Science.gov

Sample records for abc trilayer graphene

  1. Band structure of ABC-trilayer graphene superlattice

    SciTech Connect

    Uddin, Salah Chan, K. S.

    2014-11-28

    We investigate the effect of one-dimensional periodic potentials on the low energy band structure of ABC trilayer graphene first by assuming that all the three layers have the same potential. Extra Dirac points having the same electron hole crossing energy as that of the original Dirac point are generated by superlattice potentials with equal well and barrier widths. When the potential height is increased, the numbers of extra Dirac points are increased. The dispersions around the Dirac points are not isotropic. It is noted that the dispersion along the k{sub y} direction for k{sub x} = 0 oscillates between a non-linear dispersion and a linear dispersion when the potential height is increased. When the well and barrier widths are not identical, the symmetry of the conduction and valence bands is broken. The extra Dirac points are shifted either upward or downward depending on the barrier and well widths from the zero energy, while the position of the central Dirac point oscillates with the superlattice potential height. By considering different potentials for different layers, extra Dirac points are generated not from the original Dirac points but from the valleys formed in the energy spectrum. Two extra Dirac points appear from each pair of touched valleys, so four Dirac points appeared in the spectrum at particular barrier height. By increasing the barrier height of superlattice potential two Dirac points merge into the original Dirac point. This emerging and merging of extra Dirac points is different from the equal potential case.

  2. Magnetic oscillation of optical phonon in ABA- and ABC-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Cong, Chunxiao; Jung, Jeil; Cao, Bingchen; Qiu, Caiyu; Shen, Xiaonan; Ferreira, Aires; Adam, Shaffique; Yu, Ting

    2015-06-01

    We present a comparative measurement of the G -peak oscillations of phonon frequency, Raman intensity, and linewidth in the magneto-Raman scattering of optical E2 g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behavior between the electronic excitations and the E2 g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the particular stacking order in few-layer graphene highlights the important role of interlayer coupling in modifying the optical response properties in van der Waals layered materials.

  3. Ab initio quasiparticle band structure of ABA and ABC-stacked graphene trilayers

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos G.; Capaz, Rodrigo B.; Louie, Steven G.

    2014-01-01

    We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density-functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low-energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the self-energy corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher-energy bands, which is proportional to the nearest-neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the self-energy corrections. Finally, other effects, such as trigonal warping, electron-hole asymmetry, and energy gaps, are discussed in terms of the associated parameters.

  4. First principles study of trilayers of graphene-BN-graphene

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoliang; Amorim, Rodrigo; Pandey, Ravindra; Karna, Shashi

    2012-02-01

    The stability, electronic structure and electronic transport properties of graphene-BN-graphene (C-BN-C) trilayers are studied in the framework of density functional theory. Different stacking formats, i.e., AAA, ABA and ABC stackings are considered. The ABA stacking is found to be most energetically favorable, followed by ABC and AAA stackings. The interlayer spacing of trilayers are close to those of corresponding C-BN bilayers, while the intralayer bond length can be regarded as the weighted mean of constituent layers. All considered configurations are found to be metallic, independent of stacking formats. When an external electric field is applied perpendicularly, electronic band structures undergo stacking-dependent variations. While both AAA and ABA stackings show good tunability of energy gap, ABC stacking shows less flexibility of gap tuning. We will also present the results of the electronic transport properties which are modeled by sandwiching trilayers between gold contact electrodes.

  5. Trilayer graphene nanoribbon carrier statistics in degenerate and non degenerate limits

    NASA Astrophysics Data System (ADS)

    Rahmani, M.; Ahmadi, M. T.; Webb, J. F.; Shayesteh, N.; Mousavi, S. M.; Sadeghi, H.; Ismail, R.

    2012-11-01

    We present trilayer graphene nanoribbon carrier statistics in the degenerate and the nondegenerate limits. Within zero to 3kBT from the conduction or valence band edgers high concentrations of carriers sensitively depend on a normalized Fermi energy which is independent of temperature. The effect of different stacking orders of graphene multilayers on the electric field induced band gap is studied. The gap for trilayer graphene with the ABC stacking is much larger than the corresponding gap for the ABA trilayer. The gap for the different types of stacking is much larger as compared to the case of Bernal stacking. A non-monotonic dependence of the true energy gap in trilayer graphene on the charge density is investigated along with the electronic low-energy band structure of ABC stacked multilayer graphene. The band structure of trilayer graphene systems in the presence of a perpendicular electric field is obtained using a tight-binding approach.

  6. Electric and magnetic superlattices in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Uddin, Salah; Chan, K. S.

    2016-01-01

    The properties of one dimensional Kronig-Penney type of periodic electric and vector potential on ABC-trilayer graphene superlattices are investigated. The energy spectra obtained with periodic vector potentials shows the emergence of extra Dirac points in the energy spectrum with finite energies. For identical barrier and well widths, the original as well as the extra Dirac points are located in the ky = 0 plane. An asymmetry between the barrier and well widths causes a shift in the extra Dirac points away from the ky = 0 plane. Extra Dirac points having same electron hole crossing energy as that of the original Dirac point as well as finite energy Dirac points are generated in the energy spectrum when periodic electric potential is applied to the system. By applying electric and vector potential together, the symmetry of the energy spectrum about the Fermi level is broken. A tunable band gap is induced in the energy spectrum by applying both electric and vector potential simultaneously with different barrier and well widths.

  7. Quasi-particle spectrum in trilayer graphene: Role of onsite coulomb interaction and interlayer coupling

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Ajay

    2015-01-01

    Stacking dependent quasi-particle spectrum and density of states (DOS) in trilayer (ABC-, ABA- and AAA-stacked) graphene are analyzed using mean-field Green's function equations of motion method. Interlayer coupling (t1) is found to be responsible for the splitting of quasi-particle peaks in each stacking order. Coulomb interaction suppresses the trilayer splitting and generates a finite gap at Fermi level in ABC- while a tiny gap in ABA-stacked trilayer graphene. Influence of t⊥ is prominent for AAA-stacking as compared to ABC- and ABA-stacking orders. The theoretically obtained quasi-particle energies and DOS has been viewed in terms of recent angle resolved photoemission spectroscopic (ARPES) and scanning tunneling microscopic (STM) data available on these systems.

  8. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Que, Yande; Xiao, Wende; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun

    2015-12-01

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.

  9. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    SciTech Connect

    Que, Yande; Xiao, Wende E-mail: hjgao@iphy.ac.cn; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun E-mail: hjgao@iphy.ac.cn

    2015-12-28

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.

  10. Electronic excitation spectrum of ABC-stacked multilayer graphene

    NASA Astrophysics Data System (ADS)

    Henni, Y.; Nogajewski, K.; Ojeda Collado, H. P.; Usaj, G.; Balseiro, C. A.; Potemski, M.; Faugeras, C.

    The electronic properties of ABC graphene trilayers has attracted lot of attention recently due to their potential applications in engineering carbon-based devices with gate tunable electrical conductivity. Morever,ABC-stacked thin layers of graphite are predicted to host peculiar surface electronic states, with a flat dispersion over most of the Brillouin zone. The associated high density of states is likely to favour the emergence of exotic electronic phases, such as charge density waves or even superconductivity. We present a micro-magneto-Raman scattering study of a thin graphite flake produced by exfoliation of natural graphite, composed of ~15graphene layers, and including a large ABC-stacked domain. Exploring the low temperature Raman scattering spectrum of this domain up to B=29T,we identify inter Landau level electronic excitations within the surface flat bands,together with electronic excitations involving the gapped states in the bulk. This interband electronic excitation at B=0T can be observed,up to room temperature, directly in the Raman scattering spectrum as a broad(~ 180 cm-1) feature. Because the energy gap strongly depends on the number of layers,this electronic excitation can be used to identify and characterize ABC-stacked graphite thin layers.

  11. Magneto-electronic properties of rhombohedral trilayer graphene: Peierls tight-binding model

    SciTech Connect

    Ho, C.H.; Ho, Y.H.; Chiu, Y.H.; Chen, Y.N.; Lin, M.F.

    2011-03-15

    Research highlights: RHtriangle Three groups of Landau levels of ABC-stacked trilayer graphene are obtained. RHtriangle They are strongly affected by the stacking configuration and interlayer interactions. RHtriangle Based on the wave function characteristics, an effective quantum number is defined. RHtriangle Three sets of effective quantum numbers are used to index the Landau levels. RHtriangle These quantum numbers are useful for defining the optical selection rules. - Abstract: Magneto-electronic properties of rhombohedral (ABC-stacked) trilayer graphene are investigated by the tight-binding (TB) model with all important interlayer interactions taken into account. A numerical strategy, band-like matrix, is applied to solve the huge Hamiltonian matrix and thus the eigenvalues and eigenvectors of Landau levels (LLs) are well defined. Based on the characteristics of the wave functions, the LLs are divided into three groups. These LLs are strongly affected by the stacking configuration and interlayer interactions. The LL spectra do reflect the main features of the zero-field subbands, i.e., the existence of three LL groups, specified onset energies of the three groups, and asymmetric electronic structure. In an ABC-stacked structure, the LL wave functions are each composed of six magnetic TB Bloch functions for six sublattices. Each magnetic TB Bloch function exhibits the spatial symmetry, localization feature, and oscillation modes. Three sets of effective quantum numbers are defined to index the LLs of the three groups based on the oscillation modes in specific sublattices. These effective quantum numbers are useful for defining the optical selection rules of the optical absorption spectra.

  12. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride.

    PubMed

    Zhong, Xiaoliang; Amorim, Rodrigo G; Scheicher, Ralph H; Pandey, Ravindra; Karna, Shashi P

    2012-09-01

    We report the results of a theoretical study of graphene/BN/graphene and BN/graphene/BN trilayers using the van-der-Waals-corrected density functional theory in conjunction with the non-equilibrium Green's Function method. These trilayer systems formed from graphene and BN exhibit distinct stacking-dependent features in their ground state electronic structure and response to an applied electric field perpendicular to the trilayer planes. The graphene/BN/graphene system shows a negligible gap in the electronic band structure that increases for the AAA and ABA stackings under an external electric field, while the zero-field band gap of BN/graphene/BN remains unaffected by the electric field. When both types of trilayer systems are contacted with gold electrodes, a metal-like conduction is predicted in the low-field regime, which changes to a p-type conduction with an increase in the applied perpendicular bias field.

  13. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoliang; Amorim, Rodrigo G.; Scheicher, Ralph H.; Pandey, Ravindra; Karna, Shashi P.

    2012-08-01

    We report the results of a theoretical study of graphene/BN/graphene and BN/graphene/BN trilayers using the van-der-Waals-corrected density functional theory in conjunction with the non-equilibrium Green's Function method. These trilayer systems formed from graphene and BN exhibit distinct stacking-dependent features in their ground state electronic structure and response to an applied electric field perpendicular to the trilayer planes. The graphene/BN/graphene system shows a negligible gap in the electronic band structure that increases for the AAA and ABA stackings under an external electric field, while the zero-field band gap of BN/graphene/BN remains unaffected by the electric field. When both types of trilayer systems are contacted with gold electrodes, a metal-like conduction is predicted in the low-field regime, which changes to a p-type conduction with an increase in the applied perpendicular bias field.We report the results of a theoretical study of graphene/BN/graphene and BN/graphene/BN trilayers using the van-der-Waals-corrected density functional theory in conjunction with the non-equilibrium Green's Function method. These trilayer systems formed from graphene and BN exhibit distinct stacking-dependent features in their ground state electronic structure and response to an applied electric field perpendicular to the trilayer planes. The graphene/BN/graphene system shows a negligible gap in the electronic band structure that increases for the AAA and ABA stackings under an external electric field, while the zero-field band gap of BN/graphene/BN remains unaffected by the electric field. When both types of trilayer systems are contacted with gold electrodes, a metal-like conduction is predicted in the low-field regime, which changes to a p-type conduction with an increase in the applied perpendicular bias field. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31310c

  14. Flower-shaped domains and wrinkles in trilayer epitaxial graphene on silicon carbide.

    PubMed

    Lalmi, B; Girard, J C; Pallecchi, E; Silly, M; David, C; Latil, S; Sirotti, F; Ouerghi, A

    2014-01-01

    Trilayer graphene is of particular interest to the 2D materials community because of its unique tunable electronic structure. However, to date, there is a lack of fundamental understanding of the properties of epitaxial trilayer graphene on silicon carbide. Here, following successful synthesis of large-area uniform trilayer graphene, atomic force microscopy (AFM) showed that the trilayer graphene on 6H-SiC(0001) was uniform over a large scale. Additionally, distinct defects, identified as flower-shaped domains and isolated wrinkle structures, were observed randomly on the surface using scanning tunneling microscopy and spectroscopy (STM/STS). These carbon nanostructures formed during growth, has different structural and electronic properties when compared with the adjacent flat regions of the graphene. Finally, using low temperature STM/STS at 4K, we found that the isolated wrinkles showed an irreversible rotational motion between two 60° configurations at different densities of states. PMID:24513669

  15. Thermoelectric properties of a trilayer graphene nanoribbon

    NASA Astrophysics Data System (ADS)

    Orellana, Pedro; Cortes, Natalia; Rosales, Luis; Pacheco, Monica; Chico, Leonor

    2015-03-01

    In this work the electronic and thermoelectric properties of a three-layer graphene with AAA stacking type are studied. By using a tight-binding model analytical expressions for the transmission and density of states are obtained. Thermoelectric properties are analyzed by numerical integration and results for thermopower and figure of merit, electronic conductance and thermal conductance are obtained. The results show that the interference effects present in this system, like Fano effect, directly affect the behavior of these thermoelectric properties and as well as the Wiedemann-Franz law. There is an enhancement of the thermopower of the system and a violation of the Wiedemann-Franz law in the region of energies close the Fano antiresonances and this has as a consequence an enhancement of the figure of merit of the system. FONDECYT 1140571, 1140388, CONICYT ACT 1204, DGIP/ USM internal Grant 11.14.68.

  16. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer

    PubMed Central

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G.; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-01-01

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field. PMID:27629702

  17. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    PubMed

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-09-15

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.

  18. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    PubMed

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-01-01

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field. PMID:27629702

  19. Spin and valley resolved Landau level crossing in tri-layer ABA stacked graphene

    NASA Astrophysics Data System (ADS)

    Datta, Biswajit; Gupta, Vishakha; Borah, Abhinandan; Watanabe, Kenji; Taniguchi, Takashi; Deshmukh, Mandar

    We present quantum Hall measurements on a high quality encapsulated tri-layer graphene device. Low temperature field effect mobility of this device is around 500,000 cm2/Vs and we see SdH oscillations at a magnetic field as low as 0.3 T. Quantum Hall measurements confirm that the chosen tri layer graphene is Bernal (ABA) stacked. Due to the presence of both mass-less monolayer like Dirac fermions and massive bi-layer like Dirac fermions in Bernal stacked tri-layer graphene, there are Landau level crossings between monolayer and bi-layer bands in quantum Hall regime. Although most of the Landau Level crossings are predominantly present on the electron sides, we also observe signatures of the crossings on the hole side. This behaviour is consistent with the asymmetry of electron and hole in ABA tri-layer graphene. We observe a series of crossings of the spin and valley resolved Landau Levels.

  20. Edge magnetization in Bernal-stacked trilayer zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Pérez, Juan Antonio Casao

    2016-06-01

    We have used a tight-binding Hamiltonian of an ABA-stacked trilayer zigzag graphene nanoribbon with β-alignment edges to study the edge magnetizations. Our model includes the effect of the intralayer next-nearest-neighbor hopping, the interlayer hopping responsible for the trigonal warping and the interaction between electrons, which is considered by a single band Hubbard model in the mean field approximation. Firstly, in the neutral system we analyzed the two magnetic states in which both edge magnetizations reach their maximum value; the first one is characterized by an intralayer ferromagnetic coupling between the magnetizations at opposite edges, whereas in the second state that coupling is antiferromagnetic. The band structure, the location of the edge-state bands and the local density of states resolved in spin are calculated in order to understand the origins of the edge magnetizations. We have also introduced an electron doping so that the number of electrons in the ribbon unit cell is higher than in neutral case. As a consequence, we have obtained magnetization steps and charge accumulation at the edges of the sample, which are caused by the edge-state flat bands.

  1. Broken symmetry quantum Hall states in dual-gated ABA trilayer graphene.

    PubMed

    Lee, Yongjin; Velasco, Jairo; Tran, David; Zhang, Fan; Bao, W; Jing, Lei; Myhro, Kevin; Smirnov, Dmitry; Lau, Chun Ning

    2013-04-10

    ABA-stacked trilayer graphene is a unique 2D electron system with mirror reflection symmetry and unconventional quantum Hall effect. We present low-temperature transport measurements on dual-gated suspended trilayer graphene in the quantum Hall (QH) regime. We observe QH plateaus at filling factors ν = -8, -2, 2, 6, and 10, which is in agreement with the full-parameter tight binding calculations. In high magnetic fields, odd-integer plateaus are also resolved, indicating almost complete lifting of the 12-fold degeneracy of the lowest Landau level (LL). Under an out-of-plane electric field E(perpendicular), we observe degeneracy breaking and transitions between QH plateaus. Interestingly, depending on its direction, E(perpendicular) selectively breaks the LL degeneracies in the electron-doped or hole-doped regimes. Our results underscore the rich interaction-induced phenomena in trilayer graphene.

  2. High Electron Mobility in Epitaxial Trilayer Graphene on Off-axis SiC(0001).

    PubMed

    Hajlaoui, Mahdi; Sediri, Haikel; Pierucci, Debora; Henck, Hugo; Phuphachong, Thanyanan; Silly, Mathieu G; de Vaulchier, Louis-Anne; Sirotti, Fausto; Guldner, Yves; Belkhou, Rachid; Ouerghi, Abdelkarim

    2016-01-01

    The van de Waals heterostructure formed by an epitaxial trilayer graphene is of particular interest due to its unique tunable electronic band structure and stacking sequence. However, to date, there has been a lack in the fundamental understanding of the electronic properties of epitaxial trilayer graphene. Here, we investigate the electronic properties of large-area epitaxial trilayer graphene on a 4° off-axis SiC(0001) substrate. Micro-Raman mappings and atomic force microscopy (AFM) confirmed predominantly trilayer on the sample obtained under optimized conditions. We used angle-resolved photoemission spectroscopy (ARPES) and Density Functional Theory (DFT) calculations to study in detail the structure of valence electronic states, in particular the dispersion of π bands in reciprocal space and the exact determination of the number of graphene layers. Using far-infrared magneto-transmission (FIR-MT), we demonstrate, that the electron cyclotron resonance (CR) occurs between Landau levels with a (B)(1/2) dependence. The CR line-width is consistent with a high Dirac fermions mobility of ~3000 cm(2)·V(-1)·s(-1) at 4 K. PMID:26739366

  3. High Electron Mobility in Epitaxial Trilayer Graphene on Off-axis SiC(0001)

    PubMed Central

    Hajlaoui, Mahdi; Sediri, Haikel; Pierucci, Debora; Henck, Hugo; Phuphachong, Thanyanan; Silly, Mathieu G.; de Vaulchier, Louis-Anne; Sirotti, Fausto; Guldner, Yves; Belkhou, Rachid; Ouerghi, Abdelkarim

    2016-01-01

    The van de Waals heterostructure formed by an epitaxial trilayer graphene is of particular interest due to its unique tunable electronic band structure and stacking sequence. However, to date, there has been a lack in the fundamental understanding of the electronic properties of epitaxial trilayer graphene. Here, we investigate the electronic properties of large-area epitaxial trilayer graphene on a 4° off-axis SiC(0001) substrate. Micro-Raman mappings and atomic force microscopy (AFM) confirmed predominantly trilayer on the sample obtained under optimized conditions. We used angle-resolved photoemission spectroscopy (ARPES) and Density Functional Theory (DFT) calculations to study in detail the structure of valence electronic states, in particular the dispersion of π bands in reciprocal space and the exact determination of the number of graphene layers. Using far-infrared magneto-transmission (FIR-MT), we demonstrate, that the electron cyclotron resonance (CR) occurs between Landau levels with a (B)1/2 dependence. The CR line-width is consistent with a high Dirac fermions mobility of ~3000 cm2·V−1·s−1 at 4 K. PMID:26739366

  4. Electronic Structure of ABC-stacked Multilayer Graphene and Trigonal Warping:A First Principles Calculation

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-04-01

    We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.

  5. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications

    NASA Astrophysics Data System (ADS)

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-01

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  6. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    PubMed

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-01

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption. PMID:23363692

  7. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Min, Tjun Kit; Lim, Thong Leng; Yoon, Tiem Leong

    2015-04-01

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  8. 1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier

    SciTech Connect

    Nguyen, Ba-Son; Lin, Jen-Fin

    2014-02-24

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750 °C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750 °C. At 800 °C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

  9. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    SciTech Connect

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  10. Stacking order dependent mechanical properties of graphene/MoS{sub 2} bilayer and trilayer heterostructures

    SciTech Connect

    Elder, Robert M. E-mail: mahesh.neupane.ctr@mail.mil; Neupane, Mahesh R. E-mail: mahesh.neupane.ctr@mail.mil; Chantawansri, Tanya L.

    2015-08-17

    Transition metal dichalcogenides (TMDC) such as molybdenum disulfide (MoS{sub 2}) are two-dimensional materials that show promise for flexible electronics and piezoelectric applications, but their weak mechanical strength is a barrier to practical use. In this work, we perform nanoindentation simulations using atomistic molecular dynamics to study the mechanical properties of heterostructures formed by combining MoS{sub 2} with graphene. We consider both bi- and tri-layer heterostructures formed with MoS{sub 2} either supported or encapsulated by graphene. Mechanical properties, such as Young's modulus, bending modulus, ultimate tensile strength, and fracture strain, are extracted from nanoindentation simulations and compared to the monolayer and homogeneous bilayer systems. We observed that the heterostructures, regardless of the stacking order, are mechanically more robust than the mono- and bi-layer MoS{sub 2}, mainly due to the mechanical reinforcement provided by the graphene layer. The magnitudes of ultimate strength and fracture strain are similar for both the bi- and tri-layer heterostructures, but substantially larger than either the mono- and bi-layer MoS{sub 2}. Our results demonstrate the potential of graphene-based heterostructures to improve the mechanical properties of TMDC materials.

  11. Multicomponent Quantum Hall Ferromagnetism and Landau Level Crossing in Rhombohedral Trilayer Graphene.

    PubMed

    Lee, Y; Tran, D; Myhro, K; Velasco, J; Gillgren, N; Poumirol, J M; Smirnov, D; Barlas, Y; Lau, C N

    2016-01-13

    Using transport measurements, we investigate multicomponent quantum Hall (QH) ferromagnetism in dual-gated rhombohedral trilayer graphene (r-TLG) in which the real spin, orbital pseudospin, and layer pseudospins of the lowest Landau level form spontaneous ordering. We observe intermediate QH plateaus, indicating a complete lifting of the degeneracy of the zeroth Landau level (LL) in the hole-doped regime. In charge neutral r-TLG, the orbital degeneracy is broken first, and the layer degeneracy is broken last and only in the presence of an interlayer potential U⊥. In the phase space of U⊥ and filling factor ν, we observe an intriguing "hexagon" pattern, which is accounted for by a model based on crossings between symmetry-broken LLs.

  12. Multicomponent Quantum Hall Ferromagnetism and Landau Level Crossing in Rhombohedral Trilayer Graphene.

    PubMed

    Lee, Y; Tran, D; Myhro, K; Velasco, J; Gillgren, N; Poumirol, J M; Smirnov, D; Barlas, Y; Lau, C N

    2016-01-13

    Using transport measurements, we investigate multicomponent quantum Hall (QH) ferromagnetism in dual-gated rhombohedral trilayer graphene (r-TLG) in which the real spin, orbital pseudospin, and layer pseudospins of the lowest Landau level form spontaneous ordering. We observe intermediate QH plateaus, indicating a complete lifting of the degeneracy of the zeroth Landau level (LL) in the hole-doped regime. In charge neutral r-TLG, the orbital degeneracy is broken first, and the layer degeneracy is broken last and only in the presence of an interlayer potential U⊥. In the phase space of U⊥ and filling factor ν, we observe an intriguing "hexagon" pattern, which is accounted for by a model based on crossings between symmetry-broken LLs. PMID:26636471

  13. Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Tran, D.; Myhro, K.; Velasco, J.; Gillgren, N.; Lau, C. N.; Barlas, Y.; Poumirol, J. M.; Smirnov, D.; Guinea, F.

    2014-12-01

    Many physical phenomena can be understood by single-particle physics; that is, treating particles as non-interacting entities. When this fails, many-body interactions lead to spontaneous symmetry breaking and phenomena such as fundamental particles’ mass generation, superconductivity and magnetism. Competition between single-particle and many-body physics leads to rich phase diagrams. Here we show that rhombohedral-stacked trilayer graphene offers an exciting platform for studying such interplay, in which we observe a giant intrinsic gap ~42 meV that can be partially suppressed by an interlayer potential, a parallel magnetic field or a critical temperature ~36 K. Among the proposed correlated phases with spatial uniformity, our results are most consistent with a layer antiferromagnetic state with broken time reversal symmetry. These results reflect the interplay between externally induced and spontaneous symmetry breaking whose relative strengths are tunable by external fields, and provide insight into other low-dimensional systems.

  14. Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar; Moradian, Rostam; Shirzadi Tabar, Farzad

    2014-09-01

    We calculate the static polarization of AAA-stacked trilayer graphene (TLG) and study its screening properties within the random phase approximation (RPA) in all undoped, doped and biased regimes. We find that the static polarization of undoped AAA-stacked TLG is a combination of the doped and undoped single-layer graphene static polarization. This leads to an enhancement of the dielectric background constant along a Thomas-Fermi screening with the Thomas-Fermi wave vector which is independent of carrier concentrations and a 1/r3 power law decay for the long-distance behavior of the screened Coulomb potential. We show that effects of a bias voltage can be taken into account by a renormalization of the interlayer hopping energy to a new bias-voltage-dependent value, indicating screening properties of AAA-stacked TLG can be tuned electrically. We also find that screening properties of doped AAA-stacked TLG, when μ exceeds √{2}γ, are similar to that of doped SLG only depending on doping. While for μ<√{2}γ, its screening properties are combination of SLG and AA-stacked bilayer graphene screening properties and they are determined by doping and the interlayer hopping energy.

  15. Landau Level Splittings, Phase Transitions, and Nonuniform Charge Distribution in Trilayer Graphene.

    PubMed

    Campos, Leonardo C; Taychatanapat, Thiti; Serbyn, Maksym; Surakitbovorn, Kawin; Watanabe, Kenji; Taniguchi, Takashi; Abanin, Dmitry A; Jarillo-Herrero, Pablo

    2016-08-01

    We report on magnetotransport studies of dual-gated, Bernal-stacked trilayer graphene (TLG) encapsulated in boron nitride crystals. We observe a quantum Hall effect staircase which indicates a complete lifting of the 12-fold degeneracy of the zeroth Landau level. As a function of perpendicular electric field, our data exhibit a sequence of phase transitions between all integer quantum Hall states in the filling factor interval -8<ν<0. We develop a theoretical model and argue that, in contrast to monolayer and bilayer graphene, the observed Landau level splittings and quantum Hall phase transitions can be understood within a single-particle picture, but imply the presence of a charge density imbalance between the inner and outer layers of TLG, even at charge neutrality and zero transverse electric field. Our results indicate the importance of a previously unaccounted band structure parameter which, together with a more accurate estimate of the other tight-binding parameters, results in a significantly improved determination of the electronic and Landau level structure of TLG.

  16. Landau Level Splittings, Phase Transitions, and Nonuniform Charge Distribution in Trilayer Graphene.

    PubMed

    Campos, Leonardo C; Taychatanapat, Thiti; Serbyn, Maksym; Surakitbovorn, Kawin; Watanabe, Kenji; Taniguchi, Takashi; Abanin, Dmitry A; Jarillo-Herrero, Pablo

    2016-08-01

    We report on magnetotransport studies of dual-gated, Bernal-stacked trilayer graphene (TLG) encapsulated in boron nitride crystals. We observe a quantum Hall effect staircase which indicates a complete lifting of the 12-fold degeneracy of the zeroth Landau level. As a function of perpendicular electric field, our data exhibit a sequence of phase transitions between all integer quantum Hall states in the filling factor interval -8<ν<0. We develop a theoretical model and argue that, in contrast to monolayer and bilayer graphene, the observed Landau level splittings and quantum Hall phase transitions can be understood within a single-particle picture, but imply the presence of a charge density imbalance between the inner and outer layers of TLG, even at charge neutrality and zero transverse electric field. Our results indicate the importance of a previously unaccounted band structure parameter which, together with a more accurate estimate of the other tight-binding parameters, results in a significantly improved determination of the electronic and Landau level structure of TLG. PMID:27541472

  17. Landau Level Splittings, Phase Transitions, and Nonuniform Charge Distribution in Trilayer Graphene

    NASA Astrophysics Data System (ADS)

    Campos, Leonardo C.; Taychatanapat, Thiti; Serbyn, Maksym; Surakitbovorn, Kawin; Watanabe, Kenji; Taniguchi, Takashi; Abanin, Dmitry A.; Jarillo-Herrero, Pablo

    2016-08-01

    We report on magnetotransport studies of dual-gated, Bernal-stacked trilayer graphene (TLG) encapsulated in boron nitride crystals. We observe a quantum Hall effect staircase which indicates a complete lifting of the 12-fold degeneracy of the zeroth Landau level. As a function of perpendicular electric field, our data exhibit a sequence of phase transitions between all integer quantum Hall states in the filling factor interval -8 <ν <0 . We develop a theoretical model and argue that, in contrast to monolayer and bilayer graphene, the observed Landau level splittings and quantum Hall phase transitions can be understood within a single-particle picture, but imply the presence of a charge density imbalance between the inner and outer layers of TLG, even at charge neutrality and zero transverse electric field. Our results indicate the importance of a previously unaccounted band structure parameter which, together with a more accurate estimate of the other tight-binding parameters, results in a significantly improved determination of the electronic and Landau level structure of TLG.

  18. Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate

    SciTech Connect

    Boutchich, M.; Arezki, H.; Alamarguy, D.; Güneş, F.; Alvarez, J.; Kleider, J. P.; Ho, K.-I.; Lai, C. S.; Sediri, H.; Ouerghi, A.

    2014-12-08

    Large-area graphene film doped with nitrogen is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, and fuel cells among many others. Here, we report on the structural and electronic properties of nitrogen doped trilayer graphene on 4H-SiC (0001) grown under atmospheric pressure. The trilayer nature of the growth is evidenced by scanning transmission electron microscopy. X-ray photoelectron spectroscopy shows the incorporation of 1.2% of nitrogen distributed in pyrrolic-N, and pyridinic-N configurations as well as a graphitic-N contribution. This incorporation causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. Ultraviolet photoelectron spectroscopy shows a decrease of the work function of 0.3 eV due to the N-type doping of the nitrogen atoms in the carbon lattice and the edge defects. A top gate field effect transistor device has been fabricated and exhibits carrier mobilities up to 1300 cm{sup 2}/V s for holes and 850 cm{sup 2}/V s for electrons at room temperature.

  19. Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate

    NASA Astrophysics Data System (ADS)

    Boutchich, M.; Arezki, H.; Alamarguy, D.; Ho, K.-I.; Sediri, H.; Güneş, F.; Alvarez, J.; Kleider, J. P.; Lai, C. S.; Ouerghi, A.

    2014-12-01

    Large-area graphene film doped with nitrogen is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, and fuel cells among many others. Here, we report on the structural and electronic properties of nitrogen doped trilayer graphene on 4H-SiC (0001) grown under atmospheric pressure. The trilayer nature of the growth is evidenced by scanning transmission electron microscopy. X-ray photoelectron spectroscopy shows the incorporation of 1.2% of nitrogen distributed in pyrrolic-N, and pyridinic-N configurations as well as a graphitic-N contribution. This incorporation causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. Ultraviolet photoelectron spectroscopy shows a decrease of the work function of 0.3 eV due to the N-type doping of the nitrogen atoms in the carbon lattice and the edge defects. A top gate field effect transistor device has been fabricated and exhibits carrier mobilities up to 1300 cm2/V s for holes and 850 cm2/V s for electrons at room temperature.

  20. Spectroscopic ellipsometry on Si/SiO{sub 2}/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering

    SciTech Connect

    Eren, Baran; Fu, Wangyang; Marot, Laurent Calame, Michel; Steiner, Roland; Meyer, Ernst

    2015-01-05

    In this work, the optical response of graphene to hydrogen plasma treatment is investigated with spectroscopic ellipsometry measurements. Although the electronic transport properties and Raman spectrum of graphene change after plasma hydrogenation, ellipsometric parameters of the Si/SiO2/graphene tri-layer system do not change. This is attributed to plasma hydrogenated graphene still being electrically conductive, since the light absorption of conducting 2D materials does not depend on the electronic band structure. A change in the light transmission can only be observed when higher energy hydrogen ions (30 eV) are employed, which chemically sputter the graphene layer. An optical contrast is still apparent after sputtering due to the remaining traces of graphene and hydrocarbons on the surface. In brief, plasma treatment does not change the light transmission of graphene; and when it does, this is actually due to plasma damage rather than plasma hydrogenation.

  1. Suppressing thermal conductivity of suspended tri-layer graphene by gold deposition.

    PubMed

    Wang, Jiayi; Zhu, Liyan; Chen, Jie; Li, Baowen; Thong, John T L

    2013-12-17

    A simple and general strategy for suppressing the thermal conductivity in graphene is shown. The strategy uses gold nano-particles physically deposited on graphene to continuously reduce the thermal conductivity of graphene with increasing coverage, which demonstrates the potential for practical development of graphene-based devices with tunable thermal conductivity for thermal management.

  2. Image potential states in monolayer, bilayer, and trilayer epitaxial graphene studied with time- and angle-resolved two-photon photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazutoshi; Imamura, Masaki; Yamamoto, Isamu; Azuma, Junpei; Kamada, Masao

    2014-04-01

    Image potential states (IPSs) on monolayer, bilayer, and trilayer graphene epitaxially grown on SiC(0001) have been studied by time- and angle-resolved two-photon photoemission (2PPE) spectroscopy. The free-electron-like dispersions of even and odd symmetry IPSs with a quantum number of n = 1+, 1-, 2, 3 were observed. All observed IPSs showed the dispersions with effective masses of m*=1.0±0.1me. The 2PPE intensity of the lowest IPS (n = 1+) was attenuated with an increasing number of graphene layers. The time-resolved 2PPE measurements revealed that these IPSs have significantly shorter lifetimes, suggesting a coupling of IPSs with electronic states in the buffer layer and the SiC substrate.

  3. Dimers and trimers of polycyclic aromatic hydrocarbons as models of graphene bilayers and trilayers: enhanced electron density at the edges

    NASA Astrophysics Data System (ADS)

    Yadav, Amarjeet; Mishra, P. C.

    2014-01-01

    Structures of dimers and trimers of polycyclic aromatic hydrocarbons (PAHs) having zig-zag edges, and continuous electron density and molecular electrostatic potential (MEP) distributions in these systems were studied in gas phase. Dimers of benzene and naphthalene for which high-accuracy results are available were used to test the reliability of four different functionals of density functional theory in combination with the 6-31G(d,p) basis set. The dispersion-corrected WB97XD functional was found to be distinctly superior to the other three functionals used and was employed to study PAH dimers and trimers. Electronic structures and geometries of dimers of a four benzene ring and a nine benzene ring systems and trimers of the four benzene ring system were investigated. The dimers and trimers of PAHs were found to be of parallel-displaced type, as observed experimentally for graphene. The enhanced electron density edge effect found in the PAH monomers earlier is found to exist in the dimers and trimers also.

  4. Electrical and Mechanical Properties of Graphene

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    devices. A surprising finding in these systems is the observation of insulating states in both suspended bilayer and trilayer graphene devices, which arises from electronic interactions. In bilayer graphene, we observe a phase transition between the single-particle metallic state and the interaction-induced insulating state in ultra-clean BLG, which can be tuned by temperature, disorder, charge density n and perpendicular electric field E ⊥. In trilayer graphene we demonstrate dramatically different transport properties arising from the different stacking orders, and an unexpected spontaneous gap opening in charge neutral ABC-stacked trilayer graphene. One of graphene's unique properties is that it is nature's thinnest elastic membrane with exceptional mechanical properties. In chapter 7 I will describe the first direct observation and controlled creation of one- and two-dimensional periodic ripples in suspended graphene sheets, using both spontaneously and thermally generated strains. We are able to control ripple orientation, wavelength and amplitude by controlling boundary conditions and exploiting graphene's negative thermal expansion coefficient, which we measure to be much larger than that of graphite. In addition, we also study the morphological change of suspended graphene sheets by apply gate voltages, which is a simple and direct method to strain and buckle graphene. Our experimental results contribute to the fundamental understanding of electrical and mechanical properties of graphene, and may have important implications for future graphene based applications.

  5. Stacking-Dependent Interlayer Coupling in Trilayer MoS₂ with Broken Inversion Symmetry.

    PubMed

    Yan, Jiaxu; Xia, Juan; Wang, Xingli; Liu, Lei; Kuo, Jer-Lai; Tay, Beng Kang; Chen, Shoushun; Zhou, Wu; Liu, Zheng; Shen, Ze Xiang

    2015-12-01

    The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer) exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin-orbit coupling (SOC) and interlayer coupling in different structural symmetries. Such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS2 blocks. PMID:26565932

  6. Etude des etats electroniques en champ magnetique dans le niveau de Landau N=0 de la tricouche ABC de graphene

    NASA Astrophysics Data System (ADS)

    Rondeau, Maxime

    Dans cet ouvrage nous etudions les phases du gaz d'electrons bidimensionnel dans la tricouche de graphene en empilement ABC. En partant du modele des liaisons fortes et en faisant l'approximation du continuum autour des vallees K +, K-, nous obtenons un modele effectif a deux bandes qui permet de decrire la physique de basse energie des electrons en champ magnetique dans cette structure. Ce modele contient trois orbitales degenerees dans le niveau de Landau N = O. Ce dernier est donc 12N φ, fois degeneres en incluant les degres de liberte de spin et de vallee. En ajoutant l'interaction de Coulomb au systeme et en considerant seulement les remplissages v = -5, -4, -4, 5 afin d'avoir un systeme a trois niveaux, nous etudions le diagramme de phase du gaz d'electrons en fonction d'un biais electrique entre les couches externes. Nous trouvons une phase d'onde de densite de charge bidimensionnelle (ODC2D) comme etat fondamental du systeme. Cette ODC2D se nomme cristal dans ce memoire et nous derivons ses proprietes de transports et ses modes collectifs. Nous discutons egalement du caractere topologique de ce cristal. Notre etude englobe aussi les phases liquides avec ou sans coherence orbitale. Nous concluons notre memoire par l'etude de quelques signatures experimentales des phases du gaz d'electrons dans la tricouche.

  7. Evolution and dimensional crossover from the bulk subbands in ABC-stacked graphene to a three-dimensional Dirac cone structure in rhombohedral graphite

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hong; Chang, Cheng-Peng; Lin, Ming-Fa

    2016-02-01

    Rhombohedral graphite behaves like a topological semimetal, possessing flat surface subbands while being semimetallic in the bulk. The bulk-surface correspondence arises from the ABC-stacking configuration of graphene layers. The bulk subbands in rhombohedral graphite can be interpreted as a three-dimensional Dirac cone structure, whose Dirac points form continuous lines spiraling in momentum space. In this paper, we study the evolution of gapped bulk subbands in ABC-stacked N -layer graphene with an increase of N , and their dimensional crossover to the three-dimensional Dirac cone structure in the bulk limit, where the bulk gap closes up at the Dirac-point spirals. To clarify the effect of coupling to the surface subbands, we use a nonperturbative effective Hamiltonian closed in the bulk subspace. As a consequence, the wavelength of the standing-wave function across the stack of layers depends on the in-plane Bloch momentum. In the bulk limit, the coupling vanishes and hence the wavelength is irrelevant to the surface.

  8. Growth and Features of Epitaxial Graphene on SiC

    NASA Astrophysics Data System (ADS)

    Kusunoki, Michiko; Norimatsu, Wataru; Bao, Jianfeng; Morita, Koichi; Starke, Ulrich

    2015-12-01

    Recent progress of epitaxial graphene on SiC was reviewed, focusing on its growth and structural and electronic features. Homogeneous graphene can be grown on SiC(0001) on a wafer scale, however on SiC(000bar{1}) multilayer but rotationally stacked graphene with monolayer like electronic property grows. HRTEM revealed the formation mechanism and structural features of graphene on the both surfaces. The high structural and electronic quality of the grown graphene is monitored by Raman spectroscopy and magneto-transport characterization. High-resolution ARPES measurements of the electronic dispersion around the bar{K}-point retrieved the ABA and ABC stacked trilayer graphene. The measurements also directly revealed that electronic structures of graphene were manipulated by transfer doping and atomic intercalation. In particular, p- and n-doped regions on a meso-scale and the p-n junctions prepared on SiC via controlling intercalation of Ge exhibited ballistic transport and Klein tunneling, which predicted novel potentials on to epitaxial graphene on SiC.

  9. A first principles approach to magnetic and optical properties in single-layer graphene sandwiched between boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Das, Ritwika; Chowdhury, Suman; Jana, Debnarayan

    2015-07-01

    The dependence of the stability of single-layer graphene (SLG) sandwiched between hexagonal boron nitride bilayers (h-BN) has been described and investigated for different types of stacking in order to provide the fingerprint of the stacking order which affects the optical properties of such trilayer systems. Considering the four stacking models AAA-, AAB-, ABA-, and ABC-type stacking, the static dielectric functions (in case of parallel polarizations) for AAB-type stacking possesses maximum values, and minimum values are noticed for AAA. However, AAA-type stacking structures contribute the maximum magnetic moment while vanishing magnetic moments are observed for ABA and ABC stacking. The observed optical anisotropy and magnetic properties of these trilayer heterostructures (h-BN/SLG/h-BN) can be understood from the crystallographic stacking order and inherent crystal lattice symmetry. These optical and magnetic results suggest that the h-BN/SLG/h-BN could provide a viable route to graphene-based opto-electronic and spintronic devices.

  10. Structural and electronic properties of multilayer graphene on monolayer hexagonal boron nitride/nickel (111) interface system: A van der Waals density functional study

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-02-01

    The structural and electronic properties of multilayer graphene adsorbed on monolayer hexagonal boron nitride (h-BN)/Ni(111) interface system are investigated using the density functional theory with a recently developed non-local van der Waals density functional (rvv10). The most energetically favourable configuration for a monolayer h-BN/Ni(111) interface is found to be N atom atop the Ni atoms and B atom in fcc site with the interlayer distance of 2.04 Å and adsorption energy of 302 meV/BN. Our results show that increasing graphene layers on a monolayer h-BN/Ni(111) interface leads to a weakening of the interfacial interaction between the monolayer h-BN and Ni(111) surface. The adsorption energy of graphene layers on the h-BN/Ni(111) interface is found to be in the range of the 50-120 meV/C atom as the vertical distance from h-BN to the bottommost graphene layers decreases. With the adsorption of a multilayer graphene on the monolayer h-BN/Ni(111) interface system, the band gap of 0.12 eV and 0.25 eV opening in monolayer graphene and bilayer graphene near the K point is found with an upward shifting of the Fermi level. However, a stacking-sensitive band gap is opened in trilayer graphene. We obtain the band gap of 0.35 eV close to the K point with forming a Mexican hat band structure for ABC-stacked trilayer graphene.

  11. A trilayer separator with dual function for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Song, Rensheng; Fang, Ruopian; Wen, Lei; Shi, Ying; Wang, Shaogang; Li, Feng

    2016-01-01

    In this article, we propose a trilayer graphene/polypropylene/Al2O3 (GPA) separator with dual function for high performance lithium-sulfur (Li-S) batteries. Graphene is coated on one side of polypropylene (PP) separator, which functions as a conductive layer and an electrolyte reservoir that allows for rapid electron and ion transport. Then Al2O3 particles are coated on the other side to further enhance thermal stability and safety of the graphene coated polypropylene (GCP) separator, which are touched with lithium metal anode in the Li-S battery. The GPA separator shows good thermal stability after heating at 157 °C for 10 min while both GCP and PP separators showing an obvious shrinkage about 10%. The initial discharge specific capacity of Li-S coin cell with a GPA separator could reach 1067.7 mAh g-1 at 0.2C. After 100 discharge/charge cycles, it can still deliver a reversible capacity of as high as 804.4 mAh g-1 with 75% capacity retention. The pouch cells further confirm that the trilayer design has great promise towards practical applications.

  12. Trilayer Tunnel Selectors for Memristor Memory Cells.

    PubMed

    Choi, Byung Joon; Zhang, Jiaming; Norris, Kate; Gibson, Gary; Kim, Kyung Min; Jackson, Warren; Zhang, Min-Xian Max; Li, Zhiyong; Yang, J Joshua; Williams, R Stanley

    2016-01-13

    An integrated memory cell with a mem-ristor and a trilayer crested barrier selector, showing repeatable nonlinear current-voltage switching loops is presented. The fully atomic-layer-deposited TaN1+x /Ta2 O5 /TaN1+x crested barrier selector yields a large nonlinearity (>10(4) ), high endurance (>10(8) ), low variability, and low temperature dependence.

  13. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE PAGES

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DCmore » field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.« less

  14. Electrohydrodynamic instabilities in thin liquid trilayer films

    SciTech Connect

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  15. Graphene folding on flat substrates

    SciTech Connect

    Chen, Xiaoming; Zhao, Yadong; Ke, Changhong; Zhang, Liuyang; Wang, Xianqiao

    2014-10-28

    We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.

  16. Detection of interlayer interaction in few-layer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Zefei; Han, Yu; Lin, Jiangxiazi; Zhu, Wei; He, Mingquan; Xu, Shuigang; Chen, Xiaolong; Lu, Huanhuan; Ye, Weiguang; Han, Tianyi; Wu, Yingying; Long, Gen; Shen, Junying; Huang, Rui; Wang, Lin; He, Yuheng; Cai, Yuan; Lortz, Rolf; Su, Dangsheng; Wang, Ning

    2015-08-01

    Bernal-stacked few-layer graphene has been investigated by analyzing its Landau-level spectra through quantum capacitance measurements. We find that surface relaxation, which is insignificant in trilayer graphene, starts to manifest in Bernal-stacked tetralayer graphene. In trilayer graphene, the interlayer interaction parameters are generally similar to those of graphite. However, in tetralayer graphene, the hopping parameters of the two bulk layers are quite different from those of the two outer layers. This represents direct evidence of the surface relaxation phenomenon. Traditionally, the van der Waals interaction between the carbon layers is thought to be insignificant. However, we suggest that the interlayer interaction is an important factor in explaining the observed results, and the symmetry-breaking effects in graphene sublattice are not negligible.

  17. ABC transporters: bacterial exporters.

    PubMed Central

    Fath, M J; Kolter, R

    1993-01-01

    The ABC transporters (also called traffic ATPases) make up a large superfamily of proteins which share a common function and a common ATP-binding domain. ABC transporters are classified into three major groups: bacterial importers (the periplasmic permeases), eukaryotic transporters, and bacterial exporters. We present a comprehensive review of the bacterial ABC exporter group, which currently includes over 40 systems. The bacterial ABC exporter systems are functionally subdivided on the basis of the type of substrate that each translocates. We describe three main groups: protein exporters, peptide exporters, and systems that transport nonprotein substrates. Prototype exporters from each group are described in detail to illustrate our current understanding of this protein family. The prototype systems include the alpha-hemolysin, colicin V, and capsular polysaccharide exporters from Escherichia coli, the protease exporter from Erwinia chrysanthemi, and the glucan exporters from Agrobacterium tumefaciens and Rhizobium meliloti. Phylogenetic analysis of the ATP-binding domains from 29 bacterial ABC exporters indicates that the bacterial ABC exporters can be divided into two primary branches. One branch contains the transport systems where the ATP-binding domain and the membrane-spanning domain are present on the same polypeptide, and the other branch contains the systems where these domains are found on separate polypeptides. Differences in substrate specificity do not correlate with evolutionary relatedness. A complete survey of the known and putative bacterial ABC exporters is included at the end of the review. PMID:8302219

  18. Thermodynamics of ABC transporters.

    PubMed

    Zhang, Xuejun C; Han, Lei; Zhao, Yan

    2016-01-01

    ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.

  19. Monolayer graphene from a green solid precursor

    NASA Astrophysics Data System (ADS)

    Kalita, Golap; Wakita, Koichi; Umeno, Masayoshi

    2011-06-01

    Monolayer and bilayer graphene sheets are synthesized by simple control pyrolysis of solid botanical derivative camphor (C 10H 16O), a green and renewable carbon source. Raman studies show much intense 2D peak than that of G peak, signifying presence of monolayer graphene. Transmission electron microscopic study shows predominately monolayer or bilayer graphene sheets, while trilayer graphene sheet were also observed. Synthesized graphene film on copper foil is transferred to poly(ethylene terephthalate) substrate to fabricate transparent electrode. Electrical and optical measurement shows a sheet resistance of 860 Ω/sq with a transmittance of 91% at 550 nm wavelength of the graphene film. The technique to fabricate monolayer or bilayer graphene based film from camphor is both viable and scalable for potential large area electronic applications.

  20. Wettability of graphene.

    PubMed

    Raj, Rishi; Maroo, Shalabh C; Wang, Evelyn N

    2013-04-10

    Graphene, an atomically thin two-dimensional material, has received significant attention due to its extraordinary electronic, optical, and mechanical properties. Studies focused on understanding the wettability of graphene for thermo-fluidic and surface-coating applications, however, have been sparse. Meanwhile, wettability results reported in literature via static contact angle measurement experiments have been contradictory and highlight the lack of clear understanding of the underlying physics that dictates wetting behavior. In this work, dynamic contact angle measurements and detailed graphene surface characterizations were performed to demonstrate that the defects present in CVD grown and transferred graphene coatings result in unusually high contact angle hysteresis (16-37°) on these otherwise smooth surfaces. Hence, understanding the effect of the underlying substrate based on static contact angle measurements as reported in literature is insufficient. The advancing contact angle measurements on mono-, bi-, and trilayer graphene sheets on copper, thermally grown silica (SiO2), and glass substrates were observed to be independent of the number of layers of graphene and in good agreement with corresponding molecular dynamics simulations and theoretical calculations. Irrespective of the number of graphene layers, the advancing contact angle values were also in good agreement with the advancing contact angle on highly ordered pyrolytic graphite (HOPG), reaffirming the negligible effect of the underlying substrate. These results suggest that the advancing contact angle is a true representation of a graphene-coated surface while the receding contact angle is significantly influenced by intrinsic defects introduced during the growth and transfer processes. These observations, where the underlying substrates do not affect the wettability of graphene coatings, is shown to be due to the large interlayer spacing resulting from the loose interlamellar coupling between

  1. ABC's of Being Smart

    ERIC Educational Resources Information Center

    Foster, Joanne

    2011-01-01

    Determining what giftedness is all about means focusing on many aspects of the individual. In this paper, the author focuses on letter D of the ABC's of being smart. She starts with specifics about giftedness (details), and then moves on to some ways of thinking (dispositions).

  2. Pseudospin anisotropy of trilayer semiconductor quantum Hall ferromagnets

    NASA Astrophysics Data System (ADS)

    Miravet, D.; Proetto, C. R.

    2016-08-01

    When two Landau levels are brought to a close coincidence between them and with the chemical potential in the integer quantum Hall regime, the two Landau levels can just cross or collapse while the external or pseudospin field that induces the alignment changes. In this work, all possible crossings are analyzed theoretically for the particular case of semiconductor trilayer systems, using a variational Hartree-Fock approximation. The model includes tunneling between neighboring layers, bias, intralayer, and interlayer Coulomb interaction among the electrons. We have found that the general pseudospin anisotropy classification scheme used in bilayers applies also to the trilayer situation, with the simple crossing corresponding to an easy-axis ferromagnetic anisotropy analogy, and the collapse case corresponding to an easy-plane ferromagnetic analogy. An isotropic case is also possible, with the levels just crossing or collapsing depending on the filling factor and the quantum numbers of the two nearby levels. While our results are valid for any integer filling factor ν (=1 ,2 ,3 ,... ), we have analyzed in detail the crossings at ν =3 and 4, and we have given clear predictions that will help in their experimental search. In particular, the present calculations suggest that by increasing the bias, the trilayer system at these two filling factors can be driven from an easy-plane anisotropy regime to an easy-axis regime, and then can be driven back to the easy-plane regime. This kind of reentrant behavior is a unique feature of the trilayers, compared with the bilayers.

  3. Structural diversity of ABC transporters

    PubMed Central

    ter Beek, Josy; Guskov, Albert

    2014-01-01

    ATP-binding cassette (ABC) transporters form a large superfamily of ATP-dependent protein complexes that mediate transport of a vast array of substrates across membranes. The 14 currently available structures of ABC transporters have greatly advanced insight into the transport mechanism and revealed a tremendous structural diversity. Whereas the domains that hydrolyze ATP are structurally related in all ABC transporters, the membrane-embedded domains, where the substrates are translocated, adopt four different unrelated folds. Here, we review the structural characteristics of ABC transporters and discuss the implications of this structural diversity for mechanistic diversity. PMID:24638992

  4. Improving the electrical properties of graphene layers by chemical doping

    NASA Astrophysics Data System (ADS)

    Farooq Khan, Muhammad; Zahir Iqbal, Muhammad; Waqas Iqbal, Muhammad; Eom, Jonghwa

    2014-10-01

    Although the electronic properties of graphene layers can be modulated by various doping techniques, most of doping methods cost degradation of structural uniqueness or electrical mobility. It is matter of huge concern to develop a technique to improve the electrical properties of graphene while sustaining its superior properties. Here, we report the modification of electrical properties of single- bi- and trilayer graphene by chemical reaction with potassium nitrate (KNO3) solution. Raman spectroscopy and electrical transport measurements showed the n-doping effect of graphene by KNO3. The effect was most dominant in single layer graphene, and the mobility of single layer graphene was improved by the factor of more than 3. The chemical doping by using KNO3 provides a facile approach to improve the electrical properties of graphene layers sustaining their unique characteristics.

  5. Do You Know Your ABC?

    ERIC Educational Resources Information Center

    Neale, Claire

    2013-01-01

    Within primary schools, the core subjects of literacy and numeracy are highly regarded, and rightly so, as children need to learn to read, write and be numerically literate. This means that all children learn their ABCs at an early age, But, what about the "other ABC"--"Airway, Breathing and Circulation?" Accidents and medical…

  6. ABC Technology Development Program

    SciTech Connect

    1994-10-14

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: `Provide a weapon`s grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon`s grade plutonium to be disposed on in [20] years.` This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments.

