Science.gov

Sample records for abc-stacked trilayer graphene

  1. Magnetic oscillation of optical phonon in ABA- and ABC-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Cong, Chunxiao; Jung, Jeil; Cao, Bingchen; Qiu, Caiyu; Shen, Xiaonan; Ferreira, Aires; Adam, Shaffique; Yu, Ting

    2015-06-01

    We present a comparative measurement of the G -peak oscillations of phonon frequency, Raman intensity, and linewidth in the magneto-Raman scattering of optical E2 g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behavior between the electronic excitations and the E2 g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the particular stacking order in few-layer graphene highlights the important role of interlayer coupling in modifying the optical response properties in van der Waals layered materials.

  2. Ab initio quasiparticle band structure of ABA and ABC-stacked graphene trilayers

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos G.; Capaz, Rodrigo B.; Louie, Steven G.

    2014-01-01

    We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density-functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low-energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the self-energy corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher-energy bands, which is proportional to the nearest-neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the self-energy corrections. Finally, other effects, such as trigonal warping, electron-hole asymmetry, and energy gaps, are discussed in terms of the associated parameters.

  3. Electronic excitation spectrum of ABC-stacked multilayer graphene

    NASA Astrophysics Data System (ADS)

    Henni, Y.; Nogajewski, K.; Ojeda Collado, H. P.; Usaj, G.; Balseiro, C. A.; Potemski, M.; Faugeras, C.

    The electronic properties of ABC graphene trilayers has attracted lot of attention recently due to their potential applications in engineering carbon-based devices with gate tunable electrical conductivity. Morever,ABC-stacked thin layers of graphite are predicted to host peculiar surface electronic states, with a flat dispersion over most of the Brillouin zone. The associated high density of states is likely to favour the emergence of exotic electronic phases, such as charge density waves or even superconductivity. We present a micro-magneto-Raman scattering study of a thin graphite flake produced by exfoliation of natural graphite, composed of ~15graphene layers, and including a large ABC-stacked domain. Exploring the low temperature Raman scattering spectrum of this domain up to B=29T,we identify inter Landau level electronic excitations within the surface flat bands,together with electronic excitations involving the gapped states in the bulk. This interband electronic excitation at B=0T can be observed,up to room temperature, directly in the Raman scattering spectrum as a broad(~ 180 cm-1) feature. Because the energy gap strongly depends on the number of layers,this electronic excitation can be used to identify and characterize ABC-stacked graphite thin layers.

  4. Electronic Structure of ABC-stacked Multilayer Graphene and Trigonal Warping:A First Principles Calculation

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-04-01

    We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.

  5. First principles study of trilayers of graphene-BN-graphene

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoliang; Amorim, Rodrigo; Pandey, Ravindra; Karna, Shashi

    2012-02-01

    The stability, electronic structure and electronic transport properties of graphene-BN-graphene (C-BN-C) trilayers are studied in the framework of density functional theory. Different stacking formats, i.e., AAA, ABA and ABC stackings are considered. The ABA stacking is found to be most energetically favorable, followed by ABC and AAA stackings. The interlayer spacing of trilayers are close to those of corresponding C-BN bilayers, while the intralayer bond length can be regarded as the weighted mean of constituent layers. All considered configurations are found to be metallic, independent of stacking formats. When an external electric field is applied perpendicularly, electronic band structures undergo stacking-dependent variations. While both AAA and ABA stackings show good tunability of energy gap, ABC stacking shows less flexibility of gap tuning. We will also present the results of the electronic transport properties which are modeled by sandwiching trilayers between gold contact electrodes.

  6. Trilayer graphene nanoribbon carrier statistics in degenerate and non degenerate limits

    NASA Astrophysics Data System (ADS)

    Rahmani, M.; Ahmadi, M. T.; Webb, J. F.; Shayesteh, N.; Mousavi, S. M.; Sadeghi, H.; Ismail, R.

    2012-11-01

    We present trilayer graphene nanoribbon carrier statistics in the degenerate and the nondegenerate limits. Within zero to 3kBT from the conduction or valence band edgers high concentrations of carriers sensitively depend on a normalized Fermi energy which is independent of temperature. The effect of different stacking orders of graphene multilayers on the electric field induced band gap is studied. The gap for trilayer graphene with the ABC stacking is much larger than the corresponding gap for the ABA trilayer. The gap for the different types of stacking is much larger as compared to the case of Bernal stacking. A non-monotonic dependence of the true energy gap in trilayer graphene on the charge density is investigated along with the electronic low-energy band structure of ABC stacked multilayer graphene. The band structure of trilayer graphene systems in the presence of a perpendicular electric field is obtained using a tight-binding approach.

  7. Evolution and dimensional crossover from the bulk subbands in ABC-stacked graphene to a three-dimensional Dirac cone structure in rhombohedral graphite

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hong; Chang, Cheng-Peng; Lin, Ming-Fa

    2016-02-01

    Rhombohedral graphite behaves like a topological semimetal, possessing flat surface subbands while being semimetallic in the bulk. The bulk-surface correspondence arises from the ABC-stacking configuration of graphene layers. The bulk subbands in rhombohedral graphite can be interpreted as a three-dimensional Dirac cone structure, whose Dirac points form continuous lines spiraling in momentum space. In this paper, we study the evolution of gapped bulk subbands in ABC-stacked N -layer graphene with an increase of N , and their dimensional crossover to the three-dimensional Dirac cone structure in the bulk limit, where the bulk gap closes up at the Dirac-point spirals. To clarify the effect of coupling to the surface subbands, we use a nonperturbative effective Hamiltonian closed in the bulk subspace. As a consequence, the wavelength of the standing-wave function across the stack of layers depends on the in-plane Bloch momentum. In the bulk limit, the coupling vanishes and hence the wavelength is irrelevant to the surface.

  8. Magneto-electronic properties of rhombohedral trilayer graphene: Peierls tight-binding model

    SciTech Connect

    Ho, C.H.; Ho, Y.H.; Chiu, Y.H.; Chen, Y.N.; Lin, M.F.

    2011-03-15

    Research highlights: RHtriangle Three groups of Landau levels of ABC-stacked trilayer graphene are obtained. RHtriangle They are strongly affected by the stacking configuration and interlayer interactions. RHtriangle Based on the wave function characteristics, an effective quantum number is defined. RHtriangle Three sets of effective quantum numbers are used to index the Landau levels. RHtriangle These quantum numbers are useful for defining the optical selection rules. - Abstract: Magneto-electronic properties of rhombohedral (ABC-stacked) trilayer graphene are investigated by the tight-binding (TB) model with all important interlayer interactions taken into account. A numerical strategy, band-like matrix, is applied to solve the huge Hamiltonian matrix and thus the eigenvalues and eigenvectors of Landau levels (LLs) are well defined. Based on the characteristics of the wave functions, the LLs are divided into three groups. These LLs are strongly affected by the stacking configuration and interlayer interactions. The LL spectra do reflect the main features of the zero-field subbands, i.e., the existence of three LL groups, specified onset energies of the three groups, and asymmetric electronic structure. In an ABC-stacked structure, the LL wave functions are each composed of six magnetic TB Bloch functions for six sublattices. Each magnetic TB Bloch function exhibits the spatial symmetry, localization feature, and oscillation modes. Three sets of effective quantum numbers are defined to index the LLs of the three groups based on the oscillation modes in specific sublattices. These effective quantum numbers are useful for defining the optical selection rules of the optical absorption spectra.

  9. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer

    PubMed Central

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G.; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-01-01

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field. PMID:27629702

  10. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    PubMed

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-09-15

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.

  11. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    PubMed

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-01-01

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field. PMID:27629702

  12. Electric and magnetic superlattices in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Uddin, Salah; Chan, K. S.

    2016-01-01

    The properties of one dimensional Kronig-Penney type of periodic electric and vector potential on ABC-trilayer graphene superlattices are investigated. The energy spectra obtained with periodic vector potentials shows the emergence of extra Dirac points in the energy spectrum with finite energies. For identical barrier and well widths, the original as well as the extra Dirac points are located in the ky = 0 plane. An asymmetry between the barrier and well widths causes a shift in the extra Dirac points away from the ky = 0 plane. Extra Dirac points having same electron hole crossing energy as that of the original Dirac point as well as finite energy Dirac points are generated in the energy spectrum when periodic electric potential is applied to the system. By applying electric and vector potential together, the symmetry of the energy spectrum about the Fermi level is broken. A tunable band gap is induced in the energy spectrum by applying both electric and vector potential simultaneously with different barrier and well widths.

  13. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride.

    PubMed

    Zhong, Xiaoliang; Amorim, Rodrigo G; Scheicher, Ralph H; Pandey, Ravindra; Karna, Shashi P

    2012-09-01

    We report the results of a theoretical study of graphene/BN/graphene and BN/graphene/BN trilayers using the van-der-Waals-corrected density functional theory in conjunction with the non-equilibrium Green's Function method. These trilayer systems formed from graphene and BN exhibit distinct stacking-dependent features in their ground state electronic structure and response to an applied electric field perpendicular to the trilayer planes. The graphene/BN/graphene system shows a negligible gap in the electronic band structure that increases for the AAA and ABA stackings under an external electric field, while the zero-field band gap of BN/graphene/BN remains unaffected by the electric field. When both types of trilayer systems are contacted with gold electrodes, a metal-like conduction is predicted in the low-field regime, which changes to a p-type conduction with an increase in the applied perpendicular bias field.

  14. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoliang; Amorim, Rodrigo G.; Scheicher, Ralph H.; Pandey, Ravindra; Karna, Shashi P.

    2012-08-01

    We report the results of a theoretical study of graphene/BN/graphene and BN/graphene/BN trilayers using the van-der-Waals-corrected density functional theory in conjunction with the non-equilibrium Green's Function method. These trilayer systems formed from graphene and BN exhibit distinct stacking-dependent features in their ground state electronic structure and response to an applied electric field perpendicular to the trilayer planes. The graphene/BN/graphene system shows a negligible gap in the electronic band structure that increases for the AAA and ABA stackings under an external electric field, while the zero-field band gap of BN/graphene/BN remains unaffected by the electric field. When both types of trilayer systems are contacted with gold electrodes, a metal-like conduction is predicted in the low-field regime, which changes to a p-type conduction with an increase in the applied perpendicular bias field.We report the results of a theoretical study of graphene/BN/graphene and BN/graphene/BN trilayers using the van-der-Waals-corrected density functional theory in conjunction with the non-equilibrium Green's Function method. These trilayer systems formed from graphene and BN exhibit distinct stacking-dependent features in their ground state electronic structure and response to an applied electric field perpendicular to the trilayer planes. The graphene/BN/graphene system shows a negligible gap in the electronic band structure that increases for the AAA and ABA stackings under an external electric field, while the zero-field band gap of BN/graphene/BN remains unaffected by the electric field. When both types of trilayer systems are contacted with gold electrodes, a metal-like conduction is predicted in the low-field regime, which changes to a p-type conduction with an increase in the applied perpendicular bias field. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31310c

  15. Flower-shaped domains and wrinkles in trilayer epitaxial graphene on silicon carbide.

    PubMed

    Lalmi, B; Girard, J C; Pallecchi, E; Silly, M; David, C; Latil, S; Sirotti, F; Ouerghi, A

    2014-01-01

    Trilayer graphene is of particular interest to the 2D materials community because of its unique tunable electronic structure. However, to date, there is a lack of fundamental understanding of the properties of epitaxial trilayer graphene on silicon carbide. Here, following successful synthesis of large-area uniform trilayer graphene, atomic force microscopy (AFM) showed that the trilayer graphene on 6H-SiC(0001) was uniform over a large scale. Additionally, distinct defects, identified as flower-shaped domains and isolated wrinkle structures, were observed randomly on the surface using scanning tunneling microscopy and spectroscopy (STM/STS). These carbon nanostructures formed during growth, has different structural and electronic properties when compared with the adjacent flat regions of the graphene. Finally, using low temperature STM/STS at 4K, we found that the isolated wrinkles showed an irreversible rotational motion between two 60° configurations at different densities of states. PMID:24513669

  16. Thermoelectric properties of a trilayer graphene nanoribbon

    NASA Astrophysics Data System (ADS)

    Orellana, Pedro; Cortes, Natalia; Rosales, Luis; Pacheco, Monica; Chico, Leonor

    2015-03-01

    In this work the electronic and thermoelectric properties of a three-layer graphene with AAA stacking type are studied. By using a tight-binding model analytical expressions for the transmission and density of states are obtained. Thermoelectric properties are analyzed by numerical integration and results for thermopower and figure of merit, electronic conductance and thermal conductance are obtained. The results show that the interference effects present in this system, like Fano effect, directly affect the behavior of these thermoelectric properties and as well as the Wiedemann-Franz law. There is an enhancement of the thermopower of the system and a violation of the Wiedemann-Franz law in the region of energies close the Fano antiresonances and this has as a consequence an enhancement of the figure of merit of the system. FONDECYT 1140571, 1140388, CONICYT ACT 1204, DGIP/ USM internal Grant 11.14.68.

  17. Spin and valley resolved Landau level crossing in tri-layer ABA stacked graphene

    NASA Astrophysics Data System (ADS)

    Datta, Biswajit; Gupta, Vishakha; Borah, Abhinandan; Watanabe, Kenji; Taniguchi, Takashi; Deshmukh, Mandar

    We present quantum Hall measurements on a high quality encapsulated tri-layer graphene device. Low temperature field effect mobility of this device is around 500,000 cm2/Vs and we see SdH oscillations at a magnetic field as low as 0.3 T. Quantum Hall measurements confirm that the chosen tri layer graphene is Bernal (ABA) stacked. Due to the presence of both mass-less monolayer like Dirac fermions and massive bi-layer like Dirac fermions in Bernal stacked tri-layer graphene, there are Landau level crossings between monolayer and bi-layer bands in quantum Hall regime. Although most of the Landau Level crossings are predominantly present on the electron sides, we also observe signatures of the crossings on the hole side. This behaviour is consistent with the asymmetry of electron and hole in ABA tri-layer graphene. We observe a series of crossings of the spin and valley resolved Landau Levels.

  18. Edge magnetization in Bernal-stacked trilayer zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Pérez, Juan Antonio Casao

    2016-06-01

    We have used a tight-binding Hamiltonian of an ABA-stacked trilayer zigzag graphene nanoribbon with β-alignment edges to study the edge magnetizations. Our model includes the effect of the intralayer next-nearest-neighbor hopping, the interlayer hopping responsible for the trigonal warping and the interaction between electrons, which is considered by a single band Hubbard model in the mean field approximation. Firstly, in the neutral system we analyzed the two magnetic states in which both edge magnetizations reach their maximum value; the first one is characterized by an intralayer ferromagnetic coupling between the magnetizations at opposite edges, whereas in the second state that coupling is antiferromagnetic. The band structure, the location of the edge-state bands and the local density of states resolved in spin are calculated in order to understand the origins of the edge magnetizations. We have also introduced an electron doping so that the number of electrons in the ribbon unit cell is higher than in neutral case. As a consequence, we have obtained magnetization steps and charge accumulation at the edges of the sample, which are caused by the edge-state flat bands.

  19. Broken symmetry quantum Hall states in dual-gated ABA trilayer graphene.

    PubMed

    Lee, Yongjin; Velasco, Jairo; Tran, David; Zhang, Fan; Bao, W; Jing, Lei; Myhro, Kevin; Smirnov, Dmitry; Lau, Chun Ning

    2013-04-10

    ABA-stacked trilayer graphene is a unique 2D electron system with mirror reflection symmetry and unconventional quantum Hall effect. We present low-temperature transport measurements on dual-gated suspended trilayer graphene in the quantum Hall (QH) regime. We observe QH plateaus at filling factors ν = -8, -2, 2, 6, and 10, which is in agreement with the full-parameter tight binding calculations. In high magnetic fields, odd-integer plateaus are also resolved, indicating almost complete lifting of the 12-fold degeneracy of the lowest Landau level (LL). Under an out-of-plane electric field E(perpendicular), we observe degeneracy breaking and transitions between QH plateaus. Interestingly, depending on its direction, E(perpendicular) selectively breaks the LL degeneracies in the electron-doped or hole-doped regimes. Our results underscore the rich interaction-induced phenomena in trilayer graphene.

  20. Band structure of ABC-trilayer graphene superlattice

    SciTech Connect

    Uddin, Salah Chan, K. S.

    2014-11-28

    We investigate the effect of one-dimensional periodic potentials on the low energy band structure of ABC trilayer graphene first by assuming that all the three layers have the same potential. Extra Dirac points having the same electron hole crossing energy as that of the original Dirac point are generated by superlattice potentials with equal well and barrier widths. When the potential height is increased, the numbers of extra Dirac points are increased. The dispersions around the Dirac points are not isotropic. It is noted that the dispersion along the k{sub y} direction for k{sub x} = 0 oscillates between a non-linear dispersion and a linear dispersion when the potential height is increased. When the well and barrier widths are not identical, the symmetry of the conduction and valence bands is broken. The extra Dirac points are shifted either upward or downward depending on the barrier and well widths from the zero energy, while the position of the central Dirac point oscillates with the superlattice potential height. By considering different potentials for different layers, extra Dirac points are generated not from the original Dirac points but from the valleys formed in the energy spectrum. Two extra Dirac points appear from each pair of touched valleys, so four Dirac points appeared in the spectrum at particular barrier height. By increasing the barrier height of superlattice potential two Dirac points merge into the original Dirac point. This emerging and merging of extra Dirac points is different from the equal potential case.

  1. Quasi-particle spectrum in trilayer graphene: Role of onsite coulomb interaction and interlayer coupling

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Ajay

    2015-01-01

    Stacking dependent quasi-particle spectrum and density of states (DOS) in trilayer (ABC-, ABA- and AAA-stacked) graphene are analyzed using mean-field Green's function equations of motion method. Interlayer coupling (t1) is found to be responsible for the splitting of quasi-particle peaks in each stacking order. Coulomb interaction suppresses the trilayer splitting and generates a finite gap at Fermi level in ABC- while a tiny gap in ABA-stacked trilayer graphene. Influence of t⊥ is prominent for AAA-stacking as compared to ABC- and ABA-stacking orders. The theoretically obtained quasi-particle energies and DOS has been viewed in terms of recent angle resolved photoemission spectroscopic (ARPES) and scanning tunneling microscopic (STM) data available on these systems.

  2. High Electron Mobility in Epitaxial Trilayer Graphene on Off-axis SiC(0001).

    PubMed

    Hajlaoui, Mahdi; Sediri, Haikel; Pierucci, Debora; Henck, Hugo; Phuphachong, Thanyanan; Silly, Mathieu G; de Vaulchier, Louis-Anne; Sirotti, Fausto; Guldner, Yves; Belkhou, Rachid; Ouerghi, Abdelkarim

    2016-01-01

    The van de Waals heterostructure formed by an epitaxial trilayer graphene is of particular interest due to its unique tunable electronic band structure and stacking sequence. However, to date, there has been a lack in the fundamental understanding of the electronic properties of epitaxial trilayer graphene. Here, we investigate the electronic properties of large-area epitaxial trilayer graphene on a 4° off-axis SiC(0001) substrate. Micro-Raman mappings and atomic force microscopy (AFM) confirmed predominantly trilayer on the sample obtained under optimized conditions. We used angle-resolved photoemission spectroscopy (ARPES) and Density Functional Theory (DFT) calculations to study in detail the structure of valence electronic states, in particular the dispersion of π bands in reciprocal space and the exact determination of the number of graphene layers. Using far-infrared magneto-transmission (FIR-MT), we demonstrate, that the electron cyclotron resonance (CR) occurs between Landau levels with a (B)(1/2) dependence. The CR line-width is consistent with a high Dirac fermions mobility of ~3000 cm(2)·V(-1)·s(-1) at 4 K. PMID:26739366

  3. High Electron Mobility in Epitaxial Trilayer Graphene on Off-axis SiC(0001)

    PubMed Central

    Hajlaoui, Mahdi; Sediri, Haikel; Pierucci, Debora; Henck, Hugo; Phuphachong, Thanyanan; Silly, Mathieu G.; de Vaulchier, Louis-Anne; Sirotti, Fausto; Guldner, Yves; Belkhou, Rachid; Ouerghi, Abdelkarim

    2016-01-01

    The van de Waals heterostructure formed by an epitaxial trilayer graphene is of particular interest due to its unique tunable electronic band structure and stacking sequence. However, to date, there has been a lack in the fundamental understanding of the electronic properties of epitaxial trilayer graphene. Here, we investigate the electronic properties of large-area epitaxial trilayer graphene on a 4° off-axis SiC(0001) substrate. Micro-Raman mappings and atomic force microscopy (AFM) confirmed predominantly trilayer on the sample obtained under optimized conditions. We used angle-resolved photoemission spectroscopy (ARPES) and Density Functional Theory (DFT) calculations to study in detail the structure of valence electronic states, in particular the dispersion of π bands in reciprocal space and the exact determination of the number of graphene layers. Using far-infrared magneto-transmission (FIR-MT), we demonstrate, that the electron cyclotron resonance (CR) occurs between Landau levels with a (B)1/2 dependence. The CR line-width is consistent with a high Dirac fermions mobility of ~3000 cm2·V−1·s−1 at 4 K. PMID:26739366

  4. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications

    NASA Astrophysics Data System (ADS)

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-01

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  5. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    PubMed

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-01

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption. PMID:23363692

  6. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Min, Tjun Kit; Lim, Thong Leng; Yoon, Tiem Leong

    2015-04-01

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  7. 1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier

    SciTech Connect

    Nguyen, Ba-Son; Lin, Jen-Fin

    2014-02-24

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750 °C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750 °C. At 800 °C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

  8. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    SciTech Connect

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  9. Monte Carlo simulations of ABC stacked kagome lattice films.

    PubMed

    Yerzhakov, H V; Plumer, M L; Whitehead, J P

    2016-05-18

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  10. Monte Carlo simulations of ABC stacked kagome lattice films

    NASA Astrophysics Data System (ADS)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  11. Stacking order dependent mechanical properties of graphene/MoS{sub 2} bilayer and trilayer heterostructures

    SciTech Connect

    Elder, Robert M. E-mail: mahesh.neupane.ctr@mail.mil; Neupane, Mahesh R. E-mail: mahesh.neupane.ctr@mail.mil; Chantawansri, Tanya L.

    2015-08-17

    Transition metal dichalcogenides (TMDC) such as molybdenum disulfide (MoS{sub 2}) are two-dimensional materials that show promise for flexible electronics and piezoelectric applications, but their weak mechanical strength is a barrier to practical use. In this work, we perform nanoindentation simulations using atomistic molecular dynamics to study the mechanical properties of heterostructures formed by combining MoS{sub 2} with graphene. We consider both bi- and tri-layer heterostructures formed with MoS{sub 2} either supported or encapsulated by graphene. Mechanical properties, such as Young's modulus, bending modulus, ultimate tensile strength, and fracture strain, are extracted from nanoindentation simulations and compared to the monolayer and homogeneous bilayer systems. We observed that the heterostructures, regardless of the stacking order, are mechanically more robust than the mono- and bi-layer MoS{sub 2}, mainly due to the mechanical reinforcement provided by the graphene layer. The magnitudes of ultimate strength and fracture strain are similar for both the bi- and tri-layer heterostructures, but substantially larger than either the mono- and bi-layer MoS{sub 2}. Our results demonstrate the potential of graphene-based heterostructures to improve the mechanical properties of TMDC materials.

  12. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Que, Yande; Xiao, Wende; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun

    2015-12-01

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.

  13. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    SciTech Connect

    Que, Yande; Xiao, Wende E-mail: hjgao@iphy.ac.cn; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun E-mail: hjgao@iphy.ac.cn

    2015-12-28

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.

  14. Multicomponent Quantum Hall Ferromagnetism and Landau Level Crossing in Rhombohedral Trilayer Graphene.

    PubMed

    Lee, Y; Tran, D; Myhro, K; Velasco, J; Gillgren, N; Poumirol, J M; Smirnov, D; Barlas, Y; Lau, C N

    2016-01-13

    Using transport measurements, we investigate multicomponent quantum Hall (QH) ferromagnetism in dual-gated rhombohedral trilayer graphene (r-TLG) in which the real spin, orbital pseudospin, and layer pseudospins of the lowest Landau level form spontaneous ordering. We observe intermediate QH plateaus, indicating a complete lifting of the degeneracy of the zeroth Landau level (LL) in the hole-doped regime. In charge neutral r-TLG, the orbital degeneracy is broken first, and the layer degeneracy is broken last and only in the presence of an interlayer potential U⊥. In the phase space of U⊥ and filling factor ν, we observe an intriguing "hexagon" pattern, which is accounted for by a model based on crossings between symmetry-broken LLs.

  15. Multicomponent Quantum Hall Ferromagnetism and Landau Level Crossing in Rhombohedral Trilayer Graphene.

    PubMed

    Lee, Y; Tran, D; Myhro, K; Velasco, J; Gillgren, N; Poumirol, J M; Smirnov, D; Barlas, Y; Lau, C N

    2016-01-13

    Using transport measurements, we investigate multicomponent quantum Hall (QH) ferromagnetism in dual-gated rhombohedral trilayer graphene (r-TLG) in which the real spin, orbital pseudospin, and layer pseudospins of the lowest Landau level form spontaneous ordering. We observe intermediate QH plateaus, indicating a complete lifting of the degeneracy of the zeroth Landau level (LL) in the hole-doped regime. In charge neutral r-TLG, the orbital degeneracy is broken first, and the layer degeneracy is broken last and only in the presence of an interlayer potential U⊥. In the phase space of U⊥ and filling factor ν, we observe an intriguing "hexagon" pattern, which is accounted for by a model based on crossings between symmetry-broken LLs. PMID:26636471

  16. Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Tran, D.; Myhro, K.; Velasco, J.; Gillgren, N.; Lau, C. N.; Barlas, Y.; Poumirol, J. M.; Smirnov, D.; Guinea, F.

    2014-12-01

    Many physical phenomena can be understood by single-particle physics; that is, treating particles as non-interacting entities. When this fails, many-body interactions lead to spontaneous symmetry breaking and phenomena such as fundamental particles’ mass generation, superconductivity and magnetism. Competition between single-particle and many-body physics leads to rich phase diagrams. Here we show that rhombohedral-stacked trilayer graphene offers an exciting platform for studying such interplay, in which we observe a giant intrinsic gap ~42 meV that can be partially suppressed by an interlayer potential, a parallel magnetic field or a critical temperature ~36 K. Among the proposed correlated phases with spatial uniformity, our results are most consistent with a layer antiferromagnetic state with broken time reversal symmetry. These results reflect the interplay between externally induced and spontaneous symmetry breaking whose relative strengths are tunable by external fields, and provide insight into other low-dimensional systems.

  17. Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar; Moradian, Rostam; Shirzadi Tabar, Farzad

    2014-09-01

    We calculate the static polarization of AAA-stacked trilayer graphene (TLG) and study its screening properties within the random phase approximation (RPA) in all undoped, doped and biased regimes. We find that the static polarization of undoped AAA-stacked TLG is a combination of the doped and undoped single-layer graphene static polarization. This leads to an enhancement of the dielectric background constant along a Thomas-Fermi screening with the Thomas-Fermi wave vector which is independent of carrier concentrations and a 1/r3 power law decay for the long-distance behavior of the screened Coulomb potential. We show that effects of a bias voltage can be taken into account by a renormalization of the interlayer hopping energy to a new bias-voltage-dependent value, indicating screening properties of AAA-stacked TLG can be tuned electrically. We also find that screening properties of doped AAA-stacked TLG, when μ exceeds √{2}γ, are similar to that of doped SLG only depending on doping. While for μ<√{2}γ, its screening properties are combination of SLG and AA-stacked bilayer graphene screening properties and they are determined by doping and the interlayer hopping energy.

  18. Landau Level Splittings, Phase Transitions, and Nonuniform Charge Distribution in Trilayer Graphene.

    PubMed

    Campos, Leonardo C; Taychatanapat, Thiti; Serbyn, Maksym; Surakitbovorn, Kawin; Watanabe, Kenji; Taniguchi, Takashi; Abanin, Dmitry A; Jarillo-Herrero, Pablo

    2016-08-01

    We report on magnetotransport studies of dual-gated, Bernal-stacked trilayer graphene (TLG) encapsulated in boron nitride crystals. We observe a quantum Hall effect staircase which indicates a complete lifting of the 12-fold degeneracy of the zeroth Landau level. As a function of perpendicular electric field, our data exhibit a sequence of phase transitions between all integer quantum Hall states in the filling factor interval -8<ν<0. We develop a theoretical model and argue that, in contrast to monolayer and bilayer graphene, the observed Landau level splittings and quantum Hall phase transitions can be understood within a single-particle picture, but imply the presence of a charge density imbalance between the inner and outer layers of TLG, even at charge neutrality and zero transverse electric field. Our results indicate the importance of a previously unaccounted band structure parameter which, together with a more accurate estimate of the other tight-binding parameters, results in a significantly improved determination of the electronic and Landau level structure of TLG.

  19. Landau Level Splittings, Phase Transitions, and Nonuniform Charge Distribution in Trilayer Graphene.

    PubMed

    Campos, Leonardo C; Taychatanapat, Thiti; Serbyn, Maksym; Surakitbovorn, Kawin; Watanabe, Kenji; Taniguchi, Takashi; Abanin, Dmitry A; Jarillo-Herrero, Pablo

    2016-08-01

    We report on magnetotransport studies of dual-gated, Bernal-stacked trilayer graphene (TLG) encapsulated in boron nitride crystals. We observe a quantum Hall effect staircase which indicates a complete lifting of the 12-fold degeneracy of the zeroth Landau level. As a function of perpendicular electric field, our data exhibit a sequence of phase transitions between all integer quantum Hall states in the filling factor interval -8<ν<0. We develop a theoretical model and argue that, in contrast to monolayer and bilayer graphene, the observed Landau level splittings and quantum Hall phase transitions can be understood within a single-particle picture, but imply the presence of a charge density imbalance between the inner and outer layers of TLG, even at charge neutrality and zero transverse electric field. Our results indicate the importance of a previously unaccounted band structure parameter which, together with a more accurate estimate of the other tight-binding parameters, results in a significantly improved determination of the electronic and Landau level structure of TLG. PMID:27541472

  20. Landau Level Splittings, Phase Transitions, and Nonuniform Charge Distribution in Trilayer Graphene

    NASA Astrophysics Data System (ADS)

    Campos, Leonardo C.; Taychatanapat, Thiti; Serbyn, Maksym; Surakitbovorn, Kawin; Watanabe, Kenji; Taniguchi, Takashi; Abanin, Dmitry A.; Jarillo-Herrero, Pablo

    2016-08-01

    We report on magnetotransport studies of dual-gated, Bernal-stacked trilayer graphene (TLG) encapsulated in boron nitride crystals. We observe a quantum Hall effect staircase which indicates a complete lifting of the 12-fold degeneracy of the zeroth Landau level. As a function of perpendicular electric field, our data exhibit a sequence of phase transitions between all integer quantum Hall states in the filling factor interval -8 <ν <0 . We develop a theoretical model and argue that, in contrast to monolayer and bilayer graphene, the observed Landau level splittings and quantum Hall phase transitions can be understood within a single-particle picture, but imply the presence of a charge density imbalance between the inner and outer layers of TLG, even at charge neutrality and zero transverse electric field. Our results indicate the importance of a previously unaccounted band structure parameter which, together with a more accurate estimate of the other tight-binding parameters, results in a significantly improved determination of the electronic and Landau level structure of TLG.

  1. Stacking-Dependent Interlayer Coupling in Trilayer MoS₂ with Broken Inversion Symmetry.

    PubMed

    Yan, Jiaxu; Xia, Juan; Wang, Xingli; Liu, Lei; Kuo, Jer-Lai; Tay, Beng Kang; Chen, Shoushun; Zhou, Wu; Liu, Zheng; Shen, Ze Xiang

    2015-12-01

    The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer) exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin-orbit coupling (SOC) and interlayer coupling in different structural symmetries. Such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS2 blocks. PMID:26565932

  2. Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate

    SciTech Connect

    Boutchich, M.; Arezki, H.; Alamarguy, D.; Güneş, F.; Alvarez, J.; Kleider, J. P.; Ho, K.-I.; Lai, C. S.; Sediri, H.; Ouerghi, A.

    2014-12-08

    Large-area graphene film doped with nitrogen is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, and fuel cells among many others. Here, we report on the structural and electronic properties of nitrogen doped trilayer graphene on 4H-SiC (0001) grown under atmospheric pressure. The trilayer nature of the growth is evidenced by scanning transmission electron microscopy. X-ray photoelectron spectroscopy shows the incorporation of 1.2% of nitrogen distributed in pyrrolic-N, and pyridinic-N configurations as well as a graphitic-N contribution. This incorporation causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. Ultraviolet photoelectron spectroscopy shows a decrease of the work function of 0.3 eV due to the N-type doping of the nitrogen atoms in the carbon lattice and the edge defects. A top gate field effect transistor device has been fabricated and exhibits carrier mobilities up to 1300 cm{sup 2}/V s for holes and 850 cm{sup 2}/V s for electrons at room temperature.

  3. Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate

    NASA Astrophysics Data System (ADS)

    Boutchich, M.; Arezki, H.; Alamarguy, D.; Ho, K.-I.; Sediri, H.; Güneş, F.; Alvarez, J.; Kleider, J. P.; Lai, C. S.; Ouerghi, A.

    2014-12-01

    Large-area graphene film doped with nitrogen is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, and fuel cells among many others. Here, we report on the structural and electronic properties of nitrogen doped trilayer graphene on 4H-SiC (0001) grown under atmospheric pressure. The trilayer nature of the growth is evidenced by scanning transmission electron microscopy. X-ray photoelectron spectroscopy shows the incorporation of 1.2% of nitrogen distributed in pyrrolic-N, and pyridinic-N configurations as well as a graphitic-N contribution. This incorporation causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. Ultraviolet photoelectron spectroscopy shows a decrease of the work function of 0.3 eV due to the N-type doping of the nitrogen atoms in the carbon lattice and the edge defects. A top gate field effect transistor device has been fabricated and exhibits carrier mobilities up to 1300 cm2/V s for holes and 850 cm2/V s for electrons at room temperature.

  4. Spectroscopic ellipsometry on Si/SiO{sub 2}/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering

    SciTech Connect

    Eren, Baran; Fu, Wangyang; Marot, Laurent Calame, Michel; Steiner, Roland; Meyer, Ernst

    2015-01-05

    In this work, the optical response of graphene to hydrogen plasma treatment is investigated with spectroscopic ellipsometry measurements. Although the electronic transport properties and Raman spectrum of graphene change after plasma hydrogenation, ellipsometric parameters of the Si/SiO2/graphene tri-layer system do not change. This is attributed to plasma hydrogenated graphene still being electrically conductive, since the light absorption of conducting 2D materials does not depend on the electronic band structure. A change in the light transmission can only be observed when higher energy hydrogen ions (30 eV) are employed, which chemically sputter the graphene layer. An optical contrast is still apparent after sputtering due to the remaining traces of graphene and hydrocarbons on the surface. In brief, plasma treatment does not change the light transmission of graphene; and when it does, this is actually due to plasma damage rather than plasma hydrogenation.

  5. Suppressing thermal conductivity of suspended tri-layer graphene by gold deposition.

    PubMed

    Wang, Jiayi; Zhu, Liyan; Chen, Jie; Li, Baowen; Thong, John T L

    2013-12-17

    A simple and general strategy for suppressing the thermal conductivity in graphene is shown. The strategy uses gold nano-particles physically deposited on graphene to continuously reduce the thermal conductivity of graphene with increasing coverage, which demonstrates the potential for practical development of graphene-based devices with tunable thermal conductivity for thermal management.

  6. Growth and Features of Epitaxial Graphene on SiC

    NASA Astrophysics Data System (ADS)

    Kusunoki, Michiko; Norimatsu, Wataru; Bao, Jianfeng; Morita, Koichi; Starke, Ulrich

    2015-12-01

    Recent progress of epitaxial graphene on SiC was reviewed, focusing on its growth and structural and electronic features. Homogeneous graphene can be grown on SiC(0001) on a wafer scale, however on SiC(000bar{1}) multilayer but rotationally stacked graphene with monolayer like electronic property grows. HRTEM revealed the formation mechanism and structural features of graphene on the both surfaces. The high structural and electronic quality of the grown graphene is monitored by Raman spectroscopy and magneto-transport characterization. High-resolution ARPES measurements of the electronic dispersion around the bar{K}-point retrieved the ABA and ABC stacked trilayer graphene. The measurements also directly revealed that electronic structures of graphene were manipulated by transfer doping and atomic intercalation. In particular, p- and n-doped regions on a meso-scale and the p-n junctions prepared on SiC via controlling intercalation of Ge exhibited ballistic transport and Klein tunneling, which predicted novel potentials on to epitaxial graphene on SiC.

  7. Electrical and Mechanical Properties of Graphene

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    devices. A surprising finding in these systems is the observation of insulating states in both suspended bilayer and trilayer graphene devices, which arises from electronic interactions. In bilayer graphene, we observe a phase transition between the single-particle metallic state and the interaction-induced insulating state in ultra-clean BLG, which can be tuned by temperature, disorder, charge density n and perpendicular electric field E ⊥. In trilayer graphene we demonstrate dramatically different transport properties arising from the different stacking orders, and an unexpected spontaneous gap opening in charge neutral ABC-stacked trilayer graphene. One of graphene's unique properties is that it is nature's thinnest elastic membrane with exceptional mechanical properties. In chapter 7 I will describe the first direct observation and controlled creation of one- and two-dimensional periodic ripples in suspended graphene sheets, using both spontaneously and thermally generated strains. We are able to control ripple orientation, wavelength and amplitude by controlling boundary conditions and exploiting graphene's negative thermal expansion coefficient, which we measure to be much larger than that of graphite. In addition, we also study the morphological change of suspended graphene sheets by apply gate voltages, which is a simple and direct method to strain and buckle graphene. Our experimental results contribute to the fundamental understanding of electrical and mechanical properties of graphene, and may have important implications for future graphene based applications.

  8. Image potential states in monolayer, bilayer, and trilayer epitaxial graphene studied with time- and angle-resolved two-photon photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazutoshi; Imamura, Masaki; Yamamoto, Isamu; Azuma, Junpei; Kamada, Masao

    2014-04-01

    Image potential states (IPSs) on monolayer, bilayer, and trilayer graphene epitaxially grown on SiC(0001) have been studied by time- and angle-resolved two-photon photoemission (2PPE) spectroscopy. The free-electron-like dispersions of even and odd symmetry IPSs with a quantum number of n = 1+, 1-, 2, 3 were observed. All observed IPSs showed the dispersions with effective masses of m*=1.0±0.1me. The 2PPE intensity of the lowest IPS (n = 1+) was attenuated with an increasing number of graphene layers. The time-resolved 2PPE measurements revealed that these IPSs have significantly shorter lifetimes, suggesting a coupling of IPSs with electronic states in the buffer layer and the SiC substrate.

  9. Structural and electronic properties of multilayer graphene on monolayer hexagonal boron nitride/nickel (111) interface system: A van der Waals density functional study

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-02-01

    The structural and electronic properties of multilayer graphene adsorbed on monolayer hexagonal boron nitride (h-BN)/Ni(111) interface system are investigated using the density functional theory with a recently developed non-local van der Waals density functional (rvv10). The most energetically favourable configuration for a monolayer h-BN/Ni(111) interface is found to be N atom atop the Ni atoms and B atom in fcc site with the interlayer distance of 2.04 Å and adsorption energy of 302 meV/BN. Our results show that increasing graphene layers on a monolayer h-BN/Ni(111) interface leads to a weakening of the interfacial interaction between the monolayer h-BN and Ni(111) surface. The adsorption energy of graphene layers on the h-BN/Ni(111) interface is found to be in the range of the 50-120 meV/C atom as the vertical distance from h-BN to the bottommost graphene layers decreases. With the adsorption of a multilayer graphene on the monolayer h-BN/Ni(111) interface system, the band gap of 0.12 eV and 0.25 eV opening in monolayer graphene and bilayer graphene near the K point is found with an upward shifting of the Fermi level. However, a stacking-sensitive band gap is opened in trilayer graphene. We obtain the band gap of 0.35 eV close to the K point with forming a Mexican hat band structure for ABC-stacked trilayer graphene.

  10. A first principles approach to magnetic and optical properties in single-layer graphene sandwiched between boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Das, Ritwika; Chowdhury, Suman; Jana, Debnarayan

    2015-07-01

    The dependence of the stability of single-layer graphene (SLG) sandwiched between hexagonal boron nitride bilayers (h-BN) has been described and investigated for different types of stacking in order to provide the fingerprint of the stacking order which affects the optical properties of such trilayer systems. Considering the four stacking models AAA-, AAB-, ABA-, and ABC-type stacking, the static dielectric functions (in case of parallel polarizations) for AAB-type stacking possesses maximum values, and minimum values are noticed for AAA. However, AAA-type stacking structures contribute the maximum magnetic moment while vanishing magnetic moments are observed for ABA and ABC stacking. The observed optical anisotropy and magnetic properties of these trilayer heterostructures (h-BN/SLG/h-BN) can be understood from the crystallographic stacking order and inherent crystal lattice symmetry. These optical and magnetic results suggest that the h-BN/SLG/h-BN could provide a viable route to graphene-based opto-electronic and spintronic devices.

