-01-01

    The present study was aimed at proposing a systematic evaluation of cranial computed tomography, identifying the main aspects to be analyzed in order to facilitate the decision making process regarding diagnosis and management in emergency settings. The present descriptive study comprised a literature review at the following databases: Access Medicine and Access Emergency Medicine (McGraw- Hill Education); British Medical Journal Evidence Center; UptoDate; Bireme; PubMed; Lilacs; SciELO; ProQuest; Micromedex (Thomson Reuters); Embase. Once the literature review was completed, the authors identified the main diseases with tomographic repercussions and proposed the present system to evaluate cranial computed tomography images. An easy-to-memorize ABC system will facilitate the decision making in emergency settings, as it covers the main diseases encountered by intensivists and emergency physicians, and provides a sequential guidance about anatomical structures to be investigated as well as their respective alterations. PMID:25987751

  5. An ABC for decision making.

    PubMed

    Garcia, Luiz Henrique Costa; Ferreira, Bruna Cortez

    2015-01-01

    The present study was aimed at proposing a systematic evaluation of cranial computed tomography, identifying the main aspects to be analyzed in order to facilitate the decision making process regarding diagnosis and management in emergency settings. The present descriptive study comprised a literature review at the following databases: Access Medicine and Access Emergency Medicine (McGraw- Hill Education); British Medical Journal Evidence Center; UptoDate; Bireme; PubMed; Lilacs; SciELO; ProQuest; Micromedex (Thomson Reuters); Embase. Once the literature review was completed, the authors identified the main diseases with tomographic repercussions and proposed the present system to evaluate cranial computed tomography images. An easy-to-memorize ABC system will facilitate the decision making in emergency settings, as it covers the main diseases encountered by intensivists and emergency physicians, and provides a sequential guidance about anatomical structures to be investigated as well as their respective alterations.

  6. Directed self-assembly of high-chi block copolymer for nano fabrication of bit patterned media via solvent annealing

    NASA Astrophysics Data System (ADS)

    Xiong, Shisheng; Chapuis, Yves-Andre; Wan, Lei; Gao, He; Li, Xiao; Ruiz, Ricardo; Nealey, Paul F.

    2016-10-01

    We report the formation of nanoimprint master templates that can be used for the fabrication of bit patterned media (BPM). The template was formed by directed self-assembly, with solvent annealing, of a symmetric ABA triblock copolymer to form perpendicularly oriented lamellae on chemical patterns. We used a high-χ block copolymer, poly(2-vinyl pyridine)-block-polystyrene-block-poly(2-vinyl pyridine) to achieve smaller feature sizes than are possible with polystyrene-block-poly(methyl methacrylate). The work shows that triblock copolymers can provide a large processing window in terms of pitch commensurability. Using block-selective infiltration (atomic layer deposition with sequential long soaking/purge cycles), an alumina composite with high etch resistance was specifically incorporated into the polar and hydrophilic P2VP domains. Subsequently, the surface pattern was successfully transferred into underlying Si substrates by etching with a fluorine-containing plasma to create a nanoimprint master. The line/space pattern of the nanoimprint master met the BPM fabrication requirement of defectivity <10-3. For demonstration purposes, the nanoimprint master was used to imprint a replica pattern of photoresist on a quartz wafer.

  7. Highly protein-resistant coatings and suspension cell culture thereon from amphiphilic block copolymers prepared by RAFT polymerization.

    PubMed

    Haraguchi, Kazutoshi; Kubota, Kazuomi; Takada, Tetsuo; Mahara, Saori

    2014-06-09

    Novel amphiphilic block copolymers composed of hydrophobic (poly(2-methoxyethyl acrylate): M) and hydrophilic (poly(N,N-dimethylacrylamide): D) segments were synthesized by living radical polymerization: a reversible addition-fragmentation chain-transfer polymerization. Two types of amphiphilic block copolymers, triblock (MDM) and 4-arm block ((MD)4) copolymers with specific compositions (D/M = (750-1500)/250), were prepared by a versatile one-pot synthesis. These copolymers show good adhesion to various types of substrates (e.g., polystyrene, polycarbonate, polypropylene, Ti, and glass), and the surface coating showed high protein repellency and a low contact angle for water, regardless of the substrate. The two opposing characteristics of high protein repellency and good substrate adhesion were achieved by the combined effects of the molecular architecture of the block copolymers, the high molecular weight, and the characteristics of each segment, that is, low protein adsorption capability of both segments and low glass transition temperature of the hydrophobic segment. Further, a polystyrene dish coated with the MDM block copolymer could be sterilized by γ-ray irradiation and used as a good substrate for a suspension cell culture that exhibits low cell adhesion and good cell growth.

  8. Nanostructure in block copolymer solutions: Rheology and small-angle neutron scattering

    SciTech Connect

    Habas, Jean-Pierre; Pavie, Emmanuel; Perreur, Christelle; Lapp, Alain; Peyrelasse, Jean

    2004-12-01

    Triblock copolymers composed of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) present an amphiphilic character in aqueous solutions. Since PPO is less hydrophilic than PEO and since their solubilities decrease when the temperature increases, the copolymers self-assemble spontaneously, forming micelles at moderate temperatures. For higher temperatures or concentrations, the copolymers or the micelles are ordered because of repulsive interactions and form lyotropic liquid crystalline phases. These are phases of very great viscosity with the aspect of gels, and transitions between different crystalline phases can occur at fixed concentration during an increase of temperature. We studied solutions of three different copolymers. The first two have a star structure. They are both composed of four branches (EO){sub x}(PO){sub y} fixed on an ethylene diamine, but differ by the values of x and y. Their commercial name is Tetronic 908 (x=114, y=21) and Tetronic 704 (x=16, y=18). The third copolymer (EO){sub 37}(PO){sub 56}(EO){sub 37} is linear and is known under the name of Pluronic P105. The measurements of the shear complex elastic modulus according to the temperature is used to determine the temperatures of the different transitions. Then, small-angle neutron scattering on samples under flow and true crystallographic arguments make it possible to identify the nature of the crystalline phases. For the systems studied, we show that the branched copolymers form only one type of liquid crystalline phase, which is bcc for the T908 and lamellar for the T704. For the linear copolymer, it is possible to identify three transitions: micellar solution to hexagonal phase, hexagonal phase to body-centered cubic phase, and finally body-centered cubic phase to lamellar phase.

  9. PCL-PDMS-PCL copolymer-based microspheres mediate cardiovascular differentiation from embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Song, Liqing

    Poly-epsilon-caprolactone (PCL) based copolymers have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. Copolymers of PCL and polydimethylsiloxane (PDMS) also have shape memory behaviors and can be made into thermoresponsive shape memory polymers for various biomedical applications such as smart sutures and vascular stents. However, the influence of biophysical properties of PCL-PDMS-PCL copolymers on stem cell lineage commitment is not well understood. In this study, PDMS was used as soft segments of varying length to tailor the biophysical properties of PCL-based co-polymers. While low elastic modulus (<10 kPa) of the tri-block copolymer PCL-PDMS-PCL affected cardiovascular differentiation of embryonic stem cells, the range of 60-100 MPa PCL-PDMS-PCL showed little influence on the differentiation. Then different size (30-140 mum) of microspheres were fabricated from PCL-PDMS-PCL copolymers and incorporated within embryoid bodies (EBs). Mesoderm differentiation was induced using bone morphogenetic protein (BMP)-4 for cardiovascular differentiation. Differential expressions of mesoderm progenitor marker KDR and vascular markers CD31 and VE-cadherin were observed for the cells differentiated from EBs incorporated with microspheres of different size, while little difference was observed for cardiac marker alpha-actinin expression. Small size of microspheres (30 mum) resulted in higher expression of KDR while medium size of microspheres (94 mum) resulted in higher CD31 and VE-cadherin expression. This study indicated that the biophysical properties of PCL-based copolymers impacted stem cell lineage commitment, which should be considered for drug delivery and tissue engineering applications.

  10. Detergent-free purification of ABC (ATP-binding-cassette) transporters.

    PubMed

    Gulati, Sonali; Jamshad, Mohammed; Knowles, Timothy J; Morrison, Kerrie A; Downing, Rebecca; Cant, Natasha; Collins, Richard; Koenderink, Jan B; Ford, Robert C; Overduin, Michael; Kerr, Ian D; Dafforn, Timothy R; Rothnie, Alice J

    2014-07-15

    ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.

  11. The ABC`s of nuclear science workshop

    SciTech Connect

    McMahn, P.; Carlock, M.S.; Mattis, H.; Norman, E.; Seaborg, G.

    1997-12-31

    Over the last several years the Contemporary Physics Education Project (CPEP) has developed two wall charts which illustrate contemporary aspects of particle and plasma physics for high school and undergraduate students. We are now working with CPEP on the development of a similar chart for nuclear science. This chart will illustrate the basics of nuclear science coupled with the exciting research which is being done in this field. This workshop will explore the wall chart, along with materials and experiments that have been developed to accompany it. The set of experiments have been developed by high school teachers, chemists, and physicists working together, and include experiments such as, {open_quotes}the ABCs of Nuclear Science,{close_quotes} and experiments exploring the various kinds of radioactive decay, radioactivity in common household products, half-live measurements, radiography, etc. Teachers who join the project as chart field testers will receive a poster size chart and accompanying materials free of charge. The materials also include a video about cosmic rays has also been produced for the classroom.

  12. PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment.

    PubMed

    Chen, Xiufen; Chen, Jianzhong; Li, Bowen; Yang, Xiang; Zeng, Rongjie; Liu, Yajun; Li, Tao; Ho, Rodney J Y; Shao, Jingwei

    2017-03-15

    Poly (d,l-lactide-co-glycolide)-poly (ethylene glycol)-poly (d,l-lactide-co-glycolide) triblock copolymers (PLGA-PEG-PLGA) has been proven to be desirable for anti-cancer drug delivery by intravenous administration. But till now there is no report of developing this micelle as a sustained oral formulation for cancer therapy. 3β-acetoxy-urs-12-en-28-oic acid hexamethylenediamine (US597), a derivative of natural product ursolic acid has been developed as a novel cancer metastasis chemopreventive agent by us. Herein, we developed a new oral dosage formulation of PLGA-PEG-PLGA tri-block micelles loaded with US597 (US597@micelles). US597@micelles was prepared by a double emulsion solvent evaporation method, and characterized in regards to mean diameter (<100nm), drug loading (25.9-28.5%), zeta potential (5.76-10.65mV) and encapsulation efficiency (55.7-74.3%), respectively. In vitro, US597@micelles could ameliorate sustained drug release, inhibit cell proliferation by inducing apoptosis (46.6% of late apoptosis), and influence the integrity of nuclei and mitochondrial on HepG2. Moreover, in vivo pharmacokinetic study by UPLC/MS/MS method demonstrated better absorption, metabolism and elimination characters of US597@micelles as an oral dosage form (Cmax=53±49ng/mL, t1/2=8.716±7.033h) over free US597 (Cmax=14±11ng/mL, t1/2=16.433±8.821h). In conclusion, PLGA-PEG-PLGA micelles as a promising oral drug delivery system are able to improve the bioavailability and efficacy of US597 in cancer therapy.

  13. The ABC's of Cultural Understanding and Communication.

    ERIC Educational Resources Information Center

    Schmidt, Patricia R.

    1998-01-01

    Reports the impressions of 20 preservice and inservice teachers as they experienced the "ABC's of Cultural Understanding and Communication" model, a program to promote cultural sensitivity among teachers. Insights these teachers gained are discussed. (SLD)

  14. Application of Linear and Branched Poly(Ethylene Glycol)-Poly(Lactide) Block Copolymers for the Preparation of Films and Solution Electrospun Meshes.

    PubMed

    Kessler, Martina; Groll, Juergen; Tessmar, Joerg

    2016-03-01

    Poly(ethylene glycol)-poly(lactide) (PEG-PLA) block copolymers are processed to solvent cast films and solution electrospun meshes. The effect of polymer composition, architecture, and number of anchoring points for the plasticizer on swelling, degradation, and mechanical properties of these films and meshes is investigated as potential barrier device for the prevention of peritoneal adhesions. As a result, adequate properties are achieved for the massive films with a longer retention of the plasticizer PEG for star-shaped block copolymers than for the linear triblock copolymers and consequently more endurable mechanical properties during degradation. For electrospun meshes fabricated using the same polymers, similar trends are observed, but with an earlier start of fragmentation and lower tensile strengths. To overcome the poor mechanical strengths and an occurring shrinkage during incubation, which may impair the coverage of the wound, further adaptions of the meshes and the fabrication process are necessary.

  15. The effect of the triblock properties on the morphologies and photophysical properties of nanoparticle loaded with carboxylic dendrimer phthalocyanine

    NASA Astrophysics Data System (ADS)

    Lv, Huafei; Chen, Zhe; Yu, Xinxin; Pan, Sujuan; Zhang, Tiantian; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-09-01

    Photodynamic therapy (PDT) is an emerging alternative treatment for various cancers and age-related macular degeneration. Phthalocyanines (Pcs) and their substituted derivatives are under intensive investigation as the second generation photosensitizers. A big challenge for the application of Pcs is poor solubility and limited accumulation in the tumor tissues, which severely reduced its PDT efficacy. Nano-delivery systems such as polymeric micelles are promising tools for increasing the solubility and improving delivery efficiency of Pcs for PDT application. In this paper, nanoparticles of amphiphilic triblock copolymer poly(L-lysine)-b-poly (ethylene glycol)-b-poly(L-lysine) were developed to encapsulate 1-2 generation carboxylic poly (benzyl aryl ether) dendrimer. The morphologies and photophysical properties of polymeric nanoparticles loaded with 1-2 generation dendritic phthalocyanines (G1-ZnPc(COOH)8/m and G2-ZnPc(COOH)16/m) were studied by AFM, UV/Vis and fluorescent spectroscopic method. The morphologies of self-assembled PLL-PEG-PLL aggregates exhibited concentration dependence. Its morphologies changed from cocoon-like to spheral. The diameters of G1-ZnPc(COOH)8/m and G2-ZnPc(COOH)16/m were in the range of 33-147 nm, increasing with the increase of the concentration of PLL-PEG-PLL. The morphologies of G2-ZnPc(COOH)16/m also changed from cocoon-like to sphere with the increase of the concentration of PLL-PEG-PLL. It was found that, the no obviously Q change was observed between the free phthalocyanines and nanoparticles. The fluorescence intensity of polymer nanoparticles were higher enhanced compared with free dendritic phthalocyanines. The dendrimer phthalocyanine loaded with poly(L-lysine)-b-poly (ethylene glycol)-b-poly(L-lysine) presented suitable physical stability, improved photophysical properties suggesting it may be considered as a promising formulation for PDT.

  16. A multiscale modeling study of loss processes in block-copolymer-based solar cell nanodevices.

    PubMed

    Donets, Sergii; Pershin, Anton; Christlmaier, Martin J A; Baeurle, Stephan A

    2013-03-07

    Flexible photovoltaic devices possess promising perspectives in opto-electronic technologies, where high mobility and/or large-scale applicability are important. However, their usefulness in such applications is currently still limited due to the low level of optimization of their performance and durability. For the improvement of these properties, a better understanding and control of small-scale annihilation phenomena involved in the photovoltaic process, such as exciton loss and charge carrier loss, is necessary, which typically implicates multiple length- and time-scales. Here, we study the causes for their occurrence on the example of nanostructured diblock- and triblock-copolymer systems by making use of a novel solar-cell simulation algorithm and explore new routes to optimize their photovoltaic properties. A particular focus is set on the investigation of exciton and charge carrier loss phenomena and their dependence on the inter-monomeric interaction strength, chain architecture, and external mechanical loading. Our simulation results reveal that in the regime from low up to intermediate χ-parameters an increasing number of continuous percolation paths is created. In this parameter range, the internal quantum efficiency (IQE) increases up to a maximum, characterized by a minimum in the number of charge losses due to charge recombination. In the regime of high χ-parameters both block-copolymer systems form nanostructures with a large number of bottlenecks and dead ends. These lead to a large number of charge losses due to charge recombination, charge trapping, and a deteriorated exciton dissociation, resulting in a significant drop in the IQE. Moreover, we find that the photovoltaic performance of the triblock-copolymer material decreases with increasing mechanical loading, caused by a growing number of charge losses due to charge recombination and charge accumulation. Finally, we demonstrate that the process of charge trapping in defects can be reversed

  17. Thermoresponsive gelling behavior of concentrated alumina suspensions containing poly(acrylic acid) and PEO-PPO-PEO copolymer.

    PubMed

    Kondo, Akira; Xu, Hui; Abe, Hiroya; Naito, Makio

    2012-05-01

    Thermoresponsive gelling behavior of concentrated alumina suspensions with poly(acrylic acid) (PAA) and triblock copolymer (PEO(101)-PPO(56)-PEO(101), Pluronic F127) was investigated as a function of PAA concentration (0.4-1.2 mass%) for ceramic solid free forming. The copolymer species assemble into micelles at temperatures above 15°C, yielding aqueous physical gel. In this study, the concentrated alumina aqueous suspensions (φ=35 vol%) were first prepared using the anionic dispersant of PAA, and then the copolymer species (10 mass%) were dissolved at a cooled temperature at 10°C. The addition of the copolymer species had a negligible influence on the adsorption state of PAA onto the alumina surfaces. The PAA concentration needed for the saturation adsorption on the alumina surfaces was ~0.6 mass%. When the PAA concentration was this value or slightly less, the suspension became gel state at 30°C from low viscous state at 10°C. The thermally induced alumina gel had excellent viscoelastic properties, and thereby the three dimensional periodic ceramic structures were successfully fabricated by a direct colloidal printing method that using the gels as "solid" inks at the room temperature. On the other hand, when it exceeded the saturation adsorption limit, the gelling behavior was not observed, indicating that the non-adsorbing PAA species may partly suppress the micellization of the copolymer on the heating.

  18. Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel.

    PubMed

    Yu, Lin; Zhang, Zheng; Zhang, Huan; Ding, Jiandong

    2009-06-08

    A facile method to obtain a thermoreversible physical hydrogel was found by simply mixing an aqueous sol of a block copolymer with a precipitate of a similar copolymer but with a different block ratio. Two ABA-type triblock copolymers poly(D,L-lactic acid-co-glycolic acid)-B-poly(ethylene glycol)-B-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) were synthesized. One sample in water was a sol in a broad temperature region, while the other in water was just a precipitate. The mixture of these two samples with a certain mix ratio underwent, however, a sol-to-gel-to-precipitate transition upon an increase of temperature. A dramatic tuning of the sol-gel transition temperature was conveniently achieved by merely varying mix ratio, even in the case of a similar molecular weight. Our study indicates that the balance of hydrophobicity and hydrophilicity within this sort of amphiphilic copolymers is critical to the inverse thermal gelation in water resulting from aggregation of micelles. The availability of encapsulation and sustained release of lysozyme, a model protein by the thermogelling systems was confirmed. This "mix" method provides a very convenient approach to design injectable thermogelling biomaterials with a broad adjustable window, and the novel copolymer mixture platform is potentially used in drug delivery and other biomedical applications.

  19. Fabrication of Ordered Mesoporous Silica with Encapsulated Iron Oxide Particles using Ferritin-Doped Block Copolymer Templates

    NASA Astrophysics Data System (ADS)

    Hess, D.; Watkins, J.; Naik, R.

    2006-03-01

    Recently, two-dimensional arrays of iron oxide clusters were fabricated by dip-coating a silica substrate into an aqueous solution. Here we report the encapsulation of ferritin in 3D mesoporous silica structures by the replication of block copolymer templates in supercritical CO2. In our approach, preparation of the highly ordered, doped template via spincasting and microphase separation and silica network formation occur in discreet steps. A solution of an amphiphilic PEO-PPO-PEO triblock copolymer (Pluronic) template, horse spleen ferritin and a low concentration of PTSA acid was prepared and spin-coated onto a Si wafer. Upon drying the block copolymer microphase separates resulting in partitioning of the acid catalyst and ferritin to the hydrophilic domain. The polymer template was then exposed to a solution of supercritical carbon dioxide and tetraethyl orthosilicate (TEOS) at 125 bar and 40^oC. Equilibrium limited CO2 sorption in the block copolymer template resulted in modest dialation of the microphase segregated structure. Under these conditions, the precursor was readily infused into the copolymer and reacted within the hydrophilic domain containing the acid catalyst. The resultant film was calcined in air at 400^oC for 6 hours producing a well-ordered iron oxide-doped mesoporous silica film. TEM and XRD revealed crystalline iron oxide structures within the mesoporous silica supports. Magnetic properties were analyzed using a superconducting quantum intereference device (SQUID).

  20. Separation of parent homopolymers from polystyrene and poly(ethylene oxide) based block copolymers by liquid chromatography under limiting conditions of desorption-3. Study of barrier efficiency according to block copolymers' chemical composition.

    PubMed

    Rollet, Marion; Pelletier, Bérengère; Berek, Dušan; Maria, Sébastien; Phan, Trang N T; Gigmes, Didier

    2016-09-02

    Liquid Chromatography under Limiting Conditions of Desorption (LC LCD) is a powerful separation tool for multicomponent polymer systems. This technique is based on a barrier effect of an appropriate solvent, which is injected in front of the sample, and which decelerates the elution of selected macromolecules. In this study, the barrier effects have been evaluated for triblock copolymers polystyrene-b-poly(ethylene oxide)-b-polystyrene (PS-b-PEO-b-PS) according to the content of polystyrene (wt% PS) and PEO-block molar mass. PS-b-PEO-b-PS samples were prepared by Atom Transfer Radical Polymerization (ATRP). The presence of respective parent homopolymers was investigated by applying optimized LC LCD conditions. It was found that the barrier composition largely affects the efficiency of separation and it ought to be adjusted for particular composition range of block copolymers.

  1. Triblock polymers of the bab type having hydrophobic association capabilities for rheological control in aqueous systems

    SciTech Connect

    Rose, G. D.; Dennis, K. S.; Evani, S.

    1985-03-19

    The rheology of aqueous liquids is effectively controlled by the addition to the liquid of a water-dispersible BAB triblock polymer wherein the B blocks are hydrophobic blocks such as alkyl or sulfonated poly (t-butylstyrene) and the A block is a hydrophilic block such as sulfonated poly (vinyltoluene).