  7. Quantum mechanism of nonlocal Gilbert damping in magnetic trilayers

    NASA Astrophysics Data System (ADS)

    Barati, Ehsan; Cinal, Marek

    2015-06-01

    A fully quantum-mechanical calculation of the Gilbert damping constant α in magnetic trilayers is done by employing the torque-correlation formula within a realistic tight-binding model. A remarkable enhancement of α in Co/NM1/NM2 trilayers is obtained due to adding the caps NM2=Pd, Pt, and it decays with the thickness of the spacers NM1=Cu, Ag, Au in agreement with experiment. Nonlocal origin of the Gilbert damping is visualized with its atomic layer contributions. It is shown that magnetization in Co is damped remotely by strong spin-orbit coupling in NM2 via quantum states with large amplitude in both Co and NM2.

  8. Torque engineering in trilayer spin-hall system

    NASA Astrophysics Data System (ADS)

    Gupta, Gaurav; Jalil, Mansoor Bin Abdul; Liang, Gengchiau

    2016-02-01

    A trilayer system with perpendicularly magnetized metallic (FMM) free-layer, heavy metal (HM) with strong spin-hall effect and ferromagnetic insulating (FMI) substrate has been proposed to significantly enhance the torque acting on FMM. Its magnitude can be engineered by configuring the magnetization of the FMI. The analytical solution has been developed for four stable magnetization states (non-magnetic and magnetization along three Cartesian axes) of FMI to comprehensively appraise the anti-damping torque on FMM and the Gain factor. It is shown that the proposed system has much larger gain and torque compared to a bilayer system (or a trilayer system with non-magnetic substrate). The performance improvement may be extremely large for system with a thin HM. Device optimization is shown to be non-trivial and various constraints have been explained. These results would enable design of more efficient spin-orbit torque memories and logic with faster switching at yet lower current.

  9. Generalized proximity effect model in superconducting bi- and trilayer films

    SciTech Connect

    Brammertz, G.; Poelaert, A.; Golubov, A. A.; Verhoeve, P.; Peacock, A.; Rogalla, H.

    2001-07-01

    This article presents a general model for calculating the density of states and the Cooper pair potential in proximity-coupled superconducting bi- and trilayer films. It is valid for any kind of bilayer S{sub 1}-S{sub 2}, whatever the quality of the materials S{sub 1} and S{sub 2}, the quality of the S{sub 1}-S{sub 2} interface, and the layer thicknesses. The trilayer model is valid for a thin S{sub 3} layer, whereas the other two layers have arbitrary thicknesses. Although the equations of the dirty limit are used, it is argued that the model stays valid in clean bi-and trilayer films. The typical example of superconducting tunnel junctions is used to show that existing models, which apply to very thin or very thick layers or to perfectly transparent S{sub 1}-S{sub 2} interfaces, are too restrictive to apply to an arbitrary bilayer. The new model is applied to practical junctions, with layer thicknesses intermediate between the {open_quotes}thick{close_quotes} and the {open_quotes}thin{close_quotes} approximation. {copyright} 2001 American Institute of Physics.

  10. Tri-layered elastomeric scaffolds for engineering heart valve leaflets

    PubMed Central

    Masoumi, Nafiseh; Annabi, Nasim; Assmann, Alexander; Larson, Benjamin L.; Hjortnaes, Jesper; Alemdar, Neslihan; Kharaziha, Mahshid; Manning, Keefe B.; Mayer, John E.; Khademhosseini, Ali

    2014-01-01

    Tissue engineered heart valves (TEHVs) that can grow and remodel have the potential to serve as permanent replacements of the current non-viable prosthetic valves particularly for pediatric patients. A major challenge in designing functional TEHVs is to mimic both structural and anisotropic mechanical characteristics of the native valve leaflets. To establish a more biomimetic model of TEHV, we fabricated tri-layered scaffolds by combining electrospinning and microfabrication techniques. These constructs were fabricated by assembling microfabricated poly(glycerol sebacate) (PGS) and fibrous PGS/poly(-caprolactone) (PCL) electrospun sheets to develop elastic scaffolds with tunable anisotropic mechanical properties similar to the mechanical characteristics of the native heart valves. The engineered scaffolds supported valvular interstitial cells (VICs) and mesenchymal stem cells (MSCs) growth within the 3D structure and promoted the deposition of heart valve extracellular matrix (ECM). MSCs were also organized and aligned along the anisotropic axes of the engineered tri-layered scaffolds. In addition, the fabricated constructs opened and closed properly in an ex vivo model of porcine heart valve leaflet tissue replacement. The engineered tri-layered scaffolds have the potential for successful translation towards TEHV replacements. PMID:24947233

  11. The ABCs of Sex Ed.

    ERIC Educational Resources Information Center

    Sroka, Stephen R.

    2002-01-01

    Cites statistics on extent of sexually transmitted diseases and pregnancies among adolescents; describes ideological dispute over how to teach sex education; advocates teaching the ABCs of sex education: Abstinence, Be Monogamous, and Condoms. (PKP)

  12. Biocompatible Silk-Poly(Pyrrole) Composite Trilayer Actuators

    NASA Astrophysics Data System (ADS)

    Fengel, Carly; Bradshaw, Nathan; Severt, Sean; Murphy, Amanda; Leger, Janelle

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymers (CPs) have some desirable traits for use as an actuator, such as the ability to operate in biologically relevant fluids and responsiveness to low voltages. However CPs alone are limited due to their brittle nature and poor solubility. Recently we have shown that a composite material of silk and the CP poly(pyrrole) (PPy) shows promising characteristics as an actuator; it is mechanically robust as well as fully biocompatible. Initial proof-of-concept experiments demonstrated that these composites bend under an applied voltage (or current) using a simple bilayer device. Here we present trilayer devices composed of two silk-PPy composite layers separated by an insulating silk layer. This configuration results in more charge is passed in comparison to the analogous bilayer system, as well as a more sustainable current response through cycling, resulting in a larger angle of deflection per volt applied. In addition, the motion of the trilayer devices is more symmetric than that of the bilayer analogs, resulting in a more repeatable movement. We will discuss the fabrication and characterization of these devices, as well as their performance and future applications of this technology.

  13. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-08-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  14. Solution-processed organic trilayer solar cells incorporating conjugated polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Cha, Myoung Joo; Seo, Jung Hwa

    2016-01-01

    We report solution-processed organic trilayer solar cells consisting of a bottom poly(3-hexylthiophene) (P3HT) layer, a conjugated polyelectrolyte (CPE) interlayer and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) top layer, wherein the CPE exists as an interlayer within the donor-acceptor junction. The influence of interlayer thickness on device properties was investigated, as well as the behavior of molecular dipoles in the trilayer solar cells when influenced by external electrical stimuli. We found that incorporation of an interlayer which is too thick results in decreased performance due to reduced short-circuit current (JSC), open-circuit voltage (VOC), and fill factor (FF). However the VOC is found to increase significantly when a thin CPE layer is used in conjunction with an external electric field. These results provide an experimental approach to probe the influence of interfacial dipoles on the solar cell parameters and behavior of charge separating organic donor/acceptor junctions, yielding fundamental information about the influence of electrical dipoles on the donor/acceptor interface in organic solar cells.

  15. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    PubMed

    Stamopoulos, D; Aristomenopoulou, E

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  16. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    PubMed Central

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543

  17. The ABCs of Student Engagement

    ERIC Educational Resources Information Center

    Parsons, Seth A.; Nuland, Leila Richey; Parsons, Allison Ward

    2014-01-01

    Student engagement is an important consideration for teachers and administrators because it is explicitly associated with achievement. What the authors call the ABC's of engagement they outline as: Affective engagement, Behavioral engagement, and Cognitive engagement. They also present "Three Things Every Teacher Needs to Know about…

  18. Single-crystalline monolayer and multilayer graphene nano switches

    SciTech Connect

    Li, Peng; Cui, Tianhong; Jing, Gaoshan; Zhang, Bo; Sando, Shota

    2014-03-17

    Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

  19. Multi-layer graphene on Co(0001) by ethanol chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kazi, H.; Cao, Y.; Tanabe, I.; Driver, M. S.; Dowben, P. A.; Kelber, J. A.

    2014-09-01

    N layer (1 ⩽ N ⩽ 10) monolayer films of graphene were formed by the chemical vapor deposition of ethanol on either clean or oxidized Co(0001) substrates at 1000 K, with no evidence of either interfacial oxide formation or graphene/substrate charge transfer. Low energy electron diffraction data indicate that the graphene layers or domains are azimuthally rotated, but otherwise show the characteristics of graphene with a Raman spectra D/G intensity ratio of 0.25 or less, and a C 1s binding energy of 284.5 eV with an observable π → π* transition. Magneto optic Kerr effect spectra indicate only the ferromagnetic hysteresis with high remanence, with no evidence of Co/graphene exchange bias. This is very different from the negligible remanent magnetization of graphene/Co3O4/Co trilayer structures.

  20. Chemical bath deposition of cadmium sulfide on graphene-coated flexible glass substrate

    SciTech Connect

    Seo, Won-Oh; Jung, Younghun; Kim, Jihyun; Kim, Jiwan; Kim, Donghwan

    2014-03-31

    We demonstrate a flexible structure of cadmium sulfide (CdS) on graphene-coated glass substrate, where CdS was deposited by the chemical bath deposition method on defective tri-layer graphene. The defects in graphene, confirmed by micro-Raman spectroscopy, were created by a ultra-violet treatment with varying exposure time from 10 to 60 min. The number of defect sites in the graphene as a seed layer was related to the quality of the CdS thin films determined from the results from X-ray diffraction, optical transmittance, scanning electron microscopy, and room temperature micro-photoluminescence. Our film-on-substrate structure of CdS-graphene-on-glass was maintained up to a tensile strain of 0.3%, where graphene with a high failure strain was employed as a transparent conductive layer.

  1. Mapping the functional yeast ABC transporter interactome

    PubMed Central

    Snider, Jamie; Hanif, Asad; Lee, Mid Eum; Jin, Ke; Yu, Analyn R.; Graham, Chris; Chuk, Matthew; Damjanovic, Dunja; Wierzbicka, Marta; Tang, Priscilla; Balderes, Dina; Wong, Victoria; Jessulat, Matthew; Darowski, Katelyn D.; Luis, Bryan-Joseph San; Shevelev, Igor; Sturley, Stephen L; Boone, Charles; Greenblatt, Jack F.; Zhang, Zhaolei; Paumi, Christian M.; Babu, Mohan; Park, Hay-Oak; Michaelis, Susan; Stagljar, Igor

    2013-01-01

    ABC transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used Membrane Yeast Two-Hybrid (MYTH) technology to map the protein interactome of all non-mitochondrial ABC transporters in the model organism Saccharomy cescerevisiae, and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated interactome. We show that ABC transporters physically associate with proteins involved in a surprisingly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters. PMID:23831759

  2. Magnetic Interactions at the Nanoscale in Trilayer Titanates.

    PubMed

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M; Liu, Xiaoran; Meyers, D; Middey, S; Choudhury, D; Shafer, P; Guo, Jiandong; Freeland, J W; Arenholz, E; Gu, Lin; Chakhalian, J

    2016-02-19

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO_{3}/SrTiO_{3}/YTiO_{3}, in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO_{3}/SrTiO_{3} and SrTiO_{3}/YTiO_{3} interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO_{3}/SrTiO_{3} and localized SrTiO_{3}/YTiO_{3} electrons. Our results provide a route with prospects for exploring new magnetic interfaces, designing a tunable two-dimensional d-electron Kondo lattice, and potential spin Hall applications. PMID:26943550

  3. Tri-layered chitosan scaffold as a potential skin substitute.

    PubMed

    Lin, Hsin-Yi; Chen, Shin-Hung; Chang, Shih-Hsin; Huang, Sheng-Tung

    2015-01-01

    A tri-layered chitosan-based scaffold was successfully made to replicate the striation of a full-thickness skin more accurately than a single- or bi-layered scaffold, which needed weeks of co-culturing of fibroblasts and keratinocytes to achieve similar striation. Chitosan solution was freeze-dried and made into porous disks. Chitosan or chitosan-pectin in acetic acid solution was electrospun onto the chitosan disk to form a nanofibrous layer and a thin film. Examinations based on scanning electron spectroscopy showed that the scaffold was composed of a porous layer (2 mm) to simulate the dermis, a thin film (25-45 μm) to mimic the basement membrane, and a layer of nanofibers (100-200 μm) to serve as the protective epidermis. The tensile strength and modulus of the composite scaffold were significantly higher than those of the chitosan disk (p < 0.01). The composite was able to quickly absorb water and stayed intact throughout the course of the 14-day cell culture tests. The fibroblast cells seeded on both sides of the scaffolds were able to proliferate and stayed separated by the thin film. PMID:26155720

  4. Biocompatible Silk-Poly(Pyrrole) Composite Trilayer Electromechanical Actuators

    NASA Astrophysics Data System (ADS)

    Klemke, Carly; Bradshaw, Nathan; Larson, Jesse; Severt, Sean; Ostrovsky-Snider, Nicholas; Murphy, Amanda; Leger, Janelle

    2015-03-01

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymers (CPs) have some desirable traits for use as an actuator, such as the ability to operate in biologically relevant fluids and responsiveness to low voltages. However CPs alone are limited due to their brittle nature and poor solubility. Recently we have shown that a composite material of silk and the CP poly(pyrrole) (PPy) shows promising characteristics as an actuator; it is mechanically robust as well as fully biocompatible. Initial proof-of-concept experiments demonstrated that these composites bend under an applied voltage (or current) using a simple bilayer device. Here we present the development of a trilayer device, composed of two conductive layers separated by an insulating silk layer. This configuration has twice the active surface area as a bilayer, potentially increasing the amount of mechanical motion per volt applied. We will discuss the fabrication and characterization of these devices, as well as their performance and future applications of this technology.

  5. Tri-layered chitosan scaffold as a potential skin substitute.

    PubMed

    Lin, Hsin-Yi; Chen, Shin-Hung; Chang, Shih-Hsin; Huang, Sheng-Tung

    2015-01-01

    A tri-layered chitosan-based scaffold was successfully made to replicate the striation of a full-thickness skin more accurately than a single- or bi-layered scaffold, which needed weeks of co-culturing of fibroblasts and keratinocytes to achieve similar striation. Chitosan solution was freeze-dried and made into porous disks. Chitosan or chitosan-pectin in acetic acid solution was electrospun onto the chitosan disk to form a nanofibrous layer and a thin film. Examinations based on scanning electron spectroscopy showed that the scaffold was composed of a porous layer (2 mm) to simulate the dermis, a thin film (25-45 μm) to mimic the basement membrane, and a layer of nanofibers (100-200 μm) to serve as the protective epidermis. The tensile strength and modulus of the composite scaffold were significantly higher than those of the chitosan disk (p < 0.01). The composite was able to quickly absorb water and stayed intact throughout the course of the 14-day cell culture tests. The fibroblast cells seeded on both sides of the scaffolds were able to proliferate and stayed separated by the thin film.

  6. Computation of the binding free energy of peptides to graphene in explicit water.

    PubMed

    Welch, Corrinne M; Camden, Aerial N; Barr, Stephen A; Leuty, Gary M; Kedziora, Gary S; Berry, Rajiv J

    2015-07-28

    The characteristic properties of graphene make it useful in an assortment of applications. One particular application--the use of graphene in biosensors--requires a thorough understanding of graphene-peptide interactions. In this study, the binding of glycine (G) capped amino acid residues (termed GXG tripeptides) to trilayer graphene surfaces in aqueous solution was examined and compared to results previously obtained for peptide binding to single-layer free-standing graphene [A. N. Camden, S. A. Barr, and R. J. Berry, J. Phys. Chem. B 117, 10691-10697 (2013)]. In order to understand the interactions between the peptides and the surface, binding enthalpy and free energy values were calculated for each GXG system, where X cycled through the typical 20 amino acids. When the GXG tripeptides were bound to the surface, distinct conformations were observed, each with a different binding enthalpy. Analysis of the binding energy showed the binding of peptides to trilayer graphene was dominated by van der Waals interactions, unlike the free-standing graphene systems, where the binding was predominantly electrostatic in nature. These results demonstrate the utility of computational materials science in the mechanistic explanation of surface-biomolecule interactions which could be applied to a wide range of systems. PMID:26233167

  7. Computation of the binding free energy of peptides to graphene in explicit water

    NASA Astrophysics Data System (ADS)

    Welch, Corrinne M.; Camden, Aerial N.; Barr, Stephen A.; Leuty, Gary M.; Kedziora, Gary S.; Berry, Rajiv J.

    2015-07-01

    The characteristic properties of graphene make it useful in an assortment of applications. One particular application—the use of graphene in biosensors—requires a thorough understanding of graphene-peptide interactions. In this study, the binding of glycine (G) capped amino acid residues (termed GXG tripeptides) to trilayer graphene surfaces in aqueous solution was examined and compared to results previously obtained for peptide binding to single-layer free-standing graphene [A. N. Camden, S. A. Barr, and R. J. Berry, J. Phys. Chem. B 117, 10691-10697 (2013)]. In order to understand the interactions between the peptides and the surface, binding enthalpy and free energy values were calculated for each GXG system, where X cycled through the typical 20 amino acids. When the GXG tripeptides were bound to the surface, distinct conformations were observed, each with a different binding enthalpy. Analysis of the binding energy showed the binding of peptides to trilayer graphene was dominated by van der Waals interactions, unlike the free-standing graphene systems, where the binding was predominantly electrostatic in nature. These results demonstrate the utility of computational materials science in the mechanistic explanation of surface-biomolecule interactions which could be applied to a wide range of systems.

  8. Bioinformatic survey of ABC transporters in dermatophytes.

    PubMed

    Gadzalski, Marek; Ciesielska, Anita; Stączek, Paweł

    2016-01-15

    ATP binding cassette (ABC) transporters constitute a very large and ubiquitous superfamily of membrane proteins. They are responsible for ATP hydrolysis driven translocation of countless substrates. Being a very old and diverse group of proteins present in all organisms they share a common feature, which is the presence of an evolutionary conservative nucleotide binding domain (NBD)--the engine that drives the transport. Another common domain is a transmembrane domain (TMD) which consists of several membrane-spanning helices. This part of protein is substrate-specific, thus it is much more variable. ABC transporters are known for driving drug efflux in many pathogens and cancer cells, therefore they are the subject of extensive studies. There are many examples of conferring a drug resistance phenotype in fungal pathogens by ABC transporters, however, little is known about these proteins in dermatophytes--a group of fungi causing superficial mycoses. So far only a single ABC transporter has been extensively studied in this group of pathogens. We analyzed available genomic sequences of seven dermatophyte species in order to provide an insight into dermatophyte ABC protein inventory. Phylogenetic studies of ABC transporter genes and their products were conducted and included ABC transporters of other fungi. Our results show that each dermatophyte genome studied possesses a great variety of ABC transporter genes. Detailed analysis of selected genes and their products indicates that relatively recent duplication of ABC transporter genes could lead to novel substrate specificity. PMID:26524502

  9. The positive piezoconductive effect in graphene

    PubMed Central

    Xu, Kang; Wang, Ke; Zhao, Wei; Bao, Wenzhong; Liu, Erfu; Ren, Yafei; Wang, Miao; Fu, Yajun; Zeng, Junwen; Li, Zhaoguo; Zhou, Wei; Song, Fengqi; Wang, Xinran; Shi, Yi; Wan, Xiangang; Fuhrer, Michael S.; Wang, Baigeng; Qiao, Zhenhua; Miao, Feng; Xing, Dingyu

    2015-01-01

    As the thinnest conductive and elastic material, graphene is expected to play a crucial role in post-Moore era. Besides applications on electronic devices, graphene has shown great potential for nano-electromechanical systems. While interlayer interactions play a key role in modifying the electronic structures of layered materials, no attention has been given to their impact on electromechanical properties. Here we report the positive piezoconductive effect observed in suspended bi- and multi-layer graphene. The effect is highly layer number dependent and shows the most pronounced response for tri-layer graphene. The effect, and its dependence on the layer number, can be understood as resulting from the strain-induced competition between interlayer coupling and intralayer transport, as confirmed by the numerical calculations based on the non-equilibrium Green's function method. Our results enrich the understanding of graphene and point to layer number as a powerful tool for tuning the electromechanical properties of graphene for future applications. PMID:26360786

  10. Temperature dependent Raman spectroscopic study of mono-, bi-, and tri-layer molybdenum ditelluride

    NASA Astrophysics Data System (ADS)

    Park, June; Kim, Younghee; Jhon, Young In; Jhon, Young Min

    2015-10-01

    We investigate the thermal properties of mono-, bi- and tri-layer MoTe2 by using temperature-dependent Raman spectroscopy ranging from 90 K to 300 K. The E2g 1 and B2g 1 modes of MoTe2 blueshift as the temperature decreases. The temperature dependence of the peak positions obtained from mono- to tri-layer MoTe2 is analyzed using the Grüneisen model. The first order temperature coefficients of E2g 1 and B2g 1 Raman modes of mono- to tri-layer MoTe2 are extracted. This study provides the fundamental information about the thermal properties of MoTe2 layers, which is crucial for developing thermal and electronic applications of MoTe2 based devices.

  11. Tri-layer wrinkling as a mechanism for anchoring center initiation in the developing cerebellum.

    PubMed

    Lejeune, Emma; Javili, Ali; Weickenmeier, Johannes; Kuhl, Ellen; Linder, Christian

    2016-07-01

    During cerebellar development, anchoring centers form at the base of each fissure and remain fixed in place while the rest of the cerebellum grows outward. Cerebellar foliation has been extensively studied; yet, the mechanisms that control anchoring center initiation and position remain insufficiently understood. Here we show that a tri-layer model can predict surface wrinkling as a potential mechanism to explain anchoring center initiation and position. Motivated by the cerebellar microstructure, we model the developing cerebellum as a tri-layer system with an external molecular layer and an internal granular layer of similar stiffness and a significantly softer intermediate Purkinje cell layer. Including a weak intermediate layer proves key to predicting surface morphogenesis, even at low stiffness contrasts between the top and bottom layers. The proposed tri-layer model provides insight into the hierarchical formation of anchoring centers and establishes an essential missing link between gene expression and evolution of shape.

  12. Voltage-controlled nonvolatile molecular memory of an azobenzene monolayer through solution-processed reduced graphene oxide contacts.

    PubMed

    Min, Misook; Seo, Sohyeon; Lee, Sae Mi; Lee, Hyoyoung

    2013-12-23

    The solution-processed fabrication of an azobenzene (ABC10) monolayer-based nonvolatile memory device on a reduced graphene oxide (rGO) electrode is successfully accomplished. Trans--cis isomerizations of ABC10 between two rGO electrodes in a crossbar device are controlled by applied voltage. An rGO soft-contact top electrode plays an important role in the conformational-change-dependent conductance switching process of an ABC10 monolayer.

  13. CVD synthesis of mono- and few-layer graphene using alcohols at low hydrogen concentration and atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Campos-Delgado, Jessica; Botello-Méndez, Andrés R.; Algara-Siller, Gerardo; Hackens, Benoit; Pardoen, Thomas; Kaiser, Ute; Dresselhaus, Mildred S.; Charlier, Jean-Christophe; Raskin, Jean-Pierre

    2013-10-01

    An original and easy route to produce mono-, bi- and tri-layer graphene is proposed using the chemical vapor deposition technique. The synthesis is carried out at atmospheric pressure using liquid precursors, copper as catalyst, and a single gas injection line consisting of a very diluted mixture of H2 in Argon (H2: 5%). Two different alcohols are investigated as possible sources of carbon: 2-phenylethanol and ethanol. The characterization of the samples with SEM, TEM and Raman spectroscopy confirms the presence of graphene on top of copper, and yields a detailed picture of the structure of the produced graphene layers.

  14. The ABC transporters in Candidatus Liberibacter asiaticus

    PubMed Central

    Li, Wenlin; Cong, Qian; Pei, Jimin; Kinch, Lisa N; Grishin, Nick V

    2012-01-01

    Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a Gram-negative bacterium and the pathogen of Citrus Greening disease (Huanglongbing, HLB). As a parasitic bacterium, Ca. L. asiaticus harbors ABC transporters that play important roles in exchanging chemical compounds between Ca. L. asiaticus and its host. Here, we analyzed all the ABC transporter-related proteins in Ca. L. asiaticus. We identified 14 ABC transporter systems and predicted their structures and substrate specificities. In-depth sequence and structure analysis including multiple sequence alignment, phylogenetic tree reconstruction, and structure comparison further support their function predictions. Our study shows that this bacterium could use these ABC transporters to import metabolites (amino acids and phosphates) and enzyme cofactors (choline, thiamine, iron, manganese, and zinc), resist to organic solvent, heavy metal, and lipid-like drugs, maintain the composition of the outer membrane (OM), and secrete virulence factors. Although the features of most ABC systems could be deduced from the abundant experimental data on their orthologs, we reported several novel observations within ABC system proteins. Moreover, we identified seven nontransport ABC systems that are likely involved in virulence gene expression regulation, transposon excision regulation, and DNA repair. Our analysis reveals several candidates for further studies to understand and control the disease, including the type I virulence factor secretion system and its substrate that are likely related to Ca. L. asiaticus pathogenicity and the ABC transporter systems responsible for bacterial OM biosynthesis that are good drug targets. PMID:22807026

  15. Development of high-performance tri-layer material

    NASA Astrophysics Data System (ADS)

    Owe-Yang, D. C.; Yano, Toshiharu; Ueda, Takafumi; Iwabuchi, Motoaki; Ogihara, Tsutomu; Shirai, Shozo

    2008-03-01

    As chip size and pattern size continue to shrink, the thickness of photo resist is getting thinner and thinner. One of the major reasons is to prevent the small resist features from collapse. It's very challenging to get enough etch resistance from such thin resist thickness. An approach of Si-tri-layer stack which consists of resist, Si ARC (Si contenting anti-reflection coating), organic underlayer from top to bottom has been adopted by many IC makers in the manufacturing of 45 nm node. Even higher resist etching selectivity is needed for 32 nm node. Si ARC, of Si content as high as 43%, provides good etch selectivity. At the same time, tri-layer also provides good control over reflectivity in high NA immersion lithography. However, there are several well know issues concern Si-rich ARC. Resist compatibility and shelf life are on top of the list. An aim of our development work was to overcome those issues in order to produce manufacturing-worthy Si-rich ARC. Several synthesis methods were investigated to form Si-rich ARC film with different properties. Collapse of resist patterns is used as an indicator of lithographic compatibility. Lithographic performance was checked by accelerated shelf life tests at high temperature in order to predict the shelf life at room temperature. It was found that adhesion between resist and Si-rich ARC is improved when contact angle of Si-rich ARC is increased to more than 60 degree. Certain synthesis methods improve shelf life. After optimization of film properties and synthesis methods of Si-rich ARC, SHB-A940 series have best litho compatibility and shelf life is six months at storage temperature below 10°C.

  16. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2.

    PubMed

    Lee, Dong Su; Riedl, Christian; Krauss, Benjamin; von Klitzing, Klaus; Starke, Ulrich; Smet, Jurgen H

    2008-12-01

    Raman spectra were measured for mono-, bi-, and trilayer graphene grown on SiC by solid state graphitization, whereby the number of layers was preassigned by angle-resolved ultraviolet photoemission spectroscopy. It was found that the only unambiguous fingerprint in Raman spectroscopy to identify the number of layers for graphene on SiC(0001) is the line width of the 2D (or D*) peak. The Raman spectra of epitaxial graphene show significant differences as compared to micromechanically cleaved graphene obtained from highly oriented pyrolytic graphite crystals. The G peak is found to be blue-shifted. The 2D peak does not exhibit any obvious shoulder structures, but it is much broader and almost resembles a single-peak even for multilayers. Flakes of epitaxial graphene were transferred from SiC onto SiO2 for further Raman studies. A comparison of the Raman data obtained for graphene on SiC with data for epitaxial graphene transferred to SiO2 reveals that the G peak blue-shift is clearly due to the SiC substrate. The broadened 2D peak however stems from the graphene structure itself and not from the substrate.

  17. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric

    PubMed Central

    Ki Min, Bok; Kim, Seong K.; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-01-01

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer. PMID:26530817

  18. Measuring the Complex Optical Conductivity of Graphene by Fabry-Pérot Reflectance Spectroscopy

    PubMed Central

    Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito; Fuhrer, Michael S.; Anlage, Steven M.

    2016-01-01

    We have experimentally studied the dispersion of optical conductivity in few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a supercontinuum laser source measured the frequency dependence of the reflectance of exfoliated graphene flakes, including monolayer, bilayer and trilayer graphene, loaded on a Si/SiO2 Fabry-Pérot resonator in the 545–700 nm range. The complex refractive index of few-layer graphene, n − ik, was extracted from the reflectance contrast to the bare substrate. It was found that each few-layer graphene possesses a unique dispersionless optical index. This feature indicates that the optical conductivity does not simply scale with the number of layers, and that inter-layer electrodynamics are significant at visible energies. PMID:27682974

  19. Chemical Vapor Deposition Synthesis and Raman Spectroscopic Characterization of Large-Area Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Liao, Chun-Da; Lu, Yi-Ying; Tamalampudi, Srinivasa Reddy; Cheng, Hung-Chieh; Chen, Yit-Tsong

    2013-10-01

    We present a chemical vapor deposition (CVD) method to catalytically synthesize large-area, transferless, single- to few-layer graphene sheets using hexamethyldisilazane (HMDS) on a SiO2/Si substrate as a carbon source and thermally evaporated alternating Ni/Cu/Ni layers as a catalyst. The as-synthesized graphene films were characterized by Raman spectroscopic imaging to identify single- to few-layer sheets. This HMDS-derived graphene layer is continuous over the entire growth substrate, and single- to trilayer mixed sheets can be up to 30 -m in the lateral dimension. With the synthetic CVD method proposed here, graphene can be grown into tailored shapes directly on a SiO2/Si surface through vapor priming of HMDS onto predefined photolithographic patterns. The transparent and conductive HMDS-derived graphene exhibits its potential for widespread electronic and opto-electronic applications.

  20. An ABC for decision making.

    PubMed

    Garcia, Luiz Henrique Costa; Ferreira, Bruna Cortez

    2015-01-01

    The present study was aimed at proposing a systematic evaluation of cranial computed tomography, identifying the main aspects to be analyzed in order to facilitate the decision making process regarding diagnosis and management in emergency settings. The present descriptive study comprised a literature review at the following databases: Access Medicine and Access Emergency Medicine (McGraw- Hill Education); British Medical Journal Evidence Center; UptoDate; Bireme; PubMed; Lilacs; SciELO; ProQuest; Micromedex (Thomson Reuters); Embase. Once the literature review was completed, the authors identified the main diseases with tomographic repercussions and proposed the present system to evaluate cranial computed tomography images. An easy-to-memorize ABC system will facilitate the decision making in emergency settings, as it covers the main diseases encountered by intensivists and emergency physicians, and provides a sequential guidance about anatomical structures to be investigated as well as their respective alterations.

  1. An ABC for decision making*

    PubMed Central

    Garcia, Luiz Henrique Costa; Ferreira, Bruna Cortez

    2015-01-01

    The present study was aimed at proposing a systematic evaluation of cranial computed tomography, identifying the main aspects to be analyzed in order to facilitate the decision making process regarding diagnosis and management in emergency settings. The present descriptive study comprised a literature review at the following databases: Access Medicine and Access Emergency Medicine (McGraw- Hill Education); British Medical Journal Evidence Center; UptoDate; Bireme; PubMed; Lilacs; SciELO; ProQuest; Micromedex (Thomson Reuters); Embase. Once the literature review was completed, the authors identified the main diseases with tomographic repercussions and proposed the present system to evaluate cranial computed tomography images. An easy-to-memorize ABC system will facilitate the decision making in emergency settings, as it covers the main diseases encountered by intensivists and emergency physicians, and provides a sequential guidance about anatomical structures to be investigated as well as their respective alterations. PMID:25987751

  2. Identification of ABC transporters in Sarcoptes scabiei.

    PubMed

    Mounsey, K E; Holt, D C; McCarthy, J; Walton, S F

    2006-06-01

    We have identified and partially sequenced 8 ABC transporters from an EST dataset of Sarcoptes scabiei var. hominis, the causative agent of scabies. Analysis confirmed that most of the known ABC subfamilies are represented in the EST dataset including several members of the multidrug resistance protein subfamily (ABC-C). Although P-glycoprotein (ABC-B) sequences were not found in the EST dataset, a partial P-glycoprotein sequence was subsequently obtained using a degenerate PCR strategy and library screening. Thus a total of 9 potential S. scabiei ABC transporters representing the subfamilies A, B, C, E, F and H have been identified. Ivermectin is currently used in the treatment of hyper-infested (crusted) scabies, and has also been identified as a potentially effective acaricide for mass treatment programmes in scabies-endemic communities. The observation of clinical and in vitro ivermectin resistance in 2 crusted scabies patients who received multiple treatments has raised serious concerns regarding the sustainability of such programmes. One possible mechanism for ivermectin resistance is through ABC transporters such as P-glycoprotein. This work forms an important foundation for further studies to elucidate the potential role of ABC transporters in ivermectin resistance of S. scabiei.

  3. Flexible inverted polymer solar cells with an indium-free tri-layer cathode

    SciTech Connect

    El Hajj, Ahmad; Lucas, Bruno Schirr-Bonnans, Martin; Ratier, Bernard; Kraft, Thomas M.; Torchio, Philippe

    2014-01-21

    Indium tin oxide (ITO)-free inverted polymer solar cells (PSCs) have been fabricated without the need of an additional electron transport layer. The indium-free transparent electrode consists of a tri-layer stack ZnO (30 nm)/Ag (14 nm)/ZnO (30 nm) deposited on glass and plastic substrates via ion-beam sputtering. The tri-layer electrodes exhibit similar physical properties to its ITO counterpart, specifically yielding high transmittance and low resistivity (76.5% T at 550 nm, R{sub sq} of 8 Ω/◻) on plastic substrates. The novel tri-layer electrode allows for the fabrication of inverted PSCs without the additional ZnO interfacial layer commonly deposited between ITO and the photoactive layer. This allows for the preparation of thinner plastic solar cells using less material than conventional architectures. Initial studies involving the newly realized architecture (tri-layer electrode/P3HT:PCBM/PEDOT:PSS/Ag) have shown great promise for the transition from ITO to other viable electrodes in organic electronics.

  4. Applying the ABCs in provider organizations.

    PubMed

    Pandey, Seema

    2012-11-01

    Activity-based costing (ABC) is an accounting technique designed to guard against potentially serious financial problems that can arise when an organization's accounting costs deviate significantly from its actual costs. In general, an ABC analysis considers two factors: a cost element (a directly measurable unit of cost, such as the cost of an item) and a cost driver (a directly measurable feature of the service, such as how often the item is used). ABC is best applied to specific service areas, orservice packages, for which consumption of resources is largely predictable and atomic units of services can be accurately identified. PMID:23173369

  5. Applying the ABCs in provider organizations.

    PubMed

    Pandey, Seema

    2012-11-01

    Activity-based costing (ABC) is an accounting technique designed to guard against potentially serious financial problems that can arise when an organization's accounting costs deviate significantly from its actual costs. In general, an ABC analysis considers two factors: a cost element (a directly measurable unit of cost, such as the cost of an item) and a cost driver (a directly measurable feature of the service, such as how often the item is used). ABC is best applied to specific service areas, orservice packages, for which consumption of resources is largely predictable and atomic units of services can be accurately identified.

  6. Properties of Superconducting Mo, Mo2n and Trilayer Mo2n-Mo-Mo2n Thin Films

    NASA Technical Reports Server (NTRS)

    Barrentine, E. M.; Stevenson, T. R.; Brown, A. D.; Lowitz, A. E.; Noroozian, O.; U-Yen, K.; Eshan, N.; Hsieh, W. T.; Moseley, S. H.; Wollack, E. J.

    2014-01-01

    We present measurements of the properties of thin film superconducting Mo, Mo2N and Mo2N/Mo/Mo2N trilayers of interest for microwave kinetic inductance detector (MKID) applications. Using microwave resonator devices, we investigate the transition temperature, energy gaps, kinetic inductance, and internal quality factors of these materials. We present an Usadel-based interpretation of the trilayer transition temperature as a function of trilayer thicknesses, and a 2-gap interpretation to understand the change in kinetic inductance and internal resonance quality factor (Q) as a function of temperature.

  7. Isolation and Characterization of the Colletotrichum acutatum ABC Transporter CaABC1

    PubMed Central

    Kim, Suyoung; Park, Sook-Young; Kim, Hyejeong; Kim, Dongyoung; Lee, Seon-Woo; Kim, Heung Tae; Lee, Jong-Hwan; Choi, Woobong

    2014-01-01

    Fungi tolerate exposure to various abiotic stresses, including cytotoxic compounds and fungicides, via their ATP-driven efflux pumps belonging to ATP-binding cassette (ABC) transporters. To clarify the molecular basis of interaction between the fungus and various abiotic stresses including fungicides, we constructed a cDNA library from germinated conidia of Colletotrichum acutatum, a major anthracnose pathogen of pepper (Capsicum annum L.). Over 1,000 cDNA clones were sequenced, of which single clone exhibited significant nucleotide sequence homology to ABC transporter genes. We isolated three fosmid clones containing the C. acutatum ABC1 (CaABC1) gene in full-length from genomic DNA library screening. The CaABC1 gene consists of 4,059 bp transcript, predicting a 1,353-aa protein. The gene contains the typical ABC signature and Walker A and B motifs. The 5′-flanking region contains a CAAT motif, a TATA box, and a Kozak region. Phylogenetic and structural analysis suggested that the CaABC1 is a typical ABC transporter gene highly conserved in various fungal species, as well as in Chromista, Metazoans, and Viridiplantae. We also found that CaABC1 was up-regulated during conidiation and a minimal medium condition. Moreover, CaABC1 was induced in iprobenfos, kresoxim-methyl, thiophanate-methyl, and hygromycin B. These results demonstrate that CaABC1 is necessary for conidiation, abiotic stress, and various fungicide resistances. These results will provide the basis for further study on the function of ABC transporter genes in C. acutatum. PMID:25506302

  8. Resonant tunneling and intrinsic bistability in twisted graphene structures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, J. F.; Dresselhaus, M. S.; Levitov, L. S.

    2016-08-01

    We predict that vertical transport in heterostructures formed by twisted graphene layers can exhibit a unique bistability mechanism. Intrinsically bistable I -V characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and drain and the middle layer floating. Under bias, the middle layer can be either resonant or nonresonant with the source and drain layers. The bistability is controlled by geometric device parameters easily tunable in experiments. The nanoscale architecture can enable uniquely fast switching times.

  9. Contribution of individual interfaces in the MgO/Co/Pd trilayer to perpendicular magnetic anisotropy upon annealing

    SciTech Connect

    Kim, Minseok; Kim, Sanghoon; Ko, Jungho; Hong, Jongill

    2015-03-09

    The contribution of each interface of the MgO/Co/Pd trilayer to the perpendicular magnetic anisotropy (PMA) was studied by changing chemical and crystalline structures through annealing. We found that volumetric anisotropy in the MgO/Co/Pd trilayer was significantly increased due to enhanced magnetoelastic anisotropy caused by stress built up most likely at the MgO/Co interface during annealing. When the trilayer was annealed at 400 °C, the alloy formation at the Co/Pd interface additionally increased the volumetric anisotropy. Our x-ray magnetic circular dichroism study supported that those structural modifications led to an increase in the orbital moment through spin-orbit coupling (SOC) along the film normal two times larger than that of the as-deposited trilayer, thereby enhancing PMA greatly. Our experimental results prove that the Co/Pd interface, rather than the MgO/Co interface, plays an essential role in inducing strong PMA in the trilayer. The precise investigation of annealing effect on both volumetric and interfacial anisotropies can provide a methodological solution to improve the SOC of the trilayer that can serve as the core unit of spintronic devices.

  10. The effect of spin-orbit coupling in band structure of few-layer graphene

    SciTech Connect

    Sahdan, Muhammad Fauzi Darma, Yudi

    2014-03-24

    Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.

  11. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    NASA Astrophysics Data System (ADS)

    Zhou, M. H.; Fan, H. P.; Zhao, Z. S.; Wang, Y. G.; Bi, K.

    2015-04-01

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of αE,31 = 2.8 V ṡ cm-1 ṡ Oe-1 is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors.

  12. Evolution of anomalous Hall behavior in thin Pt/Co/Pt trilayers

    NASA Astrophysics Data System (ADS)

    Sun, Niu-yi; Zhang, Yan-qing; Che, Wen-ru; Shan, Rong; Zhu, Zhen-gang

    2016-05-01

    In this work, through controlling spin scattering mechanisms, anomalous Hall behaviors exhibit a series of evolutions in thin Pt/Co/Pt trilayers. The shape of Hall resistivity over longitudinal resistivity (ρAH /ρxx versus ρxx) curve turns from bending to linear and then bending again in most trilayers. This kind of evolution cannot be explained by the conventional linear scaling of anomalous Hall effect. It should be ascribed to the contribution of spin-phonon skew scattering. Our research may help to understand spin scattering behavior in low-dimensional systems more deeply and build a proper synergy between theory and experiment on the research of anomalous Hall effect.

  13. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    SciTech Connect

    Zhou, M. H.; Wang, Y. G.; Bi, K.; Fan, H. P.; Zhao, Z. S.

    2015-04-15

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of α{sub E,31} = 2.8 V ⋅ cm{sup −1} ⋅ Oe{sup −1} is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors.

  14. Effect of readout magnetic-field direction on trilayer magnetically induced super resolution media (abstract)

    NASA Astrophysics Data System (ADS)

    Tamanoi, K.; Tanaka, T.; Sugimoto, T.; Matsumoto, K.; Shono, K.

    1997-04-01

    Among the proposed magnetically induced super resolution media, double-mask rear aperture detection (RAD) has the greatest potential for use in high-density land/groove recording.1 We proposed a trilayer double-mask RAD media that does not require a large initializing magnetic field.2 In this paper, we report the land/groove recording on the trilayer media for a 0.4 μm mark length and 0.7 μm track pitch. We found that crosstalk drastically changed depending on the direction of the readout magnetic field, and that the crosswrite is related to crosstalk. When applying the readout magnetic field in the erasing direction, the value of crosstalk was about -25 dB and a large crosswrite effect was observed. Conversely, the crosstalk was below -45 dB and no crosswrite effect was observed when applying the magnetic field in the writing direction. CNRs had almost the same value of 48 dB for both the above cases. To investigate the mask formation while applying the readout field in the writing direction, we precisely observed the wave form of the isolated marks. The carrier level rose twice with increasing readout field. However, the position of the leading edge mainly changed when increasing the field. We think that the low crosstalk is attributable to the enhancement of the front mask area. The trilayer media enables an areal density of 3 Gbit/in.2

  15. The cloning of a human ABC gene (ABC3) mapping to chromosome 16p13.3

    SciTech Connect

    Connors, T.D.; Van Raay, T.J.; Petry, L.R.

    1997-01-15

    The ATP binding cassette (ABC) transporters, or traffic ATPases, constitute a large family of proteins responsible for the transport of a wide variety of substrates across cell membranes in both prokaryotic and eukaryotic cells. We describe a human ABC protein with regions of strong homology to the recently described murine ABC1 and ABC2 transporters. The gene for this novel protein, human ABC3, maps near the polycystic kidney disease type 1 (PKD1) gene on chromosome 16p13.3. The ABC3 gene is expressed at highest levels in lung compared to other tissues. 19 refs., 3 figs.

  16. Structural insights into ABC transporter mechanism

    SciTech Connect

    Oldham, Michael L.; Davidson, Amy L.; Chen, Jue

    2010-07-27

    ATP-binding cassette (ABC) transporters utilize the energy from ATP hydrolysis to transport substances across the membrane. In recent years, crystal structures of several ABC transporters have become available. These structures show that both importers and exporters oscillate between two conformations: an inward-facing conformation with the substrate translocation pathway open to the cytoplasm and an outward-facing conformation with the translocation pathway facing the opposite side of the membrane. In this review, conformational differences found in the structures of homologous ABC transporters are analyzed to understand how alternating-access is achieved. It appears that rigid-body rotations of the transmembrane subunits, coinciding with the opening and closing of the nucleotide-binding subunits, couples ATP hydrolysis to substrate translocation.

  17. ABC transporters, atherosclerosis and inflammation.

    PubMed

    Fitzgerald, Michael L; Mujawar, Zahedi; Tamehiro, Norimasa

    2010-08-01

    Atherosclerosis, driven by inflamed lipid-laden lesions, can occlude the coronary arteries and lead to myocardial infarction. This chronic disease is a major and expensive health burden. However, the body is able to mobilize and excrete cholesterol and other lipids, thus preventing atherosclerosis by a process termed reverse cholesterol transport (RCT). Insight into the mechanism of RCT has been gained by the study of two rare syndromes caused by the mutation of ABC transporter loci. In Tangier disease, loss of ABCA1 prevents cells from exporting cholesterol and phospholipid, thus resulting in the build-up of cholesterol in the peripheral tissues and a loss of circulating HDL. Consistent with HDL being an athero-protective particle, Tangier patients are more prone to develop atherosclerosis. Likewise, sitosterolemia is another inherited syndrome associated with premature atherosclerosis. Here mutations in either the ABCG5 or G8 loci, prevents hepatocytes and enterocytes from excreting cholesterol and plant sterols, including sitosterol, into the bile and intestinal lumen. Thus, ABCG5 and G8, which from a heterodimer, constitute a transporter that excretes cholesterol and dietary sterols back into the gut, while ABCA1 functions to export excess cell cholesterol and phospholipid during the biogenesis of HDL. Interestingly, a third protein, ABCG1, that has been shown to have anti-atherosclerotic activity in mice, may also act to transfer cholesterol to mature HDL particles. Here we review the relationship between the lipid transport activities of these proteins and their anti-atherosclerotic effect, particularly how they may reduce inflammatory signaling pathways. Of particular interest are recent reports that indicate both ABCA1 and ABCG1 modulate cell surface cholesterol levels and inhibit its partitioning into lipid rafts. Given lipid rafts may provide platforms for innate immune receptors to respond to inflammatory signals, it follows that loss of ABCA1 and ABCG1

  18. van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation.

    PubMed

    Lu, Ning; Guo, Hongyan; Wang, Lu; Wu, Xiaojun; Zeng, Xiao Cheng

    2014-05-01

    We perform a comprehensive first-principles study of the electronic properties of van der Waals (vdW) trilayers via intercalating a two-dimensional (2D) monolayer (ML = BN, MoSe2, WS2, or WSe2) between a MoS2 bilayer to form various MoS2/ML/MoS2 sandwich trilayers. We find that the BN monolayer is the most effective sheet to decouple the interlayer vdW coupling of the MoS2 bilayer, and the resulting sandwich trilayer can recover the electronic structures of the MoS2 monolayer, particularly the direct-gap character. Further study of the MoS2/BN superlattices confirms the effectiveness of the BN monolayer for the decoupling of the MoS2-MoS2 interaction. In addition, the intercalation of a transition-metal dichalcogenide (TMDC) MoSe2 or WSe2 sheet makes the sandwich trilayer undergo an indirect-gap to direct-gap transition due to the newly formed heterogeneous S/Se interfaces. In contrast, the MoS2/WS2/MoS2 sandwich trilayer still retains the indirect-gap character of the MoS2 bilayer due to the lack of the heterogeneous S/Se interfaces. Moreover, the 3D superlattice of the MoS2/TMDC heterostructures also exhibits similar electronic band characters to the MoS2/TMDC/MoS2 trilayer heterostructures, albeit a slight decrease of the bandgap compared to the trilayers. Compared to the bulk MoS2, the 3D MoS2/TMDC superlattice can give rise to new and distinctive properties. Our study offers not only new insights into electronic properties of the vdW multilayer heterostructures but also guidance in designing new heterostructures to modify electronic structures of 2D TMDC crystals.

  19. Communicating a New ABC: Advocacy, Partnerships, and Implementing Change.

    ERIC Educational Resources Information Center

    Ryan, Cathy

    2001-01-01

    Reiterates some key points and responds to challenges issued by the speakers to the Association for Business Communication (ABC) conference. Notes that Paula Pomerenke spoke about formalizing support of Plain Language across the continents and about ABC's continuing need to strengthen relationships with practitioners. Suggests the ABC build…

  20. The New ABC of the Arts

    ERIC Educational Resources Information Center

    Tusa, John

    2007-01-01

    This article presents a new alphabet of the arts that shows how the arts world has been transformed the past five years. Beginning with "A" for assessment and continuing through "Y" for year end, the ABC of the arts illustrates the ways in which the arts world is judged, managed, and evaluated, and shows that the skill of arts management is to…

  1. Calculus ABCs: A Gateway for Freshman Calculus

    ERIC Educational Resources Information Center

    Fulton, Scott R.

    2003-01-01

    This paper describes a gateway testing program designed to ensure that students acquire basic skills in freshman calculus. Students must demonstrate they have mastered standards for "Absolutely Basic Competency"--the Calculus ABCs--in order to pass the course with a grade of C or better. We describe the background, standards, and testing program.…

  2. The ABC's of Learning in Infancy.

    ERIC Educational Resources Information Center

    Saunders, Minta M.

    Learning in infancy is based on activity, beginnings, and curiosity, the so-called ABC's. Earliest behavior consists of mass activity, the period from birth to 24 months of sensory-motor development which provides the foundation for all future learning. Adults must provide space, toys, and affectionate care to help infants proceed through…

  3. The ABCs of Managing Teacher Stress.

    ERIC Educational Resources Information Center

    Nagel, Liza; Brown, Sheri

    2003-01-01

    Describes stress management for teachers and presents strategies that teachers can use to lessen the impact of stress. Outlines the ABCs of stress: Acknowledge, Behavior Modification, and Communication. Notes that stress can motivate teachers to explore new instructional strategies, adopt innovative approaches to increasing student motivation, and…

  4. Wetting and spreading of long-chain ZDOL polymer nanodroplet on graphene-coated amorphous carbon

    NASA Astrophysics Data System (ADS)

    Sorkin, V.; Zhang, Y. W.

    2014-12-01

    Wetting transparency/translucency/opacity of graphene recently has attracted great interest. The underlying mechanisms and physics for simple liquid droplets containing small molecules on graphene coated crystalline substrates have been studied extensively. However, the behavior of more complicated polymeric droplets on graphene coated amorphous substrates has not been explored. In this work, we perform molecular dynamics simulations to examine the wetting of long-chain ZDOL polymeric droplet on graphene coated amorphous hydrogenated diamond-like carbon or DLCH. We find that at room temperature, the droplet adopts a nearly spherical cap shape with no protruding foot on bare DLCH, and a complex multi-layered structure is formed at the droplet-substrate interface. With addition of graphene layers, externally, the height of the droplet decreases and the protruding foot at the droplet edge appears and grows in size; while internally, the complex multi-layered structure near the droplet-substrate interface remains, but the density distribution for the formed layers becomes increasingly non-uniform. A steady state of the droplet is attained when the number of graphene layers reaches three. These changes can be explained by the interactions between the droplet and substrate across the number of graphene layers. Therefore, it is concluded that the graphene monolayer and bilayer are translucent, while trilayer and above are opaque from the wetting point of view.

  5. Graphene on a curved substrate with a controllable curvature: Device fabrication and transport measurements

    NASA Astrophysics Data System (ADS)

    Chen, Yixuan; Mills, Shaun; Liu, Ying

    In monolayer graphene, the local deviation of carbon positions from the perfect lattice has been predicted to lead to a pseudo magnetic field with measurable effects. A striking confirmation of this effect is the observation of Landau levels that are attributed to a pseudo magnetic field in excess of 300 T in graphene nanobubbles. However, typical experimental methods of generating such local deviations in graphene rely on strain accompanied by a surface curvature. Whether a surface curvature alone can produce measurable effects in graphene has not been explored experimentally. It is therefore of interest to study graphene in a system that decouples strain from surface curvature. Of particular interest is its response to an external magnetic field. We developed a grayscale electron beam lithography technique for preparing PMMA substructures with a continuously variable radius of curvature from ~100 nm to ~1 μm. Magnetoelectrical transport measurements on exfoliated graphene supported by these substructures are being carried out. The flexibility of this process may be further exploited in the study of the bilayer and trilayer graphene systems. We will also study hybrid structures of 2D superconductors and graphene.

  6. Synthesis of an air-working trilayer artificial muscle using a conductive cassava starch biofilm (manihot esculenta, cranz) and polypyrrole (PPy)

    NASA Astrophysics Data System (ADS)

    Núñez D, Y. E.; Arrieta A, Á. A.; Segura B, J. A.; Bertel H, S. D.

    2016-02-01

    In this study, a methodology for obtaining a conductive cassava starch biofilm doped with lithium perchlorate (LiClO4) is shown, as well as the electrochemical technique for the synthesis of polypyrrole films, which are used for developing the trilayer artificial muscle PPy/Biopolymer/PPy designed to operate in air. Furthermore, results from the trilayer movement using chronoamperometric techniques are shown.

  7. ABC transporters in fish species: a review

    PubMed Central

    Ferreira, Marta; Costa, Joana; Reis-Henriques, Maria A.

    2014-01-01

    ATP-binding cassette (ABC) proteins were first recognized for their role in multidrug resistance (MDR) in chemotherapeutic treatments, which is a major impediment for the successful treatment of many forms of malignant tumors in humans. These proteins, highly conserved throughout vertebrate species, were later related to cellular detoxification and accounted as responsible for protecting aquatic organisms from xenobiotic insults in the so-called multixenobiotic resistance mechanism (MXR). In recent years, research on these proteins in aquatic species has highlighted their importance in the detoxification mechanisms in fish thus it is necessary to continue these studies. Several transporters have been pointed out as relevant in the ecotoxicological context associated to the transport of xenobiotics, such as P-glycoproteins (Pgps), multidrug-resistance-associated proteins (MRPs 1-5) and breast cancer resistance associated protein (BCRP). In mammals, several nuclear receptors have been identified as mediators of phase I and II metabolizing enzymes and ABC transporters. In aquatic species, knowledge on co-regulation of the detoxification mechanism is scarce and needs to be addressed. The interaction of emergent contaminants that can act as chemosensitizers, with ABC transporters in aquatic organisms can compromise detoxification processes and have population effects and should be studied in more detail. This review intends to summarize the recent advances in research on MXR mechanisms in fish species, focusing in (1) regulation and functioning of ABC proteins; (2) cooperation with phase I and II biotransformation enzymes; and (3) ecotoxicological relevance and information on emergent pollutants with ability to modulate ABC transporters expression and activity. Several lines of evidence are clearly suggesting the important role of these transporters in detoxification mechanisms and must be further investigated in fish to underlay the mechanism to consider their use as

  8. Graphene aerogels

    DOEpatents

    Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen

    2015-03-31

    Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.