  11. Dimers and trimers of polycyclic aromatic hydrocarbons as models of graphene bilayers and trilayers: enhanced electron density at the edges

    NASA Astrophysics Data System (ADS)

    Yadav, Amarjeet; Mishra, P. C.

    2014-01-01

    Structures of dimers and trimers of polycyclic aromatic hydrocarbons (PAHs) having zig-zag edges, and continuous electron density and molecular electrostatic potential (MEP) distributions in these systems were studied in gas phase. Dimers of benzene and naphthalene for which high-accuracy results are available were used to test the reliability of four different functionals of density functional theory in combination with the 6-31G(d,p) basis set. The dispersion-corrected WB97XD functional was found to be distinctly superior to the other three functionals used and was employed to study PAH dimers and trimers. Electronic structures and geometries of dimers of a four benzene ring and a nine benzene ring systems and trimers of the four benzene ring system were investigated. The dimers and trimers of PAHs were found to be of parallel-displaced type, as observed experimentally for graphene. The enhanced electron density edge effect found in the PAH monomers earlier is found to exist in the dimers and trimers also.

  12. A trilayer separator with dual function for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Song, Rensheng; Fang, Ruopian; Wen, Lei; Shi, Ying; Wang, Shaogang; Li, Feng

    2016-01-01

    In this article, we propose a trilayer graphene/polypropylene/Al2O3 (GPA) separator with dual function for high performance lithium-sulfur (Li-S) batteries. Graphene is coated on one side of polypropylene (PP) separator, which functions as a conductive layer and an electrolyte reservoir that allows for rapid electron and ion transport. Then Al2O3 particles are coated on the other side to further enhance thermal stability and safety of the graphene coated polypropylene (GCP) separator, which are touched with lithium metal anode in the Li-S battery. The GPA separator shows good thermal stability after heating at 157 °C for 10 min while both GCP and PP separators showing an obvious shrinkage about 10%. The initial discharge specific capacity of Li-S coin cell with a GPA separator could reach 1067.7 mAh g-1 at 0.2C. After 100 discharge/charge cycles, it can still deliver a reversible capacity of as high as 804.4 mAh g-1 with 75% capacity retention. The pouch cells further confirm that the trilayer design has great promise towards practical applications.

  13. Trilayer Tunnel Selectors for Memristor Memory Cells.

    PubMed

    Choi, Byung Joon; Zhang, Jiaming; Norris, Kate; Gibson, Gary; Kim, Kyung Min; Jackson, Warren; Zhang, Min-Xian Max; Li, Zhiyong; Yang, J Joshua; Williams, R Stanley

    2016-01-13

    An integrated memory cell with a mem-ristor and a trilayer crested barrier selector, showing repeatable nonlinear current-voltage switching loops is presented. The fully atomic-layer-deposited TaN1+x /Ta2 O5 /TaN1+x crested barrier selector yields a large nonlinearity (>10(4) ), high endurance (>10(8) ), low variability, and low temperature dependence.

  14. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE PAGES

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DCmore » field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.« less

  15. Electrohydrodynamic instabilities in thin liquid trilayer films

    SciTech Connect

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  16. Graphene folding on flat substrates

    SciTech Connect

    Chen, Xiaoming; Zhao, Yadong; Ke, Changhong; Zhang, Liuyang; Wang, Xianqiao

    2014-10-28

    We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.

  17. Detection of interlayer interaction in few-layer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Zefei; Han, Yu; Lin, Jiangxiazi; Zhu, Wei; He, Mingquan; Xu, Shuigang; Chen, Xiaolong; Lu, Huanhuan; Ye, Weiguang; Han, Tianyi; Wu, Yingying; Long, Gen; Shen, Junying; Huang, Rui; Wang, Lin; He, Yuheng; Cai, Yuan; Lortz, Rolf; Su, Dangsheng; Wang, Ning

    2015-08-01

    Bernal-stacked few-layer graphene has been investigated by analyzing its Landau-level spectra through quantum capacitance measurements. We find that surface relaxation, which is insignificant in trilayer graphene, starts to manifest in Bernal-stacked tetralayer graphene. In trilayer graphene, the interlayer interaction parameters are generally similar to those of graphite. However, in tetralayer graphene, the hopping parameters of the two bulk layers are quite different from those of the two outer layers. This represents direct evidence of the surface relaxation phenomenon. Traditionally, the van der Waals interaction between the carbon layers is thought to be insignificant. However, we suggest that the interlayer interaction is an important factor in explaining the observed results, and the symmetry-breaking effects in graphene sublattice are not negligible.

  18. Monolayer graphene from a green solid precursor

    NASA Astrophysics Data System (ADS)

    Kalita, Golap; Wakita, Koichi; Umeno, Masayoshi

    2011-06-01

    Monolayer and bilayer graphene sheets are synthesized by simple control pyrolysis of solid botanical derivative camphor (C 10H 16O), a green and renewable carbon source. Raman studies show much intense 2D peak than that of G peak, signifying presence of monolayer graphene. Transmission electron microscopic study shows predominately monolayer or bilayer graphene sheets, while trilayer graphene sheet were also observed. Synthesized graphene film on copper foil is transferred to poly(ethylene terephthalate) substrate to fabricate transparent electrode. Electrical and optical measurement shows a sheet resistance of 860 Ω/sq with a transmittance of 91% at 550 nm wavelength of the graphene film. The technique to fabricate monolayer or bilayer graphene based film from camphor is both viable and scalable for potential large area electronic applications.

  19. Wettability of graphene.

    PubMed

    Raj, Rishi; Maroo, Shalabh C; Wang, Evelyn N

    2013-04-10

    Graphene, an atomically thin two-dimensional material, has received significant attention due to its extraordinary electronic, optical, and mechanical properties. Studies focused on understanding the wettability of graphene for thermo-fluidic and surface-coating applications, however, have been sparse. Meanwhile, wettability results reported in literature via static contact angle measurement experiments have been contradictory and highlight the lack of clear understanding of the underlying physics that dictates wetting behavior. In this work, dynamic contact angle measurements and detailed graphene surface characterizations were performed to demonstrate that the defects present in CVD grown and transferred graphene coatings result in unusually high contact angle hysteresis (16-37°) on these otherwise smooth surfaces. Hence, understanding the effect of the underlying substrate based on static contact angle measurements as reported in literature is insufficient. The advancing contact angle measurements on mono-, bi-, and trilayer graphene sheets on copper, thermally grown silica (SiO2), and glass substrates were observed to be independent of the number of layers of graphene and in good agreement with corresponding molecular dynamics simulations and theoretical calculations. Irrespective of the number of graphene layers, the advancing contact angle values were also in good agreement with the advancing contact angle on highly ordered pyrolytic graphite (HOPG), reaffirming the negligible effect of the underlying substrate. These results suggest that the advancing contact angle is a true representation of a graphene-coated surface while the receding contact angle is significantly influenced by intrinsic defects introduced during the growth and transfer processes. These observations, where the underlying substrates do not affect the wettability of graphene coatings, is shown to be due to the large interlayer spacing resulting from the loose interlamellar coupling between

  20. Pseudospin anisotropy of trilayer semiconductor quantum Hall ferromagnets

    NASA Astrophysics Data System (ADS)

    Miravet, D.; Proetto, C. R.

    2016-08-01

    When two Landau levels are brought to a close coincidence between them and with the chemical potential in the integer quantum Hall regime, the two Landau levels can just cross or collapse while the external or pseudospin field that induces the alignment changes. In this work, all possible crossings are analyzed theoretically for the particular case of semiconductor trilayer systems, using a variational Hartree-Fock approximation. The model includes tunneling between neighboring layers, bias, intralayer, and interlayer Coulomb interaction among the electrons. We have found that the general pseudospin anisotropy classification scheme used in bilayers applies also to the trilayer situation, with the simple crossing corresponding to an easy-axis ferromagnetic anisotropy analogy, and the collapse case corresponding to an easy-plane ferromagnetic analogy. An isotropic case is also possible, with the levels just crossing or collapsing depending on the filling factor and the quantum numbers of the two nearby levels. While our results are valid for any integer filling factor ν (=1 ,2 ,3 ,... ), we have analyzed in detail the crossings at ν =3 and 4, and we have given clear predictions that will help in their experimental search. In particular, the present calculations suggest that by increasing the bias, the trilayer system at these two filling factors can be driven from an easy-plane anisotropy regime to an easy-axis regime, and then can be driven back to the easy-plane regime. This kind of reentrant behavior is a unique feature of the trilayers, compared with the bilayers.

  1. Improving the electrical properties of graphene layers by chemical doping

    NASA Astrophysics Data System (ADS)

    Farooq Khan, Muhammad; Zahir Iqbal, Muhammad; Waqas Iqbal, Muhammad; Eom, Jonghwa

    2014-10-01

    Although the electronic properties of graphene layers can be modulated by various doping techniques, most of doping methods cost degradation of structural uniqueness or electrical mobility. It is matter of huge concern to develop a technique to improve the electrical properties of graphene while sustaining its superior properties. Here, we report the modification of electrical properties of single- bi- and trilayer graphene by chemical reaction with potassium nitrate (KNO3) solution. Raman spectroscopy and electrical transport measurements showed the n-doping effect of graphene by KNO3. The effect was most dominant in single layer graphene, and the mobility of single layer graphene was improved by the factor of more than 3. The chemical doping by using KNO3 provides a facile approach to improve the electrical properties of graphene layers sustaining their unique characteristics.

  2. Quantum mechanism of nonlocal Gilbert damping in magnetic trilayers

    NASA Astrophysics Data System (ADS)

    Barati, Ehsan; Cinal, Marek

    2015-06-01

    A fully quantum-mechanical calculation of the Gilbert damping constant α in magnetic trilayers is done by employing the torque-correlation formula within a realistic tight-binding model. A remarkable enhancement of α in Co/NM1/NM2 trilayers is obtained due to adding the caps NM2=Pd, Pt, and it decays with the thickness of the spacers NM1=Cu, Ag, Au in agreement with experiment. Nonlocal origin of the Gilbert damping is visualized with its atomic layer contributions. It is shown that magnetization in Co is damped remotely by strong spin-orbit coupling in NM2 via quantum states with large amplitude in both Co and NM2.

  3. Torque engineering in trilayer spin-hall system

    NASA Astrophysics Data System (ADS)

    Gupta, Gaurav; Jalil, Mansoor Bin Abdul; Liang, Gengchiau

    2016-02-01

    A trilayer system with perpendicularly magnetized metallic (FMM) free-layer, heavy metal (HM) with strong spin-hall effect and ferromagnetic insulating (FMI) substrate has been proposed to significantly enhance the torque acting on FMM. Its magnitude can be engineered by configuring the magnetization of the FMI. The analytical solution has been developed for four stable magnetization states (non-magnetic and magnetization along three Cartesian axes) of FMI to comprehensively appraise the anti-damping torque on FMM and the Gain factor. It is shown that the proposed system has much larger gain and torque compared to a bilayer system (or a trilayer system with non-magnetic substrate). The performance improvement may be extremely large for system with a thin HM. Device optimization is shown to be non-trivial and various constraints have been explained. These results would enable design of more efficient spin-orbit torque memories and logic with faster switching at yet lower current.

  4. Generalized proximity effect model in superconducting bi- and trilayer films

    SciTech Connect

    Brammertz, G.; Poelaert, A.; Golubov, A. A.; Verhoeve, P.; Peacock, A.; Rogalla, H.

    2001-07-01

    This article presents a general model for calculating the density of states and the Cooper pair potential in proximity-coupled superconducting bi- and trilayer films. It is valid for any kind of bilayer S{sub 1}-S{sub 2}, whatever the quality of the materials S{sub 1} and S{sub 2}, the quality of the S{sub 1}-S{sub 2} interface, and the layer thicknesses. The trilayer model is valid for a thin S{sub 3} layer, whereas the other two layers have arbitrary thicknesses. Although the equations of the dirty limit are used, it is argued that the model stays valid in clean bi-and trilayer films. The typical example of superconducting tunnel junctions is used to show that existing models, which apply to very thin or very thick layers or to perfectly transparent S{sub 1}-S{sub 2} interfaces, are too restrictive to apply to an arbitrary bilayer. The new model is applied to practical junctions, with layer thicknesses intermediate between the {open_quotes}thick{close_quotes} and the {open_quotes}thin{close_quotes} approximation. {copyright} 2001 American Institute of Physics.

  5. Tri-layered elastomeric scaffolds for engineering heart valve leaflets

    PubMed Central

    Masoumi, Nafiseh; Annabi, Nasim; Assmann, Alexander; Larson, Benjamin L.; Hjortnaes, Jesper; Alemdar, Neslihan; Kharaziha, Mahshid; Manning, Keefe B.; Mayer, John E.; Khademhosseini, Ali

    2014-01-01

    Tissue engineered heart valves (TEHVs) that can grow and remodel have the potential to serve as permanent replacements of the current non-viable prosthetic valves particularly for pediatric patients. A major challenge in designing functional TEHVs is to mimic both structural and anisotropic mechanical characteristics of the native valve leaflets. To establish a more biomimetic model of TEHV, we fabricated tri-layered scaffolds by combining electrospinning and microfabrication techniques. These constructs were fabricated by assembling microfabricated poly(glycerol sebacate) (PGS) and fibrous PGS/poly(-caprolactone) (PCL) electrospun sheets to develop elastic scaffolds with tunable anisotropic mechanical properties similar to the mechanical characteristics of the native heart valves. The engineered scaffolds supported valvular interstitial cells (VICs) and mesenchymal stem cells (MSCs) growth within the 3D structure and promoted the deposition of heart valve extracellular matrix (ECM). MSCs were also organized and aligned along the anisotropic axes of the engineered tri-layered scaffolds. In addition, the fabricated constructs opened and closed properly in an ex vivo model of porcine heart valve leaflet tissue replacement. The engineered tri-layered scaffolds have the potential for successful translation towards TEHV replacements. PMID:24947233

  6. Biocompatible Silk-Poly(Pyrrole) Composite Trilayer Actuators

    NASA Astrophysics Data System (ADS)

    Fengel, Carly; Bradshaw, Nathan; Severt, Sean; Murphy, Amanda; Leger, Janelle

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymers (CPs) have some desirable traits for use as an actuator, such as the ability to operate in biologically relevant fluids and responsiveness to low voltages. However CPs alone are limited due to their brittle nature and poor solubility. Recently we have shown that a composite material of silk and the CP poly(pyrrole) (PPy) shows promising characteristics as an actuator; it is mechanically robust as well as fully biocompatible. Initial proof-of-concept experiments demonstrated that these composites bend under an applied voltage (or current) using a simple bilayer device. Here we present trilayer devices composed of two silk-PPy composite layers separated by an insulating silk layer. This configuration results in more charge is passed in comparison to the analogous bilayer system, as well as a more sustainable current response through cycling, resulting in a larger angle of deflection per volt applied. In addition, the motion of the trilayer devices is more symmetric than that of the bilayer analogs, resulting in a more repeatable movement. We will discuss the fabrication and characterization of these devices, as well as their performance and future applications of this technology.

  7. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-08-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  8. Solution-processed organic trilayer solar cells incorporating conjugated polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Cha, Myoung Joo; Seo, Jung Hwa

    2016-01-01

    We report solution-processed organic trilayer solar cells consisting of a bottom poly(3-hexylthiophene) (P3HT) layer, a conjugated polyelectrolyte (CPE) interlayer and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) top layer, wherein the CPE exists as an interlayer within the donor-acceptor junction. The influence of interlayer thickness on device properties was investigated, as well as the behavior of molecular dipoles in the trilayer solar cells when influenced by external electrical stimuli. We found that incorporation of an interlayer which is too thick results in decreased performance due to reduced short-circuit current (JSC), open-circuit voltage (VOC), and fill factor (FF). However the VOC is found to increase significantly when a thin CPE layer is used in conjunction with an external electric field. These results provide an experimental approach to probe the influence of interfacial dipoles on the solar cell parameters and behavior of charge separating organic donor/acceptor junctions, yielding fundamental information about the influence of electrical dipoles on the donor/acceptor interface in organic solar cells.

  9. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    PubMed

    Stamopoulos, D; Aristomenopoulou, E

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  10. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    PubMed Central

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543

  11. Single-crystalline monolayer and multilayer graphene nano switches

    SciTech Connect

    Li, Peng; Cui, Tianhong; Jing, Gaoshan; Zhang, Bo; Sando, Shota

    2014-03-17

    Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

  12. Multi-layer graphene on Co(0001) by ethanol chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kazi, H.; Cao, Y.; Tanabe, I.; Driver, M. S.; Dowben, P. A.; Kelber, J. A.

    2014-09-01

    N layer (1 ⩽ N ⩽ 10) monolayer films of graphene were formed by the chemical vapor deposition of ethanol on either clean or oxidized Co(0001) substrates at 1000 K, with no evidence of either interfacial oxide formation or graphene/substrate charge transfer. Low energy electron diffraction data indicate that the graphene layers or domains are azimuthally rotated, but otherwise show the characteristics of graphene with a Raman spectra D/G intensity ratio of 0.25 or less, and a C 1s binding energy of 284.5 eV with an observable π → π* transition. Magneto optic Kerr effect spectra indicate only the ferromagnetic hysteresis with high remanence, with no evidence of Co/graphene exchange bias. This is very different from the negligible remanent magnetization of graphene/Co3O4/Co trilayer structures.

  13. Chemical bath deposition of cadmium sulfide on graphene-coated flexible glass substrate

    SciTech Connect

    Seo, Won-Oh; Jung, Younghun; Kim, Jihyun; Kim, Jiwan; Kim, Donghwan

    2014-03-31

    We demonstrate a flexible structure of cadmium sulfide (CdS) on graphene-coated glass substrate, where CdS was deposited by the chemical bath deposition method on defective tri-layer graphene. The defects in graphene, confirmed by micro-Raman spectroscopy, were created by a ultra-violet treatment with varying exposure time from 10 to 60 min. The number of defect sites in the graphene as a seed layer was related to the quality of the CdS thin films determined from the results from X-ray diffraction, optical transmittance, scanning electron microscopy, and room temperature micro-photoluminescence. Our film-on-substrate structure of CdS-graphene-on-glass was maintained up to a tensile strain of 0.3%, where graphene with a high failure strain was employed as a transparent conductive layer.

  14. Magnetic Interactions at the Nanoscale in Trilayer Titanates.

    PubMed

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M; Liu, Xiaoran; Meyers, D; Middey, S; Choudhury, D; Shafer, P; Guo, Jiandong; Freeland, J W; Arenholz, E; Gu, Lin; Chakhalian, J

    2016-02-19

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO_{3}/SrTiO_{3}/YTiO_{3}, in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO_{3}/SrTiO_{3} and SrTiO_{3}/YTiO_{3} interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO_{3}/SrTiO_{3} and localized SrTiO_{3}/YTiO_{3} electrons. Our results provide a route with prospects for exploring new magnetic interfaces, designing a tunable two-dimensional d-electron Kondo lattice, and potential spin Hall applications. PMID:26943550

  15. Tri-layered chitosan scaffold as a potential skin substitute.

    PubMed

    Lin, Hsin-Yi; Chen, Shin-Hung; Chang, Shih-Hsin; Huang, Sheng-Tung

    2015-01-01

    A tri-layered chitosan-based scaffold was successfully made to replicate the striation of a full-thickness skin more accurately than a single- or bi-layered scaffold, which needed weeks of co-culturing of fibroblasts and keratinocytes to achieve similar striation. Chitosan solution was freeze-dried and made into porous disks. Chitosan or chitosan-pectin in acetic acid solution was electrospun onto the chitosan disk to form a nanofibrous layer and a thin film. Examinations based on scanning electron spectroscopy showed that the scaffold was composed of a porous layer (2 mm) to simulate the dermis, a thin film (25-45 μm) to mimic the basement membrane, and a layer of nanofibers (100-200 μm) to serve as the protective epidermis. The tensile strength and modulus of the composite scaffold were significantly higher than those of the chitosan disk (p < 0.01). The composite was able to quickly absorb water and stayed intact throughout the course of the 14-day cell culture tests. The fibroblast cells seeded on both sides of the scaffolds were able to proliferate and stayed separated by the thin film. PMID:26155720

  16. Biocompatible Silk-Poly(Pyrrole) Composite Trilayer Electromechanical Actuators

    NASA Astrophysics Data System (ADS)

    Klemke, Carly; Bradshaw, Nathan; Larson, Jesse; Severt, Sean; Ostrovsky-Snider, Nicholas; Murphy, Amanda; Leger, Janelle

    2015-03-01

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymers (CPs) have some desirable traits for use as an actuator, such as the ability to operate in biologically relevant fluids and responsiveness to low voltages. However CPs alone are limited due to their brittle nature and poor solubility. Recently we have shown that a composite material of silk and the CP poly(pyrrole) (PPy) shows promising characteristics as an actuator; it is mechanically robust as well as fully biocompatible. Initial proof-of-concept experiments demonstrated that these composites bend under an applied voltage (or current) using a simple bilayer device. Here we present the development of a trilayer device, composed of two conductive layers separated by an insulating silk layer. This configuration has twice the active surface area as a bilayer, potentially increasing the amount of mechanical motion per volt applied. We will discuss the fabrication and characterization of these devices, as well as their performance and future applications of this technology.

  17. Tri-layered chitosan scaffold as a potential skin substitute.

    PubMed

    Lin, Hsin-Yi; Chen, Shin-Hung; Chang, Shih-Hsin; Huang, Sheng-Tung

    2015-01-01

    A tri-layered chitosan-based scaffold was successfully made to replicate the striation of a full-thickness skin more accurately than a single- or bi-layered scaffold, which needed weeks of co-culturing of fibroblasts and keratinocytes to achieve similar striation. Chitosan solution was freeze-dried and made into porous disks. Chitosan or chitosan-pectin in acetic acid solution was electrospun onto the chitosan disk to form a nanofibrous layer and a thin film. Examinations based on scanning electron spectroscopy showed that the scaffold was composed of a porous layer (2 mm) to simulate the dermis, a thin film (25-45 μm) to mimic the basement membrane, and a layer of nanofibers (100-200 μm) to serve as the protective epidermis. The tensile strength and modulus of the composite scaffold were significantly higher than those of the chitosan disk (p < 0.01). The composite was able to quickly absorb water and stayed intact throughout the course of the 14-day cell culture tests. The fibroblast cells seeded on both sides of the scaffolds were able to proliferate and stayed separated by the thin film.

  18. Computation of the binding free energy of peptides to graphene in explicit water.

    PubMed

    Welch, Corrinne M; Camden, Aerial N; Barr, Stephen A; Leuty, Gary M; Kedziora, Gary S; Berry, Rajiv J

    2015-07-28

    The characteristic properties of graphene make it useful in an assortment of applications. One particular application--the use of graphene in biosensors--requires a thorough understanding of graphene-peptide interactions. In this study, the binding of glycine (G) capped amino acid residues (termed GXG tripeptides) to trilayer graphene surfaces in aqueous solution was examined and compared to results previously obtained for peptide binding to single-layer free-standing graphene [A. N. Camden, S. A. Barr, and R. J. Berry, J. Phys. Chem. B 117, 10691-10697 (2013)]. In order to understand the interactions between the peptides and the surface, binding enthalpy and free energy values were calculated for each GXG system, where X cycled through the typical 20 amino acids. When the GXG tripeptides were bound to the surface, distinct conformations were observed, each with a different binding enthalpy. Analysis of the binding energy showed the binding of peptides to trilayer graphene was dominated by van der Waals interactions, unlike the free-standing graphene systems, where the binding was predominantly electrostatic in nature. These results demonstrate the utility of computational materials science in the mechanistic explanation of surface-biomolecule interactions which could be applied to a wide range of systems. PMID:26233167

  19. Computation of the binding free energy of peptides to graphene in explicit water

    NASA Astrophysics Data System (ADS)

    Welch, Corrinne M.; Camden, Aerial N.; Barr, Stephen A.; Leuty, Gary M.; Kedziora, Gary S.; Berry, Rajiv J.

    2015-07-01

    The characteristic properties of graphene make it useful in an assortment of applications. One particular application—the use of graphene in biosensors—requires a thorough understanding of graphene-peptide interactions. In this study, the binding of glycine (G) capped amino acid residues (termed GXG tripeptides) to trilayer graphene surfaces in aqueous solution was examined and compared to results previously obtained for peptide binding to single-layer free-standing graphene [A. N. Camden, S. A. Barr, and R. J. Berry, J. Phys. Chem. B 117, 10691-10697 (2013)]. In order to understand the interactions between the peptides and the surface, binding enthalpy and free energy values were calculated for each GXG system, where X cycled through the typical 20 amino acids. When the GXG tripeptides were bound to the surface, distinct conformations were observed, each with a different binding enthalpy. Analysis of the binding energy showed the binding of peptides to trilayer graphene was dominated by van der Waals interactions, unlike the free-standing graphene systems, where the binding was predominantly electrostatic in nature. These results demonstrate the utility of computational materials science in the mechanistic explanation of surface-biomolecule interactions which could be applied to a wide range of systems.

  20. The positive piezoconductive effect in graphene

    PubMed Central

    Xu, Kang; Wang, Ke; Zhao, Wei; Bao, Wenzhong; Liu, Erfu; Ren, Yafei; Wang, Miao; Fu, Yajun; Zeng, Junwen; Li, Zhaoguo; Zhou, Wei; Song, Fengqi; Wang, Xinran; Shi, Yi; Wan, Xiangang; Fuhrer, Michael S.; Wang, Baigeng; Qiao, Zhenhua; Miao, Feng; Xing, Dingyu

    2015-01-01

    As the thinnest conductive and elastic material, graphene is expected to play a crucial role in post-Moore era. Besides applications on electronic devices, graphene has shown great potential for nano-electromechanical systems. While interlayer interactions play a key role in modifying the electronic structures of layered materials, no attention has been given to their impact on electromechanical properties. Here we report the positive piezoconductive effect observed in suspended bi- and multi-layer graphene. The effect is highly layer number dependent and shows the most pronounced response for tri-layer graphene. The effect, and its dependence on the layer number, can be understood as resulting from the strain-induced competition between interlayer coupling and intralayer transport, as confirmed by the numerical calculations based on the non-equilibrium Green's function method. Our results enrich the understanding of graphene and point to layer number as a powerful tool for tuning the electromechanical properties of graphene for future applications. PMID:26360786

  1. Temperature dependent Raman spectroscopic study of mono-, bi-, and tri-layer molybdenum ditelluride

    NASA Astrophysics Data System (ADS)

    Park, June; Kim, Younghee; Jhon, Young In; Jhon, Young Min

    2015-10-01

    We investigate the thermal properties of mono-, bi- and tri-layer MoTe2 by using temperature-dependent Raman spectroscopy ranging from 90 K to 300 K. The E2g 1 and B2g 1 modes of MoTe2 blueshift as the temperature decreases. The temperature dependence of the peak positions obtained from mono- to tri-layer MoTe2 is analyzed using the Grüneisen model. The first order temperature coefficients of E2g 1 and B2g 1 Raman modes of mono- to tri-layer MoTe2 are extracted. This study provides the fundamental information about the thermal properties of MoTe2 layers, which is crucial for developing thermal and electronic applications of MoTe2 based devices.

  2. Tri-layer wrinkling as a mechanism for anchoring center initiation in the developing cerebellum.

    PubMed

    Lejeune, Emma; Javili, Ali; Weickenmeier, Johannes; Kuhl, Ellen; Linder, Christian

    2016-07-01

    During cerebellar development, anchoring centers form at the base of each fissure and remain fixed in place while the rest of the cerebellum grows outward. Cerebellar foliation has been extensively studied; yet, the mechanisms that control anchoring center initiation and position remain insufficiently understood. Here we show that a tri-layer model can predict surface wrinkling as a potential mechanism to explain anchoring center initiation and position. Motivated by the cerebellar microstructure, we model the developing cerebellum as a tri-layer system with an external molecular layer and an internal granular layer of similar stiffness and a significantly softer intermediate Purkinje cell layer. Including a weak intermediate layer proves key to predicting surface morphogenesis, even at low stiffness contrasts between the top and bottom layers. The proposed tri-layer model provides insight into the hierarchical formation of anchoring centers and establishes an essential missing link between gene expression and evolution of shape.

  3. CVD synthesis of mono- and few-layer graphene using alcohols at low hydrogen concentration and atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Campos-Delgado, Jessica; Botello-Méndez, Andrés R.; Algara-Siller, Gerardo; Hackens, Benoit; Pardoen, Thomas; Kaiser, Ute; Dresselhaus, Mildred S.; Charlier, Jean-Christophe; Raskin, Jean-Pierre

    2013-10-01

    An original and easy route to produce mono-, bi- and tri-layer graphene is proposed using the chemical vapor deposition technique. The synthesis is carried out at atmospheric pressure using liquid precursors, copper as catalyst, and a single gas injection line consisting of a very diluted mixture of H2 in Argon (H2: 5%). Two different alcohols are investigated as possible sources of carbon: 2-phenylethanol and ethanol. The characterization of the samples with SEM, TEM and Raman spectroscopy confirms the presence of graphene on top of copper, and yields a detailed picture of the structure of the produced graphene layers.

  4. Development of high-performance tri-layer material

    NASA Astrophysics Data System (ADS)

    Owe-Yang, D. C.; Yano, Toshiharu; Ueda, Takafumi; Iwabuchi, Motoaki; Ogihara, Tsutomu; Shirai, Shozo

    2008-03-01

    As chip size and pattern size continue to shrink, the thickness of photo resist is getting thinner and thinner. One of the major reasons is to prevent the small resist features from collapse. It's very challenging to get enough etch resistance from such thin resist thickness. An approach of Si-tri-layer stack which consists of resist, Si ARC (Si contenting anti-reflection coating), organic underlayer from top to bottom has been adopted by many IC makers in the manufacturing of 45 nm node. Even higher resist etching selectivity is needed for 32 nm node. Si ARC, of Si content as high as 43%, provides good etch selectivity. At the same time, tri-layer also provides good control over reflectivity in high NA immersion lithography. However, there are several well know issues concern Si-rich ARC. Resist compatibility and shelf life are on top of the list. An aim of our development work was to overcome those issues in order to produce manufacturing-worthy Si-rich ARC. Several synthesis methods were investigated to form Si-rich ARC film with different properties. Collapse of resist patterns is used as an indicator of lithographic compatibility. Lithographic performance was checked by accelerated shelf life tests at high temperature in order to predict the shelf life at room temperature. It was found that adhesion between resist and Si-rich ARC is improved when contact angle of Si-rich ARC is increased to more than 60 degree. Certain synthesis methods improve shelf life. After optimization of film properties and synthesis methods of Si-rich ARC, SHB-A940 series have best litho compatibility and shelf life is six months at storage temperature below 10°C.

  5. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2.

    PubMed

    Lee, Dong Su; Riedl, Christian; Krauss, Benjamin; von Klitzing, Klaus; Starke, Ulrich; Smet, Jurgen H

    2008-12-01

    Raman spectra were measured for mono-, bi-, and trilayer graphene grown on SiC by solid state graphitization, whereby the number of layers was preassigned by angle-resolved ultraviolet photoemission spectroscopy. It was found that the only unambiguous fingerprint in Raman spectroscopy to identify the number of layers for graphene on SiC(0001) is the line width of the 2D (or D*) peak. The Raman spectra of epitaxial graphene show significant differences as compared to micromechanically cleaved graphene obtained from highly oriented pyrolytic graphite crystals. The G peak is found to be blue-shifted. The 2D peak does not exhibit any obvious shoulder structures, but it is much broader and almost resembles a single-peak even for multilayers. Flakes of epitaxial graphene were transferred from SiC onto SiO2 for further Raman studies. A comparison of the Raman data obtained for graphene on SiC with data for epitaxial graphene transferred to SiO2 reveals that the G peak blue-shift is clearly due to the SiC substrate. The broadened 2D peak however stems from the graphene structure itself and not from the substrate.

  6. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric

    PubMed Central

    Ki Min, Bok; Kim, Seong K.; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-01-01

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer. PMID:26530817

  7. Measuring the Complex Optical Conductivity of Graphene by Fabry-Pérot Reflectance Spectroscopy

    PubMed Central

    Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito; Fuhrer, Michael S.; Anlage, Steven M.

    2016-01-01

    We have experimentally studied the dispersion of optical conductivity in few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a supercontinuum laser source measured the frequency dependence of the reflectance of exfoliated graphene flakes, including monolayer, bilayer and trilayer graphene, loaded on a Si/SiO2 Fabry-Pérot resonator in the 545–700 nm range. The complex refractive index of few-layer graphene, n − ik, was extracted from the reflectance contrast to the bare substrate. It was found that each few-layer graphene possesses a unique dispersionless optical index. This feature indicates that the optical conductivity does not simply scale with the number of layers, and that inter-layer electrodynamics are significant at visible energies. PMID:27682974

  8. Chemical Vapor Deposition Synthesis and Raman Spectroscopic Characterization of Large-Area Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Liao, Chun-Da; Lu, Yi-Ying; Tamalampudi, Srinivasa Reddy; Cheng, Hung-Chieh; Chen, Yit-Tsong

    2013-10-01

    We present a chemical vapor deposition (CVD) method to catalytically synthesize large-area, transferless, single- to few-layer graphene sheets using hexamethyldisilazane (HMDS) on a SiO2/Si substrate as a carbon source and thermally evaporated alternating Ni/Cu/Ni layers as a catalyst. The as-synthesized graphene films were characterized by Raman spectroscopic imaging to identify single- to few-layer sheets. This HMDS-derived graphene layer is continuous over the entire growth substrate, and single- to trilayer mixed sheets can be up to 30 -m in the lateral dimension. With the synthetic CVD method proposed here, graphene can be grown into tailored shapes directly on a SiO2/Si surface through vapor priming of HMDS onto predefined photolithographic patterns. The transparent and conductive HMDS-derived graphene exhibits its potential for widespread electronic and opto-electronic applications.

  9. Flexible inverted polymer solar cells with an indium-free tri-layer cathode

    SciTech Connect

    El Hajj, Ahmad; Lucas, Bruno Schirr-Bonnans, Martin; Ratier, Bernard; Kraft, Thomas M.; Torchio, Philippe

    2014-01-21

    Indium tin oxide (ITO)-free inverted polymer solar cells (PSCs) have been fabricated without the need of an additional electron transport layer. The indium-free transparent electrode consists of a tri-layer stack ZnO (30 nm)/Ag (14 nm)/ZnO (30 nm) deposited on glass and plastic substrates via ion-beam sputtering. The tri-layer electrodes exhibit similar physical properties to its ITO counterpart, specifically yielding high transmittance and low resistivity (76.5% T at 550 nm, R{sub sq} of 8 Ω/◻) on plastic substrates. The novel tri-layer electrode allows for the fabrication of inverted PSCs without the additional ZnO interfacial layer commonly deposited between ITO and the photoactive layer. This allows for the preparation of thinner plastic solar cells using less material than conventional architectures. Initial studies involving the newly realized architecture (tri-layer electrode/P3HT:PCBM/PEDOT:PSS/Ag) have shown great promise for the transition from ITO to other viable electrodes in organic electronics.

  10. Properties of Superconducting Mo, Mo2n and Trilayer Mo2n-Mo-Mo2n Thin Films

    NASA Technical Reports Server (NTRS)

    Barrentine, E. M.; Stevenson, T. R.; Brown, A. D.; Lowitz, A. E.; Noroozian, O.; U-Yen, K.; Eshan, N.; Hsieh, W. T.; Moseley, S. H.; Wollack, E. J.

    2014-01-01

    We present measurements of the properties of thin film superconducting Mo, Mo2N and Mo2N/Mo/Mo2N trilayers of interest for microwave kinetic inductance detector (MKID) applications. Using microwave resonator devices, we investigate the transition temperature, energy gaps, kinetic inductance, and internal quality factors of these materials. We present an Usadel-based interpretation of the trilayer transition temperature as a function of trilayer thicknesses, and a 2-gap interpretation to understand the change in kinetic inductance and internal resonance quality factor (Q) as a function of temperature.

  11. Resonant tunneling and intrinsic bistability in twisted graphene structures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, J. F.; Dresselhaus, M. S.; Levitov, L. S.

    2016-08-01

    We predict that vertical transport in heterostructures formed by twisted graphene layers can exhibit a unique bistability mechanism. Intrinsically bistable I -V characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and drain and the middle layer floating. Under bias, the middle layer can be either resonant or nonresonant with the source and drain layers. The bistability is controlled by geometric device parameters easily tunable in experiments. The nanoscale architecture can enable uniquely fast switching times.

  12. Contribution of individual interfaces in the MgO/Co/Pd trilayer to perpendicular magnetic anisotropy upon annealing

    SciTech Connect

    Kim, Minseok; Kim, Sanghoon; Ko, Jungho; Hong, Jongill

    2015-03-09

    The contribution of each interface of the MgO/Co/Pd trilayer to the perpendicular magnetic anisotropy (PMA) was studied by changing chemical and crystalline structures through annealing. We found that volumetric anisotropy in the MgO/Co/Pd trilayer was significantly increased due to enhanced magnetoelastic anisotropy caused by stress built up most likely at the MgO/Co interface during annealing. When the trilayer was annealed at 400 °C, the alloy formation at the Co/Pd interface additionally increased the volumetric anisotropy. Our x-ray magnetic circular dichroism study supported that those structural modifications led to an increase in the orbital moment through spin-orbit coupling (SOC) along the film normal two times larger than that of the as-deposited trilayer, thereby enhancing PMA greatly. Our experimental results prove that the Co/Pd interface, rather than the MgO/Co interface, plays an essential role in inducing strong PMA in the trilayer. The precise investigation of annealing effect on both volumetric and interfacial anisotropies can provide a methodological solution to improve the SOC of the trilayer that can serve as the core unit of spintronic devices.

  13. The effect of spin-orbit coupling in band structure of few-layer graphene

    SciTech Connect

    Sahdan, Muhammad Fauzi Darma, Yudi

    2014-03-24

    Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.

  14. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    NASA Astrophysics Data System (ADS)

    Zhou, M. H.; Fan, H. P.; Zhao, Z. S.; Wang, Y. G.; Bi, K.

    2015-04-01

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of αE,31 = 2.8 V ṡ cm-1 ṡ Oe-1 is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors.

  15. Evolution of anomalous Hall behavior in thin Pt/Co/Pt trilayers

    NASA Astrophysics Data System (ADS)

    Sun, Niu-yi; Zhang, Yan-qing; Che, Wen-ru; Shan, Rong; Zhu, Zhen-gang

    2016-05-01

    In this work, through controlling spin scattering mechanisms, anomalous Hall behaviors exhibit a series of evolutions in thin Pt/Co/Pt trilayers. The shape of Hall resistivity over longitudinal resistivity (ρAH /ρxx versus ρxx) curve turns from bending to linear and then bending again in most trilayers. This kind of evolution cannot be explained by the conventional linear scaling of anomalous Hall effect. It should be ascribed to the contribution of spin-phonon skew scattering. Our research may help to understand spin scattering behavior in low-dimensional systems more deeply and build a proper synergy between theory and experiment on the research of anomalous Hall effect.

  16. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    SciTech Connect

    Zhou, M. H.; Wang, Y. G.; Bi, K.; Fan, H. P.; Zhao, Z. S.

    2015-04-15

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of α{sub E,31} = 2.8 V ⋅ cm{sup −1} ⋅ Oe{sup −1} is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors.

  17. Effect of readout magnetic-field direction on trilayer magnetically induced super resolution media (abstract)

    NASA Astrophysics Data System (ADS)

    Tamanoi, K.; Tanaka, T.; Sugimoto, T.; Matsumoto, K.; Shono, K.

    1997-04-01

    Among the proposed magnetically induced super resolution media, double-mask rear aperture detection (RAD) has the greatest potential for use in high-density land/groove recording.1 We proposed a trilayer double-mask RAD media that does not require a large initializing magnetic field.2 In this paper, we report the land/groove recording on the trilayer media for a 0.4 μm mark length and 0.7 μm track pitch. We found that crosstalk drastically changed depending on the direction of the readout magnetic field, and that the crosswrite is related to crosstalk. When applying the readout magnetic field in the erasing direction, the value of crosstalk was about -25 dB and a large crosswrite effect was observed. Conversely, the crosstalk was below -45 dB and no crosswrite effect was observed when applying the magnetic field in the writing direction. CNRs had almost the same value of 48 dB for both the above cases. To investigate the mask formation while applying the readout field in the writing direction, we precisely observed the wave form of the isolated marks. The carrier level rose twice with increasing readout field. However, the position of the leading edge mainly changed when increasing the field. We think that the low crosstalk is attributable to the enhancement of the front mask area. The trilayer media enables an areal density of 3 Gbit/in.2

  18. van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation.