  2. Poloxamines display a multiple inhibitory activity of ATP-binding cassette (ABC) transporters in cancer cell lines.

    PubMed

    Cuestas, María L; Sosnik, Alejandro; Mathet, Verónica L

    2011-08-01

    Primary hepatocellular carcinoma is the third most common fatal cancer worldwide with more than 500,000 annual deaths. Approximately 40% of the patients with HCC showed tumoral overexpression of transmembrane proteins belonging to the ATP-binding cassette protein superfamily (ABC) which pump drugs out of cells. The overexpression of these efflux transporters confers on the cells a multiple drug resistance phenotype, which is considered a crucial cause of treatment refractoriness in patients with cancer. The aim of this study was to investigate the inhibitory effect of different concentrations of pH- and temperature-responsive X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamines, Tetronic, PEO-PPO) showing a wide range of molecular weights and EO/PO ratios on the functional activity of three different ABC proteins, namely P-glycoprotein (P-gp or MDR1), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein MRP1, in two human hepatocarcinoma cell lines, HepG2 and Huh7. First, the cytotoxicity of the different copolymers (at different concentrations) on both liver carcinoma cell lines was thoroughly evaluated by means of apoptosis analysis using annexin V and propidium iodide (PI). Thus, viable cells (AV-/PI-), early apoptotic cells (AV+/PI-) and late apoptotic cells (V-FITC+/PI+) were identified. Results pointed out copolymers of intermediate to high hydrophobicity and intermediate molecular weight (e.g., T904) as the most cytotoxic. Then, DiOC2, rhodamine 123 and vinblastine were used as differential substrates of these pumps. HeLa, an epithelial cell line of human cervical cancer that does not express P-gp, was used exclusively as a control and enabled the discerning between P-gp and MRP1 inhibition. Moderate to highly hydrophobic poloxamines T304, T904 and T1301 showed inhibitory activity against P-gp and BCRP but not against MRP1 in both hepatic cell lines. A remarkable dependence of this effect on the

  3. Ultraviolet absorbing copolymers

    DOEpatents

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  4. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  5. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  6. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  7. Preconceptual ABC design definition and system configuration layout: Appendix A

    SciTech Connect

    1995-03-01

    The mission of the ABC system is to destroy as effectively as possible the fissile material inserted into the core without producing any new fissile material. The contents of this report are as follows: operating conditions for the steam-cycle ABC system; flow rates and component dimensions; drawings of the ABC layout; and impact of core design parameters on containment size.

  8. The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum.

    PubMed

    Weber, Stefan S; Kovalchuk, Andriy; Bovenberg, Roel A L; Driessen, Arnold J M

    2012-11-01

    The filamentous fungus Penicillium chrysogenum is used for the industrial production of β-lactam antibiotics. The pathway for β-lactam biosynthesis has been resolved and involves the enzyme phenylacetic acid CoA ligase that is responsible for the CoA activation of the side chain precursor phenylacetic acid (PAA) that is used for the biosynthesis of penicillin G. To identify ABC transporters related to β-lactam biosynthesis, we analyzed the expression of all 48 ABC transporters present in the genome of P. chryso-genum when grown in the presence and absence of PAA. ABC40 is significantly upregulated when cells are grown or exposed to high levels of PAA. Although deletion of this transporter did not affect β-lactam biosynthesis, it resulted in a significant increase in sensitivity to PAA and other weak acids. It is concluded that ABC40 is involved in weak acid detoxification in P. chrysogenum including resistance to phenylacetic acid.

  9. Transport Properties of Sulfonated Poly (Styrene-b-isobutylene-b-styrene) Triblock Copolymers at High Ion-Exchange Capacities

    DTIC Science & Technology

    2005-10-20

    2-propanol (Burdick & Jackson, HPLC Grade), cyclohexanone (Aldrich, reagent grade), butanol (J.T. Baker, reagent grade), and water (J.T. Baker, HPLC...explored. S-SIBS-29 was solution cast from a number of different solvents: chloroform, methylene chloride, THF, cyclo- hexanol, benzene, cyclohexanone ...styrene ) × 100 (1) 400 Elabd et al. Macromolecules, Vol. 39, No. 1, 2006 48 h. S-SIBS-29 was solution-cast from cyclohexanone and cylohexanol with

  10. The ABCs of Managing Teacher Stress.

    ERIC Educational Resources Information Center

    Nagel, Liza; Brown, Sheri

    2003-01-01

    Describes stress management for teachers and presents strategies that teachers can use to lessen the impact of stress. Outlines the ABCs of stress: Acknowledge, Behavior Modification, and Communication. Notes that stress can motivate teachers to explore new instructional strategies, adopt innovative approaches to increasing student motivation, and…

  11. Calculus ABCs: A Gateway for Freshman Calculus

    ERIC Educational Resources Information Center

    Fulton, Scott R.

    2003-01-01

    This paper describes a gateway testing program designed to ensure that students acquire basic skills in freshman calculus. Students must demonstrate they have mastered standards for "Absolutely Basic Competency"--the Calculus ABCs--in order to pass the course with a grade of C or better. We describe the background, standards, and testing program.…

  12. New amphiphilic glycopolymers by click functionalization of random copolymers – application to the colloidal stabilisation of polymer nanoparticles and their interaction with concanavalin A lectin

    PubMed Central

    Otman, Otman; Boullanger, Paul; Drockenmuller, Eric

    2010-01-01

    Summary Glycopolymers with mannose units were readily prepared by click chemistry of an azido mannopyranoside derivative and a poly(propargyl acrylate-co-N-vinyl pyrrolidone). These glycopolymers were used as polymer surfactants, in order to obtain glycosylated polycaprolactone nanoparticles. Optimum stabilization for long time storage was achieved by using a mixture of glycopolymers and the non-ionic triblock copolymer Pluronic® F-68. The mannose moieties are accessible at the surface of nanoparticles and available for molecular recognition by concanavalin A lectin. Interaction of mannose units with the lectin were evaluated by measuring the changes in nanoparticles size by dynamic light scattering in dilute media. PMID:20625527

  13. Morphological structure and properties relationship for rubber modified polypropylene-g-polystyrene copolymer blends

    SciTech Connect

    Adewole, A.; Mascia, L.; Gogos, C.

    1996-12-31

    As produced reactor copolymer, obtained by in-reactor grafting polymerization technology is a two-phase rigid copolymer which combines the best attributes of semi-crystalline polypropylene and those of amorphous polystyrene. In the process, the compatibilizer, PP-g-PS and the non-olefinic polymer component, PS are simultaneously generated from the monomer styrene. The reactor product, which has higher modulus but lower impact-resistance is further toughened by incorporation of EPR (ethylene propylene rubber) and SEBS (styrene-ethylene-butylene-styrene) triblock copolymer, via intensive melt-mixing downstream extruder operation. A similarly produced graft copolymer, PP-g-LLDPE has been shown to be an effective compatibilizer for recycled polyolefinic streams. Hence, the motivation to assess the efficacy of the PP-g-PS copolymer as a compatibilizer for commingled polyolefinic and polystyrene recycled streams. Therefore, we have formulated both {open_quotes}physical{close_quotes} analogues and {open_quotes}model{close_quotes} blends of the reactor product, aiming to determine the influence on blend properties, of the critical components, such as the free polystyrene (PS), the grafted polystyrene (g-PS) or chemical compatibilizer, SEBS or physical compatibilizer and the EPR rubber modifier. In mixing experiments off-line, hot stage microscopy on polymer carcass samples was used to monitor morphology evolution and dispersion rate. Using fracture mechanics approach, material properties such as critical stress intensity factor, Kc and critical strain energy release rate, Gc were determined to elucidate the rubber toughening process for the polyblend. Characterization techniques such as DMA (Dynamic Mechanical Analysis), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy) and DSC (Differential Scanning Calorimetry) were used to examine samples before and after annealing.

  14. The effect of RAFT-derived cationic block copolymer structure on gene silencing efficiency.

    PubMed

    Hinton, Tracey M; Guerrero-Sanchez, Carlos; Graham, Janease E; Le, Tam; Muir, Benjamin W; Shi, Shuning; Tizard, Mark L V; Gunatillake, Pathiraja A; McLean, Keith M; Thang, San H

    2012-10-01

    In this work a series of ABA tri-block copolymers was prepared from oligo(ethylene glycol) methyl ether methacrylate (OEGMA(475)) and N,N-dimethylaminoethyl methacrylate (DMAEMA) to investigate the effect of polymer composition on cell viability, siRNA uptake, serum stability and gene silencing. Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization was used as the method of polymer synthesis as this technique allows the preparation of well-defined block copolymers with low polydispersity. Eight block copolymers were prepared by systematically varying the central cationic block (DMAEMA) length from 38 to 192 monomer units and the outer hydrophilic block (OEGMA(475)) from 7 to 69 units. The polymers were characterized using size exclusion chromatography and (1)H NMR. Chinese Hamster Ovary-GFP and Human Embryonic Kidney 293 cells were used to assay cell viability while the efficiency of block copolymers to complex with siRNA was evaluated by agarose gel electrophoresis. The ability of the polymer-siRNA complexes to enter into cells and to silence the targeted reporter gene enhanced green fluorescent protein (EGFP) was measured by using a CHO-GFP silencing assay. The length of the central cationic block appears to be the key structural parameter that has a significant effect on cell viability and gene silencing efficiency with block lengths of 110-120 monomer units being the optimum. The ABA block copolymer architecture is also critical with the outer hydrophilic blocks contributing to serum stability and overall efficiency of the polymer as a delivery system.

  15. Sans Studies Insight Into Improving of Yield of Block Copolymer-Stabilized Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ray, Debes; Aswal, V. K.

    2010-01-01

    Triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) are well known as dispersion stabilizers. It has also been recently found that they can act as reducing agents along with stabilizers and these two properties of block copolymers together have provided a single-step synthesis and stabilization of gold nanoparticles at ambient temperature. We have studied the synthesis of stable gold nanoparticle solutions using block copolymer P85. Gold nanoparticles are prepared from 1 wt% aqueous solution of P85 mixed with varying concentration of HAuCl4.3H2O salt in the range 0.001 to 0.1 wt%. Surface plasmon resonance (SPR) band in UV-visible absorption spectra confirm the formation of the gold nanoparticles and the maximum yield of the nanoparticles is found to be quite low at 0.005 wt% of the salt solution. Small-angle neutron scattering (SANS) measurements in these systems suggest that a very small fraction of the block copolymers (<1%) is only associated with the gold nanoparticles and remaining form their own micelles, which probably results in the low yield. This can be explained as on an average a high block copolymer-to-gold ion ratio r0 (22) is required for 1 wt% P85 in the reduction reaction to produce gold nanoparticles. Based on this understanding, a step-addition method is used to enhance the yield of gold nanoparticles by manifold where the gold salt is added in small steps to maintain higher value of r(>r0) and therefore continuous formation of nanoparticles.

  16. Block Copolymer Modified Epoxy Amine System for Reactive Rotational Molding: Structures, Properties and Processability

    NASA Astrophysics Data System (ADS)

    Lecocq, Eva; Nony, Fabien; Tcharkhtchi, Abbas; Gérard, Jean-François

    2011-05-01

    Poly(styrene-butadiene-methylmethacrylate) (SBM) and poly(methylmethacrylate-butyle-acrylate-methylmethacrylate) (MAM) triblock copolymers have been dissolved in liquid DGEBA epoxy resin which is subsequently polymerized by meta-xylene diamine (MXDA) or Jeffamine EDR-148. A chemorheology study of these formulations by plate-plate rheology and by thermal analysis has allowed to conclude that the addition of these copolymer blocks improve the reactive rotational moulding processability without affecting the processing time. Indeed, it prevents the pooling of the formulation at the bottom of the mould and a too rapid build up of resin viscosity of these thermosetting systems. The morphology of the cured blends examined by scanning electron microscopy (SEM) shows an increase of fracture surface area and thereby a potential increase of the toughness with the modification of epoxy system. Dynamic mechanical spectroscopy (DMA) and opalescence of final material show that the block PMMA, initially miscible, is likely to induce phase separation from the epoxy-amine matrix. Thereby, the poor compatibilisation between the toughener and the matrix has a detrimental effect on the tensile mechanical properties. The compatibilisation has to be increased to improve in synergy the processability and the final properties of these block copolymer modified formulations. First attempts could be by adapting the length and ratio of each block.

  17. A block copolymer approach to the pre-programmed organization of inorganic nanostructures

    NASA Astrophysics Data System (ADS)

    Kumacheva, Eugenia

    2010-03-01

    Organized arrays of inorganic nanoparticles show electronic, optical, and magnetic properties that originate from the coupling of size- and shape-dependent properties of individual nanoparticles (NPs). Controllable and predictable organization of NPs in complex, hierarchical structures provides a route to the fabrication of new materials and functional devices. Significant progress has been achieved in the bottom-top organization of NPs arrays, which is based on their self-assembly, yet, currently, this approach remains largely empirical. We propose a block copolymer paradigm for the self-assembly of asymmetric inorganic nanorods. By using a striking analogy between amphiphilic ABA triblock copolymers and inorganic nanorods carrying distinct ligands at the edges and ling sides, we assembled the nanorods in structures with varying geometries. The self-assembly was tunable and reversible, and it was achieved solely by changing the solvent quality for the constituent ``blocks''. We mapped the self-assembly process by using phase-like diagrams and demonstrated control over the optical properties of the self-assembled structures. The proposed strategy provides a new route to the organization of nanoparticles by using the strategies that are established for the self-assembly of block copolymers.

  18. ABC transporters in fish species: a review

    PubMed Central

    Ferreira, Marta; Costa, Joana; Reis-Henriques, Maria A.

    2014-01-01

    ATP-binding cassette (ABC) proteins were first recognized for their role in multidrug resistance (MDR) in chemotherapeutic treatments, which is a major impediment for the successful treatment of many forms of malignant tumors in humans. These proteins, highly conserved throughout vertebrate species, were later related to cellular detoxification and accounted as responsible for protecting aquatic organisms from xenobiotic insults in the so-called multixenobiotic resistance mechanism (MXR). In recent years, research on these proteins in aquatic species has highlighted their importance in the detoxification mechanisms in fish thus it is necessary to continue these studies. Several transporters have been pointed out as relevant in the ecotoxicological context associated to the transport of xenobiotics, such as P-glycoproteins (Pgps), multidrug-resistance-associated proteins (MRPs 1-5) and breast cancer resistance associated protein (BCRP). In mammals, several nuclear receptors have been identified as mediators of phase I and II metabolizing enzymes and ABC transporters. In aquatic species, knowledge on co-regulation of the detoxification mechanism is scarce and needs to be addressed. The interaction of emergent contaminants that can act as chemosensitizers, with ABC transporters in aquatic organisms can compromise detoxification processes and have population effects and should be studied in more detail. This review intends to summarize the recent advances in research on MXR mechanisms in fish species, focusing in (1) regulation and functioning of ABC proteins; (2) cooperation with phase I and II biotransformation enzymes; and (3) ecotoxicological relevance and information on emergent pollutants with ability to modulate ABC transporters expression and activity. Several lines of evidence are clearly suggesting the important role of these transporters in detoxification mechanisms and must be further investigated in fish to underlay the mechanism to consider their use as

  19. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water.

    PubMed

    Yu, Lin; Zhang, Zheng; Zhang, Huan; Ding, Jiandong

    2010-08-09

    This study examines in vitro and in vivo biodegradation and biocompatibility of a thermogelling polymeric material, which we call a mixture hydrogel. The mixture contains two ABA-type triblock copolymers poly(d,l-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(d,l-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) with different block ratios, and one polymer is soluble in water, but the other is not. The aqueous solutions of some mixtures with appropriate mix ratios form hydrogels at the body temperature. The degradation of mixture hydrogels proceeded by hydrolysis of ester bonds followed by the erosion of gel in phosphate saline buffer solution at 37 degrees C for nearly one month. The mass loss and reduction of molecular weight were detected. The mix ratio was found to significantly influence the degradation profiles. The rapid in vivo gel formation was confirmed after subcutaneous injection of the thermogelling copolymer mixtures into Sprague-Dawley rats. The in vivo degradation was a bit accelerated than in vitro hydrolysis, and the persistence time of injected hydrogels in vivo was found to be tuned by mix ratio. MTT assay and histological observations were used to examine the copolymer mixtures. Both in vitro and in vivo results illustrate acceptable biocompatibility of our materials. As such, the thermosensitive hydrogel of copolymer mixture is confirmed to be a promising candidate of an injectable biomaterial for drug delivery and tissue engineering.

  20. Self-Assembly of Pluronic Block Copolymers in Solutions: Simulation and Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Hong, Kunlun; Do, Changwoo; Biology and Soft-Matter Division, Oak Ridge National Laboratory Team; Chemical Science Division, Oak Ridge National Laboratory Team

    2014-03-01

    Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers in water solution display various phase behaviors such as micellar, lamellar, and hexagonal phases and have been of great interest to researchers for their wide range of applications including templates of various nanostructures in solar cell and transportation of nanoparticles in drug delivery. In this study, we combined density functional theory-based mesoscale simulation and small-angle neutron scattering (SANS) experiments to investigate equilibrium structures of L62/water systems at different concentrations. Various simulation parameters found in the literature have been revisited with the experimental findings. Scattering experiments were found to be an excellent. This research is supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Energy Division.

  1. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  2. Peptide-directed self-assembly of functionalized polymeric nanoparticles part I: design and self-assembly of peptide-copolymer conjugates into nanoparticle fibers and 3D scaffolds.

    PubMed

    Ding, Xiaochu; Janjanam, Jagadeesh; Tiwari, Ashutosh; Thompson, Martin; Heiden, Patricia A

    2014-06-01

    A robust self-assembly of nanoparticles into fibers and 3D scaffolds is designed and fabricated by functionalizing a RAFT-polymerized amphiphilic triblock copolymer with designer ionic complementary peptides so that the assembled core-shell polymeric nanoparticles are directed by peptide assembly into continuous "nanoparticle fibers," ultimately leading to 3D fiber scaffolds. The assembled nanostructure is confirmed by FESEM and optical microscopy. The assembly is not hindered when a protein (insulin) is incorporated within the nanoparticles as an active ingredient. MTS cytotoxicity tests on SW-620 cell lines show that the peptides, copolymers, and peptide-copolymer conjugates are biocompatible. The methodology of self-assembled nanoparticle fibers and 3D scaffolds is intended to combine the advantages of a flexible hydrogel scaffold with the versatility of controlled release nanoparticles to offer unprecedented ability to incorporate desired drug(s) within a self-assembled scaffold system with individual control over the release of each drug.

  3. Block copolymer battery separator

    SciTech Connect

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  4. Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    New imide/arylene ether copolymers prepared by reacting anhydride-terminated poly(amic acids) with amine-terminated poly(arylene ethers) in polar aprotic solvents. Each resulting copolymer may have one glass-transition temperature or two, depending on chemical structure and/or compatibility of block units. Most of copolymers form tough, solvent-resistant films with high tensile properties. Films cast from solution tough and flexible, and exhibit useful thermal and mechanical properties. Potentially useful as moldings, adhesives, or composite matrices. Because of flexible arylene ether blocks, these copolymers easier to process than polyimides.

  5. Reactive triblock polymers from tandem ring-opening polymerization for nanostructured vinyl thermosets

    SciTech Connect

    Amendt, Mark A.; Pitet, Louis M.; Moench, Sarah; Hillmyer, Marc A.

    2013-03-07

    Multiply functional hydroxyl telechelic poly(cyclooctene-s-5-norbornene-2-methylene methacrylate) was synthesized by ring opening metathesis (co)polymerization of cis-cyclooctene and 5-norbornene-2-methylene methacrylate using the second generation Grubbs catalyst in combination with a symmetric chain transfer agent bearing hydroxyl functionality. The resulting hydroxyl-telechelic polymer was used as a macroinitiator for the ring opening transesterification polymerization of d,l-lactide to form reactive poly(lactide)-b-poly(cyclooctene-s-5-norbornene-2-methylene methacrylate)-b-poly(lactide) triblock polymers. Subsequently, the triblocks were crosslinked by free radical copolymerization with several vinyl monomers including styrene, divinylbenzene, methyl methacrylate, and ethyleneglycol dimethacrylate. Certain conditions led to optically transparent thermosets with mesoscale phase separation as evidenced by small angle X-ray scattering, differential scanning calorimetry and transmission electron microscopy. Disordered, bicontinuous structures with nanoscopic domains were generated in several cases, rendering the samples attractive for size-selective membrane applications.

  6. Dynamics of entangled rod-coil block copolymers

    NASA Astrophysics Data System (ADS)

    Wang, Muzhou; Timachova, Ksenia; Alexander-Katz, Alfredo; Likhtman, Alexei E.; Olsen, Bradley D.

    2014-03-01

    Polymer science is exploring advanced materials which combine functional domains such as proteins and semiconducting polymers with traditional flexible polymers onto the same molecule. While many studies have focused on equilibrium structure-property relationships, little is known about how the conformational restrictions of rigid domains affect dynamical phenomena such as mechanical properties, processing pathways, and self-assembly kinetics. We have recently introduced a reptation theory for entangled rod-coil block copolymers as a model for this wider class of functional polymeric materials. The theory hypothesizes that the motion of rod-coils is slowed relative to rod and coil homopolymers because of a mismatch between the curvature of the rod and coil entanglement tubes. This effect leads to activated reptation and arm retraction as two relaxation mechanisms that govern the short and long rod regimes, respectively. These results were verified by tracer diffusion measurements using molecular dynamics simulation and forced Rayleigh scattering in both the rod-coil diblock and coil-rod-coil triblock configurations. The tracer diffusion results were then compared to experimental self-diffusion measurements which require a consideration of the motion of the surrounding chains.

  7. The ABCs of plasmid replication and segregation.

    PubMed

    Pinto, Uelinton M; Pappas, Katherine M; Winans, Stephen C

    2012-11-01

    To ensure faithful transmission of low-copy plasmids to daughter cells, these plasmids must replicate once per cell cycle and distribute the replicated DNA to the nascent daughter cells. RepABC family plasmids are found exclusively in alphaproteobacteria and carry a combined replication and partitioning locus, the repABC cassette, which is also found on secondary chromosomes in this group. RepC and a replication origin are essential for plasmid replication, and RepA, RepB and the partitioning sites distribute the replicons to predivisional cells. Here, we review our current understanding of the transcriptional and post-transcriptional regulation of the Rep proteins and of their functions in plasmid replication and partitioning.

  8. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the dou...

  9. Pharmacological correction of misfolding of ABC proteins☆

    PubMed Central

    Rudashevskaya, Elena L.; Stockner, Thomas; Trauner, Michael; Freissmuth, Michael; Chiba, Peter

    2014-01-01

    The endoplasmic reticulum (ER) quality control system distinguishes between correctly and incorrectly folded proteins to prevent processing of aberrantly folded conformations along the secretory pathway. Non-synonymous mutations can lead to misfolding of ABC proteins and associated disease phenotypes. Specific phenotypes may at least partially be corrected by small molecules, so-called pharmacological chaperones. Screening for folding correctors is expected to open an avenue for treatment of diseases such as cystic fibrosis and intrahepatic cholestasis. PMID:25027379

  10. Phase Fluctuations in the ABC Model

    NASA Astrophysics Data System (ADS)

    Bodineau, T.; Derrida, B.