  9. High quality ZnS/Au/ZnS transparent conductive tri-layer films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Caifeng; Li, Qingshan; Wang, Jisuo; Zhang, Lichun; Zhao, Fengzhou; Dong, Fangying

    2016-07-01

    ZnS/Au/ZnS tri-layer films were deposited on quartz glass substrates by pulsed laser deposition. The influence of Au layer thickness on optical and electrical properties of the tri-layer ZnS/Au/ZnS was studied. X-ray diffractometer (XRD) and scanning electron microscope were employed to characterize the crystalline structure and surface morphology of the tri-layer films. Hall measurements, ultraviolet and visible spectrophotometer, four-point probe were used to explore the optoelectronic properties of the ZnS/Au/ZnS. The increase of Au layer thickness resulted in the decreased resistivity, the increased carrier concentration, and the declined transmittance in the visible light region.

  10. Interface characteristics in Co2MnSi/Ag/Co2MnSi trilayer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Chen, Hong; Wang, Guangzhao; Yuan, Hongkuan

    2016-05-01

    Interface characteristics of Co2MnSi/Ag/Co2MnSi trilayer have been investigated by means of first-principles. The most likely interface is formed by connecting MnSi-termination to the bridge site between two Ag atoms. As annealed at high temperature, the formation of interface DO3 disorder is most energetically favorable. The spin polarization is reduced by both the interface itself and interface disorder due to the interface state occurs in the minority-spin gap. As a result, the magneto-resistance ratio has a sharp drop based on the estimation of a simplified modeling.

  11. High frequency clipper like behavior of tri-layer nickel oxide stack

    NASA Astrophysics Data System (ADS)

    Koiry, S. P.; Ratnadurai, R.; Krishnan, S.; Bhansali, S.

    2012-04-01

    We report on AC propagation in vertically stacked tri-layer nickel oxide (NiO) film with gradient in oxide composition. These studies reveal that the stacked film clips both positive and negative peaks of the AC signals and these clipping characteristics are analogous to a symmetrical clipper. These characteristics are obtained without using any clipper circuit elements like diodes or transistors and DC power source. We propose that the clipping characteristic of NiO stack is a result of space charge generated during signal propagation.

  12. Tailoring interlayer coupling and coercivity in Co/Mn/Co trilayers by controlling the interface roughness

    SciTech Connect

    Zhang, Bin; Wu, Chii-Bin; Kuch, Wolfgang

    2014-06-21

    Epitaxial Co/Mn/Co trilayers with a wedged Mn layer were grown on Cu(001) and studied by magneto-optical Kerr effect measurements. The bottom Co film as well as the Mn film exhibits a layer-by-layer growth mode, which allows to modify both interface roughnesses on the atomic scale by tuning the thicknesses of the films to achieve a certain filling of their topmost atomic layers. The onset of antiferromagnetic order in the Mn layer at room temperature was found at thicknesses of 4.1 (4.8) and 3.4 (4.0) atomic monolayers (ML) for a filled (half-filled) topmost atomic layer of the bottom Co film in Mn/Co bilayers and Co/Mn/Co trilayers, respectively. Magnetization loops with only one step were found for a trilayer with half-filled topmost atomic layer of the bottom Co film, while loops with two separate steps have been observed in trilayers with an integer number of atomic layers in the bottom Co film. The coercivity of the top Co film shows an oscillation with 1 ML period as a function of the Mn thickness above 10 ML, which is interpreted as the influence of the atomic-scale control of the interface roughness on the interface exchange coupling between the antiferromagnetic Mn and the top ferromagnetic (FM) Co layer. The strength of the magnetic interlayer coupling between the top and bottom Co layers through the Mn layer for an integer number of atomic layers in the bottom Co layer, deduced from minor-loop measurements, exhibits an oscillation with a period of 2 ML Mn thickness, indicative of direct exchange coupling through the antiferromagnetic Mn layer. In addition, a long-period interlayer coupling of the two FM layers with antiparallel coupling maxima at Mn thicknesses of 2.5, 8.2, and 13.7 ML is observed and attributed to indirect exchange coupling of the Rudermann-Kittel-Kasuya-Yosida type.

  13. Nonlinear motion of coupled magnetic vortices in ferromagnetic/non-magnetic/ferromagnetic trilayer

    SciTech Connect

    Jun, Su-Hyeong; Shim, Je-Ho; Oh, Suhk-Kun; Yu, Seong-Cho; Kim, Dong-Hyun; Mesler, Brooke; Fischer, Peter

    2009-07-05

    We have investigated a coupled motion of two vortex cores in ferromagnetic/nonmagnetic/ferromagnetic trilayer cynliders by means of micromagnetic simulation. Dynamic motion of two vortex with parallel and antiparallel relative chiralities of curling spins around the vortex cores have been examined after excitation by 1-ns pulsed external field. With systematic variation in non-magnetic spacer layer thickness from 0 to 20 nm, the coupling between two cores becomes significant as the spacer becomes thinner. Significant coupling leads to a nonlinear chaotic coupled motion of two vortex cores for the parallel chiralities and a faster coupled gyrotropic oscillation for the antiparallel chiralities.

  14. Fabrication of Planar, Layered Nanoparticles Using Tri-layer Resist Templates

    PubMed Central

    Hu, Wei; Zhang, Mingliang; Wilson, Robert J.; Koh, Ai Leen; Wi, Jung-Sub; Tang, Mary; Sinclair, Robert; Wang, Shan X.

    2011-01-01

    A simple and universal pathway to produce free multilayer synthetic nanoparticles is developed based on lithography, vapor phase deposition and a tri-layer resist lift off and release process. The fabrication method presented in this work is ideal for production of a broad range of nanoparticles, either free in solution or still attached to an intact release layer, with unique magnetic, optical, radioactive, electronic and catalytic properties. Multi-modal capabilities are implicit in the layered architecture. As an example, directly fabricated magnetic nanoparticles are evaluated to illustrate the structural integrity of thin internal multilayers and the nanoparticle stability in aggressive biological environments, which is highly desired for biomedical applications. PMID:21415483

  15. Graphene spintronics.

    PubMed

    Han, Wei; Kawakami, Roland K; Gmitra, Martin; Fabian, Jaroslav

    2014-10-01

    The isolation of graphene has triggered an avalanche of studies into the spin-dependent physical properties of this material and of graphene-based spintronic devices. Here, we review the experimental and theoretical state-of-art concerning spin injection and transport, defect-induced magnetic moments, spin-orbit coupling and spin relaxation in graphene. Future research in graphene spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including topological states and proximity-induced phenomena in graphene and other two-dimensional materials.

  16. PREFACE: Graphene Graphene

    NASA Astrophysics Data System (ADS)

    Singleton, John; Ferry, David K.

    2009-08-01

    As is now well known, graphene was made in 2004 by the 'simple' expedient of cleaving a single atomic layer from a sample of graphite using a piece of sticky tape [1, 2]. This discovery stimulated a whirlwind of activity; at last, predictions about the unique behaviour of band electrons in a two-dimensional honeycomb lattice made as early as the 1940s could be verified experimentally [1, 2]. Perhaps the most influential result has been the confirmation that the charge carriers in graphene behave in many ways as 'Dirac fermions', mimicing the dynamics of hyper-relativistic electrons, but with 1/300th of the velocity. Another important pairing of prediction and result has been the observation of carrier mobilities that have an unusual (in)dependence on impurity concentration, suggesting applications in high-speed ballistic transistors and even the eventual part replacement of silicon by graphene as the devices on chips become ever smaller [1, 2]. As a result of the considerable and rapid activity in this field, reviews of the properties of graphene have appeared; a good introduction to the early work at a level appropriate to students is given in [1], whilst [2] covers more recent progress at a more advanced level. However, the field is progressing so rapidly that even good reviews become dated by the time they appear in print, and new work and studies are appearing daily. In this issue, we have tried to pull together a group of papers which examine some of these new areas of work in graphene; these range from low-temperature physics to high electric field transport at room temperature [3]. Given the postulated future use of graphene in ultra-small devices, it is no surprise that quantum dots and wires feature heavily in the articles by Peres et al [4], Huang et al [5] and Sun and Xie [6]. Moreover, applications will inevitably involve graphene in contact with other materials and chemical systems, resulting in modifications to its electronic properties. For example

  17. Graphene Plasmonics

    NASA Astrophysics Data System (ADS)

    Mou, Shin; Abeysinghe, Don; Nader, Nima; Hendrickson, Joshua; Cleary, Justin; Elhamri, Said

    Plasmon, the collective free charge carrier oscillation, has been a popular research theme recently mostly associated with surface plasmon in metal nanoparticles. After the discovery of graphene, researchers soon began to study plasmonic effects with or within graphene, for instance, decorating graphene with metal nanoparticles to enhance optical processes via plasmonic field enhancement. Following that, people also gained interests in studying the intrinsic plasmon of graphene. Graphene, a tunable semimetal under field effect, demonstrates tunable plasmon resonances at room temperature, which enables new capabilities beyond those of metal-nanoparticle surface plasmons. In this project, we would like to show intrinsic graphene plasmon resonances in that we experimentally demonstrated polarization dependent and gate-bias tunable plasmon-resonance absorption in the mid-infrared regime of 5-14 um by utilizing an array of graphene nanoribbon resonators. By scaling nanoribbon width and charge densities, we probed graphene plasmons with plasmon resonance energy as high as 0.26 meV (2100 cm-1) for 40 nm wide nanoresonators. The result reveals the intriguing nature of graphene plasmon in graphene nanoribbons where the nanoribbon edge plays critical roles by introducing extra doping and damping the graphene plasmon resonance.

  18. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the dou...

  19. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder

    SciTech Connect

    Martins Ferreira, E. H.; Stavale, F.; Moutinho, Marcus V. O.; Lucchese, M. M.; Capaz, Rodrigo B.; Achete, C. A.; Jorio, A.

    2010-09-15

    We report on the micro-Raman spectroscopy of monolayer, bilayer, trilayer, and many layers of graphene (graphite) bombarded by low-energy argon ions with different doses. The evolution of peak frequencies, intensities, linewidths, and areas of the main Raman bands of graphene is analyzed as function of the distance between defects and number of layers. We describe the disorder-induced frequency shifts and the increase in the linewidth of the Raman bands by means of a spatial-correlation model. Also, the evolution of the relative areas A{sub D}/A{sub G}, A{sub D}{sup '}/A{sub G}, and A{sub G}{sup '}/A{sub G} is described by a phenomenological model. The present results can be used to fully characterize disorder in graphene systems.

  20. Characterization of N-doped multilayer graphene grown on 4H-SiC (0001)

    NASA Astrophysics Data System (ADS)

    Arezki, Hakim; Ho, Kuan-I.; Jaffré, Alexandre; Alamarguy, David; Alvarez, José; Kleider, Jean-Paul; Lai, Chao-Sung; Boutchich, Mohamed

    2015-02-01

    Large-area graphene film doped with hetero-atoms is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, fuel cells among many others. Here, we report the structural and electronic properties of nitrogen doped multilayer graphene on 4H-SiC (0001). The incorporation of nitrogen during the growth causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. The analysis of micro-Raman mapping of G, D, 2D bands shows a predominantly trilayer graphene with a D band inherent to doping and inhomogeneous dopant distribution at the step edges. Ultraviolet photoelectron spectroscopy (UPS) indicates an n type work function (WF) of 4.1 eV. In addition, a top gate FET device was fabricated showing n-type I-V characteristic after the desorption of oxygen with high electron and holes mobilities.

  1. Nanostructured assemblies from amphiphilic ABC multiblock polymers

    NASA Astrophysics Data System (ADS)

    Hillmyer, Marc A.

    2012-02-01

    Amphiphilic AB diblock copolymers containing a water compatible segment can self-assemble in aqueous media to give supramolecular structures that include simple spherical micelles and macromolecular vesicles termed polymersomes. Amphiphilic ABA triblocks with hydrophobic end blocks can adopt analogous structures but can also form gels at high polymer concentrations. The structural and chemical diversity demonstrated in block copolymer micelles and gels makes them attractive for applications ranging from drug delivery to personal care products to nanoreactors. The inclusion of a third block in amphiphilic ABC triblock systems can lead to a much wider array of self-assembled structures that depend not only on composition but also on block sequence, architecture and incompatibility considerations. I will present our recent efforts on tuning micelle and gel structure and behavior using controlled architecture ABC triblocks. The combination of diverse polymer segments into a single macromolecule is a powerful method for development of self-assembled structures with both new form and new function.

  2. Three ways to learn the ABCs.

    PubMed

    Ng, M; Yanofsky, M F

    2000-02-01

    The ABC model of flower development represents a milestone in explaining how the fate of emerging floral organ primordia is specified. This model states that organ identity is specified by different combinations of the activities of the A, B and C class homeotic genes. In spite of the remarkable simplicity of this model, the complex regulatory interactions that establish the initial pattern of A, B and C gene activity have yet to be fully explained. It has been shown that the LEAFY gene functions early to promote flower meristem identity, and that it is subsequently required for the normal expression of the ABC genes. Recently, LEAFY has been identified as an immediate upstream regulator of the floral homeotic genes, thus opening up an avenue to examine the transcriptional interactions that underlie floral patterning. PMID:10679448

  3. Pharmacological correction of misfolding of ABC proteins☆

    PubMed Central

    Rudashevskaya, Elena L.; Stockner, Thomas; Trauner, Michael; Freissmuth, Michael; Chiba, Peter

    2014-01-01

    The endoplasmic reticulum (ER) quality control system distinguishes between correctly and incorrectly folded proteins to prevent processing of aberrantly folded conformations along the secretory pathway. Non-synonymous mutations can lead to misfolding of ABC proteins and associated disease phenotypes. Specific phenotypes may at least partially be corrected by small molecules, so-called pharmacological chaperones. Screening for folding correctors is expected to open an avenue for treatment of diseases such as cystic fibrosis and intrahepatic cholestasis. PMID:25027379

  4. Adhesion to chondroitinase ABC treated dentin

    PubMed Central

    Mazzoni, Annalisa; Pashley, David H.; Ruggeri, Alessandra; Vita, Francesca; Falconi, Mirella; Di Lenarda, Roberto; Breschi, Lorenzo

    2013-01-01

    Dentin bonding relies on complete resin impregnation throughout the demineralised hydrophilic collagen mesh. Chondroitin sulphate-glycosaminoglycans are claimed to regulate the three-dimensional arrangement of the dentin organic matrix and its hydrophilicity. The aim of this study was to investigate bond strength of two etch-and-rinse adhesives to chondroitinase ABC treated dentin. Human extracted molars were treated with chondroitinase ABC and a double labelling immunohistochemical technique was applied to reveal type I collagen and chondroitin 4/6 sulphate distribution under field emission in-lens scanning electron microscope. The immunohistochemical technique confirmed the effective removal of chondroitin 4/6 sulphate after the enzymatic treatment. Dentin surfaces exposed to chondroitinase ABC and untreated specimens prepared on untreated acid-etched dentin were bonded with Adper Scotchbond Multi-Purpose or Prime & Bond NT. Bonded specimens were submitted to microtensile testing and nanoleakage interfacial analysis under transmission electron microscope. Increased mean values of microtensile bond strength and reduced nanoleakage expression were found for both adhesives after chondroitinase ABC treatment of the dentin surface. Adper Scotchbond Multi-Purpose increased its bond strength about 28%, while bonding made with Prime & Bond NT almost doubled (92% increase) compared to untreated specimens. This study supports the hypothesis that adhesion can be enhanced by removal of chondroitin 4/6 sulphate and dermatan sulphate, probably due to a reduced amount of water content and enlarged interfibrillar spaces. Further studies should validate this hypothesis investigating the stability of chondroitin 4/6 and dermatan sulphate-depleted dentin bonded interface over time. PMID:18161809

  5. Analyzing health care operations using ABC.

    PubMed

    Ross, Thomas K

    2004-01-01

    The evolution of health care created a climate in which cost was subordinate to medical treatment. Current reimbursement constraints have increased the need for providers to be cost conscious, but they have discovered that current accounting practices do not provide the appropriate information to determine the cost of service or make decisions. This article argues that activity-based costing (ABC) can bridge the gap between the medical and financial communities and provide a foundation for performance improvement. PMID:15151193

  6. Pharmacological correction of misfolding of ABC proteins.

    PubMed

    Rudashevskaya, Elena L; Stockner, Thomas; Trauner, Michael; Freissmuth, Michael; Chiba, Peter

    2014-06-01

    The endoplasmic reticulum (ER) quality control system distinguishes between correctly and incorrectly folded proteins to prevent processing of aberrantly folded conformations along the secretory pathway. Non-synonymous mutations can lead to misfolding of ABC proteins and associated disease phenotypes. Specific phenotypes may at least partially be corrected by small molecules, so-called pharmacological chaperones. Screening for folding correctors is expected to open an avenue for treatment of diseases such as cystic fibrosis and intrahepatic cholestasis. PMID:25027379

  7. Fabrication and adhesion of conjugated polymer trilayer structures for soft, flexible micromanipulators

    NASA Astrophysics Data System (ADS)

    Khaldi, Alexandre; Falk, Daniel; Maziz, Ali; Jager, Edwin W. H.

    2016-04-01

    We are developing soft, flexible micromanipulators such as micro- tweezers for the handling and manipulation of biological species including cells and surgical tools for minimal invasive surgery. Our aim is to produce tools with minimal dimensions of 100 μm to 1 mm in size, which is 1-2 orders of magnitude smaller than existing technology. However, the displacement of the current developed micromanipulator remains limited due to the low ionic conductivity of the materials. Here, we present developed methods for the fabrication of conjugated polymer trilayer structure which exhibit potential to high stretchability/flexibility as well as a good adhesion between the three different layers. The outcomes of this study contribute to the realisation of low-foot print devices articulated with electroactive polymer actuators for which the physical interface with the power source has been a significant challenge limiting their application. Here, we present a new flexible trilayer structure, which will allow the fabrication of metal-free soft microactuators.

  8. Along the Ta Diffusion Path Through a Boron and Oxygen Containing Tri-layer Structure

    NASA Astrophysics Data System (ADS)

    Ying, Ji-Feng; Ji, Rong; Wang, Chen Chen; Ter Lim, Sze; Xie, Huiqing; Gerard, Ernult F.

    2014-08-01

    Diffusion and migration of elements are commonly observed in the fabrication of multilayer thin-film devices, including those of STT-RAM. The CoFeB/MgO/CoFeB tri-layer thin-film stack has been widely used in the design of STT-RAM devices as the functional magnetic-tunnel-junction (MTJ) structure. Such issues faced in the fabrication of these devices have been extensively researched from the stand point of engineering the materials property and structure to achieve the best MTJ performance. In this work, we conducted a detailed examination of the chemical-state change of the Ta and B in a CoFeB/MgO/CoFeB/Ta film stack by using x-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry. We showed that the chemical-state change of Ta and B is a result of the Ta diffusion phenomena through the CoFeB/MgO/CoFeB tri-layer structure. In particular, we report the evidences of the formation of TaB x O y compound at some considerable depth away from the Ta layer. Also of value to XPS spectroscopy, the Ta binding energy for such TaB x O y compound is reported for the first time.

  9. Form Follows Function: Advances in Trilayered Structure Replication for Aortic Heart Valve Tissue Engineering

    PubMed Central

    Simionescu, Dan T.; Chen, Joseph; Jaeggli, Michael; Wang, Bo; Liao, Jun

    2013-01-01

    Tissue engineering the aortic heart valve is a challenging endeavor because of the particular hemodynamic and biologic conditions present in the native aortic heart valve. The backbone of an ideal valve substitute should be a scaffold that is strong enough to withstand billions of repetitive bending, flexing and stretching cycles, while also being slowly degradable to allow for remodeling. In this review we highlight three overlooked aspects that might influence the long term durability of tissue engineered valves: replication of the native valve trilayered histoarchitecture, duplication of the three-dimensional shape of the valve and cell integration efforts focused on getting the right number and type of cells to the right place within the valve structure and driving them towards homeostatic maintenance of the valve matrix. We propose that the trilayered structure in the native aortic valve that includes a middle spongiosa layer cushioning the motions of the two external fibrous layers should be our template for creation of novel scaffolds with improved mechanical durability. Furthermore, since cells adapt to micro-loads within the valve structure, we believe that interstitial cell remodeling of the valvular matrix will depend on the accurate replication of the structures and loads, resulting in successful regeneration of the valve tissue and extended durability. PMID:23355946

  10. Electrochemomechanical deformation (ECMD) of PPyDBS in free standing film formation and trilayer designs

    NASA Astrophysics Data System (ADS)

    Aydemir, Nihan; Tamm, Tarmo; Travas-Sejdic, Jadranka; Kilmartin, Paul A.; Aabloo, Alvo; Kiefer, Rudolf

    2014-03-01

    An investigation is reported into the electrochemomechanical deformation (ECMD) of polypyrrole (PPy) doped with dodecylbenzenesulfonate (DBS) in the form of freestanding films and deposited onto conductive substrates (chemically fixed poly-3,4-(ethylenedioxythiophene, PEDOT) based on PVdF (poly(vinylidenefluoride)). Linear actuation has been achieved starting from a trilayer bending actuator design with a stretchable middle layer. To allow evaluation of the proposed design, commercially available PVdF membranes were chosen as model material. For bending trilayer functionality, electronic separation of both electrode layers is essential, but in order to obtain linear actuation, the CP layers on either side are connected to form a single working electrode. The PPyDBS free standing films and PPyDBS deposited on PEDOT-PVdF-PEDOT were investigated by electrochemical methods (cyclic voltammetry, square wave potentials) in a 4-methyl-1,3-dioxolan-2-one (propylene carbonate, PC) solution of tetrabutylammonium trifluoromethanesulfonate (TBACF3SO3). This study also presents a novel method of utilizing scanning ion-conductance microscopy (SICM) to accurately examine the electrochemical redox behavior of the surface layer of the linear actuator using a micropipette tip.

  11. Magnetic patterning of Fe/Cr/Fe(001) trilayers by Ga{sup +} ion irradiation

    SciTech Connect

    Blomeier, S.; Hillebrands, B.; Demidov, V.E.; Demokritov, S.O.; Reuscher, B.; Brodyanski, A.; Kopnarski, M.

    2005-11-01

    Magnetic patterning of antiferromagnetically coupled epitaxial Fe (10 nm)/Cr (0.7 nm)/Fe (10 nm) (001) trilayers by irradiation with 30 keV Ga{sup +} ions was studied by means of atomic force microscopy, magnetic force microscopy, and Kerr magnetometry. It was found that within a fluence range of (1.25-5)x10{sup 16} ions/cm{sup 2} a complete transition from antiferromagnetic to ferromagnetic coupling between the two Fe layers can be achieved. The magnetization reversal processes of the nonirradiated, antiferromagnetically coupled areas situated close to the irradiated areas were studied with lateral resolution. Evidence for a lateral coupling mechanism between the magnetic moments of the irradiated and nonirradiated areas was found. Special attention was paid to preserve the flatness of the irradiated samples. Depending on the fluence, topographic steps ranging from +1.5 to -2 nm between the nonirradiated and irradiated areas were observed. At lower fluences the irradiation causes an increase of the surface height, while for higher fluences the height decreases. It was found that for the particular fluence of 2.7x10{sup 16} ions/cm{sup 2} no height difference between the irradiated and nonirradiated areas occurs. The results suggest that the irradiation of Fe/Cr/Fe trilayers with midenergy ions is an innovative method for magnetic patterning, preserving the initial smoothness of the sample.

  12. Magnetostatic spin wave modes in trilayer nanowire arrays probed using ferromagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Adeyeye, A. O.

    2016-08-01

    We investigate the spin wave modes in asymmetric trilayer [N i80F e20(10 nm ) /Cu (tCu) /N i80F e20(30 nm ) ] nanowire structures as a function of the Cu thickness (tCu) in the range from 0 to 20 nm using perpendicular ferromagnetic resonance (pFMR) spectroscopy. For tCu=0 nm , corresponding to the 40 nm thick single layer N i80F e20 nanowires, both the fundamental and first order modes are observed in the saturation region. However, for the trilayer structures, two additional modes, which are the fundamental and first order optical modes, are observed. We also found that the resonance fields of these modes are markedly sensitive to the Cu thickness due to the competing effects of interlayer exchange coupling and magnetostatic dipolar coupling. When the tCu≥10 nm , the fundamental optical mode is more pronounced. Our experimental results are in quantitative agreement with the dynamic micromagnetic simulations.

  13. Phase behavior of model ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  14. Square ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V.

    2015-03-01

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms `square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  15. Square ice in graphene nanocapillaries.

    PubMed

    Algara-Siller, G; Lehtinen, O; Wang, F C; Nair, R R; Kaiser, U; Wu, H A; Geim, A K; Grigorieva, I V

    2015-03-26

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms 'square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature. PMID:25810206

  16. Promising hydrogen storage properties and potential applications of Mg-Al-Pd trilayer films under mild conditions.

    PubMed

    Xin, Gongbiao; Yang, Junzhi; Zhang, Guoqing; Zheng, Jie; Li, Xingguo

    2012-10-14

    We prepared a series of nano-sized Mg-Al-Pd trilayer films and investigated their hydrogen storage properties under mild conditions. Results showed that Al 1 nm sample had the best absorption kinetics and excellent optical properties at room temperature, making it a promising candidate for hydrogen sensors and smart windows. PMID:22692459

  17. Aromatic graphene

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Sahoo, S.

    2016-04-01

    In recent years graphene attracts the scientific and engineering communities due to its outstanding electronic, thermal, mechanical and optical properties and many potential applications. Recently, Popov et al. [1] have studied the properties of graphene and proved that it is aromatic but without fragrance. In this paper, we present a theory to prepare graphene with fragrance. This can be used as scented pencils, perfumes, room and car fresheners, cosmetics and many other useful household substances.

  18. Shear Assisted Electrochemical Exfoliation of Graphite to Graphene.

    PubMed

    Shinde, Dhanraj B; Brenker, Jason; Easton, Christopher D; Tabor, Rico F; Neild, Adrian; Majumder, Mainak

    2016-04-12

    The exfoliation characteristics of graphite as a function of applied anodic potential (1-10 V) in combination with shear field (400-74 400 s(-1)) have been studied in a custom-designed microfluidic reactor. Systematic investigation by atomic force microscopy (AFM) indicates that at higher potentials thicker and more fragmented graphene sheets are obtained, while at potentials as low as 1 V, pronounced exfoliation is triggered by the influence of shear. The shear-assisted electrochemical exfoliation process yields large (∼10 μm) graphene flakes with a high proportion of single, bilayer, and trilayer graphene and small ID/IG ratio (0.21-0.32) with only a small contribution from carbon-oxygen species as demonstrated by X-ray photoelectron spectroscopy measurements. This method comprises intercalation of sulfate ions followed by exfoliation using shear induced by a flowing electrolyte. Our findings on the crucial role of hydrodynamics in accentuating the exfoliation efficiency suggest a safer, greener, and more automated method for production of high quality graphene from graphite.

  19. The Role of the Atypical Kinases ABC1K7 and ABC1K8 in Abscisic Acid Responses

    PubMed Central

    Manara, Anna; DalCorso, Giovanni; Furini, Antonella

    2016-01-01

    The ABC1K family of atypical kinases (activity of bc1 complex kinase) is represented in bacteria, archaea, and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA)-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement, and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling. PMID:27047531

  20. The Role of the Atypical Kinases ABC1K7 and ABC1K8 in Abscisic Acid Responses.

    PubMed

    Manara, Anna; DalCorso, Giovanni; Furini, Antonella

    2016-01-01

    The ABC1K family of atypical kinases (activity of bc1 complex kinase) is represented in bacteria, archaea, and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA)-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement, and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling. PMID:27047531

  1. APOLLO 13: A News Bulletin from ABC

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 13: ABC breaks the news of a mishap aboard the spacecraft From the film documentary 'APOLLO 13: 'Houston, We've got a problem'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO 13 : Third manned lunar landing attempt with James A. Lovell, Jr., John L. Swigert, Jr., and Fred W. Haise, Jr. Pressure lost in SM oxygen system; mission aborted; LM used for life support. Mission Duration 142hrs 54mins 41sec

  2. ABC makes the switch to digital

    NASA Astrophysics Data System (ADS)

    Pearl, R. G.

    1984-05-01

    The digital satellite-distribution system being completed for the ABC radio network is briefly characterized. Audio programming on 19 channels at 15 kHz is digitized at the studio and transmitted by microwave to the uplink facility for distribution via Satcom I-R to 1800 affiliates with affiliate-owned receivers. A data channel comprising several 32-kbit/sec subchannels operates through network-owned data cards and printers installed in the affiliate ground stations to provide internal communication (to all affiliates, a selected group, or a single station) using soft addresses, data-distribution services for station customers, or the proposed 900-MHz nationwide paging service.

  3. Epitaxial graphene: the material for graphene electronics

    SciTech Connect

    Sprinkle, M.; Soukiassian, P.; de Heer, W.A.; Berger, C.; Conrad, E.H.

    2009-12-10

    The search for an ideal graphene sheet has been a quest driving graphene research. While most research has focused on exfoliated graphene, intrinsic substrate interactions and mechanical disorder have precluded the observation of a number of graphene's expected physical properties in this material. The only graphene candidate that has demonstrated all the essential properties of an ideal sheet is multilayer graphene grown on the SiC(000) surface. Its unique stacking allows nearly all the sheets in the stack to behave like isolated graphene, while the weak graphene-graphene interaction prevents any significant doping or distortion in the band near the Fermi level.

  4. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system.

    PubMed

    Kim, Dong-Ok; Song, Kyung Mee; Choi, Yongseong; Min, Byoung-Chul; Kim, Jae-Sung; Choi, Jun Woo; Lee, Dong Ryeol

    2016-01-01

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Such asymmetry in magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices. PMID:27151368

  5. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ok; Song, Kyung Mee; Choi, Yongseong; Min, Byoung-Chul; Kim, Jae-Sung; Choi, Jun Woo; Lee, Dong Ryeol

    2016-05-01

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Such asymmetry in magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.

  6. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system

    PubMed Central

    Kim, Dong-Ok; Song, Kyung Mee; Choi, Yongseong; Min, Byoung-Chul; Kim, Jae-Sung; Choi, Jun Woo; Lee, Dong Ryeol

    2016-01-01

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Such asymmetry in magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices. PMID:27151368

  7. Effect of spacer layer on the magnetization dynamics of permalloy/rare-earth/permalloy trilayers

    SciTech Connect

    Luo, Chen Yin, Yuli; Zhang, Dong; Jiang, Sheng; Yue, Jinjin; Zhai, Ya; Du, Jun; Zhai, Hongru

    2015-05-07

    The permalloy/rare-earth/permalloy trilayers with different types (Gd and Nd) and thicknesses of spacer layer are investigated using frequency dependence of ferromagnetic resonance (FMR) measurements at room temperature, which shows different behaviors with different rare earth spacer layers. By fitting the frequency dependence of the FMR resonance field and linewidth, we find that the in-plane uniaxial anisotropy retains its value for all samples, the perpendicular anisotropy remains almost unchanged for different thickness of Gd layer but the values are tailored by different thicknesses of Nd layer. The Gilbert damping is almost unchanged with different thicknesses of Gd; however, the Gilbert damping is significantly enhanced from 8.4×10{sup −3} to 20.1×10{sup −3} with 6 nm of Nd and then flatten out when the Nd thickness rises above 6 nm.

  8. Helical spin-density wave in Fe/Cr trilayers with perfect interfaces

    SciTech Connect

    Fishman, R.S.

    1998-07-01

    Despite the presence of only collinear, commensurate (C) and incommensurate (I) spin-density waves (SDW`s) in bulk Cr, the interfacial steps in Fe/Cr multilayers are now believed to stabilize a helical (H) SDW within the Cr spacer. Yet H SDW`s were first predicted in an Fe/Cr trilayer with perfect interfaces when the orientation of the Fe moments does not favor C ordering: if the number of Cr monolayers is even (odd) and the Fe moments are pointing in the same (opposite) direction, then a C SDW does not gain any coupling energy. Under these circumstances, a simple model verifies that H ordering is indeed favored over 1 ordering provided that the Fermi surface mismatch is sufficiently small or the temperature sufficiently high.

  9. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system

    DOE PAGES

    Kim, Dong -Ok; Song, Kyung Mee; Choi, Yongseong; Min, Byoung -Chul; Kim, Jae -Sung; Choi, Jun Woo; Lee, Dong Ryeol

    2016-05-06

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Furthermore, such asymmetry inmore » magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.« less

  10. In-plane Isotropic Microwave Performance of CoZr Trilayer in GHz Range

    PubMed Central

    Pan, Lulu; Wang, Fenglong; Wang, Wenfeng; Chai, Guozhi; Xue, Desheng

    2016-01-01

    In this paper, we investigate the high frequency performance of Co90Zr10/SiO2/Co90Zr10 trilayers. It is demonstrated that the in-plane isotropic microwave performance is theoretically derived from the solution of the Landau-Lifshitz-Gilbert equation and experimentally achieved in that sandwich structured film. The valuable isotropic behavior comes from the superposition of two uncouple ferromagnetic layers in which the uniaxial magnetic anisotropic fields are equivalent but mutually orthogonal. Moreover, the isotropic microwave performance can be tuned to higher resonance frequency up to 5.3 GHz by employing the oblique deposition technique. It offers a convenient and effective way to achieve an unusual in-plane isotropic microwave performance with high permeability in GHz, holding promising applications for the magnetic devices in the high frequency information technology. PMID:26883790

  11. In-plane Isotropic Microwave Performance of CoZr Trilayer in GHz Range

    NASA Astrophysics Data System (ADS)

    Pan, Lulu; Wang, Fenglong; Wang, Wenfeng; Chai, Guozhi; Xue, Desheng

    2016-02-01

    In this paper, we investigate the high frequency performance of Co90Zr10/SiO2/Co90Zr10 trilayers. It is demonstrated that the in-plane isotropic microwave performance is theoretically derived from the solution of the Landau-Lifshitz-Gilbert equation and experimentally achieved in that sandwich structured film. The valuable isotropic behavior comes from the superposition of two uncouple ferromagnetic layers in which the uniaxial magnetic anisotropic fields are equivalent but mutually orthogonal. Moreover, the isotropic microwave performance can be tuned to higher resonance frequency up to 5.3 GHz by employing the oblique deposition technique. It offers a convenient and effective way to achieve an unusual in-plane isotropic microwave performance with high permeability in GHz, holding promising applications for the magnetic devices in the high frequency information technology.

  12. The Reign of Confusion: ABC and the "Crisis in Iran."

    ERIC Educational Resources Information Center

    Palmerton, Patricia R.

    A study examined reports broadcast by ABC News between November 8, 1979 and December 7, 1979 in its series entitled "Crisis in Iran: America Held Hostage." Transcripts of approximately 50% of actual broadcasts were subjected to rhetorical critical analysis, from which the finding emerged that confusion was the predominant characteristic in ABC's…

  13. The ABCs of School Choice, 2009-2010 Edition

    ERIC Educational Resources Information Center

    Friedman Foundation for Educational Choice, 2010

    2010-01-01

    This publication presents the 2009-2010 edition of the Friedman Foundation for Educational Choice's "ABCs of School Choice". The "ABCs of School Choice" provides the latest in up-to-date and accurate information about the many school choice success stories taking place throughout the country. Readers will find this guide an essential resource on…

  14. To What Extent Does Attention Affect K-ABC Scores?

    ERIC Educational Resources Information Center

    Gordon, Michael; And Others

    1990-01-01

    Analyzed the protocols of 52 clinic-referred children who were administered the Kaufman Assessment Battery for Children (K-ABC) as well as version of the Continuous Performance Test (CPT), a laboratory measure of attention. Results demonstrated significant interrelationships among K-ABC and CPT scores. (Author/ABL)

  15. ABCs of Being Smart: S Is for Supporting

    ERIC Educational Resources Information Center

    Foster, Joanne

    2014-01-01

    Joanne Foster's article "R We There Yet?" was first published in "Parenting for High Potential" ("PHP") in 2006, which became the springboard for the "ABCs of Being Smart" series of columns. At that time, Foster invited "PHP" readers to think about their own versions of the "ABCs of Being…

  16. Measuring Academic Behavioural Confidence: The ABC Scale Revisited

    ERIC Educational Resources Information Center

    Sander, Paul; Sanders, Lalage

    2009-01-01

    The Academic Behavioural Confidence (ABC) scale has been shown to be valid and can be useful to teachers in understanding their students, enabling the design of more effective teaching sessions with large cohorts. However, some of the between-group differences have been smaller than expected, leading to the hypothesis that the ABC scale many not…

  17. Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.; Zheng, Hong; Norman, M. R.; Mitchell, J. F.

    2016-08-01

    The quasi-2D nickelate La4Ni3O8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La4Ni3O10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. Here, we show using synchrotron X-ray diffraction on high-pO2 floating zone-grown single crystals that this transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. The charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that found in the related 1/3-hole doped single-layer R-P nickelate, La5/3Sr1/3NiO4 (LSNO-1/3; Ni2.33+), with orientation at 45° to the Ni-O bonds. The charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.

  18. Two-dimensional iron oxide bi-and trilayer structures on Pd(100)

    NASA Astrophysics Data System (ADS)

    Kuhness, D.; Pomp, S.; Mankad, V.; Barcaro, G.; Sementa, L.; Fortunelli, A.; Netzer, F. P.; Surnev, S.

    2016-03-01

    The growth morphology and structure of iron oxide films, prepared by postoxidation of Fe monolayers on a Pd(100) surface, have been investigated in a multitechnique study, using scanning tunneling microscopy (STM), low energy electron diffraction (LEED), high-resolution x-ray photoelectron spectroscopy (HR-XPS) and x-ray absorption spectroscopy (XAS), both using synchrotron radiation, and comprehensive density functional theory (DFT) analysis. A two-dimensional (2-D) hexagonal O-Fe-O trilayer phase has been generated at submonolayer Fe coverages, which converges into two different 2-D hexagonal Fe-O bilayer structures at one monolayer. One phase exhibits a c(8 × 2) coincidence structure and is associated with a stoichiometric FeO(111) bilayer. The second phase displays a superstructure of triangular loops, which is understood from DFT modeling as excess O ad-atoms in the terminating oxygen layer, thus corresponding to a FeO bilayer with a formal FeO1.125 stoichiometry. Annealing the latter in ultrahigh vacuum to 770 K results in the pure c(8 × 2) wetting layer. The thermodynamic stability of the O-Fe-O trilayer and FeO bilayer phases is analyzed in the DFT framework and is found to be in good agreement with the experiment. The absence of a c(4 × 2)-Fe3O4 phase in the experimental phase diagram, which is found to be stable by DFT and is experimentally encountered for other transition metal oxide films, such as Ni-, Co-, and Mn-oxide on Pd(100), is ascribed to kinetic reasons.

  19. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    PubMed

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  20. Rivet Graphene.

    PubMed

    Li, Xinlu; Sha, Junwei; Lee, Seoung-Ki; Li, Yilun; Ji, Yongsung; Zhao, Yujie; Tour, James M

    2016-08-23

    Large-area graphene has emerged as a promising material for use in flexible and transparent electronics due to its flexibility and optical and electronic properties. The anchoring of transition metal nanoparticles on large-area single-layer graphene is still a challenge. Here, we report an in situ preparation of carbon nano-onion-encapsulated Fe nanoparticles on rebar graphene, which we term rivet graphene. The hybrid film, which allows for polymer-free transfer and is strong enough to float on water with no added supports, exhibits high optical transparency, excellent electric conductivity, and good hole/electron mobility under certain tensile/compressive strains. The results of contact resistance and transfer length indicate that the current in the rivet graphene transistor does not just flow at the contact edge. Carbon nano-onions encapsulating Fe nanoparticles on the surface enhance the injection of charge between rivet graphene and the metal electrode. The anchoring of Fe nanoparticles encapsulated by carbon nano-onions on rebar graphene will provide additional avenues for applications of nanocarbon-based films in transparent and flexible electronics. PMID:27351673

  1. Transport and magnetic properties of the Co2MnSi/Al/Co2MnSi trilayer

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Zhang, H. B.; Jiang, X. F.; Zheng, Y.; Yang, G. W.

    2012-05-01

    Using density functional theory and non-equilibrium Green's function analysis, we studied the interface structure, interface stability, and magnetic and transport properties of the Co2MnSi/Al/Co2MnSi trilayer. It was found that only the CoCo/Al architecture is thermodynamically stable among four interfacial architectures, CoCo/Al, MnSi/Al, MnMn/Al, and SiSi/Al, and the other interface architectures are not accessible within the limits set under thermodynamic equilibrium with other phases. Calculations of the transmission spectrum, conductance, and resistance-area product showed that the Co2MnSi/Al/Co2MnSi trilayer is a promising candidate for the next-generation of recording sensors in ultrahigh-density hard disks.

  2. Stacking nature and band gap opening of graphene: Perspective for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Ullah, Naeem; Zhang, R. Q.; Murtaza, G.; Yar, Abdullah; Mahmood, Asif

    2016-11-01

    Using first principles density functional theory calculations, we have performed geometrical and electronic structure calculations of two-dimensional graphene(G) sheet on the hexagonal boron nitride (h-BN) with different stacking orders. We found that AB stacking appears as the ground state while AA-stacking is a local minima. Band gap opening in the hybrid G/h-BN is sensitive to the interlayer distance and stacking arrangement. Charge redistribution in the graphene sheet determined the band gap opening where the onsite energy difference between carbon lattice atoms of G-sheet takes place. Similar behavior can be observed for the proposed h-BN/G/h-BN tri-layer system. Stacking resolved calculations of the absorptive part of complex dielectric function and optical conductivity revealed the importance of the proposed hybrid systems in the optoelectronics.

  3. Trilayer Josephson junctions produced by atomic layer-by-layer FORCE (Flexible Oxide Reaction Controlled Epitaxy). Final report

    SciTech Connect

    1995-09-30

    Lawrence Livermore National Laboratory is working with Varian Associates to lay the groundwork for the routine, reproducible fabrication of high-temperature superconducting trilayer structures. The objectives of this program are: To identify high temperature, superconducting materials, metallic and insulating barrier materials and associated substrate and electrode materials for engineered trilayer structures that can provide Josephson Junction devices with desired characteristics for sensor or electronic circuit use. To identify and test potentially useful analysis techniques and to provide data appropriate for the validation and analysis of the input materials, trilayer structures and completed JJ devices. To integrate the analysis results with the existing Varian data base to optimize the growth and fabrication process to obtain more reproducible devices across each chip and from chip to chip. These objectives were defined by a detailed set of milestones for both Lawrence Livermore National Laboratory and Varian Associates all of which have been meet. The timing of the milestones was revised midway through the CRADA term to allow a longer time to pursue the objectives at no additional cost to either partner.

  4. Rebar Graphene

    PubMed Central

    2015-01-01

    As the cylindrical sp2-bonded carbon allotrope, carbon nanotubes (CNTs) have been widely used to reinforce bulk materials such as polymers, ceramics, and metals. However, both the concept demonstration and the fundamental understanding on how 1D CNTs reinforce atomically thin 2D layered materials, such as graphene, are still absent. Here, we demonstrate the successful synthesis of CNT-toughened graphene by simply annealing functionalized CNTs on Cu foils without needing to introduce extraneous carbon sources. The CNTs act as reinforcing bar (rebar), toughening the graphene through both π–π stacking domains and covalent bonding where the CNTs partially unzip and form a seamless 2D conjoined hybrid as revealed by aberration-corrected scanning transmission electron microscopy analysis. This is termed rebar graphene. Rebar graphene can be free-standing on water and transferred onto target substrates without needing a polymer-coating due to the rebar effects of the CNTs. The utility of rebar graphene sheets as flexible all-carbon transparent electrodes is demonstrated. The in-plane marriage of 1D nanotubes and 2D layered materials might herald an electrical and mechanical union that extends beyond carbon chemistry. PMID:24694285

  5. Graphene kirigami

    NASA Astrophysics Data System (ADS)

    Blees, Melina K.; Barnard, Arthur W.; Rose, Peter A.; Roberts, Samantha P.; McGill, Kathryn L.; Huang, Pinshane Y.; Ruyack, Alexander R.; Kevek, Joshua W.; Kobrin, Bryce; Muller, David A.; McEuen, Paul L.

    2015-08-01

    For centuries, practitioners of origami (`ori', fold; `kami', paper) and kirigami (`kiru', cut) have fashioned sheets of paper into beautiful and complex three-dimensional structures. Both techniques are scalable, and scientists and engineers are adapting them to different two-dimensional starting materials to create structures from the macro- to the microscale. Here we show that graphene is well suited for kirigami, allowing us to build robust microscale structures with tunable mechanical properties. The material parameter crucial for kirigami is the Föppl-von Kármán number γ: an indication of the ratio between in-plane stiffness and out-of-plane bending stiffness, with high numbers corresponding to membranes that more easily bend and crumple than they stretch and shear. To determine γ, we measure the bending stiffness of graphene monolayers that are 10-100 micrometres in size and obtain a value that is thousands of times higher than the predicted atomic-scale bending stiffness. Interferometric imaging attributes this finding to ripples in the membrane that stiffen the graphene sheets considerably, to the extent that γ is comparable to that of a standard piece of paper. We may therefore apply ideas from kirigami to graphene sheets to build mechanical metamaterials such as stretchable electrodes, springs, and hinges. These results establish graphene kirigami as a simple yet powerful and customizable approach for fashioning one-atom-thick graphene sheets into resilient and movable parts with microscale dimensions.

  6. ABC's of Being Smart: I Can "C" Clearly Now

    ERIC Educational Resources Information Center

    Foster, Joanne

    2011-01-01

    In this paper, the author focuses on C of the ABC's of being smart. She continues to categorize the points for readers. These categories include the following: (1) being; (2) doing; and (3) stretching.

  7. ABC proteins protect the human body and maintain optimal health.

    PubMed

    Ueda, Kazumitsu

    2011-01-01

    Human MDR1, a multi-drug transporter gene, was isolated as the first of the eukaryote ATP Binding Cassette (ABC) proteins from a multidrug-resistant carcinoma cell line in 1986. To date, over 25 years, many ABC proteins have been found to play important physiological roles by transporting hydrophobic compounds. Defects in their functions cause various diseases, indicating that endogenous hydrophobic compounds, as well as water-soluble compounds, are properly transported by transmembrane proteins. MDR1 transports a large number of structurally unrelated drugs and is involved in their pharmacokinetics, and thus is a key factor in drug interaction. ABCA1, an ABC protein, eliminates excess cholesterol in peripheral cells by generating HDL. Because ABCA1 is a key molecule in cholesterol homeostasis, its function and expression are highly regulated. Eukaryote ABC proteins function on the body surface facing the outside and in organ pathways to adapt to the extracellular environment and protect the body to maintain optimal health.

  8. MDR-ABC transporters: biomarkers in rheumatoid arthritis.

    PubMed

    Márki-Zay, János; Tauberné Jakab, Katalin; Szerémy, Péter; Krajcsi, Peter

    2013-01-01

    MDR-ABC transporters are widely expressed in cell types relevant to pathogenesis of rheumatoid arthritis. Many reports demonstrate the interaction of small molecule drugs with MDR-ABC transporters. Cell-based assays for disease relevant cell types can be easily gated and could reveal specific drug targets and may increase significance and utilisation of data in clinical practice. Many commonly used DMARDs (e.g. methotrexate, sulfasalazine, leflunomide/teriflunomide, hydroxychloroquine) are ABCG2 substrates. Consequently, the activity of this transporter in patients should be determined to understand the disposition and pharmacokinetics of the therapy. In addition, MDR-ABC transporters transport a variety of endobiotics that play important roles in cell proliferation, cell migration, angiogenesis and inflammation. Therefore, MDR-ABC transporters are important biomarkers in rheumatoid arthritis. PMID:23711386

  9. The ABC daycare disaster of Hermosillo, Mexico.

    PubMed

    Greenhalgh, David G; Chang, Philip; Maguina, Pirko; Combs, Elena; Sen, Soman; Palmieri, Tina L

    2012-01-01

    On June 5, 2009, the ABC Daycare facility in Hermosillo, Mexico, caught on fire with an estimated 142 children and 6 adult caregivers inside. The purpose of this article is to describe the factors contributing to the disaster including care of the survivors, tertiary burn center triage, patient transport, and treatment for this international mass casualty event. Finally, the results of an investigation performed by the Mexican Government are reviewed. A summary of the Mexican Government's investigation of the circumstances of fire and an examination of prevention lapses in other Mexican daycare centers was obtained from their public Web site. The demographic and clinical characteristics of the children transported to the burn center were obtained from the patients' medical records and transport data sheets. The ABC Daycare had many fire safety breaches that contributed to the severity of the tragedy. Twenty-nine children died at the scene and more than 35 children were hospitalized throughout Mexico. A total of 12 children were transported to two Shriners Hospitals, 9 to Sacramento, and 3 to Cincinnati. The mean age of patients sent to the Shriners Hospitals was 2.9 ± 0.16 years (2-4 years), with 5 being male and 7 female. The mean duration between injury and arrival was 9.2 ± 2.1 days, the burn size was 43.0 ± 6.8% TBSA (6.5-80%), and there were 3.75 operations per patient. Four had fourth-degree burns requiring finger amputations (2), flaps to cover bone (1), or a through-knee amputation (1). Ten patients were admitted to the intensive care unit, and nine patients (seven with inhalation injury) required mechanical ventilation for a mean of 23.6 ± 10.3 days. All the surviving children were discharged after a mean length of stay of 45.9 ± 8.7 days. In the first year postinjury, seven children were readmitted a total of 11 times for reconstructive surgery, wound care, or rehabilitation. Ultimately, a total of 49 children died. A review of other daycare centers

  10. Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter.

    PubMed

    Song, Jinlin; Si, Mengting; Cheng, Qiang; Luo, Zixue

    2016-02-20

    A thermophotovoltaic system that converts thermal energy into electricity has considerable potential for applications in energy utilization fields. However, intensive emission in a wide spectral and angular range remains a challenge in improving system efficiency. This study proposes the use of a 2D trilayer grating with a tungsten/silica/tungsten (W/SiO2/W) structure on a tungsten substrate as a thermophotovoltaic emitter. The finite-difference time-domain method is employed to simulate the radiative properties of the proposed structure. A broadband high emittance with an average spectral emittance of 0.953 between 600 and 1800 nm can be obtained for both transverse magnetic and transverse electric polarized waves. On the basis of the inductance-capacitance circuit model and dispersion relation analyses, this phenomenon is mainly considered as the combined contribution of surface plasmon polaritons and magnetic polaritons. A parametric study is also conducted on the emittance spectrum of the proposed structure, considering geometric parameters, polar angles, and azimuthal angles for both TM and TE waves. The study demonstrates that the emitter has good wavelength selectivity and polarization insensitivity in a wide geometric and angular range.

  11. Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter.

    PubMed

    Song, Jinlin; Si, Mengting; Cheng, Qiang; Luo, Zixue

    2016-02-20

    A thermophotovoltaic system that converts thermal energy into electricity has considerable potential for applications in energy utilization fields. However, intensive emission in a wide spectral and angular range remains a challenge in improving system efficiency. This study proposes the use of a 2D trilayer grating with a tungsten/silica/tungsten (W/SiO2/W) structure on a tungsten substrate as a thermophotovoltaic emitter. The finite-difference time-domain method is employed to simulate the radiative properties of the proposed structure. A broadband high emittance with an average spectral emittance of 0.953 between 600 and 1800 nm can be obtained for both transverse magnetic and transverse electric polarized waves. On the basis of the inductance-capacitance circuit model and dispersion relation analyses, this phenomenon is mainly considered as the combined contribution of surface plasmon polaritons and magnetic polaritons. A parametric study is also conducted on the emittance spectrum of the proposed structure, considering geometric parameters, polar angles, and azimuthal angles for both TM and TE waves. The study demonstrates that the emitter has good wavelength selectivity and polarization insensitivity in a wide geometric and angular range. PMID:26906580

  12. Exponentially decaying magnetic coupling in sputtered thin film FeNi/Cu/FeCo trilayers

    SciTech Connect

    Wei, Yajun Akansel, Serkan; Thersleff, Thomas; Brucas, Rimantas; Lansaker, Pia; Leifer, Klaus; Svedlindh, Peter; Harward, Ian; Celinski, Zbigniew; Ranjbar, Mojtaba; Dumas, Randy K.; Jana, Somnath; Pogoryelov, Yevgen; Karis, Olof; Åkerman, Johan

    2015-01-26

    Magnetic coupling in trilayer films of FeNi/Cu/FeCo deposited on Si/SiO{sub 2} substrates have been studied. While the thicknesses of the FeNi and FeCo layers were kept constant at 100 Å, the thickness of the Cu spacer was varied from 5 to 50 Å. Both hysteresis loop and ferromagnetic resonance results indicate that all films are ferromagnetically coupled. Micromagnetic simulations well reproduce the ferromagnetic resonance mode positions measured by experiments, enabling the extraction of the coupling constants. Films with a thin Cu spacer are found to be strongly coupled, with an effective coupling constant of 3 erg/cm{sup 2} for the sample with a 5 Å Cu spacer. The strong coupling strength is qualitatively understood within the framework of a combined effect of Ruderman-Kittel-Kasuya-Yosida and pinhole coupling, which is evidenced by transmission electron microscopy analysis. The magnetic coupling constant surprisingly decreases exponentially with increasing Cu spacer thickness, without showing an oscillatory thickness dependence. This is partially connected to the substantial interfacial roughness that washes away the oscillation. The results have implications on the design of multilayers for spintronic applications.

  13. Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

    NASA Astrophysics Data System (ADS)

    Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel

    2014-12-01

    Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers.

  14. Medical data sheet in safe havens - A tri-layer cryptic solution.

    PubMed

    Praveenkumar, Padmapriya; Amirtharajan, Rengarajan; Thenmozhi, K; Balaguru Rayappan, John Bosco

    2015-07-01

    Secured sharing of the diagnostic reports and scan images of patients among doctors with complementary expertise for collaborative treatment will help to provide maximum care through faster and decisive decisions. In this context, a tri-layer cryptic solution has been proposed and implemented on Digital Imaging and Communications in Medicine (DICOM) images to establish a secured communication for effective referrals among peers without compromising the privacy of patients. In this approach, a blend of three cryptic schemes, namely Latin square image cipher (LSIC), discrete Gould transform (DGT) and Rubik׳s encryption, has been adopted. Among them, LSIC provides better substitution, confusion and shuffling of the image blocks; DGT incorporates tamper proofing with authentication; and Rubik renders a permutation of DICOM image pixels. The developed algorithm has been successfully implemented and tested in both the software (MATLAB 7) and hardware Universal Software Radio Peripheral (USRP) environments. Specifically, the encrypted data were tested by transmitting them through an additive white Gaussian noise (AWGN) channel model. Furthermore, the sternness of the implemented algorithm was validated by employing standard metrics such as the unified average changing intensity (UACI), number of pixels change rate (NPCR), correlation values and histograms. The estimated metrics have also been compared with the existing methods and dominate in terms of large key space to defy brute force attack, cropping attack, strong key sensitivity and uniform pixel value distribution on encryption.