    PubMed

    Lu, Ning; Guo, Hongyan; Wang, Lu; Wu, Xiaojun; Zeng, Xiao Cheng

    2014-05-01

    We perform a comprehensive first-principles study of the electronic properties of van der Waals (vdW) trilayers via intercalating a two-dimensional (2D) monolayer (ML = BN, MoSe2, WS2, or WSe2) between a MoS2 bilayer to form various MoS2/ML/MoS2 sandwich trilayers. We find that the BN monolayer is the most effective sheet to decouple the interlayer vdW coupling of the MoS2 bilayer, and the resulting sandwich trilayer can recover the electronic structures of the MoS2 monolayer, particularly the direct-gap character. Further study of the MoS2/BN superlattices confirms the effectiveness of the BN monolayer for the decoupling of the MoS2-MoS2 interaction. In addition, the intercalation of a transition-metal dichalcogenide (TMDC) MoSe2 or WSe2 sheet makes the sandwich trilayer undergo an indirect-gap to direct-gap transition due to the newly formed heterogeneous S/Se interfaces. In contrast, the MoS2/WS2/MoS2 sandwich trilayer still retains the indirect-gap character of the MoS2 bilayer due to the lack of the heterogeneous S/Se interfaces. Moreover, the 3D superlattice of the MoS2/TMDC heterostructures also exhibits similar electronic band characters to the MoS2/TMDC/MoS2 trilayer heterostructures, albeit a slight decrease of the bandgap compared to the trilayers. Compared to the bulk MoS2, the 3D MoS2/TMDC superlattice can give rise to new and distinctive properties. Our study offers not only new insights into electronic properties of the vdW multilayer heterostructures but also guidance in designing new heterostructures to modify electronic structures of 2D TMDC crystals.

  19. Wetting and spreading of long-chain ZDOL polymer nanodroplet on graphene-coated amorphous carbon

    NASA Astrophysics Data System (ADS)

    Sorkin, V.; Zhang, Y. W.

    2014-12-01

    Wetting transparency/translucency/opacity of graphene recently has attracted great interest. The underlying mechanisms and physics for simple liquid droplets containing small molecules on graphene coated crystalline substrates have been studied extensively. However, the behavior of more complicated polymeric droplets on graphene coated amorphous substrates has not been explored. In this work, we perform molecular dynamics simulations to examine the wetting of long-chain ZDOL polymeric droplet on graphene coated amorphous hydrogenated diamond-like carbon or DLCH. We find that at room temperature, the droplet adopts a nearly spherical cap shape with no protruding foot on bare DLCH, and a complex multi-layered structure is formed at the droplet-substrate interface. With addition of graphene layers, externally, the height of the droplet decreases and the protruding foot at the droplet edge appears and grows in size; while internally, the complex multi-layered structure near the droplet-substrate interface remains, but the density distribution for the formed layers becomes increasingly non-uniform. A steady state of the droplet is attained when the number of graphene layers reaches three. These changes can be explained by the interactions between the droplet and substrate across the number of graphene layers. Therefore, it is concluded that the graphene monolayer and bilayer are translucent, while trilayer and above are opaque from the wetting point of view.

  20. Graphene on a curved substrate with a controllable curvature: Device fabrication and transport measurements

    NASA Astrophysics Data System (ADS)

    Chen, Yixuan; Mills, Shaun; Liu, Ying

    In monolayer graphene, the local deviation of carbon positions from the perfect lattice has been predicted to lead to a pseudo magnetic field with measurable effects. A striking confirmation of this effect is the observation of Landau levels that are attributed to a pseudo magnetic field in excess of 300 T in graphene nanobubbles. However, typical experimental methods of generating such local deviations in graphene rely on strain accompanied by a surface curvature. Whether a surface curvature alone can produce measurable effects in graphene has not been explored experimentally. It is therefore of interest to study graphene in a system that decouples strain from surface curvature. Of particular interest is its response to an external magnetic field. We developed a grayscale electron beam lithography technique for preparing PMMA substructures with a continuously variable radius of curvature from ~100 nm to ~1 μm. Magnetoelectrical transport measurements on exfoliated graphene supported by these substructures are being carried out. The flexibility of this process may be further exploited in the study of the bilayer and trilayer graphene systems. We will also study hybrid structures of 2D superconductors and graphene.

  1. Synthesis of an air-working trilayer artificial muscle using a conductive cassava starch biofilm (manihot esculenta, cranz) and polypyrrole (PPy)

    NASA Astrophysics Data System (ADS)

    Núñez D, Y. E.; Arrieta A, Á. A.; Segura B, J. A.; Bertel H, S. D.

    2016-02-01

    In this study, a methodology for obtaining a conductive cassava starch biofilm doped with lithium perchlorate (LiClO4) is shown, as well as the electrochemical technique for the synthesis of polypyrrole films, which are used for developing the trilayer artificial muscle PPy/Biopolymer/PPy designed to operate in air. Furthermore, results from the trilayer movement using chronoamperometric techniques are shown.

  2. Graphene aerogels

    DOEpatents

    Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen

    2015-03-31

    Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.

  3. High quality ZnS/Au/ZnS transparent conductive tri-layer films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Caifeng; Li, Qingshan; Wang, Jisuo; Zhang, Lichun; Zhao, Fengzhou; Dong, Fangying

    2016-07-01

    ZnS/Au/ZnS tri-layer films were deposited on quartz glass substrates by pulsed laser deposition. The influence of Au layer thickness on optical and electrical properties of the tri-layer ZnS/Au/ZnS was studied. X-ray diffractometer (XRD) and scanning electron microscope were employed to characterize the crystalline structure and surface morphology of the tri-layer films. Hall measurements, ultraviolet and visible spectrophotometer, four-point probe were used to explore the optoelectronic properties of the ZnS/Au/ZnS. The increase of Au layer thickness resulted in the decreased resistivity, the increased carrier concentration, and the declined transmittance in the visible light region.

  4. Interface characteristics in Co2MnSi/Ag/Co2MnSi trilayer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Chen, Hong; Wang, Guangzhao; Yuan, Hongkuan

    2016-05-01

    Interface characteristics of Co2MnSi/Ag/Co2MnSi trilayer have been investigated by means of first-principles. The most likely interface is formed by connecting MnSi-termination to the bridge site between two Ag atoms. As annealed at high temperature, the formation of interface DO3 disorder is most energetically favorable. The spin polarization is reduced by both the interface itself and interface disorder due to the interface state occurs in the minority-spin gap. As a result, the magneto-resistance ratio has a sharp drop based on the estimation of a simplified modeling.

  5. High frequency clipper like behavior of tri-layer nickel oxide stack

    NASA Astrophysics Data System (ADS)

    Koiry, S. P.; Ratnadurai, R.; Krishnan, S.; Bhansali, S.

    2012-04-01

    We report on AC propagation in vertically stacked tri-layer nickel oxide (NiO) film with gradient in oxide composition. These studies reveal that the stacked film clips both positive and negative peaks of the AC signals and these clipping characteristics are analogous to a symmetrical clipper. These characteristics are obtained without using any clipper circuit elements like diodes or transistors and DC power source. We propose that the clipping characteristic of NiO stack is a result of space charge generated during signal propagation.

  6. Tailoring interlayer coupling and coercivity in Co/Mn/Co trilayers by controlling the interface roughness

    SciTech Connect

    Zhang, Bin; Wu, Chii-Bin; Kuch, Wolfgang

    2014-06-21

    Epitaxial Co/Mn/Co trilayers with a wedged Mn layer were grown on Cu(001) and studied by magneto-optical Kerr effect measurements. The bottom Co film as well as the Mn film exhibits a layer-by-layer growth mode, which allows to modify both interface roughnesses on the atomic scale by tuning the thicknesses of the films to achieve a certain filling of their topmost atomic layers. The onset of antiferromagnetic order in the Mn layer at room temperature was found at thicknesses of 4.1 (4.8) and 3.4 (4.0) atomic monolayers (ML) for a filled (half-filled) topmost atomic layer of the bottom Co film in Mn/Co bilayers and Co/Mn/Co trilayers, respectively. Magnetization loops with only one step were found for a trilayer with half-filled topmost atomic layer of the bottom Co film, while loops with two separate steps have been observed in trilayers with an integer number of atomic layers in the bottom Co film. The coercivity of the top Co film shows an oscillation with 1 ML period as a function of the Mn thickness above 10 ML, which is interpreted as the influence of the atomic-scale control of the interface roughness on the interface exchange coupling between the antiferromagnetic Mn and the top ferromagnetic (FM) Co layer. The strength of the magnetic interlayer coupling between the top and bottom Co layers through the Mn layer for an integer number of atomic layers in the bottom Co layer, deduced from minor-loop measurements, exhibits an oscillation with a period of 2 ML Mn thickness, indicative of direct exchange coupling through the antiferromagnetic Mn layer. In addition, a long-period interlayer coupling of the two FM layers with antiparallel coupling maxima at Mn thicknesses of 2.5, 8.2, and 13.7 ML is observed and attributed to indirect exchange coupling of the Rudermann-Kittel-Kasuya-Yosida type.

  7. Nonlinear motion of coupled magnetic vortices in ferromagnetic/non-magnetic/ferromagnetic trilayer

    SciTech Connect

    Jun, Su-Hyeong; Shim, Je-Ho; Oh, Suhk-Kun; Yu, Seong-Cho; Kim, Dong-Hyun; Mesler, Brooke; Fischer, Peter

    2009-07-05

    We have investigated a coupled motion of two vortex cores in ferromagnetic/nonmagnetic/ferromagnetic trilayer cynliders by means of micromagnetic simulation. Dynamic motion of two vortex with parallel and antiparallel relative chiralities of curling spins around the vortex cores have been examined after excitation by 1-ns pulsed external field. With systematic variation in non-magnetic spacer layer thickness from 0 to 20 nm, the coupling between two cores becomes significant as the spacer becomes thinner. Significant coupling leads to a nonlinear chaotic coupled motion of two vortex cores for the parallel chiralities and a faster coupled gyrotropic oscillation for the antiparallel chiralities.

  8. Fabrication of Planar, Layered Nanoparticles Using Tri-layer Resist Templates

    PubMed Central

    Hu, Wei; Zhang, Mingliang; Wilson, Robert J.; Koh, Ai Leen; Wi, Jung-Sub; Tang, Mary; Sinclair, Robert; Wang, Shan X.

    2011-01-01

    A simple and universal pathway to produce free multilayer synthetic nanoparticles is developed based on lithography, vapor phase deposition and a tri-layer resist lift off and release process. The fabrication method presented in this work is ideal for production of a broad range of nanoparticles, either free in solution or still attached to an intact release layer, with unique magnetic, optical, radioactive, electronic and catalytic properties. Multi-modal capabilities are implicit in the layered architecture. As an example, directly fabricated magnetic nanoparticles are evaluated to illustrate the structural integrity of thin internal multilayers and the nanoparticle stability in aggressive biological environments, which is highly desired for biomedical applications. PMID:21415483

  9. Graphene spintronics.

    PubMed

    Han, Wei; Kawakami, Roland K; Gmitra, Martin; Fabian, Jaroslav

    2014-10-01

    The isolation of graphene has triggered an avalanche of studies into the spin-dependent physical properties of this material and of graphene-based spintronic devices. Here, we review the experimental and theoretical state-of-art concerning spin injection and transport, defect-induced magnetic moments, spin-orbit coupling and spin relaxation in graphene. Future research in graphene spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including topological states and proximity-induced phenomena in graphene and other two-dimensional materials.

  10. PREFACE: Graphene Graphene

    NASA Astrophysics Data System (ADS)

    Singleton, John; Ferry, David K.

    2009-08-01

    As is now well known, graphene was made in 2004 by the 'simple' expedient of cleaving a single atomic layer from a sample of graphite using a piece of sticky tape [1, 2]. This discovery stimulated a whirlwind of activity; at last, predictions about the unique behaviour of band electrons in a two-dimensional honeycomb lattice made as early as the 1940s could be verified experimentally [1, 2]. Perhaps the most influential result has been the confirmation that the charge carriers in graphene behave in many ways as 'Dirac fermions', mimicing the dynamics of hyper-relativistic electrons, but with 1/300th of the velocity. Another important pairing of prediction and result has been the observation of carrier mobilities that have an unusual (in)dependence on impurity concentration, suggesting applications in high-speed ballistic transistors and even the eventual part replacement of silicon by graphene as the devices on chips become ever smaller [1, 2]. As a result of the considerable and rapid activity in this field, reviews of the properties of graphene have appeared; a good introduction to the early work at a level appropriate to students is given in [1], whilst [2] covers more recent progress at a more advanced level. However, the field is progressing so rapidly that even good reviews become dated by the time they appear in print, and new work and studies are appearing daily. In this issue, we have tried to pull together a group of papers which examine some of these new areas of work in graphene; these range from low-temperature physics to high electric field transport at room temperature [3]. Given the postulated future use of graphene in ultra-small devices, it is no surprise that quantum dots and wires feature heavily in the articles by Peres et al [4], Huang et al [5] and Sun and Xie [6]. Moreover, applications will inevitably involve graphene in contact with other materials and chemical systems, resulting in modifications to its electronic properties. For example

  11. Graphene Plasmonics

    NASA Astrophysics Data System (ADS)

    Mou, Shin; Abeysinghe, Don; Nader, Nima; Hendrickson, Joshua; Cleary, Justin; Elhamri, Said

    Plasmon, the collective free charge carrier oscillation, has been a popular research theme recently mostly associated with surface plasmon in metal nanoparticles. After the discovery of graphene, researchers soon began to study plasmonic effects with or within graphene, for instance, decorating graphene with metal nanoparticles to enhance optical processes via plasmonic field enhancement. Following that, people also gained interests in studying the intrinsic plasmon of graphene. Graphene, a tunable semimetal under field effect, demonstrates tunable plasmon resonances at room temperature, which enables new capabilities beyond those of metal-nanoparticle surface plasmons. In this project, we would like to show intrinsic graphene plasmon resonances in that we experimentally demonstrated polarization dependent and gate-bias tunable plasmon-resonance absorption in the mid-infrared regime of 5-14 um by utilizing an array of graphene nanoribbon resonators. By scaling nanoribbon width and charge densities, we probed graphene plasmons with plasmon resonance energy as high as 0.26 meV (2100 cm-1) for 40 nm wide nanoresonators. The result reveals the intriguing nature of graphene plasmon in graphene nanoribbons where the nanoribbon edge plays critical roles by introducing extra doping and damping the graphene plasmon resonance.

  12. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder

    SciTech Connect

    Martins Ferreira, E. H.; Stavale, F.; Moutinho, Marcus V. O.; Lucchese, M. M.; Capaz, Rodrigo B.; Achete, C. A.; Jorio, A.

    2010-09-15

    We report on the micro-Raman spectroscopy of monolayer, bilayer, trilayer, and many layers of graphene (graphite) bombarded by low-energy argon ions with different doses. The evolution of peak frequencies, intensities, linewidths, and areas of the main Raman bands of graphene is analyzed as function of the distance between defects and number of layers. We describe the disorder-induced frequency shifts and the increase in the linewidth of the Raman bands by means of a spatial-correlation model. Also, the evolution of the relative areas A{sub D}/A{sub G}, A{sub D}{sup '}/A{sub G}, and A{sub G}{sup '}/A{sub G} is described by a phenomenological model. The present results can be used to fully characterize disorder in graphene systems.

  13. Characterization of N-doped multilayer graphene grown on 4H-SiC (0001)

    NASA Astrophysics Data System (ADS)

    Arezki, Hakim; Ho, Kuan-I.; Jaffré, Alexandre; Alamarguy, David; Alvarez, José; Kleider, Jean-Paul; Lai, Chao-Sung; Boutchich, Mohamed

    2015-02-01

    Large-area graphene film doped with hetero-atoms is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, fuel cells among many others. Here, we report the structural and electronic properties of nitrogen doped multilayer graphene on 4H-SiC (0001). The incorporation of nitrogen during the growth causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. The analysis of micro-Raman mapping of G, D, 2D bands shows a predominantly trilayer graphene with a D band inherent to doping and inhomogeneous dopant distribution at the step edges. Ultraviolet photoelectron spectroscopy (UPS) indicates an n type work function (WF) of 4.1 eV. In addition, a top gate FET device was fabricated showing n-type I-V characteristic after the desorption of oxygen with high electron and holes mobilities.

  14. Fabrication and adhesion of conjugated polymer trilayer structures for soft, flexible micromanipulators

    NASA Astrophysics Data System (ADS)

    Khaldi, Alexandre; Falk, Daniel; Maziz, Ali; Jager, Edwin W. H.

    2016-04-01

    We are developing soft, flexible micromanipulators such as micro- tweezers for the handling and manipulation of biological species including cells and surgical tools for minimal invasive surgery. Our aim is to produce tools with minimal dimensions of 100 μm to 1 mm in size, which is 1-2 orders of magnitude smaller than existing technology. However, the displacement of the current developed micromanipulator remains limited due to the low ionic conductivity of the materials. Here, we present developed methods for the fabrication of conjugated polymer trilayer structure which exhibit potential to high stretchability/flexibility as well as a good adhesion between the three different layers. The outcomes of this study contribute to the realisation of low-foot print devices articulated with electroactive polymer actuators for which the physical interface with the power source has been a significant challenge limiting their application. Here, we present a new flexible trilayer structure, which will allow the fabrication of metal-free soft microactuators.

  15. Along the Ta Diffusion Path Through a Boron and Oxygen Containing Tri-layer Structure

    NASA Astrophysics Data System (ADS)

    Ying, Ji-Feng; Ji, Rong; Wang, Chen Chen; Ter Lim, Sze; Xie, Huiqing; Gerard, Ernult F.

    2014-08-01

    Diffusion and migration of elements are commonly observed in the fabrication of multilayer thin-film devices, including those of STT-RAM. The CoFeB/MgO/CoFeB tri-layer thin-film stack has been widely used in the design of STT-RAM devices as the functional magnetic-tunnel-junction (MTJ) structure. Such issues faced in the fabrication of these devices have been extensively researched from the stand point of engineering the materials property and structure to achieve the best MTJ performance. In this work, we conducted a detailed examination of the chemical-state change of the Ta and B in a CoFeB/MgO/CoFeB/Ta film stack by using x-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry. We showed that the chemical-state change of Ta and B is a result of the Ta diffusion phenomena through the CoFeB/MgO/CoFeB tri-layer structure. In particular, we report the evidences of the formation of TaB x O y compound at some considerable depth away from the Ta layer. Also of value to XPS spectroscopy, the Ta binding energy for such TaB x O y compound is reported for the first time.

  16. Form Follows Function: Advances in Trilayered Structure Replication for Aortic Heart Valve Tissue Engineering

    PubMed Central

    Simionescu, Dan T.; Chen, Joseph; Jaeggli, Michael; Wang, Bo; Liao, Jun

    2013-01-01

    Tissue engineering the aortic heart valve is a challenging endeavor because of the particular hemodynamic and biologic conditions present in the native aortic heart valve. The backbone of an ideal valve substitute should be a scaffold that is strong enough to withstand billions of repetitive bending, flexing and stretching cycles, while also being slowly degradable to allow for remodeling. In this review we highlight three overlooked aspects that might influence the long term durability of tissue engineered valves: replication of the native valve trilayered histoarchitecture, duplication of the three-dimensional shape of the valve and cell integration efforts focused on getting the right number and type of cells to the right place within the valve structure and driving them towards homeostatic maintenance of the valve matrix. We propose that the trilayered structure in the native aortic valve that includes a middle spongiosa layer cushioning the motions of the two external fibrous layers should be our template for creation of novel scaffolds with improved mechanical durability. Furthermore, since cells adapt to micro-loads within the valve structure, we believe that interstitial cell remodeling of the valvular matrix will depend on the accurate replication of the structures and loads, resulting in successful regeneration of the valve tissue and extended durability. PMID:23355946

  17. Electrochemomechanical deformation (ECMD) of PPyDBS in free standing film formation and trilayer designs

    NASA Astrophysics Data System (ADS)

    Aydemir, Nihan; Tamm, Tarmo; Travas-Sejdic, Jadranka; Kilmartin, Paul A.; Aabloo, Alvo; Kiefer, Rudolf

    2014-03-01

    An investigation is reported into the electrochemomechanical deformation (ECMD) of polypyrrole (PPy) doped with dodecylbenzenesulfonate (DBS) in the form of freestanding films and deposited onto conductive substrates (chemically fixed poly-3,4-(ethylenedioxythiophene, PEDOT) based on PVdF (poly(vinylidenefluoride)). Linear actuation has been achieved starting from a trilayer bending actuator design with a stretchable middle layer. To allow evaluation of the proposed design, commercially available PVdF membranes were chosen as model material. For bending trilayer functionality, electronic separation of both electrode layers is essential, but in order to obtain linear actuation, the CP layers on either side are connected to form a single working electrode. The PPyDBS free standing films and PPyDBS deposited on PEDOT-PVdF-PEDOT were investigated by electrochemical methods (cyclic voltammetry, square wave potentials) in a 4-methyl-1,3-dioxolan-2-one (propylene carbonate, PC) solution of tetrabutylammonium trifluoromethanesulfonate (TBACF3SO3). This study also presents a novel method of utilizing scanning ion-conductance microscopy (SICM) to accurately examine the electrochemical redox behavior of the surface layer of the linear actuator using a micropipette tip.

  18. Magnetic patterning of Fe/Cr/Fe(001) trilayers by Ga{sup +} ion irradiation

    SciTech Connect

    Blomeier, S.; Hillebrands, B.; Demidov, V.E.; Demokritov, S.O.; Reuscher, B.; Brodyanski, A.; Kopnarski, M.

    2005-11-01

    Magnetic patterning of antiferromagnetically coupled epitaxial Fe (10 nm)/Cr (0.7 nm)/Fe (10 nm) (001) trilayers by irradiation with 30 keV Ga{sup +} ions was studied by means of atomic force microscopy, magnetic force microscopy, and Kerr magnetometry. It was found that within a fluence range of (1.25-5)x10{sup 16} ions/cm{sup 2} a complete transition from antiferromagnetic to ferromagnetic coupling between the two Fe layers can be achieved. The magnetization reversal processes of the nonirradiated, antiferromagnetically coupled areas situated close to the irradiated areas were studied with lateral resolution. Evidence for a lateral coupling mechanism between the magnetic moments of the irradiated and nonirradiated areas was found. Special attention was paid to preserve the flatness of the irradiated samples. Depending on the fluence, topographic steps ranging from +1.5 to -2 nm between the nonirradiated and irradiated areas were observed. At lower fluences the irradiation causes an increase of the surface height, while for higher fluences the height decreases. It was found that for the particular fluence of 2.7x10{sup 16} ions/cm{sup 2} no height difference between the irradiated and nonirradiated areas occurs. The results suggest that the irradiation of Fe/Cr/Fe trilayers with midenergy ions is an innovative method for magnetic patterning, preserving the initial smoothness of the sample.

  19. Magnetostatic spin wave modes in trilayer nanowire arrays probed using ferromagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Adeyeye, A. O.

    2016-08-01

    We investigate the spin wave modes in asymmetric trilayer [N i80F e20(10 nm ) /Cu (tCu) /N i80F e20(30 nm ) ] nanowire structures as a function of the Cu thickness (tCu) in the range from 0 to 20 nm using perpendicular ferromagnetic resonance (pFMR) spectroscopy. For tCu=0 nm , corresponding to the 40 nm thick single layer N i80F e20 nanowires, both the fundamental and first order modes are observed in the saturation region. However, for the trilayer structures, two additional modes, which are the fundamental and first order optical modes, are observed. We also found that the resonance fields of these modes are markedly sensitive to the Cu thickness due to the competing effects of interlayer exchange coupling and magnetostatic dipolar coupling. When the tCu≥10 nm , the fundamental optical mode is more pronounced. Our experimental results are in quantitative agreement with the dynamic micromagnetic simulations.

  20. Square ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V.

    2015-03-01

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms `square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  1. Square ice in graphene nanocapillaries.

    PubMed

    Algara-Siller, G; Lehtinen, O; Wang, F C; Nair, R R; Kaiser, U; Wu, H A; Geim, A K; Grigorieva, I V

    2015-03-26

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms 'square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature. PMID:25810206

  2. Promising hydrogen storage properties and potential applications of Mg-Al-Pd trilayer films under mild conditions.

    PubMed

    Xin, Gongbiao; Yang, Junzhi; Zhang, Guoqing; Zheng, Jie; Li, Xingguo

    2012-10-14

    We prepared a series of nano-sized Mg-Al-Pd trilayer films and investigated their hydrogen storage properties under mild conditions. Results showed that Al 1 nm sample had the best absorption kinetics and excellent optical properties at room temperature, making it a promising candidate for hydrogen sensors and smart windows. PMID:22692459

  3. Aromatic graphene

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Sahoo, S.

    2016-04-01

    In recent years graphene attracts the scientific and engineering communities due to its outstanding electronic, thermal, mechanical and optical properties and many potential applications. Recently, Popov et al. [1] have studied the properties of graphene and proved that it is aromatic but without fragrance. In this paper, we present a theory to prepare graphene with fragrance. This can be used as scented pencils, perfumes, room and car fresheners, cosmetics and many other useful household substances.

  4. Shear Assisted Electrochemical Exfoliation of Graphite to Graphene.

    PubMed

    Shinde, Dhanraj B; Brenker, Jason; Easton, Christopher D; Tabor, Rico F; Neild, Adrian; Majumder, Mainak

    2016-04-12

    The exfoliation characteristics of graphite as a function of applied anodic potential (1-10 V) in combination with shear field (400-74 400 s(-1)) have been studied in a custom-designed microfluidic reactor. Systematic investigation by atomic force microscopy (AFM) indicates that at higher potentials thicker and more fragmented graphene sheets are obtained, while at potentials as low as 1 V, pronounced exfoliation is triggered by the influence of shear. The shear-assisted electrochemical exfoliation process yields large (∼10 μm) graphene flakes with a high proportion of single, bilayer, and trilayer graphene and small ID/IG ratio (0.21-0.32) with only a small contribution from carbon-oxygen species as demonstrated by X-ray photoelectron spectroscopy measurements. This method comprises intercalation of sulfate ions followed by exfoliation using shear induced by a flowing electrolyte. Our findings on the crucial role of hydrodynamics in accentuating the exfoliation efficiency suggest a safer, greener, and more automated method for production of high quality graphene from graphite.

  5. Epitaxial graphene: the material for graphene electronics

    SciTech Connect

    Sprinkle, M.; Soukiassian, P.; de Heer, W.A.; Berger, C.; Conrad, E.H.

    2009-12-10

    The search for an ideal graphene sheet has been a quest driving graphene research. While most research has focused on exfoliated graphene, intrinsic substrate interactions and mechanical disorder have precluded the observation of a number of graphene's expected physical properties in this material. The only graphene candidate that has demonstrated all the essential properties of an ideal sheet is multilayer graphene grown on the SiC(000) surface. Its unique stacking allows nearly all the sheets in the stack to behave like isolated graphene, while the weak graphene-graphene interaction prevents any significant doping or distortion in the band near the Fermi level.

  6. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system.

    PubMed

    Kim, Dong-Ok; Song, Kyung Mee; Choi, Yongseong; Min, Byoung-Chul; Kim, Jae-Sung; Choi, Jun Woo; Lee, Dong Ryeol

    2016-01-01

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Such asymmetry in magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices. PMID:27151368

  7. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ok; Song, Kyung Mee; Choi, Yongseong; Min, Byoung-Chul; Kim, Jae-Sung; Choi, Jun Woo; Lee, Dong Ryeol

    2016-05-01

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Such asymmetry in magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.

  8. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system

    PubMed Central

    Kim, Dong-Ok; Song, Kyung Mee; Choi, Yongseong; Min, Byoung-Chul; Kim, Jae-Sung; Choi, Jun Woo; Lee, Dong Ryeol

    2016-01-01

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Such asymmetry in magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices. PMID:27151368

  9. Effect of spacer layer on the magnetization dynamics of permalloy/rare-earth/permalloy trilayers

    SciTech Connect

    Luo, Chen Yin, Yuli; Zhang, Dong; Jiang, Sheng; Yue, Jinjin; Zhai, Ya; Du, Jun; Zhai, Hongru

    2015-05-07

    The permalloy/rare-earth/permalloy trilayers with different types (Gd and Nd) and thicknesses of spacer layer are investigated using frequency dependence of ferromagnetic resonance (FMR) measurements at room temperature, which shows different behaviors with different rare earth spacer layers. By fitting the frequency dependence of the FMR resonance field and linewidth, we find that the in-plane uniaxial anisotropy retains its value for all samples, the perpendicular anisotropy remains almost unchanged for different thickness of Gd layer but the values are tailored by different thicknesses of Nd layer. The Gilbert damping is almost unchanged with different thicknesses of Gd; however, the Gilbert damping is significantly enhanced from 8.4×10{sup −3} to 20.1×10{sup −3} with 6 nm of Nd and then flatten out when the Nd thickness rises above 6 nm.

  10. Helical spin-density wave in Fe/Cr trilayers with perfect interfaces

    SciTech Connect

    Fishman, R.S.

    1998-07-01

    Despite the presence of only collinear, commensurate (C) and incommensurate (I) spin-density waves (SDW`s) in bulk Cr, the interfacial steps in Fe/Cr multilayers are now believed to stabilize a helical (H) SDW within the Cr spacer. Yet H SDW`s were first predicted in an Fe/Cr trilayer with perfect interfaces when the orientation of the Fe moments does not favor C ordering: if the number of Cr monolayers is even (odd) and the Fe moments are pointing in the same (opposite) direction, then a C SDW does not gain any coupling energy. Under these circumstances, a simple model verifies that H ordering is indeed favored over 1 ordering provided that the Fermi surface mismatch is sufficiently small or the temperature sufficiently high.

  11. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system

    DOE PAGES

    Kim, Dong -Ok; Song, Kyung Mee; Choi, Yongseong; Min, Byoung -Chul; Kim, Jae -Sung; Choi, Jun Woo; Lee, Dong Ryeol

    2016-05-06

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Furthermore, such asymmetry inmore » magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.« less

  12. In-plane Isotropic Microwave Performance of CoZr Trilayer in GHz Range

    PubMed Central

    Pan, Lulu; Wang, Fenglong; Wang, Wenfeng; Chai, Guozhi; Xue, Desheng

    2016-01-01

    In this paper, we investigate the high frequency performance of Co90Zr10/SiO2/Co90Zr10 trilayers. It is demonstrated that the in-plane isotropic microwave performance is theoretically derived from the solution of the Landau-Lifshitz-Gilbert equation and experimentally achieved in that sandwich structured film. The valuable isotropic behavior comes from the superposition of two uncouple ferromagnetic layers in which the uniaxial magnetic anisotropic fields are equivalent but mutually orthogonal. Moreover, the isotropic microwave performance can be tuned to higher resonance frequency up to 5.3 GHz by employing the oblique deposition technique. It offers a convenient and effective way to achieve an unusual in-plane isotropic microwave performance with high permeability in GHz, holding promising applications for the magnetic devices in the high frequency information technology. PMID:26883790

  13. In-plane Isotropic Microwave Performance of CoZr Trilayer in GHz Range

    NASA Astrophysics Data System (ADS)

    Pan, Lulu; Wang, Fenglong; Wang, Wenfeng; Chai, Guozhi; Xue, Desheng

    2016-02-01

    In this paper, we investigate the high frequency performance of Co90Zr10/SiO2/Co90Zr10 trilayers. It is demonstrated that the in-plane isotropic microwave performance is theoretically derived from the solution of the Landau-Lifshitz-Gilbert equation and experimentally achieved in that sandwich structured film. The valuable isotropic behavior comes from the superposition of two uncouple ferromagnetic layers in which the uniaxial magnetic anisotropic fields are equivalent but mutually orthogonal. Moreover, the isotropic microwave performance can be tuned to higher resonance frequency up to 5.3 GHz by employing the oblique deposition technique. It offers a convenient and effective way to achieve an unusual in-plane isotropic microwave performance with high permeability in GHz, holding promising applications for the magnetic devices in the high frequency information technology.

  14. Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.; Zheng, Hong; Norman, M. R.; Mitchell, J. F.

    2016-08-01

    The quasi-2D nickelate La4Ni3O8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La4Ni3O10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. Here, we show using synchrotron X-ray diffraction on high-pO2 floating zone-grown single crystals that this transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. The charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that found in the related 1/3-hole doped single-layer R-P nickelate, La5/3Sr1/3NiO4 (LSNO-1/3; Ni2.33+), with orientation at 45° to the Ni-O bonds. The charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.

  15. Two-dimensional iron oxide bi-and trilayer structures on Pd(100)

    NASA Astrophysics Data System (ADS)

    Kuhness, D.; Pomp, S.; Mankad, V.; Barcaro, G.; Sementa, L.; Fortunelli, A.; Netzer, F. P.; Surnev, S.

    2016-03-01

    The growth morphology and structure of iron oxide films, prepared by postoxidation of Fe monolayers on a Pd(100) surface, have been investigated in a multitechnique study, using scanning tunneling microscopy (STM), low energy electron diffraction (LEED), high-resolution x-ray photoelectron spectroscopy (HR-XPS) and x-ray absorption spectroscopy (XAS), both using synchrotron radiation, and comprehensive density functional theory (DFT) analysis. A two-dimensional (2-D) hexagonal O-Fe-O trilayer phase has been generated at submonolayer Fe coverages, which converges into two different 2-D hexagonal Fe-O bilayer structures at one monolayer. One phase exhibits a c(8 × 2) coincidence structure and is associated with a stoichiometric FeO(111) bilayer. The second phase displays a superstructure of triangular loops, which is understood from DFT modeling as excess O ad-atoms in the terminating oxygen layer, thus corresponding to a FeO bilayer with a formal FeO1.125 stoichiometry. Annealing the latter in ultrahigh vacuum to 770 K results in the pure c(8 × 2) wetting layer. The thermodynamic stability of the O-Fe-O trilayer and FeO bilayer phases is analyzed in the DFT framework and is found to be in good agreement with the experiment. The absence of a c(4 × 2)-Fe3O4 phase in the experimental phase diagram, which is found to be stable by DFT and is experimentally encountered for other transition metal oxide films, such as Ni-, Co-, and Mn-oxide on Pd(100), is ascribed to kinetic reasons.

  16. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    PubMed

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  17. Rivet Graphene.

    PubMed

    Li, Xinlu; Sha, Junwei; Lee, Seoung-Ki; Li, Yilun; Ji, Yongsung; Zhao, Yujie; Tour, James M

    2016-08-23

    Large-area graphene has emerged as a promising material for use in flexible and transparent electronics due to its flexibility and optical and electronic properties. The anchoring of transition metal nanoparticles on large-area single-layer graphene is still a challenge. Here, we report an in situ preparation of carbon nano-onion-encapsulated Fe nanoparticles on rebar graphene, which we term rivet graphene. The hybrid film, which allows for polymer-free transfer and is strong enough to float on water with no added supports, exhibits high optical transparency, excellent electric conductivity, and good hole/electron mobility under certain tensile/compressive strains. The results of contact resistance and transfer length indicate that the current in the rivet graphene transistor does not just flow at the contact edge. Carbon nano-onions encapsulating Fe nanoparticles on the surface enhance the injection of charge between rivet graphene and the metal electrode. The anchoring of Fe nanoparticles encapsulated by carbon nano-onions on rebar graphene will provide additional avenues for applications of nanocarbon-based films in transparent and flexible electronics. PMID:27351673

  18. Transport and magnetic properties of the Co2MnSi/Al/Co2MnSi trilayer

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Zhang, H. B.; Jiang, X. F.; Zheng, Y.; Yang, G. W.

    2012-05-01

    Using density functional theory and non-equilibrium Green's function analysis, we studied the interface structure, interface stability, and magnetic and transport properties of the Co2MnSi/Al/Co2MnSi trilayer. It was found that only the CoCo/Al architecture is thermodynamically stable among four interfacial architectures, CoCo/Al, MnSi/Al, MnMn/Al, and SiSi/Al, and the other interface architectures are not accessible within the limits set under thermodynamic equilibrium with other phases. Calculations of the transmission spectrum, conductance, and resistance-area product showed that the Co2MnSi/Al/Co2MnSi trilayer is a promising candidate for the next-generation of recording sensors in ultrahigh-density hard disks.

  19. Stacking nature and band gap opening of graphene: Perspective for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Ullah, Naeem; Zhang, R. Q.; Murtaza, G.; Yar, Abdullah; Mahmood, Asif

    2016-11-01

    Using first principles density functional theory calculations, we have performed geometrical and electronic structure calculations of two-dimensional graphene(G) sheet on the hexagonal boron nitride (h-BN) with different stacking orders. We found that AB stacking appears as the ground state while AA-stacking is a local minima. Band gap opening in the hybrid G/h-BN is sensitive to the interlayer distance and stacking arrangement. Charge redistribution in the graphene sheet determined the band gap opening where the onsite energy difference between carbon lattice atoms of G-sheet takes place. Similar behavior can be observed for the proposed h-BN/G/h-BN tri-layer system. Stacking resolved calculations of the absorptive part of complex dielectric function and optical conductivity revealed the importance of the proposed hybrid systems in the optoelectronics.

  20. Trilayer Josephson junctions produced by atomic layer-by-layer FORCE (Flexible Oxide Reaction Controlled Epitaxy). Final report

    SciTech Connect

    1995-09-30

    Lawrence Livermore National Laboratory is working with Varian Associates to lay the groundwork for the routine, reproducible fabrication of high-temperature superconducting trilayer structures. The objectives of this program are: To identify high temperature, superconducting materials, metallic and insulating barrier materials and associated substrate and electrode materials for engineered trilayer structures that can provide Josephson Junction devices with desired characteristics for sensor or electronic circuit use. To identify and test potentially useful analysis techniques and to provide data appropriate for the validation and analysis of the input materials, trilayer structures and completed JJ devices. To integrate the analysis results with the existing Varian data base to optimize the growth and fabrication process to obtain more reproducible devices across each chip and from chip to chip. These objectives were defined by a detailed set of milestones for both Lawrence Livermore National Laboratory and Varian Associates all of which have been meet. The timing of the milestones was revised midway through the CRADA term to allow a longer time to pursue the objectives at no additional cost to either partner.

  1. Rebar Graphene

    PubMed Central

    2015-01-01

    As the cylindrical sp2-bonded carbon allotrope, carbon nanotubes (CNTs) have been widely used to reinforce bulk materials such as polymers, ceramics, and metals. However, both the concept demonstration and the fundamental understanding on how 1D CNTs reinforce atomically thin 2D layered materials, such as graphene, are still absent. Here, we demonstrate the successful synthesis of CNT-toughened graphene by simply annealing functionalized CNTs on Cu foils without needing to introduce extraneous carbon sources. The CNTs act as reinforcing bar (rebar), toughening the graphene through both π–π stacking domains and covalent bonding where the CNTs partially unzip and form a seamless 2D conjoined hybrid as revealed by aberration-corrected scanning transmission electron microscopy analysis. This is termed rebar graphene. Rebar graphene can be free-standing on water and transferred onto target substrates without needing a polymer-coating due to the rebar effects of the CNTs. The utility of rebar graphene sheets as flexible all-carbon transparent electrodes is demonstrated. The in-plane marriage of 1D nanotubes and 2D layered materials might herald an electrical and mechanical union that extends beyond carbon chemistry. PMID:24694285

  2. Graphene kirigami

    NASA Astrophysics Data System (ADS)

    Blees, Melina K.; Barnard, Arthur W.; Rose, Peter A.; Roberts, Samantha P.; McGill, Kathryn L.; Huang, Pinshane Y.; Ruyack, Alexander R.; Kevek, Joshua W.; Kobrin, Bryce; Muller, David A.; McEuen, Paul L.

    2015-08-01

    For centuries, practitioners of origami (`ori', fold; `kami', paper) and kirigami (`kiru', cut) have fashioned sheets of paper into beautiful and complex three-dimensional structures. Both techniques are scalable, and scientists and engineers are adapting them to different two-dimensional starting materials to create structures from the macro- to the microscale. Here we show that graphene is well suited for kirigami, allowing us to build robust microscale structures with tunable mechanical properties. The material parameter crucial for kirigami is the Föppl-von Kármán number γ: an indication of the ratio between in-plane stiffness and out-of-plane bending stiffness, with high numbers corresponding to membranes that more easily bend and crumple than they stretch and shear. To determine γ, we measure the bending stiffness of graphene monolayers that are 10-100 micrometres in size and obtain a value that is thousands of times higher than the predicted atomic-scale bending stiffness. Interferometric imaging attributes this finding to ripples in the membrane that stiffen the graphene sheets considerably, to the extent that γ is comparable to that of a standard piece of paper. We may therefore apply ideas from kirigami to graphene sheets to build mechanical metamaterials such as stretchable electrodes, springs, and hinges. These results establish graphene kirigami as a simple yet powerful and customizable approach for fashioning one-atom-thick graphene sheets into resilient and movable parts with microscale dimensions.

  3. Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter.