    2011-11-01

    We analyze the fluctuations of the steady state profiles in the modulated phase of the ABC model. For a system of L sites, the steady state profiles move on a microscopic time scale of order L 3. The variance of their displacement is computed in terms of the macroscopic steady state profiles by using fluctuating hydrodynamics and large deviations. Our analytical prediction for this variance is confirmed by the results of numerical simulations.

  11. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths

    SciTech Connect

    Abebe, Daniel G.; Fujiwara, Tomoko

    2012-09-05

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLA comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.

  12. Interfacial Modification by Copolymers: The Importance of Copolymer Microstructure

    NASA Astrophysics Data System (ADS)

    Dadmun, Mark; Eastwood, Eric

    2002-03-01

    The dispersion of nanoscale particles or domains in a polymer matrix can readily lead to nonlinear enhancement of material properties. Our research group has been examining two primary methods to improve the properties of multicomponent polymer systems: compatibilization of a blend with an interfacial modifier or improving the miscibility and properties of polymer blends with specific interactions. In this talk, the importance of specific copolymer microstructure on its ability to strengthen a biphasic interface will be discussed. Atom transfer radical polymerization has been utilized to polymerize a series of multiblock copolymers containing styrene and methyl methacrylate. This, in turn, has allowed the synthesis of a series of copolymers with careful control of the sequence distribution. Subsequent experiments that determine the interfacial strength between two polymers in the presence and absence of these copolymers has provided critical information that documents the importance of copolymer sequence distribution on its ability to strengthen a biphasic interface.

  13. Coarse-graining poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers using the MARTINI force field.

    PubMed

    Nawaz, Selina; Carbone, Paola

    2014-02-13

    The MARTINI coarse-grain (CG) force field is extended for a class of triblock block copolymers known as Pluronics. Existing MARTINI bead types are used to model the non-bonded part of the potential while single chain properties for both homopolymers, poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), are used to develop the bonded interactions. The new set of force field parameters reproduces structural and dynamical properties of high molecular weight homo- and copolymers. The CG model is moderately transferable in solvents of different polarity and concentration; however, the PEO homopolymer model presents a reduced thermodynamic transferability especially in water probably due to the lack of hydrogen bonds with the solvent. Our simulations of a monolayer of Pluronic L44 show polymer-brush-like characteristics for the PEO segments which protrude into the aqueous phase. Other membrane properties not easily accessible using experimental techniques such as its membrane thickness are also calculated.

  14. Preparation of magnetic microspheres based on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymers by modified solvent diffusion method.

    PubMed

    Men, Ke; Zeng, Shi; Gou, MaLing; Guo, Gang; Gu, Ying Chun; Luo, Feng; Zhao, Xia; Wei, YuQuan; Qian, ZhiYong

    2010-06-01

    Magnetic microspheres have promising application in biomedical field. In this paper, biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCEC) triblock copolymers were synthesized by ring-opening polymerization method. Through adjusting the epsilon-CL/PEG weight ratio in feed, PCEC copolymers with different block ratio were obtained. A novel modified solvent diffusion method was described to prepare magnetic PCEC composite microspheres containing magnetite nanoparticles. The particle size of microsphere decreased with increase in the PEG/PCL block ratio. The obtained microspheres could response to external magnetic field. This study described a novel method to prepare magnetic microspheres. The obtained magnetic polymeric microspheres might have potential application in drug delivery system or disease diagnosis field.

  15. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  16. [ABC transporter proteins in multidrug resistance of microorganisms].

    PubMed

    Balková, K; Gbelská, Y

    2007-08-01

    The ABC (ATP binding cassette) transporter family includes membrane proteins that can transport a wide variety of substrates across biological membranes. These proteins play an essential role in the protection of cells from toxic compounds/metabolites. Their overexpression which leads to the development of multidrug resistance (MDR) in pathogens and enables cancer cells to survive chemotherapy is of major concern for human health. Mutations in ABC transporters are implicated in a number of Mendelian disorders such as cystic fibrosis, adrenoleukodystrophy and cholesterol and bile transport defects. In microbial cells, several homologues of human ABC transporters were identified. Their further molecular biological study can contribute to better understanding and treatment of MDR or diseases caused by dysfunction of ABC transporter proteins. A review is presented of the state of the art in ABC transporter proteins in both prokaryotic and eucaryotic cells. The role of microbial ABC transporters in the development of drug resistance is analyzed.

  17. Statistical Hypothesis Testing in Intraspecific Phylogeography: NCPA versus ABC

    PubMed Central

    Templeton, Alan R.

    2009-01-01

    Nested clade phylogeographic analysis (NCPA) and approximate Bayesian computation (ABC) have been used to test phylogeographic hypotheses. Multilocus NCPA tests null hypotheses, whereas ABC discriminates among a finite set of alternatives. The interpretive criteria of NCPA are explicit and allow complex models to be built from simple components. The interpretive criteria of ABC are ad hoc and require the specification of a complete phylogeographic model. The conclusions from ABC are often influenced by implicit assumptions arising from the many parameters needed to specify a complex model. These complex models confound many assumptions so that biological interpretations are difficult. Sampling error is accounted for in NCPA, but ABC ignores important sources of sampling error that creates pseudo-statistical power. NCPA generates the full sampling distribution of its statistics, but ABC only yields local probabilities, which in turn make it impossible to distinguish between a good fitting model, a non-informative model, and an over-determined model. Both NCPA and ABC use approximations, but convergences of the approximations used in NCPA are well defined whereas those in ABC are not. NCPA can analyze a large number of locations, but ABC cannot. Finally, the dimensionality of tested hypothesis is known in NCPA, but not for ABC. As a consequence, the “probabilities” generated by ABC are not true probabilities and are statistically non-interpretable. Accordingly, ABC should not be used for hypothesis testing, but simulation approaches are valuable when used in conjunction with NCPA or other methods that do not rely on highly parameterized models. PMID:19192182

  18. Influence of poly(ethylene oxide)-based copolymer on protein adsorption and bacterial adhesion on stainless steel: modulation by surface hydrophobicity.

    PubMed

    Yang, Yi; Rouxhet, Paul G; Chudziak, Dorota; Telegdi, Judit; Dupont-Gillain, Christine C

    2014-06-01

    The aim of the present work is to study the adhesion of Pseudomonas NCIMB 2021, a typical aerobic marine microorganism, on stainless steel (SS) substrate. More particularly, the potential effect on adhesion of adsorbed poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer is investigated. Bacterial attachment experiments were carried out using a modified parallel plate flow chamber, allowing different surface treatments to be compared in a single experiment. The amount of adhering bacteria was determined via DAPI staining and fluorescence microscopy. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface chemical composition of SS and hydrophobized SS before and after PEO-PPO-PEO adsorption. The adsorption of bovine serum albumin (BSA), a model protein, was investigated to test the resistance of PEO-PPO-PEO layers to protein adsorption. The results show that BSA adsorption and Pseudomonas 2021 adhesion are significantly reduced on hydrophobized SS conditioned with PEO-PPO-PEO. Although PEO-PPO-PEO is also found to adsorb on SS, it does not prevent BSA adsorption nor bacterial adhesion, which is attributed to different PEO-PPO-PEO adlayer structures on hydrophobic and hydrophilic surfaces. The obtained results open the way to a new strategy to reduce biofouling on metal oxide surfaces using PEO-PPO-PEO triblock copolymer.

  19. Orthogonal self-assembly in folding block copolymers.

    PubMed

    Hosono, Nobuhiko; Gillissen, Martijn A J; Li, Yuanchao; Sheiko, Sergei S; Palmans, Anja R A; Meijer, E W

    2013-01-09

    We herein report the synthesis and characterization of ABA triblock copolymers that contain two complementary association motifs and fold into single-chain polymeric nanoparticles (SCPNs) via orthogonal self-assembly. The copolymers were prepared using atom-transfer radical polymerization (ATRP) and possess different pendant functional groups in the A and B blocks (alcohols in the A block and acetylenes in the B block). After postfunctionalization, the A block contains o-nitrobenzyl-protected 2-ureidopyrimidinone (UPy) moieties and the B block benzene-1,3,5-tricarboxamide (BTA) moieties. While the protected UPy groups dimerize after photoinduced deprotection of the o-nitrobenzyl group, the BTA moieties self-assemble into helical aggregates when temperature is reduced. In a two-step thermal/photoirradiation treatment under dilute conditions, the ABA block copolymer forms both BTA-based helical aggregates and UPy dimers intramolecularly. The sequential association of the two self-assembling motifs results in single-chain folding of the polymer, affording nanometer-sized particles with a compartmentalized interior. Variable-temperature NMR studies showed that the BTA and UPy self-assembly steps take place orthogonally (i.e., without mutual interference) in dilute solution. In addition, monitoring of the intramolecular self-assembly of BTA moieties into helical aggregates by circular dichroism spectroscopy showed that the stability of the aggregates is almost independent of UPy dimerization. Size-exclusion chromatography (SEC) and small-angle X-ray scattering analysis provided evidence of significant reductions in the hydrodynamic volume and radius of gyration, respectively, after photoinduced deprotection of the UPy groups; a 30-60% reduction in the size of the polymer chains was observed using SEC in CHCl(3). Molecular imaging by atomic force microscopy (AFM) corroborated significant contraction of individual polymer chains due to intramolecular association of the

  20. In-situ crosslinkable and self-assembling elastin-like polypeptide block copolymers for cartilage tissue repair

    NASA Astrophysics Data System (ADS)

    Lim, Dong Woo

    This work describes the development of genetically engineered elastin-like polypeptide (ELP) block copolymers as in-situ gelling scaffolds for cartilage tissue repair. The central hypothesis underlying this work is that ELP based biopolymers can be exploited as injectable biomaterials by rapid chemical crosslinking. To prove this, gene libraries encoding ELP having different molecular weights and amino acid sequences, and ELP block copolymers composed of various ELP blocks having diverse amino acid composition, length, and phase transition behavior were synthesized by recursive directional ligation, expressed in E. Coli and purified by inverse transition cycling. Mannich-type condensation of hydroxymethylphosphines (HMPs) with primary- and secondary-amines of amino acids was developed as a new crosslinking method of polypeptides. Chemically crosslinked ELP hydrogels were formed rapidly in an aqueous solution by reaction of ELPs containing periodic lysine residues with HMPs. The crosslinking density and mechanical property of the ELP hydrogels were controlled at the sequence level by varying the Lys density in ELPs composed of mono-block as well as by segregation of the Lys residues within specific blocks of tri-block architectures. Fibroblasts embedded in ELP hydrogels survived the crosslinking process and were viable after in vitro culture for at least 3 days. The DNA content of fibroblasts within the tri-block gels was significantly higher than that in the mono-block gels at day 3. These results suggest that the HMP crosslinked ELP block copolymer hydrogels show finely tuned mechanical properties and different microenvironments for cell viability as well as potential as in-situ crosslinkable biopolymers for tissue repair applications with load-bearing environments. As an alternative, rheological behavior of the ELP block copolymers and ELP-grafted hyaluronic acids (HAs) as artificial extracellular matrices (ECMs) showed that they were thermally aggregated into

  1. Second generation copolymers for EOR

    SciTech Connect

    McCormick, C.L.

    1988-05-01

    In this report, the authors review four types of acrylamide-based copolymers with distinctly different dilute solutions and rheological behavior. Each of these ''second generation'' systems possesses characteristics which, in theory, should be superior to conventional polymers under certain operational conditions. Type I copolymers are prepared from acrylamide (AM) and sodium-3-acrylamido-3-methylbutanoate (NaAMB). The high molecular weight, viscosity maintenance, and phase stability in the presence of divalent ions make these copolymers especially attractive for mobility control in EOR. Type II copolymers address the problems of entrapment, pore clogging, and shear degradation often encountered with ultrahigh molecular weight copolymers. The copolymers of this type are lower molecular weight than Type 1 but associate in a cooperative manner in semi-dilute solutions to enhance solution viscoscity. In this report, the authors discuss associative polymers of acrylamide/N-alkyl acrylamides which contain low mole percentages of C/sub 8/, C/sub 10/, or C/sub 12/ comonomers. In practice, a third charged comonomer such as carboxylated or sulfonated one, might be necessary to reduce adsorption to reservoir rock. Type III systems are relatively low molecular weight and hyrophibically modified in order to bring about intramolecular micelle-like association in aqueous solution. The aqueous solutions are non-viscous; viscosification occurs upon solubilization of hydrocarbons in the hydrophobic domains. Copolymers of acrylamide with N-propyl diacetone acrylamide are examples of Type III.

  2. The Role of the Atypical Kinases ABC1K7 and ABC1K8 in Abscisic Acid Responses

    PubMed Central

    Manara, Anna; DalCorso, Giovanni; Furini, Antonella

    2016-01-01

    The ABC1K family of atypical kinases (activity of bc1 complex kinase) is represented in bacteria, archaea, and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA)-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement, and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling. PMID:27047531

  3. Manipulating the morphologies of poly(vinyl alcohol) block copolymer surfactants

    NASA Astrophysics Data System (ADS)

    Repollet-Pedrosa, Milton H.

    Amphiphilic block copolymers (ABCs) are macromolecules containing well-defined hydrophilic and hydrophobic segments that self-assemble into nanoscale aggregates such as spherical and cylindrical micelles and vesicles, when dispersed in block-selective solvents. ABCs possess a miniscule critical micelle concentration, which results in kinetically trapped and persistent assemblies in solution with slow chain exchange between aggregates. This makes them useful as rheological modifiers for personal care products, enhanced oil recovery, and drug delivery formulations. Their utility in many of these applications is crucially dependent on the ability to control the micellar morphologies that they adopt in selective solvents. Triggering ABC micellar morphological transformations, i.e. from spherical to cylindrical micelles, is important for generating "on-demand" stimuli-responsive morphologies that control the aggregate morphology and the bulk solution properties in any given application. In this thesis, we develop the straightforward synthesis of biodegradable and biocompatible ABCs comprised of poly(vinyl acetate) (PVAc) and poly(vinyl alcohol) (PVA), with narrow molecular distributions and variable yet well-defined compositions. These block copolymer amphiphiles readily form spherical micelles in aqueous dispersions. We demonstrate that the addition of a water-soluble poly(ethylene oxide) (PEO) homopolymer to these dispersions results in a rapid transformation of these spherical micelles into cylindrical micelles. Dilution of these cylindrical micelles with water induces their reversion to spherical micelles. Our results indicate that the reversible morphology change depends sensitively on the PEO homopolymer concentration and molecular weight, as well as the length of the PVA corona block of the micelles. Through a series of quantitative 1H NMR studies, we found that the preferential partitioning of PEO homopolymer into the PVAc micellar core drives this morphological

  4. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single-site stereoselective polymerization initiators.

    PubMed

    Zhong, Zhiyuan; Dijkstra, Pieter J; Feijen, Jan

    2004-01-01

    Polylactides and their copolymers are key biodegradable polymers used widely in biomedical, pharmaceutical and ecological applications. The development of synthetic pathways and catalyst/initiator systems to produce pre-designed polylactides, as well as the fundamental understanding of the polymerization reactions, has continuously been an important topic. Here, we will address the recent advances in the ring-opening polymerization of lactides, with an emphasis on the highly versatile in situ generated initiator systems and single-site stereoselective initiators. The in situ generated initiators including in situ formed yttrium, calcium and zinc alkoxides all have been shown to bring about a rapid and living polymerization of lactides under mild conditions, which facilitated the preparation of a variety of advanced lactide-based biomaterials. For example, well-defined di- and tri-block copolymers consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic polyester blocks, which form novel biodegradable polymersomes or biodegradable thermosensitive hydrogels, have been prepared. In the past few years, significant progress has also been made in the area of stereoselective polymerization of lactides. This new generation of initiators has enabled the production of polylactide materials with novel microstructures and/or properties, such as heterotactic (--RRSSRRSSRRSS--) polylactide, crystalline syndiotactic (--RSRSRSRSRSRS--) polylactide and isotactic stereoblock (--Rn Sn Rn Sn--) polylactide, exhibiting a high melting temperature. The recently developed polymerizations using in situ generated initiators and stereoselective polymerizations have no doubt opened a brand-new avenue for the design and exploration of polylactides and their copolymers.

  5. The formation of standing cylinders in block copolymer films by irreversibly adsorbed polymer layers on substrates

    NASA Astrophysics Data System (ADS)

    Shang, Jun; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori

    2013-03-01

    Block copolymers offer a simple and effective route to produce standing cylindrical nanostructures with regularity on the order of 10-100 nm, the length scale that is desirable for many advanced applications. However, these formations have been especially troublesome due to the fact that preferential interactions between one of the blocks and the surfaces will induce parallel alignment of the cylinders in order to minimize interfacial and surface energy. Here we introduce an alternative simple method utilizing an irreversibly adsorbed polymer layer (a ``Guiselin'' brush) as a neutral ``substrate'' formed on solid substrates for the arrangement of standing cylindrical nanostructures. The effect of polymer adsorbed layer on the long range ordering of asymmetric cylinder forming poly(styrene-block-ethylene/butylene-block-styrene) (SEBS) triblock copolymer thin films were investigated by using a combination of grazing incidence small angle x-ray scattering and atomic force microscopy techniques. We found that the SEBS, which forms cylinders lying parallel to the surface when prepared on silicon substrates, show standing cylindrical structures on selected Guiselin brush layers after prolong thermal annealing. The details will be discussed in the presentation. We acknowledges the financial support from NSF Grant No. CMMI-084626

  6. Nanostructured Copolymer Gels for dsDNA Separation by Capillary Electrophoresis

    PubMed Central

    Wan, Fen; Zhang, Jun; Lau, Angela; Tan, Sarah; Burger, Christian; Chu, Benjamin

    2010-01-01

    Pluronics copolymers are triblock copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) and are able to form many different ordered nanostructures at appropriate polymer concentrations and temperatures in selective solvents. These nano-structured ‘gels’ showed desirable criteria when used as DNA separation media, especially in microchip electrophoresis, including dynamic coating ability and viscosity switchable property. A ternary system of F127 (E99P69E99)/TBE buffer/1-butanol was selected as a model system to test the sieving performance of different nanostructures in separating dsDNA by capillary electrophoresis. The lattice structures were determined by small-angle x-ray scattering with quasi-lattice crystal parameters being calculated according to the x-ray scattering data. Viscosity measurements showed the sol-gel transition phenomena. In addition to the cubic structure, successful electrophoretic separation of dsDNA in 2-D hexagonal packed cylinders was achieved. Results showed that without further optimization, ΦX174 DNA-Hae III digest was well separated within 15 minutes in a 7-cm separation channel, by using F127/TBE/1-butanol gel with a 2-D hexagonal structure. A mechanism for DNA separations by those gels with both hydrophilic and hydrophobic domains is discussed. PMID:19053068

  7. Guidelines for the Synthesis of Block Copolymer Particles of Various Morphologies by RAFT Dispersion Polymerization.

    PubMed

    Rieger, Jutta

    2015-08-01

    This article presents the recent developments of radical dispersion polymerizaton controlled by reversible addition fragmentation chain transfer (RAFT) for the production of block copolymer particles of various morphologies, such as core-shell spheres, worms, or vesicles. It is not meant to be an exhaustive review but it rather provides guidelines for non-specialists. The article is subdivided into eight sections. After a general introduction, the mechanism of polymerization-induced self-assembly (PISA) through RAFT-mediated dispersion polymerization is presented and the different parameters that control the morphology produced are discussed. The next two sections are devoted to the choice of the monomer/solvent pair and the macroRAFT agent. Afterwards, post-polymerization morphological order-to-order transitions (i.e. morphological transitions triggered by extrinsic stimuli) or order-to-disorder transitions (i.e. disassembly of chains) are discussed. Assemblies based on more complex polymer architectures, such as triblock copolymers, are presented next, and finally the possibility to stabilize these structures by crosslinking is reported. The manuscript ends with a short conclusion and an outlook.

  8. Polydispersity-Driven Block Copolymer Amphiphile Self-Assembly into Prolate-Spheroid Micelles

    SciTech Connect

    Schmitt, Andrew L.; Repollet-Pedrosa, Milton H.; Mahanthappa, Mahesh K.

    2013-09-26

    The aqueous self-assembly behavior of polydisperse poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) macromolecular triblock amphiphiles is examined to discern the implications of continuous polydispersity in the hydrophobic block on the resulting aqueous micellar morphologies of otherwise monodisperse polymer surfactants. The chain length polydispersity and implicit composition polydispersity of these samples furnishes a distribution of preferred interfacial curvatures, resulting in dilute aqueous block copolymer dispersions exhibiting coexisting spherical and rod-like micelles with vesicles in a single sample with a O weight fraction, w{sub O}, of 0.18. At higher w{sub O} = 0.51-0.68, the peak in the interfacial curvature distribution shifts and we observe the formation of only American football-shaped micelles. We rationalize the formation of these anisotropically shaped aggregates based on the intrinsic distribution of preferred curvatures adopted by the polydisperse copolymer amphiphiles and on the relief of core block chain stretching by chain-length-dependent intramicellar segregation.

  9. ABCs of Being Smart: S Is for Supporting

    ERIC Educational Resources Information Center

    Foster, Joanne

    2014-01-01

    Joanne Foster's article "R We There Yet?" was first published in "Parenting for High Potential" ("PHP") in 2006, which became the springboard for the "ABCs of Being Smart" series of columns. At that time, Foster invited "PHP" readers to think about their own versions of the "ABCs of Being…

  10. Measuring Academic Behavioural Confidence: The ABC Scale Revisited

    ERIC Educational Resources Information Center

    Sander, Paul; Sanders, Lalage

    2009-01-01

    The Academic Behavioural Confidence (ABC) scale has been shown to be valid and can be useful to teachers in understanding their students, enabling the design of more effective teaching sessions with large cohorts. However, some of the between-group differences have been smaller than expected, leading to the hypothesis that the ABC scale many not…

  11. The ABCs of School Choice, 2009-2010 Edition

    ERIC Educational Resources Information Center

    Friedman Foundation for Educational Choice, 2010

    2010-01-01

    This publication presents the 2009-2010 edition of the Friedman Foundation for Educational Choice's "ABCs of School Choice". The "ABCs of School Choice" provides the latest in up-to-date and accurate information about the many school choice success stories taking place throughout the country. Readers will find this guide an…

  12. Stress-strain behavior of block-copolymers and their nanocomposites filled with uniform or Janus nanoparticles under shear: a molecular dynamics simulation.