  15. Tunable ferroelectricity in artificial tri-layer superlattices comprised of non-ferroic components.

    PubMed

    Rogdakis, K; Seo, J W; Viskadourakis, Z; Wang, Y; Qune, L F N Ah; Choi, E; Burton, J D; Tsymbal, E Y; Lee, J; Panagopoulos, C

    2012-01-01

    Heterostructured material systems devoid of ferroic components are presumed not to display ordering associated with ferroelectricity. In heterostructures composed of transition metal oxides, however, the disruption introduced by an interface can affect the balance of the competing interactions among electronic spins, charges and orbitals. This has led to the emergence of properties absent in the original building blocks of a heterostructure, including metallicity, magnetism and superconductivity. Here we report the discovery of ferroelectricity in artificial tri-layer superlattices consisting solely of non-ferroelectric NdMnO(3)/SrMnO(3)/LaMnO(3) layers. Ferroelectricity was observed below 40 K exhibiting strong tunability by superlattice periodicity. Furthermore, magnetoelectric coupling resulted in 150% magnetic modulation of the polarization. Density functional calculations indicate that broken space inversion symmetry and mixed valency, because of cationic asymmetry and interfacial polar discontinuity, respectively, give rise to the observed behaviour. Our results demonstrate the engineering of asymmetric layered structures with emergent ferroelectric and magnetic field tunable functions distinct from that of normal devices, for which the components are typically ferroelectrics. PMID:22990860

  16. Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers

    NASA Astrophysics Data System (ADS)

    Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.

  17. Magnetization reversal in asymmetric trilayer dots: effect of the interlayer magnetostatic coupling

    PubMed Central

    2014-01-01

    The spin structure and magnetization reversal in Co/insulator/Fe trilayer nanodots are investigated by micromagnetic simulations. The vortex and C-state are found and the magnetization reversal is dominated by the shape asymmetry of the dots, which is produced by cutting off a fraction of the circular dot. The vortex chirality is thus controlled by the magnetic field direction. On the other hand, the magnetostatic interaction between the top and bottom magnetic layers has interesting influence on the dot reversal process, where the magnetocrystalline anisotropy direction of the Co layer is allowed to vary within the layer plane. The combined effect of these two aspects is discussed on the base of dot coercivity, remanent magnetization, vortex nucleation and annihilation, and the bias of the Fe layer hysteresis loop. While leading to a new S-state in circle dots, the interlayer interaction facilitates the formation of C-state in asymmetric dots, which reduces the vortex nucleation field. The bias effect of all dots is decreased with the deviation of the Co layer easy axis from the field direction. Unlike the circle and semicircle dots, the field range of the vortex state in other asymmetric dots increases with the angle between the cutting direction and the Co layer anisotropy. Additionally, vortex ranges in less asymmetric dots even larger than that in the circle dots are evidenced unexpectedly. Therefore, the control of the vortex chirality and enhancement of the vortex range are found simultaneously. PMID:24589295

  18. Non-linear dynamics of viscoelastic liquid trilayers subjected to an electric field

    NASA Astrophysics Data System (ADS)

    Karapetsas, George; Bontozoglou, Vasilis

    2014-11-01

    The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a trilayer of immiscible liquids. We consider the case of a polymer film which is separated from the top electrode by two viscous fluids. We develop a computational model and carry out 2D numerical simulations fully accounting for the flow and electric field in all phases. For the numerical solution of the governing equations we employ the mixed finite element method combined with a quasi-elliptic mesh generation scheme which is capable of following the large deformations of the liquid-liquid interface. We model the viscoelastic behavior using the Phan-Thien and Tanner (PTT) constitutive equation taking fully into account the non-linear elastic effects as well as a varying shear and extensional viscosity. We perform a thorough parametric study and investigate the influence of the electric properties of fluids, applied voltage and various rheological parameters. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.

  19. Spin pumping in magnetic trilayer structures with an MgO barrier

    PubMed Central

    Baker, A. A.; Figueroa, A. I.; Pingstone, D.; Lazarov, V. K.; van der Laan, G.; Hesjedal, T.

    2016-01-01

    We present a study of the interaction mechanisms in magnetic trilayer structures with an MgO barrier grown by molecular beam epitaxy. The interlayer exchange coupling, Aex, is determined using SQUID magnetometry and ferromagnetic resonance (FMR), displaying an unexpected oscillatory behaviour as the thickness, tMgO, is increased from 1 to 4 nm. Transmission electron microscopy confirms the continuity and quality of the tunnelling barrier, eliminating the prospect of exchange arising from direct contact between the two ferromagnetic layers. The Gilbert damping is found to be almost independent of the MgO thickness, suggesting the suppression of spin pumping. The element-specific technique of x-ray detected FMR reveals a small dynamic exchange interaction, acting in concert with the static interaction to induce coupled precession across the multilayer stack. These results highlight the potential of spin pumping and spin transfer torque for device applications in magnetic tunnel junctions relying on commonly used MgO barriers. PMID:27752117

  20. Role of spin polarization in FM/Al/FM trilayer film at low temperature

    NASA Astrophysics Data System (ADS)

    Lu, Ning; Webb, Richard

    2014-03-01

    Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.

  1. Spin Propagation Through Antiferromagnetic Bulk Structure in Exchange Biased Magnetic Trilayers

    NASA Astrophysics Data System (ADS)

    Crumrine, Michael; Kirby, Hillary; Miller, Casey

    2013-03-01

    When an exchange bias is induced in materials with a ferromagnetic (FM) - antiferromagnetic (AF) interface, the interfacial coupling between the antiferromagnet and FM manifests itself as a shift in the magnetic hysteresis loop. It has been an unresolved issue as to the role the bulk spin of the antiferromagnet plays in exchange bias and whether or not exchange bias is entirely an interfacial effect. We fabricated several FM/AF/FM trilayer structures of Py(100Å)/FeMn(x)/Ni69Cu31(200Å) with varying antiferromagnet thicknesses and used a field cool procedure to induce an exchange bias. A Magneto-Optical Kerr Effect magnetometer was used to investigate the propagation of spin information through the antiferromagnet by examining the hysteresis loops at different angles of applied field with respect to the magnetization. It was observed that there was no induced exchange bias in the NiCu probe layer for any of the antiferromagnet thicknesses, and we conclude that the patterning of the antiferromagnetic layer transmits no spin information for thicknesses greater than 100Å.

  2. Antiferromagnet-induced perpendicular magnetic anisotropy in ferromagnetic/antiferromagnetic/ferromagnetic trilayers

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Yao; Lin, Po-Han; Tsai, Ming-Shian; Shih, Chun-Wei; Lee, Meng-Ju; Huang, Chun-Wei; Jih, Nae-Yeou; Wei, Der-Hsin

    2016-08-01

    This study demonstrates the effect of antiferromagnet-induced perpendicular magnetic anisotropy (PMA) on ferromagnetic/antiferromagnetic/ferromagnetic (FM/AFM/FM) trilayers and reveals its interplay with a long-range interlayer coupling between separated FM layers. In epitaxially grown 12 monolayer (ML) Ni/Co/Mn/5 ML Co/Cu(001) films, magnetic hysteresis loops and element-resolved magnetic domain imaging showed that the magnetization direction of the top layers of 12 ML Ni/Co films could be changed from the in-plane direction to the perpendicular direction, when the thickness of the Mn films (tMn) was greater than a critical value close to the thickness threshold associated with the onset of AFM ordering (tMn=3.5 ML). The top FM layers exhibited a significantly enhanced PMA when tMn increased further, and this enhancement can be attributed to a strengthened AFM ordering of the volume moments of the Mn films, as evidenced by the presence of induced domain frustration. By contrast, the long-range interlayer coupling presented clear effects only when tMn was at a lower coverage.

  3. Limited propagation of lattice distortion in trilayer Langmuir-Blodgett films: correlation with mesoscopic structure.

    PubMed

    Cantin, Sophie; Perrot, Françoise; Fontaine, Philippe; Goldmann, Michel

    2013-09-01

    The structure of trilayer Langmuir-Blodgett (LB) films on oxidized silicon wafers has been investigated using grazing incidence X-ray diffraction at various incidence angles and atomic force microscopy (AFM). These films are formed by two behenic acid (BA) layers and a third monolayer of amphiphilic molecules having different architectures. These molecules have the same polar head and differ from each other by the chain, either saturated or unsaturated hydrogenated or semi-fluorinated. The structure of the first BA monolayer appears as unchanged in all cases, whereas a condensation of the second BA monolayer is evidenced when the third layer is not formed with the saturated hydrogenated chain. We interpret this condensation as resulting from the mismatch between the lattices of the second BA layer and the external monolayer, possibly associated with the formation of a new monolayer-air interface creating line tension effects. Line tension estimation has also been made from the size of the holes observed in the different LB films.

  4. ABC and IFC: Modules Detection Method for PPI Network

    PubMed Central

    Lei, Xiujuan; Tian, Jianfang

    2014-01-01

    Many clustering algorithms are unable to solve the clustering problem of protein-protein interaction (PPI) networks effectively. A novel clustering model which combines the optimization mechanism of artificial bee colony (ABC) with the fuzzy membership matrix is proposed in this paper. The proposed ABC-IFC clustering model contains two parts: searching for the optimum cluster centers using ABC mechanism and forming clusters using intuitionistic fuzzy clustering (IFC) method. Firstly, the cluster centers are set randomly and the initial clustering results are obtained by using fuzzy membership matrix. Then the cluster centers are updated through different functions of bees in ABC algorithm; then the clustering result is obtained through IFC method based on the new optimized cluster center. To illustrate its performance, the ABC-IFC method is compared with the traditional fuzzy C-means clustering and IFC method. The experimental results on MIPS dataset show that the proposed ABC-IFC method not only gets improved in terms of several commonly used evaluation criteria such as precision, recall, and P value, but also obtains a better clustering result. PMID:24991575

  5. Learning the ABC of oral fungal drug resistance.

    PubMed

    Cannon, R D; Holmes, A R

    2015-12-01

    ATP-binding cassette (ABC) proteins are ubiquitous in prokaryotes and eukaryotes. They are involved in energy-dependent transport of molecules across membranes. ABC proteins are often promiscuous transporters that can translocate a variety of substrates. In oral fungi, especially in Candida species, they have been implicated as major contributors to the high-level azole resistance of clinical isolates from infections that do not respond to drug therapy. Although this is predominantly due to efflux of azoles from the cells, ABC proteins can contribute to fungal drug resistance in other ways as well. Cells in biofilms are notoriously resistant to antifungal agents. ABC proteins can contribute to this resistance through the efflux of drugs. Biofilms are complex communities of myriad microorganisms which, to survive in such a milieu, need to communicate with, and respond to, other microorganisms and their products. ABC proteins are involved in the secretion of fungal mating factors and quorum sensing molecules. These molecules affect biofilm structure and behavior that can result in increased drug resistance. Hence, ABC proteins make multiple contributions to oral fungal drug resistance through a variety of responses to environmental signals. PMID:26042641

  6. ABC transporter research: going strong 40 years on

    PubMed Central

    Theodoulou, Frederica L.; Kerr, Ian D.

    2015-01-01

    In most organisms, ABC transporters constitute one of the largest families of membrane proteins. In humans, their functions are diverse and underpin numerous key physiological processes, as well as being causative factors in a number of clinically relevant pathologies. Advances in our understanding of these diseases have come about through combinations of genetic and protein biochemical investigations of these transporters and the power of in vitro and in vivo investigations is helping to develop genotype–phenotype understanding. However, the importance of ABC transporter research goes far beyond human biology; microbial ABC transporters are of great interest in terms of understanding virulence and drug resistance and industrial biotechnology researchers are exploring the potential of prokaryotic ABC exporters to increase the capacity of synthetic biology systems. Plant ABC transporters play important roles in transport of hormones, xenobiotics, metals and secondary metabolites, pathogen responses and numerous aspects of development, all of which are important in the global food security area. For 3 days in Chester, this Biochemical Society Focused Meeting brought together researchers with diverse experimental approaches and with different fundamental questions, all of which are linked by the commonality of ABC transporters. PMID:26517919

  7. Structural basis for the mechanism of ABC transporters.

    PubMed

    Beis, Konstantinos

    2015-10-01

    The ATP-binding cassette (ABC) transporters are primary transporters that couple the energy stored in adenosine triphosphate (ATP) to the movement of molecules across the membrane. ABC transporters can be divided into exporters and importers; importers mediate the uptake of essential nutrients into cells and are found predominantly in prokaryotes whereas exporters transport molecules out of cells or into organelles and are found in all organisms. ABC exporters have been linked with multi-drug resistance in both bacterial and eukaryotic cells. ABC transporters are powered by the hydrolysis of ATP and transport their substrate via the alternating access mechanism, whereby the protein alternates between a conformation in which the substrate-binding site is accessible from the outside of the membrane, outward-facing and one in which it is inward-facing. In this mini-review, the structures of different ABC transporter types in different conformations are presented within the context of the alternating access mechanism and how they have shaped our current understanding of the mechanism of ABC transporters.

  8. ABCE1 Is a Highly Conserved RNA Silencing Suppressor

    PubMed Central

    Kärblane, Kairi; Gerassimenko, Jelena; Nigul, Lenne; Piirsoo, Alla; Smialowska, Agata; Vinkel, Kadri; Kylsten, Per; Ekwall, Karl; Swoboda, Peter; Truve, Erkki; Sarmiento, Cecilia

    2015-01-01

    ATP-binding cassette sub-family E member 1 (ABCE1) is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference. PMID:25659154

  9. Learning the ABC of oral fungal drug resistance.

    PubMed

    Cannon, R D; Holmes, A R

    2015-12-01

    ATP-binding cassette (ABC) proteins are ubiquitous in prokaryotes and eukaryotes. They are involved in energy-dependent transport of molecules across membranes. ABC proteins are often promiscuous transporters that can translocate a variety of substrates. In oral fungi, especially in Candida species, they have been implicated as major contributors to the high-level azole resistance of clinical isolates from infections that do not respond to drug therapy. Although this is predominantly due to efflux of azoles from the cells, ABC proteins can contribute to fungal drug resistance in other ways as well. Cells in biofilms are notoriously resistant to antifungal agents. ABC proteins can contribute to this resistance through the efflux of drugs. Biofilms are complex communities of myriad microorganisms which, to survive in such a milieu, need to communicate with, and respond to, other microorganisms and their products. ABC proteins are involved in the secretion of fungal mating factors and quorum sensing molecules. These molecules affect biofilm structure and behavior that can result in increased drug resistance. Hence, ABC proteins make multiple contributions to oral fungal drug resistance through a variety of responses to environmental signals.

  10. Phase transition in the ABC model.

    PubMed

    Clincy, M; Derrida, B; Evans, M R

    2003-06-01

    Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-beta/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero beta(c). The value of beta(c)=2pi square root 3 and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions. PMID:16241312

  11. Optimal ABC inventory classification using interval programming

    NASA Astrophysics Data System (ADS)

    Rezaei, Jafar; Salimi, Negin

    2015-08-01

    Inventory classification is one of the most important activities in inventory management, whereby inventories are classified into three or more classes. Several inventory classifications have been proposed in the literature, almost all of which have two main shortcomings in common. That is, the previous methods mainly rely on an expert opinion to derive the importance of the classification criteria which results in subjective classification, and they need precise item parameters before implementing the classification. While the problem has been predominantly considered as a multi-criteria, we examine the problem from a different perspective, proposing a novel optimisation model for ABC inventory classification in the form of an interval programming problem. The proposed interval programming model has two important features compared to the existing methods: it provides optimal results instead of an expert-based classification and it does not require precise values of item parameters, which are not almost always available before classification. Finally, by illustrating the proposed classification model in the form of numerical example, conclusion and suggestions for future works are presented.

  12. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection

    NASA Astrophysics Data System (ADS)

    Duan, Bo; Zhou, Jiajing; Fang, Zheng; Wang, Chenxu; Wang, Xiujuan; Hemond, Harold F.; Chan-Park, Mary B.; Duan, Hongwei

    2015-07-01

    We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with poly(ethylene glycol) (PEG). Here tGO plays multifunctional roles as a 2D scaffold to immobilized interfacially assembled plasmonic nanoparticles, a nanospacer to create SERS-active nanogaps between two layers of nanoparticle arrays, and a molecule harvester to enrich molecules of interest via π-π interaction. In particular, the molecule harvesting capability of the tGO nanospacer and the stealth properties of PEG coating on the plasmonic nanoparticles collectively lead to preferential positioning of selective targets such as aromatic molecules and single-stranded DNA at the SERS-active nanogap hotspots. We have demonstrated that an SERS assay based on the PEGylated trilayered substrate, in combination with magnetic separation, allows for sensitive, multiplexed ``signal-off'' detection of DNA sequences of bacterial pathogens.We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with poly(ethylene glycol) (PEG). Here tGO plays multifunctional roles as a 2D scaffold to immobilized interfacially assembled plasmonic nanoparticles, a nanospacer to create SERS-active nanogaps between two layers of nanoparticle arrays, and a molecule harvester to enrich molecules of interest via π-π interaction. In particular, the molecule harvesting capability of

  13. Function of prokaryotic and eukaryotic ABC proteins in lipid transport.

    PubMed

    Pohl, Antje; Devaux, Philippe F; Herrmann, Andreas

    2005-03-21

    ATP binding cassette (ABC) proteins of both eukaryotic and prokaryotic origins are implicated in the transport of lipids. In humans, members of the ABC protein families A, B, C, D and G are mutated in a number of lipid transport and metabolism disorders, such as Tangier disease, Stargardt syndrome, progressive familial intrahepatic cholestasis, pseudoxanthoma elasticum, adrenoleukodystrophy or sitosterolemia. Studies employing transfection, overexpression, reconstitution, deletion and inhibition indicate the transbilayer transport of endogenous lipids and their analogs by some of these proteins, modulating lipid transbilayer asymmetry. Other proteins appear to be involved in the exposure of specific lipids on the exoplasmic leaflet, allowing their uptake by acceptors and further transport to specific sites. Additionally, lipid transport by ABC proteins is currently being studied in non-human eukaryotes, e.g. in sea urchin, trypanosomatides, arabidopsis and yeast, as well as in prokaryotes such as Escherichia coli and Lactococcus lactis. Here, we review current information about the (putative) role of both pro- and eukaryotic ABC proteins in the various phenomena associated with lipid transport. Besides providing a better understanding of phenomena like lipid metabolism, circulation, multidrug resistance, hormonal processes, fertilization, vision and signalling, studies on pro- and eukaryotic ABC proteins might eventually enable us to put a name on some of the proteins mediating transbilayer lipid transport in various membranes of cells and organelles. It must be emphasized, however, that there are still many uncertainties concerning the functions and mechanisms of ABC proteins interacting with lipids. In particular, further purification and reconstitution experiments with an unambiguous role of ATP hydrolysis are needed to demonstrate a clear involvement of ABC proteins in lipid transbilayer asymmetry. PMID:15749056

  14. Cloning of two novel ABC transporters mapping on human chromosome 9

    SciTech Connect

    Luciani, M.F.; Savary, S.; Chimini, G. ); Denizot, F. ); Mattei, M.G. )

    1994-05-01

    The family of ATP binding cassette (ABC) transporters or traffic ATPases is composed of several membrane-associated proteins that transport a great variety of solutes across cellular membranes. Two novel mammalian members of the family, ABC1 and ABC2, have been identified by a PCR-based approach. They belong to a group of traffic ATPases encoded as a single multifunctional protein, such as CFTR, STE 6, and P-glycoproteins. Their peculiar structural features and close relationship to ABC transporters involved in nodulation suggest that ABC1 and ABC2 define a novel subgroup of mammalian traffic ATPases. 51 refs., 7 figs.

  15. Ferromagnetic resonance study of the misalignment between anisotropy axes in exchange-biased NiFe/FeMn/Co trilayers

    NASA Astrophysics Data System (ADS)

    Barreto, P. G.; Sousa, M. A.; Pelegrini, F.; Alayo, W.; Litterst, F. J.; Baggio-Saitovitch, E.

    2014-05-01

    Exchange-biased NiFe/FeMn/Co trilayers were grown by dc magnetron sputtering and analyzed by in-plane ferromagnetic resonance using Q-band microwaves. The experiments revealed that distinct Co and NiFe resonance modes were excited by the microwave field. A misalignment between the anisotropy axes of the magnetic layers was deduced from the angular variations of the resonance fields, which also showed the effects of uniaxial and unidirectional anisotropies. A phenomenological model was used to fit the experimental results taking also into account a rotatable anisotropy field associated to the domain structure of the FeMn layer and the magnetic history of the films.

  16. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in trilayers containing magneto-optical metals

    NASA Astrophysics Data System (ADS)

    Girón-Sedas, J. A.; Mejía-Salazar, J. R.; Moncada-Villa, E.; Porras-Montenegro, N.

    2016-07-01

    We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.

  17. Switching a magnetic vortex by interlayer coupling in epitaxially grown Co/Cu/Py/Cu(001) trilayer disks

    SciTech Connect

    Wu, J.; Carlton, D.; Oelker, E.; Park, J. S.; Jin, E.; Arenholz, E.; Scholl, A.; Hwang, C.; Bokor, J.; Qiu, Z Q

    2010-07-16

    Epitaxial Py/Cu/Co/Cu(001) trilayers were patterned into micron sized disks and imaged using element-specific photoemission electron microscopy. By varying the Cu spacer layer thickness, we study how the coupling between the two magnetic layers influences the formation of magnetic vortex states. We find that while the Py and Co disks form magnetic vortex domains when the interlayer coupling is ferromagnetic, the magnetic vortex domains of the Py and Co disks break into anti-parallel aligned multidomains when the interlayer coupling is antiferromagnetic. We explain this result in terms of magnetic flux closure between the Py and Co layers for the antiferromagnetic coupling case.

  18. ABC transporters involved in export of cell surface glycoconjugates.

    PubMed

    Cuthbertson, Leslie; Kos, Veronica; Whitfield, Chris

    2010-09-01

    Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles.

  19. The ABC of Ribosome-Related Antibiotic Resistance.

    PubMed

    Wilson, Daniel N

    2016-01-01

    The increase in multidrug-resistant pathogenic bacteria is limiting the utility of our current arsenal of antimicrobial agents. Mechanistically understanding how bacteria obtain antibiotic resistance is a critical first step to the development of improved inhibitors. One common mechanism for bacteria to obtain antibiotic resistance is by employing ATP-binding cassette (ABC) transporters to actively pump the drug from the cell. The ABC-F family includes proteins conferring resistance to a variety of clinically important ribosome-targeting antibiotics; however, controversy remains as to whether resistance is conferred via efflux like other ABC transporters or whether another mechanism, such as ribosome protection, is at play. A recent study by Sharkey and coworkers (L. K. Sharkey, T. A. Edwards, and A. J. O'Neill, mBio 7:e01975-15, 2016, http://dx.doi.org/10.1128/mBio.01975-15) provides strong evidence that ABC-F proteins conferring antibiotic resistance utilize ribosome protection mechanisms, namely, by interacting with the ribosome and displacing the drug from its binding site, thus revealing a novel role for ABC-F proteins in antibiotic resistance. PMID:27143393

  20. The ABC of Ribosome-Related Antibiotic Resistance.

    PubMed

    Wilson, Daniel N

    2016-05-03

    The increase in multidrug-resistant pathogenic bacteria is limiting the utility of our current arsenal of antimicrobial agents. Mechanistically understanding how bacteria obtain antibiotic resistance is a critical first step to the development of improved inhibitors. One common mechanism for bacteria to obtain antibiotic resistance is by employing ATP-binding cassette (ABC) transporters to actively pump the drug from the cell. The ABC-F family includes proteins conferring resistance to a variety of clinically important ribosome-targeting antibiotics; however, controversy remains as to whether resistance is conferred via efflux like other ABC transporters or whether another mechanism, such as ribosome protection, is at play. A recent study by Sharkey and coworkers (L. K. Sharkey, T. A. Edwards, and A. J. O'Neill, mBio 7:e01975-15, 2016, http://dx.doi.org/10.1128/mBio.01975-15) provides strong evidence that ABC-F proteins conferring antibiotic resistance utilize ribosome protection mechanisms, namely, by interacting with the ribosome and displacing the drug from its binding site, thus revealing a novel role for ABC-F proteins in antibiotic resistance.

  1. ABC Transporters Involved in Export of Cell Surface Glycoconjugates

    PubMed Central

    Cuthbertson, Leslie; Kos, Veronica; Whitfield, Chris

    2010-01-01

    Summary: Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles. PMID:20805402

  2. Effects of interlayer screening and temperature on dielectric functions of graphene by first-principles

    NASA Astrophysics Data System (ADS)

    Yang, J. Y.; Liu, L. H.

    2016-07-01

    The dielectric functions of few-layer graphene and the related temperature dependence are investigated from the atomic scale using first-principles calculations. Compared with ellipsometry experiments in the spectral range of 190-2500 nm, the normalized optical constants of mono-layer graphene demonstrate good agreement and further validate first-principles calculations. To interpret dielectric function of mono-layer graphene, the electronic band structure and density of states are analyzed. By comparing dielectric functions of mono-, bi-, and tri-layer graphene, it shows that interlayer screening strengthens intraband transition and greatly enhances the absorption peak located around 1 eV. The strengthened optical absorption is intrinsically caused by the increasing electron states near the Fermi level. To investigate temperature effect, the first-principles calculations and lattice dynamics are combined. The lattice vibration enhances parallel optical absorption peak around 1 eV and induces redshift. Moreover, it is observed that the van der Waals force plays a key role in keeping the interlayer distance stable during dynamics simulations.

  3. In-situ confined growth of monodisperse pt nanoparticle@graphene nanobox composites as electrocatalytic nanoreactors.

    PubMed

    Lv, Yingying; Fang, Yin; Wu, Zhangxiong; Qian, Xufang; Song, Yanfang; Che, Renchao; Asiri, Abdullah M; Xia, Yongyao; Tu, Bo; Zhao, Dongyuan

    2015-02-25

    Monodisperse Pt nanoparticles (NPs) studded in a three-dimensional (3D) graphene nanobox are successfully synthesized through a simple in-situ confined growth route for the first time. The nano-zeolite A was used as a 3D substrate for in-situ growth of tri-layered graphenes on the crystal-surfaces, meanwhile, the inner micropores of which can also be utilized for the confined growth of Pt nanoparticles. The graphene sheets are curved on the edges to form a 3D hollow box morphology, where the monodisperse Pt nanoparticles are homogeneously studded on the inner surfaces. Moreover, the Pt content can be regulated from ∼8 to 50 wt%, and the particle size can be tuned from 2-5 nm by varying the pristine Pt-ion loading amount and CVD temperature. The Pt NP@graphene nanoboxes possess not only large pore volumes to effectively accommodate large amounts of oxygen, but also supply excellent electrical conductivity for the fast transfer of electrons (∼3.96 e(-)), resulting in a high efficiency (175 mA/mg Pt) and long-term stability (above 1000 cycles) for the oxygen reduction reaction.

  4. In-situ confined growth of monodisperse pt nanoparticle@graphene nanobox composites as electrocatalytic nanoreactors.

    PubMed

    Lv, Yingying; Fang, Yin; Wu, Zhangxiong; Qian, Xufang; Song, Yanfang; Che, Renchao; Asiri, Abdullah M; Xia, Yongyao; Tu, Bo; Zhao, Dongyuan

    2015-02-25

    Monodisperse Pt nanoparticles (NPs) studded in a three-dimensional (3D) graphene nanobox are successfully synthesized through a simple in-situ confined growth route for the first time. The nano-zeolite A was used as a 3D substrate for in-situ growth of tri-layered graphenes on the crystal-surfaces, meanwhile, the inner micropores of which can also be utilized for the confined growth of Pt nanoparticles. The graphene sheets are curved on the edges to form a 3D hollow box morphology, where the monodisperse Pt nanoparticles are homogeneously studded on the inner surfaces. Moreover, the Pt content can be regulated from ∼8 to 50 wt%, and the particle size can be tuned from 2-5 nm by varying the pristine Pt-ion loading amount and CVD temperature. The Pt NP@graphene nanoboxes possess not only large pore volumes to effectively accommodate large amounts of oxygen, but also supply excellent electrical conductivity for the fast transfer of electrons (∼3.96 e(-)), resulting in a high efficiency (175 mA/mg Pt) and long-term stability (above 1000 cycles) for the oxygen reduction reaction. PMID:25331302

  5. Role of an ABC importer in mycobacterial drug resistance.

    PubMed

    Chakraborti, P K; Bhatt, K; Banerjee, S K; Misra, P

    1999-08-01

    Phosphate specific transporter (Pst) in bacteria is involved in phosphate transport. Pst is a multisubunit system which belongs to the ABC family of transporters. The import function of this transporter is known to be operative at media phosphate concentrations below the millimolar range. However, we found amplification of this transporter in a laboratory generated ciprofloxacin resistant Mycobacterium smegmatis colony (CIPr) which was grown in a condition when phosphate scavenging function of this operon was inoperative. Our results therefore argue the role of this ABC importer in conferring high level of fluoroquinolone resistance in CIPr.

  6. ABC estimation of unit costs for emergency department services.

    PubMed

    Holmes, R L; Schroeder, R E

    1996-04-01

    Rapid evolution of the health care industry forces managers to make cost-effective decisions. Typical hospital cost accounting systems do not provide emergency department managers with the information needed, but emergency department settings are so complex and dynamic as to make the more accurate activity-based costing (ABC) system prohibitively expensive. Through judicious use of the available traditional cost accounting information and simple computer spreadsheets. managers may approximate the decision-guiding information that would result from the much more costly and time-consuming implementation of ABC. PMID:10156656

  7. Plant cuticular lipid export requires an ABC transporter.

    PubMed

    Pighin, Jamie A; Zheng, Huanquan; Balakshin, Laura J; Goodman, Ian P; Western, Tamara L; Jetter, Reinhard; Kunst, Ljerka; Samuels, A Lacey

    2004-10-22

    A waxy protective cuticle coats all primary aerial plant tissues. Its synthesis requires extensive export of lipids from epidermal cells to the plant surface. Arabidopsis cer5 mutants had reduced stem cuticular wax loads and accumulated sheetlike inclusions in the cytoplasm of wax-secreting cells. These inclusions represented abnormal deposits of cuticular wax and resembled inclusions found in a human disorder caused by a defective peroxisomal adenosine triphosphate binding cassette (ABC) transporter. We found that the CER5 gene encodes an ABC transporter localized in the plasma membrane of epidermal cells and conclude that it is required for wax export to the cuticle.

  8. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    PubMed Central

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-01-01

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics. PMID:26932316

  9. The Management of Diabetic Foot Ulcers with Porcine Small Intestine Submucosa Tri-Layer Matrix: A Randomized Controlled Trial

    PubMed Central

    Cazzell, Shawn M.; Lange, Darrell L.; Dickerson, Jaime E.; Slade, Herbert B.

    2015-01-01

    Objective: This study demonstrates that superior outcomes are possible when diabetic foot ulcers (DFU) are managed with tri-layer porcine small intestine submucosa (SIS). Approach: Patients with DFU from 11 centers participated in this prospective randomized controlled trial. Qualified subjects were randomized (1:1) to either SIS or standard care (SC) selected at the discretion of the Investigator and followed for 12 weeks or complete ulcer closure. Results: Eighty-two subjects (41 in each group) were evaluable in the intent-to-treat analysis. Ulcers managed with SIS had a significantly greater proportion closed by 12 weeks than for the Control group (54% vs. 32%, p=0.021) and this proportion was numerically higher at all visits. Time to closure for ulcers achieving closure was 2 weeks earlier for the SIS group than for SC. Median reduction in ulcer area was significantly greater for SIS at each weekly visit (all p values<0.05). Review of reported adverse events found no safety concerns. Innovation: These data support the use of tri-layer SIS for the effective management of DFU. Conclusion: In this randomized controlled trial, SIS was found to be associated with more rapid improvement, and a higher likelihood of achieving complete ulcer closure than those ulcers treated with SC. PMID:26634183

  10. Design, Fabrication, and Testing of a TiN/Ti/TiN Trilayer KID Array for 3 mm CMB Observations

    NASA Astrophysics Data System (ADS)

    Lowitz, A. E.; Brown, A. D.; Mikula, V.; Stevenson, T. R.; Timbie, P. T.; Wollack, E. J.

    2016-08-01

    Kinetic inductance detectors (KIDs) are a promising technology for astronomical observations over a wide range of wavelengths in the mm and sub-mm regime. Simple fabrication, in as little as one lithographic layer, and passive frequency-domain multiplexing, with readout of up to ˜ 1000 pixels on a single line with a single cold amplifier, make KIDs an attractive solution for high-pixel-count detector arrays. We are developing an array that optimizes KIDs for optical frequencies near 100 GHz to expand their usefulness in mm-wave applications, with a particular focus on CMB B-mode measurement efforts in association with the QUBIC telescope. We have designed, fabricated, and tested a 20-pixel prototype array using a simple quasi-lumped microstrip design and pulsed DC reactive magnetron-sputtered TiN/Ti/TiN trilayer resonators, optimized for detecting 100 GHz (3 mm) signals. Here we present a discussion of design considerations for the array, as well as preliminary detector characterization measurements and results from a study of TiN trilayer properties.

  11. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    DOE PAGES

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-03-02

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon.more » The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Lastly, our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.« less

  12. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    PubMed Central

    Wu, Jian-Huang; Li, Miao; Liang, Yan; Lu, Tao; Duan, Chun-Yue

    2016-01-01

    Background: Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI). Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI, allowing stem cells to penetrate through the scar and promote recovery of nerve function. This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro. Methods: ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion. Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation. After successful culture, ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained. Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method, ChABC expression was verified using Western blotting, and the migration of ChABC-ADSCs was analyzed using the transwell assay. Results: Secondary collagenase digestion increased the isolation efficiency of primary ADSCs. Following transfection using lentiviral vectors, the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05). And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05). Moreover, ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05). Conclusions: Secondary collagenase digestion can be used to effectively isolate ADSCs. ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC, and ChABC expression significantly enhances the migratory capacity of ADSCs. PMID:27364797

  13. Evidence for a π junction in Nb/Ni 0.96V0.04/Nb trilayers revealed by superfluid density measurements

    NASA Astrophysics Data System (ADS)

    Hinton, M. J.; Steers, Stanley; Peters, Bryan; Yang, F. Y.; Lemberger, T. R.

    2016-07-01

    We report measurements of the superfluid density, λ-2(T ) , in ferromagnet-on-superconductor (F/S) bilayers and S/F/S' trilayers comprising Nb with Ni, Py, CoFe, and NiV ferromagnets. Bilayers provide information about F/S interface transparency and the T dependence of λ-2 that inform interpretation of trilayer data. The Houzet-Meyer theory accounts well for the measured dependence of λ-2(0 ) and Tc of F/S bilayers on thickness of F layer, dF, except that λ-2(0 ) is slightly under expectations for CoFe/Nb bilayers. For Nb/F/Nb' trilayers, we are able to extract Tc and and λ-2 for both Nb layers when F is thick enough to weaken interlayer coupling. The lower "Tc" is actually a crossover identified by onset of superfluid in the lower-Tc Nb layer. For Nb/NiV/Nb' trilayers, λ-2(0 ) versus dF for both Nb layers has a minimum followed by a recovery, suggestive of a π junction.

  14. Regulation of Expression of abcA and Its Response to Environmental Conditions

    PubMed Central

    Villet, Regis A.; Truong-Bolduc, Que Chi; Wang, Yin; Estabrooks, Zoe; Medeiros, Heidi

    2014-01-01

    The ATP-dependent transporter gene abcA in Staphylococcus aureus confers resistance to hydrophobic β-lactams. In strain ISP794, abcA is regulated by the transcriptional regulators MgrA and NorG and shares a 420-nucleotide intercistronic region with the divergently transcribed pbp4 gene, which encodes the transpeptidase Pbp4. Exposure of exponentially growing cells to iron-limited media, oxidative stress, and acidic pH (5.5) for 0.5 to 2 h had no effect on abcA expression. In contrast, nutrient limitation produced a significant increase in abcA transcripts. We identified three additional regulators (SarA, SarZ, and Rot) that bind to the overlapping promoter region of abcA and pbp4 in strain MW2 and investigated their role in the regulation of abcA expression. Expression of abcA is decreased by 10.0-fold in vivo in a subcutaneous abscess model. In vitro, abcA expression depends on rot and sarZ regulators. Moenomycin A exposure of strain MW2 produced an increase in abcA transcripts. Relative to MW2, the MIC of moenomycin was decreased 8-fold for MW2ΔabcA and increased 10-fold for the MW2 abcA overexpresser, suggesting that moenomycin is a substrate of AbcA. PMID:24509312

  15. Dissociations among ABA, ABC, and AAB Recovery Effects

    ERIC Educational Resources Information Center

    Ungor, Metin; Lachnit, Harald

    2008-01-01

    In a human predictive learning experiment, the strengths of ABA, ABC, and AAB recovery effects after discrimination reversal learning were compared. Initially, a discrimination between two stimuli (X+, Y-) was trained in Context A. During Phase 2, participants received discrimination reversal training (X-, Y+) either in Context A (Group AAB) or in…

  16. The Value of Green Technology at ABC Community College

    ERIC Educational Resources Information Center

    McAllister, Bernadette

    2012-01-01

    A challenge facing community colleges nationwide is to reduce the carbon footprint of campuses by initiating green technology initiatives. This case study assessed the effect of switching from paper assignments to a learning management system at ABC Community College. The topic is important because federal and state funding, as well as…

  17. Selections from the ABC 2009 Annual Convention, Portsmouth, Virginia

    ERIC Educational Resources Information Center

    Whalen, D. Joel

    2010-01-01

    The "My Favorite Assignment" Session at the 2009 Association for Business Communication (ABC) annual convention in Portsmouth, Virginia, featured over a dozen teachers sharing pedagogical innovations in a fast-paced, 4-minute format designed by Dan Dietrich. The wide variety of ideas and techniques presented makes these sessions popular ABC…

  18. The ABCs for Pre-Service Teacher Cultural Competency Development

    ERIC Educational Resources Information Center

    He, Ye; Cooper, Jewell E.

    2009-01-01

    In an effort to combine pre-service teachers' self-reflection with their field experiences to enhance their cultural competency, this study adopted Schmidt's ABC's (Autobiography, Biography, and Cross-cultural Comparison) Model in two courses in a pre-service teacher education program. Through group comparisons, this study measured the impact that…

  19. The Library ABC's Game: Sneaking in Learning through Gaming

    ERIC Educational Resources Information Center

    Maxwell, D. Jackson

    2007-01-01

    Teaching library terminology and definitions can be a real bore. Unfortunately, no matter how one looks at it, students need to learn a set of basic library words and their meanings. The Library ABC's game teaches elementary age students library terms and definitions, and it is effective, efficient, easy, exciting, and fun. Introduce the Library…

  20. The K-ABC in Historical and Contemporary Perspective.

    ERIC Educational Resources Information Center

    Anastasi, Anne

    1984-01-01

    The Kaufman Assessment Battery for Children is examined with particular attention to evolution of current psychometric concepts and methods, as well as the historical sources of popular misconceptions. The K-ABC reveals sophisticated applications of current test construction methodology but requires knowledgeable examiners. (Author/CL)

  1. Selections from the ABC 2012 Annual Convention, Honolulu, Hawaii

    ERIC Educational Resources Information Center

    Whalen, D. Joel

    2013-01-01

    The 13 Favorite Assignments featured here were presented at the 2012 Association for Business Communication (ABC) Annual Convention, Honolulu, Hawaii. A variety of learning objectives are featured, including the following: enhancing resume's visual impact, interpersonal skills, social media, team building, web design, community service…

  2. Selections from the ABC 2011 Annual Convention, Montreal, Canada

    ERIC Educational Resources Information Center

    Whalen, D. Joel; Andersen, Ken; Campbell, Gloria; Crenshaw, Cheri; Cross, Geoffrey A.; Grinols, Anne Bradstreet; Hildebrand, John; Newman, Amy; Ortiz, Lorelei A.; Paulson, Edward; Phillabaum, Melinda; Powell, Elizabeth A.; Sloan, Ryan

    2012-01-01

    The 12 Favorite Assignments featured in this article were presented at the 2011 Annual Convention of the Association for Business Communication (ABC), Montreal, Canada. A variety of learning objectives are featured: delivering bad news, handling difficult people, persuasion, reporting financial analysis, electronic media, face-to-face…

  3. Beyond the ABCs: The Pleasures of the Alphabet Book.

    ERIC Educational Resources Information Center

    Thatcher, Debra H.

    2002-01-01

    Identifies seven types of alphabet books: letter shapes, word play, art play, topical/thematic, multicultural, narrative, and puzzles. Presents annotations of around 30 titles. Suggests that alphabet books are not intended just for the emergent reader--there is a wide range of ABC books with intriguing stories, captivating illustrations, playful…

  4. ABCs of Being Smart... G Is for Gifted!

    ERIC Educational Resources Information Center

    Foster, Joanne

    2012-01-01

    Giftedness can generate speculation, misconceptions, expectations, pride, innuendo, apprehension, puzzlement--and the list goes on. What does it mean to be a gifted learner? In this installment of the series "ABCs of Being Smart," the author grapples with the term gifted, giving a glimpse into giftedness, along with some general guidelines for…

  5. Placental ABC transporters, cellular toxicity and stress in pregnancy.

    PubMed

    Aye, Irving L M H; Keelan, Jeffrey A

    2013-04-25

    The human placenta, in addition to its roles as a nutrient transfer and endocrine organ, functions as a selective barrier to protect the fetus against the harmful effects of exogenous and endogenous toxins. Members of the ATP-binding cassette (ABC) family of transport proteins limit the entry of xenobiotics into the fetal circulation via vectorial efflux from the placenta to the maternal circulation. Several members of the ABC family, including proteins from the ABCA, ABCB, ABCC and ABCG subfamilies, have been shown to be functional in the placenta with clinically significant roles in xenobiotic efflux. However, recent findings suggest that these transporters also protect placental tissue by preventing the cellular accumulation of cytotoxic compounds such as lipids, sterols and their derivatives. Such protective functions are likely to be particularly important in pregnancies complicated by inflammatory or oxidative stress, where the generation of toxic metabolites is enhanced. For example, ABC transporters have been shown to protect against the harmful effects of hypoxia and oxidative stress through increased expression and efflux of oxysterols and glutathione conjugated xenobiotics. However, this protective capacity may be diminished in response to the same stressors. Several studies in primary human trophoblast cells and animal models have demonstrated decreased expression and activity of placental ABC transporters with inflammatory, oxidative or metabolic stress. Several clinical studies in pregnancies complicated by inflammatory conditions such as preeclampsia and gestational diabetes support these findings, although further studies are required to determine the clinical relevance of the relationships between placental ABC transporter expression and activity, and placental function in stressed pregnancies. Such studies are necessary to fully understand the consequences of pregnancy disorders on placental function and viability in order to optimise pregnancy

  6. GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices.

    PubMed

    González-Guerrero, Manuel; Benabdellah, Karim; Valderas, Ascensión; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2010-02-01

    A full-length cDNA sequence putatively encoding an ATP-binding cassette (ABC) transporter (GintABC1) was isolated from the extraradical mycelia of the arbuscular mycorrhizal fungus Glomus intraradices. Bioinformatic analysis of the sequence indicated that GintABC1 encodes a 1513 amino acid polypeptide, containing two six-transmembrane clusters (TMD) intercalated with sequences characteristics of the nucleotide binding domains (NBD) and an extra N-terminus extension (TMD0). GintABC1 presents a predicted TMD0-(TMD-NBD)(2) topology, typical of the multidrug resistance-associated protein subfamily of ABC transporters. Gene expression analyses revealed no difference in the expression levels of GintABC1 in the extra- vs the intraradical mycelia. GintABC1 was up-regulated by Cd and Cu, but not by Zn, suggesting that this transporter might be involved in Cu and Cd detoxification. Paraquat, an oxidative agent, also induced the transcription of GintABC1. These data suggest that redox changes may be involved in the transcriptional regulation of GintABC1 by Cd and Cu.

  7. 75 FR 49549 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Surface Transportation Board ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of exemption... operation of this trackage in FD 35356, ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line...

  8. Nanoscale measurements of unoccupied band dispersion in few-layer graphene

    PubMed Central

    Jobst, Johannes; Kautz, Jaap; Geelen, Daniël; Tromp, Rudolf M.; van der Molen, Sense Jan

    2015-01-01

    The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only. PMID:26608712

  9. A theoretical investigation of Ferromagnetic Resonance Linewidth and damping constants in coupled trilayer and spin valve systems

    SciTech Connect

    Layadi, A.

    2015-05-15

    The ferromagnetic resonance intrinsic field linewidth ΔH is investigated for a multilayer system such as a coupled trilayer and a spin valve structure. The magnetic coupling between two ferromagnetic layers separated by a nonmagnetic interlayer will be described by the bilinear J{sub 1} and biquadratic J{sub 2} coupling parameters. The interaction at the interface of the first ferromagnetic layer with the antiferromagnetic one is account for by the exchange anisotropy field, H{sub E}. A general formula is derived for the intrinsic linewidth ΔH. The explicit dependence of ΔH with H{sub E}, J{sub 1} and J{sub 2} will be highlighted. Analytical expressions for each mode field linewidth are found in special cases. Equivalent damping constants will be discussed.

  10. Study of perpendicular anisotropy L1{sub 0}-FePt pseudo spin valves using a micromagnetic trilayer model

    SciTech Connect

    Ho, Pin; Evans, Richard F. L.; Chantrell, Roy W.; Han, Guchang; Chow, Gan-Moog; Chen, Jingsheng

    2015-06-07

    A trilayer micromagnetic model based on the Landau-Lifshitz-Bloch equation of motion is utilized to study the properties of L1{sub 0}-FePt/TiN/L1{sub 0}-FePt pseudo spin valves (PSVs) in direct comparison with experiment. Theoretical studies give an insight on the crystallographic texture, magnetic properties, reversal behavior, interlayer coupling effects, and magneto-transport properties of the PSVs, in particular, with varying thickness of the top L1{sub 0}-FePt and TiN spacer. We show that morphological changes in the FePt layers, induced by varying the FePt layer thickness, lead to different hysteresis behaviors of the samples, caused by changes in the interlayer and intralayer exchange couplings. Such effects are important for the optimization of the PSVs due to the relationship between the magnetic properties, domain structures, and the magnetoresistance of the device.

  11. Fe-ions implantation to modify TiO2 trilayer films for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Pang, Pan; Liao, Bin; Xianying, Wu; Zhang, Xu

    2016-06-01

    A series of Fe-doped TiO2 trilayer films were prepared successfully by using the ion-implantation technique. The aim of the ion implantation was to enhance charge transfer and to reduce charge recombination. A maximum conversion efficiency of 4.86% was achieved in cells using Fe-ion-implanted electrodes with the illumination of 6×1015 atom/cm2. It is 14.1% higher than that of the cells without ion implantations. The significant improvement in conversion efficiency by Fe-ion implantation could be contributed to the enhancement of dye uptake and charge transfer, as indicated from the incident photon-to-collected electron conversion efficiency and ultraviolet-visible measurements. Furthermore, the implanted Fe-ions introduce impurity levels in the bandgap of TiO2, and this improves the electron injection efficiency from lowest unoccupied molecular orbital of excited N719 into the conduction band of TiO2.

  12. Magnetic, optical and transport properties of GaCrN-based ferromagnet/nonmagnet/ferromagnet trilayer structures

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Zhou, Y. K.; Kimura, S.; Emura, S.; Hasegawa, S.; Asahi, H.

    2005-05-01

    GaCrN-based ferromagnet/nonmagnet/ferromagnet trilayer structures were grown by radio frequency molecular beam epitaxy. During GaN and GaCrN growth, reflection high-energy electron diffraction pattern showed thin streaks and Kikuchi lines, indicating surface flatness and high crystalline quality. Clear hysteresis and saturation characteristics were observed in the magnetization versus magnetic field curves at all the measuring temperatures. The coercivity Hc was about 130 Oe at 10 K. Step-like hysteresis loops were also observed at 10 and 300 K because of different Cr concentrations in the two GaCrN layers. Photoluminescence emission was observed from GaCrN. Hysteresis loop was observed in the magnetic field dependence of vertical electrical resistance.

  13. Study of perpendicular anisotropy L10-FePt pseudo spin valves using a micromagnetic trilayer model

    NASA Astrophysics Data System (ADS)

    Ho, Pin; Evans, Richard F. L.; Chantrell, Roy W.; Han, Guchang; Chow, Gan-Moog; Chen, Jingsheng

    2015-06-01

    A trilayer micromagnetic model based on the Landau-Lifshitz-Bloch equation of motion is utilized to study the properties of L10-FePt/TiN/L10-FePt pseudo spin valves (PSVs) in direct comparison with experiment. Theoretical studies give an insight on the crystallographic texture, magnetic properties, reversal behavior, interlayer coupling effects, and magneto-transport properties of the PSVs, in particular, with varying thickness of the top L10-FePt and TiN spacer. We show that morphological changes in the FePt layers, induced by varying the FePt layer thickness, lead to different hysteresis behaviors of the samples, caused by changes in the interlayer and intralayer exchange couplings. Such effects are important for the optimization of the PSVs due to the relationship between the magnetic properties, domain structures, and the magnetoresistance of the device.

  14. A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae

    PubMed Central

    2013-01-01

    Background The ABC (ATP-binding cassette) gene superfamily is widespread across all living species. The majority of ABC genes encode ABC transporters, which are membrane-spanning proteins capable of transferring substrates across biological membranes by hydrolyzing ATP. Although ABC transporters have often been associated with resistance to drugs and toxic compounds, within the Arthropoda ABC gene families have only been characterized in detail in several insects and a crustacean. In this study, we report a genome-wide survey and expression analysis of the ABC gene superfamily in the spider mite, Tetranychus urticae, a chelicerate ~ 450 million years diverged from other Arthropod lineages. T. urticae is a major agricultural pest, and is among of the most polyphagous arthropod herbivores known. The species resists a staggering array of toxic plant secondary metabolites, and has developed resistance to all major classes of pesticides in use for its control. Results We identified 103 ABC genes in the T. urticae genome, the highest number discovered in a metazoan species to date. Within the T. urticae ABC gene set, all members of the eight currently described subfamilies (A to H) were detected. A phylogenetic analysis revealed that the high number of ABC genes in T. urticae is due primarily to lineage-specific expansions of ABC genes within the ABCC, ABCG and ABCH subfamilies. In particular, the ABCC subfamily harbors the highest number of T. urticae ABC genes (39). In a comparative genomic analysis, we found clear orthologous relationships between a subset of T. urticae ABC proteins and ABC proteins in both vertebrates and invertebrates known to be involved in fundamental cellular processes. These included members of the ABCB-half transporters, and the ABCD, ABCE and ABCF families. Furthermore, one-to-one orthologues could be distinguished between T. urticae proteins and human ABCC10, ABCG5 and ABCG8, the Drosophila melanogaster sulfonylurea receptor and ecdysone

  15. Graphene and graphene oxide for desalination.

    PubMed

    You, Yi; Sahajwalla, Veena; Yoshimura, Masamichi; Joshi, Rakesh K

    2016-01-01

    There is a huge scope for graphene-based materials to be used as membranes for desalination. A very recent study has confirmed that 100% salt rejection can be achieved for commonly used ions by utilizing single layer nonporous graphene. However, the cost effective fabrication procedure for graphene oxide membranes with precise control of pore size can offer a practical solution for filtration if one can achieve 100% percent salt rejection.

  16. The edges of graphene.

    PubMed

    Zhang, Xiuyun; Xin, John; Ding, Feng

    2013-04-01

    The edge of two dimensional (2D) graphene, as the surface of a three dimensional (3D) crystal, plays a crucial role in the determination of its physical, electronic and chemical properties and thus has been extensively studied recently. In this review, we summarize the recent advances in the study of graphene edges, including edge formation energy, edge reconstruction, method of graphene edge synthesis and the recent progress on metal-passivated graphene edges and the role of edges in graphene CVD growth. We expect this review to provide a guideline for readers to gain a clear picture of graphene edges from several aspects, especially the catalyst-passivated graphene edges and their role in graphene CVD growth.

  17. Insights into how nucleotide-binding domains power ABC transport.

    PubMed

    Newstead, Simon; Fowler, Philip W; Bilton, Paul; Carpenter, Elisabeth P; Sadler, Peter J; Campopiano, Dominic J; Sansom, Mark S P; Iwata, So

    2009-09-01

    The mechanism by which nucleotide-binding domains (NBDs) of ABC transporters power the transport of substrates across cell membranes is currently unclear. Here we report the crystal structure of an NBD, FbpC, from the Neisseria gonorrhoeae ferric iron uptake transporter with an unusual and substantial domain swap in the C-terminal regulatory domain. This entanglement suggests that FbpC is unable to open to the same extent as the homologous protein MalK. Using molecular dynamics we demonstrate that this is not the case: both NBDs open rapidly once ATP is removed. We conclude from this result that the closed structures of FbpC and MalK have higher free energies than their respective open states. This result has important implications for our understanding of the mechanism of power generation in ABC transporters, because the unwinding of this free energy ensures that the opening of these two NBDs is also powered. PMID:19748342

  18. The Predicted ABC Transporter AbcEDCBA Is Required for Type IV Secretion System Expression and Lysosomal Evasion by Brucella ovis

    PubMed Central

    Silva, Teane M. A.; Mol, Juliana P. S.; Winter, Maria G.; Atluri, Vidya; Xavier, Mariana N.; Pires, Simone F.; Paixão, Tatiane A.; Andrade, Hélida M.; Santos, Renato L.; Tsolis, Renee M.

    2014-01-01

    Brucella ovis is a major cause of reproductive failure in rams and it is one of the few well-described Brucella species that is not zoonotic. Previous work showed that a B. ovis mutant lacking a species-specific ABC transporter (ΔabcBA) was attenuated in mice and was unable to survive in macrophages. The aim of this study was to evaluate the role of this ABC transporter during intracellular survival of B. ovis. In HeLa cells, B. ovis WT was able to survive and replicate at later time point (48 hpi), whereas an ΔabcBA mutant was attenuated at 24 hpi. The reduced survival of the ΔabcBA mutant was associated with a decreased ability to exclude the lysosomal marker LAMP1 from its vacuolar membrane, suggesting a failure to establish a replicative niche. The ΔabcBA mutant showed a reduced abundance of the Type IV secretion system (T4SS) proteins VirB8 and VirB11 in both rich and acid media, when compared to WT B. ovis. However, mRNA levels of virB1, virB8, hutC, and vjbR were similar in both strains. These results support the notion that the ABC transporter encoded by abcEDCBA or its transported substrate acts at a post-transcriptional level to promote the optimal expression of the B. ovis T4SS within infected host cells. PMID:25474545

  19. TaAbc1, a member of Abc1-like family involved in hypersensitive response against the stripe rust fungal pathogen in wheat.