    PubMed

    Song, Jinlin; Si, Mengting; Cheng, Qiang; Luo, Zixue

    2016-02-20

    A thermophotovoltaic system that converts thermal energy into electricity has considerable potential for applications in energy utilization fields. However, intensive emission in a wide spectral and angular range remains a challenge in improving system efficiency. This study proposes the use of a 2D trilayer grating with a tungsten/silica/tungsten (W/SiO2/W) structure on a tungsten substrate as a thermophotovoltaic emitter. The finite-difference time-domain method is employed to simulate the radiative properties of the proposed structure. A broadband high emittance with an average spectral emittance of 0.953 between 600 and 1800 nm can be obtained for both transverse magnetic and transverse electric polarized waves. On the basis of the inductance-capacitance circuit model and dispersion relation analyses, this phenomenon is mainly considered as the combined contribution of surface plasmon polaritons and magnetic polaritons. A parametric study is also conducted on the emittance spectrum of the proposed structure, considering geometric parameters, polar angles, and azimuthal angles for both TM and TE waves. The study demonstrates that the emitter has good wavelength selectivity and polarization insensitivity in a wide geometric and angular range.

  4. Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter.

    PubMed

    Song, Jinlin; Si, Mengting; Cheng, Qiang; Luo, Zixue

    2016-02-20

    A thermophotovoltaic system that converts thermal energy into electricity has considerable potential for applications in energy utilization fields. However, intensive emission in a wide spectral and angular range remains a challenge in improving system efficiency. This study proposes the use of a 2D trilayer grating with a tungsten/silica/tungsten (W/SiO2/W) structure on a tungsten substrate as a thermophotovoltaic emitter. The finite-difference time-domain method is employed to simulate the radiative properties of the proposed structure. A broadband high emittance with an average spectral emittance of 0.953 between 600 and 1800 nm can be obtained for both transverse magnetic and transverse electric polarized waves. On the basis of the inductance-capacitance circuit model and dispersion relation analyses, this phenomenon is mainly considered as the combined contribution of surface plasmon polaritons and magnetic polaritons. A parametric study is also conducted on the emittance spectrum of the proposed structure, considering geometric parameters, polar angles, and azimuthal angles for both TM and TE waves. The study demonstrates that the emitter has good wavelength selectivity and polarization insensitivity in a wide geometric and angular range. PMID:26906580

  5. Exponentially decaying magnetic coupling in sputtered thin film FeNi/Cu/FeCo trilayers

    SciTech Connect

    Wei, Yajun Akansel, Serkan; Thersleff, Thomas; Brucas, Rimantas; Lansaker, Pia; Leifer, Klaus; Svedlindh, Peter; Harward, Ian; Celinski, Zbigniew; Ranjbar, Mojtaba; Dumas, Randy K.; Jana, Somnath; Pogoryelov, Yevgen; Karis, Olof; Åkerman, Johan

    2015-01-26

    Magnetic coupling in trilayer films of FeNi/Cu/FeCo deposited on Si/SiO{sub 2} substrates have been studied. While the thicknesses of the FeNi and FeCo layers were kept constant at 100 Å, the thickness of the Cu spacer was varied from 5 to 50 Å. Both hysteresis loop and ferromagnetic resonance results indicate that all films are ferromagnetically coupled. Micromagnetic simulations well reproduce the ferromagnetic resonance mode positions measured by experiments, enabling the extraction of the coupling constants. Films with a thin Cu spacer are found to be strongly coupled, with an effective coupling constant of 3 erg/cm{sup 2} for the sample with a 5 Å Cu spacer. The strong coupling strength is qualitatively understood within the framework of a combined effect of Ruderman-Kittel-Kasuya-Yosida and pinhole coupling, which is evidenced by transmission electron microscopy analysis. The magnetic coupling constant surprisingly decreases exponentially with increasing Cu spacer thickness, without showing an oscillatory thickness dependence. This is partially connected to the substantial interfacial roughness that washes away the oscillation. The results have implications on the design of multilayers for spintronic applications.

  6. Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

    NASA Astrophysics Data System (ADS)

    Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel

    2014-12-01

    Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers.

  7. Medical data sheet in safe havens - A tri-layer cryptic solution.

    PubMed

    Praveenkumar, Padmapriya; Amirtharajan, Rengarajan; Thenmozhi, K; Balaguru Rayappan, John Bosco

    2015-07-01

    Secured sharing of the diagnostic reports and scan images of patients among doctors with complementary expertise for collaborative treatment will help to provide maximum care through faster and decisive decisions. In this context, a tri-layer cryptic solution has been proposed and implemented on Digital Imaging and Communications in Medicine (DICOM) images to establish a secured communication for effective referrals among peers without compromising the privacy of patients. In this approach, a blend of three cryptic schemes, namely Latin square image cipher (LSIC), discrete Gould transform (DGT) and Rubik׳s encryption, has been adopted. Among them, LSIC provides better substitution, confusion and shuffling of the image blocks; DGT incorporates tamper proofing with authentication; and Rubik renders a permutation of DICOM image pixels. The developed algorithm has been successfully implemented and tested in both the software (MATLAB 7) and hardware Universal Software Radio Peripheral (USRP) environments. Specifically, the encrypted data were tested by transmitting them through an additive white Gaussian noise (AWGN) channel model. Furthermore, the sternness of the implemented algorithm was validated by employing standard metrics such as the unified average changing intensity (UACI), number of pixels change rate (NPCR), correlation values and histograms. The estimated metrics have also been compared with the existing methods and dominate in terms of large key space to defy brute force attack, cropping attack, strong key sensitivity and uniform pixel value distribution on encryption.

  8. Tunable ferroelectricity in artificial tri-layer superlattices comprised of non-ferroic components.

    PubMed

    Rogdakis, K; Seo, J W; Viskadourakis, Z; Wang, Y; Qune, L F N Ah; Choi, E; Burton, J D; Tsymbal, E Y; Lee, J; Panagopoulos, C

    2012-01-01

    Heterostructured material systems devoid of ferroic components are presumed not to display ordering associated with ferroelectricity. In heterostructures composed of transition metal oxides, however, the disruption introduced by an interface can affect the balance of the competing interactions among electronic spins, charges and orbitals. This has led to the emergence of properties absent in the original building blocks of a heterostructure, including metallicity, magnetism and superconductivity. Here we report the discovery of ferroelectricity in artificial tri-layer superlattices consisting solely of non-ferroelectric NdMnO(3)/SrMnO(3)/LaMnO(3) layers. Ferroelectricity was observed below 40 K exhibiting strong tunability by superlattice periodicity. Furthermore, magnetoelectric coupling resulted in 150% magnetic modulation of the polarization. Density functional calculations indicate that broken space inversion symmetry and mixed valency, because of cationic asymmetry and interfacial polar discontinuity, respectively, give rise to the observed behaviour. Our results demonstrate the engineering of asymmetric layered structures with emergent ferroelectric and magnetic field tunable functions distinct from that of normal devices, for which the components are typically ferroelectrics. PMID:22990860

  9. Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers

    NASA Astrophysics Data System (ADS)

    Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.

  10. Magnetization reversal in asymmetric trilayer dots: effect of the interlayer magnetostatic coupling

    PubMed Central

    2014-01-01

    The spin structure and magnetization reversal in Co/insulator/Fe trilayer nanodots are investigated by micromagnetic simulations. The vortex and C-state are found and the magnetization reversal is dominated by the shape asymmetry of the dots, which is produced by cutting off a fraction of the circular dot. The vortex chirality is thus controlled by the magnetic field direction. On the other hand, the magnetostatic interaction between the top and bottom magnetic layers has interesting influence on the dot reversal process, where the magnetocrystalline anisotropy direction of the Co layer is allowed to vary within the layer plane. The combined effect of these two aspects is discussed on the base of dot coercivity, remanent magnetization, vortex nucleation and annihilation, and the bias of the Fe layer hysteresis loop. While leading to a new S-state in circle dots, the interlayer interaction facilitates the formation of C-state in asymmetric dots, which reduces the vortex nucleation field. The bias effect of all dots is decreased with the deviation of the Co layer easy axis from the field direction. Unlike the circle and semicircle dots, the field range of the vortex state in other asymmetric dots increases with the angle between the cutting direction and the Co layer anisotropy. Additionally, vortex ranges in less asymmetric dots even larger than that in the circle dots are evidenced unexpectedly. Therefore, the control of the vortex chirality and enhancement of the vortex range are found simultaneously. PMID:24589295

  11. Non-linear dynamics of viscoelastic liquid trilayers subjected to an electric field

    NASA Astrophysics Data System (ADS)

    Karapetsas, George; Bontozoglou, Vasilis

    2014-11-01

    The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a trilayer of immiscible liquids. We consider the case of a polymer film which is separated from the top electrode by two viscous fluids. We develop a computational model and carry out 2D numerical simulations fully accounting for the flow and electric field in all phases. For the numerical solution of the governing equations we employ the mixed finite element method combined with a quasi-elliptic mesh generation scheme which is capable of following the large deformations of the liquid-liquid interface. We model the viscoelastic behavior using the Phan-Thien and Tanner (PTT) constitutive equation taking fully into account the non-linear elastic effects as well as a varying shear and extensional viscosity. We perform a thorough parametric study and investigate the influence of the electric properties of fluids, applied voltage and various rheological parameters. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.

  12. Spin pumping in magnetic trilayer structures with an MgO barrier

    PubMed Central

    Baker, A. A.; Figueroa, A. I.; Pingstone, D.; Lazarov, V. K.; van der Laan, G.; Hesjedal, T.

    2016-01-01

    We present a study of the interaction mechanisms in magnetic trilayer structures with an MgO barrier grown by molecular beam epitaxy. The interlayer exchange coupling, Aex, is determined using SQUID magnetometry and ferromagnetic resonance (FMR), displaying an unexpected oscillatory behaviour as the thickness, tMgO, is increased from 1 to 4 nm. Transmission electron microscopy confirms the continuity and quality of the tunnelling barrier, eliminating the prospect of exchange arising from direct contact between the two ferromagnetic layers. The Gilbert damping is found to be almost independent of the MgO thickness, suggesting the suppression of spin pumping. The element-specific technique of x-ray detected FMR reveals a small dynamic exchange interaction, acting in concert with the static interaction to induce coupled precession across the multilayer stack. These results highlight the potential of spin pumping and spin transfer torque for device applications in magnetic tunnel junctions relying on commonly used MgO barriers. PMID:27752117

  13. Role of spin polarization in FM/Al/FM trilayer film at low temperature

    NASA Astrophysics Data System (ADS)

    Lu, Ning; Webb, Richard

    2014-03-01

    Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.

  14. Spin Propagation Through Antiferromagnetic Bulk Structure in Exchange Biased Magnetic Trilayers

    NASA Astrophysics Data System (ADS)

    Crumrine, Michael; Kirby, Hillary; Miller, Casey

    2013-03-01

    When an exchange bias is induced in materials with a ferromagnetic (FM) - antiferromagnetic (AF) interface, the interfacial coupling between the antiferromagnet and FM manifests itself as a shift in the magnetic hysteresis loop. It has been an unresolved issue as to the role the bulk spin of the antiferromagnet plays in exchange bias and whether or not exchange bias is entirely an interfacial effect. We fabricated several FM/AF/FM trilayer structures of Py(100Å)/FeMn(x)/Ni69Cu31(200Å) with varying antiferromagnet thicknesses and used a field cool procedure to induce an exchange bias. A Magneto-Optical Kerr Effect magnetometer was used to investigate the propagation of spin information through the antiferromagnet by examining the hysteresis loops at different angles of applied field with respect to the magnetization. It was observed that there was no induced exchange bias in the NiCu probe layer for any of the antiferromagnet thicknesses, and we conclude that the patterning of the antiferromagnetic layer transmits no spin information for thicknesses greater than 100Å.

  15. Antiferromagnet-induced perpendicular magnetic anisotropy in ferromagnetic/antiferromagnetic/ferromagnetic trilayers

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Yao; Lin, Po-Han; Tsai, Ming-Shian; Shih, Chun-Wei; Lee, Meng-Ju; Huang, Chun-Wei; Jih, Nae-Yeou; Wei, Der-Hsin

    2016-08-01

    This study demonstrates the effect of antiferromagnet-induced perpendicular magnetic anisotropy (PMA) on ferromagnetic/antiferromagnetic/ferromagnetic (FM/AFM/FM) trilayers and reveals its interplay with a long-range interlayer coupling between separated FM layers. In epitaxially grown 12 monolayer (ML) Ni/Co/Mn/5 ML Co/Cu(001) films, magnetic hysteresis loops and element-resolved magnetic domain imaging showed that the magnetization direction of the top layers of 12 ML Ni/Co films could be changed from the in-plane direction to the perpendicular direction, when the thickness of the Mn films (tMn) was greater than a critical value close to the thickness threshold associated with the onset of AFM ordering (tMn=3.5 ML). The top FM layers exhibited a significantly enhanced PMA when tMn increased further, and this enhancement can be attributed to a strengthened AFM ordering of the volume moments of the Mn films, as evidenced by the presence of induced domain frustration. By contrast, the long-range interlayer coupling presented clear effects only when tMn was at a lower coverage.

  16. Limited propagation of lattice distortion in trilayer Langmuir-Blodgett films: correlation with mesoscopic structure.

    PubMed

    Cantin, Sophie; Perrot, Françoise; Fontaine, Philippe; Goldmann, Michel

    2013-09-01

    The structure of trilayer Langmuir-Blodgett (LB) films on oxidized silicon wafers has been investigated using grazing incidence X-ray diffraction at various incidence angles and atomic force microscopy (AFM). These films are formed by two behenic acid (BA) layers and a third monolayer of amphiphilic molecules having different architectures. These molecules have the same polar head and differ from each other by the chain, either saturated or unsaturated hydrogenated or semi-fluorinated. The structure of the first BA monolayer appears as unchanged in all cases, whereas a condensation of the second BA monolayer is evidenced when the third layer is not formed with the saturated hydrogenated chain. We interpret this condensation as resulting from the mismatch between the lattices of the second BA layer and the external monolayer, possibly associated with the formation of a new monolayer-air interface creating line tension effects. Line tension estimation has also been made from the size of the holes observed in the different LB films.

  17. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection

    NASA Astrophysics Data System (ADS)

    Duan, Bo; Zhou, Jiajing; Fang, Zheng; Wang, Chenxu; Wang, Xiujuan; Hemond, Harold F.; Chan-Park, Mary B.; Duan, Hongwei

    2015-07-01

    We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with poly(ethylene glycol) (PEG). Here tGO plays multifunctional roles as a 2D scaffold to immobilized interfacially assembled plasmonic nanoparticles, a nanospacer to create SERS-active nanogaps between two layers of nanoparticle arrays, and a molecule harvester to enrich molecules of interest via π-π interaction. In particular, the molecule harvesting capability of the tGO nanospacer and the stealth properties of PEG coating on the plasmonic nanoparticles collectively lead to preferential positioning of selective targets such as aromatic molecules and single-stranded DNA at the SERS-active nanogap hotspots. We have demonstrated that an SERS assay based on the PEGylated trilayered substrate, in combination with magnetic separation, allows for sensitive, multiplexed ``signal-off'' detection of DNA sequences of bacterial pathogens.We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with poly(ethylene glycol) (PEG). Here tGO plays multifunctional roles as a 2D scaffold to immobilized interfacially assembled plasmonic nanoparticles, a nanospacer to create SERS-active nanogaps between two layers of nanoparticle arrays, and a molecule harvester to enrich molecules of interest via π-π interaction. In particular, the molecule harvesting capability of

  18. Ferromagnetic resonance study of the misalignment between anisotropy axes in exchange-biased NiFe/FeMn/Co trilayers

    NASA Astrophysics Data System (ADS)

    Barreto, P. G.; Sousa, M. A.; Pelegrini, F.; Alayo, W.; Litterst, F. J.; Baggio-Saitovitch, E.

    2014-05-01

    Exchange-biased NiFe/FeMn/Co trilayers were grown by dc magnetron sputtering and analyzed by in-plane ferromagnetic resonance using Q-band microwaves. The experiments revealed that distinct Co and NiFe resonance modes were excited by the microwave field. A misalignment between the anisotropy axes of the magnetic layers was deduced from the angular variations of the resonance fields, which also showed the effects of uniaxial and unidirectional anisotropies. A phenomenological model was used to fit the experimental results taking also into account a rotatable anisotropy field associated to the domain structure of the FeMn layer and the magnetic history of the films.

  19. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in trilayers containing magneto-optical metals

    NASA Astrophysics Data System (ADS)

    Girón-Sedas, J. A.; Mejía-Salazar, J. R.; Moncada-Villa, E.; Porras-Montenegro, N.

    2016-07-01

    We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.

  20. Switching a magnetic vortex by interlayer coupling in epitaxially grown Co/Cu/Py/Cu(001) trilayer disks

    SciTech Connect

    Wu, J.; Carlton, D.; Oelker, E.; Park, J. S.; Jin, E.; Arenholz, E.; Scholl, A.; Hwang, C.; Bokor, J.; Qiu, Z Q

    2010-07-16

    Epitaxial Py/Cu/Co/Cu(001) trilayers were patterned into micron sized disks and imaged using element-specific photoemission electron microscopy. By varying the Cu spacer layer thickness, we study how the coupling between the two magnetic layers influences the formation of magnetic vortex states. We find that while the Py and Co disks form magnetic vortex domains when the interlayer coupling is ferromagnetic, the magnetic vortex domains of the Py and Co disks break into anti-parallel aligned multidomains when the interlayer coupling is antiferromagnetic. We explain this result in terms of magnetic flux closure between the Py and Co layers for the antiferromagnetic coupling case.

  1. Effects of interlayer screening and temperature on dielectric functions of graphene by first-principles

    NASA Astrophysics Data System (ADS)

    Yang, J. Y.; Liu, L. H.

    2016-07-01

    The dielectric functions of few-layer graphene and the related temperature dependence are investigated from the atomic scale using first-principles calculations. Compared with ellipsometry experiments in the spectral range of 190-2500 nm, the normalized optical constants of mono-layer graphene demonstrate good agreement and further validate first-principles calculations. To interpret dielectric function of mono-layer graphene, the electronic band structure and density of states are analyzed. By comparing dielectric functions of mono-, bi-, and tri-layer graphene, it shows that interlayer screening strengthens intraband transition and greatly enhances the absorption peak located around 1 eV. The strengthened optical absorption is intrinsically caused by the increasing electron states near the Fermi level. To investigate temperature effect, the first-principles calculations and lattice dynamics are combined. The lattice vibration enhances parallel optical absorption peak around 1 eV and induces redshift. Moreover, it is observed that the van der Waals force plays a key role in keeping the interlayer distance stable during dynamics simulations.

  2. In-situ confined growth of monodisperse pt nanoparticle@graphene nanobox composites as electrocatalytic nanoreactors.

    PubMed

    Lv, Yingying; Fang, Yin; Wu, Zhangxiong; Qian, Xufang; Song, Yanfang; Che, Renchao; Asiri, Abdullah M; Xia, Yongyao; Tu, Bo; Zhao, Dongyuan

    2015-02-25

    Monodisperse Pt nanoparticles (NPs) studded in a three-dimensional (3D) graphene nanobox are successfully synthesized through a simple in-situ confined growth route for the first time. The nano-zeolite A was used as a 3D substrate for in-situ growth of tri-layered graphenes on the crystal-surfaces, meanwhile, the inner micropores of which can also be utilized for the confined growth of Pt nanoparticles. The graphene sheets are curved on the edges to form a 3D hollow box morphology, where the monodisperse Pt nanoparticles are homogeneously studded on the inner surfaces. Moreover, the Pt content can be regulated from ∼8 to 50 wt%, and the particle size can be tuned from 2-5 nm by varying the pristine Pt-ion loading amount and CVD temperature. The Pt NP@graphene nanoboxes possess not only large pore volumes to effectively accommodate large amounts of oxygen, but also supply excellent electrical conductivity for the fast transfer of electrons (∼3.96 e(-)), resulting in a high efficiency (175 mA/mg Pt) and long-term stability (above 1000 cycles) for the oxygen reduction reaction.

  3. In-situ confined growth of monodisperse pt nanoparticle@graphene nanobox composites as electrocatalytic nanoreactors.

    PubMed

    Lv, Yingying; Fang, Yin; Wu, Zhangxiong; Qian, Xufang; Song, Yanfang; Che, Renchao; Asiri, Abdullah M; Xia, Yongyao; Tu, Bo; Zhao, Dongyuan

    2015-02-25

    Monodisperse Pt nanoparticles (NPs) studded in a three-dimensional (3D) graphene nanobox are successfully synthesized through a simple in-situ confined growth route for the first time. The nano-zeolite A was used as a 3D substrate for in-situ growth of tri-layered graphenes on the crystal-surfaces, meanwhile, the inner micropores of which can also be utilized for the confined growth of Pt nanoparticles. The graphene sheets are curved on the edges to form a 3D hollow box morphology, where the monodisperse Pt nanoparticles are homogeneously studded on the inner surfaces. Moreover, the Pt content can be regulated from ∼8 to 50 wt%, and the particle size can be tuned from 2-5 nm by varying the pristine Pt-ion loading amount and CVD temperature. The Pt NP@graphene nanoboxes possess not only large pore volumes to effectively accommodate large amounts of oxygen, but also supply excellent electrical conductivity for the fast transfer of electrons (∼3.96 e(-)), resulting in a high efficiency (175 mA/mg Pt) and long-term stability (above 1000 cycles) for the oxygen reduction reaction. PMID:25331302

  4. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    PubMed Central

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-01-01

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics. PMID:26932316

  5. The Management of Diabetic Foot Ulcers with Porcine Small Intestine Submucosa Tri-Layer Matrix: A Randomized Controlled Trial

    PubMed Central

    Cazzell, Shawn M.; Lange, Darrell L.; Dickerson, Jaime E.; Slade, Herbert B.

    2015-01-01

    Objective: This study demonstrates that superior outcomes are possible when diabetic foot ulcers (DFU) are managed with tri-layer porcine small intestine submucosa (SIS). Approach: Patients with DFU from 11 centers participated in this prospective randomized controlled trial. Qualified subjects were randomized (1:1) to either SIS or standard care (SC) selected at the discretion of the Investigator and followed for 12 weeks or complete ulcer closure. Results: Eighty-two subjects (41 in each group) were evaluable in the intent-to-treat analysis. Ulcers managed with SIS had a significantly greater proportion closed by 12 weeks than for the Control group (54% vs. 32%, p=0.021) and this proportion was numerically higher at all visits. Time to closure for ulcers achieving closure was 2 weeks earlier for the SIS group than for SC. Median reduction in ulcer area was significantly greater for SIS at each weekly visit (all p values<0.05). Review of reported adverse events found no safety concerns. Innovation: These data support the use of tri-layer SIS for the effective management of DFU. Conclusion: In this randomized controlled trial, SIS was found to be associated with more rapid improvement, and a higher likelihood of achieving complete ulcer closure than those ulcers treated with SC. PMID:26634183

  6. Design, Fabrication, and Testing of a TiN/Ti/TiN Trilayer KID Array for 3 mm CMB Observations

    NASA Astrophysics Data System (ADS)

    Lowitz, A. E.; Brown, A. D.; Mikula, V.; Stevenson, T. R.; Timbie, P. T.; Wollack, E. J.

    2016-08-01

    Kinetic inductance detectors (KIDs) are a promising technology for astronomical observations over a wide range of wavelengths in the mm and sub-mm regime. Simple fabrication, in as little as one lithographic layer, and passive frequency-domain multiplexing, with readout of up to ˜ 1000 pixels on a single line with a single cold amplifier, make KIDs an attractive solution for high-pixel-count detector arrays. We are developing an array that optimizes KIDs for optical frequencies near 100 GHz to expand their usefulness in mm-wave applications, with a particular focus on CMB B-mode measurement efforts in association with the QUBIC telescope. We have designed, fabricated, and tested a 20-pixel prototype array using a simple quasi-lumped microstrip design and pulsed DC reactive magnetron-sputtered TiN/Ti/TiN trilayer resonators, optimized for detecting 100 GHz (3 mm) signals. Here we present a discussion of design considerations for the array, as well as preliminary detector characterization measurements and results from a study of TiN trilayer properties.

  7. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    DOE PAGES

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-03-02

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon.more » The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Lastly, our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.« less

  8. Evidence for a π junction in Nb/Ni 0.96V0.04/Nb trilayers revealed by superfluid density measurements

    NASA Astrophysics Data System (ADS)

    Hinton, M. J.; Steers, Stanley; Peters, Bryan; Yang, F. Y.; Lemberger, T. R.

    2016-07-01

    We report measurements of the superfluid density, λ-2(T ) , in ferromagnet-on-superconductor (F/S) bilayers and S/F/S' trilayers comprising Nb with Ni, Py, CoFe, and NiV ferromagnets. Bilayers provide information about F/S interface transparency and the T dependence of λ-2 that inform interpretation of trilayer data. The Houzet-Meyer theory accounts well for the measured dependence of λ-2(0 ) and Tc of F/S bilayers on thickness of F layer, dF, except that λ-2(0 ) is slightly under expectations for CoFe/Nb bilayers. For Nb/F/Nb' trilayers, we are able to extract Tc and and λ-2 for both Nb layers when F is thick enough to weaken interlayer coupling. The lower "Tc" is actually a crossover identified by onset of superfluid in the lower-Tc Nb layer. For Nb/NiV/Nb' trilayers, λ-2(0 ) versus dF for both Nb layers has a minimum followed by a recovery, suggestive of a π junction.

  9. Nanoscale measurements of unoccupied band dispersion in few-layer graphene

    PubMed Central

    Jobst, Johannes; Kautz, Jaap; Geelen, Daniël; Tromp, Rudolf M.; van der Molen, Sense Jan

    2015-01-01

    The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only. PMID:26608712

  10. A theoretical investigation of Ferromagnetic Resonance Linewidth and damping constants in coupled trilayer and spin valve systems

    SciTech Connect

    Layadi, A.

    2015-05-15

    The ferromagnetic resonance intrinsic field linewidth ΔH is investigated for a multilayer system such as a coupled trilayer and a spin valve structure. The magnetic coupling between two ferromagnetic layers separated by a nonmagnetic interlayer will be described by the bilinear J{sub 1} and biquadratic J{sub 2} coupling parameters. The interaction at the interface of the first ferromagnetic layer with the antiferromagnetic one is account for by the exchange anisotropy field, H{sub E}. A general formula is derived for the intrinsic linewidth ΔH. The explicit dependence of ΔH with H{sub E}, J{sub 1} and J{sub 2} will be highlighted. Analytical expressions for each mode field linewidth are found in special cases. Equivalent damping constants will be discussed.

  11. Study of perpendicular anisotropy L1{sub 0}-FePt pseudo spin valves using a micromagnetic trilayer model

    SciTech Connect

    Ho, Pin; Evans, Richard F. L.; Chantrell, Roy W.; Han, Guchang; Chow, Gan-Moog; Chen, Jingsheng

    2015-06-07

    A trilayer micromagnetic model based on the Landau-Lifshitz-Bloch equation of motion is utilized to study the properties of L1{sub 0}-FePt/TiN/L1{sub 0}-FePt pseudo spin valves (PSVs) in direct comparison with experiment. Theoretical studies give an insight on the crystallographic texture, magnetic properties, reversal behavior, interlayer coupling effects, and magneto-transport properties of the PSVs, in particular, with varying thickness of the top L1{sub 0}-FePt and TiN spacer. We show that morphological changes in the FePt layers, induced by varying the FePt layer thickness, lead to different hysteresis behaviors of the samples, caused by changes in the interlayer and intralayer exchange couplings. Such effects are important for the optimization of the PSVs due to the relationship between the magnetic properties, domain structures, and the magnetoresistance of the device.

  12. Fe-ions implantation to modify TiO2 trilayer films for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Pang, Pan; Liao, Bin; Xianying, Wu; Zhang, Xu

    2016-06-01

    A series of Fe-doped TiO2 trilayer films were prepared successfully by using the ion-implantation technique. The aim of the ion implantation was to enhance charge transfer and to reduce charge recombination. A maximum conversion efficiency of 4.86% was achieved in cells using Fe-ion-implanted electrodes with the illumination of 6×1015 atom/cm2. It is 14.1% higher than that of the cells without ion implantations. The significant improvement in conversion efficiency by Fe-ion implantation could be contributed to the enhancement of dye uptake and charge transfer, as indicated from the incident photon-to-collected electron conversion efficiency and ultraviolet-visible measurements. Furthermore, the implanted Fe-ions introduce impurity levels in the bandgap of TiO2, and this improves the electron injection efficiency from lowest unoccupied molecular orbital of excited N719 into the conduction band of TiO2.

  13. Magnetic, optical and transport properties of GaCrN-based ferromagnet/nonmagnet/ferromagnet trilayer structures

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Zhou, Y. K.; Kimura, S.; Emura, S.; Hasegawa, S.; Asahi, H.

    2005-05-01

    GaCrN-based ferromagnet/nonmagnet/ferromagnet trilayer structures were grown by radio frequency molecular beam epitaxy. During GaN and GaCrN growth, reflection high-energy electron diffraction pattern showed thin streaks and Kikuchi lines, indicating surface flatness and high crystalline quality. Clear hysteresis and saturation characteristics were observed in the magnetization versus magnetic field curves at all the measuring temperatures. The coercivity Hc was about 130 Oe at 10 K. Step-like hysteresis loops were also observed at 10 and 300 K because of different Cr concentrations in the two GaCrN layers. Photoluminescence emission was observed from GaCrN. Hysteresis loop was observed in the magnetic field dependence of vertical electrical resistance.

  14. Study of perpendicular anisotropy L10-FePt pseudo spin valves using a micromagnetic trilayer model

    NASA Astrophysics Data System (ADS)

    Ho, Pin; Evans, Richard F. L.; Chantrell, Roy W.; Han, Guchang; Chow, Gan-Moog; Chen, Jingsheng

    2015-06-01

    A trilayer micromagnetic model based on the Landau-Lifshitz-Bloch equation of motion is utilized to study the properties of L10-FePt/TiN/L10-FePt pseudo spin valves (PSVs) in direct comparison with experiment. Theoretical studies give an insight on the crystallographic texture, magnetic properties, reversal behavior, interlayer coupling effects, and magneto-transport properties of the PSVs, in particular, with varying thickness of the top L10-FePt and TiN spacer. We show that morphological changes in the FePt layers, induced by varying the FePt layer thickness, lead to different hysteresis behaviors of the samples, caused by changes in the interlayer and intralayer exchange couplings. Such effects are important for the optimization of the PSVs due to the relationship between the magnetic properties, domain structures, and the magnetoresistance of the device.

  15. Graphene and graphene oxide for desalination.

    PubMed

    You, Yi; Sahajwalla, Veena; Yoshimura, Masamichi; Joshi, Rakesh K

    2016-01-01

    There is a huge scope for graphene-based materials to be used as membranes for desalination. A very recent study has confirmed that 100% salt rejection can be achieved for commonly used ions by utilizing single layer nonporous graphene. However, the cost effective fabrication procedure for graphene oxide membranes with precise control of pore size can offer a practical solution for filtration if one can achieve 100% percent salt rejection.

  16. The edges of graphene.

    PubMed

    Zhang, Xiuyun; Xin, John; Ding, Feng

    2013-04-01

    The edge of two dimensional (2D) graphene, as the surface of a three dimensional (3D) crystal, plays a crucial role in the determination of its physical, electronic and chemical properties and thus has been extensively studied recently. In this review, we summarize the recent advances in the study of graphene edges, including edge formation energy, edge reconstruction, method of graphene edge synthesis and the recent progress on metal-passivated graphene edges and the role of edges in graphene CVD growth. We expect this review to provide a guideline for readers to gain a clear picture of graphene edges from several aspects, especially the catalyst-passivated graphene edges and their role in graphene CVD growth.

  17. EDITORIAL: Focus on Graphene

    NASA Astrophysics Data System (ADS)

    Peres, N. M. R.; Ribeiro, Ricardo M.

    2009-09-01

    Graphene physics is currently one of the most active research areas in condensed matter physics. Countless theoretical and experimental studies have already been performed, targeting electronic, magnetic, thermal, optical, structural and vibrational properties. Also, studies that modify pristine graphene, aiming at finding new physics and possible new applications, have been considered. These include patterning nanoribbons and quantum dots, exposing graphene's surface to different chemical species, studying multilayer systems, and inducing strain and curvature (modifying in this way graphene's electronic properties). This focus issue includes many of the latest developments on graphene research. Focus on Graphene Contents Electronic properties of graphene and graphene nanoribbons with 'pseudo-Rashba' spin-orbit coupling Tobias Stauber and John Schliemann Strained graphene: tight-binding and density functional calculations R M Ribeiro, Vitor M Pereira, N M R Peres, P R Briddon and A H Castro Neto The effect of sublattice symmetry breaking on the electronic properties of doped graphene A Qaiumzadeh and R Asgari Interfaces within graphene nanoribbons J Wurm, M Wimmer, I Adagideli, K Richter and H U Baranger Weak localization and transport gap in graphene antidot lattices J Eroms and D Weiss Electronic properties of graphene antidot lattices J A Fürst, J G Pedersen, C Flindt, N A Mortensen, M Brandbyge, T G Pedersen and A-P Jauho Splitting of critical energies in the n=0 Landau level of graphene Ana L C Pereira Double-gated graphene-based devices S Russo, M F Craciun, M Yamamoto, S Tarucha and A F Morpurgo Pinning and switching of magnetic moments in bilayer graphene Eduardo V Castro, M P López-Sancho and M A H Vozmediano Electronic transport properties of graphene nanoribbons Katsunori Wakabayashi, Yositake Takane, Masayuki Yamamoto and Manfred Sigrist Many-body effects on out-of-plane phonons in graphene J González and E Perfetto Graphene zigzag ribbons, square

  18. Graphene Synthesis & Graphene/Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Liao, Ken-Hsuan

    We successfully developed a novel, fast, hydrazine-free, high-yield method for producing single-layered graphene. Graphene sheets were formed from graphite oxide by reduction with de-ionized water at 130 ºC. Over 65% of the sheets are single graphene layers. A dehydration reaction of exfoliated graphene oxide was utilized to reduce oxygen and transform C-C bonds from sp3 to sp2. The reduction appears to occur in large uniform interconnected oxygen-free patches so that despite the presence of residual oxygen the sp2 carbon bonds formed on the sheets are sufficient to provide electronic properties comparable to reduced graphene sheets obtained using other methods. Cytotoxicity of aqueous graphene was investigated with Dr. Yu-Shen Lin by measuring mitochondrial activity in adherent human skin fibroblasts using two assays. The methyl-thiazolyl-diphenyl-tetrazolium bromide (MTT) assay, a typical nanotoxicity assay, fails to predict the toxicity of graphene oxide and graphene toxicity because of the spontaneous reduction of MTT by graphene and graphene oxide, resulting in a false positive signal. An appropriate alternate assessment, using the water soluble tetrazolium salt (WST-8) assay, reveals that the compacted graphene sheets are more damaging to mammalian fibroblasts than the less densely packed graphene oxide. Clearly, the toxicity of graphene and graphene oxide depends on the exposure environment (i.e. whether or not aggregation occurs) and mode of interaction with cells (i.e. suspension versus adherent cell types). Ultralow percolation concentration of 0.15 wt% graphene, as determined by surface resistance and modulus, was observed from in situ polymerized thermally reduced graphene (TRG)/ poly-urethane-acrylate (PUA) nanocomposite. A homogeneous dispersion of TRG in PUA was revealed by TEM images. The aspect ratio of dispersed TRG, calculated from percolation concentration and modulus, was found to be equivalent to the reported aspect ratio of single

  19. MEMS Graphene Strain Sensor

    NASA Astrophysics Data System (ADS)

    Young, Clinton Wen-Chieh

    Graphene is a two dimensional honeycomb structure of sp2 hybridized carbon atoms that has possibilities in many applications due to its excellent mechanical and electrical properties. One application for Graphene is in the field of sensors. Graphene's electronic properties do not degrade when it undergoes mechanical strain which is advantageous for strain sensors. In this thesis, certain properties, such as the piezo-resistivity and flexibility, of graphene will be explored to show how they can be utilized to make a strain sensing device. Our original fabrication process of patterning graphene and the transfer process of graphene onto a flexible substrate will be discussed. The development of a stretchable and flexible graphene based rosette strain sensor will also be detailed. Developing a novel, reliable patterning process for the graphene is the first step to manufacture a stretchable graphene based sensor. The graphene was patterned using a photolithography and etching process that was developed by our research team, then it was transferred to a flexible polymer substrate with the use of a combination of soft lithography and wet etching of the Ni foil with ferric chloride solution. Graphene patterning is an essential step in fabricating reliable and sensitive sensors. With this process, graphene can be consistently patterned into different shapes and sizes. To utilize the graphene as the sensing material it also needs to be transferred onto a flexible substrate. The innovative transfer process developed by our research team consistently adheres graphene to a flexible PDMS substrate while removing the original nickel substrate. In the end, the graphene was transferred from the metal substrate to the desired flexible substrate. This process was repeated multiple times to create a stack and multilayer device. While many graphene-based strain sensors have been developed, they are uni-directional and can only measure the strain applied on the sensor in a principle

  20. Fracture toughness of graphene.

    PubMed

    Zhang, Peng; Ma, Lulu; Fan, Feifei; Zeng, Zhi; Peng, Cheng; Loya, Phillip E; Liu, Zheng; Gong, Yongji; Zhang, Jiangnan; Zhang, Xingxiang; Ajayan, Pulickel M; Zhu, Ting; Lou, Jun

    2014-04-29

    Perfect graphene is believed to be the strongest material. However, the useful strength of large-area graphene with engineering relevance is usually determined by its fracture toughness, rather than the intrinsic strength that governs a uniform breaking of atomic bonds in perfect graphene. To date, the fracture toughness of graphene has not been measured. Here we report an in situ tensile testing of suspended graphene using a nanomechanical device in a scanning electron microscope. During tensile loading, the pre-cracked graphene sample fractures in a brittle manner with sharp edges, at a breaking stress substantially lower than the intrinsic strength of graphene. Our combined experiment and modelling verify the applicability of the classic Griffith theory of brittle fracture to graphene. The fracture toughness of graphene is measured as the critical stress intensity factor of and the equivalent critical strain energy release rate of 15.9 J m(-2). Our work quantifies the essential fracture properties of graphene and provides mechanistic insights into the mechanical failure of graphene.

  1. Effects of post-growth annealing in a CoFeB/MgO/CoFeB trilayer structure

    NASA Astrophysics Data System (ADS)

    Ying, Ji-Feng; Ter Lim, Sze; Tran, Michael; Ji, Rong

    2015-11-01

    CoFeB/MgO/CoFeB tri-layer thin-film stacks have been widely used in the design of STT-RAM devices as functional magnetic-tunnel-junction (MTJ) structures. The materials properties of the CoFeB and MgO layers, including composition and lattice quality, have been extensively researched from the stand point of optimizing for the best MTJ performance. On the other hand, post-growth annealing is required for the MTJ structure to acquire its functional property, i.e. its TMR performance. In this work, we have studied the various possible effects resulting from the post-growth annealing process. Specifically, we show that the post-growth annealing causes boron in the top and bottom CoFeB layers to migrate into the adjacent Ta layers as well as deterioration in lattice quality of the MgO layer. Furthermore, we evaluate other effects that could be possibly induced during the annealing process, including Ta diffusion and layer intermixing in the CoFeB/MgO/CoFeB tri-layer structure. The post-growth annealing causes little change in the Ta diffusion and the layer intermixing. These annealing effects were also evaluated with respect to variations in the MgO growth process; more specifically, an additional natural oxidation treatment during the MgO layer deposition and the insertion of a Fe layer before the MgO layer. Our results indicate that the addition of a natural oxidation process during the MgO deposition process and the insertion of a thin-layer of Fe before the MgO layer both lead to a reduction in the layer intermixing between the MgO and the CoFeB layer and to an improvement in MgO lattice quality. We also show that the post-growth annealing does not alter the beneficial effect of these MgO growth process modifications.

  2. My Spring with Graphene

    SciTech Connect

    O'Leary, Timothy Sean

    2015-06-08

    Graphene is a two-dimensional structure, one atom thick, with many uses in the world of technology. It has many useful electrical properties, is a very strong and durable material, and can be used to protect different types of substances. The world would be able to use these properties to further the strength of cars, protect metals from oxidation, increase computer speeds, use to improve superconductors, and whatever future uses that scientist invent or discover. We sought to optimize the growth and transfer of graphene. We grew graphene on copper foils by heating the foil in a furnace, and having various gases flow through a tube, where the copper foil was placed. We varied some of the concentrations of gases, along with having different times for heating the copper foil, different times for graphene growth, or a combination of the two. The focus of our experiment was to specifically grow monolayer single crystal graphene, which means that we do not want multiplayers of graphene, and do not want multiple crystals growing to form a bigger crystal. Our goal was to grow large single crystals from the growth experiment. We used a few different types of transfer methods that ranged from: using heat and pressure to press the graphene on different materials, using a polymer to cover the graphene with a method to destroy the copper, but leave the graphene and polymer intact, and using a type of heat tape with a combination of varying pressures to transfer the graphene, and then destroy the copper foil. To discover if we grew graphene we used different techniques involving lasers and microscopes to take different types of measurements. Discovering the best way of growing and transferring graphene will help with managing the cost of the future uses of graphene.