    PubMed

    Wang, Lu; Liu, Hongji; Li, Fanzhu; Shen, Jianxiang; Zheng, Zijian; Gao, Yangyang; Liu, Jun; Wu, Youping; Zhang, Liqun

    2016-10-05

    Although numerous research studies have been focused on studying the self-assembled morphologies of block-copolymers (BCPs) and their nanocomposites, little attention has been directed to explore the relation between their ordered structures and the resulting mechanical properties. We adopt coarse-grained molecular dynamics simulation to study the influence of the morphologies on the stress-strain behavior of pure block copolymers and block copolymers filled with uniform or Janus nanoparticles (NPs). At first, we examine the effect of the arrangement (di-block, tri-block, alternating-block) and the components of the pure block copolymers, and by varying the component ratio between A and B blocks, spherical, cylindrical and lamellar phases are all formed, showing that spherical domains bring the largest reinforcing effect. Then by studying BCPs filled with NPs, the Janus NPs induce stronger bond orientation of polymer chains and greater mechanical properties than the uniform NPs, when these two kinds of NPs are both located in the interface region. Meanwhile, some other anisotropic Janus NPs, such as Janus rods and Janus sheets, are incorporated to examine the effect on the morphology and the stress-strain behavior. These findings deepen our understanding of the morphology-mechanics relation of BCPs and their nanocomposites, opening up a vast number of approaches such as designing the arrangement and components of BCPs, positioning uniform or Janus NPs with different shapes and shear flow to tailor their stress-strain performance.

  13. Synthesis, characterization, and self-assembly of linear poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ε-caprolactone) (PEO-PPO-PCL) copolymers.

    PubMed

    Xu, Lifang; Zhang, Zhiqing; Wang, Fang; Xie, Dongdong; Yang, Shan; Wang, Tao; Feng, Lijuan; Chu, Chengchai

    2013-03-01

    Amphiphilic triblock copolymers of PEO-PPO-PCL with various block compositions have been synthesized by ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) initiated by the OH group of methoxy-poly(ethylene oxide)-poly(propylene oxide) (Me-PEO-PPO). Their structures were confirmed by Fourier transform infrared (FT-IR) measurements, and their self-assembly in aqueous solution was studied using fluorescence spectroscopy, transmission electron microscopy (TEM), UV-vis spectra, differential scanning calorimetry (DSC), and surface tension. For the copolymers studied in this paper, the critical aggregation concentrations (CAC) ranged from 5×10(3) to 2 mg/L. The critical micelle concentrations (CMC) decreased with increasing PCL block length, and the downtrend was more significant in the short PCL block length. All of the three copolymers were capable of solubilizing hydrophobic molecules (pyrene) in aqueous solution and copolymers with a longer PCL block exhibited a stronger solubilizing ability. The TEM images showed that the size and morphology of the aggregations could be tuned by varying the compositions or the concentration.

  14. Development of flexible LEO-resistant PI films for space applications using a self-healing mechanism by surface-directed phase separation of block copolymers.

    PubMed

    Fischer, Hartmut R; Tempelaars, Karin; Kerpershoek, Aat; Dingemans, Theo; Iqbal, M; Lonkhuyzen, Henk van; Iwanowsky, Boris; Semprimoschnig, Christopher

    2010-08-01

    Polimide-block-polydimethylsiloxane (PI-b-PDMS) block copolymers have been synthesized from commercially available amino-terminated polysiloxanes with different molecular weights, for use as polymeric materials resistant to the low earth orbit (LEO) space environment. A structural optimization with respect to maximum environmental protection has been performed by varying the PDMS block length as well as the architecture of the block copolymers spanning from multiblock to triblock and star-shaped morphologies. The synthesized polymers and casted films show good mechanical and thermal performance. For block copolymers with a load of 2% PDMS (in the case of the multiblock copolymers), a complete surface coverage of the PDMS has been found. It has been shown that the transfer of the surface enriched PDMS layer into a thin silica layer after atomic oxygen (AO) exposure results in a drastic decrease in AO erosion rate. The silica layer protects the underlying material from oxygen initiated erosion resulting in a drastic decrease of surface roughness. This phenomena is observable for loads as small as 6 wt % PDMS.

  15. Synthesis of poly(poly(ethylene glycol) methacrylate)-polyisobutylene ABA block copolymers by the combination of quasiliving carbocationic and atom transfer radical polymerizations.

    PubMed

    Szabó, Ákos; Szarka, Györgyi; Iván, Béla

    2015-01-01

    Systematic investigations are carried out on the synthesis of a series of new, unique ABA-type triblock copolymers consisting of the hydrophobic and chemically inert polyisobutylene (PIB) inner and the hydrophilic comb-shaped poly(poly(ethylene glycol) methacrylate) (PPEGMA) polymacromonomer as an outer block. Telechelic PIB macroinitiators with narrow molecular weight distributions (MWD) are synthesized by quasiliving carbocationic polymerization of isobutylene with a bifunctional initiator followed by quantitative chain end derivatizations. Atom transfer radical polymerization (ATRP) of PEGMAs with various molecular weights is investigated by using these macroinitiators. It is found that CuBr is an inefficient ATRP catalyst, while CuCl leads to high, nearly complete conversions of the PEGMA macromonomers. Gel permeation chromatography (GPC) analyses reveal slow initiation of PEGMA at relatively high PIB/PEGMA ratios or with PEGMAs of higher molecular weights due to steric hindrance between the macroinitiator and macromonomer. The occurrence of slow initiation, and not permanent termination, is proven by highly efficient ATRP of a low-molecular-weight monomer, methyl methacrylate, with the block copolymers as macroinitiators. Successful synthesis of PPEGMA-PIB-PPEGMA ABA block copolymers is obtained by using either low-molecular-weight PEGMA or relatively low macroinitiator/macromonomer ratios. Differential scanning calorimetry (DSC) indicates phase separation and significant suppression of the crystallinity of the pendant poly(ethylene glycol) (PEG) chains in these new block copolymers.

  16. The ABC transporter gene family of Daphnia pulex

    PubMed Central

    Sturm, Armin; Cunningham, Phil; Dean, Michael

    2009-01-01

    Background The large gene superfamily of ABC (ATP-binding cassette) transporters encodes membrane proteins involved in trafficking processes across biological membranes and further essential cell biological functions. ABC transporters are evolutionary ancient and involved in the biochemical defence against toxicants. We report here a genome-wide survey of ABC proteins of Daphnia pulex, providing for the first time information on ABC proteins in crustacea, a primarily aquatic arthropod subphylum of high ecological and economical importance. Results We identified 64 ABC proteins in the Daphnia genome, which possesses members of all current ABC subfamilies A to H. To unravel phylogenetic relationships, ABC proteins of Daphnia were compared to those from yeast, worm, fruit fly and human. A high conservation of Daphnia of ABC transporters was observed for proteins involved in fundamental cellular processes, including the mitochondrial half transporters of the ABCB subfamily, which function in iron metabolism and transport of Fe/S protein precursors, and the members of subfamilies ABCD, ABCE and ABCF, which have roles in very long chain fatty acid transport, initiation of gene transcription and protein translation, respectively. A number of Daphnia proteins showed one-to-one orthologous relationships to Drosophila ABC proteins including the sulfonyl urea receptor (SUR), the ecdysone transporter ET23, and the eye pigment precursor transporter scarlet. As the fruit fly, Daphnia lacked homologues to the TAP protein, which plays a role in antigene processing, and the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as a chloride channel. Daphnia showed two proteins homologous to MDR (multidrug resistance) P-glycoproteins (ABCB subfamily) and six proteins homologous to MRPs (multidrug resistance-associated proteins) (ABCC subfamily). However, lineage specific gene duplications in the ABCB and ABCC subfamilies complicated the inference of function. A

  17. Women: the ABC of food security.

    PubMed

    Arcellana, N P

    1997-12-01

    While the 1996 World Food Summit Plan of Action was being approved, a companion NGO (nongovernmental organization) Forum provided opportunities for rural women from 29 countries to relay their perspectives and recommendations. The Rural Women's Workshop was organized by four NGOs: Isis International-Manila, La Via Campesina, the People-Centred Development Forum, and the Women's Food and Agriculture Working Group. Isis International-Manila seeks to create spaces, facilitate processes, and disseminate information for rural women to voice concerns, network, and plan responses. The La Via Campesina network operates in Latin American and the Caribbean where it applies a strong gender perspective to all of its activities. Ultimate progress on the World Food Summit Plan of Action can be evaluated using the ABCs of food security: does the program or policy assure 1) access for women to the total means of production; 2) benefits for women; and 3) community-based resource management and sustainable agriculture.

  18. Étude du comportement associatif du copolymère tribloc poly(1,4-phénylène)-b-polystyrène-b-poly(1,4-phénylène) en solution

    NASA Astrophysics Data System (ADS)

    Mignard, E.; Tachon, C.; François, B.

    1998-06-01

    Poly(1,4-phenylene)-b-polystyrene-b-poly(1,4-phenylene) (PPP-b- PS-b-PPP) block copolymers were synthesized by chemical modification of a precursor copolymer. After characterization by Size Exclusion Chromatography (S.E.C) and U.V. spectroscopy, PPP-b-PS-b-PPP copolymers were studied in THF solution at room temperature by viscosimetry and light-scattering analysis. We have shown the associative behavior of these triblock copolymers by their ability to form, with this molecular weight distribution, aggregates with a possible “flower-like" morphology constituted of a PPP “core" surrounded by PS “petals". Des copolymères à blocs poly(1,4-phénylène)-b-polystyrène-b-poly (1,4-phénylène) (PPP-b-PS-b-PPP) ont été synthétisés par modification chimique d'un copolymère précurseur. Après caractérisation par Chromatographie d'Exclusion Stérique (C.E.S.) et par spectroscopie U.V., les copolymères PPP-b-PS-b-PPP ont été étudiés en solution dans le THF à température ambiante par viscosimétrie et diffusion de la lumière. Nous avons observé le comportement associatif de ces copolymères triblocs par leur aptitude à former, pour la distribution de masses molaires étudiée, des agrégats ayant vraisemblablement une morphologie semblable à celle d'une “fleur" possédant un “cour" de PPP et des “pétales" de PS.

  19. Design of block-copolymer-based micelles for active and passive targeting

    NASA Astrophysics Data System (ADS)

    Lebouille, Jérôme G. J. L.; Leermakers, Frans A. M.; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-10-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with the same chemistry is taken to coassemble into these micelles. At the end of the hydrophilic block of the diblock copolymers, a targeting moiety (TM) is present. Assuming that the rotation of the micelle towards the target is sufficiently fast, we can elaborate a single gradient cell model, wherein the micelle is in the center and the receptor (R) substrate exists on the outer plane of the spherical coordinate system. The distribution function of the targeting moiety corresponds to a Landau free energy with local minima and corresponding maxima. The lowest minimum, which is the ground state, shifts from within the micelle to the adsorbing state upon bringing the substrate closer to the micelle, implying a jumplike translocation of the targeting moiety. Equally deep minima represent the binodal of the phase transition, which is, due to the finite chain length, first-order like. The maximum in-between the two relevant minima implies that there is an activation barrier for the targeting moiety to reach the receptor surface. We localize the parameter space wherein the targeting moiety is (when the micelle is far from the target) preferably hidden in the stealthy hydrophilic corona of the micelle, which is desirable to avoid undesired immune responses, and still can jump out of the corona to reach the target quick enough, that is, when the barrier height is sufficiently low. The latter requirement may be identified by a spinodal condition. We found that such hidden TMs can still establish a TM-R contact at distances up to twice the corona size. The translocation transition will work best when the affinity of the TM for the core is avoided and when hydrophilic TMs are selected.

  20. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... copolymer when extracted for 6 hours with distilled water at reflux temperature. (ii) Not to exceed 0.15 percent by weight of the copolymer when extracted for 6 hours with n-heptane at reflux temperature....

  1. Lignin poly(lactic acid) copolymers

    DOEpatents

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  2. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.65 Divinylbenzene copolymer. Divinylbenzene copolymer may be used for the removal of organic substances from aqueous foods under the following... contacting the polymer is maintained at 79.4 °C (175 °F) or less. (d) The copolymer may be used in...

  3. Nanostructured Membranes from Triblock Polymer Precursors as High Capacity Copper Adsorbents.

    PubMed

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2015-10-13

    Membrane adsorbers are a proposed alternative to packed beds for chromatographic separations. To date, membrane adsorbers have suffered from low binding capacities and/or complex processing methodologies. In this work, a polyisoprene-b-polystyrene-b-poly(N,N-dimethylacrylamide) (PI-PS-PDMA) triblock polymer is cast into an asymmetric membrane that possesses a high density of nanopores (d ∼ 38 nm) at the upper surface of the membrane. Exposing the membrane to a 6 M aqueous hydrochloric acid solution converts the PDMA brushes that line the pore walls to poly(acrylic acid) (PAA) brushes, which are capable of binding metal ions (e.g., copper ions). Using mass transport tests and static binding experiments, the saturation capacity of the PI-PS-PAA membrane was determined to be 4.1 ± 0.3 mmol Cu(2+) g(-1). This experimental value is consistent with the theoretical binding capacity of the membranes, which is based on the initial PDMA content of the triblock polymer precursor and assumes a 1:1 stoichiometry for the binding interaction. The uniformly sized nanoscale pores provide a short diffusion length to the binding sites, resulting in a sharp breakthrough curve. Furthermore, the membrane is selective for copper ions over nickel ions, which permeate through the membrane over 10 times more rapidly than copper during the loading stage. This selectivity is present despite the fact that the sizes of these two ions are nearly identical and speaks to the chemical selectivity of the triblock polymer-based membrane. Furthermore, addition of a pH 1 solution releases the bound copper rapidly, allowing the membrane to be regenerated and reused with a negligible loss in binding capacity. Because of the high binding capacities, facile processing method implemented, and ability to tailor further the polymer brushes lining the pore walls using straightforward coupling reactions, these membrane adsorbers based on block polymer precursors have potential as a separation media that can

  4. Copolymers For Capillary Gel Electrophoresis

    SciTech Connect

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  5. ABC's of Being Smart: I Can "C" Clearly Now

    ERIC Educational Resources Information Center

    Foster, Joanne

    2011-01-01

    In this paper, the author focuses on C of the ABC's of being smart. She continues to categorize the points for readers. These categories include the following: (1) being; (2) doing; and (3) stretching.

  6. Examination of the nature of the ABC effect

    NASA Astrophysics Data System (ADS)

    Bashkanov, M.; Clement, H.; Skorodko, T.

    2017-02-01

    Recently it has been shown by exclusive and kinematically complete experiments that the appearance of a narrow resonance structure in double-pionic fusion reactions is strictly correlated with the appearance of the so-called ABC effect, which denotes a pronounced low-mass enhancement in the ππ-invariant mass spectrum. Whereas the resonance structure got its explanation by the d* (2380) dibaryonic resonance, a satisfactory explanation for the ABC effect is still pending. In this paper we discuss possible explanations of the ABC effect and their consequences for the internal structure of the d* dibaryon. To this end we examine and review a variety of proposed explanations for the ABC effect, add a new hypothesis and confront all of them with the experimental results for the np → dπ0π0 and np → npπ0π0 reactions, which are the most challenging ones for this topic.

  7. ABC proteins protect the human body and maintain optimal health.

    PubMed

    Ueda, Kazumitsu

    2011-01-01

    Human MDR1, a multi-drug transporter gene, was isolated as the first of the eukaryote ATP Binding Cassette (ABC) proteins from a multidrug-resistant carcinoma cell line in 1986. To date, over 25 years, many ABC proteins have been found to play important physiological roles by transporting hydrophobic compounds. Defects in their functions cause various diseases, indicating that endogenous hydrophobic compounds, as well as water-soluble compounds, are properly transported by transmembrane proteins. MDR1 transports a large number of structurally unrelated drugs and is involved in their pharmacokinetics, and thus is a key factor in drug interaction. ABCA1, an ABC protein, eliminates excess cholesterol in peripheral cells by generating HDL. Because ABCA1 is a key molecule in cholesterol homeostasis, its function and expression are highly regulated. Eukaryote ABC proteins function on the body surface facing the outside and in organ pathways to adapt to the extracellular environment and protect the body to maintain optimal health.

  8. Coupled ATPase-adenylate kinase activity in ABC transporters

    PubMed Central

    Kaur, Hundeep; Lakatos-Karoly, Andrea; Vogel, Ramona; Nöll, Anne; Tampé, Robert; Glaubitz, Clemens

    2016-01-01

    ATP-binding cassette (ABC) transporters, a superfamily of integral membrane proteins, catalyse the translocation of substrates across the cellular membrane by ATP hydrolysis. Here we demonstrate by nucleotide turnover and binding studies based on 31P solid-state NMR spectroscopy that the ABC exporter and lipid A flippase MsbA can couple ATP hydrolysis to an adenylate kinase activity, where ADP is converted into AMP and ATP. Single-point mutations reveal that both ATPase and adenylate kinase mechanisms are associated with the same conserved motifs of the nucleotide-binding domain. Based on these results, we propose a model for the coupled ATPase-adenylate kinase mechanism, involving the canonical and an additional nucleotide-binding site. We extend these findings to other prokaryotic ABC exporters, namely LmrA and TmrAB, suggesting that the coupled activities are a general feature of ABC exporters. PMID:28004795

  9. The ABC daycare disaster of Hermosillo, Mexico.

    PubMed

    Greenhalgh, David G; Chang, Philip; Maguina, Pirko; Combs, Elena; Sen, Soman; Palmieri, Tina L

    2012-01-01

    On June 5, 2009, the ABC Daycare facility in Hermosillo, Mexico, caught on fire with an estimated 142 children and 6 adult caregivers inside. The purpose of this article is to describe the factors contributing to the disaster including care of the survivors, tertiary burn center triage, patient transport, and treatment for this international mass casualty event. Finally, the results of an investigation performed by the Mexican Government are reviewed. A summary of the Mexican Government's investigation of the circumstances of fire and an examination of prevention lapses in other Mexican daycare centers was obtained from their public Web site. The demographic and clinical characteristics of the children transported to the burn center were obtained from the patients' medical records and transport data sheets. The ABC Daycare had many fire safety breaches that contributed to the severity of the tragedy. Twenty-nine children died at the scene and more than 35 children were hospitalized throughout Mexico. A total of 12 children were transported to two Shriners Hospitals, 9 to Sacramento, and 3 to Cincinnati. The mean age of patients sent to the Shriners Hospitals was 2.9 ± 0.16 years (2-4 years), with 5 being male and 7 female. The mean duration between injury and arrival was 9.2 ± 2.1 days, the burn size was 43.0 ± 6.8% TBSA (6.5-80%), and there were 3.75 operations per patient. Four had fourth-degree burns requiring finger amputations (2), flaps to cover bone (1), or a through-knee amputation (1). Ten patients were admitted to the intensive care unit, and nine patients (seven with inhalation injury) required mechanical ventilation for a mean of 23.6 ± 10.3 days. All the surviving children were discharged after a mean length of stay of 45.9 ± 8.7 days. In the first year postinjury, seven children were readmitted a total of 11 times for reconstructive surgery, wound care, or rehabilitation. Ultimately, a total of 49 children died. A review of other daycare centers

  10. ABC transporter research: going strong 40 years on

    PubMed Central

    Theodoulou, Frederica L.; Kerr, Ian D.

    2015-01-01

    In most organisms, ABC transporters constitute one of the largest families of membrane proteins. In humans, their functions are diverse and underpin numerous key physiological processes, as well as being causative factors in a number of clinically relevant pathologies. Advances in our understanding of these diseases have come about through combinations of genetic and protein biochemical investigations of these transporters and the power of in vitro and in vivo investigations is helping to develop genotype–phenotype understanding. However, the importance of ABC transporter research goes far beyond human biology; microbial ABC transporters are of great interest in terms of understanding virulence and drug resistance and industrial biotechnology researchers are exploring the potential of prokaryotic ABC exporters to increase the capacity of synthetic biology systems. Plant ABC transporters play important roles in transport of hormones, xenobiotics, metals and secondary metabolites, pathogen responses and numerous aspects of development, all of which are important in the global food security area. For 3 days in Chester, this Biochemical Society Focused Meeting brought together researchers with diverse experimental approaches and with different fundamental questions, all of which are linked by the commonality of ABC transporters. PMID:26517919

  11. Learning the ABC of oral fungal drug resistance.

    PubMed

    Cannon, R D; Holmes, A R

    2015-12-01

    ATP-binding cassette (ABC) proteins are ubiquitous in prokaryotes and eukaryotes. They are involved in energy-dependent transport of molecules across membranes. ABC proteins are often promiscuous transporters that can translocate a variety of substrates. In oral fungi, especially in Candida species, they have been implicated as major contributors to the high-level azole resistance of clinical isolates from infections that do not respond to drug therapy. Although this is predominantly due to efflux of azoles from the cells, ABC proteins can contribute to fungal drug resistance in other ways as well. Cells in biofilms are notoriously resistant to antifungal agents. ABC proteins can contribute to this resistance through the efflux of drugs. Biofilms are complex communities of myriad microorganisms which, to survive in such a milieu, need to communicate with, and respond to, other microorganisms and their products. ABC proteins are involved in the secretion of fungal mating factors and quorum sensing molecules. These molecules affect biofilm structure and behavior that can result in increased drug resistance. Hence, ABC proteins make multiple contributions to oral fungal drug resistance through a variety of responses to environmental signals.

  12. ABC and IFC: Modules Detection Method for PPI Network

    PubMed Central

    Lei, Xiujuan; Tian, Jianfang

    2014-01-01

    Many clustering algorithms are unable to solve the clustering problem of protein-protein interaction (PPI) networks effectively. A novel clustering model which combines the optimization mechanism of artificial bee colony (ABC) with the fuzzy membership matrix is proposed in this paper. The proposed ABC-IFC clustering model contains two parts: searching for the optimum cluster centers using ABC mechanism and forming clusters using intuitionistic fuzzy clustering (IFC) method. Firstly, the cluster centers are set randomly and the initial clustering results are obtained by using fuzzy membership matrix. Then the cluster centers are updated through different functions of bees in ABC algorithm; then the clustering result is obtained through IFC method based on the new optimized cluster center. To illustrate its performance, the ABC-IFC method is compared with the traditional fuzzy C-means clustering and IFC method. The experimental results on MIPS dataset show that the proposed ABC-IFC method not only gets improved in terms of several commonly used evaluation criteria such as precision, recall, and P value, but also obtains a better clustering result. PMID:24991575

  13. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  14. Phase transition in the ABC model.

    PubMed

    Clincy, M; Derrida, B; Evans, M R

    2003-06-01

    Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-beta/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero beta(c). The value of beta(c)=2pi square root 3 and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions.

  15. A Drosophila ABC Transporter Regulates Lifespan

    PubMed Central

    Huang, He; Lu-Bo, Ying; Haddad, Gabriel G.