    PubMed

    Wang, Xiaojing; Wang, Xiaojie; Duan, Yinghui; Yin, Shuining; Zhang, Hongchang; Huang, Li; Kang, Zhensheng

    2013-01-01

    To search for genes involved in wheat (Triticum aestivum L.) defense response to the infection of stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst), we identified and cloned a new wheat gene similar to the genes in the Abc1-like gene family. The new gene, designated as TaAbc1, encodes a 717-amino acid, 80.35 kD protein. The TaAbc1 protein contains two conserved domains shared by Abc1-like proteins, two trans-membrane domains at the C-terminal, and a 36-amino acid chloroplast targeting presequence at the N-terminal. Characterization of TaAbc1 expression revealed that gene expression was tissue-specific and could be up-regulated by biotic agents (e.g., stripe rust pathogen) and/or by an abiotic stress like wounding. High-fold induction was associated with the hypersensitive response (HR) triggered only by avirulent stripe rust pathotypes, suggesting that TaAbc1 is a rust-pathotype specific HR-mediator. Down-regulating TaAbc1 reduced HR but not the overall resistance level in Suwon11 to CYR23, suggesting TaAbc1 was involved in HR against stripe rust, but overall host resistance is not HR-dependent.

  20. Goethe and the ABC model of flower development.

    PubMed

    Coen, E

    2001-06-01

    About 10 years ago, the ABC model for the genetic control of flower development was proposed. This model was initially based on the analysis of mutant flowers but has subsequently been confirmed by molecular analysis. This paper describes the 200-year history behind this model, from the late 18th century when Goethe arrived at his idea of plant metamorphosis, to the genetic studies on flower mutants carried out on Arabidopsis and Antirrhinum in the late 20th century.

  1. Fungal ABC transporters and microbial interactions in natural environments.

    PubMed

    Schoonbeek, Henk-jan; Raaijmakers, Jos M; De Waard, Maarten A

    2002-11-01

    In natural environments, microorganisms are exposed to a wide variety of antibiotic compounds produced by competing organisms. Target organisms have evolved various mechanisms of natural resistance to these metabolites. In this study, the role of ATP-binding cassette (ABC) transporters in interactions between the plant-pathogenic fungus Botrytis cinerea and antibiotic-producing Pseudomonas bacteria was investigated in detail. We discovered that 2,4-diacetylphloroglucinol, phenazine-1-carboxylic acid and phenazine-1-carboxamide (PCN), broad-spectrum antibiotics produced by Pseudomonas spp., induced expression of several ABC transporter genes in B. cinerea. Phenazines strongly induced expression of BcatrB, and deltaBcatrB mutants were significantly more sensitive to these antibiotics than their parental strain. Treatment of B. cinerea germlings with PCN strongly affected the accumulation of [14C]fludioxonil, a phenylpyrrole fungicide known to be transported by BcatrB, indicating that phenazines also are transported by BcatrB. Pseudomonas strains producing phenazines displayed a stronger antagonistic activity in vitro toward ABcatrB mutants than to the parental B. cinerea strain. On tomato leaves, phenazine-producing Pseudomonas strains were significantly more effective in reducing gray mold symptoms incited by a ABcatrB mutant than by the parental strain. We conclude that the ABC transporter BcatrB provides protection to B. cinerea in phenazine-mediated interactions with Pseudomonas spp. Collectively, these results indicate that fungal ABC transporters can play an important role in antibiotic-mediated interactions between bacteria and fungi in plant-associated environments. The implications of these findings for the implementation and sustainability of crop protection by antagonistic microorganisms are discussed. PMID:12423022

  2. Genome-wide comparative analysis of ABC systems in the Bdellovibrio-and-like organisms

    PubMed Central

    Li, Nan; Chen, Huan; Williams, Henry N.

    2015-01-01

    Bdellovibrio -and-like organisms (BALOs) are gram-negative, predatory bacteria with wide variations in genome sizes and GC content and ecological habitats. The ATP-binding cassette (ABC) systems have been identified in several prokaryotes, fungi and plants and have a role in transport of materials in and out of cells and in cellular processes. However, knowledge of the ABC systems of BALOs remains obscure. A total of 269 putative ABC proteins were identified in BALOs. The genes encoding these ABC systems occupy nearly 1.3% of the gene content in freshwater Bdellovibrio strains and about 0.7% in their saltwater counterparts. The proteins found belong to 25 ABC system families based on their structural characteristics and functions. Among these, 16 families function as importers, 6 as exporters and 3 are involved in various cellular processes. Eight of these 25 ABC system families were deduced to be the core set of ABC systems conserved in all BALOs. All Bacteriovorax strains have 28 or less ABC systems. On the contrary, the freshwater Bdellovibrio strains have more ABC systems, typically around 51. In the genome of Bdellovibrio exovorus JSS (CP003537.1), 53 putative ABC systems were detected, representing the highest number among all the BALO genomes examined in this study. Unexpected high numbers of ABC systems involved in cellular processes were found in all BALOs. Phylogenetic analysis suggests that the majority of ABC proteins can be assigned into many separate families with high bootstrap supports (>50%). In this study, a general framework of sequence–structure–function connections for the ABC systems in BALOs was revealed providing novel insights for future investigations. PMID:25707746

  3. Second-order nonlinear optical metamaterials: ABC-type nanolaminates

    SciTech Connect

    Alloatti, L. Kieninger, C.; Lauermann, M.; Köhnle, K.; Froelich, A.; Wegener, M.; Frenzel, T.; Freude, W.; Leuthold, J.; Koos, C.

    2015-09-21

    We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al{sub 2}O{sub 3}, B = TiO{sub 2}, and C = HfO{sub 2}. The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths.

  4. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection

    PubMed Central

    Sharkey, Liam K. R.; Edwards, Thomas A.

    2016-01-01

    ABSTRACT Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro. To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection. PMID:27006457

  5. High-level assessment of LANL ABC Design

    SciTech Connect

    Not Available

    1994-04-15

    An annual weapon`s grade Pu disposition goal should be stated and related to the amount of Pu that needs to be disposed of. It needs to be determined to what extent it is possible to destroy Pu without building up any new Pu, i.e., how realistic this goal is. The strong positive Doppler coefficient for a Pu core might require the addition of some fertile material to ensure a negative Doppler coefficient. This in turn will affect the net Pu disposition rate. If a fertile material is required throughout the life of the ABC to ensure a negative Doppler coefficient, the difference between the molten salt ABC and other reactors in regard to Pu disposition is not a principled difference anymore but one of degree. A rationale has then to be developed that explains why {open_quotes}x{close_quotes} kg production of fissile material are acceptable but {open_quotes}y{close_quotes} kg are not. It is important to determine how a requirement for electricity production will impact on the ABC design choices. It is conceivable that DOE will not insist on electricity generation. In this case advantage has to be taken in terms of design simplifications and relaxed operating conditions.

  6. The ABCs of Candida albicans Multidrug Transporter Cdr1

    PubMed Central

    Banerjee, Atanu; Khandelwal, Nitesh Kumar; Dhamgaye, Sanjiveeni

    2015-01-01

    In the light of multidrug resistance (MDR) among pathogenic microbes and cancer cells, membrane transporters have gained profound clinical significance. Chemotherapeutic failure, by far, has been attributed mainly to the robust and diverse array of these proteins, which are omnipresent in every stratum of the living world. Candida albicans, one of the major fungal pathogens affecting immunocompromised patients, also develops MDR during the course of chemotherapy. The pivotal membrane transporters that C. albicans has exploited as one of the strategies to develop MDR belongs to either the ATP binding cassette (ABC) or the major facilitator superfamily (MFS) class of proteins. The ABC transporter Candida drug resistance 1 protein (Cdr1p) is a major player among these transporters that enables the pathogen to outplay the battery of antifungals encountered by it. The promiscuous Cdr1 protein fulfills the quintessential need of a model to study molecular mechanisms of multidrug transporter regulation and structure-function analyses of asymmetric ABC transporters. In this review, we cover the highlights of two decades of research on Cdr1p that has provided a platform to study its structure-function relationships and regulatory circuitry for a better understanding of MDR not only in yeast but also in other organisms. PMID:26407965

  7. EDITORIAL: Focus on Graphene

    NASA Astrophysics Data System (ADS)

    Peres, N. M. R.; Ribeiro, Ricardo M.

    2009-09-01

    Graphene physics is currently one of the most active research areas in condensed matter physics. Countless theoretical and experimental studies have already been performed, targeting electronic, magnetic, thermal, optical, structural and vibrational properties. Also, studies that modify pristine graphene, aiming at finding new physics and possible new applications, have been considered. These include patterning nanoribbons and quantum dots, exposing graphene's surface to different chemical species, studying multilayer systems, and inducing strain and curvature (modifying in this way graphene's electronic properties). This focus issue includes many of the latest developments on graphene research. Focus on Graphene Contents Electronic properties of graphene and graphene nanoribbons with 'pseudo-Rashba' spin-orbit coupling Tobias Stauber and John Schliemann Strained graphene: tight-binding and density functional calculations R M Ribeiro, Vitor M Pereira, N M R Peres, P R Briddon and A H Castro Neto The effect of sublattice symmetry breaking on the electronic properties of doped graphene A Qaiumzadeh and R Asgari Interfaces within graphene nanoribbons J Wurm, M Wimmer, I Adagideli, K Richter and H U Baranger Weak localization and transport gap in graphene antidot lattices J Eroms and D Weiss Electronic properties of graphene antidot lattices J A Fürst, J G Pedersen, C Flindt, N A Mortensen, M Brandbyge, T G Pedersen and A-P Jauho Splitting of critical energies in the n=0 Landau level of graphene Ana L C Pereira Double-gated graphene-based devices S Russo, M F Craciun, M Yamamoto, S Tarucha and A F Morpurgo Pinning and switching of magnetic moments in bilayer graphene Eduardo V Castro, M P López-Sancho and M A H Vozmediano Electronic transport properties of graphene nanoribbons Katsunori Wakabayashi, Yositake Takane, Masayuki Yamamoto and Manfred Sigrist Many-body effects on out-of-plane phonons in graphene J González and E Perfetto Graphene zigzag ribbons, square

  8. Graphene Synthesis & Graphene/Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Liao, Ken-Hsuan

    We successfully developed a novel, fast, hydrazine-free, high-yield method for producing single-layered graphene. Graphene sheets were formed from graphite oxide by reduction with de-ionized water at 130 ºC. Over 65% of the sheets are single graphene layers. A dehydration reaction of exfoliated graphene oxide was utilized to reduce oxygen and transform C-C bonds from sp3 to sp2. The reduction appears to occur in large uniform interconnected oxygen-free patches so that despite the presence of residual oxygen the sp2 carbon bonds formed on the sheets are sufficient to provide electronic properties comparable to reduced graphene sheets obtained using other methods. Cytotoxicity of aqueous graphene was investigated with Dr. Yu-Shen Lin by measuring mitochondrial activity in adherent human skin fibroblasts using two assays. The methyl-thiazolyl-diphenyl-tetrazolium bromide (MTT) assay, a typical nanotoxicity assay, fails to predict the toxicity of graphene oxide and graphene toxicity because of the spontaneous reduction of MTT by graphene and graphene oxide, resulting in a false positive signal. An appropriate alternate assessment, using the water soluble tetrazolium salt (WST-8) assay, reveals that the compacted graphene sheets are more damaging to mammalian fibroblasts than the less densely packed graphene oxide. Clearly, the toxicity of graphene and graphene oxide depends on the exposure environment (i.e. whether or not aggregation occurs) and mode of interaction with cells (i.e. suspension versus adherent cell types). Ultralow percolation concentration of 0.15 wt% graphene, as determined by surface resistance and modulus, was observed from in situ polymerized thermally reduced graphene (TRG)/ poly-urethane-acrylate (PUA) nanocomposite. A homogeneous dispersion of TRG in PUA was revealed by TEM images. The aspect ratio of dispersed TRG, calculated from percolation concentration and modulus, was found to be equivalent to the reported aspect ratio of single

  9. MEMS Graphene Strain Sensor

    NASA Astrophysics Data System (ADS)

    Young, Clinton Wen-Chieh

    Graphene is a two dimensional honeycomb structure of sp2 hybridized carbon atoms that has possibilities in many applications due to its excellent mechanical and electrical properties. One application for Graphene is in the field of sensors. Graphene's electronic properties do not degrade when it undergoes mechanical strain which is advantageous for strain sensors. In this thesis, certain properties, such as the piezo-resistivity and flexibility, of graphene will be explored to show how they can be utilized to make a strain sensing device. Our original fabrication process of patterning graphene and the transfer process of graphene onto a flexible substrate will be discussed. The development of a stretchable and flexible graphene based rosette strain sensor will also be detailed. Developing a novel, reliable patterning process for the graphene is the first step to manufacture a stretchable graphene based sensor. The graphene was patterned using a photolithography and etching process that was developed by our research team, then it was transferred to a flexible polymer substrate with the use of a combination of soft lithography and wet etching of the Ni foil with ferric chloride solution. Graphene patterning is an essential step in fabricating reliable and sensitive sensors. With this process, graphene can be consistently patterned into different shapes and sizes. To utilize the graphene as the sensing material it also needs to be transferred onto a flexible substrate. The innovative transfer process developed by our research team consistently adheres graphene to a flexible PDMS substrate while removing the original nickel substrate. In the end, the graphene was transferred from the metal substrate to the desired flexible substrate. This process was repeated multiple times to create a stack and multilayer device. While many graphene-based strain sensors have been developed, they are uni-directional and can only measure the strain applied on the sensor in a principle

  10. ABC1K atypical kinases in plants; filling the organellar kinase void

    PubMed Central

    Lundquist, Peter K.; Davis, Jerrold I.; van Wijk, Klaas J.

    2014-01-01

    Surprisingly few protein kinases have been demonstrated in chloroplasts or mitochondria. Here we discuss the “activity of bc1 complex kinase” (ABC1K) protein family which we suggest locate in mitochondria and plastids, thus filling the kinase void. The ABC1Ks are atypical protein kinases and their ancestral function is the regulation of quinone synthesis. ABC1Ks have proliferated from 1–2 members in non-photosynthetic organisms to more than 16 members in algae and higher plants. In this review we reconstruct the evolutionary history of the ABC1K family, provide a functional domain analysis for angiosperms and a nomenclature for ABC1Ks in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and maize (Zea mays). Finally, we hypothesize that targets of ABC1Ks include enzymes of prenyl-lipid metabolism as well as components of the organellar gene expression machineries. PMID:22694836

  11. Fracture toughness of graphene.

    PubMed

    Zhang, Peng; Ma, Lulu; Fan, Feifei; Zeng, Zhi; Peng, Cheng; Loya, Phillip E; Liu, Zheng; Gong, Yongji; Zhang, Jiangnan; Zhang, Xingxiang; Ajayan, Pulickel M; Zhu, Ting; Lou, Jun

    2014-04-29

    Perfect graphene is believed to be the strongest material. However, the useful strength of large-area graphene with engineering relevance is usually determined by its fracture toughness, rather than the intrinsic strength that governs a uniform breaking of atomic bonds in perfect graphene. To date, the fracture toughness of graphene has not been measured. Here we report an in situ tensile testing of suspended graphene using a nanomechanical device in a scanning electron microscope. During tensile loading, the pre-cracked graphene sample fractures in a brittle manner with sharp edges, at a breaking stress substantially lower than the intrinsic strength of graphene. Our combined experiment and modelling verify the applicability of the classic Griffith theory of brittle fracture to graphene. The fracture toughness of graphene is measured as the critical stress intensity factor of and the equivalent critical strain energy release rate of 15.9 J m(-2). Our work quantifies the essential fracture properties of graphene and provides mechanistic insights into the mechanical failure of graphene.

  12. Identification of ABC Transporter Genes of Fusarium graminearum with Roles in Azole Tolerance and/or Virulence

    PubMed Central

    Döll, Katharina; Karlovsky, Petr; Deising, Holger B.; Wirsel, Stefan G. R.

    2013-01-01

    Fusarium graminearum is a plant pathogen infecting several important cereals, resulting in substantial yield losses and mycotoxin contamination of the grain. Triazole fungicides are used to control diseases caused by this fungus on a worldwide scale. Our previous microarray study indicated that 15 ABC transporter genes were transcriptionally upregulated in response to tebuconazole treatment. Here, we deleted four ABC transporter genes in two genetic backgrounds of F. graminearum representing the DON (deoxynivalenol) and the NIV (nivalenol) trichothecene chemotypes. Deletion of FgABC3 and FgABC4 belonging to group I of ABC-G and to group V of ABC-C subfamilies of ABC transporters, respectively, considerably increased the sensitivity to the class I sterol biosynthesis inhibitors triazoles and fenarimol. Such effects were specific since they did not occur with any other fungicide class tested. Assessing the contribution of the four ABC transporters to virulence of F. graminearum revealed that, irrespective of their chemotypes, deletion mutants of FgABC1 (ABC-C subfamily group V) and FgABC3 were impeded in virulence on wheat, barley and maize. Phylogenetic context and analyses of mycotoxin production suggests that FgABC3 may encode a transporter protecting the fungus from host-derived antifungal molecules. In contrast, FgABC1 may encode a transporter responsible for the secretion of fungal secondary metabolites alleviating defence of the host. Our results show that ABC transporters play important and diverse roles in both fungicide resistance and pathogenesis of F. graminearum. PMID:24244413

  13. Creating an iPhone application for collecting continuous ABC data.

    PubMed

    Whiting, Seth W; Dixon, Mark R

    2012-01-01

    This paper provides an overview and task analysis for creating a continuous ABC data-collection application using Xcode on a Mac computer. Behavior analysts can program an ABC data collection system, complete with a customized list of target clients, antecedents, behaviors, and consequences to be recorded, and have the data automatically sent to an e-mail account after observations have concluded. Further suggestions are provided to customize the ABC data- collection system for individual preferences and clinical needs.

  14. Improvement of proteolytic and oxidative stability of Chondroitinase ABC I by cosolvents.

    PubMed

    Nazari-Robati, Mahdieh; Golestani, Abolfazl; Asadikaram, GholamReza

    2016-10-01

    Recently, utilization of the enzyme Chondroitinase ABC I (cABC I) has received considerable attention in treatment of spinal cord injury. cABC I removes chondroitin sulfate proteoglycans which are inhibitory to axon growth and enhances nerve regeneration. Therefore, determination of cABC I resistance to proteolysis and oxidation provides valuable information for optimizing its clinical application. In this work, proteolytic stability of cABC I to trypsin and chymotrypsin as well as its oxidative resistance to H2O2 was measured. Moreover, the effect of cosolvents glycerol, sorbitol and trehalose on cABC I proteolytic and oxidative stability was determined. The results indicated that cABC I is highly susceptible to proteolysis and oxidation. Comparison of proteolytic patterns demonstrated a high degree of similarity which confirmed the exposure of specific regions of cABC I to proteolysis. However, proteolytic degradation was significantly reduced in the presence of cosolvents. In addition, cosolvents decreased the rate of both cABC I proteolytic and oxidative inactivation. Notably, the degree of stabilization provided by these cosolvents varied greatly. These findings indicated the high potential of cosolvents in protein stabilization to proteolysis and oxidative inactivation.

  15. MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium.

    PubMed

    Song, Saemee; Lee, Boeun; Yeom, Ji-Hyun; Hwang, Soonhye; Kang, Ilnam; Cho, Jang-Cheon; Ha, Nam-Chul; Bae, Jeehyeon; Lee, Kangseok; Kim, Yong-Hak

    2015-11-01

    MdsABC is a Salmonella-specific tripartite efflux pump that has been implicated in the virulence of Salmonella enterica serovar Typhimurium; however, little is known about the virulence factors associated with this pump. We observed MdsABC expression-dependent alterations in the degree of resistance to extracellular oxidative stress and macrophage-mediated killing. Thin-layer chromatography and tandem mass spectrometry analyses revealed that overexpression of MdsABC led to increased secretion of 1-palmitoyl-2-stearoyl-phosphatidylserine (PSPS), affecting the ability of the bacteria to invade and survive in host cells. Overexpression of MdsABC and external addition of PSPS similarly rendered the mdsABC deletion strain resistant to diamide. Diagonal gel analysis showed that PSPS treatment reduced the diamide-mediated formation of disulfide bonds, particularly in the membrane fraction of the bacteria. Salmonella infection of macrophages induced the upregulation of MdsABC expression and led to an increase of intracellular bacterial number and host cell death, similar to the effects of MdsABC overexpression and PSPS pretreatment on the mdsABC deletion strain. Our study shows that MdsABC mediates a previously uncharacterized pathway that involves PSPS as a key factor for the survival and virulence of S. Typhimurium in phagocytic cells.

  16. Effects of post-growth annealing in a CoFeB/MgO/CoFeB trilayer structure

    NASA Astrophysics Data System (ADS)

    Ying, Ji-Feng; Ter Lim, Sze; Tran, Michael; Ji, Rong

    2015-11-01

    CoFeB/MgO/CoFeB tri-layer thin-film stacks have been widely used in the design of STT-RAM devices as functional magnetic-tunnel-junction (MTJ) structures. The materials properties of the CoFeB and MgO layers, including composition and lattice quality, have been extensively researched from the stand point of optimizing for the best MTJ performance. On the other hand, post-growth annealing is required for the MTJ structure to acquire its functional property, i.e. its TMR performance. In this work, we have studied the various possible effects resulting from the post-growth annealing process. Specifically, we show that the post-growth annealing causes boron in the top and bottom CoFeB layers to migrate into the adjacent Ta layers as well as deterioration in lattice quality of the MgO layer. Furthermore, we evaluate other effects that could be possibly induced during the annealing process, including Ta diffusion and layer intermixing in the CoFeB/MgO/CoFeB tri-layer structure. The post-growth annealing causes little change in the Ta diffusion and the layer intermixing. These annealing effects were also evaluated with respect to variations in the MgO growth process; more specifically, an additional natural oxidation treatment during the MgO layer deposition and the insertion of a Fe layer before the MgO layer. Our results indicate that the addition of a natural oxidation process during the MgO deposition process and the insertion of a thin-layer of Fe before the MgO layer both lead to a reduction in the layer intermixing between the MgO and the CoFeB layer and to an improvement in MgO lattice quality. We also show that the post-growth annealing does not alter the beneficial effect of these MgO growth process modifications.

  17. My Spring with Graphene

    SciTech Connect

    O'Leary, Timothy Sean

    2015-06-08

    Graphene is a two-dimensional structure, one atom thick, with many uses in the world of technology. It has many useful electrical properties, is a very strong and durable material, and can be used to protect different types of substances. The world would be able to use these properties to further the strength of cars, protect metals from oxidation, increase computer speeds, use to improve superconductors, and whatever future uses that scientist invent or discover. We sought to optimize the growth and transfer of graphene. We grew graphene on copper foils by heating the foil in a furnace, and having various gases flow through a tube, where the copper foil was placed. We varied some of the concentrations of gases, along with having different times for heating the copper foil, different times for graphene growth, or a combination of the two. The focus of our experiment was to specifically grow monolayer single crystal graphene, which means that we do not want multiplayers of graphene, and do not want multiple crystals growing to form a bigger crystal. Our goal was to grow large single crystals from the growth experiment. We used a few different types of transfer methods that ranged from: using heat and pressure to press the graphene on different materials, using a polymer to cover the graphene with a method to destroy the copper, but leave the graphene and polymer intact, and using a type of heat tape with a combination of varying pressures to transfer the graphene, and then destroy the copper foil. To discover if we grew graphene we used different techniques involving lasers and microscopes to take different types of measurements. Discovering the best way of growing and transferring graphene will help with managing the cost of the future uses of graphene.

  18. Graphene device and method of using graphene device

    SciTech Connect

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.

    2015-08-11

    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  19. Towards the Synthesis of Graphene Azide from Graphene Oxide.

    PubMed

    Halbig, Christian E; Rietsch, Philipp; Eigler, Siegfried

    2015-11-26

    In the last decades, organic azides haven proven to be very useful precursors in organic chemistry, for example in 1,3-dipolar cycloaddition reactions (click-chemistry). Likewise, azides can be introduced into graphene oxide with an almost intact carbon framework, namely oxo-functionalized graphene (oxo-G₁), which is a highly oxidized graphene derivative and a powerful precursor for graphene that is suitable for electronic devices. The synthesis of a graphene derivative with exclusively azide groups (graphene azide) is however still a challenge. In comparison also hydrogenated graphene, called graphene or halogenated graphene remain challenging to synthesize. A route to graphene azide would be the desoxygenation of azide functionalized oxo-G₁. Here we show how treatment of azide functionalized oxo-G₁ with HCl enlarges the π-system and removes strongly adsorbed water and some oxo-functional groups. This development reflects one step towards graphene azide.

  20. Halogenated graphenes: rapidly growing family of graphene derivatives.

    PubMed

    Karlický, František; Kumara Ramanatha Datta, Kasibhatta; Otyepka, Michal; Zbořil, Radek

    2013-08-27

    Graphene derivatives containing covalently bound halogens (graphene halides) represent promising two-dimensional systems having interesting physical and chemical properties. The attachment of halogen atoms to sp(2) carbons changes the hybridization state to sp(3), which has a principal impact on electronic properties and local structure of the material. The fully fluorinated graphene derivative, fluorographene (graphene fluoride, C1F1), is the thinnest insulator and the only stable stoichiometric graphene halide (C1X1). In this review, we discuss structural properties, syntheses, chemistry, stabilities, and electronic properties of fluorographene and other partially fluorinated, chlorinated, and brominated graphenes. Remarkable optical, mechanical, vibrational, thermodynamic, and conductivity properties of graphene halides are also explored as well as the properties of rare structures including multilayered fluorinated graphenes, iodine-doped graphene, and mixed graphene halides. Finally, patterned halogenation is presented as an interesting approach for generating materials with applications in the field of graphene-based electronic devices.

  1. Dynamical conductivity of AA-stacked bilayer graphene

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Nicol, E. J.

    2012-08-01

    We calculate the dynamical conductivity of AA-stacked bilayer graphene as a function of frequency and in the presence of a finite chemical potential due to charging. Unlike the monolayer, we find a Drude absorption at charge neutrality in addition to an interband absorption with onset of twice the interlayer hopping energy. At finite doping, the interband absorption exhibits two edges, which depend on both chemical potential and interlayer hopping energy. We study the behavior as a function of varying chemical potential relative to the interlayer hopping energy scale and compute the partial optical sum. The results are contrasted with the previously published case of AB stacking. While we focus on in-plane conductivity, we also provide the perpendicular conductivity for both AB and AA stacking. We also examine conductivity for other variations with AA stacking, such as AAA-stacked trilayer. Based on proposed models for topological insulators discussed in the literature, we also consider the effect of spin-orbit coupling on the optical properties of an AA-stacked bilayer, which illustrates the effect of an energy gap opening at points in the band structure.

  2. Thermal conduction in graphene and graphene multilayers

    NASA Astrophysics Data System (ADS)

    Ghosh, Suchismita

    There has been increasing interest in thermal conductivity of materials motivated by the heat removal issues in electronics and by the need of fundamental science to understand heat conduction at nanoscale [1, 2, 3]. This dissertation reports the results of the experimental investigation of heat conduction in graphene and graphene multilayers. Graphene is a planar single sheet of sp2-bonded carbon atoms arranged in honeycomb lattice. It reveals many unique properties, including the extraordinarily high carrier mobility. In order to measure the thermal conductivity of graphene we developed an original non-contact technique based on micro-Raman spectroscopy. The samples for this study were prepared by mechanical exfoliation and suspended across trenches in Si/SiO2 substrates. The number of atomic planes was determined by deconvolution of the Raman 2D band. The suspended graphene flakes attached to the heat sinks were heated by the laser light focused in the middle. The Raman G peak's temperature sensitivity allowed us to monitor the local temperature change produced by the variation of the excitation laser power. A special calibration procedure was developed to determine the fraction of power absorbed by graphene. Our measurements revealed that single-layer graphene has an extremely high room-temperature thermal conductivity in the range 3800-5300 W/mK depending on the flake size and quality. It was also found that most of the heat near room temperature is transferred by acoustic phonons rather than electrons. Theoretical studies of the phonon thermal conduction in graphene, which included detail treatment of the Umklapp scattering, are in agreement with our experiments. The measurements were also extended to few-layer graphene. It was shown that the thermal conductivity reduces with the increasing number of layers approaching the bulk graphite limit. To validate the measurement technique we investigated the thermal conductivity of the polycrystalline graphene films

  3. Improved avidin-biotin-peroxidase complex (ABC) staining.

    PubMed

    Cattoretti, G; Berti, E; Schiró, R; D'Amato, L; Valeggio, C; Rilke, F

    1988-02-01

    A considerable intensification of the avidin-biotin-peroxidase complex staining system (ABC) was obtained by sequentially overlaying the sections to be immunostained with an avidin-rich and a biotin-rich complex. Each sequential addition contributed to the deposition of horseradish peroxidase on the immunostained site and allowed the subsequent binding of a complementary complex. With this technique a higher dilution of the antisera could be used and minute amounts of antigen masked by the fixative could be demonstrated on paraffin sections.

  4. Design of the storage location based on the ABC analyses

    NASA Astrophysics Data System (ADS)

    Jemelka, Milan; Chramcov, Bronislav; Kříž, Pavel

    2016-06-01

    The paper focuses on process efficiency and saving storage costs. Maintaining inventory through putaway strategy takes personnel time and costs money. The aim is to control inventory in the best way. The ABC classification based on Villefredo Pareto theory is used for a design of warehouse layout. New design of storage location reduces the distance of fork-lifters, total costs and it increases inventory process efficiency. The suggested solutions and evaluation of achieved results are described in detail. Proposed solutions were realized in real warehouse operation.

  5. SU-E-T-401: Feasibility Study of Using ABC to Gate Lung SBRT Treatment

    SciTech Connect

    Cao, D; Xie, X; Shepard, D

    2014-06-01

    Purpose: The current SBRT treatment techniques include free breathing (FB) SBRT and gated FB SBRT. Gated FB SBRT has smaller target and less lung toxicity with longer treatment time. The recent development of direct connectivity between the ABC and linac allowing for automated beam gating. In this study, we have examined the feasibility of using ABC system to gate the lung SBRT treatment. Methods: A CIRS lung phantom with a 3cm sphere-insert and a moving chest plate was used in this study. Sinusoidal motion was used for the FB pattern. An ABC signal was imported to simulate breath holds. 4D-CT was taken in FB mode and average-intensity-projection (AIP) was used to create FB and 50% gated FB SBRT planning CT. A manually gated 3D CT scan was acquired for ABC gated SBRT planning.An SBRT plan was created for each treatment option. A surface-mapping system was used for 50% gating and ABC system was used for ABC gating. A manually gated CBCT scan was also performed to verify setup. Results: Among three options, the ABC gated plan has the smallest PTV of 35.94cc, which is 35% smaller comparing to that of the FB plan. Consequently, the V20 of the left lung reduced by 15% and 23% comparing to the 50% gated FB and FB plans, respectively. The FB plan took 4.7 minutes to deliver, while the 50% gated FB plan took 18.5 minutes. The ABC gated plan delivery took only 10.6 minutes. A stationary target with 3cm diameter was also obtained from the manually gated CBCT scan. Conclusion: A strategy for ABC gated lung SBRT was developed. ABC gating can significantly reduce the lung toxicity while maintaining the target coverage. Comparing to the 50% gated FB SBRT, ABC gated treatment can also provide less lung toxicity as well as improved delivery efficiency. This research is funded by Elekta.

  6. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance.

    PubMed

    Dermauw, Wannes; Van Leeuwen, Thomas

    2014-02-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods.

  7. Equivalent circuit model of converse magnetoelectric effect for the tri-layer magnetoelectric laminates with thermal and stress loadings

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Li, Meng-Han; Liu, Hui; Cui, Xiao-Le

    2015-12-01

    For the converse magnetoelectric coupling effect of the piezoelectric/magnetostrictive/piezoelectric tri-layer symmetric magnetoelectric laminates, based on the nonlinear thermo-magneto-mechanical constitutive equations of the giant magnetostrictive materials and the thermo-electro-mechanical constitutive equations of the piezoelectric materials, according to Newton's second law and the magnetic circuit theorem, an equivalent circuit is established. Then an expression of the converse magnetoelectric coefficient describing nonlinear thermo-magneto-electro-mechanical coupling is established. The curve of the nonlinear converse magnetoelectric coefficient versus the bias magnetic field, is predicted effectively by the expression, and the predictions are in good agreement with the experimental result both qualitatively and quantitatively. Furthermore, the model can predict the complex influences of the bias magnetic field, the stress and the ambient temperature on the converse magnetoelectric coefficient. It can be found from these predictions that the converse magnetoelectric coefficient decreases with the increasing temperature and increases with the increasing tensile stress. Under the common effect of the ambient temperature and the stress, it is also found that the converse magnetoelectric coefficient changes sharply with the ambient temperature when the tensile stress is applied on the laminates, but it has a good stability of temperature when a large compressive stress is applied. Therefore, this work contributes to the researches on the giant converse magnetoelectric coefficient and the designs of magnetoelectric devices based on the converse magnetoelectric coupling.

  8. Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors

    PubMed Central

    Chu, Leiqiang; Schmidt, Hennrik; Pu, Jiang; Wang, Shunfeng; Özyilmaz, Barbaros; Takenobu, Taishi; Eda, Goki

    2014-01-01

    Charge transport in MoS2 in the low carrier density regime is dominated by trap states and band edge disorder. The intrinsic transport properties of MoS2 emerge in the high density regime where conduction occurs via extended states. Here, we investigate the transport properties of mechanically exfoliated mono-, bi-, and trilayer MoS2 sheets over a wide range of carrier densities realized by a combination of ion gel top gate and SiO2 back gate, which allows us to achieve high charge carrier (>1013 cm−2) densities. We discuss the gating properties of the devices as a function of layer thickness and demonstrate resistivities as low as 1 kΩ for monolayer and 420 Ω for bilayer devices at 10 K. We show that from the capacitive coupling of the two gates, quantum capacitance can be roughly estimated to be on the order of 1 μF/cm2 for all devices studied. The temperature dependence of the carrier mobility in the high density regime indicates that short-range scatterers limit charge transport at low temperatures. PMID:25465059

  9. Optimizing the magnitude of the magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers: A formula to combine all involved parameters

    NASA Astrophysics Data System (ADS)

    Aristomenopoulou, E.; Zeibekis, M.; Stamopoulos, D.

    2016-03-01

    The competitive nature of ferromagnetism and superconductivity in Ferromagnet/Superconductor (FM/SC) hybrids has attracted much interest in the last decades. In particular, the superconducting magnetoresistance (SMR) observed in FM/SC/FM trilayers (TLs) is related to the manipulation of the transport properties of the SC interlayer by the magnetic domain structure of the FM outer layers with out-of-plane anisotropy. In our recent work [Sci. Rep. 5, 13420 (2015)], a phenomenological model was proposed that describes successfully the scaling of the SMR magnitude with the relevant macroscopic parameters and microscopic length scales of the SC and FM structural units. Based on this model, here we investigate the contribution of the parameters that affect indirectly the SMR magnitude and do not appear in the original model. To this end, the parameters of both the SC interlayer (i.e., the thickness, dSC, the mean free path, l, the coherence length, ξ(0), etc.) and the FM outer layers (i.e., the thickness, dFM) are examined. The theoretical simulations presented here and experimental data unveil the indirect contribution of these parameters on the magnitude of the SMR and confirm the predictive power of the original phenomenological model. Accordingly, this model can be employed as a generic formula to combine successfully all involved parameters in every kind of FM/SC/FM TLs, ultimately optimizing the magnitude of the SMR.

  10. Magnetic properties of Fe/FeSi2/Fe3Si trilayered films prepared by facing targets sputtering deposition

    NASA Astrophysics Data System (ADS)

    Ishibashi, Kazuya; Nakashima, Kazutoshi; Sakai, Ken-Ichiro; Yoshitake, Tsuyoshi

    2015-09-01

    Whereas giant magnetoresistance and tunnel magnetoresistance films generally employ nonmagnetic metal and insulator spacers, respectively, we have studied Fe3Si/FeSi artificial lattices, in which FeSi2 is semiconducting and its employment as spacers is specific to our research. For the formation of parallel/antiparallel alignments of layer magnetizations, the employment of ferromagnetic layers with different coercive forces is required. There have been few studies on the fabrication of Fe-Si system spin valves comprising ferromagnetic layers with different coercive forces. In this work, Fe3Si and Fe were employed as ferromagnetic layer materials with different coercive forces. Fe/FeSi2/Fe3Si trilayered spin valve junctions by facing targets direct-current sputtering deposition combined with a mask method, and their electrical and magnetic properties were studied. An Fe3Si layer was epitaxially grown on Si(111) substrate as a bottom layer. After that, An Fe layer with a large coercive force was deposited as a top layer, posterior to a FeSi2 layer being deposited. From magnetization curves measured by a vibrating sample magnetometer, it was confirmed that the parallel and antiparallel magnetization alignments of ferromagnetic layers are clearly realized. This work was supported by JSPS KAKENHI Grant Number 15K21594.

  11. Enabling graphene nanoelectronics.

    SciTech Connect

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  12. Trifluoromethylation of graphene

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Zhou, Lushan; Wang, Xi; Yu, Jingwen; Yang, Mingmei; Wang, Jianbo; Peng, Hailin; Liu, Zhongfan

    2014-09-01

    We demonstrate trifluoromethylation of graphene by copper-catalyzed free radical reaction. The covalent addition of CF3 to graphene, which changes the carbon atom hybridization from sp2 to sp3, and modifies graphene in a homogeneous and nondestructive manner, was verified with Raman spectroscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy reveals that CF3 groups are grafted to the basal plane of graphene, with about 4 at. % CF3 coverage. After trifluoromethylation, the average resistance increases by nearly one order of magnitude, and an energy gap of about 98 meV appears. The noninvasive and mild reaction to synthesize trifluoromethylated graphene paves the way for graphene's applications in electronics and biomedical areas.

  13. ABCs of Public Education in North Carolina: A Journey toward Excellence.

    ERIC Educational Resources Information Center

    North Carolina State Board of Education, Raleigh.

    In 1995, the North Carolina General Assembly directed the North Carolina State Board of Education to develop a plan to bolster student growth and performance in grades 4-8 throughout the state. In response, the board developed the ABCs of Public Education. (ABC stands for Accountability; teaching the Basics of reading, writing, and mathematics;…

  14. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury.

    PubMed

    Bradbury, Elizabeth J; Carter, Lucy M

    2011-03-10

    Chondroitin sulphate proteoglycans (CSPGs) are potent inhibitors of growth in the adult CNS. Use of the enzyme chondroitinase ABC (ChABC) as a strategy to reduce CSPG inhibition in experimental models of spinal cord injury has led to observations of a remarkable capacity for repair. Here we review the evidence that treatment with ChABC, either as an individual therapy or in combination with other strategies, can have multiple beneficial effects on promoting repair following spinal cord injury. These include promoting regeneration of injured axons, plasticity of uninjured pathways and neuroprotection of injured projection neurons. More importantly, ChABC therapy has been demonstrated to promote significant recovery of function to spinal injured animals. Thus, there is robust pre-clinical evidence demonstrating beneficial effects of ChABC treatment following spinal cord injury. Furthermore, these effects have been replicated in a number of different injury models, with independent confirmation by different laboratories, providing an important validation of ChABC as a promising therapeutic strategy. We discuss putative mechanisms underlying ChABC-mediated repair as well as potential issues and considerations in translating ChABC treatment into a clinical therapy for spinal cord injury.

  15. Structural Validity of the Movement ABC-2 Test: Factor Structure Comparisons across Three Age Groups

    ERIC Educational Resources Information Center

    Schulz, Joerg; Henderson, Sheila E.; Sugden, David A.; Barnett, Anna L.

    2011-01-01

    Background: The Movement ABC test is one of the most widely used assessments in the field of Developmental Coordination Disorder (DCD). Improvements to the 2nd edition of the test (M-ABC-2) include an extension of the age range and reduction in the number of age bands as well as revision of tasks. The total test score provides a measure of motor…

  16. Multidrug-Resistance Transporter AbcA Secretes Staphylococcus aureus Cytolytic Toxins.

    PubMed

    Yoshikai, Hirono; Kizaki, Hayato; Saito, Yuki; Omae, Yosuke; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-01-15

    Phenol-soluble modulins (PSMs) are Staphylococcus aureus cytolytic toxins that lyse erythrocytes and neutrophils and have important functions in the S. aureus infectious process. The molecular mechanisms of PSM secretion, however, are not well understood. Here we report that knockout of the multidrug-resistance ABC transporter AbcA, which contributes to S. aureus resistance against antibiotics and chemicals, diminished the secreted amount of PSM, leading to the accumulation of PSM in the intracellular fraction. The amount of PSM in the culture supernatants of the abcA knockout mutants was restored by introduction of the wild-type abcA gene, whereas it was not completely restored by introduction of mutant abcA genes encoding AbcA mutant proteins carrying amino acid substitutions in the adenosine triphosphate binding motifs. The abcA knockout mutant exhibited attenuated virulence in a mouse systemic infection model. These findings suggest that the multidrug resistance transporter AbcA secretes PSMs and contributes to S. aureus virulence.

  17. Creating an iPhone Application for Collecting Continuous ABC Data

    ERIC Educational Resources Information Center

    Whiting, Seth W.; Dixon, Mark R.

    2012-01-01

    This paper provides an overview and task analysis for creating a continuous ABC data- collection application using Xcode on a Mac computer. Behavior analysts can program an ABC data collection system, complete with a customized list of target clients, antecedents, behaviors, and consequences to be recorded, and have the data automatically sent to…

  18. Movement Assessment Battery for Children (M-ABC): Establishing Construct Validity for Israeli Children

    ERIC Educational Resources Information Center

    Engel-Yeger, Batya; Rosenblum, Sara; Josman, Naomi

    2010-01-01

    The Movement Assessment Battery for Children (M-ABC) is one of the most accepted tools, both in clinical practice and in research, for the diagnosis of Developmental Coordination Disorders (DCDs) in children. The present study aimed to: (1) establish the construct validity of M-ABC in Israel by comparing the motor performance of typically…

  19. Multidrug resistance-associated ABC transporters - too much of one thing, good for nothing.

    PubMed

    Prochazkova, Jirina; Lanova, Martina; Pachernik, Jiri

    2012-08-01

    Abstract Overexpression of ATP-binding cassette (ABC) transporters in cancer cells results in multidrug resistance (MDR) which leads to unsuccessful chemotherapy. The most important MDR-associated members of ABC superfamily are ABC B1/P-glycoprotein/MDR1, ABC C1/multidrug resistance associated protein 1 (MRP1), and ABC G2/BCRP. This study is not only focused on function, substrates, and localization of these popular proteins but also on other ABC C family members such as ABC C2-6/MRP2-6 and ABC C7/CFTR. Current research is mainly oriented on the cancer-promoting role of these proteins, but important lessons could also be learned from the physiological roles of these proteins or from polymorphisms affecting their function. Thorough knowledge of structure and detailed mechanism of efflux can aid in the discovery of new chemotherapy targets in the future. Although the best way on how to deal with MDR would be to prevent its development, we describe some new promising strategies on how to conquer both inherited and induced MDRs.

  20. Parents' Perspectives on Braille Literacy: Results from the ABC Braille Study

    ERIC Educational Resources Information Center

    Kamei-Hannan, Cheryl; Sacks, Sharon Zell

    2012-01-01

    Introduction: Parents who were the primary caretakers of children in the Alphabetic and Contracted Braille Study (ABC Braille Study) revealed their perspectives about braille literacy. Methods: A 30-item questionnaire was constructed by the ABC Braille research team, and researchers conducted telephone interviews with 31 parents who were the…

  1. Multidrug-Resistance Transporter AbcA Secretes Staphylococcus aureus Cytolytic Toxins.

    PubMed

    Yoshikai, Hirono; Kizaki, Hayato; Saito, Yuki; Omae, Yosuke; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-01-15

    Phenol-soluble modulins (PSMs) are Staphylococcus aureus cytolytic toxins that lyse erythrocytes and neutrophils and have important functions in the S. aureus infectious process. The molecular mechanisms of PSM secretion, however, are not well understood. Here we report that knockout of the multidrug-resistance ABC transporter AbcA, which contributes to S. aureus resistance against antibiotics and chemicals, diminished the secreted amount of PSM, leading to the accumulation of PSM in the intracellular fraction. The amount of PSM in the culture supernatants of the abcA knockout mutants was restored by introduction of the wild-type abcA gene, whereas it was not completely restored by introduction of mutant abcA genes encoding AbcA mutant proteins carrying amino acid substitutions in the adenosine triphosphate binding motifs. The abcA knockout mutant exhibited attenuated virulence in a mouse systemic infection model. These findings suggest that the multidrug resistance transporter AbcA secretes PSMs and contributes to S. aureus virulence. PMID:26160745

  2. Characterization of Two ABC Transporters from Biocontrol and Phytopathogenic Fusarium oxysporus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ABC transporter genes from four strains of Fusarium oxysporum [two biocontrol and two phytopathogenic (f. sp. lycopersici Race 1) isolates] indicated that this gene is well conserved. However, sequences of promoter regions of FoABC1 differed between 8 phytopathogenic and 11 biocontrol strains of F....

  3. The ABCs of Activity-Based Costing: A Cost Containment and Reallocation Tool.

    ERIC Educational Resources Information Center

    Turk, Frederick J.

    1992-01-01

    This article describes activity-based costing (ABC) and how this tool may help management understand the costs of major activities and identify possible alternatives. Also discussed are the traditional costing systems used by higher education and ways of applying ABC to higher education. (GLR)

  4. The Role of Activity Based Costing (ABC) in Educational Support Services: A White Paper.

    ERIC Educational Resources Information Center

    Edds, Daniel B.

    Many front-line managers who are assuming more financial responsibility for their organizations find traditional cost accounting inadequate for their needs and are turning to Activity Based Costing (ABC). ABC is not a financial reporting system to serve the needs of regulatory agencies, but a tool that tracks costs from the general ledger…

  5. Applying the Post-Modern Double ABC-X Model to Family Food Insecurity

    ERIC Educational Resources Information Center

    Hutson, Samantha; Anderson, Melinda; Swafford, Melinda

    2015-01-01

    This paper develops the argument that using the Double ABC-X model in family and consumer sciences (FCS) curricula is a way to educate nutrition and dietetics students regarding a family's perceptions of food insecurity. The Double ABC-X model incorporates ecological theory as a basis to explain family stress and the resulting adjustment and…

  6. A Comparison of the K-ABC and WISC-R: A Validity Study.

    ERIC Educational Resources Information Center

    Sapp, Gary L.; And Others

    The concurrent validity of the Kaufman Assessment Battery for Children (K-ABC) was examined by comparing K-ABC scores and Weschler Intelligence Scale for Children--Revised (WISC-R) scores for 58 school children in primary and intermediate grades. Thirty-seven of these children had either educable mental retardation, learning disabilities, or…

  7. Abrasive wear behavior of heat-treated ABC-silicon carbide

    SciTech Connect

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  8. Class C ABC transporters and Saccharomyces cerevisiae vacuole fusion

    PubMed Central

    Sasser, Terry L; Fratti, Rutilio A

    2014-01-01

    Membrane fusion is carried out by core machinery that is conserved throughout eukaryotes. This is comprised of Rab GTPases and their effectors, and SNARE proteins, which together are sufficient to drive the fusion of reconstituted proteoliposomes. However, an outer layer of factors that are specific to individual trafficking pathways in vivo regulates the spatial and temporal occurrence of fusion. The homotypic fusion of Saccharomyces cerevisiae vacuolar lysosomes utilizes a growing set of factors to regulate the fusion machinery that include members of the ATP binding cassette (ABC) transporter family. Yeast vacuoles have five class C ABC transporters that are known to transport a variety of toxins into the vacuole lumen as part of detoxifying the cell. We have found that ABCC transporters can also regulate vacuole fusion through novel mechanisms. For instance Ybt1 serves as negative regulator of fusion through its effects on vacuolar Ca2+ homeostasis. Additional studies showed that Ycf1 acts as a positive regulator by affecting the efficient recruitment of the SNARE Vam7. Finally, we discuss the potential interface between the translocation of lipids across the membrane bilayer, also known as lipid flipping, and the efficiency of fusion. PMID:25610719

  9. Deformation of wrinkled graphene.

    PubMed

    Li, Zheling; Kinloch, Ian A; Young, Robert J; Novoselov, Kostya S; Anagnostopoulos, George; Parthenios, John; Galiotis, Costas; Papagelis, Konstantinos; Lu, Ching-Yu; Britnell, Liam

    2015-04-28

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  10. Deformation of Wrinkled Graphene

    PubMed Central

    2015-01-01

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  11. Superhydrophobic functionalized graphene aerogels.

    PubMed

    Lin, Yirong; Ehlert, Gregory J; Bukowsky, Colton; Sodano, Henry A

    2011-07-01

    Carbon-based nanomaterials such as carbon nanotubes and graphene are excellent candidates for superhydrophobic surfaces because of their intrinsically high surface area and nonpolar carbon structure. This paper demonstrates that graphene aerogels with a silane surface modification can provide superhydrophobicity. Graphene aerogels of various concentrations were synthesized and the receding contact angle of a water droplet was measured. It is shown that graphene aerogels are hydrophobic and become superhydrophobic following the application of a fluorinated surfactant. The aerogels produced for this experiment outperform previous carbon nanomaterials in creating superhydrophobic surfaces and offer a more scalable synthetic procedure for production.

  12. Few-layer and symmetry-breaking effects on the electrical properties of ordered CF3Cl phases on graphene

    NASA Astrophysics Data System (ADS)

    Morales-Cifuentes, Josue; Wang, Yilin; Reutt-Robey, Janice; Einstein, T. L.

    2014-03-01

    An effective pseudopotential mechanism for breaking the inherent sub-lattice symmetry of graphene has been studied using DFT calculations on hexagonal boron nitride. Electrical detection of CF3Cl phase transitions on graphene shows the existence of a commensurate ordered phase in which this can be tested. We study the electronic properties of this phase using VASP ver 5.3.3, with ab initio van der Waals density functionals (vdW-DF1 and vdW-DF2). Consistent with a physisorbed phase, binding energies and charge transfer per CF3Cl molecule are calculated to be on the order of 280meV and 0.01e, respectively. By exploring different coverages and orientations of this ordered phase we are able to open a band gap in some configurations; said gap is in the range of 8 to 80meV depending on the strength of the effective pseudopotential. Furthermore, we calculate the screening of these effects in bi-layer and tri-layer graphene. Work supported by NSF-MRSEC at UMD, grant DMR 05-20471 and NSF-CHE 13-05892.

  13. Modulation of Expression and Activity of ABC Transporters by the Phytoestrogen Genistein. Impact on Drug Disposition.

    PubMed

    Rigalli, Juan Pablo; Ciriaci, Nadia; Mottino, Aldo Domingo; Catania, Viviana Alicia; Ruiz, María Laura

    2016-01-01

    ATP binding cassette (ABC) transporters are involved in drug absorption, distribution and elimination. They also mediate multidrug resistance in cancer cells. Isoflavones, such as genistein (GNT), belong to a class of naturally-occurring compounds found at high concentrations in commonly consumed soya based-foods and dietary supplements. GNT and its metabolites interact with ABC transporters as substrates, inhibitors and/or modulators of their expression. This review compiles information about regulation of ABC transporters by GNT with special emphasis on the three major groups of ABC transporters involved in excretion of endo- and xenobiotics as follows: Pglycoprotein (MDR1, ABCB1), a group of multidrug resistance associated proteins (MRPs, ABCC subfamily) and ABCG2 (BCRP), an ABC half-transporter. The impact of these regulations on potential GNT-drug interactions is further considered. PMID:27048380

  14. Accuracy of the ABC/2 score for intracerebral hemorrhage: Systematic review and analysis of MISTIE, CLEAR-IVH, CLEAR III

    PubMed Central

    Webb, Alastair JS; Ullman, Natalie L; Morgan, Tim C; Muschelli, John; Kornbluth, Joshua; Awad, Issam A; Mayo, Stephen; Rosenblum, Michael; Ziai, Wendy; Zuccarrello, Mario; Aldrich, Francois; John, Sayona; Harnof, Sagi; Lopez, George; Broaddus, William C; Wijman, Christine; Vespa, Paul; Bullock, Ross; Haines, Stephen J; Cruz-Flores, Salvador; Tuhrim, Stan; Hill, Michael D; Narayan, Raj; Hanley, Daniel F

    2015-01-01

    Background and Purpose The ABC/2 score estimates intracerebral hemorrhage (ICH) volume, yet validations have been limited by small samples and inappropriate outcome measures. We determined accuracy of the ABC/2 score calculated at a specialized Reading Center (RC-ABC) or local site (site-ABC) versus the reference-standard CT-based planimetry (CTP). Methods In MISTIE-II, CLEAR-IVH and CLEAR-III trials, ICH volume was prospectively calculated by CTP, RC-ABC and site-ABC. Agreement between CTP and ABC/2 was defined as an absolute difference up to 5ml and relative difference within 20%. Determinants of ABC/2 accuracy were assessed by logistic regression. Results In 4369 scans from 507 patients, CTP was more strongly correlated with RC-ABC (r2=0.93) than site-ABC (r2=0.87). Although RC-ABC overestimated CTP-based volume on average (RC-ABC=15.2cm3, CTP=12.7cm3), agreement was reasonable when categorised into mild, moderate and severe ICH (kappa 0.75, p<0.001). This was consistent with overestimation of ICH volume in 6/8 previous studies. Agreement with CTP was greater for RC-ABC (84% within 5ml; 48% of scans within 20%) than for site-ABC (81% within 5ml; 41% within 20%). RC-ABC had moderate accuracy for detecting ≥ 5ml change in CTP volume between consecutive scans (sensitivity 0.76, specificity 0.86) and was more accurate with smaller ICH, thalamic haemorrhage and homogeneous clots. Conclusions ABC/2 scores at local or central sites are sufficiently accurate to categorise ICH volume and assess eligibility for the CLEAR III and MISTIE III studies, and moderately accurate for change in ICH volume. However, accuracy decreases with large, irregular or lobar clots. Clinical Trial Registration MISTIE-II NCT00224770; CLEAR-III NCT00784134; www.clinicaltrials.gov PMID:26243227

  15. Application of activity-based costing (ABC) for a Peruvian NGO healthcare provider.

    PubMed

    Waters, H; Abdallah, H; Santillán, D

    2001-01-01

    This article describes the application of activity-based costing (ABC) to calculate the unit costs of the services for a health care provider in Peru. While traditional costing allocates overhead and indirect costs in proportion to production volume or to direct costs, ABC assigns costs through activities within an organization. ABC uses personnel interviews to determine principal activities and the distribution of individual's time among these activities. Indirect costs are linked to services through time allocation and other tracing methods, and the result is a more accurate estimate of unit costs. The study concludes that applying ABC in a developing country setting is feasible, yielding results that are directly applicable to pricing and management. ABC determines costs for individual clinics, departments and services according to the activities that originate these costs, showing where an organization spends its money. With this information, it is possible to identify services that are generating extra revenue and those operating at a loss, and to calculate cross subsidies across services. ABC also highlights areas in the health care process where efficiency improvements are possible. Conclusions about the ultimate impact of the methodology are not drawn here, since the study was not repeated and changes in utilization patterns and the addition of new clinics affected applicability of the results. A potential constraint to implementing ABC is the availability and organization of cost information. Applying ABC efficiently requires information to be readily available, by cost category and department, since the greatest benefits of ABC come from frequent, systematic application of the methodology in order to monitor efficiency and provide feedback for management. The article concludes with a discussion of the potential applications of ABC in the health sector in developing countries. PMID:11326572

  16. Application of activity-based costing (ABC) for a Peruvian NGO healthcare provider.

    PubMed

    Waters, H; Abdallah, H; Santillán, D

    2001-01-01

    This article describes the application of activity-based costing (ABC) to calculate the unit costs of the services for a health care provider in Peru. While traditional costing allocates overhead and indirect costs in proportion to production volume or to direct costs, ABC assigns costs through activities within an organization. ABC uses personnel interviews to determine principal activities and the distribution of individual's time among these activities. Indirect costs are linked to services through time allocation and other tracing methods, and the result is a more accurate estimate of unit costs. The study concludes that applying ABC in a developing country setting is feasible, yielding results that are directly applicable to pricing and management. ABC determines costs for individual clinics, departments and services according to the activities that originate these costs, showing where an organization spends its money. With this information, it is possible to identify services that are generating extra revenue and those operating at a loss, and to calculate cross subsidies across services. ABC also highlights areas in the health care process where efficiency improvements are possible. Conclusions about the ultimate impact of the methodology are not drawn here, since the study was not repeated and changes in utilization patterns and the addition of new clinics affected applicability of the results. A potential constraint to implementing ABC is the availability and organization of cost information. Applying ABC efficiently requires information to be readily available, by cost category and department, since the greatest benefits of ABC come from frequent, systematic application of the methodology in order to monitor efficiency and provide feedback for management. The article concludes with a discussion of the potential applications of ABC in the health sector in developing countries.