  3. Graphene device and method of using graphene device

    SciTech Connect

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.

    2015-08-11

    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  4. Towards the Synthesis of Graphene Azide from Graphene Oxide.

    PubMed

    Halbig, Christian E; Rietsch, Philipp; Eigler, Siegfried

    2015-11-26

    In the last decades, organic azides haven proven to be very useful precursors in organic chemistry, for example in 1,3-dipolar cycloaddition reactions (click-chemistry). Likewise, azides can be introduced into graphene oxide with an almost intact carbon framework, namely oxo-functionalized graphene (oxo-G₁), which is a highly oxidized graphene derivative and a powerful precursor for graphene that is suitable for electronic devices. The synthesis of a graphene derivative with exclusively azide groups (graphene azide) is however still a challenge. In comparison also hydrogenated graphene, called graphene or halogenated graphene remain challenging to synthesize. A route to graphene azide would be the desoxygenation of azide functionalized oxo-G₁. Here we show how treatment of azide functionalized oxo-G₁ with HCl enlarges the π-system and removes strongly adsorbed water and some oxo-functional groups. This development reflects one step towards graphene azide.

  5. Halogenated graphenes: rapidly growing family of graphene derivatives.

    PubMed

    Karlický, František; Kumara Ramanatha Datta, Kasibhatta; Otyepka, Michal; Zbořil, Radek

    2013-08-27

    Graphene derivatives containing covalently bound halogens (graphene halides) represent promising two-dimensional systems having interesting physical and chemical properties. The attachment of halogen atoms to sp(2) carbons changes the hybridization state to sp(3), which has a principal impact on electronic properties and local structure of the material. The fully fluorinated graphene derivative, fluorographene (graphene fluoride, C1F1), is the thinnest insulator and the only stable stoichiometric graphene halide (C1X1). In this review, we discuss structural properties, syntheses, chemistry, stabilities, and electronic properties of fluorographene and other partially fluorinated, chlorinated, and brominated graphenes. Remarkable optical, mechanical, vibrational, thermodynamic, and conductivity properties of graphene halides are also explored as well as the properties of rare structures including multilayered fluorinated graphenes, iodine-doped graphene, and mixed graphene halides. Finally, patterned halogenation is presented as an interesting approach for generating materials with applications in the field of graphene-based electronic devices.

  6. Dynamical conductivity of AA-stacked bilayer graphene

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Nicol, E. J.

    2012-08-01

    We calculate the dynamical conductivity of AA-stacked bilayer graphene as a function of frequency and in the presence of a finite chemical potential due to charging. Unlike the monolayer, we find a Drude absorption at charge neutrality in addition to an interband absorption with onset of twice the interlayer hopping energy. At finite doping, the interband absorption exhibits two edges, which depend on both chemical potential and interlayer hopping energy. We study the behavior as a function of varying chemical potential relative to the interlayer hopping energy scale and compute the partial optical sum. The results are contrasted with the previously published case of AB stacking. While we focus on in-plane conductivity, we also provide the perpendicular conductivity for both AB and AA stacking. We also examine conductivity for other variations with AA stacking, such as AAA-stacked trilayer. Based on proposed models for topological insulators discussed in the literature, we also consider the effect of spin-orbit coupling on the optical properties of an AA-stacked bilayer, which illustrates the effect of an energy gap opening at points in the band structure.

  7. Thermal conduction in graphene and graphene multilayers

    NASA Astrophysics Data System (ADS)

    Ghosh, Suchismita

    There has been increasing interest in thermal conductivity of materials motivated by the heat removal issues in electronics and by the need of fundamental science to understand heat conduction at nanoscale [1, 2, 3]. This dissertation reports the results of the experimental investigation of heat conduction in graphene and graphene multilayers. Graphene is a planar single sheet of sp2-bonded carbon atoms arranged in honeycomb lattice. It reveals many unique properties, including the extraordinarily high carrier mobility. In order to measure the thermal conductivity of graphene we developed an original non-contact technique based on micro-Raman spectroscopy. The samples for this study were prepared by mechanical exfoliation and suspended across trenches in Si/SiO2 substrates. The number of atomic planes was determined by deconvolution of the Raman 2D band. The suspended graphene flakes attached to the heat sinks were heated by the laser light focused in the middle. The Raman G peak's temperature sensitivity allowed us to monitor the local temperature change produced by the variation of the excitation laser power. A special calibration procedure was developed to determine the fraction of power absorbed by graphene. Our measurements revealed that single-layer graphene has an extremely high room-temperature thermal conductivity in the range 3800-5300 W/mK depending on the flake size and quality. It was also found that most of the heat near room temperature is transferred by acoustic phonons rather than electrons. Theoretical studies of the phonon thermal conduction in graphene, which included detail treatment of the Umklapp scattering, are in agreement with our experiments. The measurements were also extended to few-layer graphene. It was shown that the thermal conductivity reduces with the increasing number of layers approaching the bulk graphite limit. To validate the measurement technique we investigated the thermal conductivity of the polycrystalline graphene films

  8. Equivalent circuit model of converse magnetoelectric effect for the tri-layer magnetoelectric laminates with thermal and stress loadings

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Li, Meng-Han; Liu, Hui; Cui, Xiao-Le

    2015-12-01

    For the converse magnetoelectric coupling effect of the piezoelectric/magnetostrictive/piezoelectric tri-layer symmetric magnetoelectric laminates, based on the nonlinear thermo-magneto-mechanical constitutive equations of the giant magnetostrictive materials and the thermo-electro-mechanical constitutive equations of the piezoelectric materials, according to Newton's second law and the magnetic circuit theorem, an equivalent circuit is established. Then an expression of the converse magnetoelectric coefficient describing nonlinear thermo-magneto-electro-mechanical coupling is established. The curve of the nonlinear converse magnetoelectric coefficient versus the bias magnetic field, is predicted effectively by the expression, and the predictions are in good agreement with the experimental result both qualitatively and quantitatively. Furthermore, the model can predict the complex influences of the bias magnetic field, the stress and the ambient temperature on the converse magnetoelectric coefficient. It can be found from these predictions that the converse magnetoelectric coefficient decreases with the increasing temperature and increases with the increasing tensile stress. Under the common effect of the ambient temperature and the stress, it is also found that the converse magnetoelectric coefficient changes sharply with the ambient temperature when the tensile stress is applied on the laminates, but it has a good stability of temperature when a large compressive stress is applied. Therefore, this work contributes to the researches on the giant converse magnetoelectric coefficient and the designs of magnetoelectric devices based on the converse magnetoelectric coupling.

  9. Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors

    PubMed Central

    Chu, Leiqiang; Schmidt, Hennrik; Pu, Jiang; Wang, Shunfeng; Özyilmaz, Barbaros; Takenobu, Taishi; Eda, Goki

    2014-01-01

    Charge transport in MoS2 in the low carrier density regime is dominated by trap states and band edge disorder. The intrinsic transport properties of MoS2 emerge in the high density regime where conduction occurs via extended states. Here, we investigate the transport properties of mechanically exfoliated mono-, bi-, and trilayer MoS2 sheets over a wide range of carrier densities realized by a combination of ion gel top gate and SiO2 back gate, which allows us to achieve high charge carrier (>1013 cm−2) densities. We discuss the gating properties of the devices as a function of layer thickness and demonstrate resistivities as low as 1 kΩ for monolayer and 420 Ω for bilayer devices at 10 K. We show that from the capacitive coupling of the two gates, quantum capacitance can be roughly estimated to be on the order of 1 μF/cm2 for all devices studied. The temperature dependence of the carrier mobility in the high density regime indicates that short-range scatterers limit charge transport at low temperatures. PMID:25465059

  10. Optimizing the magnitude of the magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers: A formula to combine all involved parameters

    NASA Astrophysics Data System (ADS)

    Aristomenopoulou, E.; Zeibekis, M.; Stamopoulos, D.

    2016-03-01

    The competitive nature of ferromagnetism and superconductivity in Ferromagnet/Superconductor (FM/SC) hybrids has attracted much interest in the last decades. In particular, the superconducting magnetoresistance (SMR) observed in FM/SC/FM trilayers (TLs) is related to the manipulation of the transport properties of the SC interlayer by the magnetic domain structure of the FM outer layers with out-of-plane anisotropy. In our recent work [Sci. Rep. 5, 13420 (2015)], a phenomenological model was proposed that describes successfully the scaling of the SMR magnitude with the relevant macroscopic parameters and microscopic length scales of the SC and FM structural units. Based on this model, here we investigate the contribution of the parameters that affect indirectly the SMR magnitude and do not appear in the original model. To this end, the parameters of both the SC interlayer (i.e., the thickness, dSC, the mean free path, l, the coherence length, ξ(0), etc.) and the FM outer layers (i.e., the thickness, dFM) are examined. The theoretical simulations presented here and experimental data unveil the indirect contribution of these parameters on the magnitude of the SMR and confirm the predictive power of the original phenomenological model. Accordingly, this model can be employed as a generic formula to combine successfully all involved parameters in every kind of FM/SC/FM TLs, ultimately optimizing the magnitude of the SMR.

  11. Magnetic properties of Fe/FeSi2/Fe3Si trilayered films prepared by facing targets sputtering deposition

    NASA Astrophysics Data System (ADS)

    Ishibashi, Kazuya; Nakashima, Kazutoshi; Sakai, Ken-Ichiro; Yoshitake, Tsuyoshi

    2015-09-01

    Whereas giant magnetoresistance and tunnel magnetoresistance films generally employ nonmagnetic metal and insulator spacers, respectively, we have studied Fe3Si/FeSi artificial lattices, in which FeSi2 is semiconducting and its employment as spacers is specific to our research. For the formation of parallel/antiparallel alignments of layer magnetizations, the employment of ferromagnetic layers with different coercive forces is required. There have been few studies on the fabrication of Fe-Si system spin valves comprising ferromagnetic layers with different coercive forces. In this work, Fe3Si and Fe were employed as ferromagnetic layer materials with different coercive forces. Fe/FeSi2/Fe3Si trilayered spin valve junctions by facing targets direct-current sputtering deposition combined with a mask method, and their electrical and magnetic properties were studied. An Fe3Si layer was epitaxially grown on Si(111) substrate as a bottom layer. After that, An Fe layer with a large coercive force was deposited as a top layer, posterior to a FeSi2 layer being deposited. From magnetization curves measured by a vibrating sample magnetometer, it was confirmed that the parallel and antiparallel magnetization alignments of ferromagnetic layers are clearly realized. This work was supported by JSPS KAKENHI Grant Number 15K21594.

  12. Enabling graphene nanoelectronics.

    SciTech Connect

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  13. Trifluoromethylation of graphene

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Zhou, Lushan; Wang, Xi; Yu, Jingwen; Yang, Mingmei; Wang, Jianbo; Peng, Hailin; Liu, Zhongfan

    2014-09-01

    We demonstrate trifluoromethylation of graphene by copper-catalyzed free radical reaction. The covalent addition of CF3 to graphene, which changes the carbon atom hybridization from sp2 to sp3, and modifies graphene in a homogeneous and nondestructive manner, was verified with Raman spectroscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy reveals that CF3 groups are grafted to the basal plane of graphene, with about 4 at. % CF3 coverage. After trifluoromethylation, the average resistance increases by nearly one order of magnitude, and an energy gap of about 98 meV appears. The noninvasive and mild reaction to synthesize trifluoromethylated graphene paves the way for graphene's applications in electronics and biomedical areas.

  14. Deformation of wrinkled graphene.

    PubMed

    Li, Zheling; Kinloch, Ian A; Young, Robert J; Novoselov, Kostya S; Anagnostopoulos, George; Parthenios, John; Galiotis, Costas; Papagelis, Konstantinos; Lu, Ching-Yu; Britnell, Liam

    2015-04-28

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  15. Deformation of Wrinkled Graphene

    PubMed Central

    2015-01-01

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  16. Superhydrophobic functionalized graphene aerogels.

    PubMed

    Lin, Yirong; Ehlert, Gregory J; Bukowsky, Colton; Sodano, Henry A

    2011-07-01

    Carbon-based nanomaterials such as carbon nanotubes and graphene are excellent candidates for superhydrophobic surfaces because of their intrinsically high surface area and nonpolar carbon structure. This paper demonstrates that graphene aerogels with a silane surface modification can provide superhydrophobicity. Graphene aerogels of various concentrations were synthesized and the receding contact angle of a water droplet was measured. It is shown that graphene aerogels are hydrophobic and become superhydrophobic following the application of a fluorinated surfactant. The aerogels produced for this experiment outperform previous carbon nanomaterials in creating superhydrophobic surfaces and offer a more scalable synthetic procedure for production.

  17. Few-layer and symmetry-breaking effects on the electrical properties of ordered CF3Cl phases on graphene

    NASA Astrophysics Data System (ADS)

    Morales-Cifuentes, Josue; Wang, Yilin; Reutt-Robey, Janice; Einstein, T. L.

    2014-03-01

    An effective pseudopotential mechanism for breaking the inherent sub-lattice symmetry of graphene has been studied using DFT calculations on hexagonal boron nitride. Electrical detection of CF3Cl phase transitions on graphene shows the existence of a commensurate ordered phase in which this can be tested. We study the electronic properties of this phase using VASP ver 5.3.3, with ab initio van der Waals density functionals (vdW-DF1 and vdW-DF2). Consistent with a physisorbed phase, binding energies and charge transfer per CF3Cl molecule are calculated to be on the order of 280meV and 0.01e, respectively. By exploring different coverages and orientations of this ordered phase we are able to open a band gap in some configurations; said gap is in the range of 8 to 80meV depending on the strength of the effective pseudopotential. Furthermore, we calculate the screening of these effects in bi-layer and tri-layer graphene. Work supported by NSF-MRSEC at UMD, grant DMR 05-20471 and NSF-CHE 13-05892.

  18. Quantum Complexity in Graphene

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    Carbon has a unique position among elements in the periodic table. It produces an allotrope, graphene, a mechanically robust two dimensional semimetal. The multifarious properties that graphene exhibits has few parallels among elemental metals. From simplicity, namely carbon atoms connected by pure sp2 bonds, a wealth of novel quantum properties emerge. In classical complex systems such as a spin glass or a finance market, several competing agents or elements are responsible for unanticipated and difficult to predict emergent properties. The complex (sic) structure of quantum mechanics is responsbile for an unanticipated set of emergent properties in graphene. We call this quantum complexity. In fact, most quantum systems, phenomena and modern quantum field theory could be viewed as examples of quantum complexity. After giving a brief introduction to the quantum complexity we focus on our own work, which indicates the breadth in the type of quantum phenomena that graphene could support. We review our theoretical suggestions of, (i) spin-1 collective mode in netural graphene, (ii) relativistic type of phenomena in crossed electric and magnetic fields, (iii) room temperature superconductivity in doped graphene and (iv) composite Fermi sea in neutral graphene in uniform magnetic field and (v) two-channel Kondo effect. Except for the relativistic type of phenomena, the rest depend in a fundamental way on a weak electron correlation that exists in the broad two-dimensional band of graphene.

  19. Twisting bilayer graphene superlattices.

    PubMed

    Lu, Chun-Chieh; Lin, Yung-Chang; Liu, Zheng; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2013-03-26

    Bilayer graphene is an intriguing material in that its electronic structure can be altered by changing the stacking order or the relative twist angle, yielding a new class of low-dimensional carbon system. Twisted bilayer graphene can be obtained by (i) thermal decomposition of SiC; (ii) chemical vapor deposition (CVD) on metal catalysts; (iii) folding graphene; or (iv) stacking graphene layers one atop the other, the latter of which suffers from interlayer contamination. Existing synthesis protocols, however, usually result in graphene with polycrystalline structures. The present study investigates bilayer graphene grown by ambient pressure CVD on polycrystalline Cu. Controlling the nucleation in early stage growth allows the constituent layers to form single hexagonal crystals. New Raman active modes are shown to result from the twist, with the angle determined by transmission electron microscopy. The successful growth of single-crystal bilayer graphene provides an attractive jumping-off point for systematic studies of interlayer coupling in misoriented few-layer graphene systems with well-defined geometry.

  20. Graphene: Carbon's superconducting footprint

    NASA Astrophysics Data System (ADS)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  1. Ultrathin Planar Graphene Supercapacitors

    SciTech Connect

    Huang, Jingsong; Meunier, Vincent; Sumpter, Bobby G; Ajayan, Pullikel M; Yoo, Jung Joon; Balakrishnan, Kaushik; Srivastava, Anchal; Conway, Michelle; Reddy, Arava Leela Mohan; Yu, Jin; Vajtai, Robert

    2011-01-01

    With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an in-plane fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multi-layer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1-2 graphene layers, to reach specific capacities up to 80 Fcm-2. While, much higher (394 Fcm-2) specific capacities are observed in case of multi-layered graphene oxide electrodes, owing to the better utilization of the available electrochemical surface area. The performances of devices with pristine as well as thicker graphene based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad range of thin-film based energy storage devices.

  2. Trilayer micelles for combination delivery of rapamycin and siRNA targeting Y-box binding protein-1 (siYB-1)

    PubMed Central

    Zeng, San; Xiong, May P.

    2013-01-01

    A three layer (trilayer) polymeric micelle system based on the self-association of the triblock polymer poly(ethylene glycol)-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl] aspartamide}-b-poly(ε-caprolactone) (PEG-b-PAsp(DET)-b-PCL) has been synthesized and investigated for combination delivery of rapamycin (RAP) and siRNA targeting Y-box binding protein-1 (siYB-1). The trilayer micelle is composed of (a) a hydrophilic poly(ethylene glycol) (PEG) block constituting the outer layer to improve pharmacokinetics, (b) an intermediate compartment composed of the cationic poly{2-[(2-aminoethyl)amino] ethyl aspartamide} (PAsp(DET)) segment for interacting with siYB-1, and (c) an inner hydrophobic poly(ε-caprolactone) (PCL) compartment for encapsulation of RAP. A major advantage of this system is biocompatibility since PEG and PCL are both approved by the FDA, and PAsp(DET) is a non-toxic pH responsive cationic poly(amino acid)-based polymer. In this study, it has been shown that PCL can encapsulate RAP with high loading efficiencies, and PAsp(DET) can successfully interact with siRNA for efficient transfection/knockdown with negligible cytotoxicity. The enhanced therapeutic efficacy of RAP/ siYB-1 micelles was demonstrated in cell cultures and in a PC3 xenograft nude mouse model of human prostate cancer. Herein, we demonstrate that trilayer micelles are a promising approach to improve the simultaneous delivery of combination siRNA/drug therapies. PMID:23768780

  3. Twisted Graphene Nanostructures

    NASA Astrophysics Data System (ADS)

    Gani, Satrio; Virgus, Yudistira; Rossi, Enrico

    2015-03-01

    Recent advances in fabrication techniques have made possible the realization of graphene nanostructures with atomic precision. Some of the nanostructures realized are completely novel. We study the electronic properties of such novel graphene nanostructures when deposited on two dimensional crystals. In particular we study the case when the two dimensional crystal is graphene, or bilayer graphene. We obtain results for the nanostructure electronic spectrum and find how the spectrum is affected by the coupling between the nanostructure and the two-dimensional substrate. In particular we study how the ``twist'' angle between the graphene nanostructure and the two-dimensional crystal affects the spectrum of the nanostructure. Work supported by ONR-N00014-13-1-0321 and ACS-PRF # 53581-DNI5.

  4. Strain Engineering in Graphene

    NASA Astrophysics Data System (ADS)

    Castro Neto, Antonio

    2011-03-01

    Graphene is a unique example of a one atom thick metallic membrane. Hence, graphene brings together properties of soft and hard condensed matter systems. The elementary electronic excitations in graphene, the Dirac quasiparticles, couple in a singular way to structural distortions in the form of scalar and vector potentials. Therefore, graphene has an effective electrodynamics where structural deformations couple to the Dirac particles at equal footing to electric and magnetic fields. This so-called strain engineering of the electronic properties of graphene opens doors for a new paradigm in terms of electronic devices, where electronic properties can be manipulated at will using its membrane-like properties. I thank partial support from from DOE Grant DE-FG02-08ER46512 and ONR Grant MURI N00014-09-1-1063.

  5. Vacancies in epitaxial graphene

    SciTech Connect

    Davydov, S. Yu.

    2015-08-15

    The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphene to the substrate increases.

  6. Multilayered Graphene in Microwaves

    NASA Astrophysics Data System (ADS)

    Kuzhir, P.; Volynets, N.; Maksimenko, S.; Kaplas, T.; Svirko, Yu.

    2013-05-01

    We report on the experimental study of electromagnetic (EM) properties of multilayered graphene in Ka-band synthesized by catalytic chemical vapor deposition (CVD) process in between nanometrically thin Cu catalyst film and dielectric (SiO2) substrate. The quality of the produced multilayered graphene samples were monitored by Raman spectroscopy. The thickness of graphene films was controlled by atomic force microscopy (AFM) and was found to be a few nanometers (up to 5 nm). We discovered, that the fabricated graphene provided remarkably high EM shielding efficiency caused by absorption losses at the level of 35-43% of incident power. Being highly conductive at room temperature, multi-layer graphene emerges as a promising material for manufacturing ultrathin microwave coatings to be used in aerospace applications.

  7. Multifunctional graphene woven fabrics

    PubMed Central

    Li, Xiao; Sun, Pengzhan; Fan, Lili; Zhu, Miao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Cheng, Yao; Zhu, Hongwei

    2012-01-01

    Tailoring and assembling graphene into functional macrostructures with well-defined configuration are key for many promising applications. We report on a graphene-based woven fabric (GWF) prepared by interlacing two sets of graphene micron-ribbons where the ribbons pass each other essentially at right angles. By using a woven copper mesh as the template, the GWF grown from chemical vapour deposition retains the network configuration of the copper mesh. Embedded into polymer matrices, it has significant flexibility and strength gains compared with CVD grown graphene films. The GWFs display both good dimensional stability in both the warp and the weft directions and the combination of film transparency and conductivity could be optimized by tuning the ribbon packing density. The GWF creates a platform to integrate a large variety of applications, e.g., composites, strain sensors and solar cells, by taking advantages of the special structure and properties of graphene. PMID:22563524

  8. Thermomechanical Processing and Roll Bonding of Tri-Layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite

    NASA Astrophysics Data System (ADS)

    Kim, Hobyung; Kang, Gyeong Tae; Hong, Sun Ig

    2016-05-01

    Tri-layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn composite was processed by roll bonding and the effect of thermomechanical processing on the mechanical performance and electrical conductivity was studied. Roll-bonded composite exhibited the brief work hardening and subsequent rapid work softening because of the high stored deformation energy, leading to failure at the plastic strain of 8 to 10 pct. The mechanical instability of as-roll-bonded composites was abated by heat treatment (HT) at 723 K (450 °C) and the extended work hardening with enhanced ductility compared to that of the as-roll-bonded composites was observed after HT. The strength and electrical conductivity of clad composite is dependent on the precipitation strengthening of Cu-Cr and recovery softening of Cu-Ni-Zn during post-roll-bonding HT. The increase of roll-bonding temperature enhances the precipitation kinetics and it takes shorter time to reach maximum hardness in Cu-Cr layer during post-roll-bonding HT. The toughness of as-roll-bonded Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite at 773 K (500 °C) [42 MJ/mm3] is greater than those at 723 K (450 °C) [24 MJ/mm3] and 823 K (550 °C) [38 MJ/mm3]. The maximum toughness [100 MJ/mm3] with the electrical conductivity of 68 pct IACS was obtained in the Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite roll-bonded at 773 K (500 °C) and subsequently heat-treated at 723 K (450 °C).

  9. Interfacial contributions to perpendicular magnetic anisotropy in Pd/Co2MnSi/MgO trilayer films

    NASA Astrophysics Data System (ADS)

    Fu, Huarui; You, Caiyin; Li, Yunlong; Wang, Ke; Tian, Na

    2016-05-01

    Heusler alloy Co2MnSi is widely selected as the ferromagnetic layer to achieve a giant tunneling magnetic resistance (TMR). It is also one of the most promising materials for potential spintronic applications of magnetic random access memory (MRAM) due to the high spin polarization, in which the configuration of perpendicular magnetic anisotropy (PMA) possesses great advantages over the in-plane ones. Therefore, it is highly desirable to investigate the PMA effects of the Co2MnSi layer with a suitable stack structure. In this work, a strong PMA (1.61  ×  106 erg cm-3) is demonstrated in the system of Pd/Co2MnSi/MgO trilayer films. The contributions of the interfaces beside the ferromagnetic Co2MnSi layer were quantitatively clarified. The interfacial anisotropy K s,MgO of 0.79 erg cm-2 at the Co2MnSi/MgO interface is larger than the K s,Pd value of 0.26 erg cm-2 at the Pd/Co2MnSi interface. Due to the dual interfacial effects, the strong PMA can be sustained at the high annealing temperature with a thick Co2MnSi layer of about 4.9 nm, which is favorable to the potential spintronic application. The Mn-O bonding was also found to be enriched at the Co2MnSi/MgO interface for the annealed Pd/Co2MnSi (3.4 nm)/MgO film with the large PMA, showing an experimental evidence for the theoretical results of the Mn-O bonding contribution to PMA.

  10. Biocompatibility of Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Ruan, Jing; Song, Hua; Zhang, Jiali; Wo, Yan; Guo, Shouwu; Cui, Daxiang

    2011-12-01

    Herein, we report the effects of graphene oxides on human fibroblast cells and mice with the aim of investigating graphene oxides' biocompatibility. The graphene oxides were prepared by the modified Hummers method and characterized by high-resolution transmission electron microscope and atomic force microscopy. The human fibroblast cells were cultured with different doses of graphene oxides for day 1 to day 5. Thirty mice divided into three test groups (low, middle, high dose) and one control group were injected with 0.1, 0.25, and 0.4 mg graphene oxides, respectively, and were raised for 1 day, 7 days, and 30 days, respectively. Results showed that the water-soluble graphene oxides were successfully prepared; graphene oxides with dose less than 20 μg/mL did not exhibit toxicity to human fibroblast cells, and the dose of more than 50 μg/mL exhibits obvious cytotoxicity such as decreasing cell adhesion, inducing cell apoptosis, entering into lysosomes, mitochondrion, endoplasm, and cell nucleus. Graphene oxides under low dose (0.1 mg) and middle dose (0.25 mg) did not exhibit obvious toxicity to mice and under high dose (0.4 mg) exhibited chronic toxicity, such as 4/9 mice death and lung granuloma formation, mainly located in lung, liver, spleen, and kidney, almost could not be cleaned by kidney. In conclusion, graphene oxides exhibit dose-dependent toxicity to cells and animals, such as inducing cell apoptosis and lung granuloma formation, and cannot be cleaned by kidney. When graphene oxides are explored for in vivo applications in animal or human body, its biocompatibility must be considered.

  11. Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology

    SciTech Connect

    Wang, Ying; Li, Zhaohui; Wang, Jun; Li, Jinghong; Lin, Yuehe

    2011-05-01

    Graphene is the basic building block of zero-dimensional fullerene, 1D carbon nanotubes, and 3D graphite. Graphene has a unique planar structure as well as novel electronic properties, which have attracted great interest from scientists. This review selectively analyzes current advances in the field of graphene bioapplications. In particular, the functionalization of graphene for biological applications, FRET-based biosensor development by using graphene-based nanomaterials, and the investigation of graphene for living cell studies have been summarized in more details. Future perspectives and possible challenges in this rapidly developing area are also discussed.

  12. Tunneling Plasmonics in Bilayer Graphene.

    PubMed

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  13. Stabilization of graphene nanopore

    PubMed Central

    Lee, Jaekwang; Yang, Zhiqing; Zhou, Wu; Pennycook, Stephen J.; Pantelides, Sokrates T.; Chisholm, Matthew F.

    2014-01-01

    Graphene is an ultrathin, impervious membrane. The controlled introduction of nanoscale pores in graphene would lead to applications that involve water purification, chemical separation, and DNA sequencing. However, graphene nanopores are unstable against filling by carbon adatoms. Here, using aberration-corrected scanning transmission electron microscopy and density-functional calculations, we report that Si atoms stabilize graphene nanopores by bridging the dangling bonds around the perimeter of the hole. Si‐passivated pores remain intact even under intense electron beam irradiation, and they were observed several months after the sample fabrication, demonstrating that these structures are intrinsically robust and stable against carbon filling. Theoretical calculations reveal the underlying mechanism for this stabilization effect: Si atoms bond strongly to the graphene edge, and their preference for tetrahedral coordination forces C adatoms to form dendrites sticking out of the graphene plane, instead of filling the nanopore. Our results provide a novel way to develop stable nanopores, which is a major step toward reliable graphene-based molecular translocation devices. PMID:24821802

  14. The Enhancement of spin Hall torque efficiency and Reduction of Gilbert damping in spin Hall metal/normal metal/ferromagnetic trilayers

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Pai, Chi-Feng; Ralph, Daniel C.; Buhrman, Robert A.

    2015-03-01

    The spin Hall effect (SHE) in ferromagnet/heavy metal bilayer structures has been demonstrated to be a powerful means for producing pure spin currents and for exerting spin-orbit damping-like and field-like torques on the ferromagnetic layer. Large spin Hall (SH) angles have been reported for Pt, beta-Ta and beta-W films and have been utilized to achieve magnetic switching of in-plane and out-of-plane magnetized nanomagnets, spin torque auto-oscillators, and the control of high velocity domain wall motion. For many of the proposed applications of the SHE it is also important to achieve an effective Gilbert damping parameter that is as low as possible. In general the spin orbit torques and the effective damping are predicted to depend directly on the spin-mixing conductance of the SH metal/ferromagnet interface. This opens up the possibility of tuning these properties with the insertion of a very thin layer of another metal between the SH metal and the ferromagnet. Here we will report on experiments with such trilayer structures in which we have observed both a large enhancement of the spin Hall torque efficiency and a significant reduction in the effective Gilbert damping. Our results indicate that there is considerable opportunity to optimize the effectiveness and energy efficiency of the damping-like torque through engineering of such trilayer structures. Supported in part by NSF and Samsung Electronics Corporation.

  15. Interfacial Characterization of Dissimilar Joints Between Al/Mg/Al-Trilayered Clad Sheet to High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Macwan, A.; Jiang, X. Q.; Chen, D. L.

    2015-07-01

    Magnesium (Mg) alloys are increasingly used in the automotive and aerospace sectors to reduce vehicle weight. Al/Mg/Al tri-layered clad sheets are deemed as a promising alternative to improve the corrosion resistance and formability of Mg alloys. The structural application of Al/Mg/Al tri-layered clad sheets inevitably involves welding and joining in the multi-material vehicle body manufacturing. This study aimed to characterize the bonding interface microstructure of the Al/Mg/Al-clad sheet to high-strength low-alloy steel with and without Zn coating using ultrasonic spot welding at different levels of welding energy. It was observed that the presence of Zn coating improved the bonding at the interface due to the formation of Al-Zn eutectic structure via enhanced diffusion. At a higher level of welding energy, characteristic flow patterns of Zn into Al-clad layer were observed with an extensive penetration mainly along some high angle grain boundaries. The dissimilar joints without Zn coating made at a high welding energy of 800 J failed partially from the Al/Fe weld interface and partially from the Al/Mg clad interface, while the joints with Zn coating failed from the Al/Mg clad interface due to the presence of brittle Al12Mg17 phase.

  16. Determining graphene adhesion via substrate-regulated morphology of graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Li, Teng

    2011-10-01

    Understanding the adhesion between graphene and other materials is crucial for achieving more reliable graphene-based applications in electronic devices and nanocomposites. The ultra-thin profile of graphene, however, poses a significant challenge to direct measurement of its adhesion property using conventional approaches. We show that there is a strong correlation between the morphology of graphene on a compliant substrate with patterned surface and the graphene-substrate adhesion. We establish an analytic model to quantitatively determine such a strong correlation. Results show that, depending on the graphene-substrate adhesion, number of graphene layers, and substrate stiffness, graphene exhibits two distinct types of morphology: (I) graphene remains bonded to the substrate and corrugates to an amplitude up to that of the substrate surface patterns; (II) graphene debonds from the substrate and remains flat on top of the substrate surface patterns. The sharp transition between these two types of graphene morphology occurs at a critical adhesion between the graphene and the compliant substrate material. These results potentially open up a feasible pathway to measuring the adhesion property of graphene.

  17. Graphene field-effect devices

    NASA Astrophysics Data System (ADS)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  18. Promising applications of graphene and graphene-based nanostructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of

  19. Charging graphene for energy

    NASA Astrophysics Data System (ADS)

    Liu, Jun

    2014-10-01

    Energy storage is a grand challenge for future energy infrastructure, transportation and consumer electronics. Jun Liu discusses how graphene may -- or may not -- be used to improve various electrochemical energy storage devices.

  20. Melting temperature of graphene

    NASA Astrophysics Data System (ADS)

    Los, J. H.; Zakharchenko, K. V.; Katsnelson, M. I.; Fasolino, Annalisa

    2015-01-01

    We present an approach to the melting of graphene based on nucleation theory for a first order phase transition from the two-dimensional (2D) solid to the 3D liquid via an intermediate quasi-2D liquid. The applicability of nucleation theory, supported by the results of systematic atomistic Monte Carlo simulations, provides an intrinsic definition of the melting temperature of graphene, Tm, and allows us to determine it. We find Tm≃4510 K, about 250 K higher than that of graphite using the same interatomic interaction model. The found melting temperature is shown to be in good agreement with the asymptotic results of melting simulations for finite disks and ribbons of graphene. Our results strongly suggest that graphene is the most refractory of all known materials.

  1. Crumpled graphene nanoreactors

    NASA Astrophysics Data System (ADS)

    Wang, Zhongying; Lv, Xiaoshu; Chen, Yantao; Liu, Dan; Xu, Xinhua; Palmore, G. Tayhas R.; Hurt, Robert H.

    2015-05-01

    Nanoreactors are material structures that provide engineered internal cavities that create unique confined nanoscale environments for chemical reactions. Crumpled graphene nanoparticles or ``nanosacks'' may serve as nanoreactors when filled with reactive or catalytic particles and engineered for a specific chemical function. This article explores the behavior of crumpled graphene nanoreactors containing nanoscale ZnO, Ag, Ni, Cu, Fe, or TiO2 particles, either alone or in combination, in a series of case studies designed to reveal their fundamental behaviors. The first case study shows that ZnO nanoparticles undergo rapid dissolution inside the nanoreactor cavity accompanied by diffusive release of soluble products to surrounding aqueous media through the irregular folded shell. This behavior demonstrates the open nature of the sack structure, which facilitates rapid small-molecule exchange between inside and outside that is a requirement for nanoreactor function. In a case study on copper and silver nanoparticles, encapsulation in graphene nanoreactors is shown in some cases to enhance their oxidation rate in aqueous media, which is attributed to electron transfer from the metal core to graphene that bypasses surface oxides and allows reduction of molecular oxygen on the high-area graphene shell. Nanoreactors also allow particle-particle electron transfer interactions that are mediated by the connecting conductive graphene, which give rise to novel behaviors such as galvanic protection of Ag nanoparticles in Ag/Ni-filled nanoreactors, and the photochemical control of Ag-ion release in Ag/TiO2-filled nanoreactors. It is also shown that internal graphene structures within the sacks provide pockets that reduce particle mobility and inhibit particle sintering during thermal treatment. Finally, these novel behaviors are used to suggest and demonstrate several potential applications for graphene nanoreactors in catalysts, controlled release, and environmental remediation

  2. Graphene for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Podila, Ramakrishna; Alexis, Frank; Rao, Apparao; Clemson Bioengineering Team; Clemson Physics Team

    2013-03-01

    In this study, we used graphene, a one-atom thick sheet of carbon atoms, to modify the surfaces of existing implant materials to enhance both bio- and hemo-compatibility. This novel effort meets all functional criteria for a biomedical implant coating as it is chemically inert, atomically smooth and highly durable, with the potential for greatly enhancing the effectiveness of such implants. Specifically, graphene coatings on nitinol, a widely used implant and stent material, showed that graphene coated nitinol (Gr-NiTi) supports excellent smooth muscle and endothelial cell growth leading to better cell proliferation. We further determined that the serum albumin adsorption on Gr-NiTi is greater than that of fibrinogen, an important and well understood criterion for promoting a lower thrombosis rate. These hemo-and biocompatible properties and associated charge transfer mechanisms, along with high strength, chemical inertness and durability give graphene an edge over most antithrombogenic coatings for biomedical implants and devices.

  3. Cytotoxicity of halogenated graphenes

    NASA Astrophysics Data System (ADS)

    Teo, Wei Zhe; Khim Chng, Elaine Lay; Sofer, Zdeněk; Pumera, Martin

    2013-12-01

    Graphene and its family of derivatives possess unique and remarkable physicochemical properties which make them valuable materials for applications in many areas like electronics, energy storage and biomedicine. In response to the possibility of its large-scale manufacturing as commercial products in the future, an investigation was conducted to determine the cytotoxicity of one particular family of graphene derivatives, the halogenated graphenes, for the first time. Halogenated graphenes were prepared through thermal exfoliation of graphite oxide in gaseous chlorine, bromine or iodine atmospheres to yield chlorine- (TRGO-Cl), bromine- (TRGO-Br) and iodine-doped graphene (TRGO-I) respectively. 24 h exposure of human lung carcinoma epithelial cells (A549) to the three halogenated graphenes and subsequent cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays revealed that all the halogenated graphenes examined are rather cytotoxic at the concentrations tested (3.125 μg mL-1 to 200 μg mL-1) and the effects are dose-dependent, with TRGO-Cl reducing the cell viability to as low as 25.7% at the maximum concentration of 200 μg mL-1. Their levels of cytotoxicity can be arranged in the order of TRGO-Cl > TRGO-Br > TRGO-I, and it is suggested that the amount of halogen present in the graphene material is the determining factor for the observed trend. Control experiments were carried out to test for possible nanomaterial-induced interference as a consequence of reaction between the halogenated graphenes and the viability markers (MTT/WST-8 reagent) or binding of the formazan products under cell-free conditions. The data obtained eliminate the probability of significant influence by these interferents as the change in the normalized percentage of formazan formed is relatively small and thorough washings were performed prior to the viability assessments to reduce the amount of halogenated

  4. Cytotoxicity of halogenated graphenes.

    PubMed

    Teo, Wei Zhe; Chng, Elaine Lay Khim; Sofer, Zdeněk; Pumera, Martin

    2014-01-21

    Graphene and its family of derivatives possess unique and remarkable physicochemical properties which make them valuable materials for applications in many areas like electronics, energy storage and biomedicine. In response to the possibility of its large-scale manufacturing as commercial products in the future, an investigation was conducted to determine the cytotoxicity of one particular family of graphene derivatives, the halogenated graphenes, for the first time. Halogenated graphenes were prepared through thermal exfoliation of graphite oxide in gaseous chlorine, bromine or iodine atmospheres to yield chlorine- (TRGO-Cl), bromine- (TRGO-Br) and iodine-doped graphene (TRGO-I) respectively. 24 h exposure of human lung carcinoma epithelial cells (A549) to the three halogenated graphenes and subsequent cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays revealed that all the halogenated graphenes examined are rather cytotoxic at the concentrations tested (3.125 μg mL(-1) to 200 μg mL(-1)) and the effects are dose-dependent, with TRGO-Cl reducing the cell viability to as low as 25.7% at the maximum concentration of 200 μg mL(-1). Their levels of cytotoxicity can be arranged in the order of TRGO-Cl > TRGO-Br > TRGO-I, and it is suggested that the amount of halogen present in the graphene material is the determining factor for the observed trend. Control experiments were carried out to test for possible nanomaterial-induced interference as a consequence of reaction between the halogenated graphenes and the viability markers (MTT/WST-8 reagent) or binding of the formazan products under cell-free conditions. The data obtained eliminate the probability of significant influence by these interferents as the change in the normalized percentage of formazan formed is relatively small and thorough washings were performed prior to the viability assessments to reduce the amount of halogenated

  5. Graphene Electrostatic Microphone

    NASA Astrophysics Data System (ADS)

    Zhou, Qin; Onishi, Seita; Zettl, A.

    2015-03-01

    We demonstrate a wideband electrostatic graphene microphone displaying flat frequency response over the entire human audible region as well as into the ultrasonic regime. Using the microphone, low-level ultrasonic bat calls are successfully recorded. The microphone can be paired with a similarly constructed electrostatic graphene loudspeaker to create a wideband ultrasonic radio. Materials Sciences Division, Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute at the University of California - Berkeley.