    2014-01-01

    MRP4 (multidrug resistance-associated protein 4) is a member of the MRP/ABCC subfamily of ATP-binding cassette (ABC) transporters that are essential for many cellular processes requiring the transport of substrates across cell membranes. Although MRP4 has been implicated as a detoxification protein by transport of structurally diverse endogenous and xenobiotic compounds, including antivirus and anticancer drugs, that usually induce oxidative stress in cells, its in vivo biological function remains unknown. In this study, we investigate the biological functions of a Drosophila homolog of human MRP4, dMRP4. We show that dMRP4 expression is elevated in response to oxidative stress (paraquat, hydrogen peroxide and hyperoxia) in Drosophila. Flies lacking dMRP4 have a shortened lifespan under both oxidative and normal conditions. Overexpression of dMRP4, on the other hand, is sufficient to increase oxidative stress resistance and extend lifespan. By genetic manipulations, we demonstrate that dMRP4 is required for JNK (c-Jun NH2-terminal kinase) activation during paraquat challenge and for basal transcription of some JNK target genes under normal condition. We show that impaired JNK signaling is an important cause for major defects associated with dMRP4 mutations, suggesting that dMRP4 regulates lifespan by modulating the expression of a set of genes related to both oxidative resistance and aging, at least in part, through JNK signaling. PMID:25474322

  16. Effluxing ABC Transporters in Human Corneal Epithelium

    PubMed Central

    Vellonen, Kati-Sisko; Mannermaa, Eliisa; Turner, Helen; Häkli, Marika; Wolosin, J. Mario; Tervo, Timo; Honkakoski, Paavo; Urtti, Arto

    2010-01-01

    ATP-binding cassette (ABC) transporters are able to efflux their substrate drugs from the cells. We compared expression of efflux proteins in normal human corneal epithelial tissue, primary human corneal epithelial cells (HCEpiC), and corneal epithelial cell culture model (HCE model) based on human immortal cell line. Expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1–6 (MRP1–6) and breast cancer resistance protein (BCRP) was studied using quantitative RT-PCR, Western blot, and immunohistochemistry. Only MRP1, MRP5, and BCRP were expressed in the freshly excised human corneal epithelial tissue. Expression of MRP1 and MRP5 was localized predominantly in the basal cells of the central cornea and limbus. Functional efflux activity was shown in the cell models, but they showed over-expression of most efflux transporters compared to that of normal corneal epithelium. In conclusion, MRP1, MRP5, and BCRP are expressed in the corneal epithelium, but MDR1, MRP2, MRP3, MRP4, and MRP6 are not significantly expressed. HCE cell model and commercially available primary cells deviate from this expression profile. PMID:19623615

  17. Phase transition in the ABC model

    NASA Astrophysics Data System (ADS)

    Clincy, M.; Derrida, B.; Evans, M. R.

    2003-06-01

    Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-β/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero βc. The value of βc=2π(3) and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions.

  18. Liquid ethylene-propylene copolymers

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D.; Humphrey, M. F.

    1975-01-01

    Oligomers are prepared by heating solid ethylene-propylene rubber in container that retains solid and permits liquid product to flow out as it is formed. Molecular weight and viscosity of liquids can be predetermined by process temperature. Copolymers have low viscosity for given molecular weight.

  19. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  20. Electrochemical Deposition Of Conductive Copolymers

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Distefano, Salvador; Liang, Ranty H.

    1991-01-01

    Experiments show electrically conductive films are deposited on glassy carbon or indium tin oxide substrates by electrochemical polymerization of N-{(3-trimethoxy silyl) propyl} pyrrole or copolymerization with pyrrole. Copolymers of monomer I and pyrrole exhibit desired electrical conductivity as well as desired adhesion and other mechanical properties. When fully developed, new copolymerization process useful in making surface films of selectable conductivity.

  1. ABC3 Consensus: Assessment by a German Group of Experts

    PubMed Central

    Thomssen, Christoph; Augustin, Doris; Ettl, Johannes; Haidinger, Renate; Lück, Hans-Joachim; Lüftner, Diana; Marmé, Frederik; Marschner, Norbert; Müller, Lothar; Overkamp, Friedrich; Ruckhäberle, Eugen; Thill, Marc; Untch, Michael; Wuerstlein, Rachel; Harbeck, Nadia

    2016-01-01

    Summary The Advanced Breast Cancer Third International Consensus Conference on the diagnosis and treatment of advanced breast cancer took place in Lisbon, Portugal, on November 5-7, 2015. This year's conference (ABC3) was focused on the treatment of metastatic breast cancer (stage IV), as it was 4 years ago at the first consensus meeting (ABC1). A matter of particular interest was the patients’ perspective. Thus, patient-relevant issues were addressed by the consensus discussions, such as those on treatment goals, quality of life, care of long-term survivors (‘survivorship issues’), and coping with disease-related symptoms and the side effects of treatment. Further important issues on the agenda were the use of standardized instruments for the assessment of individual treatment success (‘patient-reported outcome measures’) and the evaluation of the benefit of novel drugs (e.g. the European Society for Medical Oncology (ESMO) Magnitude of Clinical Benefit Scale). Diagnosis and treatment of inoperable locally advanced breast cancer had already been discussed 2 years earlier at the ABC2 Consensus and were not dealt with in the framework of this year's ABC3 Consensus. With regard to country-specific peculiarities, which unavoidably found their way into the ABC Consensus, a working group of German breast cancer experts commented on the voting results of the ABC panelists. As for the past consensus, the group specially considered the German guidelines for the diagnosis and treatment of breast cancer (AGO (Gyneco-Oncology Working Group), S3, DGHO (German Society of Hematology and Medical Oncology)) in order to adapt the ABC3 consensus for everyday therapy in Germany. PMID:27051399

  2. Organic solvent-free low temperature method of preparation for self assembled amphiphilic poly(ϵ-caprolactone)-poly(ethylene glycol) block copolymer based nanocarriers for protein delivery.

    PubMed

    Payyappilly, Sanal Sebastian; Panja, Sudipta; Mandal, Pijush; Dhara, Santanu; Chattopadhyay, Santanu

    2015-11-01

    Degradation and denaturation of labile biomolecules during preparation of micelles by organic solvent at high temperature are some of the limitations for fabrication of advanced polymer based protein delivery systems. In this paper, effectiveness of heat-chill method for preparation of micelles containing large labile biomolecules was investigated using insulin as a model protein molecule. Micelles (average size, <120 nm) were prepared using amphiphilic diblock and triblock copolymers of poly(ethylene glycol) (PEG) and poly(ϵ-caprolactone) (PCL). Micelles were prepared by heating PEG-PCL block copolymers with distilled water at 60 °C followed by sudden chilling in an ice-water bath. Effects of molecular architecture on morphology, stability and protein loading capacity of micelles were investigated. Micelles prepared using high molecular weight block copolymers exhibited good colloidal stability, encapsulation efficiency and insulin release characteristics. Insulin retained its secondary structure after micelles preparation as confirmed by CD spectroscopic study. Furthermore, in vitro cytotoxicity test suggested that the prepared micellar nanoparticles possessed biocompatibility. In a nut shell, heat-chill method of micellar nanoparticles preparation is well suited for encapsulating labile proteins and other allied biomolecules which degrade in presence of toxic organic solvents and at elevated temperatures.

  3. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  4. Controllable Synthesis of Multiarm Star-Shaped Copolymers Composed of Phosphoester Chains and Their Application on Drug Delivery.

    PubMed

    Zhang, Li; Shi, Dongjian; Shi, Chunling; Dong, Liangliang; Li, Xiaojie; Chen, Mingqing

    2017-03-29

    Novel biodegradable polymers with specific properties, structures, and tailorable designs or modifications are in great demand. Poly(phosphoester)s with good biocompatibility and degradability, as well as other adjustable properties have been studied widely because of their potential in biomedical applications. To meet more versatile and diverse biomedical applications, a novel multiarm star-shaped phosphorester triblock copolymer poly(amido amine)-block-poly(2-butynyl phospholane)-block-poly(2-methoxy phospholane) (PAMAM-PBYP-PMP) is synthesized via organo-catalyzed sequential ring-opening polymerization. Supramolecular micelles with good architectural stability are self-assembled into uniform spherical morphology in aqueous solution. Doxorubicin (DOX) can be encapsulated into the micelles with efficient loading capacity. A slow and sustained release in the environment of simulated intracellular lysosome (pH 5.0 with phosphodiesterase I) is observed. In addition, the copolymers and DOX-loaded supramolecular micelles exhibit low cell-toxicity and excellent anticancer activity toward HeLa cells. As a consequence, this multiarm star-shaped PAMAM-PBYP-PMP has great potential in drug delivery system for tumor treatment.

  5. Acyclic diene metathesis with a monomer from renewable resources: control of molecular weight and one-step preparation of block copolymers.

    PubMed

    Rybak, Anastasiya; Meier, Michael A R

    2008-01-01

    The preparation of a long-chain aliphatic alpha,omega-diene from plant oil derivatives and its subsequent polymerization through acyclic diene metathesis (ADMET) is described. The ADMET bulk polymerization of the thus-obtained monomer, undecyl undecenoate, was investigated and optimized by applying ruthenium-based metathesis catalysts from Grubbs and Hoveyda-Grubbs, leading to high-molecular-weight polyesters. Moreover, by applying different amounts of methyl 10-undecenoate as a chain stopper in this ADMET step growth polymerization, the molecular weight of the resulting polyester could be tuned in a range from approximately 10 to 45 kDa. Finally, the application of a poly(ethylene glycol) methyl ether acrylate as the chain stopper led to the preparation of ABA triblock copolymers in a one-step, one-pot procedure.

  6. Crystalline Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    Series of imide/arylene ether block copolymers prepared by using arylene ether blocks to impart low melt viscosity, and imide blocks to provide high strength and other desirable mechanical properties. Work represents extension of LAR-14159 on imide/arylene ether copolymers in form of films, moldings, adhesives, and composite matrices. Copolymers potentially useful in variety of high-temperature aerospace and microelectronic applications.

  7. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties.

    PubMed

    Schwieger, Christian; Achilles, Anja; Scholz, Sven; Rüger, Jan; Bacia, Kirsten; Saalwaechter, Kay; Kressler, Jörg; Blume, Alfred

    2014-09-07

    A novel class of symmetric amphi- and triphilic (hydrophilic, lipophilic, fluorophilic) block copolymers has been investigated with respect to their interactions with lipid membranes. The amphiphilic triblock copolymer has the structure PGMA(20)-PPO(34)-PGMA(20) (GP) and it becomes triphilic after attaching perfluoroalkyl moieties (F9) to either end which leads to F(9)-PGMA(20)-PPO(34)-PGMA(20)-F(9) (F-GP). The hydrophobic poly(propylene oxide) (PPO) block is sufficiently long to span a lipid bilayer. The poly(glycerol monomethacrylate) (PGMA) blocks have a high propensity for hydrogen bonding. The hydrophobic and lipophobic perfluoroalkyl moieties have the tendency to phase segregate in aqueous as well as in hydrocarbon environments. We performed differential scanning calorimetry (DSC) measurements on polymer bound lipid vesicles under systematic variation of the bilayer thickness, the nature of the lipid headgroup, and the polymer concentration. The vesicles were composed of phosphatidylcholines (DMPC, DPPC, DAPC, DSPC) or phosphatidylethanolamines (DMPE, DPPE, POPE). We showed that GP as well as F-GP binding have membrane stabilizing and destabilizing components. PPO and F9 blocks insert into the hydrophobic part of the membrane concomitantly with PGMA block adsorption to the lipid headgroup layer. The F9 chains act as additional membrane anchors. The insertion of the PPO blocks of both GP and F-GP could be proven by 2D-NOESY NMR spectroscopy. By fluorescence microscopy we show that F-GP binding increases the porosity of POPC giant unilamellar vesicles (GUVs), allowing the influx of water soluble dyes as well as the translocation of the complete triphilic polymer and its accumulation at the GUV surface. These results open a new route for the rational design of membrane systems with specific properties.

  8. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  9. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  10. 2-Isopropenyl-2-oxazoline: Well-Defined Homopolymers and Block Copolymers via Living Anionic Polymerization

    SciTech Connect

    Feng, Hongbo; Changez, Mohammad; Hong, Kunlun; Mays, Jimmy W.; Kang, Nam-Goo

    2016-12-23

    Poly(2-isopropenyl-2-oxazoline) (PIPOx) has drawn significant attention for numerous applications. However, the successful living anionic polymerization of 2-isopropenyl-2-oxazoline has not been reported previously. In this paper, we describe how well-defined PIPOx with quantitative yields, controlled molecular weights from 6800 to over 100 000 g/mol and low polydispersity indices (PDI ≤ 1.17) were synthesized successfully via living anionic polymerization using diphenylmethylpotassium/diethylzinc (DPM-K/Et2Zn) in tetrahydrofuran (THF) at 0 °C. In particular, we report the precise synthesis of well-defined PIPOx with the highest molecular weight ever reported (over 100 000 g/mol) and low PDI of 1.17. The resulting polymers were characterized by 1H and 13C nuclear magnetic resonance spectroscopy (NMR) along with size exclusion chromatography (SEC). Additionally, the reactivity of living PIPOx was investigated by crossover block copolymerization with styrene (St), 2-vinylpyridine (2VP), and methyl methacrylate (MMA). It was found that the nucleophilicity of living PIPOx is of this order: living PS > living P2VP > living PMMA > living PIPOx. The self-assembly behavior in bulk of PIPOx-b-PS-b-PIPOx triblock copolymers having different block ratios of 10:80:10 and 25:50:25 was studied using transmission electron microscopy (TEM). Finally, the formation of spherical and lamellar nanostructures, respectively, was observed.

  11. 2-Isopropenyl-2-oxazoline: Well-Defined Homopolymers and Block Copolymers via Living Anionic Polymerization

    DOE PAGES

    Feng, Hongbo; Changez, Mohammad; Hong, Kunlun; ...

    2016-12-23

    Poly(2-isopropenyl-2-oxazoline) (PIPOx) has drawn significant attention for numerous applications. However, the successful living anionic polymerization of 2-isopropenyl-2-oxazoline has not been reported previously. In this paper, we describe how well-defined PIPOx with quantitative yields, controlled molecular weights from 6800 to over 100 000 g/mol and low polydispersity indices (PDI ≤ 1.17) were synthesized successfully via living anionic polymerization using diphenylmethylpotassium/diethylzinc (DPM-K/Et2Zn) in tetrahydrofuran (THF) at 0 °C. In particular, we report the precise synthesis of well-defined PIPOx with the highest molecular weight ever reported (over 100 000 g/mol) and low PDI of 1.17. The resulting polymers were characterized by 1H andmore » 13C nuclear magnetic resonance spectroscopy (NMR) along with size exclusion chromatography (SEC). Additionally, the reactivity of living PIPOx was investigated by crossover block copolymerization with styrene (St), 2-vinylpyridine (2VP), and methyl methacrylate (MMA). It was found that the nucleophilicity of living PIPOx is of this order: living PS > living P2VP > living PMMA > living PIPOx. The self-assembly behavior in bulk of PIPOx-b-PS-b-PIPOx triblock copolymers having different block ratios of 10:80:10 and 25:50:25 was studied using transmission electron microscopy (TEM). Finally, the formation of spherical and lamellar nanostructures, respectively, was observed.« less

  12. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    PubMed Central

    Wu, Jian-Huang; Li, Miao; Liang, Yan; Lu, Tao; Duan, Chun-Yue

    2016-01-01

    Background: Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI). Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI, allowing stem cells to penetrate through the scar and promote recovery of nerve function. This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro. Methods: ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion. Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation. After successful culture, ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained. Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method, ChABC expression was verified using Western blotting, and the migration of ChABC-ADSCs was analyzed using the transwell assay. Results: Secondary collagenase digestion increased the isolation efficiency of primary ADSCs. Following transfection using lentiviral vectors, the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05). And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05). Moreover, ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05). Conclusions: Secondary collagenase digestion can be used to effectively isolate ADSCs. ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC, and ChABC expression significantly enhances the migratory capacity of ADSCs. PMID:27364797

  13. Microwave-assisted facile synthesis of a new tri-block chitosan conjugate with improved mucoadhesion.

    PubMed

    Badhe, Ravindra V; Nanda, Rabindra K; Chejara, Dharmesh R; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2015-10-05

    A new chitosan-based tri-block conjugate, O-PEG-chitosan-N-cysteine was synthesized using microwave irradiation. For synthesis of this derivative, chitosan was modified to a PEG-chitosan conjugate followed by PEG-chitosan-cysteine using 6-O PEGylation and 2-N-thiolation, respectively. The synthesized derivative was characterized using various analytical techniques such as FT-IR and (1)H NMR spectroscopy. The conjugate was also analyzed for its biochemical, biodegradation and mucoadhesive properties. The modified chitosan conjugate exhibited improved mucoadhesion behavior (14.0 h) with greater biodegradation compared to the parent polymer (6.3h). The in silico modeling corroborated with the in vitro study demonstrating a stable complex between mucin and O-PEG-chitosan-N-cysteine conjugate (ΔE=-60.100 kcal/mol) compared to mucin and chitosan conjugate. The synthesis proposed herein, involves the use of microwave irradiation which causes a substantial reduction in the reaction time (approximately 2.30 h) compared to conventional method (35 h).

  14. Tonoplast-localized Abc2 Transporter Mediates Phytochelatin Accumulation in Vacuoles and Confers Cadmium Tolerance*

    PubMed Central

    Mendoza-Cózatl, David G.; Zhai, Zhiyang; Jobe, Timothy O.; Akmakjian, Garo Z.; Song, Won-Yong; Limbo, Oliver; Russell, Matthew R.; Kozlovskyy, Volodymyr I.; Martinoia, Enrico; Vatamaniuk, Olena K.; Russell, Paul; Schroeder, Julian I.

    2010-01-01

    Phytochelatins mediate tolerance to heavy metals in plants and some fungi by sequestering phytochelatin-metal complexes into vacuoles. To date, only Schizosaccharomyces pombe Hmt1 has been described as a phytochelatin transporter and attempts to identify orthologous phytochelatin transporters in plants and other organisms have failed. Furthermore, recent data indicate that the hmt1 mutant accumulates significant phytochelatin levels in vacuoles, suggesting that unidentified phytochelatin transporters exist in fungi. Here, we show that deletion of all vacuolar ABC transporters abolishes phytochelatin accumulation in S. pombe vacuoles and abrogates 35S-PC2 uptake into S. pombe microsomal vesicles. Systematic analysis of the entire S. pombe ABC transporter family identified Abc2 as a full-size ABC transporter (ABCC-type) that mediates phytochelatin transport into vacuoles. The S. pombe abc1 abc2 abc3 abc4 hmt1 quintuple and abc2 hmt1 double mutant show no detectable phytochelatins in vacuoles. Abc2 expression restores phytochelatin accumulation into vacuoles and suppresses the cadmium sensitivity of the abc quintuple mutant. A novel, unexpected, function of Hmt1 in GS-conjugate transport is also shown. In contrast to Hmt1, Abc2 orthologs are widely distributed among kingdoms and are proposed as the long-sought vacuolar phytochelatin transporters in plants and other organisms. PMID:20937798

  15. A practical synthesis of the ABC ring model of ecteinascidins.

    PubMed

    Saito, N; Tachi, M; Seki, R; Kamayachi, H; Kubo, A

    2000-10-01

    A practical synthesis of 1,2,3,4,5,6-hexahydro-1,5-imino-10-hydroxy-9-methoxy-3,8,11-trimethyl-3- benzazocin-4-one (3) as an ABC ring model compound of ecteinascidin 743 and safracins from 3-hydroxy-4-methoxy-5-methylbenzaldehyde (7) is described. The overall yield in 15 steps is 27%.

  16. Beyond the ABCs: The Pleasures of the Alphabet Book.

    ERIC Educational Resources Information Center

    Thatcher, Debra H.

    2002-01-01

    Identifies seven types of alphabet books: letter shapes, word play, art play, topical/thematic, multicultural, narrative, and puzzles. Presents annotations of around 30 titles. Suggests that alphabet books are not intended just for the emergent reader--there is a wide range of ABC books with intriguing stories, captivating illustrations, playful…

  17. ABCs of Content Area Lesson Planning: Attention, Basics, and Comprehension.

    ERIC Educational Resources Information Center

    Hurst, Beth

    2001-01-01

    Uses the "ABCs" of lesson planning so teachers can put the theory of active learning into practice and make learning more meaningful for their students. Concludes that teachers can make reading and learning more meaningful for their students by tying together the three themes of building student interest through attention grabbers, teaching the…

  18. Selections from the ABC 2011 Annual Convention, Montreal, Canada

    ERIC Educational Resources Information Center

    Whalen, D. Joel; Andersen, Ken; Campbell, Gloria; Crenshaw, Cheri; Cross, Geoffrey A.; Grinols, Anne Bradstreet; Hildebrand, John; Newman, Amy; Ortiz, Lorelei A.; Paulson, Edward; Phillabaum, Melinda; Powell, Elizabeth A.; Sloan, Ryan

    2012-01-01

    The 12 Favorite Assignments featured in this article were presented at the 2011 Annual Convention of the Association for Business Communication (ABC), Montreal, Canada. A variety of learning objectives are featured: delivering bad news, handling difficult people, persuasion, reporting financial analysis, electronic media, face-to-face…

  19. Preconceptual ABC design definition and system configuration layout

    SciTech Connect

    Barthold, W.

    1995-03-01

    This document is the conceptual design document for the follow-on to the Molten Salt Breeder Reactor, known as the ABC type reactor. It addresses blanket design options, containment options, off-gas systems, drainage systems, and components/layouts of the primary, secondary, and tertiary systems, and it contains a number of diagrams for the configuration of the major systems.

  20. Dissociations among ABA, ABC, and AAB Recovery Effects

    ERIC Educational Resources Information Center

    Ungor, Metin; Lachnit, Harald

    2008-01-01

    In a human predictive learning experiment, the strengths of ABA, ABC, and AAB recovery effects after discrimination reversal learning were compared. Initially, a discrimination between two stimuli (X+, Y-) was trained in Context A. During Phase 2, participants received discrimination reversal training (X-, Y+) either in Context A (Group AAB) or in…

  1. ABCs of Being Smart... G Is for Gifted!

    ERIC Educational Resources Information Center

    Foster, Joanne

    2012-01-01

    Giftedness can generate speculation, misconceptions, expectations, pride, innuendo, apprehension, puzzlement--and the list goes on. What does it mean to be a gifted learner? In this installment of the series "ABCs of Being Smart," the author grapples with the term gifted, giving a glimpse into giftedness, along with some general guidelines for…

  2. Selections from the ABC 2009 Annual Convention, Portsmouth, Virginia

    ERIC Educational Resources Information Center

    Whalen, D. Joel

    2010-01-01

    The "My Favorite Assignment" Session at the 2009 Association for Business Communication (ABC) annual convention in Portsmouth, Virginia, featured over a dozen teachers sharing pedagogical innovations in a fast-paced, 4-minute format designed by Dan Dietrich. The wide variety of ideas and techniques presented makes these sessions popular…

  3. Selections from the ABC 2012 Annual Convention, Honolulu, Hawaii

    ERIC Educational Resources Information Center

    Whalen, D. Joel

    2013-01-01

    The 13 Favorite Assignments featured here were presented at the 2012 Association for Business Communication (ABC) Annual Convention, Honolulu, Hawaii. A variety of learning objectives are featured, including the following: enhancing resume's visual impact, interpersonal skills, social media, team building, web design, community service projects,…

  4. What Is the "g" That the K-ABC Measures?

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; Novak, Christine G.