  17. 75 FR 11991 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of...

  18. The replication origin of a repABC plasmid

    PubMed Central

    2011-01-01

    Background repABC operons are present on large, low copy-number plasmids and on some secondary chromosomes in at least 19 α-proteobacterial genera, and are responsible for the replication and segregation properties of these replicons. These operons consist, with some variations, of three genes: repA, repB, and repC. RepA and RepB are involved in plasmid partitioning and in the negative regulation of their own transcription, and RepC is the limiting factor for replication. An antisense RNA encoded between the repB-repC genes modulates repC expression. Results To identify the minimal region of the Rhizobium etli p42d plasmid that is capable of autonomous replication, we amplified different regions of the repABC operon using PCR and cloned the regions into a suicide vector. The resulting vectors were then introduced into R. etli strains that did or did not contain p42d. The minimal replicon consisted of a repC open reading frame under the control of a constitutive promoter with a Shine-Dalgarno sequence that we designed. A sequence analysis of repC revealed the presence of a large A+T-rich region but no iterons or DnaA boxes. Silent mutations that modified the A+T content of this region eliminated the replication capability of the plasmid. The minimal replicon could not be introduced into R. etli strain containing p42d, but similar constructs that carried repC from Sinorhizobium meliloti pSymA or the linear chromosome of Agrobacterium tumefaciens replicated in the presence or absence of p42d, indicating that RepC is an incompatibility factor. A hybrid gene construct expressing a RepC protein with the first 362 amino acid residues from p42d RepC and the last 39 amino acid residues of RepC from SymA was able to replicate in the presence of p42d. Conclusions RepC is the only element encoded in the repABC operon of the R. etli p42d plasmid that is necessary and sufficient for plasmid replication and is probably the initiator protein. The oriV of this plasmid resides

  19. Quantum Complexity in Graphene

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    Carbon has a unique position among elements in the periodic table. It produces an allotrope, graphene, a mechanically robust two dimensional semimetal. The multifarious properties that graphene exhibits has few parallels among elemental metals. From simplicity, namely carbon atoms connected by pure sp2 bonds, a wealth of novel quantum properties emerge. In classical complex systems such as a spin glass or a finance market, several competing agents or elements are responsible for unanticipated and difficult to predict emergent properties. The complex (sic) structure of quantum mechanics is responsbile for an unanticipated set of emergent properties in graphene. We call this quantum complexity. In fact, most quantum systems, phenomena and modern quantum field theory could be viewed as examples of quantum complexity. After giving a brief introduction to the quantum complexity we focus on our own work, which indicates the breadth in the type of quantum phenomena that graphene could support. We review our theoretical suggestions of, (i) spin-1 collective mode in netural graphene, (ii) relativistic type of phenomena in crossed electric and magnetic fields, (iii) room temperature superconductivity in doped graphene and (iv) composite Fermi sea in neutral graphene in uniform magnetic field and (v) two-channel Kondo effect. Except for the relativistic type of phenomena, the rest depend in a fundamental way on a weak electron correlation that exists in the broad two-dimensional band of graphene.

  20. Twisting bilayer graphene superlattices.

    PubMed

    Lu, Chun-Chieh; Lin, Yung-Chang; Liu, Zheng; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2013-03-26

    Bilayer graphene is an intriguing material in that its electronic structure can be altered by changing the stacking order or the relative twist angle, yielding a new class of low-dimensional carbon system. Twisted bilayer graphene can be obtained by (i) thermal decomposition of SiC; (ii) chemical vapor deposition (CVD) on metal catalysts; (iii) folding graphene; or (iv) stacking graphene layers one atop the other, the latter of which suffers from interlayer contamination. Existing synthesis protocols, however, usually result in graphene with polycrystalline structures. The present study investigates bilayer graphene grown by ambient pressure CVD on polycrystalline Cu. Controlling the nucleation in early stage growth allows the constituent layers to form single hexagonal crystals. New Raman active modes are shown to result from the twist, with the angle determined by transmission electron microscopy. The successful growth of single-crystal bilayer graphene provides an attractive jumping-off point for systematic studies of interlayer coupling in misoriented few-layer graphene systems with well-defined geometry.

  1. Graphene: Carbon's superconducting footprint

    NASA Astrophysics Data System (ADS)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  2. Ultrathin Planar Graphene Supercapacitors

    SciTech Connect

    Huang, Jingsong; Meunier, Vincent; Sumpter, Bobby G; Ajayan, Pullikel M; Yoo, Jung Joon; Balakrishnan, Kaushik; Srivastava, Anchal; Conway, Michelle; Reddy, Arava Leela Mohan; Yu, Jin; Vajtai, Robert

    2011-01-01

    With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an in-plane fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multi-layer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1-2 graphene layers, to reach specific capacities up to 80 Fcm-2. While, much higher (394 Fcm-2) specific capacities are observed in case of multi-layered graphene oxide electrodes, owing to the better utilization of the available electrochemical surface area. The performances of devices with pristine as well as thicker graphene based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad range of thin-film based energy storage devices.

  3. Trilayer micelles for combination delivery of rapamycin and siRNA targeting Y-box binding protein-1 (siYB-1)

    PubMed Central

    Zeng, San; Xiong, May P.

    2013-01-01

    A three layer (trilayer) polymeric micelle system based on the self-association of the triblock polymer poly(ethylene glycol)-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl] aspartamide}-b-poly(ε-caprolactone) (PEG-b-PAsp(DET)-b-PCL) has been synthesized and investigated for combination delivery of rapamycin (RAP) and siRNA targeting Y-box binding protein-1 (siYB-1). The trilayer micelle is composed of (a) a hydrophilic poly(ethylene glycol) (PEG) block constituting the outer layer to improve pharmacokinetics, (b) an intermediate compartment composed of the cationic poly{2-[(2-aminoethyl)amino] ethyl aspartamide} (PAsp(DET)) segment for interacting with siYB-1, and (c) an inner hydrophobic poly(ε-caprolactone) (PCL) compartment for encapsulation of RAP. A major advantage of this system is biocompatibility since PEG and PCL are both approved by the FDA, and PAsp(DET) is a non-toxic pH responsive cationic poly(amino acid)-based polymer. In this study, it has been shown that PCL can encapsulate RAP with high loading efficiencies, and PAsp(DET) can successfully interact with siRNA for efficient transfection/knockdown with negligible cytotoxicity. The enhanced therapeutic efficacy of RAP/ siYB-1 micelles was demonstrated in cell cultures and in a PC3 xenograft nude mouse model of human prostate cancer. Herein, we demonstrate that trilayer micelles are a promising approach to improve the simultaneous delivery of combination siRNA/drug therapies. PMID:23768780

  4. Twisted Graphene Nanostructures

    NASA Astrophysics Data System (ADS)

    Gani, Satrio; Virgus, Yudistira; Rossi, Enrico

    2015-03-01

    Recent advances in fabrication techniques have made possible the realization of graphene nanostructures with atomic precision. Some of the nanostructures realized are completely novel. We study the electronic properties of such novel graphene nanostructures when deposited on two dimensional crystals. In particular we study the case when the two dimensional crystal is graphene, or bilayer graphene. We obtain results for the nanostructure electronic spectrum and find how the spectrum is affected by the coupling between the nanostructure and the two-dimensional substrate. In particular we study how the ``twist'' angle between the graphene nanostructure and the two-dimensional crystal affects the spectrum of the nanostructure. Work supported by ONR-N00014-13-1-0321 and ACS-PRF # 53581-DNI5.

  5. Strain Engineering in Graphene

    NASA Astrophysics Data System (ADS)

    Castro Neto, Antonio

    2011-03-01

    Graphene is a unique example of a one atom thick metallic membrane. Hence, graphene brings together properties of soft and hard condensed matter systems. The elementary electronic excitations in graphene, the Dirac quasiparticles, couple in a singular way to structural distortions in the form of scalar and vector potentials. Therefore, graphene has an effective electrodynamics where structural deformations couple to the Dirac particles at equal footing to electric and magnetic fields. This so-called strain engineering of the electronic properties of graphene opens doors for a new paradigm in terms of electronic devices, where electronic properties can be manipulated at will using its membrane-like properties. I thank partial support from from DOE Grant DE-FG02-08ER46512 and ONR Grant MURI N00014-09-1-1063.

  6. Vacancies in epitaxial graphene

    SciTech Connect

    Davydov, S. Yu.

    2015-08-15

    The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphene to the substrate increases.

  7. Multilayered Graphene in Microwaves

    NASA Astrophysics Data System (ADS)

    Kuzhir, P.; Volynets, N.; Maksimenko, S.; Kaplas, T.; Svirko, Yu.

    2013-05-01

    We report on the experimental study of electromagnetic (EM) properties of multilayered graphene in Ka-band synthesized by catalytic chemical vapor deposition (CVD) process in between nanometrically thin Cu catalyst film and dielectric (SiO2) substrate. The quality of the produced multilayered graphene samples were monitored by Raman spectroscopy. The thickness of graphene films was controlled by atomic force microscopy (AFM) and was found to be a few nanometers (up to 5 nm). We discovered, that the fabricated graphene provided remarkably high EM shielding efficiency caused by absorption losses at the level of 35-43% of incident power. Being highly conductive at room temperature, multi-layer graphene emerges as a promising material for manufacturing ultrathin microwave coatings to be used in aerospace applications.

  8. Multifunctional graphene woven fabrics

    PubMed Central

    Li, Xiao; Sun, Pengzhan; Fan, Lili; Zhu, Miao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Cheng, Yao; Zhu, Hongwei

    2012-01-01

    Tailoring and assembling graphene into functional macrostructures with well-defined configuration are key for many promising applications. We report on a graphene-based woven fabric (GWF) prepared by interlacing two sets of graphene micron-ribbons where the ribbons pass each other essentially at right angles. By using a woven copper mesh as the template, the GWF grown from chemical vapour deposition retains the network configuration of the copper mesh. Embedded into polymer matrices, it has significant flexibility and strength gains compared with CVD grown graphene films. The GWFs display both good dimensional stability in both the warp and the weft directions and the combination of film transparency and conductivity could be optimized by tuning the ribbon packing density. The GWF creates a platform to integrate a large variety of applications, e.g., composites, strain sensors and solar cells, by taking advantages of the special structure and properties of graphene. PMID:22563524

  9. Thermomechanical Processing and Roll Bonding of Tri-Layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite

    NASA Astrophysics Data System (ADS)

    Kim, Hobyung; Kang, Gyeong Tae; Hong, Sun Ig

    2016-05-01

    Tri-layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn composite was processed by roll bonding and the effect of thermomechanical processing on the mechanical performance and electrical conductivity was studied. Roll-bonded composite exhibited the brief work hardening and subsequent rapid work softening because of the high stored deformation energy, leading to failure at the plastic strain of 8 to 10 pct. The mechanical instability of as-roll-bonded composites was abated by heat treatment (HT) at 723 K (450 °C) and the extended work hardening with enhanced ductility compared to that of the as-roll-bonded composites was observed after HT. The strength and electrical conductivity of clad composite is dependent on the precipitation strengthening of Cu-Cr and recovery softening of Cu-Ni-Zn during post-roll-bonding HT. The increase of roll-bonding temperature enhances the precipitation kinetics and it takes shorter time to reach maximum hardness in Cu-Cr layer during post-roll-bonding HT. The toughness of as-roll-bonded Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite at 773 K (500 °C) [42 MJ/mm3] is greater than those at 723 K (450 °C) [24 MJ/mm3] and 823 K (550 °C) [38 MJ/mm3]. The maximum toughness [100 MJ/mm3] with the electrical conductivity of 68 pct IACS was obtained in the Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite roll-bonded at 773 K (500 °C) and subsequently heat-treated at 723 K (450 °C).

  10. Interfacial contributions to perpendicular magnetic anisotropy in Pd/Co2MnSi/MgO trilayer films

    NASA Astrophysics Data System (ADS)

    Fu, Huarui; You, Caiyin; Li, Yunlong; Wang, Ke; Tian, Na

    2016-05-01

    Heusler alloy Co2MnSi is widely selected as the ferromagnetic layer to achieve a giant tunneling magnetic resistance (TMR). It is also one of the most promising materials for potential spintronic applications of magnetic random access memory (MRAM) due to the high spin polarization, in which the configuration of perpendicular magnetic anisotropy (PMA) possesses great advantages over the in-plane ones. Therefore, it is highly desirable to investigate the PMA effects of the Co2MnSi layer with a suitable stack structure. In this work, a strong PMA (1.61  ×  106 erg cm-3) is demonstrated in the system of Pd/Co2MnSi/MgO trilayer films. The contributions of the interfaces beside the ferromagnetic Co2MnSi layer were quantitatively clarified. The interfacial anisotropy K s,MgO of 0.79 erg cm-2 at the Co2MnSi/MgO interface is larger than the K s,Pd value of 0.26 erg cm-2 at the Pd/Co2MnSi interface. Due to the dual interfacial effects, the strong PMA can be sustained at the high annealing temperature with a thick Co2MnSi layer of about 4.9 nm, which is favorable to the potential spintronic application. The Mn-O bonding was also found to be enriched at the Co2MnSi/MgO interface for the annealed Pd/Co2MnSi (3.4 nm)/MgO film with the large PMA, showing an experimental evidence for the theoretical results of the Mn-O bonding contribution to PMA.

  11. Progressive muscle relaxation, yoga stretching, and ABC relaxation theory.

    PubMed

    Ghoncheh, Shahyad; Smith, Jonathan C

    2004-01-01

    This study compared the psychological effects of progressive muscle relaxation (PMR) and yoga stretching (hatha) exercises. Forty participants were randomly divided into two groups and taught PMR or yoga stretching exercises. Both groups practiced once a week for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, practitioners of PMR displayed higher levels of relaxation states (R-States) Physical Relaxation and Disengagement at Week 4 and higher levels of Mental Quiet and Joy as a posttraining aftereffect at Week 5. Contrary to what was hypothesized, groups did not display different levels of R-States Energized or Aware. Results suggest the value of supplementing traditional somatic conceptualizations of relaxation with the psychological approach embodied in ABC relaxation theory. Clinical and research implications are discussed.

  12. The Arabidopsis nectary is an ABC-independent floral structure.

    PubMed

    Baum, S F; Eshed, Y; Bowman, J L

    2001-11-01

    In contrast to the conservation of floral organ order in angiosperm flowers, nectary glands can be found in various floral and extrafloral positions. Since in Arabidopsis, the nectary develops only at the base of stamens, its specification was assayed with regard to the floral homeotic ABC selector genes. We show that the nectary can form independently of any floral organ identity gene but is restricted to the 'third whorl' domain in the flower. This domain is, in part, specified redundantly by LEAFY and UNUSUAL FLORAL ORGANS. Even though nectary glands arise from cells previously expressing the B class genes, their proper development requires the down-regulation of B class gene activity. While CRABS CLAW is essential for nectary gland formation, its ectopic expression is not sufficient to induce ectopic nectary formation. We show that in Arabidopsis multiple factors act to restrict the nectary to the flower, and surprisingly, some of these factors are LEAFY and UNUSUAL FLORAL ORGANS. PMID:11714690

  13. Multifunctional nanoarchitectures from DNA-based ABC monomers

    NASA Astrophysics Data System (ADS)

    Lee, Jong B.; Roh, Young H.; Um, Soong Ho; Funabashi, Hisakage; Cheng, Wenlong; Cha, Judy J.; Kiatwuthinon, Pichamon; Muller, David A.; Luo, Dan

    2009-07-01

    The ability to attach different functional moieties to a molecular building block could lead to applications in nanoelectronics, nanophotonics, intelligent sensing and drug delivery. The building unit needs to be both multivalent and anisotropic, and although many anisotropic building blocks have been created, these have not been universally applicable. Recently, DNA has been used to generate various nanostructures or hybrid systems, and as a generic building block for various applications. Here, we report the creation of anisotropic, branched and crosslinkable building blocks (ABC monomers) from which multifunctional nanoarchitectures have been assembled. In particular, we demonstrate a target-driven polymerization process in which polymers are generated only in the presence of a specific DNA molecule, leading to highly sensitive pathogen detection. Using this monomer system, we have also designed a biocompatible nanovector that delivers both drugs and tracers simultaneously. Our approach provides a general yet versatile route towards the creation of a range of multifunctional nanoarchitectures.

  14. Monte Carlo simulations of ABC stacked kagome lattice films.

    PubMed

    Yerzhakov, H V; Plumer, M L; Whitehead, J P

    2016-05-18

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  15. Monte Carlo simulations of ABC stacked kagome lattice films

    NASA Astrophysics Data System (ADS)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  16. Biocompatibility of Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Ruan, Jing; Song, Hua; Zhang, Jiali; Wo, Yan; Guo, Shouwu; Cui, Daxiang

    2011-12-01

    Herein, we report the effects of graphene oxides on human fibroblast cells and mice with the aim of investigating graphene oxides' biocompatibility. The graphene oxides were prepared by the modified Hummers method and characterized by high-resolution transmission electron microscope and atomic force microscopy. The human fibroblast cells were cultured with different doses of graphene oxides for day 1 to day 5. Thirty mice divided into three test groups (low, middle, high dose) and one control group were injected with 0.1, 0.25, and 0.4 mg graphene oxides, respectively, and were raised for 1 day, 7 days, and 30 days, respectively. Results showed that the water-soluble graphene oxides were successfully prepared; graphene oxides with dose less than 20 μg/mL did not exhibit toxicity to human fibroblast cells, and the dose of more than 50 μg/mL exhibits obvious cytotoxicity such as decreasing cell adhesion, inducing cell apoptosis, entering into lysosomes, mitochondrion, endoplasm, and cell nucleus. Graphene oxides under low dose (0.1 mg) and middle dose (0.25 mg) did not exhibit obvious toxicity to mice and under high dose (0.4 mg) exhibited chronic toxicity, such as 4/9 mice death and lung granuloma formation, mainly located in lung, liver, spleen, and kidney, almost could not be cleaned by kidney. In conclusion, graphene oxides exhibit dose-dependent toxicity to cells and animals, such as inducing cell apoptosis and lung granuloma formation, and cannot be cleaned by kidney. When graphene oxides are explored for in vivo applications in animal or human body, its biocompatibility must be considered.

  17. Research Progress on the Role of ABC Transporters in the Drug Resistance Mechanism of Intractable Epilepsy

    PubMed Central

    Xiong, Jie; Mao, Ding-an; Liu, Li-qun

    2015-01-01

    The pathogenesis of intractable epilepsy is not fully clear. In recent years, both animal and clinical trials have shown that the expression of ATP-binding cassette (ABC) transporters is increased in patients with intractable epilepsy; additionally, epileptic seizures can lead to an increase in the number of sites that express ABC transporters. These findings suggest that ABC transporters play an important role in the drug resistance mechanism of epilepsy. ABC transporters can perform the funcions of a drug efflux pump, which can reduce the effective drug concentration at epilepsy lesions by reducing the permeability of the blood brain barrier to antiepileptic drugs, thus causing resistance to antiepileptic drugs. Given the important role of ABC transporters in refractory epilepsy drug resistance, antiepileptic drugs that are not substrates of ABC transporters were used to obtain ABC transporter inhibitors with strong specificity, high safety, and few side effects, making them suitable for long-term use; therefore, these drugs can be used for future clinical treatment of intractable epilepsy. PMID:26491660

  18. Applying Activity Based Costing (ABC) Method to Calculate Cost Price in Hospital and Remedy Services

    PubMed Central

    Rajabi, A; Dabiri, A

    2012-01-01

    Background Activity Based Costing (ABC) is one of the new methods began appearing as a costing methodology in the 1990’s. It calculates cost price by determining the usage of resources. In this study, ABC method was used for calculating cost price of remedial services in hospitals. Methods: To apply ABC method, Shahid Faghihi Hospital was selected. First, hospital units were divided into three main departments: administrative, diagnostic, and hospitalized. Second, activity centers were defined by the activity analysis method. Third, costs of administrative activity centers were allocated into diagnostic and operational departments based on the cost driver. Finally, with regard to the usage of cost objectives from services of activity centers, the cost price of medical services was calculated. Results: The cost price from ABC method significantly differs from tariff method. In addition, high amount of indirect costs in the hospital indicates that capacities of resources are not used properly. Conclusion: Cost price of remedial services with tariff method is not properly calculated when compared with ABC method. ABC calculates cost price by applying suitable mechanisms but tariff method is based on the fixed price. In addition, ABC represents useful information about the amount and combination of cost price services. PMID:23113171

  19. PET and SPECT Radiotracers to Assess Function and Expression of ABC Transporters in Vivo

    PubMed Central

    Mairinger, Severin; Erker, Thomas; Müller, Markus; Langer, Oliver

    2013-01-01

    Adenosine triphosphate-binding cassette (ABC) transporters, such as P-glycoprotein (Pgp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance-associated proteins (MRPs) are expressed in high concentrations at various physiological barriers (e.g. blood-brain barrier, blood-testis barrier, blood-tumor barrier), where they impede the tissue accumulation of various drugs by active efflux transport. Changes in ABC transporter expression and function are thought to be implicated in various diseases, such as cancer, epilepsy, Alzheimer’s and Parkinson’s disease. The availability of a non-invasive imaging method which allows for measuring ABC transporter function or expression in vivo would be of great clinical use in that it could facilitate the identification of those patients that would benefit from treatment with ABC transporter modulating drugs. To date three different kinds of imaging probes have been described to measure ABC transporters in vivo: i) radiolabelled transporter substrates ii) radiolabelled transporter inhibitors and iii) radiolabelled prodrugs which are enzymatically converted into transporter substrates in the organ of interest (e.g. brain). The design of new imaging probes to visualize efflux transporters is inter alia complicated by the overlapping substrate recognition pattern of different ABC transporter types. The present article will describe currently available ABC transporter radiotracers for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and critically discuss strengths and limitations of individual probes and their potential clinical applications. PMID:21434859

  20. Transcription factors that mediate epithelial–mesenchymal transition lead to multidrug resistance by upregulating ABC transporters

    PubMed Central

    Saxena, M; Stephens, M A; Pathak, H; Rangarajan, A

    2011-01-01

    Development of multidrug resistance (MDR) is a major deterrent in the effective treatment of metastatic cancers by chemotherapy. Even though MDR and cancer invasiveness have been correlated, the molecular basis of this link remains obscure. We show here that treatment with chemotherapeutic drugs increases the expression of several ATP binding cassette transporters (ABC transporters) associated with MDR, as well as epithelial–mesenchymal transition (EMT) markers, selectively in invasive breast cancer cells, but not in immortalized or non-invasive cells. Interestingly, the mere induction of an EMT in immortalized and non-invasive cell lines increased their expression of ABC transporters, migration, invasion, and drug resistance. Conversely, reversal of EMT in invasive cells by downregulating EMT-inducing transcription factors reduced their expression of ABC transporters, invasion, and rendered them more chemosensitive. Mechanistically, we demonstrate that the promoters of ABC transporters carry several binding sites for EMT-inducing transcription factors, and overexpression of Twist, Snail, and FOXC2 increases the promoter activity of ABC transporters. Furthermore, chromatin immunoprecipitation studies revealed that Twist binds directly to the E-box elements of ABC transporters. Thus, our study identifies EMT inducers as novel regulators of ABC transporters, thereby providing molecular insights into the long-standing association between invasiveness and MDR. Targeting EMT transcription factors could hence serve as novel strategies to curb both metastasis and the associated drug resistance. PMID:21734725

  1. Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii.

    PubMed Central

    Wanner, C; Soppa, J

    1999-01-01

    More than 40 nitrate respiration-deficient mutants of Haloferax volcanii belonging to three different phenotypic classes were isolated. All 15 mutants of the null phenotype were complemented with a genomic library of the wild type. Wild-type copies of mutated genes were recovered from complemented mutants using two different approaches. The DNA sequences of 13 isolated fragments were determined. Five fragments were found to overlap; therefore nine different genomic regions containing genes essential for nitrate respiration could be identified. Three genomic regions containing genes coding for subunits of ABC transporters were further characterized. In two cases, genes coding for an ATP-binding subunit and a permease subunit were clustered and overlapped by four nucleotides. The third gene for a permease subunit had no additional ABC transporter gene in proximity. One ABC transporter was found to be glucose specific. The mutant reveals that the ABC transporter solely mediates anaerobic glucose transport. Based on sequence similarity, the second ABC transporter is proposed to be molybdate specific, explaining its essential role in nitrate respiration. The third ABC transporter is proposed to be anion specific. Genome sequencing has shown that ABC transporters are widespread in Archaea. Nevertheless, this study represents only the second example of a functional characterization. PMID:10430572

  2. Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel.

    PubMed

    Pakulska, Malgosia M; Vulic, Katarina; Shoichet, Molly S

    2013-10-10

    Chondroitinase ABC (ChABC) is a promising therapeutic for spinal cord injury as it can degrade the glial scar that is detrimental to regrowth and repair. However, the sustained delivery of bioactive ChABC is a challenge requiring highly invasive methods such as intra-spinal injections, insertion of intrathecal catheters, or implantation of delivery vehicles directly into the tissue. ChABC is thermally unstable, further complicating its delivery. Moreover, there are no commercial antibodies available for its detection. To achieve controlled release, we designed an affinity-based system that sustained the release of bioactive ChABC for at least 7days. ChABC was recombinantly expressed as a fusion protein with Src homology domain 3 (SH3) with an N-terminal histidine (HIS) tag and a C-terminal FLAG tag (ChABC-SH3). Protein purification was achieved using a nickel affinity column and, for the first time, direct quantification of ChABC down to 0.1nM was attained using an in-house HIS/FLAG double tag ELISA. The release of active ChABC-SH3 was sustained from a methylcellulose hydrogel covalently modified with an SH3 binding peptide. The rate of release was tunable by varying either the binding strength of the SH3-protein/SH3-peptide pair or the SH3-peptide to SH3-protein ratio. This innovative system has the potential to be used as a platform technology for the release and detection of other proteins that can be expressed using a similar construct.

  3. Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel.

    PubMed

    Pakulska, Malgosia M; Vulic, Katarina; Shoichet, Molly S

    2013-10-10

    Chondroitinase ABC (ChABC) is a promising therapeutic for spinal cord injury as it can degrade the glial scar that is detrimental to regrowth and repair. However, the sustained delivery of bioactive ChABC is a challenge requiring highly invasive methods such as intra-spinal injections, insertion of intrathecal catheters, or implantation of delivery vehicles directly into the tissue. ChABC is thermally unstable, further complicating its delivery. Moreover, there are no commercial antibodies available for its detection. To achieve controlled release, we designed an affinity-based system that sustained the release of bioactive ChABC for at least 7days. ChABC was recombinantly expressed as a fusion protein with Src homology domain 3 (SH3) with an N-terminal histidine (HIS) tag and a C-terminal FLAG tag (ChABC-SH3). Protein purification was achieved using a nickel affinity column and, for the first time, direct quantification of ChABC down to 0.1nM was attained using an in-house HIS/FLAG double tag ELISA. The release of active ChABC-SH3 was sustained from a methylcellulose hydrogel covalently modified with an SH3 binding peptide. The rate of release was tunable by varying either the binding strength of the SH3-protein/SH3-peptide pair or the SH3-peptide to SH3-protein ratio. This innovative system has the potential to be used as a platform technology for the release and detection of other proteins that can be expressed using a similar construct. PMID:23831055

  4. An ABC pleiotropic drug resistance transporter of Fusarium graminearum with a role in crown and root diseases of wheat.

    PubMed

    Gardiner, Donald M; Stephens, Amber E; Munn, Alan L; Manners, John M

    2013-11-01

    FgABC1 (FGSG_04580) is predicted to encode a pleiotropic drug resistance class ABC transporter in Fusarium graminearum, a globally important pathogen of wheat. Deletion mutants of FgABC1 showed reduced virulence towards wheat in crown and root infection assays but were unaltered in infectivity on barley. Expression of FgABC1 during head blight and crown rot disease increases during the necrotrophic phases of infection suggestive of a role for FgABC1 in late infection stages in different tissue types. Deletion of FgABC1 also led to increased sensitivity of the fungus to the antifungal compound benalaxyl in culture, but the response to known cereal defence compounds, gramine, 2-benzoxazalinone and tryptamine was unaltered. FgABC1 appears to have a role in protecting the fungus from antifungal compounds and is likely to help combat as yet unidentified wheat defence compounds during disease development.

  5. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2006-03-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  6. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    PubMed Central

    Choi, Cheol-Hee

    2005-01-01

    One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC) transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein. PMID:16202168

  7. Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology

    SciTech Connect

    Wang, Ying; Li, Zhaohui; Wang, Jun; Li, Jinghong; Lin, Yuehe

    2011-05-01

    Graphene is the basic building block of zero-dimensional fullerene, 1D carbon nanotubes, and 3D graphite. Graphene has a unique planar structure as well as novel electronic properties, which have attracted great interest from scientists. This review selectively analyzes current advances in the field of graphene bioapplications. In particular, the functionalization of graphene for biological applications, FRET-based biosensor development by using graphene-based nanomaterials, and the investigation of graphene for living cell studies have been summarized in more details. Future perspectives and possible challenges in this rapidly developing area are also discussed.

  8. Tunneling Plasmonics in Bilayer Graphene.

    PubMed

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  9. Screening of Streptococcus pneumoniae ABC transporter mutants demonstrates that LivJHMGF, a branched-chain amino acid ABC transporter, is necessary for disease pathogenesis.

    PubMed

    Basavanna, Shilpa; Khandavilli, Suneeta; Yuste, Jose; Cohen, Jonathan M; Hosie, Arthur H F; Webb, Alexander J; Thomas, Gavin H; Brown, Jeremy S

    2009-08-01

    Bacterial ABC transporters are an important class of transmembrane transporters that have a wide variety of substrates and are important for the virulence of several bacterial pathogens, including Streptococcus pneumoniae. However, many S. pneumoniae ABC transporters have yet to be investigated for their role in virulence. Using insertional duplication mutagenesis mutants, we investigated the effects on virulence and in vitro growth of disruption of 9 S. pneumoniae ABC transporters. Several were partially attenuated in virulence compared to the wild-type parental strain in mouse models of infection. For one ABC transporter, required for full virulence and termed LivJHMGF due to its similarity to branched-chain amino acid (BCAA) transporters, a deletion mutant (DeltalivHMGF) was constructed to investigate its phenotype in more detail. When tested by competitive infection, the DeltalivHMGF strain had reduced virulence in models of both pneumonia and septicemia but was fully virulent when tested using noncompetitive experiments. The DeltalivHMGF strain had no detectable growth defect in defined or complete laboratory media. Recombinant LivJ, the substrate binding component of the LivJHMGF, was shown by both radioactive binding experiments and tryptophan fluorescence spectroscopy to specifically bind to leucine, isoleucine, and valine, confirming that the LivJHMGF substrates are BCAAs. These data demonstrate a previously unsuspected role for BCAA transport during infection for S. pneumoniae and provide more evidence that functioning ABC transporters are required for the full virulence of bacterial pathogens. PMID:19470745

  10. Stabilization of graphene nanopore

    PubMed Central

    Lee, Jaekwang; Yang, Zhiqing; Zhou, Wu; Pennycook, Stephen J.; Pantelides, Sokrates T.; Chisholm, Matthew F.

    2014-01-01

    Graphene is an ultrathin, impervious membrane. The controlled introduction of nanoscale pores in graphene would lead to applications that involve water purification, chemical separation, and DNA sequencing. However, graphene nanopores are unstable against filling by carbon adatoms. Here, using aberration-corrected scanning transmission electron microscopy and density-functional calculations, we report that Si atoms stabilize graphene nanopores by bridging the dangling bonds around the perimeter of the hole. Si‐passivated pores remain intact even under intense electron beam irradiation, and they were observed several months after the sample fabrication, demonstrating that these structures are intrinsically robust and stable against carbon filling. Theoretical calculations reveal the underlying mechanism for this stabilization effect: Si atoms bond strongly to the graphene edge, and their preference for tetrahedral coordination forces C adatoms to form dendrites sticking out of the graphene plane, instead of filling the nanopore. Our results provide a novel way to develop stable nanopores, which is a major step toward reliable graphene-based molecular translocation devices. PMID:24821802

  11. The Enhancement of spin Hall torque efficiency and Reduction of Gilbert damping in spin Hall metal/normal metal/ferromagnetic trilayers

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Pai, Chi-Feng; Ralph, Daniel C.; Buhrman, Robert A.

    2015-03-01

    The spin Hall effect (SHE) in ferromagnet/heavy metal bilayer structures has been demonstrated to be a powerful means for producing pure spin currents and for exerting spin-orbit damping-like and field-like torques on the ferromagnetic layer. Large spin Hall (SH) angles have been reported for Pt, beta-Ta and beta-W films and have been utilized to achieve magnetic switching of in-plane and out-of-plane magnetized nanomagnets, spin torque auto-oscillators, and the control of high velocity domain wall motion. For many of the proposed applications of the SHE it is also important to achieve an effective Gilbert damping parameter that is as low as possible. In general the spin orbit torques and the effective damping are predicted to depend directly on the spin-mixing conductance of the SH metal/ferromagnet interface. This opens up the possibility of tuning these properties with the insertion of a very thin layer of another metal between the SH metal and the ferromagnet. Here we will report on experiments with such trilayer structures in which we have observed both a large enhancement of the spin Hall torque efficiency and a significant reduction in the effective Gilbert damping. Our results indicate that there is considerable opportunity to optimize the effectiveness and energy efficiency of the damping-like torque through engineering of such trilayer structures. Supported in part by NSF and Samsung Electronics Corporation.

  12. Interfacial Characterization of Dissimilar Joints Between Al/Mg/Al-Trilayered Clad Sheet to High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Macwan, A.; Jiang, X. Q.; Chen, D. L.

    2015-07-01

    Magnesium (Mg) alloys are increasingly used in the automotive and aerospace sectors to reduce vehicle weight. Al/Mg/Al tri-layered clad sheets are deemed as a promising alternative to improve the corrosion resistance and formability of Mg alloys. The structural application of Al/Mg/Al tri-layered clad sheets inevitably involves welding and joining in the multi-material vehicle body manufacturing. This study aimed to characterize the bonding interface microstructure of the Al/Mg/Al-clad sheet to high-strength low-alloy steel with and without Zn coating using ultrasonic spot welding at different levels of welding energy. It was observed that the presence of Zn coating improved the bonding at the interface due to the formation of Al-Zn eutectic structure via enhanced diffusion. At a higher level of welding energy, characteristic flow patterns of Zn into Al-clad layer were observed with an extensive penetration mainly along some high angle grain boundaries. The dissimilar joints without Zn coating made at a high welding energy of 800 J failed partially from the Al/Fe weld interface and partially from the Al/Mg clad interface, while the joints with Zn coating failed from the Al/Mg clad interface due to the presence of brittle Al12Mg17 phase.

  13. Determining graphene adhesion via substrate-regulated morphology of graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Li, Teng

    2011-10-01

    Understanding the adhesion between graphene and other materials is crucial for achieving more reliable graphene-based applications in electronic devices and nanocomposites. The ultra-thin profile of graphene, however, poses a significant challenge to direct measurement of its adhesion property using conventional approaches. We show that there is a strong correlation between the morphology of graphene on a compliant substrate with patterned surface and the graphene-substrate adhesion. We establish an analytic model to quantitatively determine such a strong correlation. Results show that, depending on the graphene-substrate adhesion, number of graphene layers, and substrate stiffness, graphene exhibits two distinct types of morphology: (I) graphene remains bonded to the substrate and corrugates to an amplitude up to that of the substrate surface patterns; (II) graphene debonds from the substrate and remains flat on top of the substrate surface patterns. The sharp transition between these two types of graphene morphology occurs at a critical adhesion between the graphene and the compliant substrate material. These results potentially open up a feasible pathway to measuring the adhesion property of graphene.

  14. Graphene field-effect devices

    NASA Astrophysics Data System (ADS)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  15. Promising applications of graphene and graphene-based nanostructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of

  16. Brassboard Astrometric Beam Combiner (ABC) Development for the Space Interferometry Mission (SIM)

    NASA Technical Reports Server (NTRS)

    Jeganathan, Muthu; Kuan, Gary; Rud, Mike; Lin, Sean; Sutherland, Kristen; Moore, James; An, Xin

    2008-01-01

    The Astrometric Beam Combiner (ABC) is a critical element of the Space Interferometry Mission (SIM) that performs three key functions: coherently combine starlight from two siderostats; individually detect starlight for angle tracking; and disperse and detect the interferometric fringes. In addition, the ABC contains: a stimulus, cornercubes and shutters for in-orbit calibration; several tip/tilt mirror mechanisms for in-orbit alignment; and internal metrology beam launcher for pathlength monitoring. The detailed design of the brassboard ABC (which has the form, fit and function of the flight unit) is complete, procurement of long-lead items is underway, and assembly and testing is expected to be completed in Spring 2009. In this paper, we present the key requirements for the ABC, details of the completed optical and mechanical design as well as plans for assembly and alignment.

  17. New enhanced artificial bee colony (JA-ABC5) algorithm with application for reactive power optimization.

    PubMed

    Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani

    2015-01-01

    The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement.

  18. Selection of optimal artificial boundary condition (ABC) frequencies for structural damage identification

    NASA Astrophysics Data System (ADS)

    Mao, Lei; Lu, Yong

    2016-07-01

    In this paper, the sensitivities of artificial boundary condition (ABC) frequencies to the damages are investigated, and the optimal sensors are selected to provide the reliable structural damage identification. The sensitivity expressions for one-pin and two-pin ABC frequencies, which are the natural frequencies from structures with one and two additional constraints to its original boundary condition, respectively, are proposed. Based on the expressions, the contributions of the underlying mode shapes in the ABC frequencies can be calculated and used to select more sensitive ABC frequencies. Selection criteria are then defined for different conditions, and their performance in structural damage identification is examined with numerical studies. From the findings, conclusions are given.

  19. Crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus.

    PubMed

    Manjula, M; Pampa, K J; Kumar, S M; Mukherjee, S; Kunishima, N; Rangappa, K S; Lokanath, N K

    2015-03-27

    The ATP binding cassette (ABC) transporters, represent one of the largest superfamilies of primary transporters, which are very essential for various biological functions. The crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus has been determined at 1.77 Å resolution. The crystal structure revealed that the protomer has two thick arms, (arm I and II), which resemble 'L' shape. The ATP-binding pocket is located close to the end of arm I. ATP molecule is docked into the active site of the protein. The dimeric crystal structure of ATP-binding subunit of ABC transporter from G. kaustophilus has been compared with the previously reported crystal structure of ATP-binding subunit of ABC transporter from Salmonella typhimurium.

  20. Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant's Lifestyle.

    PubMed

    Hwang, Jae-Ung; Song, Won-Yong; Hong, Daewoong; Ko, Donghwi; Yamaoka, Yasuyo; Jang, Sunghoon; Yim, Sojeong; Lee, Eunjung; Khare, Deepa; Kim, Kyungyoon; Palmgren, Michael; Yoon, Hwan Su; Martinoia, Enrico; Lee, Youngsook

    2016-03-01

    Terrestrial plants have two to four times more ATP-binding cassette (ABC) transporter genes than other organisms, including their ancestral microalgae. Recent studies found that plants harboring mutations in these transporters exhibit dramatic phenotypes, many of which are related to developmental processes and functions necessary for life on dry land. These results suggest that ABC transporters multiplied during evolution and assumed novel functions that allowed plants to adapt to terrestrial environmental conditions. Examining the literature on plant ABC transporters from this viewpoint led us to propose that diverse ABC transporters enabled many unique and essential aspects of a terrestrial plant's lifestyle, by transporting various compounds across specific membranes of the plant. PMID:26902186

  1. New Enhanced Artificial Bee Colony (JA-ABC5) Algorithm with Application for Reactive Power Optimization

    PubMed Central

    2015-01-01

    The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement. PMID:25879054

  2. Aerosol Comparisons Between Observations and Models: AeroCom and ABC

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Schulz, Michael; Kinne, Stefan

    2011-01-01

    I will represent the AeroCom community to the Atmospheric Brown Cloud (ABC) workshop. I will summarize the activities and results from AeroCom Phase I activities in the past 8 years and introduce the new results and activities in the current AeroCom Phase II. We hope to coordinate some activities with the ABC community to share model output and data access for model evaluations, comparisons, and assessment.

  3. Transcriptome-Based Identification of ABC Transporters in the Western Tarnished Plant Bug Lygus hesperus

    PubMed Central

    Hull, J. Joe; Chaney, Kendrick; Geib, Scott M.; Fabrick, Jeffrey A.; Brent, Colin S.; Walsh, Douglas; Lavine, Laura Corley

    2014-01-01

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic clearance. While ABC transporters have been extensively studied in vertebrates, less is known concerning this superfamily in insects, particularly hemipteran pests. We used RNA-Seq transcriptome sequencing to identify 65 putative ABC transporter sequences (including 36 full-length sequences) from the eight ABC subfamilies in the western tarnished plant bug (Lygus hesperus), a polyphagous agricultural pest. Phylogenetic analyses revealed clear orthologous relationships with ABC transporters linked to insecticide/xenobiotic clearance and indicated lineage specific expansion of the L. hesperus ABCG and ABCH subfamilies. The transcriptional profile of 13 LhABCs representative of the ABCA, ABCB, ABCC, ABCG, and ABCH subfamilies was examined across L. hesperus development and within sex-specific adult tissues. All of the transcripts were amplified from both reproductively immature and mature adults and all but LhABCA8 were expressed to some degree in eggs. Expression of LhABCA8 was spatially localized to the testis and temporally timed with male reproductive development, suggesting a potential role in sexual maturation and/or spermatozoa protection. Elevated expression of LhABCC5 in Malpighian tubules suggests a possible role in xenobiotic clearance. Our results provide the first transcriptome-wide analysis of ABC transporters in an agriculturally important hemipteran pest and, because ABC transporters are known to be important mediators of insecticidal resistance, will provide the basis for future biochemical and toxicological studies on the role of this protein family in insecticide resistance in Lygus species. PMID:25401762

  4. LARS Artificial Ligament Versus ABC Purely Polyester Ligament for Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Iliadis, Dimitrios Ph.; Bourlos, Dimitrios N.; Mastrokalos, Dimitrios S.; Chronopoulos, Efstathios; Babis, George C.

    2016-01-01

    Background: Graft choice for anterior cruciate ligament (ACL) reconstruction is of critical importance. Various grafts have been used so far, with autografts long considered the optimal solution for the treatment of ACL-deficient knees. Limited data are available on the long-term survivorship of synthetic grafts. Purpose: To compare the functional outcome and survivorship of ACL reconstructions performed using the LARS (ligament augmentation and reconstruction system) ligament and the ABC (active biosynthetic composite) purely polyester ligament. Study Design: Case series; Level of evidence, 4. Methods: The results of 72 patients who underwent primary arthroscopic ACL reconstruction with the LARS ligament and 31 cases with an ABC purely polyester ligament were reviewed. The mean follow-up periods for the LARS and ABC groups were 9.5 and 5.1 years, respectively. A survivorship analysis of the 2 synthetic grafts was performed using the Kaplan-Meier method with a log-rank test (Mantel-Cox, 95% CI). Lysholm, Tegner activity, Knee injury and Osteoarthritis Outcome Score (KOOS), and International Knee Documentation Committee (IKDC) scores as well as laxity measurements obtained using a KT-1000 arthrometer were recorded for all intact grafts, and a Mann-Whitney U test was used for comparison reasons. Results: The rupture rates for LARS and ABC grafts were 31% (95% CI, 20%-42%) and 42% (95% CI, 25%-59%), respectively. For intact grafts, the mean Lysholm score was good for both groups (90 for the LARS group and 89 for the ABC group), with the majority of patients returning to their preinjury level of activities, and the mean IKDC score was 90 for the LARS group and 86 for the ABC group. Conclusion: The rupture rates of both LARS and ABC grafts were both high. However, the LARS ligament provided significantly better survivorship compared with the ABC ligament at short- to midterm follow-up (95% CI). PMID:27453894

  5. Charging graphene for energy

    NASA Astrophysics Data System (ADS)

    Liu, Jun

    2014-10-01

    Energy storage is a grand challenge for future energy infrastructure, transportation and consumer electronics. Jun Liu discusses how graphene may -- or may not -- be used to improve various electrochemical energy storage devices.

  6. Melting temperature of graphene

    NASA Astrophysics Data System (ADS)

    Los, J. H.; Zakharchenko, K. V.; Katsnelson, M. I.; Fasolino, Annalisa

    2015-01-01

    We present an approach to the melting of graphene based on nucleation theory for a first order phase transition from the two-dimensional (2D) solid to the 3D liquid via an intermediate quasi-2D liquid. The applicability of nucleation theory, supported by the results of systematic atomistic Monte Carlo simulations, provides an intrinsic definition of the melting temperature of graphene, Tm, and allows us to determine it. We find Tm≃4510 K, about 250 K higher than that of graphite using the same interatomic interaction model. The found melting temperature is shown to be in good agreement with the asymptotic results of melting simulations for finite disks and ribbons of graphene. Our results strongly suggest that graphene is the most refractory of all known materials.

  7. Crumpled graphene nanoreactors

    NASA Astrophysics Data System (ADS)

    Wang, Zhongying; Lv, Xiaoshu; Chen, Yantao; Liu, Dan; Xu, Xinhua; Palmore, G. Tayhas R.; Hurt, Robert H.

    2015-05-01

    Nanoreactors are material structures that provide engineered internal cavities that create unique confined nanoscale environments for chemical reactions. Crumpled graphene nanoparticles or ``nanosacks'' may serve as nanoreactors when filled with reactive or catalytic particles and engineered for a specific chemical function. This article explores the behavior of crumpled graphene nanoreactors containing nanoscale ZnO, Ag, Ni, Cu, Fe, or TiO2 particles, either alone or in combination, in a series of case studies designed to reveal their fundamental behaviors. The first case study shows that ZnO nanoparticles undergo rapid dissolution inside the nanoreactor cavity accompanied by diffusive release of soluble products to surrounding aqueous media through the irregular folded shell. This behavior demonstrates the open nature of the sack structure, which facilitates rapid small-molecule exchange between inside and outside that is a requirement for nanoreactor function. In a case study on copper and silver nanoparticles, encapsulation in graphene nanoreactors is shown in some cases to enhance their oxidation rate in aqueous media, which is attributed to electron transfer from the metal core to graphene that bypasses surface oxides and allows reduction of molecular oxygen on the high-area graphene shell. Nanoreactors also allow particle-particle electron transfer interactions that are mediated by the connecting conductive graphene, which give rise to novel behaviors such as galvanic protection of Ag nanoparticles in Ag/Ni-filled nanoreactors, and the photochemical control of Ag-ion release in Ag/TiO2-filled nanoreactors. It is also shown that internal graphene structures within the sacks provide pockets that reduce particle mobility and inhibit particle sintering during thermal treatment. Finally, these novel behaviors are used to suggest and demonstrate several potential applications for graphene nanoreactors in catalysts, controlled release, and environmental remediation

  8. Graphene for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Podila, Ramakrishna; Alexis, Frank; Rao, Apparao; Clemson Bioengineering Team; Clemson Physics Team

    2013-03-01

    In this study, we used graphene, a one-atom thick sheet of carbon atoms, to modify the surfaces of existing implant materials to enhance both bio- and hemo-compatibility. This novel effort meets all functional criteria for a biomedical implant coating as it is chemically inert, atomically smooth and highly durable, with the potential for greatly enhancing the effectiveness of such implants. Specifically, graphene coatings on nitinol, a widely used implant and stent material, showed that graphene coated nitinol (Gr-NiTi) supports excellent smooth muscle and endothelial cell growth leading to better cell proliferation. We further determined that the serum albumin adsorption on Gr-NiTi is greater than that of fibrinogen, an important and well understood criterion for promoting a lower thrombosis rate. These hemo-and biocompatible properties and associated charge transfer mechanisms, along with high strength, chemical inertness and durability give graphene an edge over most antithrombogenic coatings for biomedical implants and devices.

  9. Cytotoxicity of halogenated graphenes

    NASA Astrophysics Data System (ADS)

    Teo, Wei Zhe; Khim Chng, Elaine Lay; Sofer, Zdeněk; Pumera, Martin

    2013-12-01

    Graphene and its family of derivatives possess unique and remarkable physicochemical properties which make them valuable materials for applications in many areas like electronics, energy storage and biomedicine. In response to the possibility of its large-scale manufacturing as commercial products in the future, an investigation was conducted to determine the cytotoxicity of one particular family of graphene derivatives, the halogenated graphenes, for the first time. Halogenated graphenes were prepared through thermal exfoliation of graphite oxide in gaseous chlorine, bromine or iodine atmospheres to yield chlorine- (TRGO-Cl), bromine- (TRGO-Br) and iodine-doped graphene (TRGO-I) respectively. 24 h exposure of human lung carcinoma epithelial cells (A549) to the three halogenated graphenes and subsequent cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays revealed that all the halogenated graphenes examined are rather cytotoxic at the concentrations tested (3.125 μg mL-1 to 200 μg mL-1) and the effects are dose-dependent, with TRGO-Cl reducing the cell viability to as low as 25.7% at the maximum concentration of 200 μg mL-1. Their levels of cytotoxicity can be arranged in the order of TRGO-Cl > TRGO-Br > TRGO-I, and it is suggested that the amount of halogen present in the graphene material is the determining factor for the observed trend. Control experiments were carried out to test for possible nanomaterial-induced interference as a consequence of reaction between the halogenated graphenes and the viability markers (MTT/WST-8 reagent) or binding of the formazan products under cell-free conditions. The data obtained eliminate the probability of significant influence by these interferents as the change in the normalized percentage of formazan formed is relatively small and thorough washings were performed prior to the viability assessments to reduce the amount of halogenated

  10. Cytotoxicity of halogenated graphenes.

    PubMed

    Teo, Wei Zhe; Chng, Elaine Lay Khim; Sofer, Zdeněk; Pumera, Martin

    2014-01-21

    Graphene and its family of derivatives possess unique and remarkable physicochemical properties which make them valuable materials for applications in many areas like electronics, energy storage and biomedicine. In response to the possibility of its large-scale manufacturing as commercial products in the future, an investigation was conducted to determine the cytotoxicity of one particular family of graphene derivatives, the halogenated graphenes, for the first time. Halogenated graphenes were prepared through thermal exfoliation of graphite oxide in gaseous chlorine, bromine or iodine atmospheres to yield chlorine- (TRGO-Cl), bromine- (TRGO-Br) and iodine-doped graphene (TRGO-I) respectively. 24 h exposure of human lung carcinoma epithelial cells (A549) to the three halogenated graphenes and subsequent cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays revealed that all the halogenated graphenes examined are rather cytotoxic at the concentrations tested (3.125 μg mL(-1) to 200 μg mL(-1)) and the effects are dose-dependent, with TRGO-Cl reducing the cell viability to as low as 25.7% at the maximum concentration of 200 μg mL(-1). Their levels of cytotoxicity can be arranged in the order of TRGO-Cl > TRGO-Br > TRGO-I, and it is suggested that the amount of halogen present in the graphene material is the determining factor for the observed trend. Control experiments were carried out to test for possible nanomaterial-induced interference as a consequence of reaction between the halogenated graphenes and the viability markers (MTT/WST-8 reagent) or binding of the formazan products under cell-free conditions. The data obtained eliminate the probability of significant influence by these interferents as the change in the normalized percentage of formazan formed is relatively small and thorough washings were performed prior to the viability assessments to reduce the amount of halogenated

  11. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats.

    PubMed

    Chen, Xin-ran; Liao, Song-jie; Ye, Lan-xiang; Gong, Qiong; Ding, Qiao; Zeng, Jin-sheng; Yu, Jian

    2014-01-16

    Focal cerebral infarction causes secondary damage in the ipsilateral ventroposterior thalamic nucleus (VPN). Chondroitin sulfate proteoglycans (CSPGs) are a family of putative inhibitory components, and its degradation by chondroitinase ABC (ChABC) promotes post-injury neurogenesis. This study investigated the role of ChABC in the primary and secondary injury post stroke in hypertension. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), and were subjected to continuous intra-infarct infusion of ChABC (0.12 U/d for 7 days) 24 h later. Neurological function was evaluated by a modified neurologic severity score. Neurons were counted in the peri-infarct region and the ipsilateral VPN 8 and 14 days after MCAO by Nissl staining and NeuN labeling. The expressions of CSPGs, growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were detected with immunofluorescence or Western blotting. The intra-infarct infusion of ChABC, by degrading accumulated CSPGs, rescued neuronal loss and increased the levels of GAP-43 and SYN in both the ipsilateral cortex and VPN, indicating enhancd neuron survival as well as augmented axonal growth and synaptic plasticity, eventually improving overall neurological function. The study demonstrated that intra-infarct ChABC infusion could salvage the brain from both primary and secondary injury by the intervention on the neuroinhibitory environment post focal cerebral infarction.

  12. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    NASA Astrophysics Data System (ADS)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2016-06-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  13. The role of ABC transporters in drug resistance, metabolism and toxicity.