  6. Crumpled graphene nanoreactors.

    PubMed

    Wang, Zhongying; Lv, Xiaoshu; Chen, Yantao; Liu, Dan; Xu, Xinhua; Palmore, G Tayhas R; Hurt, Robert H

    2015-06-14

    Nanoreactors are material structures that provide engineered internal cavities that create unique confined nanoscale environments for chemical reactions. Crumpled graphene nanoparticles or "nanosacks" may serve as nanoreactors when filled with reactive or catalytic particles and engineered for a specific chemical function. This article explores the behavior of crumpled graphene nanoreactors containing nanoscale ZnO, Ag, Ni, Cu, Fe, or TiO2 particles, either alone or in combination, in a series of case studies designed to reveal their fundamental behaviors. The first case study shows that ZnO nanoparticles undergo rapid dissolution inside the nanoreactor cavity accompanied by diffusive release of soluble products to surrounding aqueous media through the irregular folded shell. This behavior demonstrates the open nature of the sack structure, which facilitates rapid small-molecule exchange between inside and outside that is a requirement for nanoreactor function. In a case study on copper and silver nanoparticles, encapsulation in graphene nanoreactors is shown in some cases to enhance their oxidation rate in aqueous media, which is attributed to electron transfer from the metal core to graphene that bypasses surface oxides and allows reduction of molecular oxygen on the high-area graphene shell. Nanoreactors also allow particle-particle electron transfer interactions that are mediated by the connecting conductive graphene, which give rise to novel behaviors such as galvanic protection of Ag nanoparticles in Ag/Ni-filled nanoreactors, and the photochemical control of Ag-ion release in Ag/TiO2-filled nanoreactors. It is also shown that internal graphene structures within the sacks provide pockets that reduce particle mobility and inhibit particle sintering during thermal treatment. Finally, these novel behaviors are used to suggest and demonstrate several potential applications for graphene nanoreactors in catalysts, controlled release, and environmental remediation.

  7. Thermodynamics of graphene

    NASA Astrophysics Data System (ADS)

    Rusanov, A. I.

    2014-12-01

    The 21st century has brought a lot of new results related to graphene. Apparently, graphene has been characterized from all points of view except surface science and, especially, surface thermodynamics. This report aims to close this gap. Since graphene is the first real two-dimensional solid, a general formulation of the thermodynamics of two-dimensional solid bodies is given. The two-dimensional chemical potential tensor coupled with stress tensor is introduced, and fundamental equations are derived for energy, free energy, grand thermodynamic potential (in the classical and hybrid forms), enthalpy, and Gibbs energy. The fundamentals of linear boundary phenomena are formulated with explaining the concept of a dividing line, the mechanical and thermodynamic line tensions, line energy and other linear properties with necessary thermodynamic equations. The one-dimensional analogs of the Gibbs adsorption equation and Shuttleworth-Herring relation are presented. The general thermodynamic relationships are illustrated with calculations based on molecular theory. To make the reader sensible of the harmony of chemical and van der Waals forces in graphene, the remake of the classical graphite theory is presented with additional variable combinations of graphene sheets. The calculation of the line energy of graphene is exhibited including contributions both from chemical bonds and van der Waals forces (expectedly, the latter are considerably smaller than the former). The problem of graphene holes originating from migrating vacancies is discussed on the basis of the Gibbs-Curie principle. An important aspect of line tension is the planar sheet/nanotube transition where line tension acts as a driving force. Using the bending stiffness of graphene, the possible radius range is estimated for achiral (zigzag and armchair) nanotubes.

  8. Wettability of partially suspended graphene

    PubMed Central

    Ondarçuhu, Thierry; Thomas, Vincent; Nuñez, Marc; Dujardin, Erik; Rahman, Atikur; Black, Charles T.; Checco, Antonio

    2016-01-01

    The dependence of the wettability of graphene on the nature of the underlying substrate remains only partially understood. Here, we systematically investigate the role of liquid-substrate interactions on the wettability of graphene by varying the area fraction of suspended graphene from 0 to 95% by means of nanotextured substrates. We find that completely suspended graphene exhibits the highest water contact angle (85° ± 5°) compared to partially suspended or supported graphene, regardless of the hydrophobicity (hydrophilicity) of the substrate. Further, 80% of the long-range water-substrate interactions are screened by the graphene monolayer, the wettability of which is primarily determined by short-range graphene-liquid interactions. By its well-defined chemical and geometrical properties, supported graphene therefore provides a model system to elucidate the relative contribution of short and long range interactions to the macroscopic contact angle. PMID:27072195

  9. Wettability of partially suspended graphene

    DOE PAGES

    Ondarçuhu, Thierry; Thomas, Vincent; Nuñez, Marc; Dujardin, Erik; Rahman, Atikur; Black, Charles T.; Checco, Antonio

    2016-04-13

    Dependence on the wettability of graphene on the nature of the underlying substrate remains only partially understood. We systematically investigate the role of liquid-substrate interactions on the wettability of graphene by varying the area fraction of suspended graphene from 0 to 95% by means of nanotextured substrates. We find that completely suspended graphene exhibits the highest water contact angle (85° ± 5°) compared to partially suspended or supported graphene, regardless of the hydrophobicity (hydrophilicity) of the substrate. Moreover, 80% of the long-range water-substrate interactions are screened by the graphene monolayer, the wettability of which is primarily determined by short-range graphene-liquidmore » interactions. By its well-defined chemical and geometrical properties, supported graphene therefore provides a model system to elucidate the relative contribution of short and long range interactions to the macroscopic contact angle.« less

  10. Vibrational stability of graphene

    NASA Astrophysics Data System (ADS)

    Hu, Yangfan; Wang, Biao

    2013-05-01

    The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP) models. Compared with three-dimensional (3-D) materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202). This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC), defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D) materials.

  11. Promising applications of graphene and graphene-based nanostructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of

  12. Probing graphene defects and estimating graphene quality with optical microscopy

    SciTech Connect

    Lai, Shen; Kyu Jang, Sung; Jae Song, Young; Lee, Sungjoo

    2014-01-27

    We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

  13. Graphene Based Flexible Gas Sensors

    NASA Astrophysics Data System (ADS)

    Yi, Congwen

    Graphene is a novel carbon material with great promise for a range of applications due to its electronic and mechanical properties. Its two-dimensional nature translates to a high sensitivity to surface chemical interactions thereby making it an ideal platform for sensors. Graphene's electronic properties are not degraded due to mechanical flexing or strain (Kim, K. S., et al. nature 07719, 2009) offering another advantage for flexible sensors integrated into numerous systems including fabrics, etc. We have demonstrated a graphene NO2 sensor on a solid substrate (100nm SiO2/heavily doped silicon). Three different methods were used to synthesize graphene and the sensor fabrication process was optimized accordingly. Water is used as a controllable p-type dopant in graphene to study the relationship between doping and graphene's response to NO2 . Experimental results show that interface water between graphene and the supporting SiO2 substrate induces higher p-doping in graphene, leading to a higher sensitivity to NO2, consistent with theoretical predications (Zhang, Y. et al., Nanotechnology 20(2009) 185504). We have also demonstrated a flexible and stretchable graphene-based sensor. Few layer graphene, grown on a Ni substrate, is etched and transferred to a highly stretchable polymer substrate (VHB from 3M) with preloaded stress, followed by metal contact formation to construct a flexible, stretchable sensor. With up to 500% deformation caused by compressive stress, graphene still shows stable electrical response to NO2. Our results suggest that higher compressive stress results in smaller sheet resistance and higher sensitivity to NO2. A possible molecular detection sensor utilizing Surface Enhanced Raman Spectrum (SERS) based on a graphene/gallium nanoparticles platform is also studied. By correlating the enhancement of the graphene Raman modes with metal coverage, we propose that the Ga transfers electrons to the graphene creating local regions of enhanced

  14. The seeded growth of graphene.

    PubMed

    Lee, Jae-Kap; Lee, Sohyung; Kim, Yong-Il; Kim, Jin-Gyu; Min, Bong-Ki; Lee, Kyung-Il; Park, Yeseul; John, Phillip

    2014-01-01

    In this paper, we demonstrate the seeded growth of graphene under a plasma chemical vapor deposition condition. First, we fabricate graphene nanopowders (~5 nm) by ball-milling commercial multi-wall carbon nanotubes. The graphene nanoparticles were subsequently subject to a direct current plasma generated in a 100 Torr 10%CH4 - 90%H2 gas mixture. The plasma growth enlarged, over one hour, the nuclei to graphene sheets larger than one hundred nm(2) in area. Characterization by electron and X-ray diffraction, high-resolution transmission electron microscopy images provide evidence for the presence of monolayer graphene sheets. PMID:25022816

  15. Polycation stabilization of graphene suspensions

    PubMed Central

    2011-01-01

    Graphene is a leading contender for the next-generation electronic devices. We report a method to produce graphene membranes in the solution phase using polymeric imidazolium salts as a transferring medium. Graphene membranes were reduced from graphene oxides by hydrazine in the presence of the polyelectrolyte which is found to be a stable and homogeneous dispersion for the resulting graphene in the aqueous solution. A simple device with gold contacts on both sides was fabricated in order to observe the electronic properties. PMID:21846382

  16. Large exchange bias enhancement in (Pt(or Pd)/Co)/IrMn/Co trilayers with ultrathin IrMn thanks to interfacial Cu dusting

    SciTech Connect

    Vinai, G.; Moritz, J.; Bandiera, S.; Prejbeanu, I. L.; Dieny, B.

    2014-04-21

    The magnitude of exchange bias (H{sub ex}) at room temperature can be significantly enhanced in IrMn/Co and (Pt(or Pd)/Co)/IrMn/Co structures thanks to the insertion of an ultrathin Cu dusting layer at the IrMn/Co interface. The combination of trilayer structure and interfacial Cu dusting leads to a three-fold increase in H{sub ex} as compared to the conventional IrMn/Co bilayer structure, with an increased blocking temperature (T{sub B}) and a concave curvature of the temperature dependence H{sub ex}(T), ideal for improved Thermally Assisted-Magnetic Random Access Memory storage layer. This exchange bias enhancement is ascribed to a reduction of the spin frustration at the IrMn/Co interface thanks to interfacial Cu addition.

  17. Magnetization Dynamics Through Magnetoimpedance Effect in Isotropic Co2FeAl/Au/Co2FeAl Full-Heusler Alloy Trilayer Films

    NASA Astrophysics Data System (ADS)

    Assolin Corrêa, Marcio; Montardo Escobar, Vivian; Trigueiro-Neto, Osvaldo; Bohn, Felipe; Daiane Sossmeier, Kelly; Gomes Bezerra, Claudionor; Chesman, Carlos; Pearson, John; Hoffmann, Axel

    2013-09-01

    We investigate the magnetization dynamics in low damping parameter α systems by measuring the magnetoimpedance effect over a wide range of frequencies, from 0.1 to 3.0 GHz, in Co2FeAl/Au/Co2FeAl full-Heusler alloy trilayer films grown by magnetron sputtering on glass and MgO substrates. We show that the film produced on the glass substrate presents high magnetoimpedance performance, while that grown on the MgO substrate has low magnetoimpedance performance. Since both films are polycrystalline and have isotropic in-plane magnetic properties, we interpret the magnetoimpedance results in terms of the low damping parameter α and strain effects in the films. Thus, we verified that our films present good magnetoimpedance performance and showed that high performance can be achieved even in films with isotropic in-plane magnetic properties, since they present low damping parameter α.

  18. Resonance magnetoelectric effect in Ni/Pb(Zr,Ti)O3/Terfenol-D trilayered composites with different mechanical boundary conditions

    NASA Astrophysics Data System (ADS)

    Cheng, J. H.; Wang, Y. G.; Xie, D.

    2014-06-01

    Magnetoelectric Ni/Pb(Zr,Ti)O3 (PZT)/Tb1-xDyxFe2-y (Terfenol-D) trilayered composites were made up of negative magnetostrictive/piezoelectric/positive magnetostrictive layers, and bonded to nonmagnetic glass plates to obtain three different mechanical boundary conditions: (i) both ends of sample traction free (F-F), (ii) one end clamped while the other traction free (C-F), and (iii) both ends of sample clamped (C-C). In these three modes, various experimental values of resonance frequencies were obtained in 1-140 kHz range, which agree well with the calculated ones. In the C-F mode six resonance frequencies exist, which may be useful for multifrequency operation. The low resonance frequency of the C-F mode can be used to decrease the eddy current loss of the magnetostrictive phase and increase the lifetime of the devices.

  19. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure.

    PubMed

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-01-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm. PMID:27381651

  20. Temperature-induced sign change of the magnetic interlayer coupling in Ni/Ni25Mn75/Ni trilayers on Cu3Au(001)

    NASA Astrophysics Data System (ADS)

    Shokr, Y. A.; Erkovan, M.; Wu, C.-B.; Zhang, B.; Sandig, O.; Kuch, W.

    2015-05-01

    We investigated the magnetic interlayer coupling between two ferromagnetic (FM) Ni layers through an antiferromagnetic (AFM) Ni25Mn75 layer and the influence of this coupling on the exchange bias phenomenon. The interlayer coupling energy of an epitaxial trilayer of 14 atomic monolayers (ML) Ni/45 ML Ni25Mn75/16 ML Ni on Cu3Au(001) was extracted from minor-loop magnetization measurements using in-situ magneto-optical Kerr effect. The interlayer coupling changes from ferromagnetic to antiferromagnetic when the temperature is increased above 300 K. This sign change is interpreted as the result of the competition between an antiparallel Ruderman-Kittel-Kasuya-Yosida (RKKY)-type interlayer coupling, which dominates at high temperature, and a stronger direct exchange coupling across the AFM layer, which is present only below the Néel temperature of the AFM layer.

  1. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure

    NASA Astrophysics Data System (ADS)

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-07-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm.

  2. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure

    PubMed Central

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-01-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm. PMID:27381651

  3. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    DOEpatents

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  4. Environmentally responsive graphene systems.

    PubMed

    Zhang, Jing; Song, Long; Zhang, Zhipan; Chen, Nan; Qu, Liangti

    2014-06-12

    Graphene materials have been attracting significant research interest in the past few years, with the recent focuses on graphene-based electronic devices and smart stimulus-responsive systems that have a certain degree of automatism. Owing to its huge specific surface area, large room-temperature electron mobility, excellent mechanical flexibility, exceptionally high thermal conductivity and environmental stability, graphene is identified as a beneficial additive or an effective responding component by itself to improve the conductivity, flexibility, mechanical strength and/or the overall responsive performance of smart systems. In this review article, we aim to present the recent advances in graphene systems that are of spontaneous responses to external stimulations, such as environmental variation in pH, temperature, electric current, light, moisture and even gas ambient. These smart stimulus-responsive graphene systems are believed to have great theoretical and practical interests to a wide range of device applications including actuators, switches, robots, sensors, drug/gene deliveries, etc. PMID:24376152

  5. Transition metal contacts to graphene

    SciTech Connect

    Politou, Maria De Gendt, Stefan; Heyns, Marc; Asselberghs, Inge; Radu, Iuliana; Conard, Thierry; Richard, Olivier; Martens, Koen; Huyghebaert, Cedric; Tokei, Zsolt; Lee, Chang Seung; Sayan, Safak

    2015-10-12

    Achieving low resistance contacts to graphene is a common concern for graphene device performance and hybrid graphene/metal interconnects. In this work, we have used the circular Transfer Length Method (cTLM) to electrically characterize Ag, Au, Ni, Ti, and Pd as contact metals to graphene. The consistency of the obtained results was verified with the characterization of up to 72 cTLM structures per metal. Within our study, the noble metals Au, Ag and Pd, which form a weaker bond with graphene, are shown to result in lower contact resistance (Rc) values compared to the more reactive Ni and Ti. X-ray Photo Electron Spectroscopy and Transmission Electron Microscopy characterization for the latter have shown the formation of Ti and Ni carbides. Graphene/Pd contacts show a distinct intermediate behavior. The weak carbide formation signature and the low Rc values measured agree with theoretical predictions of an intermediate state of weak chemisorption of Pd on graphene.

  6. Enhanced environmental stability induced by effective polarization of a polar dielectric layer in a trilayer dielectric system of organic field-effect transistors: a quantitative study.

    PubMed

    Subbarao, Nimmakayala V V; Gedda, Murali; Iyer, Parameswar K; Goswami, Dipak K

    2015-01-28

    We report a concept fabrication method that helps to improve the performance and stability of copper phthalocyanine (CuPc) based organic field-effect transistors (OFETs) in ambient. The devices were fabricated using a trilayer dielectric system that contains a bilayer polymer dielectrics consisting of a hydrophobic thin layer of poly(methyl methacrylate) (PMMA) on poly(vinyl alcohol) (PVA) or poly(4-vinylphenol) (PVP) or polystyrene (PS) with Al2O3 as a third layer. We have explored the peculiarities in the device performance (i.e., superior performance under ambient humidity), which are caused due to the polarization of dipoles residing in the polar dielectric material. The anomalous behavior of the bias-stress measured under vacuum has been explained successfully by a stretched exponential function modified by adding a time dependent dipole polarization term. The OFET with a dielectric layer of PVA or PVP containing hydroxyl groups has shown enhanced characteristics and remains highly stable without any degradation even after 300 days in ambient with three times enhancement in carrier mobility (0.015 cm(2)·V(-1)·s(-1)) compared to vacuum. This has been attributed to the enhanced polarization of hydroxyl groups in the presence of absorbed water molecules at the CuPc/PMMA interface. In addition, a model has been proposed based on the polarization of hydroxyl groups to explain the enhanced stability in these devices. We believe that this general method using a trilayer dielectric system can be extended to fabricate other OFETs with materials that are known to show high performances under vacuum but degrade under ambient conditions. PMID:25552195

  7. Giant magnetoelectric coupling interaction in BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} trilayer multiferroic heterostructures

    SciTech Connect

    Kotnala, R. K. E-mail: rkkotnala@gmail.com; Gupta, Rekha; Chaudhary, Sujeet

    2015-08-24

    Multiferroic trilayer thin films of BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} were prepared by RF-magnetron sputtering technique at different thicknesses of BiFeO{sub 3} layer. A pure phase polycrystalline growth of thin films was confirmed from X-ray diffraction results. The film showed maximum remnant electric polarization (2P{sub r}) of 13.5 μC/cm{sup 2} and saturation magnetization (M{sub s}) of 61 emu/cc at room temperature. Thermally activated charge transport dominated via oxygen vacancies as calculated by their activation energy, which was consistent with current–voltage characteristics. Magnetic field induced large change in resistance and capacitance of grain, and grain boundary was modeled by combined impedance and modulus spectroscopy in the presence of varied magnetic fields. Presence of large intrinsic magnetoelectric coupling was established by a maximum 20% increase in grain capacitance (C{sub g}) with applied magnetic field (2 kG) on trilayer having 20 nm BiFeO{sub 3} layer. Substantially higher magnetoelectric coupling in thinner films has been observed due to bonding between Fe and Ti atoms at interface via oxygen atoms. Room temperature magnetoelectric coupling was confirmed by dynamic magnetoelectric coupling, and maximum longitudinal magnetoelectric coupling of 515 mV/cm-Oe was observed at 20 nm thickness of BiFeO{sub 3}. The observed magnetoelectric properties are potentially useful for novel room temperature magnetoelectric and spintronic device applications for obtaining higher voltage at lower applied magnetic field.

  8. Investigating the complex mechanism of B migration in a magnetic-tunnel-junction trilayer structure—a combined study using XPS and TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Ying, Ji-Feng; Ji, Rong; Ter Lim, Sze; Tran, Michael N.; Wang, Chen Chen; Ernult, Franck

    2016-02-01

    The magnetic-tunnel-junction (MTJ) structure is the core of many important devices, such as magnetic recording head and STT-RAM. CoFeB/MgO/CoFeB tri-layer thin-film stack is a widely researched MTJ structure. In this tri-layer, the functional property of the MTJ, i.e. its TMR ratio, is critically dependent on the crystal orientation of the CoFe grains. In order for the desired (1 0 0) out of plane texture to develop in the CoFeB layers, B needs to be engineered to be expelled out of these CoFeB layers, and diffuse or migrate into the adjacent layers. Ta is usually used as a seed layer adjacent to the MTJ structure. In this work, we investigated the important B-migration mechanisms within this MTJ structure through a combined XPS/TOF-SIMS study. Specifically, we tried to elucidate the possible physical/chemical interactions between the B and Ta that could happen with different film stack designs. Previous works have shown that there might be two possible B-migration mechanisms. One mechanism is direct B diffusion into the adjacent Ta layer during annealing. The other B-migration mechanism is through the formation of TaBOx species, in which B could be carried out by the Ta diffusion. In particular, through studying a series of film stacks, we discussed the circumstances under which one of these B-migration mechanisms becomes dominant. Furthermore, we discussed how these B-migration mechanisms facilitated the B expulsion in a common MTJ structure.

  9. Graphene in turbine blades

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  10. Inorganic Graphene Analogs

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Maitra, Urmimala

    2015-07-01

    In the last four to five years, there has been a great resurgence of research on two-dimensional inorganic materials, partly because of the impetus received from graphene research. Unlike graphene, which is a gap-less material, most inorganic layered materials are semiconductors or insulators. Some of them, as exemplified by MoS2, exhibit unexpected properties, not unlike graphene, with possible applications. Thus, layered metal chalcogenides are being explored intensely, and MoS2 is emerging as a wonder material. In this article, we present the synthesis and properties of nanosheets composing single or few layers of these fascinating materials. Besides metal chalcogenides, boron nitride, borocarbonitrides (BxCyNz), metal oxides, and metal-organic frameworks are also discussed.

  11. Hyperelastic tension of graphene

    SciTech Connect

    Saavedra Flores, E. I.; Ajaj, R. M.; Adhikari, S.; Dayyani, I.; Friswell, M. I.; Castro-Triguero, Rafael

    2015-02-09

    In this paper, we investigate the hyperelastic tensile behaviour of single layer graphene sheets (SLGSs). A one-term incompressible Ogden-type hyperelastic model is chosen to describe the mechanical response of C-C bonds. By establishing equality between the Ogden strain-energy and the variation of the Tersoff-Brenner interatomic potential, three different geometries of SLGSs are studied under tensile loading. We compute the Young's modulus, the finite-deformation Poisson's ratio, ultimate strains, total reactions, and the variation of the potential energy per carbon atom for large strains. Numerical simulations are compared with results obtained by molecular mechanics and molecular dynamics simulations, finite elements, continuum mechanics theory, and experiments. Our predictions are validated, revealing the potential predictive capabilities of the present hyperelastic framework for the analysis of graphene in the context of infinitesimal and large deformations. The good agreement found between our calculations and the published data suggests that graphene may be described as a hyperelastic material.

  12. Crumpling Damaged Graphene

    PubMed Central

    Giordanelli, I.; Mendoza, M.; Andrade Jr., J. S.; Gomes, M. A. F.; Herrmann, H. J.

    2016-01-01

    Through molecular mechanics we find that non-covalent interactions modify the fractality of crumpled damaged graphene. Pristine graphene membranes are damaged by adding random vacancies and carbon-hydrogen bonds. Crumpled membranes exhibit a fractal dimension of 2.71 ± 0.02 when all interactions between carbon atoms are considered, and 2.30 ± 0.05 when non-covalent interactions are suppressed. The transition between these two values, obtained by switching on/off the non-covalent interactions of equilibrium configurations, is shown to be reversible and independent on thermalisation. In order to explain this transition, we propose a theoretical model that is compatible with our numerical findings. Finally, we also compare damaged graphene membranes with other crumpled structures, as for instance polymerised membranes and paper sheets, that share similar scaling properties. PMID:27173442

  13. Crumpling Damaged Graphene.

    PubMed

    Giordanelli, I; Mendoza, M; Andrade, J S; Gomes, M A F; Herrmann, H J

    2016-05-13

    Through molecular mechanics we find that non-covalent interactions modify the fractality of crumpled damaged graphene. Pristine graphene membranes are damaged by adding random vacancies and carbon-hydrogen bonds. Crumpled membranes exhibit a fractal dimension of 2.71 ± 0.02 when all interactions between carbon atoms are considered, and 2.30 ± 0.05 when non-covalent interactions are suppressed. The transition between these two values, obtained by switching on/off the non-covalent interactions of equilibrium configurations, is shown to be reversible and independent on thermalisation. In order to explain this transition, we propose a theoretical model that is compatible with our numerical findings. Finally, we also compare damaged graphene membranes with other crumpled structures, as for instance polymerised membranes and paper sheets, that share similar scaling properties.

  14. Acoustoelectric photoresponse in graphene

    SciTech Connect

    Poole, T.; Bandhu, L.; Nash, G. R.

    2015-03-30

    The acoustoelectric current in graphene has been investigated as a function of illumination, using blue (450 nm) and red (735 nm) light-emitting diodes (LEDs), and surface acoustic wave (SAW) intensity and frequency. The measured acoustoelectric current increases with illumination, more than the measured change in the conductivity of the graphene, whilst retaining a linear dependence on the SAW intensity. The latter is consistent with the interaction between the carriers and SAWs being described by a relatively simple classical relaxation model suggesting that the change in the acoustoelectric current is caused by the effect of the illumination on the electronic properties of the graphene. The increase in the acoustoelectric current is greatest under illumination with the blue LED, consistent with the creation of a hot electron distribution.

  15. Crumpling Damaged Graphene

    NASA Astrophysics Data System (ADS)

    Giordanelli, I.; Mendoza, M.; Andrade, J. S., Jr.; Gomes, M. A. F.; Herrmann, H. J.

    2016-05-01

    Through molecular mechanics we find that non-covalent interactions modify the fractality of crumpled damaged graphene. Pristine graphene membranes are damaged by adding random vacancies and carbon-hydrogen bonds. Crumpled membranes exhibit a fractal dimension of 2.71 ± 0.02 when all interactions between carbon atoms are considered, and 2.30 ± 0.05 when non-covalent interactions are suppressed. The transition between these two values, obtained by switching on/off the non-covalent interactions of equilibrium configurations, is shown to be reversible and independent on thermalisation. In order to explain this transition, we propose a theoretical model that is compatible with our numerical findings. Finally, we also compare damaged graphene membranes with other crumpled structures, as for instance polymerised membranes and paper sheets, that share similar scaling properties.

  16. Graphene quantum interference photodetector

    PubMed Central

    Voss, Paul L

    2015-01-01

    Summary In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency. PMID:25821713

  17. Multilayer graphene condenser microphone

    NASA Astrophysics Data System (ADS)

    Todorović, Dejan; Matković, Aleksandar; Milićević, Marijana; Jovanović, Djordje; Gajić, Radoš; Salom, Iva; Spasenović, Marko

    2015-12-01

    Vibrating membranes are the cornerstone of acoustic technology, forming the backbone of modern loudspeakers and microphones. Acoustic performance of a condenser microphone is derived mainly from the membrane’s size, surface mass and achievable static tension. The widely studied and available nickel has been a dominant membrane material for professional microphones for several decades. In this paper we introduce multilayer graphene as a membrane material for condenser microphones. The graphene device outperforms a high end commercial nickel-based microphone over a significant part of the audio spectrum, with a larger than 10 dB enhancement of sensitivity. Our experimental results are supported with numerical simulations, which also show that a 300 layer thick graphene membrane under maximum tension would offer excellent extension of the frequency range, up to 1 MHz.

  18. Graphene quantum interference photodetector.

    PubMed

    Alam, Mahbub; Voss, Paul L

    2015-01-01

    In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach-Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.

  19. Schwinger mechanism and graphene

    SciTech Connect

    Allor, Danielle; Cohen, Thomas D.; McGady, David A.

    2008-11-01

    The Schwinger mechanism, the production of charged particle-antiparticle pairs in a macroscopic external electric field, is derived for 2+1-dimensional theories. The rate of pair production per unit area for four species of massless fermions, with charge q, in a constant electric field E is given by {pi}{sup -2}({Dirac_h}/2{pi}){sup -3/2}c-tilde{sup -1/2}(qE){sup 3/2} where c-tilde is the speed of light for the two-dimensional system. To the extent undoped graphene behaves like the quantum field-theoretic vacuum for massless fermions in 2+1 dimensions, the Schwinger mechanism should be testable experimentally. A possible experimental configuration for this is proposed. Effects due to deviations from this idealized picture of graphene are briefly considered. It is argued that with present day samples of graphene, tests of the Schwinger formula may be possible.

  20. Hyperelastic tension of graphene

    NASA Astrophysics Data System (ADS)

    Saavedra Flores, E. I.; Ajaj, R. M.; Adhikari, S.; Dayyani, I.; Friswell, M. I.; Castro-Triguero, Rafael

    2015-02-01

    In this paper, we investigate the hyperelastic tensile behaviour of single layer graphene sheets (SLGSs). A one-term incompressible Ogden-type hyperelastic model is chosen to describe the mechanical response of C-C bonds. By establishing equality between the Ogden strain-energy and the variation of the Tersoff-Brenner interatomic potential, three different geometries of SLGSs are studied under tensile loading. We compute the Young's modulus, the finite-deformation Poisson's ratio, ultimate strains, total reactions, and the variation of the potential energy per carbon atom for large strains. Numerical simulations are compared with results obtained by molecular mechanics and molecular dynamics simulations, finite elements, continuum mechanics theory, and experiments. Our predictions are validated, revealing the potential predictive capabilities of the present hyperelastic framework for the analysis of graphene in the context of infinitesimal and large deformations. The good agreement found between our calculations and the published data suggests that graphene may be described as a hyperelastic material.

  1. Graphene-graphene oxide floating gate transistor memory.

    PubMed

    Jang, Sukjae; Hwang, Euyheon; Lee, Jung Heon; Park, Ho Seok; Cho, Jeong Ho

    2015-01-21

    A novel transparent, flexible, graphene channel floating-gate transistor memory (FGTM) device is fabricated using a graphene oxide (GO) charge trapping layer on a plastic substrate. The GO layer, which bears ammonium groups (NH3+), is prepared at the interface between the crosslinked PVP (cPVP) tunneling dielectric and the Al2 O3 blocking dielectric layers. Important design rules are proposed for a high-performance graphene memory device: (i) precise doping of the graphene channel, and (ii) chemical functionalization of the GO charge trapping layer. How to control memory characteristics by graphene doping is systematically explained, and the optimal conditions for the best performance of the memory devices are found. Note that precise control over the doping of the graphene channel maximizes the conductance difference at a zero gate voltage, which reduces the device power consumption. The proposed optimization via graphene doping can be applied to any graphene channel transistor-type memory device. Additionally, the positively charged GO (GO-NH3+) interacts electrostatically with hydroxyl groups of both UV-treated Al2 O3 and PVP layers, which enhances the interfacial adhesion, and thus the mechanical stability of the device during bending. The resulting graphene-graphene oxide FGTMs exhibit excellent memory characteristics, including a large memory window (11.7 V), fast switching speed (1 μs), cyclic endurance (200 cycles), stable retention (10(5) s), and good mechanical stability (1000 cycles).

  2. Graphene/ferroelectrics/graphene hybrid structure: Asymmetric doping of graphene layers

    SciTech Connect

    Duong, Dinh Loc; Lee, Si Young; Kim, Seong Kyu; Lee, Young Hee

    2015-06-15

    We report graphene/ferroelectric/graphene hybrid structure to demonstrate an asymmetrical doping in two graphene layers, one side with electrons and another side with holes. Two ferroelectrics, a poly(vinylidenefluoride) (PVDF) and a hydrofluorinated graphene, were used to demonstrate the concept with density functional calculations, revealing the Fermi level shift of 0.35 and 0.75 eV, respectively. This concept was confirmed by Raman spectroscopy using graphene/poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE))/graphene hybrid, which can easily form β-phase close to our simulation model. G-band peak position was downshifted for electron doping and upshifted for hole doping. This hybrid structure opens an opportunity to study bilayer graphene system with a controllable thickness for a wide range of high carrier concentration.

  3. Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties

    NASA Astrophysics Data System (ADS)

    Ouyang, Xilian; Huang, Wenyi; Cabrera, Eusebio; Castro, Jose; Lee, L. James

    2015-01-01

    Hybrid nanopaper-like thin films with a graphene oxide (GO) layer sandwiched by two functionalized graphene (GP-SO3H) layers were successfully prepared from oxidized graphene and benzene sulfonic modified graphene. The hybrid graphene-graphene oxide-graphene (GP-GO-GP) nanopapers showed combination of high mechanic strength and good electrical conductivity, leading to desirable electromagnetic interference shielding performance, from the GP-SO3H layers, and superior gas diffusion barrier provided by the GO layer. These GP-GO-GP nanopapers can be readily coated onto plastic and composite substrates by thermal lamination and injection molding for various industrial applications such as fuel cell and natural gas containers.

  4. Electrostatic graphene loudspeaker

    NASA Astrophysics Data System (ADS)

    Zhou, Qin; Zettl, A.

    2013-06-01

    Graphene has extremely low mass density and high mechanical strength, and key qualities for efficient wide-frequency-response electrostatic audio speaker design. Low mass ensures good high frequency response, while high strength allows for relatively large free-standing diaphragms necessary for effective low frequency response. Here, we report on construction and testing of a miniaturized graphene-based electrostatic audio transducer. The speaker/earphone is straightforward in design and operation and has excellent frequency response across the entire audio frequency range (20 Hz-20 kHz), with performance matching or surpassing commercially available audio earphones.

  5. Nanoscale strain engineering of graphene and graphene-based devices

    NASA Astrophysics Data System (ADS)

    Yeh, N.-C.; Hsu, C.-C.; Teague, M. L.; Wang, J.-Q.; Boyd, D. A.; Chen, C.-C.

    2016-06-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simulations and nano-fabrication technology.

  6. Graphene: from functionalization to devices

    NASA Astrophysics Data System (ADS)

    Tejeda, Antonio; Soukiassian, Patrick G.

    2014-03-01

    The year 2014 marks the first decade of the rise of graphene. Graphene, a single atomic layer of carbon atoms in sp2 bonding configuration having a honeycomb structure, has now become a well-known and well-established material. Among some of its many outstanding fundamental properties, one can mention a very high carrier mobility, a very large spin diffusion length, unsurpassed mechanical properties as graphene is the strongest material ever measured and an exceptional thermal conductivity scaling more than one order of magnitude above that of copper. After the first years of the graphene rush, graphene growth is now well controlled using various methods like epitaxial growth on silicon carbide substrate, chemical vapour deposition (CVD) or plasma techniques on metal, insulator or semiconductor substrates. More applied research is now taking over the initial studies on graphene production. Indeed, graphene is a promising material for many advanced applications such as, but not limited to, electronic, spintronics, sensors, photonics, micro/nano-electromechanical (MEMS/NEMS) systems, super-capacitors or touch-screen technologies. In this context, this Special Issue of the Journal of Physics D: Applied Physics on graphene reviews some of the recent achievements, progress and prospects in this field. It includes a collection of seventeen invited articles covering the current status and future prospects of some selected topics of strong current interest. This Special Issue is organized in four sections. The first section is dedicated to graphene devices, and opens with an article by de Heer et al on an investigation of integrating graphene devices with silicon complementary metal-oxide-semiconductor (CMOS) technology. Then, a study by Svintsov et al proposes a lateral all-graphene tunnel field-effect transistor (FET) with a high on/off current switching ratio. Next, Tsukagoshi et al present how a band-gap opening occurs in a graphene bilayer by using a perpendicular

  7. Electrical Transport and Network Percolation in Graphene and Boron Nitride Mixed-Platelet Structures.

    PubMed

    Debbarma, Rousan; Behura, Sanjay; Nguyen, Phong; Sreeprasad, T S; Berry, Vikas

    2016-04-01

    Percolating network of mixed 2D nanomaterials (2DNs) can leverage the unique electronic structures of different 2DNs, their interfacial doping, manipulable conduction pathways, and local traps. Here, we report on the percolation mechanism and electro-capacitive transport pathways of mixed-platelet network of hexagonal boron nitride (hBN) and reduced graphene oxide (rGO), two isostructural and isoelectronic 2DNs. The transport mechanism is explained in terms of electron hopping through isolated hBN defect traps between rGO (possibly via electron tunneling/hopping through "funneling" points). With optical bandgaps of 4.57 and 4.08 eV for the hBN-domains and 2.18 eV for the rGO domains, the network of hBN with rGO exhibits Poole-Frenkel emission-based transport with mean hopping gap of 1.12 nm (∼hBN trilayer) and an activation barrier of ∼15 ± 0.7 meV. Further, hBN (1.7 pF) has a 6-fold lower capacitance than 1:1 hBN:rGO, which has a resistance 2 orders of magnitude higher than that of rGO (1.46 MΩ). These carrier transport results can be applied to other multi-2DN networks for development of next-generation functional 2D-devices. PMID:27002378

  8. Graphene: Mind the gap

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    2007-10-01

    Research now shows that interaction with silicon carbide substrate leads to the opening of a semiconductor gap in epitaxial graphene. This is an important first step towards bandgap engineering in this two-dimensional crystal, and its incorporation in electronic devices.

  9. Crown ethers in graphene

    SciTech Connect

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; Gallego, Nidia C.; Pantelides, Sokrates T.; Pennycook, Stephen J.; Moyer, Bruce A.; Chisholm, Matthew F.

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basic structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.

  10. Crown ethers in graphene

    DOE PAGES

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; Gallego, Nidia C.; Pantelides, Sokrates T.; Pennycook, Stephen J.; Moyer, Bruce A.; Chisholm, Matthew F.

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basicmore » structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.« less

  11. Modelling of graphene functionalization.

    PubMed

    Pykal, Martin; Jurečka, Petr; Karlický, František; Otyepka, Michal

    2016-03-01

    Graphene has attracted great interest because of its remarkable properties and numerous potential applications. A comprehensive understanding of its structural and dynamic properties and those of its derivatives will be required to enable the design and optimization of sophisticated new nanodevices. While it is challenging to perform experimental studies on nanoscale systems at the atomistic level, this is the 'native' scale of computational chemistry. Consequently, computational methods are increasingly being used to complement experimental research in many areas of chemistry and nanotechnology. However, it is difficult for non-experts to get to grips with the plethora of computational tools that are available and their areas of application. This perspective briefly describes the available theoretical methods and models for simulating graphene functionalization based on quantum and classical mechanics. The benefits and drawbacks of the individual methods are discussed, and we provide numerous examples showing how computational methods have provided new insights into the physical and chemical features of complex systems including graphene and graphene derivatives. We believe that this overview will help non-expert readers to understand this field and its great potential. PMID:26323438

  12. Graphene and graphene-based materials for energy storage applications.

    PubMed

    Zhu, Jixin; Yang, Dan; Yin, Zongyou; Yan, Qingyu; Zhang, Hua

    2014-09-10

    With the increased demand in energy resources, great efforts have been devoted to developing advanced energy storage and conversion systems. Graphene and graphene-based materials have attracted great attention owing to their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage systems. This Review summarizes the recent progress in graphene and graphene-based materials for four energy storage systems, i.e., lithium-ion batteries, supercapacitors, lithium-sulfur batteries and lithium-air batteries.

  13. A Graphene Surface Force Balance

    PubMed Central

    2014-01-01

    We report a method for transferring graphene, grown by chemical vapor deposition, which produces ultraflat graphene surfaces (root-mean-square roughness of 0.19 nm) free from polymer residues over macroscopic areas (>1 cm2). The critical step in preparing such surfaces involves the use of an intermediate mica template, which itself is atomically smooth. We demonstrate the compatibility of these model surfaces with the surface force balance, opening up the possibility of measuring normal and lateral forces, including friction and adhesion, between two graphene sheets either in contact or across a liquid medium. The conductivity of the graphene surfaces allows forces to be measured while controlling the surface potential. This new apparatus, the graphene surface force balance, is expected to be of importance to the future understanding of graphene in applications from lubrication to electrochemical energy storage systems. PMID:25171130

  14. Anisotropic spin relaxation in graphene.

    PubMed

    Tombros, N; Tanabe, S; Veligura, A; Jozsa, C; Popinciuc, M; Jonkman, H T; van Wees, B J

    2008-07-25

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B=0 and B=2 T shows a 20% decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin-orbit effective fields in the in-plane and out-of-plane directions and discuss the role of the Elliott-Yafet and Dyakonov-Perel mechanisms for spin relaxation. PMID:18764351

  15. Graphene nanodevices for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Heerema, Stephanie J.; Dekker, Cees

    2016-02-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology.

  16. Electromechanical properties of graphene drumheads.

    PubMed

    Klimov, Nikolai N; Jung, Suyong; Zhu, Shuze; Li, Teng; Wright, C Alan; Solares, Santiago D; Newell, David B; Zhitenev, Nikolai B; Stroscio, Joseph A

    2012-06-22

    We determined the electromechanical properties of a suspended graphene layer by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements, as well as computational simulations of the graphene-membrane mechanics and morphology. A graphene membrane was continuously deformed by controlling the competing interactions with a STM probe tip and the electric field from a back-gate electrode. The probe tip-induced deformation created a localized strain field in the graphene lattice. STS measurements on the deformed suspended graphene display an electronic spectrum completely different from that of graphene supported by a substrate. The spectrum indicates the formation of a spatially confined quantum dot, in agreement with recent predictions of confinement by strain-induced pseudomagnetic fields.