    The K-ABC purports to be a fresh alternative to standardized measures of intellectual functioning, by virtue of separating measurement of acquired factual knowledge from measurement of the ability to solve novel problems. Some researchers have questioned this claim to the capability of distinguishing aptitude and achievement. By analyzing the…

  5. The ABC Model and its Applicability to Basal Angiosperms

    PubMed Central

    Soltis, Douglas E.; Chanderbali, André S.; Kim, Sangtae; Buzgo, Matyas; Soltis, Pamela S.

    2007-01-01

    Background Although the flower is the central feature of the angiosperms, little is known of its origin and subsequent diversification. The ABC model has long been the unifying paradigm for floral developmental genetics, but it is based on phylogenetically derived eudicot models. Synergistic research involving phylogenetics, classical developmental studies, genomics and developmental genetics has afforded valuable new insights into floral evolution in general, and the early flower in particular. Scope and Conclusions Genomic studies indicate that basal angiosperms, and by inference the earliest angiosperms, had a rich tool kit of floral genes. Homologues of the ABCE floral organ identity genes are also present in basal angiosperm lineages; however, C-, E- and particularly B-function genes are more broadly expressed in basal lineages. There is no single model of floral organ identity that applies to all angiosperms; there are multiple models that apply depending on the phylogenetic position and floral structure of the group in question. The classic ABC (or ABCE) model may work well for most eudicots. However, modifications are needed for basal eudicots and, the focus of this paper, basal angiosperms. We offer ‘fading borders’ as a testable hypothesis for the basal-most angiosperms and, by inference, perhaps some of the earliest (now extinct) angiosperms. PMID:17616563

  6. ABC transporters and the blood-brain barrier.

    PubMed

    Begley, David J

    2004-01-01

    The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) form a very effective barrier to the free diffusion of many polar solutes into the brain. Many metabolites that are polar have their brain entry facilitated by specific inwardly-directed transport mechanisms. In general the more lipid soluble a molecule or drug is, the more readily it will tend to partition into brain tissue. However, a very significant number of lipid soluble molecules, among them many useful therapeutic drugs have lower brain permeability than would be predicted from a determination of their lipid solubility. These molecules are substrates for the ABC efflux transporters which are present in the BBB and BCSB and the activity of these transporters very efficiently removes the drug from the CNS, thus limiting brain uptake. P-glycoprotein (Pgp) was the first of these ABC transporters to be described, followed by the multidrug resistance-associated proteins (MRP) and more recently breast cancer resistance protein (BCRP). All are expressed in the BBB and BCSFB and combine to reduce the brain penetration of many drugs. This phenomenon of "multidrug resistance" is a major hurdle when it comes to the delivery of therapeutics to the brain, not to mention the problem of cancer chemotherapy in general. Therefore, the development of strategies for bypassing the influence of these ABC transporters and for the design of effective drugs that are not substrates and the development of inhibitors for the ABC transporters becomes a high imperative for the pharmaceutical industry.

  7. The Library ABC's Game: Sneaking in Learning through Gaming

    ERIC Educational Resources Information Center

    Maxwell, D. Jackson

    2007-01-01

    Teaching library terminology and definitions can be a real bore. Unfortunately, no matter how one looks at it, students need to learn a set of basic library words and their meanings. The Library ABC's game teaches elementary age students library terms and definitions, and it is effective, efficient, easy, exciting, and fun. Introduce the Library…

  8. The Value of Green Technology at ABC Community College

    ERIC Educational Resources Information Center

    McAllister, Bernadette

    2012-01-01

    A challenge facing community colleges nationwide is to reduce the carbon footprint of campuses by initiating green technology initiatives. This case study assessed the effect of switching from paper assignments to a learning management system at ABC Community College. The topic is important because federal and state funding, as well as…

  9. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.

  10. Thermochemical characteristics of chitosan-polylactide copolymers

    NASA Astrophysics Data System (ADS)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  11. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....2470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Components of Articles Intended for Repeated Use § 177.2470 Polyoxymethylene copolymer. Polyoxymethylene copolymer identified in this section may be safely used as an article or component of articles intended...

  12. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....2470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Components of Articles Intended for Repeated Use § 177.2470 Polyoxymethylene copolymer. Polyoxymethylene copolymer identified in this section may be safely used as an article or component of articles intended...

  13. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....2470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Components of Articles Intended for Repeated Use § 177.2470 Polyoxymethylene copolymer. Polyoxymethylene copolymer identified in this section may be safely used as an article or component of articles intended...

  14. Chiral Block Copolymer Structures for Metamaterial Applications

    DTIC Science & Technology

    2015-01-27

    Final 3. DATES COVERED (From - To) 25-August-2011 to 24-August-2014 4. TITLE AND SUBTITLE Chiral Block Copolymer Structures for...researchers focused o synthesis and processing, morphology and physical characterization of chiral block copolymer (BCP) materials. Such materials a...valuable for both their optical and mechanical properties, particularly for their potential as chiral metamaterials and lightweig energy absorbing

  15. Nanostructured high-performance dielectric block copolymers.

    PubMed

    Liu, Wenmei; Liao, Xiaojuan; Li, Yawei; Zhao, Qiuhua; Xie, Meiran; Sun, Ruyi

    2015-10-25

    A new type of insulating-conductive block copolymer was synthesized by metathesis polymerization. The copolymer can self-assemble into unique nanostructures of micelles or hollow spheres. It exhibits a high dielectric constant, low dielectric loss, and high stored/released energy density due to the strong dipolar and nano-interfacial polarization contributions.

  16. Synthesis and Characterization of Block Copolymers.

    DTIC Science & Technology

    1987-07-01

    Polyether-Polyimide Block Copolymers; Three series of Polyether-Polyimide (PEPI) block copolymers were synthesized. Soft segments were poly( propylene ... glycol ) (PPO) Mn = 2,000 and 4,000. Hard segments were pyromellitic dianhydride (PMDA) and di-(2-hydroxyethyl)-dimethylhydantoin (H). The hard

  17. Responsive copolymers for enhanced petroleum recovery

    SciTech Connect

    McCormick, C.; Hester, R.

    1992-01-01

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery which rely on reversible microheterogeneous associations for mobility control and reservoir conformance. Technical progress is summarized for the following tasks: advanced copolymer synthesis; characterization of macromolecular structure and properties; and solution rheology in a porous media.

  18. Imide/arylene ether block copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    Two series of imide/arylene either block copolymers were prepared using an arylene ether block and either an amorphous or semi-crystalline imide block. The resulting copolymers were characterized and selected physical and mechanical properties were determined. These results, as well as comparisons to the homopolymer properties, are discussed.

  19. Poly(L-histidine) based copolymers: Effect of the chemically substituted L-histidine on the physio-chemical properties of the micelles and in vivo biodistribution.

    PubMed

    Zhang, Xiaojun; Chen, Dawei; Ba, Shuang; Chang, Jing; Zhou, Jiaying; Zhao, Haixia; Zhu, Jia; Zhao, Xiuli; Hu, Haiyang; Qiao, Mingxi

    2016-04-01

    Even though the Poly(l-histidine) (PHis) based copolymers have been well studied, the effect of the chemically substituted l-histidine on the physio-chemical and biological properties of the micelles has never been elucidated to date. To address this issue, triblock copolymer of poly(ethylene glycol)-poly(D,L-lactide)-poly(2,4-dinitrophenol-L-histidine)(mPEG-b-PLA-b-DNP-PHis) with DNP group substituted to the saturated nitrogen of l-histidine were synthesized. The pH sensitive properties of the copolymer micelles were characterized using an acid-base titration method, fluorescene probe technique, DLS observation, in vitro drug release and cytotoxicity against MCF-7 cells under different pH conditions, respectively. The results suggest that mPEG-b-PLA-b-DNP-PHis copolymers showed similar micellar stability for DOX loaded micelles, increased particle size, and similar pH responsive properties with mPEG-b-PLA-b-PHis copolymers. The subcellular distribution observation demonstrated that mPEG-b-PLA-b-DNP-PHis micelles showed a slightly compromised endo-lysosmal escape of doxorubicin as compared to mPEG-b-PLA-b-PHis micelles. The mPEG-b-PLA-b-DNP-PHis micelles showed higher cellular uptake by MCF-7 cells than mPEG-b-PLA-b-PHis micelles due to the different uptake pathways. Effect of DNP substitution on the in vivo distribution of the copolymer micelles was studied using non-invasive near-infrared fluorescence (NIRF) imaging with mPEG-b-PLA-b-PHis micelles as control. The results indicate that the mPEG-b-PLA-b-DNP-PHis micelles showed a reduced passive targeting to the tumor due to the larger particle size. These results suggest that saturated nitrogen of PHis may serve as a valuable site for chemical modification of the PHis based copolymers because of the little effect on the pH responsive properties. However, selection of the substitution group needs to be considered due to the possible increase of micellar particle size of the micelles, leading to compromised passive

  20. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    PubMed

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.

  1. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery

    PubMed Central

    Zhang, Can Yang; Xiong, Di; Sun, Yao; Zhao, Bin; Lin, Wen Jing; Zhang, Li Juan

    2014-01-01

    A novel amphiphilic triblock pH-sensitive poly(β-amino ester)-g-poly(ethylene glycol) methyl ether-cholesterol (PAE-g-MPEG-Chol) was designed and synthesized via the Michael-type step polymerization and esterification condensation method. The synthesized copolymer was determined with proton nuclear magnetic resonance and gel permeation chromatography. The grafting percentages of MPEG and cholesterol were determined as 10.93% and 62.02%, calculated from the area of the characteristic peaks, respectively. The amphiphilic copolymer was confirmed to self-assemble into core/shell micelles in aqueous solution at low concentrations. The critical micelle concentrations were 6.92 and 15.14 mg/L at pH of 7.4 and 6.0, respectively, obviously influenced by the changes of pH values. The solubility of pH-responsive PAE segment could be transformed depending on the different values of pH because of protonation–deprotonation of the amino groups, resulting in pH sensitivity of the copolymer. The average particle size of micelles increased from 125 nm to 165 nm with the pH decreasing, and the zeta potential was also significantly changed. Doxorubicin (DOX) was entrapped into the polymeric micelles with a high drug loading level. The in vitro DOX release from the micelles was distinctly enhanced with the pH decreasing from 7.4 to 6.0. Toxicity testing proved that the DOX-loaded micelles exhibited high cytotoxicity in HepG2 cells, whereas the copolymer showed low toxicity. The results demonstrated how pH-sensitive PAE-g-MPEG-Chol micelles were proved to be a potential vector in hydrophobic drug delivery for tumor therapy. PMID:25364250

  2. Subchronic toxicity and immunotoxicity of MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer nanoparticles delivered intravenously into rats

    NASA Astrophysics Data System (ADS)

    Liao, Longfei; Zhang, Mengtian; Liu, Huan; Zhang, Xuanmiao; Xie, Zhaolu; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2014-06-01

    Although monomethoxy(polyethyleneglycol)-poly (D,L-lactic-co-glycolic acid)-monomethoxy (PELGE) nanoparticles have been widely studied as a drug delivery system, little is known about their toxicity in vivo. Here we examined the subchronic toxicity and immunotoxicity of different doses of PELGE nanoparticles with diameters of 50 and 200 nm (PELGE50 and PELGE200) in rats. Neither size of PELGE nanoparticles showed obvious subchronic toxic effects during 28 d of continuous intravenous administration based on clinical observation, body weight, hematology parameters and histopathology analysis. PELGE200 nanoparticles showed no overt signs of immunotoxicity based on organ coefficients, histopathology analysis, immunoglobulin levels, blood lymphocyte subpopulations and splenocyte cytokines. Conversely, PELGE50 nanoparticles were associated with an increased organ coefficient and histopathological changes in the spleen, increased serum IgM and IgG levels, alterations in blood lymphocyte subpopulations and enhanced expression of spleen interferon-γ. Taken together, these results suggest that PELGE nanoparticles show low subchronic toxicity but substantial immunotoxicity, which depends strongly on particle size. These findings will be useful for safe application of PELGE nanoparticles in drug delivery systems.

  3. Synergistic effect of ZnO nanoparticles and triblock copolymer surfactant on the dynamic and equilibrium oil-water interfacial tension.

    PubMed

    Moghadam, Tahereh Fereidooni; Azizian, Saeid

    2014-09-07

    The present study reports the effects of non-ionic surfactant Pluronic F-127 on the equilibrium and dynamic oil-water interfacial tension in the presence of ZnO nanoparticles. The results show that in the presence of nanoparticles, the decrease of interfacial tension is more. The cooperative behavior of F-127 and ZnO nanoparticles especially at low concentrations increases the surfactant efficiency in lowering the interfacial tension. Statistical rate theory (SRT) and mixed diffusion-kinetic controlled model were used for modeling the dynamic interfacial tension data. The modeling results show that the mechanism of surfactant adsorption is controlled with the mixed diffusion-kinetic model. In addition, the influence of the solution pH on the interfacial tension was investigated. Finally, the effects of F-127 on the contact angle in the absence and presence of ZnO was compared.

  4. Immobilizing PEO-PPO-PEO triblock copolymers on hydrophobic surfaces and its effect on protein and platelet: a combined study using QCM-D and DPI.

    PubMed

    Jin, Jing; Huang, Fujian; Hu, Yu; Jiang, Wei; Ji, Xiangling; Liang, Haojun; Yin, Jinghua

    2014-11-01

    Dual polarization interferometry was used to monitor the immobilization dynamics of four Pluronics on hydrophobic surfaces and to elucidate the effect of Pluronic conformation on protein adsorption. The proportion of hydrophobic chain segments and not the length of the hydrophobic chain can influence the chain densities of the Pluronics. The immobilized densities of the Pluronics resulted from competition between the hydration of polyethylene oxide (PEO) in the aqueous solution and the hydrophobic interaction of polypropylene oxide on the substrate. P-123 obtained the largest graft mass (2.89±0.25 ng/mm2) because of the dominant effect of hydrophobic interactions. Hydrophobic segments of P-123 were anchored slowly and step-wise on the C18 substrate. P-123 exhibited the largest hydrophobic chain segment proportion (propylene oxide/ethylene oxide=3.63) and formed a brush chain conformation, indicating excellent protein and platelet resistance. The result of quartz crystal microbalance with dissipation further confirmed that the PEO conformation in P-123 on the substrate exhibited a relatively extended brush chain, and that L-35 showed relatively loose and pancake-like structures. The PEO in P-123 regulated the conformation to maintain the native conformation and resist the adsorption of bovine serum albumin (BSA). Thus, the hemocompatibilities of the immobilized Pluronics were influenced by the proportion of hydrophobic chain segments and their PEO conformations.

  5. Processible Polyaniline Copolymers and Complexes.

    NASA Astrophysics Data System (ADS)

    Liao, Yun-Hsin

    1995-01-01

    Polyaniline (PANI) is an intractable polymer due to the difficulty of melt processing or dissolving it in common solvents. The purpose of the present investigation was to prepare a new class of conducting polyanilines with better solubility both in base and dope forms by (1) adding external salt to break aggregated chains, (2) introducing ring substituted units onto the backbone without disturbing the coplanar structure, and (3) complexing with polymeric dopants to form a soluble polymer complex. Aggregation of PANI chains in dilute solution was investigated in N-methyl-2-pyrrolidinone (NMP) by light scattering, gel permeation chromatography, and viscosity measurements. The aggregation of chains resulted in a negative second virial coefficient in light scattering measurement, a bimodal molecular weight distribution in gel permeation chromatography, and concave reduced viscosity curves. The aggregates can be broken by adding external salt, which resulting in a higher reduced viscosity. The driving force for aggregation is assumed to be a combination of hydrogen bonding between the imine and amine groups, and the rigidity of backbone. The aggregation was modeled to occur via side-on packing of PANI chains. The ring substituted PANI copolymers, poly(aniline -co-phenetidine) were synthesized by chemical oxidation copolymerization using ammonium persulfate as an oxidant. The degree of copolymerization declined with an increasing feed of o-phenetidine in the reaction mixture. The o-phenetidine had a higher reactivity than aniline in copolymerization resulting in a higher content of o-phenetidine in copolymers. The resulting copolymers can be readily dissolved in NMP up to 20% (w/w), and other common solvents, and solutions possess a longer gelation time. The highly soluble copolymer with 20 mole % o-phenetidine in the backbone has same order of conductivity as the unsubstituted PANI after it is doped by HCl. Complexation of PANI and polymeric dopant, poly

  6. Hybridization of Block Copolymer Micelles

    DTIC Science & Technology

    1993-01-01

    J. Macromol. Sci., Part A 1973, 7,601. (10) Tiara, M.; Ramireddy, C.; Webber, S. K; Munk,P. Collect. Czer" (14) 0snford, C. In The Hydrophobic Effect ...equilibrate In the first series of experiments we have studied the within 20 min, similarly as ASA-10 micelles do. However, effect of the copolymer...high. This may happen after a sudden The Johnston-Ogston effect 2’ 6- also may play a role in jump in temperature or in the composition of the mixed

  7. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic...) Identity. For the purpose of this section, n-alkylglutarimide/acrylic copolymers are copolymers obtained...

  8. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylate ester copolymer coating. 175.210 Section... Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as... prepared food, subject to the provisions of this section: (a) The acrylate ester copolymer is a...

  9. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  10. Synthesis Characterization and Electrospinning of Architecturally-Discrete Isotactic-Atactic-Isotactic Triblock Stereoblock Polypropene Elastomers

    SciTech Connect

    C Giller; G Gururajan; J Wei; W Zhang; W Hwang; D Chase; J Rabolt; L Sita

    2011-12-31

    Stereochemically homogeneous and architecturally discrete isotactic-atactic-isotactic triblock stereoblock PP (sbPP) thermoplastic elastomers in which the block lengths for each domain type can be varied in programmed fashion while keeping total molecular weight and molecular weight polydispersity the same has been achieved for the first time. Five sbPP materials were prepared: sbPP-1 (6iso-88a-6iso), total isotactic content, 12%; sbPP-2 (12iso-76a-12iso), 24%; sbPP-3 (18iso-64a-18iso), 36%; sbPP-4 (24iso-50a-26iso), 50%; and sbPP-5 (20iso-64a-33iso), 53%. All five sbPP materials were successfully processed by solution-based electrospinning to provide fiberous mats with feature sizes on the nanometer to micrometer length scale. Extensive characterization by analytical (SEM, AFM, tensile testing, DSC,), spectroscopic (FT-IR, FT-Raman), and synchrotron X-ray diffraction techniques of bulk samples, electrospun fibers and solvent cast films of the sbPP samples revealed well-defined trends in elastic properties, morphologies and crystallinity that are associated with a higher degree of crystallinity that emerges with higher isotactic contents. The results of these investigations serve to provide an important foundation that can be used to potentially identify the best combination of stereoerror level incorporation within the isotactic domains and total isotactic content for these architecturally discrete sb-PP materials for maximizing desirable elastomeric traits and solution-based (electrospinning) processing methodology with the goal of achieving the best possible structural forms for potential product applications.

  11. Block Copolymers and Ionic Liquids: A New Class of Functional Nanocomposites

    NASA Astrophysics Data System (ADS)

    Lodge, Timothy

    2009-03-01

    Block copolymers provide a remarkably versatile platform for achieving desired nanostructures by self-assembly, with lengthscales varying from a few nanometers up to several hundred nanometers. Ionic liquids are an emerging class of solvents, with an appealing set of physical attributes. These include negligible vapor pressure, high chemical and thermal stability, tunable solvation properties, high ionic conductivity, and wide electrochemical windows. For various applications it will be necessary to solidify the ionic liquid into particular spatial arrangements, such as membranes or gels, or to partition the ionic liquid in coexisting phases, such as microemulsions and micelles. One example includes formation of spherical, cylindrical, and vesicular micelles by poly(butadiene-b-ethylene oxide) and poly(styrene-b-methylmethacrylate) in the common hydrophobic ionic liquids [BMI][PF6] and [EMI][TFSI]. This work has been extended to the formation of reversible micelle shuttles between ionic liquids and water, whereby entire micelles transfer from one phase to the other, reversibly, depending on temperature and solvent quality. Formation of ion gels has been achieved by self-assembly of poly(styrene-b-ethylene oxide-b-styrene) triblocks in ionic liquids, and by the thermoreversible system poly(N-isopropylacrylamide-b-ethylene oxide-b-N-isopropylacrylamide), using as little as 4% copolymer. Further, these gels have been shown to be remarkably effective as gate dielectrics in organic thin film transistors. The remarkably high capacitance of the ion gels (> 10 μF/cm^2) supports a very high carrier density in an organic semiconductor such as poly(3-hexylthiophene), leading to milliamp currents for low applied voltages. Furthermore, the rapid mobility of the ions enables switching speeds approaching 10 kHz, orders of magnitude higher than achievable with other polymer-based dielectrics such as PEO/LiClO4. Finally, we have shown that ordered nanostructures of block

  12. 75 FR 49549 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Surface Transportation Board ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of exemption... operation of this trackage in FD 35356, ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line...

  13. Microphase separation in random multiblock copolymers

    NASA Astrophysics Data System (ADS)

    Govorun, E. N.; Chertovich, A. V.

    2017-01-01

    Microphase separation in random multiblock copolymers is studied with the mean-field theory assuming that long blocks of a copolymer are strongly segregated, whereas short blocks are able to penetrate into "alien" domains and exchange between the domains and interfacial layer. A bidisperse copolymer with blocks of only two sizes (long and short) is considered as a model of multiblock copolymers with high polydispersity in the block size. Short blocks of the copolymer play an important role in the microphase separation. First, their penetration into the "alien" domains leads to the formation of joint long blocks in their own domains. Second, short blocks localized at the interface considerably change the interfacial tension. The possibility of penetration of short blocks into the "alien" domains is controlled by the product χ Nsh (χ is the Flory-Huggins interaction parameter and Nsh is the short block length). At not very large χ Nsh , the domain size is larger than that for a regular copolymer consisting of the same long blocks as in the considered random copolymer. At a fixed mean block size, the domain size grows with an increase in the block size dispersity, the rate of the growth being dependent of the more detailed parameters of the block size distribution.

  14. Block Copolymer Membranes for Biofuel Purification

    NASA Astrophysics Data System (ADS)

    Evren Ozcam, Ali; Balsara, Nitash

    2012-02-01

    Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.