    PubMed

    Glavinas, Hristos; Krajcsi, Péter; Cserepes, Judit; Sarkadi, Balázs

    2004-01-01

    ATP Binding Cassette (ABC) transporters form a special family of membrane proteins, characterized by homologous ATP-binding, and large, multispanning transmembrane domains. Several members of this family are primary active transporters, which significantly modulate the absorption, metabolism, cellular effectivity and toxicity of pharmacological agents. This review provides a general overview of the human ABC transporters, their expression, localization and basic mechanism of action. Then we shortly deal with the human ABC transporters as targets of therapeutic interventions in medicine, including cancer drug resistance, lipid and other metabolic disorders, and even gene therapy applications. We place a special emphasis on the three major groups of ABC transporters involved in cancer multidrug resistance (MDR). These are the classical P-glycoprotein (MDR1, ABCB1), the multidrug resistance associated proteins (MRPs, in the ABCC subfamily), and the ABCG2 protein, an ABC half-transporter. All these proteins catalyze an ATP-dependent active transport of chemically unrelated compounds, including anticancer drugs. MDR1 (P-glycoprotein) and ABCG2 preferentially extrude large hydrophobic, positively charged molecules, while the members of the MRP family can extrude both hydrophobic uncharged molecules and water-soluble anionic compounds. Based on the physiological expression and role of these transporters, we provide examples for their role in Absorption-Distribution-Metabolism-Excretion (ADME) and toxicology, and describe several basic assays which can be applied for screening drug interactions with ABC transporters in the course of drug research and development.

  14. Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling.

    PubMed

    Jones, P M; George, A M

    2005-04-30

    Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein. PMID:15826647

  15. Deletion of the P5abc Peripheral Element Accelerates Early and Late Folding Steps of the Tetrahymena Group I Ribozyme

    SciTech Connect

    Russell,R.; Tijerina, P.; Chadee, A.; Bhaskaran, H.

    2007-01-01

    The P5abc peripheral element stabilizes the Tetrahymena group I ribozyme and enhances its catalytic activity. Despite its beneficial effects on the native structure, prior studies have shown that early formation of P5abc structure during folding can slow later folding steps. Here we use a P5abc deletion variant (E{sup {Delta}P5abc}) to systematically probe the role of P5abc throughout tertiary folding. Time-resolved hydroxyl radical footprinting shows that E{sup {Delta}P5abc} forms its earliest stable tertiary structure on the millisecond time scale, {approx}5-fold faster than the wild-type ribozyme, and stable structure spreads throughout E{sup {Delta}P5abc} in seconds. Nevertheless, activity measurements show that the earliest detectable formation of native E{sup {Delta}P5abc} ribozyme is much slower ({approx}0.6 min{sup -1}), in a manner similar to that of the wild type. Also similar, only a small fraction of E{sup {Delta}P5abc} attains the native state on this time scale under standard conditions at 25 {sup o}C, whereas the remainder misfolds; footprinting experiments show that the misfolded conformer shares structural features with the long-lived misfolded conformer of the wild-type ribozyme. Thus, P5abc does not have a large overall effect on the rate-limiting step(s) along this pathway. However, once misfolded, E{sup {Delta}P5abc} refolds to the native state 80-fold faster than the wild-type ribozyme and is less accelerated by urea, indicating that P5abc stabilizes the misfolded structure relative to the less-ordered transition state for refolding. Together, the results suggest that, under these conditions, even the earliest tertiary folding intermediates of the wild-type ribozyme represent misfolded species and that P5abc is principally a liability during the tertiary folding process.

  16. Graphene Electrostatic Microphone

    NASA Astrophysics Data System (ADS)

    Zhou, Qin; Onishi, Seita; Zettl, A.

    2015-03-01

    We demonstrate a wideband electrostatic graphene microphone displaying flat frequency response over the entire human audible region as well as into the ultrasonic regime. Using the microphone, low-level ultrasonic bat calls are successfully recorded. The microphone can be paired with a similarly constructed electrostatic graphene loudspeaker to create a wideband ultrasonic radio. Materials Sciences Division, Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute at the University of California - Berkeley.

  17. Crumpled graphene nanoreactors.

    PubMed

    Wang, Zhongying; Lv, Xiaoshu; Chen, Yantao; Liu, Dan; Xu, Xinhua; Palmore, G Tayhas R; Hurt, Robert H

    2015-06-14

    Nanoreactors are material structures that provide engineered internal cavities that create unique confined nanoscale environments for chemical reactions. Crumpled graphene nanoparticles or "nanosacks" may serve as nanoreactors when filled with reactive or catalytic particles and engineered for a specific chemical function. This article explores the behavior of crumpled graphene nanoreactors containing nanoscale ZnO, Ag, Ni, Cu, Fe, or TiO2 particles, either alone or in combination, in a series of case studies designed to reveal their fundamental behaviors. The first case study shows that ZnO nanoparticles undergo rapid dissolution inside the nanoreactor cavity accompanied by diffusive release of soluble products to surrounding aqueous media through the irregular folded shell. This behavior demonstrates the open nature of the sack structure, which facilitates rapid small-molecule exchange between inside and outside that is a requirement for nanoreactor function. In a case study on copper and silver nanoparticles, encapsulation in graphene nanoreactors is shown in some cases to enhance their oxidation rate in aqueous media, which is attributed to electron transfer from the metal core to graphene that bypasses surface oxides and allows reduction of molecular oxygen on the high-area graphene shell. Nanoreactors also allow particle-particle electron transfer interactions that are mediated by the connecting conductive graphene, which give rise to novel behaviors such as galvanic protection of Ag nanoparticles in Ag/Ni-filled nanoreactors, and the photochemical control of Ag-ion release in Ag/TiO2-filled nanoreactors. It is also shown that internal graphene structures within the sacks provide pockets that reduce particle mobility and inhibit particle sintering during thermal treatment. Finally, these novel behaviors are used to suggest and demonstrate several potential applications for graphene nanoreactors in catalysts, controlled release, and environmental remediation.

  18. Thermodynamics of graphene

    NASA Astrophysics Data System (ADS)

    Rusanov, A. I.

    2014-12-01

    The 21st century has brought a lot of new results related to graphene. Apparently, graphene has been characterized from all points of view except surface science and, especially, surface thermodynamics. This report aims to close this gap. Since graphene is the first real two-dimensional solid, a general formulation of the thermodynamics of two-dimensional solid bodies is given. The two-dimensional chemical potential tensor coupled with stress tensor is introduced, and fundamental equations are derived for energy, free energy, grand thermodynamic potential (in the classical and hybrid forms), enthalpy, and Gibbs energy. The fundamentals of linear boundary phenomena are formulated with explaining the concept of a dividing line, the mechanical and thermodynamic line tensions, line energy and other linear properties with necessary thermodynamic equations. The one-dimensional analogs of the Gibbs adsorption equation and Shuttleworth-Herring relation are presented. The general thermodynamic relationships are illustrated with calculations based on molecular theory. To make the reader sensible of the harmony of chemical and van der Waals forces in graphene, the remake of the classical graphite theory is presented with additional variable combinations of graphene sheets. The calculation of the line energy of graphene is exhibited including contributions both from chemical bonds and van der Waals forces (expectedly, the latter are considerably smaller than the former). The problem of graphene holes originating from migrating vacancies is discussed on the basis of the Gibbs-Curie principle. An important aspect of line tension is the planar sheet/nanotube transition where line tension acts as a driving force. Using the bending stiffness of graphene, the possible radius range is estimated for achiral (zigzag and armchair) nanotubes.

  19. Wettability of partially suspended graphene

    PubMed Central

    Ondarçuhu, Thierry; Thomas, Vincent; Nuñez, Marc; Dujardin, Erik; Rahman, Atikur; Black, Charles T.; Checco, Antonio

    2016-01-01

    The dependence of the wettability of graphene on the nature of the underlying substrate remains only partially understood. Here, we systematically investigate the role of liquid-substrate interactions on the wettability of graphene by varying the area fraction of suspended graphene from 0 to 95% by means of nanotextured substrates. We find that completely suspended graphene exhibits the highest water contact angle (85° ± 5°) compared to partially suspended or supported graphene, regardless of the hydrophobicity (hydrophilicity) of the substrate. Further, 80% of the long-range water-substrate interactions are screened by the graphene monolayer, the wettability of which is primarily determined by short-range graphene-liquid interactions. By its well-defined chemical and geometrical properties, supported graphene therefore provides a model system to elucidate the relative contribution of short and long range interactions to the macroscopic contact angle. PMID:27072195

  20. Wettability of partially suspended graphene

    DOE PAGES

    Ondarçuhu, Thierry; Thomas, Vincent; Nuñez, Marc; Dujardin, Erik; Rahman, Atikur; Black, Charles T.; Checco, Antonio

    2016-04-13

    Dependence on the wettability of graphene on the nature of the underlying substrate remains only partially understood. We systematically investigate the role of liquid-substrate interactions on the wettability of graphene by varying the area fraction of suspended graphene from 0 to 95% by means of nanotextured substrates. We find that completely suspended graphene exhibits the highest water contact angle (85° ± 5°) compared to partially suspended or supported graphene, regardless of the hydrophobicity (hydrophilicity) of the substrate. Moreover, 80% of the long-range water-substrate interactions are screened by the graphene monolayer, the wettability of which is primarily determined by short-range graphene-liquidmore » interactions. By its well-defined chemical and geometrical properties, supported graphene therefore provides a model system to elucidate the relative contribution of short and long range interactions to the macroscopic contact angle.« less

  1. Vibrational stability of graphene

    NASA Astrophysics Data System (ADS)

    Hu, Yangfan; Wang, Biao

    2013-05-01

    The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP) models. Compared with three-dimensional (3-D) materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202). This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC), defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D) materials.

  2. Study on ADI CD bias correlating ABC function

    NASA Astrophysics Data System (ADS)

    Deng, Guogui; Hao, Jingan; Xing, Bin; Jiang, Yuntao; Li, Gaorong; Zhang, Qiang; Yue, Liwan; Zu, Yanlei; Hu, Huayong; Liu, Chang; Shen, Manhua; Zhang, Shijian; He, Weiming; Zhang, Nannan; Lin, Yi-Shih; Wu, Qiang; Shi, Xuelong

    2015-03-01

    As the technology node of semiconductor industry is being driven into more advanced 28 nm and beyond, the critical dimension (CD) error budget at after-development inspection (ADI) stage and its control are more and more important and difficult (1-4). 1 nm or even 0.5 nm CD difference is critical for process control. 0.5~1 nm drift of poly linewidth will result in a detectable off-target drift of device performance. The 0.5~1 nm CD drift of hole or metal linewidth on the backend interconnecting layers can potentially contribute to the bridging of metal patterns to vias, and thereby impact yield. In this paper, we studied one function in the scanning electron microscope (SEM) measurement, i.e. the adjustment of brightness and contrast (ABC). We revealed how the step of addressing focus and even the choice of addressing pattern may bring in a systematic error into the CD measurement. This provides a unique insight in the CD measurement and the measurement consistency of through-pitch (TP) patterns and functional patterns.

  3. ABC copolymer silicone surfactant templating for biomimetic silicification.

    PubMed

    Sun, Bo; Guo, Caiyun; Yao, Yuan; Che, Shunai

    2012-07-15

    Using the ABC copolymer silicone surfactant polydimethylsiloxane (PDMS)-graft-(polyethylene oxide (PEO)-block-propylene oxide (PPO)) (PSEP, Scheme 1a) as a template and tetraethoxysilane (TEOS) as a silica source, silica particles with various structures and morphologies (i.e., disordered spherical micellar aggregation, two-dimensional p6mm mesostructure, asymmetric multi-layer non-equilibrium vesicles and symmetric monolayer vesicles) were synthesized by changing the synthesis temperature from 30 to 80 °C. Increasing the hydrophobicity of the surfactant by increasing the temperature resulted in an increase in the surfactant packing parameter g, which led to the mesophase transformation from micellar to cylinder and later to a lamellar structure. The good compatibility between the PDMS and the TEOS, the different natures of the hydrophobic PDMS and PPO segments, and the hydrolysis and condensation rates of TEOS enabled the variation of silicification structures. This novel silicone surfactant templating route and a new type of materials with highly ordered mesostructures and asymmetric morphologies provide a new insight into the molecular factors governing inorganic-organic mesophase and biosilicification for fabricating functionalized materials.

  4. Promising applications of graphene and graphene-based nanostructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of

  5. [Partial cross-cultural adaptation of the Aberrant Behavior Checklist (ABC) scale for analysis of patients with mental retardation].

    PubMed

    Losapio, Mirella Fiuza; Silva, Lis Gomes; Pondé, Milena Pereira; Novaes, Camila Marinho; Santos, Darci Neves dos; Argollo, Nayara; Oliveira, Ivete Maria Santos; Brasil, Heloisa Helena Alves

    2011-05-01

    The aim of the ABC (Aberrant Behavior Checklist) is to evaluate the treatment response for aberrant behavior in patients with mental retardation. The aim of this study was to describe the partial cross-cultural adaptation of the ABC scale to Brazilian Portuguese. The process included conceptual and item equivalence, two translations (T1, T2) and their back-translations (R1, R2), evaluation of referential and general equivalence, expert evaluations, a pre-test, and elaboration of the final version. Conceptual and item equivalences of the ABC were considered pertinent to Brazilian culture. Semantic equivalence showed good correspondence between R1 items and ABC. Reasonable correspondence was obtained between ABC items and R2. All of the professors understood 94.8% of the items in the scale, while relatives understood 87.9%. The Brazilian Portuguese version of the ABC scale thus is available for use, with the appropriate conceptual, item, and semantic equivalence.

  6. Probing graphene defects and estimating graphene quality with optical microscopy

    SciTech Connect

    Lai, Shen; Kyu Jang, Sung; Jae Song, Young; Lee, Sungjoo

    2014-01-27

    We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

  7. A Survey of the ATP-Binding Cassette (ABC) Gene Superfamily in the Salmon Louse (Lepeophtheirus salmonis)

    PubMed Central

    Heumann, Jan; Taggart, John B.; Gharbi, Karim; Bron, James E.; Bekaert, Michaël; Sturm, Armin

    2015-01-01

    Salmon lice, Lepeophtheirus salmonis (Krøyer, 1837), are fish ectoparasites causing significant economic damage in the mariculture of Atlantic salmon, Salmo salar Linnaeus, 1758. The control of L. salmonis at fish farms relies to a large extent on treatment with anti-parasitic drugs. A problem related to chemical control is the potential for development of resistance, which in L. salmonis is documented for a number of drug classes including organophosphates, pyrethroids and avermectins. The ATP-binding cassette (ABC) gene superfamily is found in all biota and includes a range of drug efflux transporters that can confer drug resistance to cancers and pathogens. Furthermore, some ABC transporters are recognised to be involved in conferral of insecticide resistance. While a number of studies have investigated ABC transporters in L. salmonis, no systematic analysis of the ABC gene family exists for this species. This study presents a genome-wide survey of ABC genes in L. salmonis for which, ABC superfamily members were identified through homology searching of the L. salmonis genome. In addition, ABC proteins were identified in a reference transcriptome of the parasite generated by high-throughput RNA sequencing (RNA-seq) of a multi-stage RNA library. Searches of both genome and transcriptome allowed the identification of a total of 33 genes / transcripts coding for ABC proteins, of which 3 were represented only in the genome and 4 only in the transcriptome. Eighteen sequences were assigned to ABC subfamilies known to contain drug transporters, i.e. subfamilies B (4 sequences), C (11) and G (2). The results suggest that the ABC gene family of L. salmonis possesses fewer members than recorded for other arthropods. The present survey of the L. salmonis ABC gene superfamily will provide the basis for further research into potential roles of ABC transporters in the toxicity of salmon delousing agents and as potential mechanisms of drug resistance. PMID:26418738

  8. Graphene Based Flexible Gas Sensors

    NASA Astrophysics Data System (ADS)

    Yi, Congwen

    Graphene is a novel carbon material with great promise for a range of applications due to its electronic and mechanical properties. Its two-dimensional nature translates to a high sensitivity to surface chemical interactions thereby making it an ideal platform for sensors. Graphene's electronic properties are not degraded due to mechanical flexing or strain (Kim, K. S., et al. nature 07719, 2009) offering another advantage for flexible sensors integrated into numerous systems including fabrics, etc. We have demonstrated a graphene NO2 sensor on a solid substrate (100nm SiO2/heavily doped silicon). Three different methods were used to synthesize graphene and the sensor fabrication process was optimized accordingly. Water is used as a controllable p-type dopant in graphene to study the relationship between doping and graphene's response to NO2 . Experimental results show that interface water between graphene and the supporting SiO2 substrate induces higher p-doping in graphene, leading to a higher sensitivity to NO2, consistent with theoretical predications (Zhang, Y. et al., Nanotechnology 20(2009) 185504). We have also demonstrated a flexible and stretchable graphene-based sensor. Few layer graphene, grown on a Ni substrate, is etched and transferred to a highly stretchable polymer substrate (VHB from 3M) with preloaded stress, followed by metal contact formation to construct a flexible, stretchable sensor. With up to 500% deformation caused by compressive stress, graphene still shows stable electrical response to NO2. Our results suggest that higher compressive stress results in smaller sheet resistance and higher sensitivity to NO2. A possible molecular detection sensor utilizing Surface Enhanced Raman Spectrum (SERS) based on a graphene/gallium nanoparticles platform is also studied. By correlating the enhancement of the graphene Raman modes with metal coverage, we propose that the Ga transfers electrons to the graphene creating local regions of enhanced

  9. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa.

    PubMed

    Chen, Lin; Duan, Kangmin

    2016-05-01

    Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell. PMID:26953208

  10. Astrocytic and vascular remodeling in the injured adult rat spinal cord after chondroitinase ABC treatment.

    PubMed

    Milbreta, Ulla; von Boxberg, Ysander; Mailly, Philippe; Nothias, Fatiha; Soares, Sylvia

    2014-05-01

    Upregulation of extracellular chondroitin sulfate proteoglycans (CSPG) is a primary cause for the failure of axons to regenerate after spinal cord injury (SCI), and the beneficial effect of their degradation by chondroitinase ABC (ChABC) is widely documented. Little is known, however, about the effect of ChABC treatment on astrogliosis and revascularization, two important factors influencing axon regrowth. This was investigated in the present study. Immediately after a spinal cord hemisection at thoracic level 8-9, we injected ChABC intrathecally at the sacral level, repeated three times until 10 days post-injury. Our results show an effective cleavage of CSPG glycosaminoglycan chains and stimulation of axonal remodeling within the injury site, accompanied by an extended period of astrocyte remodeling (up to 4 weeks). Interestingly, ChABC treatment favored an orientation of astrocytic processes directed toward the injury, in close association with axons at the lesion entry zone, suggesting a correlation between axon and astrocyte remodeling. Further, during the first weeks post-injury, ChABC treatment affected the morphology of laminin-positive blood vessel basement membranes and vessel-independent laminin deposits: hypertrophied blood vessels with detached or duplicated basement membrane were more numerous than in lesioned untreated animals. In contrast, at later time points, laminin expression increased and became more directly associated with newly formed blood vessels, the size of which tended to be closer to that found in intact tissue. Our data reinforce the idea that ChABC injection in combination with other synergistic treatments is a promising therapeutic strategy for SCI repair.

  11. The seeded growth of graphene.

    PubMed

    Lee, Jae-Kap; Lee, Sohyung; Kim, Yong-Il; Kim, Jin-Gyu; Min, Bong-Ki; Lee, Kyung-Il; Park, Yeseul; John, Phillip

    2014-01-01

    In this paper, we demonstrate the seeded growth of graphene under a plasma chemical vapor deposition condition. First, we fabricate graphene nanopowders (~5 nm) by ball-milling commercial multi-wall carbon nanotubes. The graphene nanoparticles were subsequently subject to a direct current plasma generated in a 100 Torr 10%CH4 - 90%H2 gas mixture. The plasma growth enlarged, over one hour, the nuclei to graphene sheets larger than one hundred nm(2) in area. Characterization by electron and X-ray diffraction, high-resolution transmission electron microscopy images provide evidence for the presence of monolayer graphene sheets. PMID:25022816

  12. Polycation stabilization of graphene suspensions

    PubMed Central

    2011-01-01

    Graphene is a leading contender for the next-generation electronic devices. We report a method to produce graphene membranes in the solution phase using polymeric imidazolium salts as a transferring medium. Graphene membranes were reduced from graphene oxides by hydrazine in the presence of the polyelectrolyte which is found to be a stable and homogeneous dispersion for the resulting graphene in the aqueous solution. A simple device with gold contacts on both sides was fabricated in order to observe the electronic properties. PMID:21846382

  13. Genome organisation and expression profiling of ABC protein-encoding genes in Heterobasidion annosum s.l. complex.

    PubMed

    Baral, Bikash; Kovalchuk, Andriy; Asiegbu, Fred O

    2016-03-01

    Members of Heterobasidion annosum species complex are widely regarded as the most destructive fungal pathogens of conifer trees in the boreal and temperate zones of Northern hemisphere. To invade and colonise their host trees, Heterobasidion fungi must overcome components of host chemical defence, including terpenoid oleoresin and phenolic compounds. ABC transporters may play an important role in this process participating in the export of toxic host metabolites and maintaining their intracellular concentration below the critical level. We have identified and phylogenetically classified Heterobasidion genes encoding ABC transporters and closely related ABC proteins. The number of ABC proteins in the Heterobasidion genome is one of the lowest among analysed species of Agaricomycotina. Using quantitative RT-PCR, we have analysed transcriptional response of Heterobasidion ABC transporter-encoding genes to monoterpenes as well as their expression profile during growth on pine wood in comparison to the growth on defined media. Several ABC transporters were up-regulated during growth on pine wood. The ABC-transporter encoding gene ABCG1.1 was induced both during growth of H. annosum on pine wood and upon exposure to monoterpenes. Our experimental data demonstrate the differential responses of Heterobasidion ABC genes to growth conditions and chemical stressors. The presented results suggest a potential role of Heterobasidion ABC-G transporters in the resistance to the components of conifer chemical defence. PMID:26895866

  14. Conformational plasticity of the type I maltose ABC importer.

    PubMed

    Böhm, Simon; Licht, Anke; Wuttge, Steven; Schneider, Erwin; Bordignon, Enrica

    2013-04-01

    ATP-binding cassette (ABC) transporters couple the translocation of solutes across membranes to ATP hydrolysis. Crystal structures of the Escherichia coli maltose importer (MalFGK2) in complex with its substrate binding protein (MalE) provided unprecedented insights in the mechanism of substrate translocation, leaving the MalE-transporter interactions still poorly understood. Using pulsed EPR and cross-linking methods we investigated the effects of maltose and MalE on complex formation and correlated motions of the MalK2 nucleotide-binding domains (NBDs). We found that both substrate-free (open) and liganded (closed) MalE interact with the transporter with similar affinity in all nucleotide states. In the apo-state, binding of open MalE occurs via the N-lobe, leaving the C-lobe disordered, but upon maltose binding, closed MalE associates tighter to the transporter. In both cases the NBDs remain open. In the presence of ATP, the transporter binds both substrate-free and liganded MalE, both inducing the outward-facing conformation trapped in the crystal with open MalE at the periplasmic side and NBDs tightly closed. In contrast to ATP, ADP-Mg(2+) alone is sufficient to induce a semiopen conformation in the NBDs. In this nucleotide-driven state, the transporter binds both open and closed MalE with slightly different periplasmic configurations. We also found that dissociation of MalE is not a required step for substrate translocation since a supercomplex with MalE cross-linked to MalG retains the ability to hydrolyze ATP and to transport maltose. These features of MalE-MalFGK2 interactions highlight the conformational plasticity of the maltose importer, providing insights into the ATPase stimulation by unliganded MalE.

  15. Tiling patterns from ABC star molecules: 3-colored foams?

    PubMed

    Kirkensgaard, Jacob J K; Pedersen, Martin C; Hyde, Stephen T

    2014-10-01

    We present coarse-grained simulations of the self-assembly of 3-armed ABC star polyphiles. In systems of star polyphiles with two arms of equal length the simulations corroborate and expand previous findings from related miktoarm star terpolymer systems on the formation of patterns containing columnar domains whose sections are 2D planar tilings. However, the systematic variation of face topologies as the length of the third (unequal) arm is varied differs from earlier findings regarding the compositional dependence. We explore 2D 3-colored foams to establish the optimal patterns based on interfacial energy alone. A generic construction algorithm is described that accounts for all observed 2D tiling patterns and suggests other patterns likely to be found beyond the range of the simulations reported here. Patterns resulting from this algorithm are relaxed using Surface Evolver calculations to form 2D foams with minimal interfacial length as a function of composition. This allows us to estimate the interfacial enthalpic contributions to the free energy of related star molecular assemblies assuming strong segregation. We compare the resulting phase sequence with a number of theoretical results from particle-based simulations and field theory, allowing us to tease out relative enthalpic and entropic contributions as a function of the chain lengths making up the star molecules. Our results indicate that a richer polymorphism is to be expected in systems not dominated by chain entropy. Further, analysis of corresponding planar tiling patterns suggests that related two-periodic columnar structures are unlikely hypothetical phases in 4-arm star polyphile melts in the absence of sufficient arm configurational freedom for minor domains to form lens-shaped di-gons, which require higher molecular weight polymeric arms. Finally, we discuss the possibility of forming a complex tiling pattern that is a quasi-crystalline approximant for 3-arm star polyphiles with unequal arm

  16. Control of Plasma Membrane Permeability by ABC Transporters

    PubMed Central

    Khakhina, Svetlana; Johnson, Soraya S.; Manoharlal, Raman; Russo, Sarah B.; Blugeon, Corinne; Lemoine, Sophie; Sunshine, Anna B.; Dunham, Maitreya J.; Cowart, L. Ashley; Devaux, Frédéric

    2014-01-01

    ATP-binding cassette transporters Pdr5 and Yor1 from Saccharomyces cerevisiae control the asymmetric distribution of phospholipids across the plasma membrane as well as serving as ATP-dependent drug efflux pumps. Mutant strains lacking these transporter proteins were found to exhibit very different resistance phenotypes to two inhibitors of sphingolipid biosynthesis that act either late (aureobasidin A [AbA]) or early (myriocin [Myr]) in the pathway leading to production of these important plasma membrane lipids. These pdr5Δ yor1 strains were highly AbA resistant but extremely sensitive to Myr. We provide evidence that these phenotypic changes are likely due to modulation of the plasma membrane flippase complexes, Dnf1/Lem3 and Dnf2/Lem3. Flippases act to move phospholipids from the outer to the inner leaflet of the plasma membrane. Genetic analyses indicate that lem3Δ mutant strains are highly AbA sensitive and Myr resistant. These phenotypes are fully epistatic to those seen in pdr5Δ yor1 strains. Direct analysis of AbA-induced signaling demonstrated that loss of Pdr5 and Yor1 inhibited the AbA-triggered phosphorylation of the AGC kinase Ypk1 and its substrate Orm1. Microarray experiments found that a pdr5Δ yor1 strain induced a Pdr1-dependent induction of the entire Pdr regulon. Our data support the view that Pdr5/Yor1 negatively regulate flippase function and activity of the nuclear Pdr1 transcription factor. Together, these data argue that the interaction of the ABC transporters Pdr5 and Yor1 with the Lem3-dependent flippases regulates permeability of AbA via control of plasma membrane protein function as seen for the high-affinity tryptophan permease Tat2. PMID:25724885

  17. Large exchange bias enhancement in (Pt(or Pd)/Co)/IrMn/Co trilayers with ultrathin IrMn thanks to interfacial Cu dusting

    SciTech Connect

    Vinai, G.; Moritz, J.; Bandiera, S.; Prejbeanu, I. L.; Dieny, B.

    2014-04-21

    The magnitude of exchange bias (H{sub ex}) at room temperature can be significantly enhanced in IrMn/Co and (Pt(or Pd)/Co)/IrMn/Co structures thanks to the insertion of an ultrathin Cu dusting layer at the IrMn/Co interface. The combination of trilayer structure and interfacial Cu dusting leads to a three-fold increase in H{sub ex} as compared to the conventional IrMn/Co bilayer structure, with an increased blocking temperature (T{sub B}) and a concave curvature of the temperature dependence H{sub ex}(T), ideal for improved Thermally Assisted-Magnetic Random Access Memory storage layer. This exchange bias enhancement is ascribed to a reduction of the spin frustration at the IrMn/Co interface thanks to interfacial Cu addition.

  18. Magnetization Dynamics Through Magnetoimpedance Effect in Isotropic Co2FeAl/Au/Co2FeAl Full-Heusler Alloy Trilayer Films

    NASA Astrophysics Data System (ADS)

    Assolin Corrêa, Marcio; Montardo Escobar, Vivian; Trigueiro-Neto, Osvaldo; Bohn, Felipe; Daiane Sossmeier, Kelly; Gomes Bezerra, Claudionor; Chesman, Carlos; Pearson, John; Hoffmann, Axel

    2013-09-01

    We investigate the magnetization dynamics in low damping parameter α systems by measuring the magnetoimpedance effect over a wide range of frequencies, from 0.1 to 3.0 GHz, in Co2FeAl/Au/Co2FeAl full-Heusler alloy trilayer films grown by magnetron sputtering on glass and MgO substrates. We show that the film produced on the glass substrate presents high magnetoimpedance performance, while that grown on the MgO substrate has low magnetoimpedance performance. Since both films are polycrystalline and have isotropic in-plane magnetic properties, we interpret the magnetoimpedance results in terms of the low damping parameter α and strain effects in the films. Thus, we verified that our films present good magnetoimpedance performance and showed that high performance can be achieved even in films with isotropic in-plane magnetic properties, since they present low damping parameter α.

  19. Resonance magnetoelectric effect in Ni/Pb(Zr,Ti)O3/Terfenol-D trilayered composites with different mechanical boundary conditions

    NASA Astrophysics Data System (ADS)

    Cheng, J. H.; Wang, Y. G.; Xie, D.

    2014-06-01

    Magnetoelectric Ni/Pb(Zr,Ti)O3 (PZT)/Tb1-xDyxFe2-y (Terfenol-D) trilayered composites were made up of negative magnetostrictive/piezoelectric/positive magnetostrictive layers, and bonded to nonmagnetic glass plates to obtain three different mechanical boundary conditions: (i) both ends of sample traction free (F-F), (ii) one end clamped while the other traction free (C-F), and (iii) both ends of sample clamped (C-C). In these three modes, various experimental values of resonance frequencies were obtained in 1-140 kHz range, which agree well with the calculated ones. In the C-F mode six resonance frequencies exist, which may be useful for multifrequency operation. The low resonance frequency of the C-F mode can be used to decrease the eddy current loss of the magnetostrictive phase and increase the lifetime of the devices.

  20. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure.

    PubMed

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-01-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm. PMID:27381651

  1. Temperature-induced sign change of the magnetic interlayer coupling in Ni/Ni25Mn75/Ni trilayers on Cu3Au(001)

    NASA Astrophysics Data System (ADS)

    Shokr, Y. A.; Erkovan, M.; Wu, C.-B.; Zhang, B.; Sandig, O.; Kuch, W.

    2015-05-01

    We investigated the magnetic interlayer coupling between two ferromagnetic (FM) Ni layers through an antiferromagnetic (AFM) Ni25Mn75 layer and the influence of this coupling on the exchange bias phenomenon. The interlayer coupling energy of an epitaxial trilayer of 14 atomic monolayers (ML) Ni/45 ML Ni25Mn75/16 ML Ni on Cu3Au(001) was extracted from minor-loop magnetization measurements using in-situ magneto-optical Kerr effect. The interlayer coupling changes from ferromagnetic to antiferromagnetic when the temperature is increased above 300 K. This sign change is interpreted as the result of the competition between an antiparallel Ruderman-Kittel-Kasuya-Yosida (RKKY)-type interlayer coupling, which dominates at high temperature, and a stronger direct exchange coupling across the AFM layer, which is present only below the Néel temperature of the AFM layer.

  2. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure

    NASA Astrophysics Data System (ADS)

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-07-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm.

  3. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure

    PubMed Central

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-01-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm. PMID:27381651

  4. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    DOEpatents

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  5. Environmentally responsive graphene systems.

    PubMed

    Zhang, Jing; Song, Long; Zhang, Zhipan; Chen, Nan; Qu, Liangti

    2014-06-12

    Graphene materials have been attracting significant research interest in the past few years, with the recent focuses on graphene-based electronic devices and smart stimulus-responsive systems that have a certain degree of automatism. Owing to its huge specific surface area, large room-temperature electron mobility, excellent mechanical flexibility, exceptionally high thermal conductivity and environmental stability, graphene is identified as a beneficial additive or an effective responding component by itself to improve the conductivity, flexibility, mechanical strength and/or the overall responsive performance of smart systems. In this review article, we aim to present the recent advances in graphene systems that are of spontaneous responses to external stimulations, such as environmental variation in pH, temperature, electric current, light, moisture and even gas ambient. These smart stimulus-responsive graphene systems are believed to have great theoretical and practical interests to a wide range of device applications including actuators, switches, robots, sensors, drug/gene deliveries, etc. PMID:24376152

  6. Transition metal contacts to graphene

    SciTech Connect

    Politou, Maria De Gendt, Stefan; Heyns, Marc; Asselberghs, Inge; Radu, Iuliana; Conard, Thierry; Richard, Olivier; Martens, Koen; Huyghebaert, Cedric; Tokei, Zsolt; Lee, Chang Seung; Sayan, Safak

    2015-10-12

    Achieving low resistance contacts to graphene is a common concern for graphene device performance and hybrid graphene/metal interconnects. In this work, we have used the circular Transfer Length Method (cTLM) to electrically characterize Ag, Au, Ni, Ti, and Pd as contact metals to graphene. The consistency of the obtained results was verified with the characterization of up to 72 cTLM structures per metal. Within our study, the noble metals Au, Ag and Pd, which form a weaker bond with graphene, are shown to result in lower contact resistance (Rc) values compared to the more reactive Ni and Ti. X-ray Photo Electron Spectroscopy and Transmission Electron Microscopy characterization for the latter have shown the formation of Ti and Ni carbides. Graphene/Pd contacts show a distinct intermediate behavior. The weak carbide formation signature and the low Rc values measured agree with theoretical predictions of an intermediate state of weak chemisorption of Pd on graphene.

  7. Enhanced environmental stability induced by effective polarization of a polar dielectric layer in a trilayer dielectric system of organic field-effect transistors: a quantitative study.

    PubMed

    Subbarao, Nimmakayala V V; Gedda, Murali; Iyer, Parameswar K; Goswami, Dipak K

    2015-01-28

    We report a concept fabrication method that helps to improve the performance and stability of copper phthalocyanine (CuPc) based organic field-effect transistors (OFETs) in ambient. The devices were fabricated using a trilayer dielectric system that contains a bilayer polymer dielectrics consisting of a hydrophobic thin layer of poly(methyl methacrylate) (PMMA) on poly(vinyl alcohol) (PVA) or poly(4-vinylphenol) (PVP) or polystyrene (PS) with Al2O3 as a third layer. We have explored the peculiarities in the device performance (i.e., superior performance under ambient humidity), which are caused due to the polarization of dipoles residing in the polar dielectric material. The anomalous behavior of the bias-stress measured under vacuum has been explained successfully by a stretched exponential function modified by adding a time dependent dipole polarization term. The OFET with a dielectric layer of PVA or PVP containing hydroxyl groups has shown enhanced characteristics and remains highly stable without any degradation even after 300 days in ambient with three times enhancement in carrier mobility (0.015 cm(2)·V(-1)·s(-1)) compared to vacuum. This has been attributed to the enhanced polarization of hydroxyl groups in the presence of absorbed water molecules at the CuPc/PMMA interface. In addition, a model has been proposed based on the polarization of hydroxyl groups to explain the enhanced stability in these devices. We believe that this general method using a trilayer dielectric system can be extended to fabricate other OFETs with materials that are known to show high performances under vacuum but degrade under ambient conditions. PMID:25552195

  8. Giant magnetoelectric coupling interaction in BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} trilayer multiferroic heterostructures

    SciTech Connect

    Kotnala, R. K. E-mail: rkkotnala@gmail.com; Gupta, Rekha; Chaudhary, Sujeet

    2015-08-24

    Multiferroic trilayer thin films of BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} were prepared by RF-magnetron sputtering technique at different thicknesses of BiFeO{sub 3} layer. A pure phase polycrystalline growth of thin films was confirmed from X-ray diffraction results. The film showed maximum remnant electric polarization (2P{sub r}) of 13.5 μC/cm{sup 2} and saturation magnetization (M{sub s}) of 61 emu/cc at room temperature. Thermally activated charge transport dominated via oxygen vacancies as calculated by their activation energy, which was consistent with current–voltage characteristics. Magnetic field induced large change in resistance and capacitance of grain, and grain boundary was modeled by combined impedance and modulus spectroscopy in the presence of varied magnetic fields. Presence of large intrinsic magnetoelectric coupling was established by a maximum 20% increase in grain capacitance (C{sub g}) with applied magnetic field (2 kG) on trilayer having 20 nm BiFeO{sub 3} layer. Substantially higher magnetoelectric coupling in thinner films has been observed due to bonding between Fe and Ti atoms at interface via oxygen atoms. Room temperature magnetoelectric coupling was confirmed by dynamic magnetoelectric coupling, and maximum longitudinal magnetoelectric coupling of 515 mV/cm-Oe was observed at 20 nm thickness of BiFeO{sub 3}. The observed magnetoelectric properties are potentially useful for novel room temperature magnetoelectric and spintronic device applications for obtaining higher voltage at lower applied magnetic field.

  9. Investigating the complex mechanism of B migration in a magnetic-tunnel-junction trilayer structure—a combined study using XPS and TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Ying, Ji-Feng; Ji, Rong; Ter Lim, Sze; Tran, Michael N.; Wang, Chen Chen; Ernult, Franck

    2016-02-01

    The magnetic-tunnel-junction (MTJ) structure is the core of many important devices, such as magnetic recording head and STT-RAM. CoFeB/MgO/CoFeB tri-layer thin-film stack is a widely researched MTJ structure. In this tri-layer, the functional property of the MTJ, i.e. its TMR ratio, is critically dependent on the crystal orientation of the CoFe grains. In order for the desired (1 0 0) out of plane texture to develop in the CoFeB layers, B needs to be engineered to be expelled out of these CoFeB layers, and diffuse or migrate into the adjacent layers. Ta is usually used as a seed layer adjacent to the MTJ structure. In this work, we investigated the important B-migration mechanisms within this MTJ structure through a combined XPS/TOF-SIMS study. Specifically, we tried to elucidate the possible physical/chemical interactions between the B and Ta that could happen with different film stack designs. Previous works have shown that there might be two possible B-migration mechanisms. One mechanism is direct B diffusion into the adjacent Ta layer during annealing. The other B-migration mechanism is through the formation of TaBOx species, in which B could be carried out by the Ta diffusion. In particular, through studying a series of film stacks, we discussed the circumstances under which one of these B-migration mechanisms becomes dominant. Furthermore, we discussed how these B-migration mechanisms facilitated the B expulsion in a common MTJ structure.

  10. Electron transfer between the QmoABC membrane complex and adenosine 5'-phosphosulfate reductase.

    PubMed

    Duarte, Américo G; Santos, André A; Pereira, Inês A C

    2016-04-01

    The dissimilatory adenosine 5'-phosphosulfate reductase (AprAB) is a key enzyme in the sulfate reduction pathway that catalyzes the reversible two electron reduction of adenosine 5'-phosphosulfate (APS) to sulfite and adenosine monophosphate (AMP). The physiological electron donor for AprAB is proposed to be the QmoABC membrane complex, coupling the quinone-pool to sulfate reduction. However, direct electron transfer between these two proteins has never been observed. In this work we demonstrate for the first time direct electron transfer between the Desulfovibrio desulfuricans ATCC 27774 QmoABC complex and AprAB. Cyclic voltammetry conducted with the modified Qmo electrode and AprAB in the electrolyte solution presented the Qmo electrochemical signature with two additional well-defined one electron redox processes, attributed to the AprAB FAD redox behavior. Moreover, experiments performed under catalytic conditions using the QmoABC modified electrode, with AprAB and APS in solution, show a catalytic current peak develop in the cathodic wave, attributed to substrate reduction, and which is not observed in the absence of QmoABC. Substrate dependence conducted with different electrode preparations (with and without immobilized Qmo) demonstrated that the QmoABC complex is essential for efficient electron delivery to AprAB, in order to sustain catalysis. These results confirm the role of Qmo in electron transfer to AprAB. PMID:26768116

  11. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    SciTech Connect

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A.

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.

  12. Marine medaka ATP-binding cassette (ABC) superfamily and new insight into teleost Abch nomenclature

    PubMed Central

    Jeong, Chang-Bum; Kim, Bo-Mi; Kang, Hye-Min; Choi, Ik-Young; Rhee, Jae-Sung; Lee, Jae-Seong

    2015-01-01

    The ABC gene family is recognized as one of the largest gene families in all kingdoms of life. Although many genes involved in the ABC superfamily have been annotated from several fish species, information on large sets of the ABC superfamily and their evolutionary characterization are still unclear. In the marine medaka Oryzias melastigma, 50 ABC transporters were identified with bioinformatics-aided in silico analyses, and their full-length cDNA sequences were characterized. Phylogenetic analysis revealed that they could be classified into the eight subfamilies (A–H) that include all members of all ABC subfamilies. Interestingly, several teleosts’ Abcg members were closely clustered with Abch members in a distinctive clade. The abch gene was also observed in the coelacanth and the spotted gar, suggesting that this gene was retained from a bilaterian ancestor and that a gene loss event recently occurred in the tetrapod lineage. In teleosts, the nomenclature of previously annotated abcg genes should be considered carefully, as they form a distinctive clade with the marine medaka abch subfamily and other teleost abch genes, but not with the members of the Abcg subfamily. PMID:26472499

  13. Subnanometer resolution cryo-EM structure of a nucleotide free heterodimeric ABC exporter

    PubMed Central

    Kim, JungMin; Wu, Shenping; Tomasiak, Thomas; Mergel, Claudia; Winter, Michael B.; Stiller, Sebastian B.; Robles-Colmanares, Yaneth; Stroud, Robert M.; Tampé, Robert; Craik, Charles S.; Cheng, Yifan

    2015-01-01

    ATP-binding cassette (ABC) transporters translocate substrates across cell membranes, using energy harnessed from ATP binding and hydrolysis at their nucleotide binding domains (NBDs)1,2. ABC exporters are present in both prokaryotes and eukaryotes with examples implicated in multidrug resistance of pathogens and cancer cells, as well as in many human diseases3,4. TmrAB is a heterodimeric ABC exporter from the thermophilic Gram-negative eubacterium Thermus thermophilus homologous to various multidrug transporters and containing one degenerate site with a non-catalytic residue next to the Walker B motif5. Here we report a subnanometer resolution structure of detergent-solubilized TmrAB in a nucleotide-free, inward-facing conformation by single particle electron cryomicroscopy (cryo-EM). The reconstructions clearly resolved characteristic features of ABC transporters, including helices in the transmembrane domain (TMD) and NBDs. A cavity in the TMD is accessible laterally from the cytoplasmic side of the membrane as well as from the cytoplasm, indicating that the transporter lies in an inward-facing open conformation. The two NBDs remain in contact via their C-terminal helices. Furthermore, comparison between our structure and the crystal structures of other ABC transporters suggests a possible trajectory of conformational changes that involves a sliding and rotating motion between the two NBDs during the transition from the inward facing to outward facing conformations. PMID:25363761

  14. Effects of multiple chondroitinase ABC applications on tissue engineered articular cartilage

    PubMed Central

    Natoli, Roman M.; Responte, Donald J.; Athanasiou, Kyriacos A.

    2010-01-01

    Summary Increasing tensile properties and collagen content is a recognized need in articular cartilage tissue engineering. This study tested the hypothesis that multiple applications of chondroitinase ABC (C-ABC), a glycosaminoglycan (GAG) degrading enzyme, could increase construct tensile properties in a scaffold-less approach for articular cartilage tissue engineering. Developing constructs were treated with C-ABC at 2 wks, 4 wks, or both 2 and 4 wks. At 4 and 6 wks, construct sulfated GAG composition, collagen composition, and compressive and tensile biomechanical properties were assessed, along with immunohistochemistry (IHC) for collagens type I, II, and VI, and the proteoglycan decorin. At 6 wks, the tensile modulus and ultimate tensile strength of the group treated at both 2 and 4 wks were significantly increased over controls by 78% and 64%, reaching values of 3.4 and 1.4 MPa, respectively. Collagen concentration also increased 43%. Further, groups treated at either 2 wks or 4 wks alone also had increased tensile stiffness compared to controls. Surprisingly, though GAG was depleted in the treated groups, by 6 wks there were no significant differences in compressive stiffness. IHC showed abundant collagen type II and VI in all groups, with no collagen type I. Further, decorin staining was reduced following C-ABC treatment, but returned during subsequent culture. The results support the use of C-ABC in cartilage tissue engineering for increasing tensile properties. PMID:19123232

  15. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    PubMed

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. PMID:27449595

  16. Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology

    PubMed Central

    Poon, Art F.Y.

    2015-01-01

    The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challenge to phylodynamic inference is quantifying the similarity between two trees in an efficient and comprehensive way. In this study, I demonstrate that a new distance measure, based on a subset tree kernel function from computational linguistics, confers a significant improvement over previous measures of tree shape for classifying trees generated under different epidemiological scenarios. Next, I incorporate this kernel-based distance measure into an approximate Bayesian computation (ABC) framework for phylodynamic inference. ABC bypasses the need for an analytical solution of model likelihood, as it only requires the ability to simulate data from the model. I validate this “kernel-ABC” method for phylodynamic inference by estimating parameters from data simulated under a simple epidemiological model. Results indicate that kernel-ABC attained greater accuracy for parameters associated with virus transmission than leading software on the same data sets. Finally, I apply the kernel-ABC framework to study a recent outbreak of a recombinant HIV subtype in China. Kernel-ABC provides a versatile framework for phylodynamic inference because it can fit a broader range of models than methods that rely on the computation of exact likelihoods. PMID:26006189

  17. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    PubMed

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR.

  18. Graphene in turbine blades

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  19. Inorganic Graphene Analogs

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Maitra, Urmimala

    2015-07-01

    In the last four to five years, there has been a great resurgence of research on two-dimensional inorganic materials, partly because of the impetus received from graphene research. Unlike graphene, which is a gap-less material, most inorganic layered materials are semiconductors or insulators. Some of them, as exemplified by MoS2, exhibit unexpected properties, not unlike graphene, with possible applications. Thus, layered metal chalcogenides are being explored intensely, and MoS2 is emerging as a wonder material. In this article, we present the synthesis and properties of nanosheets composing single or few layers of these fascinating materials. Besides metal chalcogenides, boron nitride, borocarbonitrides (BxCyNz), metal oxides, and metal-organic frameworks are also discussed.

  20. Hyperelastic tension of graphene

    SciTech Connect

    Saavedra Flores, E. I.; Ajaj, R. M.; Adhikari, S.; Dayyani, I.; Friswell, M. I.; Castro-Triguero, Rafael

    2015-02-09

    In this paper, we investigate the hyperelastic tensile behaviour of single layer graphene sheets (SLGSs). A one-term incompressible Ogden-type hyperelastic model is chosen to describe the mechanical response of C-C bonds. By establishing equality between the Ogden strain-energy and the variation of the Tersoff-Brenner interatomic potential, three different geometries of SLGSs are studied under tensile loading. We compute the Young's modulus, the finite-deformation Poisson's ratio, ultimate strains, total reactions, and the variation of the potential energy per carbon atom for large strains. Numerical simulations are compared with results obtained by molecular mechanics and molecular dynamics simulations, finite elements, continuum mechanics theory, and experiments. Our predictions are validated, revealing the potential predictive capabilities of the present hyperelastic framework for the analysis of graphene in the context of infinitesimal and large deformations. The good agreement found between our calculations and the published data suggests that graphene may be described as a hyperelastic material.

  1. Crumpling Damaged Graphene

    PubMed Central

    Giordanelli, I.; Mendoza, M.; Andrade Jr., J. S.; Gomes, M. A. F.; Herrmann, H. J.

    2016-01-01

    Through molecular mechanics we find that non-covalent interactions modify the fractality of crumpled damaged graphene. Pristine graphene membranes are damaged by adding random vacancies and carbon-hydrogen bonds. Crumpled membranes exhibit a fractal dimension of 2.71 ± 0.02 when all interactions between carbon atoms are considered, and 2.30 ± 0.05 when non-covalent interactions are suppressed. The transition between these two values, obtained by switching on/off the non-covalent interactions of equilibrium configurations, is shown to be reversible and independent on thermalisation. In order to explain this transition, we propose a theoretical model that is compatible with our numerical findings. Finally, we also compare damaged graphene membranes with other crumpled structures, as for instance polymerised membranes and paper sheets, that share similar scaling properties. PMID:27173442

  2. Crumpling Damaged Graphene.

    PubMed

    Giordanelli, I; Mendoza, M; Andrade, J S; Gomes, M A F; Herrmann, H J

    2016-05-13

    Through molecular mechanics we find that non-covalent interactions modify the fractality of crumpled damaged graphene. Pristine graphene membranes are damaged by adding random vacancies and carbon-hydrogen bonds. Crumpled membranes exhibit a fractal dimension of 2.71 ± 0.02 when all interactions between carbon atoms are considered, and 2.30 ± 0.05 when non-covalent interactions are suppressed. The transition between these two values, obtained by switching on/off the non-covalent interactions of equilibrium configurations, is shown to be reversible and independent on thermalisation. In order to explain this transition, we propose a theoretical model that is compatible with our numerical findings. Finally, we also compare damaged graphene membranes with other crumpled structures, as for instance polymerised membranes and paper sheets, that share similar scaling properties.

  3. Acoustoelectric photoresponse in graphene

    SciTech Connect

    Poole, T.; Bandhu, L.; Nash, G. R.

    2015-03-30

    The acoustoelectric current in graphene has been investigated as a function of illumination, using blue (450 nm) and red (735 nm) light-emitting diodes (LEDs), and surface acoustic wave (SAW) intensity and frequency. The measured acoustoelectric current increases with illumination, more than the measured change in the conductivity of the graphene, whilst retaining a linear dependence on the SAW intensity. The latter is consistent with the interaction between the carriers and SAWs being described by a relatively simple classical relaxation model suggesting that the change in the acoustoelectric current is caused by the effect of the illumination on the electronic properties of the graphene. The increase in the acoustoelectric current is greatest under illumination with the blue LED, consistent with the creation of a hot electron distribution.

  4. Crumpling Damaged Graphene

    NASA Astrophysics Data System (ADS)

    Giordanelli, I.; Mendoza, M.; Andrade, J. S., Jr.; Gomes, M. A. F.; Herrmann, H. J.

    2016-05-01

    Through molecular mechanics we find that non-covalent interactions modify the fractality of crumpled damaged graphene. Pristine graphene membranes are damaged by adding random vacancies and carbon-hydrogen bonds. Crumpled membranes exhibit a fractal dimension of 2.71 ± 0.02 when all interactions between carbon atoms are considered, and 2.30 ± 0.05 when non-covalent interactions are suppressed. The transition between these two values, obtained by switching on/off the non-covalent interactions of equilibrium configurations, is shown to be reversible and independent on thermalisation. In order to explain this transition, we propose a theoretical model that is compatible with our numerical findings. Finally, we also compare damaged graphene membranes with other crumpled structures, as for instance polymerised membranes and paper sheets, that share similar scaling properties.

  5. Graphene quantum interference photodetector

    PubMed Central

    Voss, Paul L

    2015-01-01

    Summary In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency. PMID:25821713

  6. Multilayer graphene condenser microphone

    NASA Astrophysics Data System (ADS)

    Todorović, Dejan; Matković, Aleksandar; Milićević, Marijana; Jovanović, Djordje; Gajić, Radoš; Salom, Iva; Spasenović, Marko

    2015-12-01

    Vibrating membranes are the cornerstone of acoustic technology, forming the backbone of modern loudspeakers and microphones. Acoustic performance of a condenser microphone is derived mainly from the membrane’s size, surface mass and achievable static tension. The widely studied and available nickel has been a dominant membrane material for professional microphones for several decades. In this paper we introduce multilayer graphene as a membrane material for condenser microphones. The graphene device outperforms a high end commercial nickel-based microphone over a significant part of the audio spectrum, with a larger than 10 dB enhancement of sensitivity. Our experimental results are supported with numerical simulations, which also show that a 300 layer thick graphene membrane under maximum tension would offer excellent extension of the frequency range, up to 1 MHz.

  7. Graphene quantum interference photodetector.

    PubMed

    Alam, Mahbub; Voss, Paul L

    2015-01-01

    In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach-Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.

  8. Schwinger mechanism and graphene

    SciTech Connect

    Allor, Danielle; Cohen, Thomas D.; McGady, David A.

    2008-11-01

    The Schwinger mechanism, the production of charged particle-antiparticle pairs in a macroscopic external electric field, is derived for 2+1-dimensional theories. The rate of pair production per unit area for four species of massless fermions, with charge q, in a constant electric field E is given by {pi}{sup -2}({Dirac_h}/2{pi}){sup -3/2}c-tilde{sup -1/2}(qE){sup 3/2} where c-tilde is the speed of light for the two-dimensional system. To the extent undoped graphene behaves like the quantum field-theoretic vacuum for massless fermions in 2+1 dimensions, the Schwinger mechanism should be testable experimentally. A possible experimental configuration for this is proposed. Effects due to deviations from this idealized picture of graphene are briefly considered. It is argued that with present day samples of graphene, tests of the Schwinger formula may be possible.

  9. Hyperelastic tension of graphene

    NASA Astrophysics Data System (ADS)

    Saavedra Flores, E. I.; Ajaj, R. M.; Adhikari, S.; Dayyani, I.; Friswell, M. I.; Castro-Triguero, Rafael

    2015-02-01

    In this paper, we investigate the hyperelastic tensile behaviour of single layer graphene sheets (SLGSs). A one-term incompressible Ogden-type hyperelastic model is chosen to describe the mechanical response of C-C bonds. By establishing equality between the Ogden strain-energy and the variation of the Tersoff-Brenner interatomic potential, three different geometries of SLGSs are studied under tensile loading. We compute the Young's modulus, the finite-deformation Poisson's ratio, ultimate strains, total reactions, and the variation of the potential energy per carbon atom for large strains. Numerical simulations are compared with results obtained by molecular mechanics and molecular dynamics simulations, finite elements, continuum mechanics theory, and experiments. Our predictions are validated, revealing the potential predictive capabilities of the present hyperelastic framework for the analysis of graphene in the context of infinitesimal and large deformations. The good agreement found between our calculations and the published data suggests that graphene may be described as a hyperelastic material.