  17. Electronic transport in graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanbo

    This dissertation focuses on the electronic transport properties of graphene, a single atomic layer of graphite. Graphene is a novel two-dimensional system in which electron transport is effectively governed by the relativistic quantum theory. We discover a variety of new phenomenon which stem from the "relativistic" nature of the electron dynamics in graphene. An unusual quantum Hall (QH) effect is discovered in graphene at low temperatures and strong magnetic fields. Unlike conventional two-dimensional electron systems, in graphene the observed quantization condition is characterized by half integers rather than integers. Our investigation of the magneto-oscillations in resistance reveals a Berry's phase of pi associated with the electron motion in graphene. The half-integer quantization, as well as the Berry's phase, is attributed to the peculiar topology of the graphene band structure with a linear dispersion relation and vanishing mass near the Dirac point, which can be described by relativistic quantum electrodynamics. This is further confirmed by our measurement of the effective carrier mass, m*, which obeys Einstein's equation: E = m*c*2 where c* ≈ c/300 is the effective speed of light for electrons in graphene. The availability of high magnetic fields up to 45 Tesla allows us to study the magneto-transport in graphene in the extreme quantum limit. Under such condition, we discover new sets of QH states at filling factors nu = 0, +/-1, +/-4, indicating the lifting of the four-fold degeneracy of the previously observed QH states at nu = +/-4(|n|+1/2), where n is the Landau level index. In particular, the presence of the nu = 0, +/-1 QH states indicates that the Landau level at the charge neutral Dirac point splits into four sub-levels, lifting both sublattice and spin degeneracy, thereby potentially indicating a many-body correlation in this LL. The QH effect at nu = +/-4 is investigated in tilted magnetic fields and is attributed to lifting of the n

  18. Hydrogenated Graphene as a Homoepitaxial Tunnel Barrier for Spin and Charge Transport in Graphene.

    PubMed

    Friedman, Adam L; van 't Erve, Olaf M J; Robinson, Jeremy T; Whitener, Keith E; Jonker, Berend T

    2015-07-28

    We demonstrate that hydrogenated graphene performs as a homoepitaxial tunnel barrier on a graphene charge/spin channel. We examine the tunneling behavior through measuring the IV curves and zero bias resistance. We also fabricate hydrogenated graphene/graphene nonlocal spin valves and measure the spin lifetimes using the Hanle effect, with spintronic nonlocal spin valve operation demonstrated up to room temperature. We show that while hydrogenated graphene indeed allows for spin transport in graphene and has many advantages over oxide tunnel barriers, it does not perform as well as similar fluorinated graphene/graphene devices, possibly due to the presence of magnetic moments in the hydrogenated graphene that act as spin scatterers.

  19. Graphene-Si heterogeneous nanotechnology

    NASA Astrophysics Data System (ADS)

    Akinwande, Deji; Tao, Li

    2013-05-01

    It is widely envisioned that graphene, an atomic sheet of carbon that has generated very broad interest has the largest prospects for flexible smart systems and for integrated graphene-silicon (G-Si) heterogeneous very large-scale integrated (VLSI) nanoelectronics. In this work, we focus on the latter and elucidate the research progress that has been achieved for integration of graphene with Si-CMOS including: wafer-scale graphene growth by chemical vapor deposition on Cu/SiO2/Si substrates, wafer-scale graphene transfer that afforded the fabrication of over 10,000 devices, wafer-scalable mitigation strategies to restore graphene's device characteristics via fluoropolymer interaction, and demonstrations of graphene integrated with commercial Si- CMOS chips for hybrid nanoelectronics and sensors. Metrology at the wafer-scale has led to the development of custom Raman processing software (GRISP) now available on the nanohub portal. The metrology reveals that graphene grown on 4-in substrates have monolayer quality comparable to exfoliated flakes. At room temperature, the high-performance passivated graphene devices on SiO2/Si can afford average mobilities 3000cm2/V-s and gate modulation that exceeds an order of magnitude. The latest growth research has yielded graphene with high mobilities greater than 10,000cm2/V-s on oxidized silicon. Further progress requires track compatible graphene-Si integration via wafer bonding in order to translate graphene research from basic to applied research in commercial R and D laboratories to ultimately yield a viable nanotechnology.

  20. Strain variation in corrugated graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason; Paiella, Roberto; Swan, Anna

    2015-03-01

    Raman spectroscopy is a powerful non-destructive technique for analyzing strain in graphene. Recently there has been interest in making corrugated graphene devices with varying spatial wavelengths Λ for plasmonic and THz applications. Transferring graphene onto corrugated substrates introduces strain, which if there was perfect clamping (high fraction) would cause a periodic strain variation. However, the strain variation for pattern size smaller than the diffraction limit λ makes it hard to precisely model the strain distribution. Here we present a detailed study on how strain varies in corrugated graphene with sub-diffraction limit periodicity Λ < λ. Mechanically exfoliated graphene was deposited onto sinusoidal shape silicon dioxide gratings with Λ=400 nm period using the pick and place transfer technique. We observed that the graphene is not rigidly clamped, but partially slides to relieve the strain. We model the linewidth variation to extract the local strain variation as well as the sliding in the presence of charge puddling in graphene. The method gives us a better understanding on graphene slippage and strain distribution in graphene on a corrugated substrate with sub-diffraction limit spatial period.

  1. Dry-cleaning of graphene

    SciTech Connect

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  2. EDITORIAL: Special issue on Graphene Special issue on Graphene

    NASA Astrophysics Data System (ADS)

    Morpurgo, Alberto F.; Trauzettel, Björn

    2010-03-01

    Since the revolutionary experimental discovery of graphene in the year 2004, research on this new two-dimensional carbon allotrope has progressed at a spectacular pace. The impact of graphene on different areas of research— including physics, chemistry, and applied sciences— is only now starting to be fully appreciated. There are different factors that make graphene a truly impressive system. Regarding nano-electronics and related fields, for instance, it is the exceptional electronic and mechanical properties that yield very high room-temperature mobility values, due to the particular band structure, the material `cleanliness' (very low-concentration of impurities), as well as its stiffness. Also interesting is the possibility to have a high electrical conductivity and optical transparency, a combination which cannot be easily found in other material systems. For other fields, other properties could be mentioned, many of which are currently being explored. In the first years following this discovery, research on graphene has mainly focused on the fundamental physics aspects, triggered by the fact that electrons in graphene behave as Dirac fermions due to their interaction with the ions of the honeycomb lattice. This direction has led to the discovery of new phenomena such as Klein tunneling in a solid state system and the so-called half-integer quantum Hall effect due to a special type of Berry phase that appears in graphene. It has also led to the appreciation of thicker layers of graphene, which also have outstanding new properties of great interest in their own right (e.g., bilayer graphene, which supports chiral quasiparticles that, contrary to Dirac electrons, are not massless). Now the time is coming to deepen our knowledge and improve our control of the material properties, which is a key aspect to take one step further towards applications. The articles in the Semiconductor Science and Technology Graphene special issue deal with a diversity of topics

  3. Photochemical Transformation of Graphene Oxide in Sunlight

    EPA Science Inventory

    Graphene oxide (GO) is a graphene derivative that is more easily manufactured in large scale and used to synthesize reduced graphene oxide (rGO) with properties analogous to graphene. In this study, we investigate the photochemical fate of GO under sunlight conditions. The resu...

  4. Interplay of energy dissipation, ion-induced mixing, and crystal structure recovery, and surface effects in ion-irradiated magnetic Fe/Cr/Fe trilayers

    SciTech Connect

    Brodyanski, A.; Bock, W.; Kopnarski, M.; Reuscher, B.; Blomeier, S.; Hillebrands, B.; Gnaser, H.

    2011-12-01

    The influence of the ion irradiation by 30 keV Ga{sup +} ions on the crystal structure, chemical ordering, magnetic properties, and topography of epitaxial Fe/Cr/Fe trilayers was investigated by different analytical techniques. We present direct experimental evidence, supported by theoretical estimates, that two processes take place concurrently due to the Ga-ion implantation. (i) A complete atom mixing of the Cr atoms within the Fe multilayers is occurring due to the collision cascades during the ballistic regime, and (ii) an essentially complete recovery of the initial single-crystal quality of the Fe multilayers by healing the melted and damaged area through the thermal spike phase occurs. Based on the experimental range distributions and theoretical modeling, channeling of Ga{sup +} ions in the experiments is found to contribute weakly to ion penetration and stopping, and the relative fraction of the well-channeled ions is marginally small. On the other hand, this weak channeling is sufficient to reduce the sputter yield by a factor of more than 5 in comparison with the sputtering of polycrystalline samples, evidence for the fact that the magnitude of channeling is not of primary importance for the sputtering. We offer an explanation for the observation of dramatic and abrupt changes in the surface roughness with increasing fluences in terms of a transformation from a single-phase single-crystal implanted region (bcc-Fe) to a mixture of the polycrystalline {alpha}-Fe-like bcc and {alpha}-Fe{sub 3}Ga structures within the outer half of the original Fe/Cr/Fe trilayer at fluences above 6.25 x 10{sup 16} ion/cm{sup 2}. The wall-like elevations appearing at the boundary of the irradiated areas were analyzed experimentally by varying the irradiation conditions. We showed that the wall size is governed by the ion-current density applied. A physical explanation for the appearance of such topographic features is presented, which would be valid for any material

  5. Thermoelectric effects in graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Dollfus, Philippe; Nguyen, Viet Hung; Saint-Martin, Jérôme

    2015-04-01

    The thermoelectric properties of graphene and graphene nanostructures have recently attracted significant attention from the physics and engineering communities. In fundamental physics, the analysis of Seebeck and Nernst effects is very useful in elucidating some details of the electronic band structure of graphene that cannot be probed by conductance measurements alone, due in particular to the ambipolar nature of this gapless material. For applications in thermoelectric energy conversion, graphene has two major disadvantages. It is gapless, which leads to a small Seebeck coefficient due to the opposite contributions of electrons and holes, and it is an excellent thermal conductor. The thermoelectric figure of merit ZT of a two-dimensional (2D) graphene sheet is thus very limited. However, many works have demonstrated recently that appropriate nanostructuring and bandgap engineering of graphene can concomitantly strongly reduce the lattice thermal conductance and enhance the Seebeck coefficient without dramatically degrading the electronic conductance. Hence, in various graphene nanostructures, ZT has been predicted to be high enough to make them attractive for energy conversion. In this article, we review the main results obtained experimentally and theoretically on the thermoelectric properties of graphene and its nanostructures, emphasizing the physical effects that govern these properties. Beyond pure graphene structures, we discuss also the thermoelectric properties of some hybrid graphene structures, as graphane, layered carbon allotropes such as graphynes and graphdiynes, and graphene/hexagonal boron nitride heterostructures which offer new opportunities. Finally, we briefly review the recent activities on other atomically thin 2D semiconductors with finite bandgap, i.e. dichalcogenides and phosphorene, which have attracted great attention for various kinds of applications, including thermoelectrics.

  6. Thermoelectric effects in graphene nanostructures.

    PubMed

    Dollfus, Philippe; Hung Nguyen, Viet; Saint-Martin, Jérôme

    2015-04-10

    The thermoelectric properties of graphene and graphene nanostructures have recently attracted significant attention from the physics and engineering communities. In fundamental physics, the analysis of Seebeck and Nernst effects is very useful in elucidating some details of the electronic band structure of graphene that cannot be probed by conductance measurements alone, due in particular to the ambipolar nature of this gapless material. For applications in thermoelectric energy conversion, graphene has two major disadvantages. It is gapless, which leads to a small Seebeck coefficient due to the opposite contributions of electrons and holes, and it is an excellent thermal conductor. The thermoelectric figure of merit ZT of a two-dimensional (2D) graphene sheet is thus very limited. However, many works have demonstrated recently that appropriate nanostructuring and bandgap engineering of graphene can concomitantly strongly reduce the lattice thermal conductance and enhance the Seebeck coefficient without dramatically degrading the electronic conductance. Hence, in various graphene nanostructures, ZT has been predicted to be high enough to make them attractive for energy conversion. In this article, we review the main results obtained experimentally and theoretically on the thermoelectric properties of graphene and its nanostructures, emphasizing the physical effects that govern these properties. Beyond pure graphene structures, we discuss also the thermoelectric properties of some hybrid graphene structures, as graphane, layered carbon allotropes such as graphynes and graphdiynes, and graphene/hexagonal boron nitride heterostructures which offer new opportunities. Finally, we briefly review the recent activities on other atomically thin 2D semiconductors with finite bandgap, i.e. dichalcogenides and phosphorene, which have attracted great attention for various kinds of applications, including thermoelectrics.

  7. Brownian motion of graphene.

    PubMed

    Maragó, Onofrio M; Bonaccorso, Francesco; Saija, Rosalba; Privitera, Giulia; Gucciardi, Pietro G; Iatì, Maria Antonia; Calogero, Giuseppe; Jones, Philip H; Borghese, Ferdinando; Denti, Paolo; Nicolosi, Valeria; Ferrari, Andrea C

    2010-12-28

    Brownian motion is a manifestation of the fluctuation-dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical trapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules. PMID:21133432

  8. Nonlinear optomechanics with graphene

    NASA Astrophysics Data System (ADS)

    Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Vengalattore, Mukund

    2016-05-01

    To date, studies of cavity optomechanics have been limited to exploiting the linear interactions between the light and mechanics. However, investigations of quantum signal transduction, quantum enhanced metrology and manybody physics with optomechanics each require strong, nonlinear interactions. Graphene nanomembranes are an exciting prospect for realizing such studies due to their inherently nonlinear nature and low mass. We fabricate large graphene nanomembranes and study their mechanical and optical properties. By using dark ground imaging techniques, we correlate their eigenmode shapes with the measured dissipation. We study their hysteretic response present even at low driving amplitudes, and their nonlinear dissipation. Finally, we discuss ongoing efforts to use these resonators for studies of quantum optomechanics and force sensing. This work is supported by the DARPA QuASAR program through a Grant from the ARO.

  9. Electromechanics of graphene spirals

    SciTech Connect

    Korhonen, Topi; Koskinen, Pekka

    2014-12-15

    Among the most fascinating nanostructure morphologies are spirals, hybrids of somewhat obscure topology and dimensionality with technologically attractive properties. Here, we investigate mechanical and electromechanical properties of graphene spirals upon elongation by using density-functional tight-binding, continuum elasticity theory, and classical force field molecular dynamics. It turns out that electronic properties are governed by interlayer interactions as opposed to strain effects. The structural behavior is governed by van der Waals interaction: in its absence spirals unfold with equidistant layer spacings, ripple formation at spiral perimeter, and steadily increasing axial force; in its presence, on the contrary, spirals unfold via smooth local peeling, complex geometries, and nearly constant axial force. These electromechanical trends ought to provide useful guidelines not only for additional theoretical investigations but also for forthcoming experiments on graphene spirals.

  10. Spin caloritronics in graphene

    SciTech Connect

    Ghosh, Angsula; Frota, H. O.

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  11. Graphene based gene transfection

    NASA Astrophysics Data System (ADS)

    Feng, Liangzhu; Zhang, Shuai; Liu, Zhuang

    2011-03-01

    Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI-10k polymer. The positively charged GO-PEI complexes are able to further bind with plasmid DNA (pDNA) for intracellular transfection of the enhanced green fluorescence protein (EGFP) gene in HeLa cells. While EGFP transfection with PEI-1.2k appears to be ineffective, high EGFP expression is observed using the corresponding GO-PEI-1.2k as the transfection agent. On the other hand, GO-PEI-10k shows similar EGFP transfection efficiency but lower toxicity compared with PEI-10k. Our results suggest graphene to be a novel gene delivery nano-vector with low cytotoxicity and high transfection efficiency, promising for future applications in non-viral based gene therapy.Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI

  12. Doped graphene supercapacitors

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-12-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  13. Spin caloritronics in graphene

    NASA Astrophysics Data System (ADS)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  14. Graphene Coatings for Biomedical Implants

    PubMed Central

    Podila, Ramakrishna; Moore, Thomas; Alexis, Frank; Rao, Apparao

    2013-01-01

    Atomically smooth graphene as a surface coating has potential to improve implant properties. This demonstrates a method for coating nitinol alloys with nanometer thick layers of graphene for applications as a stent material. Graphene was grown on copper substrates via chemical vapor deposition and then transferred onto nitinol substrates. In order to understand how the graphene coating could change biological response, cell viability of rat aortic endothelial cells and rat aortic smooth muscle cells was investigated. Moreover, the effect of graphene-coatings on cell adhesion and morphology was examined with fluorescent confocal microscopy. Cells were stained for actin and nuclei, and there were noticeable differences between pristine nitinol samples compared to graphene-coated samples. Total actin expression from rat aortic smooth muscle cells was found using western blot. Protein adsorption characteristics, an indicator for potential thrombogenicity, were determined for serum albumin and fibrinogen with gel electrophoresis. Moreover, the transfer of charge from fibrinogen to substrate was deduced using Raman spectroscopy. It was found that graphene coating on nitinol substrates met the functional requirements for a stent material and improved the biological response compared to uncoated nitinol. Thus, graphene-coated nitinol is a viable candidate for a stent material. PMID:23486380

  15. All-carbon graphene bioelectronics.

    PubMed

    Nam, Sungwoo; Chun, Sunggyu; Choi, Jonghyun

    2013-01-01

    We report nano field-effect transistor (nanoFET) biosensors built from the monolithic integration of graphene and graphite. The monolithic integration enables nanoscopic field-effect detection of chemical and biological signals with mechanically flexible and robust interface with biological systems in several respects. Our nanoFET biosensors exhibit superior detection sensitivity, mechanical flexibility and nanoscopic detection resolution. First, we demonstrate that electrical detection can be achieved from nanoscale electric field modulation of the graphene channel while the signal integrity is not perturbed by mechanical deflection of graphene nanoFET sensors. Such capability is introduced by the advanced design of monolithic graphene-graphite without any need for metal-graphene heterointerfaces. Second, we explore the chemical detection capability of graphene nanoFET sensors, and show that our sensors are responsive to localized chemical environmental changes/perturbations. Our nanoFET sensors not only show clear response to nanoscopic charge perturbation but also demonstrate potential 3-D sensing capability due to the advanced monolithic graphene-graphite mechanical design. These unique capabilities of our monolithic graphene-graphite bioelectronics could be exploited in chemical and biological detection and conformal interface with biological systems in the future.

  16. Thermal conductivity of graphene laminate.

    PubMed

    Malekpour, H; Chang, K-H; Chen, J-C; Lu, C-Y; Nika, D L; Novoselov, K S; Balandin, A A

    2014-09-10

    We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied, as deposited and compressed, in order to determine the physical parameters affecting the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphene laminate thickness from 9 to 44 μm. The thermal conductivity of graphene laminate was found to be in the range from 40 to 90 W/mK at room temperature. It was found unexpectedly that the average size and the alignment of graphene flakes are more important parameters defining the heat conduction than the mass density of the graphene laminate. The thermal conductivity scales up linearly with the average graphene flake size in both uncompressed and compressed laminates. The compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. Coating plastic materials with thin graphene laminate films that have up to 600× higher thermal conductivity than plastics may have important practical implications.

  17. Electrochemistry of folded graphene edges.

    PubMed

    Ambrosi, Adriano; Bonanni, Alessandra; Pumera, Martin

    2011-05-01

    There is enormous interest in the investigation of electron transfer rates at the edges of graphene due to possible energy storage and sensing applications. While electrochemistry at the edges and the basal plane of graphene has been studied in the past, the new frontier is the electrochemistry of folded graphene edges. Here we describe the electrochemistry of folded graphene edges and compare it to that of open graphene edges. The materials were characterized in detail by high-resolution transmission electron microscopy, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. We found that the heterogeneous electron transfer rate is significantly lower on folded graphene edges compared to open edge sites for ferro/ferricyanide, and that electrochemical properties of open edges offer lower potential detection of biomarkers than the folded ones. It is apparent, therefore, that for sensing and biosensing applications the folded edges are less active than open edges, which should then be preferred for such applications. As folded edges are the product of thermal treatment of multilayer graphene, such thermal procedures should be avoided when fabricating graphene for electrochemical applications.

  18. Graphene-based biosensors

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Davydov, V. Yu.; Novikov, S. N.; Litvin, D. P.; Makarov, Yu. N.; Klimovich, V. B.; Samoilovich, M. P.

    2016-07-01

    Results of developing and testing graphene-based sensors capable of detecting protein molecules are presented. The biosensor operation was checked using an immunochemical system comprising fluorescein dye and monoclonal antifluorescein antibodies. The sensor detects fluorescein concentration on a level of 1-10 ng/mL and bovine serum albumin-fluorescein conjugate on a level of 1-5 ng/mL. The proposed device has good prospects for use for early diagnostics of various diseases.

  19. Edge magnetoplasmons in graphene

    NASA Astrophysics Data System (ADS)

    Petković, Ivana; Williams, F. I. B.; Glattli, D. Christian

    2014-03-01

    We have observed propagation of edge magnetoplasmon (EMP) modes in graphene in the quantum Hall regime by performing picosecond time-of-flight measurements between narrow contacts on the perimeter of micrometric exfoliated graphene. We find the propagation to be chiral with low attenuation and to have a velocity which is quantized on Hall plateaus. The velocity has two contributions, one arising from the Hall conductivity and the other from carrier drift along the edge, which we were able to separate by their different filling factor dependence. The drift component is found to be slightly less than the Fermi velocity as expected for graphene dynamics in an abrupt edge potential. The Hall conduction contribution is slower than expected and indicates a characteristic length in the Coulomb potential from the Hall charge of about 500 nm. The experiment illustrates how EMP can be coupled to the electromagnetic field, opening the perspective of GHz to THz chiral plasmonics applications to devices such as voltage controlled phase shifters, circulators, switches and compact, tunable ring resonators.

  20. Graphene based GHz detectors

    NASA Astrophysics Data System (ADS)

    Boyd, Anthony K.; El Fatimy, Abdel; Barbara, Paola; Nath, Anindya; Campbell, Paul M.; Myers-Ward, Rachael; Daniels, Kevin; Gaskill, D. Kurt

    Graphene demonstrates great promise as a detector over a wide spectral range especially in the GHz range. This is because absorption is enhanced due to the Drude contribution. In the GHz range there are viable detection mechanisms for graphene devices. With this in mind, two types of GHz detectors are fabricated on epitaxial graphene using a lift off resist-based clean lithography process to produce low contact resistance. Both device types use asymmetry for detection, consistent with recent thoughts of the photothermoelectric effect (PTE) mechanism. The first is an antenna coupled device. It utilizes two dissimilar contact metals and the work function difference produces the asymmetry. The other device is a field effect transistor constructed with an asymmetric top gate that creates a PN junction and facilitates tuning the photovoltaic response. The response of both device types, tested from 100GHz to 170GHz, are reported. This work was sponsored by the U.S. Office of Naval Research (Award Number N000141310865).

  1. Graphene electron cannon: High-current edge emission from aligned graphene sheets

    SciTech Connect

    Liu, Jianlong; Li, Nannan; Guo, Jing; Fang, Yong; Deng, Jiang; Zeng, Baoqing; Wang, Wenzhong; Li, Jiangnan; Hao, Chenchun

    2014-01-13

    High-current field emitters are made by graphene paper consist of aligned graphene sheets. Field emission luminance pattern shows that their electron beams can be controlled by rolling the graphene paper from sheet to cylinder. These specific electron beams would be useful to vacuum devices and electron beam lithograph. To get high-current emission, the graphene paper is rolled to array and form graphene cannon. Due to aligned emission array, graphene cannon have high emission current. Besides high emission current, the graphene cannon is also tolerable with excellent emission stability. With good field emission properties, these aligned graphene emitters bring application insight.

  2. Graphene-antenna sandwich photodetector.

    PubMed

    Fang, Zheyu; Liu, Zheng; Wang, Yumin; Ajayan, Pulickel M; Nordlander, Peter; Halas, Naomi J

    2012-07-11

    Nanoscale antennas sandwiched between two graphene monolayers yield a photodetector that efficiently converts visible and near-infrared photons into electrons with an 800% enhancement of the photocurrent relative to the antennaless graphene device. The antenna contributes to the photocurrent in two ways: by the transfer of hot electrons generated in the antenna structure upon plasmon decay, as well as by direct plasmon-enhanced excitation of intrinsic graphene electrons due to the antenna near field. This results in a graphene-based photodetector achieving up to 20% internal quantum efficiency in the visible and near-infrared regions of the spectrum. This device can serve as a model for merging the light-harvesting characteristics of optical frequency antennas with the highly attractive transport properties of graphene in new optoelectronic devices. PMID:22703522

  3. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  4. Extended Klein edges in graphene.

    PubMed

    He, Kuang; Robertson, Alex W; Lee, Sungwoo; Yoon, Euijoon; Lee, Gun-Do; Warner, Jamie H

    2014-12-23

    Graphene has three experimentally confirmed periodic edge terminations, zigzag, reconstructed 5-7, and arm-chair. Theory predicts a fourth periodic edge of graphene called the extended Klein (EK) edge, which consists of a series of single C atoms protruding from a zigzag edge. Here, we confirm the existence of EK edges in both graphene nanoribbons and on the edge of bulk graphene using atomic resolution imaging by aberration-corrected transmission electron microscopy. The formation of the EK edge stems from sputtering and reconstruction of the zigzag edge. Density functional theory reveals minimal energy for EK edge reconstruction and bond distortion both in and out of plane, supporting our TEM observations. The EK edge can now be included as the fourth member of observed periodic edge structures in graphene.

  5. Enhancement of the magnetic interfacial exchange energy at a specific interface in NiFe/CoO/Co trilayer thin films via ion-beam modification

    SciTech Connect

    Cortie, D. L.; Ting, Y.-W.; Chen, P.-S.; Lin, K.-W.; Tan, X.; Klose, F.

    2014-02-21

    A series of ferromagnetic Ni{sub 80}Fe{sub 20}(55 nm)/antiferromagnetic CoO (25 to 200 nm)/ferromagnetic Co (55 nm)/SiO{sub 2}(substrate) trilayer thin films were fabricated by ion-beam assisted deposition in order to understand the role of ion beam modification on the interfacial and interlayer coupling. The microstructural study using transmission electron microscopy, X-ray reflectometry, and polarised neutron reflectometry showed that ion-beam modification during the deposition process led to an oxygen-rich Co/CoO nanocomposite interface region at the bottom layer. This interface caused a high exchange bias field for the ferromagnetic cobalt. However, the exchange bias for top permalloy ferromagnet remained low, in line with expectations from the literature for the typical interfacial energy. This suggest that the ion-beam enhancement of the magnetic exchange bias is localized to the Co/CoO interface where local microstructural effects provide the dominant mechanism.

  6. Synergetic effects of II-VI sensitization upon TiO{sub 2} for photoelectrochemical water splitting; a tri-layered structured scheme

    SciTech Connect

    Mumtaz, Asad; Mohamed, Norani Muti

    2014-10-24

    World's energy demands are growing on a higher scale increasing the need of more reliable and long term renewable energy resources. Efficient photo-electrochemical (PEC) devices based on novel nano-structured designs for solar-hydrogen generation need to be developed. This study provides an insight of the tri-layered-TiO2 based nanostructures. Observing the mechanism of hydrogen production, the comparison of the structural order during the synthesis is pronounced. The sequence in the tri-layered structure affects the photogenerated electron (e{sup −}) and hole (h{sup +}) pair transfer and separation. It is also discussed that not only the semiconductors band gaps alignment is important with respect to the water redox potential but also the interfacial regions. Quasi-Fermi-level adjustment at the interfacial regions plays a key role in deciding the solar to hydrogen efficiency. More efficient multicomponent semiconductor nano-design (MCSN) could be developed with the approach given in this study.

  7. The role of the (111) texture on the exchange bias and interlayer coupling effects observed in sputtered NiFe/IrMn/Co trilayers

    SciTech Connect

    Castro, I. L.; Nascimento, V. P.; Passamani, E. C.; Takeuchi, A. Y.; Larica, C.; Tafur, M.; Pelegrini, F.

    2013-05-28

    Magnetic properties of sputtered NiFe/IrMn/Co trilayers grown on different seed layers (Cu or Ta) deposited on Si (100) substrates were investigated by magnetometry and ferromagnetic resonance measurements. Exchange bias effect and magnetic spring behavior have been studied by changing the IrMn thickness. As shown by X-ray diffraction, Ta and Cu seed layers provoke different degrees of (111) fcc-texture that directly affect the exchange bias and indirectly modify the exchange spring coupling behavior. Increasing the IrMn thickness, it was observed that the coupling angle between the Co and NiFe ferromagnetic layers increases for the Cu seed system, but it reduces for the Ta case. The results were explained considering (i) different anisotropies of the Co and IrMn layers induced by the different degree of the (111) texture and (ii) the distinct exchange bias set at the NiFe/IrMn and IrMn/Co interfaces in both systems. The NiFe and Co interlayer coupling angle is strongly correlated with both exchange bias and exchange magnetic spring phenomena. It was also shown that the highest exchange bias field occurs when an unstressed L1{sub 2} IrMn structure is stabilized.

  8. Enhancement of Pure Spin Currents in Spin Pumping Y3Fe5O12/Cu/metal Trilayers Through Spin Impedance Matching

    NASA Astrophysics Data System (ADS)

    Hammel, P. Chris; Du, Chunhui; Wang, Hailong; Yang, Fengyuan

    2014-03-01

    Spin pumping, driven thermally as well as by Ferromagnetic Resonance (FMR), is being widely used to generate pure spin currents from ferromagnets (FM) into normal metals (NM). Typically, the NM is chosen to be a spin-sink-Pt, W or Ta, while lighter metals such as Cu are rarely used, except to decouple the FM and spin sink. The efficiency of spin pumping is largely determined by the spin mixing conductance of the FM/NM interface. Here, we report a comparative study of spin pumping in Y3Fe5O12 /Cu/Pt and Y3Fe5O12 /Cu/W trilayers with varying Cu thicknesses. Remarkably, we find that insertion of a Cu interlayer between YIG and W substantially improves (over a factor of 4) the spin current injection into W while similar insertion between YIG and Pt degrades the spin current. This is a consequence of a much improved YIG/Cu spin mixing conductance relative to that for YIG/W. This result shows that high quality multilayer FM/NM heterostructures can enable spin mixing conductances to be engineered to enable optimal spin pumping efficiency. We acknowledge the Center for Emergent Materials at OSU, a NSF MRSEC (DMR-0820414), the DOE through grant DE-FG02-03ER46054, LakeShore Cryotronics and NSL at OSU.

  9. Hydrophilic behavior of graphene and graphene-based materials.

    PubMed

    Accordino, Sebastián R; Montes de Oca, Joan Manuel; Rodriguez Fris, J Ariel; Appignanesi, Gustavo A

    2015-10-21

    Graphene and the graphene-based materials like graphite, carbon nanotubes, and fullerenes are not only usually regarded as hydrophobic but also have been widely employed as paradigms for the investigation of the behavior of water under nonpolar confinement, a question of major concern for fields ranging from biology to materials design. However, some experimental and theoretical insights seem to contradict, at least partially, such a picture. In this work, we will provide firm evidence for a neat hydrophilic nature of graphene surfaces. Our molecular dynamics studies will demonstrate that parallel graphene sheets present a strong tendency to remain fully hydrated for moderately long times (even when the equilibrium state is indeed the collapse of the plates), and thus, they are less prone to self-assembly than model hydrophobic surfaces we shall employ as control which readily undergo a hydrophobic collapse. Potential of mean force calculations will indeed make evident that the solvent exerts a repulsive contribution on the self-assembly of graphene surfaces. Moreover, we shall also quantify graphene hydrophilicity by means of the calculation of water density at two pressures and water density fluctuations. This latter study has never been performed on graphene and represents a means both to confirm and to quantify its neat hydrophilic behavior. We shall also make evident the relevance of the mildly attractive water-carbon interactions, since their artificial weakening will be shown to revert from typically hydrophilic to typically hydrophobic behavior.

  10. Microscopic dielectric permittivities of graphene nanoribbons and graphene

    NASA Astrophysics Data System (ADS)

    Fang, Jingtian; Vandenberghe, William G.; Fischetti, Massimo V.

    2016-07-01

    We derive a microscopic Poisson equation using the density-density response function. This equation is valid for any realistic potential perturbation and permits the study of dielectric response in nanostructures, especially in one-dimensional nanostructures and quantum dots. We apply this equation to simulate a nanoscale parallel-plate capacitor (nanocapacitor) with graphene as dielectric and two nanocapacitors with a graphene nanoribbon (GNR) as dielectric. The density-density response function is calculated using first-order perturbation theory and empirical pseudopotentials. From the microscopic electric field of the graphene nanocapacitor, we calculate the out-of-plane microscopic dielectric constant of graphene and from the electric field of GNR nanocapacitors, we calculate the full microscopic dielectric tensor of several GNRs with different widths. We find that the out-of-plane microscopic dielectric constants of GNRs and graphene do not depend on their energy band gap. We also study the effect of a surrounding dielectric on the dielectric permittivity of graphene and we conclude that the surrounding dielectric barely affects the dielectric permittivity of graphene.

  11. Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper

    PubMed Central

    2013-01-01

    Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration. PMID:24041311

  12. Observing graphene grow: catalyst-graphene interactions during scalable graphene growth on polycrystalline copper.

    PubMed

    Kidambi, Piran R; Bayer, Bernhard C; Blume, Raoul; Wang, Zhu-Jun; Baehtz, Carsten; Weatherup, Robert S; Willinger, Marc-Georg; Schloegl, Robert; Hofmann, Stephan

    2013-10-01

    Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration. PMID:24041311

  13. Recent advances in experimental basic research on graphene and graphene-based nanostructures

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-06-01

    The present work is a review of the results achieved in the experimental basic research on following rapidly developing modern topics of nanoscience and nanotechnology related to graphene and graphene-based nanosystems: reduction of graphene oxide and investigation of physical properties of reduced graphene oxide; fabrication and investigation of graphene quantum dots; study of light emission from excited graphene; fabrication and investigation of graphene nanopores; preparation and investigation of graphene oxide-liquid crystals as well as aqueous graphene oxide dispersions. Besides presenting the scientific content of the above-mentioned five topics in detail, we briefly mention promising and interesting works, demonstrating that the area of basic research on graphene and graphene-based nanostructures is still being enlarged.

  14. Enhancement of the Stability of Fluorine Atoms on Defective Graphene and at Graphene/Fluorographene Interface.

    PubMed

    Ao, Zhimin; Jiang, Quanguo; Li, Shuang; Liu, Hao; Peeters, Francois M; Li, Sean; Wang, Guoxiu

    2015-09-01

    Fluorinated graphene is one of the most important derivatives of graphene and has been found to have great potential in optoelectronic and photonic nanodevices. However, the stability of F atoms on fluorinated graphene under different conditions, which is essential to maintain the desired properties of fluorinated graphene, is still unclear. In this work, we investigate the diffusion of F atoms on pristine graphene, graphene with defects, and at graphene/fluorographene interfaces by using density functional theory calculations. We find that an isolated F atom diffuses easily on graphene, but those F atoms can be localized by inducing vacancies or absorbates in graphene and by creating graphene/fluorographene interfaces, which would strengthen the binding energy of F atoms on graphene and increase the diffusion energy barrier of F atoms remarkably.

  15. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    PubMed Central

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties. PMID:26961409

  16. Biological applications of graphene oxide

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2016-03-01

    Graphene as a 2D material has unique chemical and electronic properties. Because of its unique physical, chemical, and electronic properties, its interesting shape and size make it a promising nanomaterial in many biological applications. However, the lower water-solubility and the irreversible aggregation due to the strong π-π stacking hinder the wide application of graphene nanosheets in biomedical field. Thus, graphene oxide (GO), one derivative of graphene, has been used more frequently in the biological system owing to its relatively higher water solubility and biocompatibility. Recently, it has been demonstrated that nanomaterials with different functional groups on the surface can be used to bind the drug molecules with high affinity. GO has different functional groups such as H, OH and O on its surface; it can be a potential candidate as a drug carrier. The interactions of biomolecules and graphene like structures are long-ranged and very weak. Development of new techniques is very desirable for design of bioelectronics sensors and devices. In this work, we present first-principles spin polarized calculations within density functional theory to calculate effects of charging on DNA/RNA nucleobases on graphene oxide. It is shown that how modify structural and electronic properties of nucleobases on graphene oxide by applied charging.

  17. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  18. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  19. Electrochemistry of Q-graphene.

    PubMed

    Randviir, Edward P; Brownson, Dale A C; Gómez-Mingot, Maria; Kampouris, Dimitrios K; Iniesta, Jesús; Banks, Craig E

    2012-10-21

    A newly synthesised type of graphene, Q-Graphene, has been physically and electrochemically characterised with Scanning and Transmission Electron Microscopy (SEM, TEM), X-ray Photoelectron Spectroscopy (XPS) and Cyclic Voltammetry (CV). Interpretation of SEM, TEM and XPS data reveal the material to consist of hollow carbon nanospheres of multi-layer graphene (viz. graphite), which exhibit a total oxygen content of ca. 36.0% (atomic weight via XPS). In addition to the carbon structures present, spherical magnesium oxide particles of ≤50 nm in diameter are abundantly present in the sample (ca. 16.2%). Interestingly, although the TEM/SEM images show macroporous carbon structures, Raman spectroscopy shows peaks typically characteristic of graphene, which suggests the material is highly heterogeneous and consists of many types of carbon allotropes. Q-Graphene is electrochemically characterised using both inner-sphere and outer-sphere electrochemical redox probes, namely potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride and hexachloroiridate(III), in addition to the biologically relevant and electroactive analytes, norepinephrine, β-nicotinamide adenine dinucleotide (NADH) and l-ascorbic acid. The electrochemical response of Q-Graphene is benchmarked against edge plane- and basal plane-pyrolytic graphite (EPPG and BPPG respectively), pristine graphene and graphite alternatives. Q-Graphene is found to exhibit fast electron transfer kinetics, likely due to its high proportion of folded edges and surface defects, exhibiting a response similar to that of EPPG - which exhibits fast electron transfer rates due to the high proportion of edge plane sites it possesses. Furthermore, we demonstrate that the specific oxygen content plays a pivotal role in dictating the observed electrochemical response, which is analyte dependant. Consequently there is potential for this new member of the graphene family to be beneficially utilised in various electrochemical

  20. Smart antennas based on graphene

    SciTech Connect

    Aldrigo, Martino; Dragoman, Mircea; Dragoman, Daniela

    2014-09-21

    We report two configurations of smart graphene antennas, in which either the radiation pattern of the antenna or the backscattering of the periodic metallic arrays is controlled by DC biases that induce metal-insulator reversible transitions of graphene monolayers. Such a transition from a high surface resistance (no bias) to a low surface resistance state (finite bias voltage) causes the radiation pattern of metallic antennas backed with graphene to change dramatically, from omnidirectional to broadside. Moreover, reflectarrays enhance the backscattered field due to the same metal-dielectric transition.

  1. Graphene-based membranes: status and prospects.

    PubMed

    Yoon, Hee Wook; Cho, Young Hoon; Park, Ho Bum

    2016-02-13

    Recently, graphene-based membranes have been extensively studied, represented by two distinct research directions: (i) creating pores in graphene basal plane and (ii) engineering nanochannels in graphene layers. Most simulation results predict that porous graphene membranes can be much more selective and permeable than current existing membranes, also evidenced by some experimental results for gas separation and desalination. In addition, graphene oxide has been widely investigated in layered membranes with two-dimensional nanochannels, showing very intriguing separation properties. This review will cover state-of-the-art of graphene-based membranes, and also provide a material guideline on future research directions suitable for practical membrane applications.

  2. Properties and applications of chemically functionalized graphene

    NASA Astrophysics Data System (ADS)

    Craciun, M. F.; Khrapach, I.; Barnes, M. D.; Russo, S.

    2013-10-01

    The vast and yet largely unexplored family of graphene materials has great potential for future electronic devices with novel functionalities. The ability to engineer the electrical and optical properties in graphene by chemically functionalizing it with a molecule or adatom is widening considerably the potential applications targeted by graphene. Indeed, functionalized graphene has been found to be the best known transparent conductor or a wide gap semiconductor. At the same time, understanding the mechanisms driving the functionalization of graphene with hydrogen is proving to be of fundamental interest for energy storage devices. Here we discuss recent advances on the properties and applications of chemically functionalized graphene.

  3. Polyelectrolyte-graphene Nanocomposites for Biosensing Applications

    PubMed Central

    Priftis, Dimitrios

    2015-01-01

    Due to their unique structure, the optical and mechanical properties graphene and its derivatives (e.g. graphene oxide, reduced graphene oxide) have captured the attention of a constantly increasing number of scientists with regards to biomolecule sensing. This mini review focuses on one specific type of sensor, that consisting of graphene and polyelectrolytes. Polyelectrolyte-graphene nanocomposites exhibit outstanding detection capabilities by synergistically combining the characteristics of both components, outperforming traditional sensors in many cases. Characteristics and mechanistic details of the most important polyelectrolyte-graphene based sensors will be discussed in detail in addition to some current challenges and future perspectives. PMID:27713667

  4. [Solidification of volatile oil with graphene oxide].

    PubMed

    Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao

    2015-02-01

    To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study. PMID:25975033

  5. Dynamic properties of graphene

    SciTech Connect

    Fal'kovskii, L. A.

    2012-09-15

    The phonon spectrum of graphene has been studied with the minimum set of the nearest neighbors in the Born-von Karman model taking into account the electron-electron and electron-phonon interactions. The widths, both natural and owing to interactions with defects, of phonons have been estimated. Symmetry constraints imposed on force constants are taken into account. For symmetry reasons, vibrations with the polarization normal to the plane of the layer are not related to in-plane vibrations. The phonon frequencies at symmetry points and elastic moduli are expressed in terms of force constants.