  15. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  16. Implementation of a comprehensive schoolwide behavioral intervention: The ABC program.

    PubMed

    Pelham, William E; Massetti, Greta M; Wilson, Tracey; Kipp, Heidi; Myers, David; Standley, Beth B Newman; Billheimer, Sheila; Waschbusch, Daniel A

    2005-08-01

    The Academic and Behavioral Competencies (ABC) Program, a schoolwide program to reduce classroom disruption and encourage rule following, academic task completion, and homework completion, is described. The program was initially developed and implemented in an elementary school with a high-risk population. Data from teachers, parents, and children indicate high levels of satisfaction with the program. In addition, unobtrusive measures of program impact, reported as reductions in referrals to the principal's office, suspensions, and increases in homework completion rates relative to the year prior to implementation of the program, suggest a preliminary positive impact of the program. A replication is reported for another school district, with teacher evaluations of satisfaction and effectiveness reported, supporting the flexibility and adaptability of the program. Although the present article does not constitute a systematic evaluation of the ABC Program, it presents preliminary data on the process of implementation and stakeholder satisfaction.

  17. Ensemble inequivalence: Landau theory and the ABC model

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Mukamel, D.

    2012-12-01

    It is well known that systems with long-range interactions may exhibit different phase diagrams when studied within two different ensembles. In many of the previously studied examples of ensemble inequivalence, the phase diagrams differ only when the transition in one of the ensembles is first order. By contrast, in a recent study of a generalized ABC model, the canonical and grand-canonical ensembles of the model were shown to differ even when they both exhibit a continuous transition. Here we show that the order of the transition where ensemble inequivalence may occur is related to the symmetry properties of the order parameter associated with the transition. This is done by analyzing the Landau expansion of a generic model with long-range interactions. The conclusions drawn from the generic analysis are demonstrated for the ABC model by explicit calculation of its Landau expansion.

  18. Magneto-optical properties of ABC-stacked trilayer graphene.

    PubMed

    Lin, Yi-Ping; Lin, Chiun-Yan; Ho, Yen-Hung; Do, Thi-Nga; Lin, Ming-Fa

    2015-06-28

    The generalized tight-binding model is developed to investigate the magneto-optical absorption spectra of ABC-stacked trilayer graphene. The absorption peaks can be classified into nine categories of inter-Landau-level optical excitations, including three intra-group and six inter-group ones. Most of them belong to the twin-peak structures because of the asymmetric Landau level spectrum. The threshold absorption peak alone comes from a certain excitation channel, and its frequency is associated with a specific interlayer atomic interaction. The Landau-level anticrossings cause extra absorption peaks. Moreover, a simple relationship between the absorption frequency and the field strength is absent. The magneto-optical properties of ABC-stacked trilayer graphene are totally different from those of AAA- and ABA-stacked ones, such as the number, intensity and frequency of absorption peaks.

  19. Regulation of ABC Transporters at the Blood-Brain Barrier

    PubMed Central

    Miller, David S.

    2015-01-01

    ATP Binding Cassette (ABC) transporters at the blood-brain barrier function as ATP-driven xenobiotic efflux pumps and limit delivery of small molecule drugs to the brain. Here I review recent progress in understanding the regulation of the expression and transport activity of these transporters and comment on how this new information might aid in improving drug delivery to the brain. PMID:25670036

  20. The Predicted ABC Transporter AbcEDCBA Is Required for Type IV Secretion System Expression and Lysosomal Evasion by Brucella ovis

    PubMed Central

    Silva, Teane M. A.; Mol, Juliana P. S.; Winter, Maria G.; Atluri, Vidya; Xavier, Mariana N.; Pires, Simone F.; Paixão, Tatiane A.; Andrade, Hélida M.; Santos, Renato L.; Tsolis, Renee M.

    2014-01-01

    Brucella ovis is a major cause of reproductive failure in rams and it is one of the few well-described Brucella species that is not zoonotic. Previous work showed that a B. ovis mutant lacking a species-specific ABC transporter (ΔabcBA) was attenuated in mice and was unable to survive in macrophages. The aim of this study was to evaluate the role of this ABC transporter during intracellular survival of B. ovis. In HeLa cells, B. ovis WT was able to survive and replicate at later time point (48 hpi), whereas an ΔabcBA mutant was attenuated at 24 hpi. The reduced survival of the ΔabcBA mutant was associated with a decreased ability to exclude the lysosomal marker LAMP1 from its vacuolar membrane, suggesting a failure to establish a replicative niche. The ΔabcBA mutant showed a reduced abundance of the Type IV secretion system (T4SS) proteins VirB8 and VirB11 in both rich and acid media, when compared to WT B. ovis. However, mRNA levels of virB1, virB8, hutC, and vjbR were similar in both strains. These results support the notion that the ABC transporter encoded by abcEDCBA or its transported substrate acts at a post-transcriptional level to promote the optimal expression of the B. ovis T4SS within infected host cells. PMID:25474545

  1. Second-order nonlinear optical metamaterials: ABC-type nanolaminates

    SciTech Connect

    Alloatti, L. Kieninger, C.; Lauermann, M.; Köhnle, K.; Froelich, A.; Wegener, M.; Frenzel, T.; Freude, W.; Leuthold, J.; Koos, C.

    2015-09-21

    We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al{sub 2}O{sub 3}, B = TiO{sub 2}, and C = HfO{sub 2}. The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths.

  2. Exploring conformational equilibria of a heterodimeric ABC transporter

    PubMed Central

    Timachi, M Hadi; Hutter, Cedric AJ; Hohl, Michael; Assafa, Tufa; Böhm, Simon; Mittal, Anshumali; Seeger, Markus A; Bordignon, Enrica

    2017-01-01

    ABC exporters pump substrates across the membrane by coupling ATP-driven movements of nucleotide binding domains (NBDs) to the transmembrane domains (TMDs), which switch between inward- and outward-facing (IF, OF) orientations. DEER measurements on the heterodimeric ABC exporter TM287/288 from Thermotoga maritima, which contains a non-canonical ATP binding site, revealed that in the presence of nucleotides the transporter exists in an IF/OF equilibrium. While ATP binding was sufficient to partially populate the OF state, nucleotide trapping in the pre- or post-hydrolytic state was required for a pronounced conformational shift. At physiologically high temperatures and in the absence of nucleotides, the NBDs disengage asymmetrically while the conformation of the TMDs remains unchanged. Nucleotide binding at the degenerate ATP site prevents complete NBD separation, a molecular feature differentiating heterodimeric from homodimeric ABC exporters. Our data suggest hydrolysis-independent closure of the NBD dimer, which is further stabilized as the consensus site nucleotide is committed to hydrolysis. DOI: http://dx.doi.org/10.7554/eLife.20236.001 PMID:28051765

  3. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection

    PubMed Central

    Sharkey, Liam K. R.; Edwards, Thomas A.

    2016-01-01

    ABSTRACT Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro. To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection. PMID:27006457

  4. Extinction treatment in multiple contexts attenuates ABC renewal in humans.

    PubMed

    Balooch, Siavash Bandarian; Neumann, David L; Boschen, Mark J

    2012-10-01

    Renewal has been implicated as one of the underlying mechanisms in return of fear following exposure therapy. ABC renewal is clinically more relevant than ABA renewal and yet it is a weaker form of renewal, suggesting that conducting extinction treatment in multiple contexts may be sufficient to attenuate ABC renewal. Using self-reported expectancy of shock and startle blink responses the current study examined the effects of conducting extinction treatment in multiple contexts on ABC fear renewal. Participants (N = 68) received conditional stimulus (CS) and unconditional stimulus (US) pairings in one context (A) followed by extinction treatment (CS presentations alone) in either one other context (B) or three other contexts (BCD). Non-reinforced test trials in a novel context (E) resulted in renewal of extinguished conditioned behaviour for those who received extinction in only one context. However, renewal was attenuated for those who received extinction treatment in three contexts. No renewal was found for the control group that received the test trial in the same context as during extinction. Suggestions are provided for clinicians seeking to prevent or attenuate return of fear following exposure therapy.

  5. Substrate effect on nanoporous structure of silica wires by channel-confined self-assembly of block-copolymer and sol-gel precursors

    DOE PAGES

    Hu, Michael Z.; Lai, Peng

    2015-09-22

    Nanoporous silica wires of various wire diameters were developed by space-confined molecular self-assembly of triblock copolymer ethylene/propylene/ethylene (P123) and silica alkoxide precursor (tetraethylorthosilicate, TEOS). Two distinctive hard-templating substrates, anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC), with channel diameters in the range between 10 nm and 200 nm were employed for space-confinement of soft molecular self-assembly driven by the block-copolymer microphase separation. It was observed in the scanning and transmission electron microscope (STEM) studies that the substrate geometry and material characteristics had pronounced effects on the structure and morphology of the silica nanowires. A substrate wall effect was proposed tomore » explain the ordering and orientation of the intra-wire mesostructure. Circular and spiral nanostructures were found only in wires formed in AAO substrate, not in EPC. Pore-size differences and distinctive wall morphologies of the nanowires relating to the substrates were discussed. It was shown that the material and channel wall characteristics of different substrates play key roles in the ordering and morphology of the intra-wire nanostructures.« less

  6. Substrate effect on nanoporous structure of silica wires by channel-confined self-assembly of block-copolymer and sol-gel precursors

    SciTech Connect

    Hu, Michael Z.; Lai, Peng

    2015-09-22

    Nanoporous silica wires of various wire diameters were developed by space-confined molecular self-assembly of triblock copolymer ethylene/propylene/ethylene (P123) and silica alkoxide precursor (tetraethylorthosilicate, TEOS). Two distinctive hard-templating substrates, anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC), with channel diameters in the range between 10 nm and 200 nm were employed for space-confinement of soft molecular self-assembly driven by the block-copolymer microphase separation. It was observed in the scanning and transmission electron microscope (STEM) studies that the substrate geometry and material characteristics had pronounced effects on the structure and morphology of the silica nanowires. A substrate wall effect was proposed to explain the ordering and orientation of the intra-wire mesostructure. Circular and spiral nanostructures were found only in wires formed in AAO substrate, not in EPC. Pore-size differences and distinctive wall morphologies of the nanowires relating to the substrates were discussed. It was shown that the material and channel wall characteristics of different substrates play key roles in the ordering and morphology of the intra-wire nanostructures.

  7. Comparative study of aluminum phthalocyanine incorporating into two types of block copolymer: photo-physical property, size, and in vitro photodynamic therapy efficacy

    NASA Astrophysics Data System (ADS)

    Huang, Yide; Ma, Dongdong; Pan, Sujuan; Lin, Pingping; Lin, Yao; Yang, Hongqin; Peng, Yiru

    2015-01-01

    Nanoparticles of amphiphilic triblock copolymer poly( l-lysine)- b-poly(ethylene glycol)- b-poly( l-lysine) and diblock copolymer methoxy-poly(ethylene glycol)- b-poly( l-lysine) were developed to encapsulate tetra(4-sulfoazophenyl-4'-aminosulfonyl) chloride aluminum phthalocyanine, a new photosensitizer used in photodynamic therapy. The mean nanoparticle sizes varied from 10 to 70 nm, and the encapsulation efficacy ranged from 56 to 73 % due to electrostatic self-assembly induced by two types of polymer. The characteristic photophysical parameters including the absorption spectrum profile, fluorescence quantum yield, and fluorescence decay curves for free and encapsulated phthalocyanine were analyzed. The cellular uptake amount and photoactivity of S-AlPc were improved by encapsulation. The aluminum phthalocyanine loaded with poly( l-lysine)- b-poly(ethylene glycol)- b-poly( l-lysine) presented suitable physical stability, improved photophysical properties, and enhanced phototoxicity in vitro, suggesting it may be considered as a promising formulation for PDT.

  8. Conservation and distribution of the benzalkonium chloride resistance cassette bcrABC in Listeria monocytogenes.

    PubMed

    Dutta, Vikrant; Elhanafi, Driss; Kathariou, Sophia

    2013-10-01

    Analysis of a panel of 116 Listeria monocytogenes strains of diverse serotypes and sources (clinical, environment of food processing plants, and food) revealed that all but one of the 71 benzalkonium chloride-resistant (BC(r)) isolates harbored bcrABC, previously identified on a large plasmid (pLM80) of the 1998-1999 hot dog outbreak strain H7858. In contrast, bcrABC was not detected among BC-susceptible (BC(s)) isolates. The bcrABC sequences were highly conserved among strains of different serotypes, but variability was noted in sequences flanking bcrABC. The majority of the BC(r) isolates had either the pLM80-type of organization of the bcrABC region or appeared to harbor bcrABC on the chromosome, adjacent to novel sequences. Transcription of bcrABC was induced by BC (10 μg/ml) in strains of different serotypes and diverse bcrABC region organization. These findings reveal widespread dissemination of bcrABC across BC(r) L. monocytogenes strains regardless of serotype and source, while also suggesting possible mechanisms of bcrABC dissemination across L. monocytogenes genomes.

  9. Conservation and Distribution of the Benzalkonium Chloride Resistance Cassette bcrABC in Listeria monocytogenes

    PubMed Central

    Dutta, Vikrant; Elhanafi, Driss

    2013-01-01

    Analysis of a panel of 116 Listeria monocytogenes strains of diverse serotypes and sources (clinical, environment of food processing plants, and food) revealed that all but one of the 71 benzalkonium chloride-resistant (BCr) isolates harbored bcrABC, previously identified on a large plasmid (pLM80) of the 1998-1999 hot dog outbreak strain H7858. In contrast, bcrABC was not detected among BC-susceptible (BCs) isolates. The bcrABC sequences were highly conserved among strains of different serotypes, but variability was noted in sequences flanking bcrABC. The majority of the BCr isolates had either the pLM80-type of organization of the bcrABC region or appeared to harbor bcrABC on the chromosome, adjacent to novel sequences. Transcription of bcrABC was induced by BC (10 μg/ml) in strains of different serotypes and diverse bcrABC region organization. These findings reveal widespread dissemination of bcrABC across BCr L. monocytogenes strains regardless of serotype and source, while also suggesting possible mechanisms of bcrABC dissemination across L. monocytogenes genomes. PMID:23892748

  10. Curable polyphosphazene copolymers and terpolymers

    NASA Technical Reports Server (NTRS)

    Reynard, Kennard A. (Inventor); Rose, Selwyn H. (Inventor)

    1976-01-01

    Copolymers and terpolymers comprising randomly repeating units represented by the general formulae ##EQU1## wherein the R' radicals contain OH functionality and R being at least one member of the group of monovalent radicals selected from alkyl, substituted alkyl, aryl, substituted aryl and arylalkyl, and R' is represented by ##EQU2## wherein Q represents either --(CH.sub.2).sub. n or --C.sub.6 H.sub.4 X(CH.sub.2).sub. m, the --X(CH.sub.2).sub. m group being either meta or para and n is an integer from 1 to 6, m is an integer from 1 to 3, X is O or CH.sub.2, and R is H or a lower alkyl radical with up to four carbon atoms (methyl, ethyl, etc.). The ratio of R to R' is between 99.5 to 0.5 and 65 to 35.

  11. Organosilane Polymers. III. Block Copolymers.

    DTIC Science & Technology

    1980-04-01

    5446 (1969) 9) R. West, J. Polym. Sci., C, 29, 65 (1970) 10) V.F. Traven and R. West, J. Am. Chem. Soc., 95, 6824 (1973) 11) W.G. Boberski and-A.L...COMPOSITION Alkyl H/Aryl H (2 ) Copolymer Method,1 , Calculated Found 111-3 A 0.72 0.73 B 0.72 0.73 111-5 A 0.80 0.85 B 0.80 0.80 111-8 A 1.0 1.4 B 1.0...1.1 (1) A: Chloro-oligomer added to lithio-oligomer. B : Lithio-oligomer added to chloro-oligomer. (2) By HI-NMR TABLE 2 INFRA-RED ABSORPTIONS

  12. Electrostatic control of block copolymer morphology

    NASA Astrophysics Data System (ADS)

    Sing, Charles E.; Zwanikken, Jos W.; Olvera de La Cruz, Monica

    2014-07-01

    Energy storage is at present one of the foremost issues society faces. However, material challenges now serve as bottlenecks in technological progress. Lithium-ion batteries are the current gold standard to meet energy storage needs; however, they are limited owing to the inherent instability of liquid electrolytes. Block copolymers can self-assemble into nanostructures that simultaneously facilitate ion transport and provide mechanical stability. The ions themselves have a profound, yet previously unpredictable, effect on how these nanostructures assemble and thus the efficiency of ion transport. Here we demonstrate that varying the charge of a block copolymer is a powerful mechanism to predictably tune nanostructures. In particular, we demonstrate that highly asymmetric charge cohesion effects can induce the formation of nanostructures that are inaccessible to conventional uncharged block copolymers, including percolated phases desired for ion transport. This vastly expands the design space for block copolymer materials and is informative for the versatile design of battery electrolyte materials.

  13. Block copolymer structures in nano-pores

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  14. Arbitrary lattice symmetries via block copolymer nanomeshes

    PubMed Central

    Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.

    2015-01-01

    Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566

  15. Salt Complexation in Block Copolymer Thin Films

    SciTech Connect

    Kim,S.; Misner, M.; Yang, L.; Gang, O.; Ocko, B.; Russell, T.

    2006-01-01

    Ion complexation within cylinder-forming block copolymer thin films was found to affect the ordering process of the copolymer films during solvent annealing, significantly enhancing the long-range positional order. Small amounts of alkali halide or metal salts were added to PS-b-PEO, on the order of a few ions per chain, where the salt complexed with the PEO block. The orientation of the cylindrical microdomains strongly depended on the salt concentration and the ability of the ions to complex with PEO. The process shows large flexibility in the choice of salt used, including gold or cobalt salts, whereby well-organized patterns of nanoparticles can be generated inside the copolymer microdomains. By further increasing the amount of added salts, the copolymer remained highly ordered at large degrees of swelling and demonstrated long-range positional correlations of the microdomains in the swollen state, which holds promise as a route to addressable media.

  16. Reactivity ratios for organotin copolymer systems.

    PubMed

    El-Newehy, Mohamed H; Al-Deyab, Salem S; Al-Hazmi, Ali Mohsen Ali

    2010-04-15

    Di(tri-n-butyltin) itaconate (DTBTI) and monoethyl tributyltin fumarate (METBTF) were synthesized as organotin monomers. The organotin monomers were copolymerized with styrene (ST) and methyl methacrylate (MMA) via a free radical polymerization technique. The overall conversion was kept low (copolymer composition was determined from tin analysis. The synthesized monomers and copolymers were characterized by elemental analysis, 1H- and 13C-NMR, and FTIR spectroscopy.

  17. Method for making block siloxane copolymers

    DOEpatents

    Butler, N.L.; Jessop, E.S.; Kolb, J.R.

    1981-02-25

    A method for synthesizing block polysiloxane copolymers is disclosed. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  18. Responsive Copolymers for Enhanced Petroleum Recovery

    SciTech Connect

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  19. Method for making block siloxane copolymers

    DOEpatents

    Butler, Nora; Jessop, Edward S.; Kolb, John R.

    1982-01-01

    A method for synthesizing block polysiloxane copolymers. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  20. Diffusion of copolymers composed of monomers with drastically different friction factors in copolymer/homopolymer blends

    NASA Astrophysics Data System (ADS)

    Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark

    2017-02-01

    Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this work, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary the connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. The results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer's local volume.

  1. Creating an iPhone application for collecting continuous ABC data.

    PubMed

    Whiting, Seth W; Dixon, Mark R

    2012-01-01

    This paper provides an overview and task analysis for creating a continuous ABC data-collection application using Xcode on a Mac computer. Behavior analysts can program an ABC data collection system, complete with a customized list of target clients, antecedents, behaviors, and consequences to be recorded, and have the data automatically sent to an e-mail account after observations have concluded. Further suggestions are provided to customize the ABC data- collection system for individual preferences and clinical needs.

  2. Improvement of proteolytic and oxidative stability of Chondroitinase ABC I by cosolvents.

    PubMed

    Nazari-Robati, Mahdieh; Golestani, Abolfazl; Asadikaram, GholamReza

    2016-10-01

    Recently, utilization of the enzyme Chondroitinase ABC I (cABC I) has received considerable attention in treatment of spinal cord injury. cABC I removes chondroitin sulfate proteoglycans which are inhibitory to axon growth and enhances nerve regeneration. Therefore, determination of cABC I resistance to proteolysis and oxidation provides valuable information for optimizing its clinical application. In this work, proteolytic stability of cABC I to trypsin and chymotrypsin as well as its oxidative resistance to H2O2 was measured. Moreover, the effect of cosolvents glycerol, sorbitol and trehalose on cABC I proteolytic and oxidative stability was determined. The results indicated that cABC I is highly susceptible to proteolysis and oxidation. Comparison of proteolytic patterns demonstrated a high degree of similarity which confirmed the exposure of specific regions of cABC I to proteolysis. However, proteolytic degradation was significantly reduced in the presence of cosolvents. In addition, cosolvents decreased the rate of both cABC I proteolytic and oxidative inactivation. Notably, the degree of stabilization provided by these cosolvents varied greatly. These findings indicated the high potential of cosolvents in protein stabilization to proteolysis and oxidative inactivation.

  3. The Effect of the Nonionic Block Copolymer Pluronic P85 on Gene Expression in Mouse Muscle and Antigen Presenting Cells

    PubMed Central

    Gaymalov, Zagit Z.; Yang, Zhihui; Pisarev, Vladimir M.; Alakhov, Valery Yu.; Kabanov, Alexander V.

    2008-01-01

    DNA vaccines can be greatly improved by polymer agents that simultaneously increase transgene expression and activate immunity. We describe here Pluronic P85 (P85), a triblock copolymer of ethylene oxide (EO) and propylene oxide (PO) EO26-PO40-EO26,. Using a mouse model we demonstrate that co-administration of a bacterial plasmid DNA with P85 in a skeletal muscle greatly increases gene expression in the injection site and distant organs, especially the draining lymph nodes and spleen. The reporter expression colocalizes with the specific markers of myocytes and keratinocytes in the muscle, as well as dendritic cells (DC) and macrophages in the muscle, lymph nodes and spleen. Furthermore, DNA/P85 and P85 alone increase the systemic expansion of CD11c+ (DC), and local expansion of CD11c+, CD14+ (macrophages) and CD49b+ (natural killer) cell populations. DNA/P85 (but not P85) also increases maturation of local DC (CD11c+CD86+, CD11c+CD80+, and CD11c+CD40+). We suggest that DNA/P85 promotes the activation and recruitment of the antigen-presenting cells, which further incorporate, express and carry the transgene to the immune system organs. PMID:19064283

  4. Polyhydroxyalkanoate copolymers from forest biomass.

    PubMed

    Keenan, Thomas M; Nakas, James P; Tanenbaum, Stuart W

    2006-07-01

    The potential for the use of woody biomass in poly-beta-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07-0.67% (w/v)]. Yields of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, Mv) from 511-919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (Tm) and glass transition temperature (Tg) decreased as a function of 3HVcontent, with Tm demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25-0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16-52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w

  5. Drift of Phase Fluctuations in the ABC Model

    NASA Astrophysics Data System (ADS)

    Bertini, Lorenzo; Buttà, Paolo

    2013-07-01

    In a recent work, Bodineau and Derrida analyzed the phase fluctuations in the ABC model. In particular, they computed the asymptotic variance and, on the basis of numerical simulations, they conjectured the presence of a drift, which they guessed to be an antisymmetric function of the three densities. By assuming the validity of the fluctuating hydrodynamic approximation, we prove the presence of such a drift, providing an analytical expression for it. This expression is then shown to be an antisymmetric function of the three densities. The antisymmetry of the drift can also be inferred from a symmetry property of the underlying microscopic dynamics.