  10. Graphene-graphene oxide floating gate transistor memory.

    PubMed

    Jang, Sukjae; Hwang, Euyheon; Lee, Jung Heon; Park, Ho Seok; Cho, Jeong Ho

    2015-01-21

    A novel transparent, flexible, graphene channel floating-gate transistor memory (FGTM) device is fabricated using a graphene oxide (GO) charge trapping layer on a plastic substrate. The GO layer, which bears ammonium groups (NH3+), is prepared at the interface between the crosslinked PVP (cPVP) tunneling dielectric and the Al2 O3 blocking dielectric layers. Important design rules are proposed for a high-performance graphene memory device: (i) precise doping of the graphene channel, and (ii) chemical functionalization of the GO charge trapping layer. How to control memory characteristics by graphene doping is systematically explained, and the optimal conditions for the best performance of the memory devices are found. Note that precise control over the doping of the graphene channel maximizes the conductance difference at a zero gate voltage, which reduces the device power consumption. The proposed optimization via graphene doping can be applied to any graphene channel transistor-type memory device. Additionally, the positively charged GO (GO-NH3+) interacts electrostatically with hydroxyl groups of both UV-treated Al2 O3 and PVP layers, which enhances the interfacial adhesion, and thus the mechanical stability of the device during bending. The resulting graphene-graphene oxide FGTMs exhibit excellent memory characteristics, including a large memory window (11.7 V), fast switching speed (1 μs), cyclic endurance (200 cycles), stable retention (10(5) s), and good mechanical stability (1000 cycles).

  11. Graphene/ferroelectrics/graphene hybrid structure: Asymmetric doping of graphene layers

    SciTech Connect

    Duong, Dinh Loc; Lee, Si Young; Kim, Seong Kyu; Lee, Young Hee

    2015-06-15

    We report graphene/ferroelectric/graphene hybrid structure to demonstrate an asymmetrical doping in two graphene layers, one side with electrons and another side with holes. Two ferroelectrics, a poly(vinylidenefluoride) (PVDF) and a hydrofluorinated graphene, were used to demonstrate the concept with density functional calculations, revealing the Fermi level shift of 0.35 and 0.75 eV, respectively. This concept was confirmed by Raman spectroscopy using graphene/poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE))/graphene hybrid, which can easily form β-phase close to our simulation model. G-band peak position was downshifted for electron doping and upshifted for hole doping. This hybrid structure opens an opportunity to study bilayer graphene system with a controllable thickness for a wide range of high carrier concentration.

  12. Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties

    NASA Astrophysics Data System (ADS)

    Ouyang, Xilian; Huang, Wenyi; Cabrera, Eusebio; Castro, Jose; Lee, L. James

    2015-01-01

    Hybrid nanopaper-like thin films with a graphene oxide (GO) layer sandwiched by two functionalized graphene (GP-SO3H) layers were successfully prepared from oxidized graphene and benzene sulfonic modified graphene. The hybrid graphene-graphene oxide-graphene (GP-GO-GP) nanopapers showed combination of high mechanic strength and good electrical conductivity, leading to desirable electromagnetic interference shielding performance, from the GP-SO3H layers, and superior gas diffusion barrier provided by the GO layer. These GP-GO-GP nanopapers can be readily coated onto plastic and composite substrates by thermal lamination and injection molding for various industrial applications such as fuel cell and natural gas containers.

  13. Tissue-Specific Transcript Profiling for ABC Transporters in the Sequestering Larvae of the Phytophagous Leaf Beetle Chrysomela populi

    PubMed Central

    Gretscher, René R.; Groth, Marco; Boland, Wilhelm; Burse, Antje

    2014-01-01

    Background Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC) carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi. Results In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp). RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration. Conclusion We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant

  14. Electrostatic graphene loudspeaker

    NASA Astrophysics Data System (ADS)

    Zhou, Qin; Zettl, A.

    2013-06-01

    Graphene has extremely low mass density and high mechanical strength, and key qualities for efficient wide-frequency-response electrostatic audio speaker design. Low mass ensures good high frequency response, while high strength allows for relatively large free-standing diaphragms necessary for effective low frequency response. Here, we report on construction and testing of a miniaturized graphene-based electrostatic audio transducer. The speaker/earphone is straightforward in design and operation and has excellent frequency response across the entire audio frequency range (20 Hz-20 kHz), with performance matching or surpassing commercially available audio earphones.

  15. Anger and the ABC model underlying Rational-Emotive Behavior Therapy.

    PubMed

    Ziegler, Daniel J; Smith, Phillip N

    2004-06-01

    The ABC model underlying Ellis's Rational-Emotive Behavior Therapy predicts that people who think more irrationally should display greater trait anger than do people who think less irrationally. This study tested this prediction regarding the ABC model. 186 college students were administered the Survey of Personal Beliefs and the State-Trait Anger Expression Inventory-Second Edition to measure irrational thinking and trait anger, respectively. Students who scored higher on Overall Irrational Thinking and Low Frustration Tolerance scored significantly higher on Trait Anger than did those who scored lower on Overall Irrational Thinking and Low Frustration Tolerance. This indicates support for the ABC model, especially Ellis's construct of irrational beliefs which is central to the model.

  16. A test of the ABC model underlying rational emotive behavior therapy.

    PubMed

    Ziegler, Daniel J; Leslie, Yvonne M

    2003-02-01

    The ABC model underlying Ellis's Rational Emotive Behavior Therapy predicts that people who think more irrationally should respond to daily stressors or hassles differently than do people who think less irrationally. This study tested this aspect of the ABC model. 192 college students were administered the Survey of Personal Beliefs and the Hassles Scale to measure irrational thinking and daily hassles, respectively. Students who scored higher on overall irrational thinking reported a significantly higher frequency of hassles than did those who scored lower on overall irrational thinking, while students who scored higher on awfulizing and low frustration tolerance reported a significantly greater intensity of hassles than did those who scored lower on awfulizing and low frustration tolerance. This indicates support for the ABC model, especially Ellis's construct of irrational beliefs central to this model.

  17. Exploiting Synthetic Lethality for the Therapy of ABC Diffuse Large B Cell Lymphoma

    PubMed Central

    Yang, Yibin; Shaffer, Arthur L.; Emre, N.C. Tolga; Ceribelli, Michele; Zhang, Meili; Wright, George; Xiao, Wenming; Powell, John; Platig, John; Kohlhammer, Holger; Young, Ryan M.; Zhao, Hong; Yang, Yandan; Xu, Weihong; Buggy, Joseph J.; Balasubramanian, Sriram; Mathews, Lesley A.; Shinn, Paul; Guha, Rajarshi; Ferrer, Marc; Thomas, Craig; Waldmann, Thomas A.; Staudt, Louis M.

    2014-01-01

    Summary Knowledge of oncogenic mutations can inspire therapeutic strategies that are synthetically lethal, affecting cancer cells while sparing normal cells. Lenalidomide is an active agent in the activated B-cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), but its mechanism of action is unknown. Lenalidomide kills ABC DLBCL cells by augmenting interferon β (IFNβ) production, owing to the oncogenic MYD88 mutations in these lymphomas. In a cereblon-dependent fashion, lenalidomide downregulates IRF4 and SPIB, transcription factors that together prevent IFNβ production by repressing IRF7 and also amplify pro-survival NF-κB signaling by transactivating CARD11. Blockade of B cell receptor (BCR) signaling using the BTK inhibitor ibrutinib also downregulates IRF4 and consequently synergizes with lenalidomide in killing ABC DLBCLs, suggesting attractive therapeutic strategies. PMID:22698399

  18. Application of edge-based finite elements and vector ABCs in 3D scattering

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Jin, J. M.; Volakis, John L.

    1992-01-01

    A finite element absorbing boundary condition (FE-ABC) solution of the scattering by arbitrary 3-D structures is considered. The computational domain is discretized using edge-based tetrahedral elements. In contrast to the node-based elements, edge elements can treat geometries with sharp edges, are divergence-less, and easily satisfy the field continuity condition across dielectric interfaces. They do, however, lead to a higher unknown count but this is balanced by the greater sparsity of the resulting finite element matrix. Thus, the computation time required to solve such a system iteratively with a given degree of accuracy is less than the traditional node-based approach. The purpose is to examine the derivation and performance of the ABC's when applied to 2-D and 3-D problems and to discuss the specifics of our FE-ABC implementation.

  19. Nonrigid registration method to assess reproducibility of breath-holding with ABC in lung cancer

    SciTech Connect

    Sarrut, David . E-mail: dsarrut@univ-lyon2.fr; Boldea, Vlad; Ayadi, Myriam; Badel, Jean-Noel; Ginestet, Chantal; Clippe, Sebastien; Carrie, Christian

    2005-02-01

    Purpose: To study the interfraction reproducibility of breath-holding using active breath control (ABC), and to develop computerized tools to evaluate three-dimensional (3D) intrathoracic motion in each patient. Methods and materials: Since June 2002, 11 patients with non-small-cell lung cancer enrolled in a Phase II trial have undergone four CT scans: one during free-breathing (reference) and three using ABC. Patients left the room between breath-hold scans. The patient's breath was held at the same predefined phase of the breathing cycle (about 70% of the vital capacity) using the ABC device, then patients received 3D-conformal radiotherapy. Automated computerized tools for breath-hold CT scans were developed to analyze lung and tumor interfraction residual motions with 3D nonrigid registration. Results: All patients but one were safely treated with ABC for 7 weeks. For 6 patients, the lung volume differences were <5%. The mean 3D displacement inside the lungs was between 2.3 mm (SD 1.4) and 4 mm (SD 3.3), and the gross tumor volume residual motion was 0.9 mm (SD 0.4) to 5.9 mm (SD 0.7). The residual motion was slightly greater in the inferior part of the lung than the superior. For 2 patients, we detected volume changes >300 cm{sup 3} and displacements >10 mm, probably owing to atelectasia and emphysema. One patient was excluded, and two others had incomplete data sets. Conclusion: Breath-holding with ABC was effective in 6 patients, and discrepancies were clinically accountable in 2. The proposed 3D nonrigid registration method allows for personalized evaluation of breath-holding reproducibility with ABC. It will be used to adapt the patient-specific internal margins.

  20. Canine olfactory ensheathing cells from the olfactory mucosa can be engineered to produce active chondroitinase ABC.

    PubMed

    Carwardine, Darren; Wong, Liang-Fong; Fawcett, James W; Muir, Elizabeth M; Granger, Nicolas

    2016-08-15

    A multitude of factors must be overcome following spinal cord injury (SCI) in order to achieve clinical improvement in patients. It is thought that by combining promising therapies these diverse factors could be combatted with the aim of producing an overall improvement in function. Chondroitin sulphate proteoglycans (CSPGs) present in the glial scar that forms following SCI present a significant block to axon regeneration. Digestion of CSPGs by chondroitinase ABC (ChABC) leads to axon regeneration, neuronal plasticity and functional improvement in preclinical models of SCI. However, the enzyme activity decays at body temperature within 24-72h, limiting the translational potential of ChABC as a therapy. Olfactory ensheathing cells (OECs) have shown huge promise as a cell transplant therapy in SCI. Their beneficial effects have been demonstrated in multiple small animal SCI models as well as in naturally occurring SCI in canine patients. In the present study, we have genetically modified canine OECs from the mucosa to constitutively produce enzymatically active ChABC. We have developed a lentiviral vector that can deliver a mammalian modified version of the ChABC gene to mammalian cells, including OECs. Enzyme production was quantified using the Morgan-Elson assay that detects the breakdown products of CSPG digestion in cell supernatants. We confirmed our findings by immunolabelling cell supernatant samples using Western blotting. OECs normal cell function was unaffected by genetic modification as demonstrated by normal microscopic morphology and the presence of the low affinity neurotrophin receptor (p75(NGF)) following viral transduction. We have developed the means to allow production of active ChABC in combination with a promising cell transplant therapy for SCI repair. PMID:27423610

  1. Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro; Horinouchi, Sueharu

    2006-01-01

    Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid.

  2. Effect of body temperature on chondroitinase ABC's ability to cleave chondroitin sulfate glycosaminoglycans.

    PubMed

    Tester, Nicole J; Plaas, Anna H; Howland, Dena R

    2007-04-01

    Chondroitinase ABC (Ch'ase ABC) is a bacterial lyase that degrades chondroitin sulfate (CS), dermatan sulfate, and hyaluronan glycosaminoglycans (GAGs). This enzyme has received significant attention as a potential therapy for promoting central nervous system and peripheral nervous system repair based on its degradation of CS GAGs. Determination of the stability of Ch'ase ABC activity at temperatures equivalent to normal (37 degrees C) and elevated (39 degrees C) body temperatures is important for optimizing its clinical usage. We report here data obtained from examining enzymatic activity at these temperatures across nine lots of commercially available protease-free Ch'ase ABC. CS GAG degrading activity was assayed by using 1) immunohistochemical detection of unsaturated disaccharide stubs generated by digestion of proteoglycans in tissue sections and 2) fluorophore-assisted carbohydrate electrophoresis (FACE) and/or high-performance liquid chromatography (HPLC) to separate and quantify unsaturated disaccharide digestion products. Our results indicate that there is a significant effect of lot and time on enzymatic thermostability. Average enzymatic activity is significantly decreased at 1 and 3 days at 39 degrees C and 37 degrees C, respectively. Furthermore, the average activity seen after 1 day was significantly different between the two temperatures. Addition of bovine serum albumin as a stabilizer significantly preserved enzymatic activity at 1 day, but not 3 days, at 39 degrees C. These results show that the CS GAG degrading activity of Ch'ase ABC is significantly decreased with incubation at body temperature over time and that all lots do not show equal thermostability. These findings are important for the design and interpretation of experimental and potential clinical studies involving Ch'ase ABC.

  3. Inhibition or knockdown of ABC transporters enhances susceptibility of adult and juvenile schistosomes to Praziquantel.

    PubMed

    Kasinathan, Ravi S; Sharma, Lalit Kumar; Cunningham, Charles; Webb, Thomas R; Greenberg, Robert M

    2014-10-01

    Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease that affects hundreds of millions. Treatment of schistosomiasis depends almost entirely on the drug praziquantel (PZQ). Though essential to treating and controlling schistosomiasis, a major limitation of PZQ is that it is not active against immature mammalian-stage schistosomes. Furthermore, there are reports of field isolates with heritable reductions in PZQ susceptibility, and researchers have selected for PZQ-resistant schistosomes in the laboratory. P-glycoprotein (Pgp; ABCB1) and other ATP binding cassette (ABC) transporters remove a wide variety of toxins and xenobiotics from cells, and have been implicated in multidrug resistance (MDR). Changes in ABC transporter structure or expression levels are also associated with reduced drug susceptibility in parasitic helminths, including schistosomes. Here, we show that the activity of PZQ against schistosome adults and juveniles ex vivo is potentiated by co-administration of either the highly potent Pgp inhibitor tariquidar or combinations of inhibitors targeting multiple ABC multidrug transporters. Adult worms exposed to sublethal PZQ concentrations remain active, but co-administration of ABC transporter inhibitors results in complete loss of motility and disruption of the tegument. Notably, juvenile schistosomes (3-4 weeks post infection), normally refractory to 2 µM PZQ, become paralyzed when transporter inhibitors are added in combination with the PZQ. Experiments using the fluorescent PZQ derivative (R)-PZQ-BODIPY are consistent with the transporter inhibitors increasing effective intraworm concentrations of PZQ. Adult worms in which expression of ABC transporters has been suppressed by RNA interference show increased responsiveness to PZQ and increased retention of (R)-PZQ-BODIPY consistent with an important role for these proteins in setting levels of PZQ susceptibility. These results indicate that parasite ABC

  4. Nanoscale strain engineering of graphene and graphene-based devices

    NASA Astrophysics Data System (ADS)

    Yeh, N.-C.; Hsu, C.-C.; Teague, M. L.; Wang, J.-Q.; Boyd, D. A.; Chen, C.-C.

    2016-06-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simulations and nano-fabrication technology.

  5. Graphene: from functionalization to devices

    NASA Astrophysics Data System (ADS)

    Tejeda, Antonio; Soukiassian, Patrick G.

    2014-03-01

    The year 2014 marks the first decade of the rise of graphene. Graphene, a single atomic layer of carbon atoms in sp2 bonding configuration having a honeycomb structure, has now become a well-known and well-established material. Among some of its many outstanding fundamental properties, one can mention a very high carrier mobility, a very large spin diffusion length, unsurpassed mechanical properties as graphene is the strongest material ever measured and an exceptional thermal conductivity scaling more than one order of magnitude above that of copper. After the first years of the graphene rush, graphene growth is now well controlled using various methods like epitaxial growth on silicon carbide substrate, chemical vapour deposition (CVD) or plasma techniques on metal, insulator or semiconductor substrates. More applied research is now taking over the initial studies on graphene production. Indeed, graphene is a promising material for many advanced applications such as, but not limited to, electronic, spintronics, sensors, photonics, micro/nano-electromechanical (MEMS/NEMS) systems, super-capacitors or touch-screen technologies. In this context, this Special Issue of the Journal of Physics D: Applied Physics on graphene reviews some of the recent achievements, progress and prospects in this field. It includes a collection of seventeen invited articles covering the current status and future prospects of some selected topics of strong current interest. This Special Issue is organized in four sections. The first section is dedicated to graphene devices, and opens with an article by de Heer et al on an investigation of integrating graphene devices with silicon complementary metal-oxide-semiconductor (CMOS) technology. Then, a study by Svintsov et al proposes a lateral all-graphene tunnel field-effect transistor (FET) with a high on/off current switching ratio. Next, Tsukagoshi et al present how a band-gap opening occurs in a graphene bilayer by using a perpendicular

  6. Electrical Transport and Network Percolation in Graphene and Boron Nitride Mixed-Platelet Structures.

    PubMed

    Debbarma, Rousan; Behura, Sanjay; Nguyen, Phong; Sreeprasad, T S; Berry, Vikas

    2016-04-01

    Percolating network of mixed 2D nanomaterials (2DNs) can leverage the unique electronic structures of different 2DNs, their interfacial doping, manipulable conduction pathways, and local traps. Here, we report on the percolation mechanism and electro-capacitive transport pathways of mixed-platelet network of hexagonal boron nitride (hBN) and reduced graphene oxide (rGO), two isostructural and isoelectronic 2DNs. The transport mechanism is explained in terms of electron hopping through isolated hBN defect traps between rGO (possibly via electron tunneling/hopping through "funneling" points). With optical bandgaps of 4.57 and 4.08 eV for the hBN-domains and 2.18 eV for the rGO domains, the network of hBN with rGO exhibits Poole-Frenkel emission-based transport with mean hopping gap of 1.12 nm (∼hBN trilayer) and an activation barrier of ∼15 ± 0.7 meV. Further, hBN (1.7 pF) has a 6-fold lower capacitance than 1:1 hBN:rGO, which has a resistance 2 orders of magnitude higher than that of rGO (1.46 MΩ). These carrier transport results can be applied to other multi-2DN networks for development of next-generation functional 2D-devices. PMID:27002378

  7. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    PubMed Central

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028

  8. Cry1ab/c in different stages of growth in transgenic rice Bt-shanyou63.

    PubMed

    Zhang, Li; Shen, Wenjing; Fang, Zhixiang; Liu, Biao

    2016-01-01

    The relationship between the mRNA level and the corresponding protein level of the cry1Ab/c gene is not well characterized in transgenic rice (Bt-ShanYou63). In this study, we compared cry1Ab/c mRNA and its protein expression in leaves at different growth stages in Bt-ShanYou63 rice. The results demonstrated that both cry1Ab/c mRNA and its protein levels changed at all of the growth stages. The cry1Ab/c transcript levels in the leaves were highest during the grain filling stage (3.29, cry/actin) and lowest during the seeding stage (1.06, cry/actin), and the protein levels of Cry1Ab/c was also highest at the grain filling stage (5.71 microgram x g-1 fresh weight, fw) and lowest during the seeding stage (2.08 microgram x g(-1) fw). There was a significant correlation between cry1Ab/c mRNA levels and the protein concentrations (r=0.742, p < 0.01). However, a linear relationship was not observed between cry1Ab/c mRNA levels and the protein levels, and the trend for mRNA expression levels was not consistent with the Cry1Ab/c protein levels in the same growth period in Bt-ShanYou63 rice. PMID:26709785

  9. 78 FR 54464 - ABC Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission ABC Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing...-referenced proceeding, of ABC Energy, LLC's application for market-based rate authority, with an...

  10. Starting with ABC and Finishing with XYZ: What Financial Reporting Model Best Fits a Faculty and Why?

    ERIC Educational Resources Information Center

    Berry, Prudence Jane

    2014-01-01

    This article looks at the range of financial reporting models available for use in the Australian higher education sector, the possible application of activity-based costing (ABC) in faculties and the eventual rejection of ABC in favour of a more qualitative model designed specifically for use in one institution, in a particular Faculty. The…

  11. The ABCs of School Choice: The Comprehensive Guide to Every Private School Choice Program in America. 2013 Edition

    ERIC Educational Resources Information Center

    Friedman Foundation for Educational Choice, 2013

    2013-01-01

    "The ABCs of School Choice" is the most comprehensive guide to every private school choice program in America, showcasing the voucher, tax-credit scholarship, education savings accounts, and individual tax credit/deduction programs currently operating in 21 states and Washington, D.C. "The ABCs of School Choice" provides policymakers, advocates,…

  12. The K-ABC: A Construct Validity Study with the WISC-R and Stanford-Binet.

    ERIC Educational Resources Information Center

    Klanderman, John; And Others

    1985-01-01

    Elementary school children (N=41) were administered Kaufman Assessment Battery for Children (K-ABC), Wechsler Intelligence Scale for Children-Revised (WISC-R), and Stanford-Binet. Analyses appeared to support the viability of the K-ABC as measure of the properties of mental functioning that are similar to those measured by WISC-R and…

  13. Graphene: Mind the gap

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    2007-10-01

    Research now shows that interaction with silicon carbide substrate leads to the opening of a semiconductor gap in epitaxial graphene. This is an important first step towards bandgap engineering in this two-dimensional crystal, and its incorporation in electronic devices.

  14. Crown ethers in graphene

    SciTech Connect

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; Gallego, Nidia C.; Pantelides, Sokrates T.; Pennycook, Stephen J.; Moyer, Bruce A.; Chisholm, Matthew F.

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basic structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.

  15. Crown ethers in graphene

    DOE PAGES

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; Gallego, Nidia C.; Pantelides, Sokrates T.; Pennycook, Stephen J.; Moyer, Bruce A.; Chisholm, Matthew F.

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basicmore » structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.« less

  16. Modelling of graphene functionalization.

    PubMed

    Pykal, Martin; Jurečka, Petr; Karlický, František; Otyepka, Michal

    2016-03-01

    Graphene has attracted great interest because of its remarkable properties and numerous potential applications. A comprehensive understanding of its structural and dynamic properties and those of its derivatives will be required to enable the design and optimization of sophisticated new nanodevices. While it is challenging to perform experimental studies on nanoscale systems at the atomistic level, this is the 'native' scale of computational chemistry. Consequently, computational methods are increasingly being used to complement experimental research in many areas of chemistry and nanotechnology. However, it is difficult for non-experts to get to grips with the plethora of computational tools that are available and their areas of application. This perspective briefly describes the available theoretical methods and models for simulating graphene functionalization based on quantum and classical mechanics. The benefits and drawbacks of the individual methods are discussed, and we provide numerous examples showing how computational methods have provided new insights into the physical and chemical features of complex systems including graphene and graphene derivatives. We believe that this overview will help non-expert readers to understand this field and its great potential. PMID:26323438

  17. Graphene and graphene-based materials for energy storage applications.

    PubMed

    Zhu, Jixin; Yang, Dan; Yin, Zongyou; Yan, Qingyu; Zhang, Hua

    2014-09-10

    With the increased demand in energy resources, great efforts have been devoted to developing advanced energy storage and conversion systems. Graphene and graphene-based materials have attracted great attention owing to their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage systems. This Review summarizes the recent progress in graphene and graphene-based materials for four energy storage systems, i.e., lithium-ion batteries, supercapacitors, lithium-sulfur batteries and lithium-air batteries.

  18. Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi

    NASA Astrophysics Data System (ADS)

    Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Urbanelli, Sandra; Sassera, Davide; De Marco, Leone; Mereghetti, Valeria; Montagna, Matteo; Ricci, Irene; Favia, Guido; Bandi, Claudio

    2014-12-01

    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABC gene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps.

  19. Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi.

    PubMed

    Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Urbanelli, Sandra; Sassera, Davide; De Marco, Leone; Mereghetti, Valeria; Montagna, Matteo; Ricci, Irene; Favia, Guido; Bandi, Claudio

    2014-01-01

    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABC gene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps. PMID:25504146

  20. A Graphene Surface Force Balance

    PubMed Central

    2014-01-01

    We report a method for transferring graphene, grown by chemical vapor deposition, which produces ultraflat graphene surfaces (root-mean-square roughness of 0.19 nm) free from polymer residues over macroscopic areas (>1 cm2). The critical step in preparing such surfaces involves the use of an intermediate mica template, which itself is atomically smooth. We demonstrate the compatibility of these model surfaces with the surface force balance, opening up the possibility of measuring normal and lateral forces, including friction and adhesion, between two graphene sheets either in contact or across a liquid medium. The conductivity of the graphene surfaces allows forces to be measured while controlling the surface potential. This new apparatus, the graphene surface force balance, is expected to be of importance to the future understanding of graphene in applications from lubrication to electrochemical energy storage systems. PMID:25171130

  1. Anisotropic spin relaxation in graphene.

    PubMed

    Tombros, N; Tanabe, S; Veligura, A; Jozsa, C; Popinciuc, M; Jonkman, H T; van Wees, B J

    2008-07-25

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B=0 and B=2 T shows a 20% decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin-orbit effective fields in the in-plane and out-of-plane directions and discuss the role of the Elliott-Yafet and Dyakonov-Perel mechanisms for spin relaxation. PMID:18764351

  2. Graphene nanodevices for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Heerema, Stephanie J.; Dekker, Cees

    2016-02-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology.

  3. Electromechanical properties of graphene drumheads.

    PubMed

    Klimov, Nikolai N; Jung, Suyong; Zhu, Shuze; Li, Teng; Wright, C Alan; Solares, Santiago D; Newell, David B; Zhitenev, Nikolai B; Stroscio, Joseph A

    2012-06-22

    We determined the electromechanical properties of a suspended graphene layer by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements, as well as computational simulations of the graphene-membrane mechanics and morphology. A graphene membrane was continuously deformed by controlling the competing interactions with a STM probe tip and the electric field from a back-gate electrode. The probe tip-induced deformation created a localized strain field in the graphene lattice. STS measurements on the deformed suspended graphene display an electronic spectrum completely different from that of graphene supported by a substrate. The spectrum indicates the formation of a spatially confined quantum dot, in agreement with recent predictions of confinement by strain-induced pseudomagnetic fields.

  4. Electronic transport in graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanbo

    This dissertation focuses on the electronic transport properties of graphene, a single atomic layer of graphite. Graphene is a novel two-dimensional system in which electron transport is effectively governed by the relativistic quantum theory. We discover a variety of new phenomenon which stem from the "relativistic" nature of the electron dynamics in graphene. An unusual quantum Hall (QH) effect is discovered in graphene at low temperatures and strong magnetic fields. Unlike conventional two-dimensional electron systems, in graphene the observed quantization condition is characterized by half integers rather than integers. Our investigation of the magneto-oscillations in resistance reveals a Berry's phase of pi associated with the electron motion in graphene. The half-integer quantization, as well as the Berry's phase, is attributed to the peculiar topology of the graphene band structure with a linear dispersion relation and vanishing mass near the Dirac point, which can be described by relativistic quantum electrodynamics. This is further confirmed by our measurement of the effective carrier mass, m*, which obeys Einstein's equation: E = m*c*2 where c* ≈ c/300 is the effective speed of light for electrons in graphene. The availability of high magnetic fields up to 45 Tesla allows us to study the magneto-transport in graphene in the extreme quantum limit. Under such condition, we discover new sets of QH states at filling factors nu = 0, +/-1, +/-4, indicating the lifting of the four-fold degeneracy of the previously observed QH states at nu = +/-4(|n|+1/2), where n is the Landau level index. In particular, the presence of the nu = 0, +/-1 QH states indicates that the Landau level at the charge neutral Dirac point splits into four sub-levels, lifting both sublattice and spin degeneracy, thereby potentially indicating a many-body correlation in this LL. The QH effect at nu = +/-4 is investigated in tilted magnetic fields and is attributed to lifting of the n

  5. Hydrogenated Graphene as a Homoepitaxial Tunnel Barrier for Spin and Charge Transport in Graphene.

    PubMed

    Friedman, Adam L; van 't Erve, Olaf M J; Robinson, Jeremy T; Whitener, Keith E; Jonker, Berend T

    2015-07-28

    We demonstrate that hydrogenated graphene performs as a homoepitaxial tunnel barrier on a graphene charge/spin channel. We examine the tunneling behavior through measuring the IV curves and zero bias resistance. We also fabricate hydrogenated graphene/graphene nonlocal spin valves and measure the spin lifetimes using the Hanle effect, with spintronic nonlocal spin valve operation demonstrated up to room temperature. We show that while hydrogenated graphene indeed allows for spin transport in graphene and has many advantages over oxide tunnel barriers, it does not perform as well as similar fluorinated graphene/graphene devices, possibly due to the presence of magnetic moments in the hydrogenated graphene that act as spin scatterers.

  6. Graphene-Si heterogeneous nanotechnology

    NASA Astrophysics Data System (ADS)

    Akinwande, Deji; Tao, Li

    2013-05-01

    It is widely envisioned that graphene, an atomic sheet of carbon that has generated very broad interest has the largest prospects for flexible smart systems and for integrated graphene-silicon (G-Si) heterogeneous very large-scale integrated (VLSI) nanoelectronics. In this work, we focus on the latter and elucidate the research progress that has been achieved for integration of graphene with Si-CMOS including: wafer-scale graphene growth by chemical vapor deposition on Cu/SiO2/Si substrates, wafer-scale graphene transfer that afforded the fabrication of over 10,000 devices, wafer-scalable mitigation strategies to restore graphene's device characteristics via fluoropolymer interaction, and demonstrations of graphene integrated with commercial Si- CMOS chips for hybrid nanoelectronics and sensors. Metrology at the wafer-scale has led to the development of custom Raman processing software (GRISP) now available on the nanohub portal. The metrology reveals that graphene grown on 4-in substrates have monolayer quality comparable to exfoliated flakes. At room temperature, the high-performance passivated graphene devices on SiO2/Si can afford average mobilities 3000cm2/V-s and gate modulation that exceeds an order of magnitude. The latest growth research has yielded graphene with high mobilities greater than 10,000cm2/V-s on oxidized silicon. Further progress requires track compatible graphene-Si integration via wafer bonding in order to translate graphene research from basic to applied research in commercial R and D laboratories to ultimately yield a viable nanotechnology.

  7. Strain variation in corrugated graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason; Paiella, Roberto; Swan, Anna

    2015-03-01

    Raman spectroscopy is a powerful non-destructive technique for analyzing strain in graphene. Recently there has been interest in making corrugated graphene devices with varying spatial wavelengths Λ for plasmonic and THz applications. Transferring graphene onto corrugated substrates introduces strain, which if there was perfect clamping (high fraction) would cause a periodic strain variation. However, the strain variation for pattern size smaller than the diffraction limit λ makes it hard to precisely model the strain distribution. Here we present a detailed study on how strain varies in corrugated graphene with sub-diffraction limit periodicity Λ < λ. Mechanically exfoliated graphene was deposited onto sinusoidal shape silicon dioxide gratings with Λ=400 nm period using the pick and place transfer technique. We observed that the graphene is not rigidly clamped, but partially slides to relieve the strain. We model the linewidth variation to extract the local strain variation as well as the sliding in the presence of charge puddling in graphene. The method gives us a better understanding on graphene slippage and strain distribution in graphene on a corrugated substrate with sub-diffraction limit spatial period.

  8. Dry-cleaning of graphene

    SciTech Connect

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  9. Psychometric Properties and Norms of the German ABC-Community and PAS-ADD Checklist

    ERIC Educational Resources Information Center

    Zeilinger, Elisabeth L.; Weber, Germain; Haveman, Meindert J.

    2011-01-01

    Aim: The aim of the present study was to standardize and generate psychometric evidence of the German language versions of two well-established English language mental health instruments: the "Aberrant Behavior Checklist-Community" (ABC-C) and the "Psychiatric Assessment Schedule for Adults with Developmental Disabilities" (PAS-ADD) Checklist. New…

  10. Preservice Teachers Integrate Understandings of Diversity Into Literacy Instruction: An Adaptation of the ABC's Model.

    ERIC Educational Resources Information Center

    Xu, Hong

    2000-01-01

    Investigated preservice teachers' understandings of their own and their students' cultural backgrounds, examining how they integrated those understandings into literacy instruction. The ABC model (autobiographies, biographies of students, cross-cultural analysis, analysis of cultural differences, and classroom practices) helped stimulate students…

  11. Single liposome analysis of peptide translocation by the ABC transporter TAPL

    PubMed Central

    Zollmann, Tina; Moiset, Gemma; Tumulka, Franz; Tampé, Robert; Poolman, Bert; Abele, Rupert

    2015-01-01

    ATP-binding cassette (ABC) transporters use ATP to drive solute transport across biological membranes. Members of this superfamily have crucial roles in cell physiology, and some of the transporters are linked to severe diseases. However, understanding of the transport mechanism, especially of human ABC exporters, is scarce. We reconstituted the human lysosomal polypeptide ABC transporter TAPL, expressed in Pichia pastoris, into lipid vesicles (liposomes) and performed explicit transport measurements. We analyzed solute transport at the single liposome level by monitoring the coincident fluorescence of solutes and proteoliposomes in the focal volume of a confocal microscope. We determined a turnover number of eight peptides per minute, which is two orders of magnitude higher than previously estimated from macroscopic measurements. Moreover, we show that TAPL translocates peptides against a large concentration gradient. Maximal filling is not limited by an electrochemical gradient but by trans-inhibition. Countertransport and reversibility studies demonstrate that peptide translocation is a strictly unidirectional process. Altogether, these data are included in a refined model of solute transport by ABC exporters. PMID:25646430

  12. Generating Symmetry in the Asymmetric ATP-binding Cassette (ABC) Transporter Pdr5 from Saccharomyces cerevisiae*

    PubMed Central

    Gupta, Rakeshkumar P.; Kueppers, Petra; Hanekop, Nils; Schmitt, Lutz

    2014-01-01

    Pdr5 is a plasma membrane-bound ABC transporter from Saccharomyces cerevisiae and is involved in the phenomenon of resistance against xenobiotics, which are clinically relevant in bacteria, fungi, and humans. Many fungal ABC transporters such as Pdr5 display an inherent asymmetry in their nucleotide-binding sites (NBS) unlike most of their human counterparts. This degeneracy of the NBSs is very intriguing and needs explanation in terms of structural and functional relevance. In this study, we mutated nonconsensus amino acid residues in the NBSs to its consensus counterpart and studied its effect on the function of the protein and effect on yeast cells. The completely “regenerated” Pdr5 protein was severely impaired in its function of ATP hydrolysis and of rhodamine 6G transport. Moreover, we observe alternative compensatory mechanisms to counteract drug toxicity in some of the mutants. In essence, we describe here the first attempts to restore complete symmetry in an asymmetric ABC transporter and to study its effects, which might be relevant to the entire class of asymmetric ABC transporters. PMID:24733388

  13. As Easy as ABC: Re-engineering the Cost Accounting System.

    ERIC Educational Resources Information Center

    Trussel, John M.; Bitner, Larry N.

    1996-01-01

    To be useful for management decision making, the college or university's cost accounting system must capture and measure improvements. Activity-based costing (ABC), which determines more accurately the full costs of services and products, tracks improvements and should proceed alongside reengineering of institutional accounting. Guidelines are…

  14. ABC Analysis for Inventory Management: Bridging the Gap between Research and Classroom

    ERIC Educational Resources Information Center

    Ravinder, Handanhal; Misra, Ram B.

    2014-01-01

    ABC analysis is a well-established categorization technique based on the Pareto Principle for determining which items should get priority in the management of a company's inventory. In discussing this topic, today's operations management and supply chain textbooks focus on dollar volume as the sole criterion for performing the categorization. The…

  15. Armpits, Belly Buttons and Chronic Wounds: The ABCs of Our Body Bacteria

    MedlinePlus

    ... The ABCs of Our Body Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Armpits, Belly Buttons and Chronic Wounds: ... Findings About Our Resident Microbes This Inside Life Science article also appears on LiveScience . Learn about related ...

  16. An ABC Literacy Journey: Anchoring in Texts, Bridging Language, and Creating Stories

    ERIC Educational Resources Information Center

    Evers, Amy J.; Lang, Lisa F.; Smith, Sharon V.

    2009-01-01

    The authors describe how alphabet books teach so much more than just the ABCs. They provide excellent resources, allowing teachers to link and integrate the reciprocal processes of reading and writing. Encapsulated within the writing workshop framework, the authors use multigenre and multicultural alphabet books as anchor texts for a literacy…

  17. What Does the K-ABC Tell Us about Students with Learning Disabilities?

    ERIC Educational Resources Information Center

    Smith, Douglas K.

    Three studies were designed to explore the pattern of scores on the Kaufman Assessment Battery for Children (K-ABC) by 18 students in elementary level learning disability (LD) resource programs (Study 1), 133 elementary level students referred for learning problems (Study 2), and 67 elementary students referred for severe learning disabilities…

  18. ABCs of Being Smart: T Is for Tips for Working with Teachers

    ERIC Educational Resources Information Center

    Foster, Joanne

    2015-01-01

    As part of her series, "ABCs of Being Smart," Joanne Foster presents time-tested tips for parents of toddlers to teens. Categories include: traits to tap when meeting with teachers to strengthen home and school connections or resolve any issues; strategies for parents to add to their "toolbox"; and tactical measures to consider…

  19. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deoxynivalenol (DON) is a mycotoxin produced by Fusarium fungi which acts as a disease virulence factor, aiding fungal pathogenesis of cereals spikelets and spread of the economically important Fusarium head blight (FHB) disease. Previously, a fragment of a wheat ABC transporter gene was shown to be...

  20. My Favorite Assignment: Selections from the ABC 2008 Annual Convention, Lake Tahoe, Nevada

    ERIC Educational Resources Information Center

    Whalen, D. Joel, Ed.

    2009-01-01

    At the 2008 Association for Business Communication (ABC) annual convention in Lake Tahoe, Nevada, many attendees stood at the back of a crowded room to hear over a dozen teachers describe "My Favorite Assignment." As is customary in these lively sessions, the chair, Dan Dieterich, orchestrated a fast, efficient presentation pace; each participant…

  1. Advocacy Feature: School Cut Back on Foreign Language Classes--Emphasis Shifts to ABC Tests

    ERIC Educational Resources Information Center

    Silberman, Todd

    2004-01-01

    In a state (North Carolina, 2006) that once pushed foreign language lessons as early as kindergarten, there has been a steady curtailing of instruction in second languages to devote more time and effort to basic reading and math instruction in English, two subjects heavily tested under the state's ABCs and federal No Child Left Behind…

  2. The Impact of ABC Canada's LEARN Campaign. Results of a National Research Study.

    ERIC Educational Resources Information Center

    Long, Ellen

    An impact study was conducted of ABC CANADA's LEARN campaign, a national media effort aimed at linking potential literacy learners with literacy groups. Two questionnaires were administered to 94 literacy groups, with 3,557 respondents. Findings included the following: (1) 70 percent of calls to literacy groups were from adult learners aged 16-44;…

  3. The ABC's of Financing Church and Synagogue Libraries. Acquiring Funds, Budgeting, Cash Accounting.

    ERIC Educational Resources Information Center

    Hannaford, Claudia

    The ABCs of financing church and synagogue libraries are presented in this guide as Acquiring Funds, Budgeting, and Cash Accounting. Acquiring funds and the basic means needed to start a library are described, including resources such as books, shelves, office supplies, and financial resources; ideas and methods are presented for soliciting both…

  4. Step 2: Know Your Diabetes ABCs | NIH MedlinePlus the Magazine

    MedlinePlus

    ... page please turn JavaScript on. Feature: Type 2 Diabetes Step 2: Know Your Diabetes ABCs Past Issues / Fall 2014 Table of Contents ... cholesterol helps remove cholesterol from your blood vessels. Diabetes HealthSense Find tools and programs that can help ...

  5. An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast.

    PubMed Central

    Leighton, J; Schatz, G

    1995-01-01

    In an attempt to identify a mitochondrial ATP binding cassette (ABC) transporter, we have used the polymerase chain reaction to amplify 10 DNA fragments homologous to members of the ABC family from the yeast Saccharomyces cerevisiae. We disrupted five of the corresponding genes and found that one of the resulting null mutants barely grew on rich medium and failed to grow on minimal medium. This gene, termed ATM1, encodes a putative 'half-transporter' of 694 amino acids. Atm1p is synthesized with an N-terminal mitochondrial matrix-targeting signal and is located in the mitochondrial inner membrane, with its C-terminal ATPase domain exposed to the matrix. Cells lacking a functional ATM1 gene have an unstable mitochondrial genome and have white mitochondria that completely lack cytochromes. Atm1p is the first mitochondrial member of the ABC family to be identified and the only eukaryotic ABC transporter that has been shown to be necessary for normal cellular growth. Images PMID:7828591

  6. Sustainable urban stormwater management in the tropics: An evaluation of Singapore's ABC Waters Program

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; Lu, X. X.

    2016-07-01

    The Active Beautiful Clean (ABC) Waters Program was implemented in 2006 as part of Singapore's stormwater management strategy and reflects the country's move towards Water Sensitive Urbanism through the adoption of Low-Impact Development (LID) ideology and practices. It is the first holistic and comprehensive LID program in the tropics and holds promise for extension to other tropical cities. This paper presents a comprehensive summary of the goals, LID practices (ABC design features) and design considerations as well as results of several monitored sites, including a constructed wetland, two rain gardens, green roofs and three canal restoration projects. We evaluate the ABC Waters Program based on these initial results and consider the challenges, issues and the research needs for it to meet its hydrological and water quality remediation goals. So far, the ABC design features evaluated perform well in removing particulates. Performance in nutrient removal is poor. With over 60 projects completed within 10 years, post-project monitoring and evaluation is necessary and complements on-going laboratory and modelling research projects conducted by local academic institutions.

  7. Structural basis for substrate specificity of an amino acid ABC transporter.

    PubMed

    Yu, Jie; Ge, Jingpeng; Heuveling, Johanna; Schneider, Erwin; Yang, Maojun

    2015-04-21

    ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins that translocate a variety of substrates, ranging from ions to macromolecules, either out of or into the cytosol (hence defined as importers or exporters, respectively). It has been demonstrated that ABC exporters and importers function through a common mechanism involving conformational switches between inward-facing and outward-facing states; however, the mechanism underlying their functions, particularly substrate recognition, remains elusive. Here we report the structures of an amino acid ABC importer Art(QN)2 from Thermoanaerobacter tengcongensis composed of homodimers each of the transmembrane domain ArtQ and the nucleotide-binding domain ArtN, either in its apo form or in complex with substrates (Arg, His) and/or ATPs. The structures reveal that the straddling of the TMDs around the twofold axis forms a substrate translocation pathway across the membrane. Interestingly, each TMD has a negatively charged pocket that together create a negatively charged internal tunnel allowing amino acids carrying positively charged groups to pass through. Our structural and functional studies provide a better understanding of how ABC transporters select and translocate their substrates.

  8. Watching conformational dynamics of ABC transporters with single-molecule tools.

    PubMed

    Husada, Florence; Gouridis, Giorgos; Vietrov, Ruslan; Schuurman-Wolters, Gea K; Ploetz, Evelyn; de Boer, Marijn; Poolman, Bert; Cordes, Thorben

    2015-10-01

    ATP-binding cassette (ABC) transporters play crucial roles in cellular processes, such as nutrient uptake, drug resistance, cell-volume regulation and others. Despite their importance, all proposed molecular models for transport are based on indirect evidence, i.e. functional interpretation of static crystal structures and ensemble measurements of function and structure. Thus, classical biophysical and biochemical techniques do not readily visualize dynamic structural changes. We recently started to use single-molecule fluorescence techniques to study conformational states and changes of ABC transporters in vitro, in order to observe directly how the different steps during transport are coordinated. This review summarizes our scientific strategy and some of the key experimental advances that allowed the substrate-binding mechanism of prokaryotic ABC importers and the transport cycle to be explored. The conformational states and transitions of ABC-associated substrate-binding domains (SBDs) were visualized with single-molecule FRET, permitting a direct correlation of structural and kinetic information of SBDs. We also delineated the different steps of the transport cycle. Since information in such assays are restricted by proper labelling of proteins with fluorescent dyes, we present a simple approach to increase the amount of protein with FRET information based on non-specific interactions between a dye and the size-exclusion chromatography (SEC) column material used for final purification.

  9. My Favorite Assignment: From the ABC 2010 Annual Convention, Chicago, Illinois

    ERIC Educational Resources Information Center

    Whalen, D. Joel

    2011-01-01

    The seven Favorite Assignments featured in this article were originally presented at the 2010 ABC Annual Convention, Chicago, Illinois. The reader can consider a variety of learning objectives from team building to persuasion, application of electronic media to face-to-face communication, and much more. Some Favorite Assignments take a full…

  10. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport.

    PubMed

    Coleman, Jonathan A; Quazi, Faraz; Molday, Robert S

    2013-03-01

    Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P(4)-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P(4)-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P(4)-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.

  11. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury.

    PubMed

    Zhang, Chun; He, Xijing; Li, Haopeng; Wang, Guoyu

    2013-04-15

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.

  12. Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems.

    PubMed

    Aryal, Bibek; Laurent, Christophe; Geisler, Markus

    2015-10-01

    The ABC (ATP-binding cassette) transporter family in higher plants is highly expanded compared with those of mammalians. Moreover, some members of the plant ABC subfamily B (ABCB) display very high substrate specificity compared with their mammalian counterparts that are often associated with multi-drug resistance phenomena. In this review, we highlight prominent functions of plant and mammalian ABC transporters and summarize our knowledge on their post-transcriptional regulation with a focus on protein phosphorylation. A deeper comparison of regulatory events of human cystic fibrosis transmembrane conductance regulator (CFTR) and ABCB1 from the model plant Arabidopsis reveals a surprisingly high degree of similarity. Both physically interact with orthologues of the FK506-binding proteins that chaperon both transporters to the plasma membrane in an action that seems to involve heat shock protein (Hsp)90. Further, both transporters are phosphorylated at regulatory domains that connect both nt-binding folds. Taken together, it appears that ABC transporters exhibit an evolutionary conserved but complex regulation by protein phosphorylation, which apparently is, at least in some cases, tightly connected with protein-protein interactions (PPI). PMID:26517911

  13. The ABC-Pyramid Atmospheric Research Observatory in Himalaya for aerosol, ozone and halocarbon measurements.

    PubMed

    Bonasoni, P; Laj, P; Angelini, F; Arduini, J; Bonafè, U; Calzolari, F; Cristofanelli, P; Decesari, S; Facchini, M C; Fuzzi, S; Gobbi, G P; Maione, M; Marinoni, A; Petzold, A; Roccato, F; Roger, J C; Sellegri, K; Sprenger, M; Venzac, H; Verza, G P; Villani, P; Vuillermoz, E

    2008-03-01

    In this work we present the new ABC-Pyramid Atmospheric Research Observatory (Nepal, 27.95 N, 86.82 E) located in the Himalayas, specifically in the Khumbu valley at 5079 m a.s.l. This measurement station has been set-up with the aim of investigating natural and human-induced environmental changes at different scales (local, regional and global). After an accurate instrumental set-up at ISAC-CNR in Bologna (Italy) in autumn 2005, the ABC-Pyramid Observatory for aerosol (physical, chemical and optical properties) and trace gas measurements (ozone and climate altering halocarbons) was installed in the high Khumbu valley in February 2006. Since March 2006, continuous measurements of aerosol particles (optical and physical properties), ozone (O3) and meteorological parameters as well as weekly samplings of particulate matter (for chemical analyses) and grab air samples for the determination of 27 halocarbons, have been carried out. These measurements provide data on the typical atmospheric composition of the Himalayan area between India and China and make investigations of the principal differences and similarities between the monsoon and pre-monsoon seasons possible. The study is carried out within the framework of the Ev-K2-CNR "SHARE-Asia" (Stations at High Altitude for Research on the Environment in Asia) and UNEP-"ABC" (Atmospheric Brown Clouds) projects. With the name of "Nepal Climate Observatory-Pyramid" the station is now part of the Observatory program of the ABC project.

  14. Vocational Education and Training. Briefing Notes for Further Education. Administrative, Business & Commercial (ABC) Briefing Notes.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    The introduction and the three booklets contained in this packet are intended to provide guidance to further education staff who are implementing, or planning to implement, National Vocational Qualifications (NVQs) based on the standards devised by the Administrative, Business, and Commercial (ABC) Training Group in Great Britain. The boklet on…

  15. K-ABC/McCarthy Performance for Repeating and Nonrepeating Preschoolers.

    ERIC Educational Resources Information Center

    Smith, Douglas K.; Lyon, Mark A.

    This study compares the McCarthy Scales of Children's Abilities (MSCA) and the Kaufman Assessment Battery for Children (K-ABC) profiles of successful and unsuccessful preschoolers with learning disabilities. Subjects, 40 preschool students, were tested at the beginning and at the end of the preschool year and were placed into repeating or…

  16. Transcriptome-based identification of ABC transporters in the western tarnished plant bug lygus hesperus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic cle...

  17. EDITORIAL: Special issue on Graphene Special issue on Graphene

    NASA Astrophysics Data System (ADS)

    Morpurgo, Alberto F.; Trauzettel, Björn

    2010-03-01

    Since the revolutionary experimental discovery of graphene in the year 2004, research on this new two-dimensional carbon allotrope has progressed at a spectacular pace. The impact of graphene on different areas of research— including physics, chemistry, and applied sciences— is only now starting to be fully appreciated. There are different factors that make graphene a truly impressive system. Regarding nano-electronics and related fields, for instance, it is the exceptional electronic and mechanical properties that yield very high room-temperature mobility values, due to the particular band structure, the material `cleanliness' (very low-concentration of impurities), as well as its stiffness. Also interesting is the possibility to have a high electrical conductivity and optical transparency, a combination which cannot be easily found in other material systems. For other fields, other properties could be mentioned, many of which are currently being explored. In the first years following this discovery, research on graphene has mainly focused on the fundamental physics aspects, triggered by the fact that electrons in graphene behave as Dirac fermions due to their interaction with the ions of the honeycomb lattice. This direction has led to the discovery of new phenomena such as Klein tunneling in a solid state system and the so-called half-integer quantum Hall effect due to a special type of Berry phase that appears in graphene. It has also led to the appreciation of thicker layers of graphene, which also have outstanding new properties of great interest in their own right (e.g., bilayer graphene, which supports chiral quasiparticles that, contrary to Dirac electrons, are not massless). Now the time is coming to deepen our knowledge and improve our control of the material properties, which is a key aspect to take one step further towards applications. The articles in the Semiconductor Science and Technology Graphene special issue deal with a diversity of topics

  18. Photochemical Transformation of Graphene Oxide in Sunlight

    EPA Science Inventory

    Graphene oxide (GO) is a graphene derivative that is more easily manufactured in large scale and used to synthesize reduced graphene oxide (rGO) with properties analogous to graphene. In this study, we investigate the photochemical fate of GO under sunlight conditions. The resu...

  19. Interplay of energy dissipation, ion-induced mixing, and crystal structure recovery, and surface effects in ion-irradiated magnetic Fe/Cr/Fe trilayers

    SciTech Connect

    Brodyanski, A.; Bock, W.; Kopnarski, M.; Reuscher, B.; Blomeier, S.; Hillebrands, B.; Gnaser, H.

    2011-12-01

    The influence of the ion irradiation by 30 keV Ga{sup +} ions on the crystal structure, chemical ordering, magnetic properties, and topography of epitaxial Fe/Cr/Fe trilayers was investigated by different analytical techniques. We present direct experimental evidence, supported by theoretical estimates, that two processes take place concurrently due to the Ga-ion implantation. (i) A complete atom mixing of the Cr atoms within the Fe multilayers is occurring due to the collision cascades during the ballistic regime, and (ii) an essentially complete recovery of the initial single-crystal quality of the Fe multilayers by healing the melted and damaged area through the thermal spike phase occurs. Based on the experimental range distributions and theoretical modeling, channeling of Ga{sup +} ions in the experiments is found to contribute weakly to ion penetration and stopping, and the relative fraction of the well-channeled ions is marginally small. On the other hand, this weak channeling is sufficient to reduce the sputter yield by a factor of more than 5 in comparison with the sputtering of polycrystalline samples, evidence for the fact that the magnitude of channeling is not of primary importance for the sputtering. We offer an explanation for the observation of dramatic and abrupt changes in the surface roughness with increasing fluences in terms of a transformation from a single-phase single-crystal implanted region (bcc-Fe) to a mixture of the polycrystalline {alpha}-Fe-like bcc and {alpha}-Fe{sub 3}Ga structures within the outer half of the original Fe/Cr/Fe trilayer at fluences above 6.25 x 10{sup 16} ion/cm{sup 2}. The wall-like elevations appearing at the boundary of the irradiated areas were analyzed experimentally by varying the irradiation conditions. We showed that the wall size is governed by the ion-current density applied. A physical explanation for the appearance of such topographic features is presented, which would be valid for any material

  20. Thermoelectric effects in graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Dollfus, Philippe; Nguyen, Viet Hung; Saint-Martin, Jérôme

    2015-04-01

    The thermoelectric properties of graphene and graphene nanostructures have recently attracted significant attention from the physics and engineering communities. In fundamental physics, the analysis of Seebeck and Nernst effects is very useful in elucidating some details of the electronic band structure of graphene that cannot be probed by conductance measurements alone, due in particular to the ambipolar nature of this gapless material. For applications in thermoelectric energy conversion, graphene has two major disadvantages. It is gapless, which leads to a small Seebeck coefficient due to the opposite contributions of electrons and holes, and it is an excellent thermal conductor. The thermoelectric figure of merit ZT of a two-dimensional (2D) graphene sheet is thus very limited. However, many works have demonstrated recently that appropriate nanostructuring and bandgap engineering of graphene can concomitantly strongly reduce the lattice thermal conductance and enhance the Seebeck coefficient without dramatically degrading the electronic conductance. Hence, in various graphene nanostructures, ZT has been predicted to be high enough to make them attractive for energy conversion. In this article, we review the main results obtained experimentally and theoretically on the thermoelectric properties of graphene and its nanostructures, emphasizing the physical effects that govern these properties. Beyond pure graphene structures, we discuss also the thermoelectric properties of some hybrid graphene structures, as graphane, layered carbon allotropes such as graphynes and graphdiynes, and graphene/hexagonal boron nitride heterostructures which offer new opportunities. Finally, we briefly review the recent activities on other atomically thin 2D semiconductors with finite bandgap, i.e. dichalcogenides and phosphorene, which have attracted great attention for various kinds of applications, including thermoelectrics.