  6. Design of the storage location based on the ABC analyses

    NASA Astrophysics Data System (ADS)

    Jemelka, Milan; Chramcov, Bronislav; Kříž, Pavel

    2016-06-01

    The paper focuses on process efficiency and saving storage costs. Maintaining inventory through putaway strategy takes personnel time and costs money. The aim is to control inventory in the best way. The ABC classification based on Villefredo Pareto theory is used for a design of warehouse layout. New design of storage location reduces the distance of fork-lifters, total costs and it increases inventory process efficiency. The suggested solutions and evaluation of achieved results are described in detail. Proposed solutions were realized in real warehouse operation.

  7. [ABC supplies classification: a managment tool of costs in nursing].

    PubMed

    Lourenço, Karina Gomes; Castilho, Valéria

    2006-01-01

    The implementation of costs management systems has been extremely helpful to healthcare area owing to their efficacy in cutting expenditures as well as improving service quality. The ABC classification is an applied strategy to stocktaking and control. The research, which consists of an exploratory/descriptive quantitative analysis, has been carried out in order to identify, in a year time period, the demand for supplies at Universidade de Sao Paulo's Hospital. Of 1938 classified materials, 67 itens had been classified that they correspond to the materials with bigger costs for the hospital. 31.3% of these A-Class supplies catalogued items are the nursing materials, more used for the nursing team.

  8. Polyene photoisomerization rates: Are they distinct in aqueous block copolymer micellar solutions and gels?

    SciTech Connect

    Mali, K.S.; Dutt, G.B.; Mukherjee, T.

    2006-02-07

    Photoisomerization of 3,3{sup '}-diethyloxadicarbocyanine iodide (DODCI) has been investigated in water, 5% and 30% aqueous triblock copolymer, poly(ethylene oxide){sub 20}-poly(propylene oxide){sub 70}-poly(ethylene oxide){sub 20} (P123) by measuring the fluorescence quantum yields and lifetimes in the temperature range 293-318 K. Reports available in literature indicate that 5% aqueous P123 exists as micellar solution, whereas 30% aqueous P123 forms gel due to micelle-micelle entanglement. This study has been undertaken to find out how the polyene photoisomerization rates are influenced in the sol and gel phases. It has been observed that 60%-70% of DODCI is located in the palisade layer of the micelles in the sol as well as gel phases and the photoisomerization rate of this component is identical in both the phases at a particular temperature. The remainder of the probe is located in the interfacial region and isomerization rates of this fraction are slower by a factor of 1.4-1.1 in the gel phase compared with the micellar solution. The retardation of the isomerization rate in the gel phase has been explained on the basis of enhancement in the friction experienced by the probe due to micelle-micelle entanglement at the interface. Compared to the isomerization rates in water, the rates of photoisomerization of DODCI located in the palisade layer, interfacial region of micellar solution, and interfacial region of the micelles in the gel phase are slower by factors of 3.5, 1.5-1.9, and 2, respectively. The outcome of this study validates the point that in organized media photoisomerization rates are sensitive to the localized friction, which is not uniform unlike in a homogeneous solution.

  9. Initiator Effects in Reactive Extrusion of Starch Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with water-soluble polymers such as polyacrylamide have potential applications including hydrogels, superabsorbents, and thickening agents. Reactive extrusion is a rapid, continuous method for production of starch graft copolymers with high reaction and grafting efficienc...

  10. Hydrogen-bonded aggregates in precise acid copolymers

    SciTech Connect

    Lueth, Christopher A.; Bolintineanu, Dan S.; Stevens, Mark J. Frischknecht, Amalie L.

    2014-02-07

    We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length but not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates.

  11. Deciphering the Routes of invasion of Drosophila suzukii by Means of ABC Random Forest.

    PubMed

    Fraimout, Antoine; Debat, Vincent; Fellous, Simon; Hufbauer, Ruth A; Foucaud, Julien; Pudlo, Pierre; Marin, Jean-Michel; Price, Donald K; Cattel, Julien; Chen, Xiao; Deprá, Marindia; François Duyck, Pierre; Guedot, Christelle; Kenis, Marc; Kimura, Masahito T; Loeb, Gregory; Loiseau, Anne; Martinez-Sañudo, Isabel; Pascual, Marta; Polihronakis Richmond, Maxi; Shearer, Peter; Singh, Nadia; Tamura, Koichiro; Xuéreb, Anne; Zhang, Jinping; Estoup, Arnaud

    2017-04-01

    Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved the reconstruction of invasion routes, but can be computationally expensive. We use our study to illustrate the use of a new, more efficient, ABC method, ABC random forest (ABC-RF) and compare it to a standard ABC method (ABC-LDA). We find that Japan emerges as the most probable source of the earliest recorded invasion into Hawaii. Southeast China and Hawaii together are the most probable sources of populations in western North America, which then in turn served as sources for those in eastern North America. European populations are genetically more homogeneous than North American populations, and their most probable source is northeast China, with evidence of limited gene flow from the eastern US as well. All introduced populations passed through bottlenecks, and analyses reveal five distinct admixture events. These findings can inform hypotheses concerning how this species evolved between different and independent source and invasive populations. Methodological comparisons indicate that ABC-RF and ABC-LDA show concordant results if ABC-LDA is based on a large number of simulated datasets but that ABC-RF out-performs ABC-LDA when using a comparable and more manageable number of simulated datasets, especially when analyzing complex introduction scenarios.

  12. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance.

    PubMed

    Dermauw, Wannes; Van Leeuwen, Thomas

    2014-02-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods.

  13. SU-E-T-401: Feasibility Study of Using ABC to Gate Lung SBRT Treatment

    SciTech Connect

    Cao, D; Xie, X; Shepard, D

    2014-06-01

    Purpose: The current SBRT treatment techniques include free breathing (FB) SBRT and gated FB SBRT. Gated FB SBRT has smaller target and less lung toxicity with longer treatment time. The recent development of direct connectivity between the ABC and linac allowing for automated beam gating. In this study, we have examined the feasibility of using ABC system to gate the lung SBRT treatment. Methods: A CIRS lung phantom with a 3cm sphere-insert and a moving chest plate was used in this study. Sinusoidal motion was used for the FB pattern. An ABC signal was imported to simulate breath holds. 4D-CT was taken in FB mode and average-intensity-projection (AIP) was used to create FB and 50% gated FB SBRT planning CT. A manually gated 3D CT scan was acquired for ABC gated SBRT planning.An SBRT plan was created for each treatment option. A surface-mapping system was used for 50% gating and ABC system was used for ABC gating. A manually gated CBCT scan was also performed to verify setup. Results: Among three options, the ABC gated plan has the smallest PTV of 35.94cc, which is 35% smaller comparing to that of the FB plan. Consequently, the V20 of the left lung reduced by 15% and 23% comparing to the 50% gated FB and FB plans, respectively. The FB plan took 4.7 minutes to deliver, while the 50% gated FB plan took 18.5 minutes. The ABC gated plan delivery took only 10.6 minutes. A stationary target with 3cm diameter was also obtained from the manually gated CBCT scan. Conclusion: A strategy for ABC gated lung SBRT was developed. ABC gating can significantly reduce the lung toxicity while maintaining the target coverage. Comparing to the 50% gated FB SBRT, ABC gated treatment can also provide less lung toxicity as well as improved delivery efficiency. This research is funded by Elekta.

  14. Charge Transport in Conjugated Block Copolymers

    NASA Astrophysics Data System (ADS)

    Smith, Brandon; Le, Thinh; Lee, Youngmin; Gomez, Enrique

    Interest in conjugated block copolymers for high performance organic photovoltaic applications has increased considerably in recent years. Polymer/fullerene mixtures for conventional bulk heterojunction devices, such as P3HT:PCBM, are severely limited in control over interfaces and domain length scales. In contrast, microphase separated block copolymers self-assemble to form lamellar morphologies with alternating electron donor and acceptor domains, thereby maximizing electronic coupling and local order at interfaces. Efficiencies as high as 3% have been reported in solar cells for one block copolymer, P3HT-PFTBT, but the details concerning charge transport within copolymers have not been explored. To fill this gap, we probed the transport characteristics with thin-film transistors. Excellent charge mobility values for electron transport have been observed on aluminum source and drain contacts in a bottom gate, bottom contact transistor configuration. Evidence of high mobility in ordered PFTBT phases has also been obtained following thermal annealing. The insights gleaned from our investigation serve as useful guideposts, revealing the significance of the interplay between charge mobility, interfacial order, and optimal domain size in organic block copolymer semiconductors.

  15. Biosolar energy generation and harvesting from biomolecule-copolymer hybrid systems

    NASA Astrophysics Data System (ADS)

    Chu, Bong-Chieh Benjamin

    Alternative energy sources have become an increasingly important topic as energy needs outpace supply. Furthermore, as the world moves into the digital age of portable electronics, highly efficient and lightweight energy sources will need to be developed. Current technology, such as lithium ion batteries, provide enough power to run portable electronics for hours or days, but can still allow for improvement in their power density (W/kg). Utilizing energy-transducing membrane proteins, which are by nature highly efficient, it is possible to engineer biological-based energy sources with energy densities far greater than any solid-state systems. Furthermore, solar powered membrane proteins have the added benefit of a virtually unlimited supply of energy. This work has developed protein-polymer hybrid films and nanoscale vesicles for a variety of applications from fuel-cell technology to biological-based photovoltaics. Bacteriorhodopsin (BR), a light-activated proton pump, and Cytochrome C Oxidase (COX), a protein involved in the electron transport chain in mitochondria, were reconstituted into biomimetic triblock copolymer membranes. Block copolymer membranes mimic the amphiphilic nature of a natural lipid bilayer but exhibit greater mechanical stability due to UV-polymerizable endgroups. In BR/COX functionalized nanovesicles, proton gradients generated by the light-activated proton pumping of BR are used to drive COX in reverse to generate electrons, providing a hybrid biologically-active polymer to convert solar energy to chemical energy, and finally to electrical energy. This work has found protein activity in planar membranes through the photoelectric current generation by BR and the proton pumping activity of BR-functionalized polymer membranes deposited onto proton exchange membranes, as well as the coupled functionality of BR and COX through current generation in cyclic voltammetry and direct current measurements. Current switching between light and dark

  16. Perfluorinated Moieties Increase the Interaction of Amphiphilic Block Copolymers with Lipid Monolayers.

    PubMed

    Schwieger, Christian; Blaffert, Jacob; Li, Zheng; Kressler, Jörg; Blume, Alfred

    2016-08-16

    The interaction of amphiphilic and triphilic block copolymers with lipid monolayers has been studied. Amphiphilic triblock copolymer PGMA20-PPO34-PGMA20 (GP) is composed of a hydrophobic poly(propylene oxide) (PPO) middle block that is flanked by two hydrophilic poly(glycerol monomethacrylate) (PGMA) side blocks. The attachment of a perfluoro-n-nonyl residue (F9) to either end of GP yields a triphilic polymer with the sequence F9-PGMA20-PPO34-PGMA20-F9 (F-GP). The F9 chains are fluorophilic, i.e., they have a tendency to demix in hydrophilic as well as in lipophilic environments. We investigated (i) the adsorption of both polymers to differently composed lipid monolayers and (ii) the compression behavior of mixed polymer/lipid monolayers. The lipid monolayers are composed of phospholipids with PC or PE headgroups and acyl chains of different length and saturation. Both polymers interact with lipid monolayers by inserting their hydrophobic moieties (PPO, F9). The interaction is markedly enhanced in the presence of F9 chains, which act as membrane anchors. GP inserts into lipid monolayers up to a surface pressure of 30 mN/m, whereas F-GP inserts into monolayers at up to 45 mN/m, suggesting that F-GP also inserts into lipid bilayer membranes. The adsorption of both polymers to lipid monolayers with short acyl chains is favored. Upon compression, a two-step squeeze-out of F-GP occurs, with PPO blocks being released into the aqueous subphase at 28 mN/m and the F9 chains being squeezed out at 48 mN/m. GP is squeezed out in one step at 28 mN/m because of the lack of F9 anchor groups. The liquid expanded (LE) to liquid condensed (LC) phase transition of DPPC and DMPE is maintained in the presence of the polymers, indicating that the polymers can be accommodated in LE- and LC-phase monolayers. These results show how fluorinated moieties can be included in the rational design of membrane-binding polymers.

  17. Effect of Ternary Solutes on the Evolution of Structure and Gel Formation in Amphiphilic Copolymer Solutions

    NASA Astrophysics Data System (ADS)

    Meznarich, Norman Anthony Kang

    Aqueous solutions of polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) amphiphilic triblock copolymers (commercially known as Pluronic surfactants) undergo reversible and temperature-dependent micellization and arrangement into cubic ordered lattices known as "micelle gels". The macroscopic behavior of the ordering is a transition from a liquid to a gel. While the phase behavior and gel structure of pure Pluronic surfactant solutions have been well studied, less is known about the effects of added ternary solutes. In this dissertation, a comprehensive investigation into the effects of the added pharmaceutical methylparaben on solutions of F127 ranging from 10 to 30 wt% was conducted in order to better understand the behavior of F127 in multicomponent pharmaceutical formulations. The viscoelastic properties of F127 gel formation were studied using rheometry, where heating rates of 0.1, 1, and 10 degrees C/min were also used to probe the kinetics of the gel transition. In solutions containing methylparaben, F127 gelation occurred at up to 15 degrees C lower temperatures and was accelerated by a factor of three to four. Small angle x-ray scattering (SAXS) was used to characterize the structure of the ordered domains, and how they were affected by the presence of dissolved pharmaceuticals. It was found that ordered domain formation changed from heterogeneous nucleation and growth to possible homogeneous nucleation and growth. A roughly 2% reduction in the cubic lattice parameter was also observed for solutions containing methylparaben. Differential scanning calorimetry (DSC) experiments were performed on a series of different Pluronic surfactants in order to characterize the micellization behavior as a function of PPO center block length and PEO/PPO ratio. Added methylparaben suppressed the micellization endotherm, the degree of suppression depending linearly on the amount of added methylparaben, as well as the length of the PPO center block and PEO

  18. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  19. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  20. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  1. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  2. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  3. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  4. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  5. Structure Confirmation and Properties of Poly(Dimethylsiloxaneco-diethylsiloxane) Copolymer

    NASA Astrophysics Data System (ADS)

    Gao, Li-Juan; Ma, De-Peng; Feng, Sheng-Yu

    2016-05-01

    High molecular weight poly (dimethylsiloxane-co-diethylsiloxane) (PMES) copolymer was synthesized by anionic ring opening polymerization. Its composition and structures was determined by 29Si NMR spectroscopy. A random microstructure of copolymer was observed in the 29Si NMR spectrum. Further, PMES was characterized by GPC and DSC. The results show that PMES is crystallization-free copolymer with low glass transition temperatures.

  6. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-maleic anhydride copolymers. 177.1820... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1820 Styrene-maleic anhydride copolymers. Styrene-maleic anhydride copolymers identified in paragraph (a) of this section may be...

  7. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  8. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  9. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  10. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  11. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide... of this section, ethylene-carbon monoxide copolymers (CAS Reg. No. 25052-62-4) consist of the...

  12. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  13. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  14. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  15. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  16. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  17. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  18. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-vinyl acetate copolymers. 177.1350... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  19. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  20. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be...

  1. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be...

  2. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-vinyl acetate copolymers. 177.1350... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  3. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be...

  4. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  5. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-vinyl acetate copolymers. 177.1350... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  6. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be...

  7. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  8. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  9. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-vinyl acetate copolymers. 177.1350... Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate... with the following prescribed conditions: (a)(1) Ethylene-vinyl acetate copolymers consist of...

  10. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  11. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  12. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  13. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  14. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  15. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  16. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as...

  17. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks.

    PubMed

    Ba, Chaoyi; Yang, Jing; Hao, Qinghui; Liu, Xiaoyun; Cao, Amin

    2003-01-01

    This study presents chemical syntheses and physical characterization of a new aliphatic poly(L-lactide-b-butylene succinate-b-L-lactide) triblock copolyester with soft and hard biodegradable building blocks. First, poly(butylene succinate) (PBS) prepolymers terminated with hydroxyl functional groups were synthesized through melt polycondensation from succinic acid and 1,4-butanediol. Further, a series of new PLLA-b-PBS-b-PLLA triblock copolyesters bearing various average PLLA block lengths were prepared via ring opening polymerization of L-lactide with the synthesized hydroxyl capped PBS prepolymer (Mn = 4.9 KDa) and stannous octanoate as the macroinitiator and catalyst, respectively. By means of GPC, NMR, FTIR, DSC, TGA, and wide-angle X-ray diffractometer (WAXD), the macromolecular structures and physical properties were intensively studied for these synthesized PBS prepolymer and PLLA-b-PBS-b-PLLA triblock copolyesters. 13C NMR and GPC experimental results confirmed the formation of sequential block structures without any detectable transesterification under the present experimental conditions, and the molecular weights of triblock copolyesters could be readily regulated by adjusting the feeding molar ratio of L-lactide monomer to the PBS macroinitiator. DSC measurements showed all single glass transitions, and their glass transition temperatures were found to be between those of PLLA and PBS, depending on the lengths of PLLA blocks. It was noteworthy that the segmental flexibilities of the hard PLLA blocks were found to be remarkably enhanced by the more flexible PBS block partner, and the PBS and PLLA building blocks were well mixed in the amorphous regions. Results of TGA analyses indicated that thermal degradation and stabilities of the PLLA blocks strongly depended on the average PLLA block lengths of triblock copolyesters. In addition, FTIR and WAXD results showed the coexistence of the assembled PLLA and PBS crystal structures when the average PLLA block

  18. Class C ABC transporters and Saccharomyces cerevisiae vacuole fusion

    PubMed Central

    Sasser, Terry L; Fratti, Rutilio A

    2014-01-01

    Membrane fusion is carried out by core machinery that is conserved throughout eukaryotes. This is comprised of Rab GTPases and their effectors, and SNARE proteins, which together are sufficient to drive the fusion of reconstituted proteoliposomes. However, an outer layer of factors that are specific to individual trafficking pathways in vivo regulates the spatial and temporal occurrence of fusion. The homotypic fusion of Saccharomyces cerevisiae vacuolar lysosomes utilizes a growing set of factors to regulate the fusion machinery that include members of the ATP binding cassette (ABC) transporter family. Yeast vacuoles have five class C ABC transporters that are known to transport a variety of toxins into the vacuole lumen as part of detoxifying the cell. We have found that ABCC transporters can also regulate vacuole fusion through novel mechanisms. For instance Ybt1 serves as negative regulator of fusion through its effects on vacuolar Ca2+ homeostasis. Additional studies showed that Ycf1 acts as a positive regulator by affecting the efficient recruitment of the SNARE Vam7. Finally, we discuss the potential interface between the translocation of lipids across the membrane bilayer, also known as lipid flipping, and the efficiency of fusion. PMID:25610719

  19. Structure of a Type-1 Secretion System ABC Transporter.

    PubMed

    Morgan, Jacob L W; Acheson, Justin F; Zimmer, Jochen

    2017-03-07

    Type-1 secretion systems (T1SSs) represent a widespread mode of protein secretion across the cell envelope in Gram-negative bacteria. The T1SS is composed of an inner-membrane ABC transporter, a periplasmic membrane-fusion protein, and an outer-membrane porin. These three components assemble into a complex spanning both membranes and providing a conduit for the translocation of unfolded polypeptides. We show that ATP hydrolysis and assembly of the entire T1SS complex is necessary for protein secretion. Furthermore, we present a 3.15-Å crystal structure of AaPrtD, the ABC transporter found in the Aquifex aeolicus T1SS. The structure suggests a substrate entry window just above the transporter's nucleotide binding domains. In addition, highly kinked transmembrane helices, which frame a narrow channel not observed in canonical peptide transporters, are likely involved in substrate translocation. Overall, the AaPrtD structure supports a polypeptide transport mechanism distinct from alternating access.

  20. Block copolymer blend phase behavior: Binary diblock blends and amphiphilic block copolymer/epoxy mixtures

    NASA Astrophysics Data System (ADS)

    Lipic, Paul Martin

    The phase behavior of block copolymers and block copolymer blends has provided an extensive amount of exciting research and industrial applications for over thirty years. However, the unique nanoscale morphologies of microphase separated block copolymer systems is still not completely understood. This thesis examines the phase behavior of diblock copolymers and binary diblock copolymer blends in the strong segregation limit (SSL), and blends of an amphiphilic diblock copolymer with an epoxy resin. Studies of high molecular weight (˜84,000 g/mole) poly(ethylene)-poly(ethyl ethylene) (PE-PEE) diblock copolymers probed the ability of block copolymers to reach equilibrium in the SSL. Samples of pure diblocks or binary diblock blends prepared using different preparation techniques (solvent casting or precipitation) had different phase behaviors, as identified with transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS), confirming non-equilibrium phase behavior. This non-equilibrium behavior was metastable, and these results identify the caution that should be used when claiming equilibrium phase behavior in the SSL. Blends of an amphiphilic diblock copolymer, poly(ethylene oxide)-poly(ethylene-alt-propylene) (PEO-PEP) with a polymerizable epoxy resin selectively miscible with PEO, poly(Bisphenol-A-co-epichlorohydrin), supported theoretical calculations and increased the understanding of block copolymer/homopolymer blends. These blends formed different ordered structures (lamellae, bicontinuous cubic gyroid, hexagonally packed cylinders, cubic and hexagonally packed spheres) as well as a disordered spherical micellar structure, identified with SAXS and rheological measurements. Addition of hardener, methylene dianiline, to the system resulted in cross-linking of the epoxy resin and formation of a thermoset material. Macrophase separation between the epoxy and block copolymer did not occur, but local expulsion of the PEO from the epoxy was