  6. Graphene nanoribbons with wings

    SciTech Connect

    Bischoff, D. Eich, M.; Ihn, T.; Ensslin, K.; Libisch, F.

    2015-11-16

    We have investigated electronic transport in graphene nanoribbon devices with additional bar-shaped extensions (“wings”) at each side of the device. We find that the Coulomb-blockade dominated transport found in conventional ribbons is strongly modified by the presence of the extensions. States localized far away from the central ribbon contribute significantly to transport. We discuss these findings within the picture of multiple coupled quantum dots. Finally, we compare the experimental results with tight-binding simulations which reproduce the experiment both qualitatively and quantitatively.

  7. Dynamic properties of graphene

    NASA Astrophysics Data System (ADS)

    Fal'kovskii, L. A.

    2012-09-01

    The phonon spectrum of graphene has been studied with the minimum set of the nearest neighbors in the Born-von Kármán model taking into account the electron-electron and electron-phonon interactions. The widths, both natural and owing to interactions with defects, of phonons have been estimated. Symmetry constraints imposed on force constants are taken into account. For symmetry reasons, vibrations with the polarization normal to the plane of the layer are not related to in-plane vibrations. The phonon frequencies at symmetry points and elastic moduli are expressed in terms of force constants.

  8. Thermoelectric Properties of Pristine and Doped Graphene Nanosheets and Graphene Nanoribbons: Part II

    NASA Astrophysics Data System (ADS)

    Muley, Sarang V.; Ravindra, N. M.

    2016-06-01

    In Part II of this study, approaches to improve the thermoelectric figure of merit ( ZT) of graphene nanosheets and nanoribbons is discussed. The presence of vacancies in graphene is found to increase the ZT of zigzag graphene nanoribbons significantly. Graphene can be a promising material with much better thermoelectric performance than conventional thermoelectrics.

  9. Graphene homojunction: closed-edge bilayer graphene by pseudospin interaction

    NASA Astrophysics Data System (ADS)

    Yan, Jiaxu; Li, Chao; Zhan, Da; Liu, Lei; Shen, Dezhen; Kuo, Jer-Lai; Chen, Shoushun; Shen, Zexiang

    2016-04-01

    Depending on the sublattices they are propagated in, low-energy electrons or holes are labeled with pseudospin. By engineering pseudospin interactions, we propose that two critical features of a junction, i.e., band gap opening and spatial charge separation, can be realized in graphene layers with proper stacking. We also demonstrate theoretically that such a graphene diode may play a role in future pseudospin electronics such as for harvesting solar energy.

  10. Genotoxicity of Graphene in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Sharma, Ananya

    Rapid advances in nanotechnology necessitate assessment of the safety of nanomaterials in the resulting products and applications. One key nanomaterial attracting much interest in many areas of science and technology is graphene. Graphene is a one atom thick carbon allotrope arranged in a two-dimensional honeycomb lattice. In addition to being extremely thin, graphene has several extraordinary physical properties such as its exceptional mechanical strength, thermal stability, and high electrical conductivity. Graphene itself is relatively chemically inert and therefore pristine graphene must undergo a process called functionalization, which is combination of chemical and physical treatments that change the properties of graphene, to make it chemically active. Functionalization of graphene is of crucial importance as the end application of graphene depends on proper functionalization. In the field of medicine, graphene is currently a nanomaterial of high interest for building biosensors, DNA transistors, and probes for cancer detection. Despite the promising applications of graphene in several areas of biomedicine, there have been only few studies in recent years that focus on evaluating cytotoxicity of graphene on cells, and almost no studies that investigate how graphene exposure affects cellular genetic material. Therefore, in this study we used a novel approach to evaluate the genotoxicity, i.e., the effects of graphene on DNA, using Escherichia coli as a prokaryotic model organism.

  11. Graphene for Environmental and Biological Applications

    NASA Astrophysics Data System (ADS)

    Sreeprasad, T. S.; Pradeep, T.

    2012-08-01

    The latest addition to the nanocarbon family, graphene, has been proclaimed to be the material of the century. Its peculiar band structure, extraordinary thermal and electronic conductance and room temperature quantum Hall effect have all been used for various applications in diverse fields ranging from catalysis to electronics. The difficulty to synthesize graphene in bulk quantities was a limiting factor of it being utilized in several fields. Advent of chemical processes and self-assembly approaches for the synthesis of graphene analogues have opened-up new avenues for graphene based materials. The high surface area and rich abundance of functional groups present make chemically synthesized graphene (generally known as graphene oxide (GO) and reduced graphene oxide (RGO) or chemically converted graphene) an attracting candidate in biotechnology and environmental remediation. By functionalizing graphene with specific molecules, the properties of graphene can be tuned to suite applications such as sensing, drug delivery or cellular imaging. Graphene with its high surface area can act as a good adsorbent for pollutant removal. Graphene either alone or in combination with other materials can be used for the degradation or removal of a large variety of contaminants through several methods. In this review some of the relevant efforts undertaken to utilize graphene in biology, sensing and water purification are described. Most recent efforts have been given precedence over older works, although certain specific important examples of the past are also mentioned.

  12. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures.

    PubMed

    Jiang, Lili; Fan, Zhuangjun

    2014-02-21

    In order to make full utilization of the high intrinsic surface area of graphene, recently, porous graphene materials including graphene nanomesh, crumpled graphene and graphene foam, have attracted tremendous attention and research interest, owing to their exceptional porous structure (high surface area, and high pore volume) in combination with the inherent properties of graphene, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Interestingly, porous graphene materials and their derivatives have been explored in a wide range of applications in the fields of electronic and photonic devices, energy storage, gas separation/storage, oil absorption and sensors. This article reviews recent progress in the synthesis, characterization, properties, and applications of porous graphene materials. We aim to highlight the importance of designing different porous structures of graphene to meet future challenges, and the trend on future design of porous graphene materials is analyzed.

  13. Selective exfoliation of single-layer graphene from non-uniform graphene grown on Cu

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Young; Lee, Jae-Hyun; Jang, Hyeon-Sik; Joo, Won-Jae; Hwang, SungWoo; Whang, Dongmok

    2015-11-01

    Graphene growth on a copper surface via metal-catalyzed chemical vapor deposition has several advantages in terms of providing high-quality graphene with the potential for scale-up, but the product is usually inhomogeneous due to the inability to control the graphene layer growth. The non-uniform regions strongly affect the reliability of the graphene in practical electronic applications. Herein, we report a novel graphene transfer method that allows for the selective exfoliation of single-layer graphene from non-uniform graphene grown on a Cu foil. Differences in the interlayer bonding energy are exploited to mechanically separate only the top single-layer graphene and transfer this to an arbitrary substrate. The dry-transferred single-layer graphene showed electrical characteristics that were more uniform than those of graphene transferred using conventional wet-etching transfer steps.

  14. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures

    NASA Astrophysics Data System (ADS)

    Jiang, Lili; Fan, Zhuangjun

    2014-01-01

    In order to make full utilization of the high intrinsic surface area of graphene, recently, porous graphene materials including graphene nanomesh, crumpled graphene and graphene foam, have attracted tremendous attention and research interest, owing to their exceptional porous structure (high surface area, and high pore volume) in combination with the inherent properties of graphene, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Interestingly, porous graphene materials and their derivatives have been explored in a wide range of applications in the fields of electronic and photonic devices, energy storage, gas separation/storage, oil absorption and sensors. This article reviews recent progress in the synthesis, characterization, properties, and applications of porous graphene materials. We aim to highlight the importance of designing different porous structures of graphene to meet future challenges, and the trend on future design of porous graphene materials is analyzed.

  15. Scaling of graphene integrated circuits.

    PubMed

    Bianchi, Massimiliano; Guerriero, Erica; Fiocco, Marco; Alberti, Ruggero; Polloni, Laura; Behnam, Ashkan; Carrion, Enrique A; Pop, Eric; Sordan, Roman

    2015-05-01

    The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 μm gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing. PMID:25873359

  16. Nanometer thick elastic graphene engine.

    PubMed

    Lee, Jong Hak; Tan, Jun You; Toh, Chee-Tat; Koenig, Steven P; Fedorov, V E; Castro Neto, Antonio H; Ozyilmaz, Barbaros

    2014-05-14

    Significant progress has been made in the construction and theoretical understanding of molecular motors because of their potential use. Here, we have demonstrated fabrication of a simple but powerful 1 nm thick graphene engine. The engine comprises a high elastic membrane-piston made of graphene and weakly chemisorbed ClF3 molecules as the high power volume changeable actuator, while a 532 nm LASER acts as the ignition plug. Rapid volume expansion of the ClF3 molecules leads to graphene blisters. The size of the blister is controllable by changing the ignition parameters. The estimated internal pressure per expansion cycle of the engine is about ∼10(6) Pa. The graphene engine presented here shows exceptional reliability, showing no degradation after 10,000 cycles. PMID:24773247

  17. Reversible optical doping of graphene

    PubMed Central

    Tiberj, A.; Rubio-Roy, M.; Paillet, M.; Huntzinger, J. -R.; Landois, P.; Mikolasek, M.; Contreras, S.; Sauvajol, J. -L.; Dujardin, E.; Zahab, A. -A.

    2013-01-01

    The ultimate surface exposure provided by graphene monolayer makes it the ideal sensor platform but also exposes its intrinsic properties to any environmental perturbations. In this work, we demonstrate that the charge carrier density of graphene exfoliated on a SiO2/Si substrate can be finely and reversibly tuned between hole and electron doping with visible photons. This photo-induced doping happens under moderate laser power conditions but is significantly affected by the substrate cleaning method. In particular, it requires hydrophilic substrates and vanishes for suspended graphene. These findings suggest that optically gated graphene devices operating with a sub-second time scale can be envisioned and that Raman spectroscopy is not always as non-invasive as generally assumed. PMID:23912707

  18. Graphene: an emerging electronic material.

    PubMed

    Weiss, Nathan O; Zhou, Hailong; Liao, Lei; Liu, Yuan; Jiang, Shan; Huang, Yu; Duan, Xiangfeng

    2012-11-14

    Graphene, a single layer of carbon atoms in a honeycomb lattice, offers a number of fundamentally superior qualities that make it a promising material for a wide range of applications, particularly in electronic devices. Its unique form factor and exceptional physical properties have the potential to enable an entirely new generation of technologies beyond the limits of conventional materials. The extraordinarily high carrier mobility and saturation velocity can enable a fast switching speed for radio-frequency analog circuits. Unadulterated graphene is a semi-metal, incapable of a true off-state, which typically precludes its applications in digital logic electronics without bandgap engineering. The versatility of graphene-based devices goes beyond conventional transistor circuits and includes flexible and transparent electronics, optoelectronics, sensors, electromechanical systems, and energy technologies. Many challenges remain before this relatively new material becomes commercially viable, but laboratory prototypes have already shown the numerous advantages and novel functionality that graphene provides.

  19. Graphene intracavity spaser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Nechepurenko, I. A.; Dorofeenko, A. V.

    2016-09-01

    We propose an intracavity plasmon absorption spectroscopy method based on graphene active plasmonics. It is shown that the plasmonic cavity contribution to the sensitivity is proportional to the quality factor Q of the graphene plasmonic cavity and reaches two orders of magnitude. The addition of gain medium into the cavity increases the sensitivity of method. Maximum sensitivity is reached in the vicinity of the plasmon generation threshold. The gain contribution to the sensitivity is proportional to Q1/2. The giant amplification of sensitivity in the graphene plasmon generator is associated with a huge path length, limited only by the decoherence processes. An analytical estimation of the sensitivity to loss caused by analyzed particles (molecules, nanoparticles, etc.) normalized by the single pass plasmon scheme is derived. Usage of graphene nanoflakes as plasmonic cavity allows a high spatial resolution to be reached, in addition to high sensitivity.

  20. Hyperfine interaction in hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Garcia, Noel; Melle, Manuel; Fernandez-Rossier, Joaquin

    We study the hyperfine interaction of Hydrogen chemisorbed in graphene nanostructures with a gap in their spectrum, such as islands and ribbons. Chemisorption of Hydrogen on graphene results in a bound in-gap state that hosts a single electron localized around the adatom. Using both density functional theory and a four-orbital tight-binding model we study the hyperfine interaction between the hydrogen nuclear spin and the conduction electrons in graphene. We find that the strength of the hyperfine interaction decreases for larger nanostructures for which the energy gap is smaller. We then compare the results of the hyperfine interaction for large nanostructures with those of graphene 2D crystal with a periodic arrangement of chemisorbed Hydrogen atoms, obtaining very similar results. The magnitude of the hyperfine interaction is about 150 MHz, in line with that of Si:P. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.

  1. Bilayer Graphene Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Champagne, Alexandre; Storms, Matthew; Yigen, Serap; Reulet, Bertrand

    Bilayer graphene is an outstanding electromechanical system, and its electronic and mechanical properties, as well as their coupling, are widely tunable. To the best of our knowledge, simultaneous charge transport and mechanical spectroscopy (via RF mixing) has not been realized in bilayer graphene. We present data showing clear electromechanical resonances in three suspended bilayer devices whose length range from 1 to 2 microns. We first describe the low-temperature current annealing of the devices which is crucial to achieve the transconductance, I -VG , necessary to implement a RF mixing detection method. We describe our RF mixing circuit and data. We measure clear mechanical resonances ranging in frequency from 50 to 140 MHz. We show that we can smoothly tune the resonance frequencies of our bilayer resonators with mechanical strain applied via a backgate voltage. We measure quality factors up to 4000. We briefly discuss the effects of the RF driving power on the dispersion of the mechanical resonance. We aim to use these high quality mechanical resonance as a mechanical sensor of the bilayer quantum Hall phase transitions. We show initial data of a bilayer mechanical resonance as a function of magnetic field and quantum Hall phase transitions.

  2. Graphene-based Materials

    NASA Astrophysics Data System (ADS)

    Ruoff, Rodney

    2009-03-01

    Our top-down approaches [Lu et al.] inspired physicists to obtain graphene by micromechanical exfoliation. Another approach to individual layers involves converting graphite to graphite oxide (GO) to generate aqueous colloidal suspensions of `graphene oxide'(GO') sheets. (i) Reduced GO' (RGO') sheets were embedded in polymers such as polystyrene and their dispersion/morphology studied by SEM/TEM, and the conductivity/ percolation threshold of such composites was determined; (ii) individual GO' and RGO' sheets were studied to elucidate their chemical, optical, and electrical properties, (iii) GO' and RGO' sheets were embedded in thin glass films by a sol-gel route yielding conductive/transparent films, (iii) a `paper' material of stacked GO' sheets was made and characterized, (iv) powders composed of RGO' showed exceptional promise for use in ultracapacitors, and (v) C13-labeled GO was made and the detailed chemical structure of GO was determined with SS NMR. --Lu,Yu,Huang,Ruoff, ``Tailoring graphite with the goal of achieving single sheets'', Nanotechnology, 10, 269-272 (1999). See also http://bucky-central.me.utexas.edu/publications.htm 139, 146, 150, 155, 160, 164, 166, 168, 169, 174, 179-182, 184 where collaborators are shown as coauthors.

  3. Multilayer graphene rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  4. Quantum critical scaling in graphene.

    PubMed

    Sheehy, Daniel E; Schmalian, Jörg

    2007-11-30

    We show that the emergent relativistic symmetry of electrons in graphene near its quantum critical point (QCP) implies a crucial importance of the Coulomb interaction. We derive scaling laws, valid near the QCP, that dictate the nontrivial magnetic and charge response of interacting graphene. Our analysis yields numerous predictions for how the Coulomb interaction will be manifested in experimental observables such as the diamagnetic response and electronic compressibility. PMID:18233313

  5. Cleaning graphene with a titanium sacrificial layer

    SciTech Connect

    Joiner, C. A. Roy, T.; Hesabi, Z. R.; Vogel, E. M.; Chakrabarti, B.

    2014-06-02

    Graphene is a promising material for future electronic applications and chemical vapor deposition of graphene on copper is a promising method for synthesizing graphene on the wafer scale. The processing of such graphene films into electronic devices introduces a variety of contaminants which can be difficult to remove. An approach to cleaning residues from the graphene channel is presented in which a thin layer of titanium is deposited via thermal e-beam evaporation and immediately removed. This procedure does not damage the graphene as evidenced by Raman spectroscopy, greatly enhances the electrical performance of the fabricated graphene field effect transistors, and completely removes the chemical residues from the surface of the graphene channel as evidenced by x-ray photoelectron spectroscopy.

  6. Wettability of graphene-laminated micropillar structures

    SciTech Connect

    Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun E-mail: shju@kgu.ac.kr; Park, Ji-Hoon; Ahn, Joung Real E-mail: shju@kgu.ac.kr

    2014-12-21

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues.

  7. Wettability of graphene-laminated micropillar structures

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Seo, Keumyoung; Park, Ji-Hoon; Ahn, Joung Real; Ju, Sanghyun

    2014-12-01

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues.

  8. Electrochemical characterization of exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Wasala, Milinda

    In this research we have investigated electrochemical and impedance characteristics of liquid phase exfoliated graphene electrodes. The exfoliated graphene electrodes were characterized in Electrochemical Double Layer Capacitors (EDLCs) geometry. Liquid phase exfoliation was performed on bulk graphite powder in order to produces few layer graphene flakes in large quantities. The exfoliation processes produced few layer graphene based materials with increased specific surface area and were found to have suitable electrochemical charge storage capacities. Electrochemical evaluation and performance of exfoliated graphene electrodes were tested with Cyclic Voltammetry, constant current charging discharging and Electrochemical Impedance Spectroscopy (EIS) at ambient conditions. We have used several electrolytes in order to evaluate the effect of electrolyte in charge storage capacities. Specific capacitance value of ~ 47F/g and ~ 262F/g was measured for aqueous and ionic electrolytes respectively. These values are at least an order of magnitude higher than those obtained by using EDLC's electrodes fabricated with the bulk graphite powder. In addition these EDLC electrodes give consistently good performance over a wide range of scan rates and voltage windows. These encouraging results illustrate the exciting potential for high performance electrical energy storage devices based on liquid phase exfoliated graphene electrodes.

  9. Hydrogen-free graphene edges

    NASA Astrophysics Data System (ADS)

    He, Kuang; Lee, Gun-Do; Robertson, Alex W.; Yoon, Euijoon; Warner, Jamie H.

    2014-01-01

    Graphene edges and their functionalization influence the electronic and magnetic properties of graphene nanoribbons. Theoretical calculations predict saturating graphene edges with hydrogen lower its energy and form a more stable structure. Despite the importance, experimental investigations of whether graphene edges are always hydrogen-terminated are limited. Here we study graphene edges produced by sputtering in vacuum and direct measurements of the C-C bond lengths at the edge show ~86% contraction relative to the bulk. Density functional theory reveals the contraction is attributed to the formation of a triple bond and the absence of hydrogen functionalization. Time-dependent images reveal temporary attachment of a single atom to the arm-chair C-C bond in a triangular configuration, causing expansion of the bond length, which then returns back to the contracted value once the extra atom moves on and the arm-chair edge is returned. Our results provide confirmation that non-functionalized graphene edges can exist in vacuum.

  10. Hydrogen-free graphene edges.

    PubMed

    He, Kuang; Lee, Gun-Do; Robertson, Alex W; Yoon, Euijoon; Warner, Jamie H

    2014-01-01

    Graphene edges and their functionalization influence the electronic and magnetic properties of graphene nanoribbons. Theoretical calculations predict saturating graphene edges with hydrogen lower its energy and form a more stable structure. Despite the importance, experimental investigations of whether graphene edges are always hydrogen-terminated are limited. Here we study graphene edges produced by sputtering in vacuum and direct measurements of the C-C bond lengths at the edge show ~86% contraction relative to the bulk. Density functional theory reveals the contraction is attributed to the formation of a triple bond and the absence of hydrogen functionalization. Time-dependent images reveal temporary attachment of a single atom to the arm-chair C-C bond in a triangular configuration, causing expansion of the bond length, which then returns back to the contracted value once the extra atom moves on and the arm-chair edge is returned. Our results provide confirmation that non-functionalized graphene edges can exist in vacuum.

  11. Electrochemical biosensors on platforms of graphene.

    PubMed

    Fang, Youxing; Wang, Erkang

    2013-10-25

    In recent years, graphene, the two-dimensional closely packed honeycomb carbon lattice, has been attracting much attention in the field of electrochemistry due to its intrinsic properties and merits. Efforts to create novel graphene based electrochemical biosensors have led to the establishment of effective strategies for diverse bioassays, from simple molecules to complex biotargets. In this Feature Article, we provide an overview of electrochemical biosensing with graphene related materials, and discuss the role of graphene in different sensing protocols.

  12. Covalent functionalization of graphene with reactive intermediates.

    PubMed

    Park, Jaehyeung; Yan, Mingdi

    2013-01-15

    Graphene, a material made exclusively of sp(2) carbon atoms with its π electrons delocalized over the entire 2D network, is somewhat chemically inert. Covalent functionalization can enhance graphene's properties including opening its band gap, tuning conductivity, and improving solubility and stability. Covalent functionalization of pristine graphene typically requires reactive species that can form covalent adducts with the sp(2) carbon structures in graphene. In this Account, we describe graphene functionalization reactions using reactive intermediates of radicals, nitrenes, carbenes, and arynes. These reactive species covalently modify graphene through free radical addition, CH insertion, or cycloaddition reactions. Free radical additions are among the most common reaction, and these radicals can be generated from diazonium salts and benzoyl peroxide. Electron transfer from graphene to aryl diazonium ion or photoactivation of benzoyl peroxide yields aryl radicals that subsequently add to graphene to form covalent adducts. Nitrenes, electron-deficient species generated by thermal or photochemical activation of organic azides, can functionalize graphene very efficiently. Because perfluorophenyl nitrenes show enhanced bimolecular reactions compared with alkyl or phenyl nitrenes, perfluorophenyl azides are especially effective. Carbenes are used less frequently than nitrenes, but they undergo CH insertion and C═C cycloaddition reactions with graphene. In addition, arynes can serve as a dienophile in a Diels-Alder type reaction with graphene. Further study is needed to understand and exploit the chemistry of graphene. The generation of highly reactive intermediates in these reactions leads to side products that complicate the product composition and analysis. Fundamental questions remain about the reactivity and regioselectivity of graphene. The differences in the basal plane and the undercoordinated edges of graphene and the zigzag versus arm-chair configurations

  13. Stability of suspended graphene under Casimir force

    NASA Astrophysics Data System (ADS)

    Chudnovsky, E. M.; Zarzuela, R.

    2016-08-01

    We consider a graphene sheet suspended above a conducting surface. Treating graphene as an elastic membrane subjected to Casimir force, we study its stability against sagging towards the conductor. There exists a critical elevation at the edges below which the central part of the suspended graphene nucleates a trunk that sinks under the action of the Casimir force. The dependence of the critical elevation on temperature, dimensions, and the elastic stress applied to the graphene sheet is computed.

  14. Special issue on graphene nanophotonics

    NASA Astrophysics Data System (ADS)

    Nikitin, A. Yu; Maier, S. A.; Martin-Moreno, L.

    2013-11-01

    Graphene nanophotonics has recently appeared as a new research area, which combines the topics of nanophotonics (devoted to studying the behavior of electromagnetic fields on the deep subwavelength scale) and the several extraordinary material properties of graphene. Apart from being the thinnest existing material, graphene is very attractive for photonics due to its extreme flexibility, high mobility and the possibility of controlling its carrier concentration (and hence its electromagnetic response) via external gate voltages. From its very birth, graphene nanophotonics has the potential for innovative technological applications, aiming to complement (or in some cases even replace) the existing semiconductor/metallic photonic platforms. It has already shown exceptional capabilities in many directions, such as for instance in photodetection, photovoltaics, lasing, etc [1]. A special place in graphene photonics belongs to graphene plasmonics, which studies both intrinsic plasmons in graphene and the combination of graphene with plasmons supported by metallic structures [2]. Here, apart from the dynamic control via external voltages previously mentioned, the use of graphene brings with it the remarkable property that graphene plasmons have a wavelength λp that can be even one hundred times smaller than that in free space λ (for instance λp ~ 100 nm at λ ~ 10 μm). This provides both extreme confinement and extreme enhancement of the electromagnetic field at the graphene sheet which, together with its high sensitivity to the doping level, opens many interesting perspectives for new optical devices. The collection of papers presented in this special issue highlights different aspects of nanophotonics in graphene and related systems. The timely appearance of this publication was apparent during the monographic workshop 'Graphene Nanophotonics', sponsored by the European Science Foundation and held during 3-8 March 2013, in Benasque (Spain). This special issue

  15. Stretchable Si Logic Devices with Graphene Interconnects.

    PubMed

    Lee, Wonho; Jang, Houk; Jang, Bongkyun; Kim, Jae-Hyun; Ahn, Jong-Hyun

    2015-12-16

    Stretchable integrated circuits consisting of ultrathin Si transistors connected by multilayer graphene are demonstrated. Graphene interconnects act as an effective countervailing component to maintain the electrical performance of Si integrated circuits against external strain. Concentration of the applied strain on the graphene interconnect parts can stably protect the Si active devices against applied strains over 10%.

  16. Graphene-nickel interfaces: a review

    NASA Astrophysics Data System (ADS)

    Dahal, Arjun; Batzill, Matthias

    2014-02-01

    Graphene on nickel is a prototypical example of an interface between graphene and a strongly interacting metal, as well as a special case of a lattice matched system. The chemical interaction between graphene and nickel is due to hybridization of the metal d-electrons with the π-orbitals of graphene. This interaction causes a smaller separation between the nickel surface and graphene (0.21 nm) than the typical van der Waals gap-distance between graphitic layers (0.33 nm). Furthermore, the physical properties of graphene are significantly altered. Main differences are the opening of a band gap in the electronic structure and a shifting of the π-band by ~2 eV below the Fermi-level. Experimental evidence suggests that the ferromagnetic nickel induces a magnetic moment in the carbon. Substrate induced geometric and electronic changes alter the phonon dispersion. As a consequence, monolayer graphene on nickel does not exhibit a Raman spectrum. In addition to reviewing these fundamental physical properties of graphene on Ni(111), we also discuss the formation and thermal stability of graphene and a surface-confined nickel-carbide. The fundamental growth mechanisms of graphene by chemical vapor deposition are also described. Different growth modes depending on the sample temperature have been identified in ultra high vacuum surface science studies. Finally, we give a brief summary for the synthesis of more complex graphene and graphitic structures using nickel as catalyst and point out some potential applications for graphene-nickel interfaces.

  17. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene.

    PubMed

    Brownson, Dale A C; Varey, Sarah A; Hussain, Fiazal; Haigh, Sarah J; Banks, Craig E

    2014-01-01

    We report the electrochemical properties of pristine monolayer, double layer and few-layer (termed quasi-) graphene grown via CVD and transferred using PMMA onto an insulating substrate (silicon dioxide wafers). Characterisation has been performed by Raman spectroscopy, optical spectroscopy, Atomic Force Microscopy and X-ray Photoelectron Spectroscopy, revealing 'true' pristine single-layer graphene (O/C of 0.05) at the former and pristine quasi-graphene at the latter (O/C of 0.07); the term "quasi-graphene" is coined due to the surface comprising on average 4-graphene-layers. The graphene electrodes are electrochemically characterised using both inner-sphere and outer-sphere redox probes with electrochemical performances of the graphene electrodes compared to other available graphitic electrodes, namely that of basal- and edge- plane pyrolytic graphite electrodes constructed from Highly Ordered Pyrolytic Graphite (HOPG), with information on heterogeneous rate constants (k(o)) obtained. The electrochemical rate constants are predominantly influenced by the electronic properties of the graphene surfaces. Monolayer graphene is found to exhibit slow heterogeneous electron transfer (HET) kinetics towards the redox probes studied, with HET rates ca. 2 and 8 times faster at quasi-graphene and HOPG respectively, relative to that of the monolayer graphene electrode. Critically contrasting the performance of monolayer graphene to quasi-graphene and HOPG electrodes reveals that increasing the number of graphene layers results in improved electrochemical properties, where in terms of the electrochemical reversibility of the probes studied: monolayer-graphene < quasi-graphene < HOPG, as governed by the respective HET electrochemical rate constants. Given that edge plane sites are the predominant origin of fast electron transfer kinetics at graphitic materials, the slow HET rates at pristine single-layer graphene electrodes are likely due to graphene's fundamental geometry

  18. Graphene field emission devices

    SciTech Connect

    Kumar, S. Raghavan, S.; Duesberg, G. S.; Pratap, R.

    2014-09-08

    Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm{sup −1} at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.

  19. Flexible Graphene Composites for Human Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Sosa, Edward D.

    2013-01-01

    Graphene oxide allows for better dispersion stability in aqueous and organic solvents. Stabilizers provide dispersion of pristine graphene. Roll coating provide the best coverage of polyurethane sheets. Graphene and GO coated polyurethane used to fabricate flexible laminate composite. Permeation testing indicates that pristine graphene acts as a better gas barrier material. Continuous graphene films are expected to provide even better gas barrier properties.

  20. Charging Graphene for Energy Storage

    SciTech Connect

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  1. Scattering of graphene plasmons by defects in the graphene sheet.

    PubMed

    Garcia-Pomar, Juan Luis; Nikitin, Alexey Yu; Martin-Moreno, Luis

    2013-06-25

    A theoretical study is presented on the scattering of graphene surface plasmons (GSPs) by defects in the graphene sheet they propagate in. These defects can be either natural (as domain boundaries, ripples, and cracks, among others) or induced by an external gate. The scattering is shown to be governed by an integral equation, derived from a plane wave expansion of the fields, which in general must be solved numerically, but it provides useful analytical results for small defects. Two main cases are considered: smooth variations of the graphene conductivity (characterized by a Gaussian conductivity profile) and sharp variations (represented by islands with different conductivity). In general, reflection largely dominates over radiation out of the graphene sheet. However, in the case of sharply defined conductivity islands, there are some values of island size and frequency where the reflectance vanishes and, correspondingly, the radiation out-of-plane is the main scattering process. For smooth defects, the reflectance spectra present a single maximum at the condition k(p)a ≈ √2, where k(p) is the GSP wavevector and a is the spatial width of the defect. In contrast, the reflectance spectra of sharp defects present periodic oscillations with period k(p)′a, where k(p)′ is the GSP wavelength inside the defect. Finally, the case of cracks (gaps in the graphene conductivity) is considered, showing that the reflectance is practically unity for gap widths larger than one-tenth of the GSP wavelength.

  2. Hydrogenated Graphene as a Homoepitaxial Tunnel Barrier for Spin and Charge Transport in Graphene.

    PubMed

    Friedman, Adam L; van 't Erve, Olaf M J; Robinson, Jeremy T; Whitener, Keith E; Jonker, Berend T

    2015-07-28

    We demonstrate that hydrogenated graphene performs as a homoepitaxial tunnel barrier on a graphene charge/spin channel. We examine the tunneling behavior through measuring the IV curves and zero bias resistance. We also fabricate hydrogenated graphene/graphene nonlocal spin valves and measure the spin lifetimes using the Hanle effect, with spintronic nonlocal spin valve operation demonstrated up to room temperature. We show that while hydrogenated graphene indeed allows for spin transport in graphene and has many advantages over oxide tunnel barriers, it does not perform as well as similar fluorinated graphene/graphene devices, possibly due to the presence of magnetic moments in the hydrogenated graphene that act as spin scatterers. PMID:26047069

  3. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength

    SciTech Connect

    Wan, Wubo; Zhao, Zongbin; Hu, Han; Gogotsi, Yury; Qiu, Jieshan

    2013-11-15

    Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: • Graphene was synthesized by an effective and environmentally friendly approach. • We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. • Flexible graphene films were prepared by self-assembly of the graphene sheets. • The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded.

  4. Microwave and optical saturable absorption in graphene.

    PubMed

    Zheng, Zhiwei; Zhao, Chujun; Lu, Shunbin; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun

    2012-10-01

    We report on the first experiments on saturable absorption in graphene at microwave frequency band. Almost independent of the incident frequency, microwave absorbance of graphene always decreases with increasing the power and reaches at a constant level for power larger than 80 µW, evidencing the microwave saturable absorption property of graphene. Optical saturable absorption of the same graphene sample was also experimentally confirmed by an open-aperture Z-scan technique by one laser at telecommunication band and another pico-second laser at 1053 nm, respectively. Herein, we are able to conclude that graphene is indeed a broadband saturable absorber that can operate at both microwave and optical band.

  5. Single-mode cylindrical graphene plasmon waveguide

    NASA Astrophysics Data System (ADS)

    Yang, Jianfeng; Yang, Jingjing; Huang, Ming

    2016-08-01

    A cylindrical graphene plasmon waveguide (CGPW) which consists of two rolled graphene ribbons, a dielectric core and a dielectric interlayer is proposed. An analytical model for the single-mode condition and cutoff frequency of high-order graphene surface plasmon (GSP) modes is presented and verified by finite element method (FEM) simulations. Single-mode operation region of CGPW is identified in the frequency-radius space. By varying the separation between two graphene sheets and the Fermi level of graphene, a large tunability of the mode behavior is also demonstrated. The proposed structure may provide a new freedom to manipulate GSPs, and would lead to novel applications in optics.

  6. Doping of graphene during chemical exfoliation

    NASA Astrophysics Data System (ADS)

    Srivastava, Pawan Kumar; Yadav, Premlata; Ghosh, Subhasis

    2013-02-01

    Graphene provides a perfect platform to explore the unique electronic properties in two-dimensions. However, most electronic applications are handicapped by the absence of a semiconducting gap in pristine graphene. To control the semiconducting properties of graphene, doping is regarded as one of the most feasible methods. Here we demonstrate that graphene can be effectively doped during chemical exfoliation of highly ordered pyrolitic graphite in organic solvents. Layered structure of graphene sheets was confirmed by confocal Raman spectroscopy and doping was probed by analyzing shift in Raman peak positions and transistor transfer (IDS-VGS) characteristics.

  7. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  8. Atomic Covalent Functionalization of Graphene

    PubMed Central

    Johns, James E.; Hersam, Mark C.

    2012-01-01

    Conspectus Although graphene’s physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp2 bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene’s electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (~1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Towards this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two

  9. Manipulation of fullerene molecules on graphene

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Mitrofanov, V. V.; Slepchenkov, M. M.; Shunaev, V. V.

    2015-03-01

    Due to the increasing demand for functionalization of graphene and its application as a functional element of real electronic and / or mechanical devices, as well as due to its unique adhesive and sensory abilities the actual problem is the use of graphene as a substrate on which the assembly of supramolecular structures. Elements of such structures can be different molecules driven by external factors, and can be easily transported on graphene. These molecules primarily include miniature spheroidal fullerenes easy to navigate on the surface of graphene, in particular icosahedral C60. The aim of this work was to find an effective method of manipulation of fullerene C60 on graphene. As such method we proposed to introduce in graphene sheet structural defect of the atomic framework namely defect Stone-Wales (pentagon-heptagon pairs). Another structural defect studied in this paper is adsorbed on the Stone-Wales defect hydrogen atom. Molecular dynamics and tight binding method were applied to calculate the location of the molecule C60 on graphene sheet and its movement. To identify the regulatities of behavior of fullerene on graphene sheet we carried out a series of numerical experiments at different temperatures. In this paper we calculated the energy profile of interaction between fullerene and graphene sheet. Obtained results showed that forming on the surface of the graphene sheet defects in a certain way, one can control the trajectory of molecules on graphene.

  10. Nano-graphene in biomedicine: theranostic applications.

    PubMed

    Yang, Kai; Feng, Liangzhu; Shi, Xiaoze; Liu, Zhuang

    2013-01-21

    Owing to their unique physical and chemical properties, graphene and its derivatives such as graphene oxide (GO), reduced graphene oxide (RGO) and GO-nanocomposites have attracted tremendous interest in many different fields including biomedicine in recent years. With every atom exposed on its surface, single-layered graphene shows ultra-high surface area available for efficient molecular loading and bioconjugation, and has been widely explored as novel nano-carriers for drug and gene delivery. Utilizing the intrinsic near-infrared (NIR) optical absorbance, in vivo graphene-based photothermal therapy has been realized, achieving excellent anti-tumor therapeutic efficacy in animal experiments. A variety of inorganic nanoparticles can be grown on the surface of nano-graphene, obtaining functional graphene-based nanocomposites with interesting optical and magnetic properties useful for multi-modal imaging and imaging-guided cancer therapy. Moreover, significant efforts have also been devoted to study the behaviors and toxicology of functionalized nano-graphene in animals. It has been uncovered that both surface chemistry and sizes play key roles in controlling the biodistribution, excretion, and toxicity of nano-graphene. Biocompatibly coated nano-graphene with ultra-small sizes can be cleared out from body after systemic administration, without rendering noticeable toxicity to the treated mice. In this review article, we will summarize the latest progress in this rapidly growing field, and discuss future prospects and challenges of using graphene-based materials for theranostic applications.

  11. Majorana Zero Modes in Graphene

    NASA Astrophysics Data System (ADS)

    San-Jose, P.; Lado, J. L.; Aguado, R.; Guinea, F.; Fernández-Rossier, J.

    2015-10-01

    A clear demonstration of topological superconductivity (TS) and Majorana zero modes remains one of the major pending goals in the field of topological materials. One common strategy to generate TS is through the coupling of an s -wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here, we demonstrate an alternative approach for the creation of TS in graphene-superconductor junctions without the need for spin-orbit coupling. Our prediction stems from the helicity of graphene's zero-Landau-level edge states in the presence of interactions and from the possibility, experimentally demonstrated, of tuning their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter, in particular, exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero-bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.

  12. Graphene nanopore field effect transistors

    SciTech Connect

    Qiu, Wanzhi; Skafidas, Efstratios

    2014-07-14

    Graphene holds great promise for replacing conventional Si material in field effect transistors (FETs) due to its high carrier mobility. Previously proposed graphene FETs either suffer from low ON-state current resulting from constrained channel width or require complex fabrication processes for edge-defecting or doping. Here, we propose an alternative graphene FET structure created on intrinsic metallic armchair-edged graphene nanoribbons with uniform width, where the channel region is made semiconducting by drilling a pore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. The proposed GNP-FETs have high ON-state currents due to seamless atomic interface between the channel and electrodes and are able to be created with arbitrarily wide ribbons. In addition, the performance of GNP-FETs can be tuned by varying pore size and ribbon width. As a result, their performance and fabrication process are more predictable and controllable in comparison to schemes based on edge-defects and doping. Using first-principle transport calculations, we show that GNP-FETs can achieve competitive leakage current of ∼70 pA, subthreshold swing of ∼60 mV/decade, and significantly improved On/Off current ratios on the order of 10{sup 5} as compared with other forms of graphene FETs.

  13. Impermeable graphenic encasement of bacteria.

    PubMed

    Mohanty, Nihar; Fahrenholtz, Monica; Nagaraja, Ashvin; Boyle, Daniel; Berry, Vikas

    2011-03-01

    Transmission electron microscopy (TEM) of hygroscopic, permeable, and electron-absorbing biological cells has been an important challenge due to the volumetric shrinkage, electrostatic charging, and structural degradation of cells under high vacuum and fixed electron beam.(1-3) Here we show that bacterial cells can be encased within a graphenic chamber to preserve their dimensional and topological characteristics under high vacuum (10(-5) Torr) and beam current (150 A/cm(2)). The strongly repelling π clouds in the interstitial sites of graphene's lattice(4) reduces the graphene-encased-cell's permeability(5) from 7.6-20 nm/s to 0 nm/s. The C-C bond flexibility(5,6) enables conformal encasement of cells. Additionally, graphene's high Young's modulus(6,7) retains cell's structural integrity under TEM conditions, while its high electrical(8) and thermal conductivity(9) significantly abates electrostatic charging. We envision that the graphenic encasement approach will facilitate real-time TEM imaging of fluidic samples and potentially biochemical activity.

  14. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  15. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  16. Graphene based flexible electrochromic devices

    NASA Astrophysics Data System (ADS)

    Polat, Emre O.; Balcı, Osman; Kocabas, Coskun

    2014-10-01

    Graphene emerges as a viable material for optoelectronics because of its broad optical response and gate-tunable properties. For practical applications, however, single layer graphene has performance limits due to its small optical absorption defined by fundamental constants. Here, we demonstrated a new class of flexible electrochromic devices using multilayer graphene (MLG) which simultaneously offers all key requirements for practical applications; high-contrast optical modulation over a broad spectrum, good electrical conductivity and mechanical flexibility. Our method relies on electro-modulation of interband transition of MLG via intercalation of ions into the graphene layers. The electrical and optical characterizations reveal the key features of the intercalation process which yields broadband optical modulation up to 55 per cent in the visible and near-infrared. We illustrate the promises of the method by fabricating reflective/transmissive electrochromic devices and multi-pixel display devices. Simplicity of the device architecture and its compatibility with the roll-to-roll fabrication processes, would find wide range of applications including smart windows and display devices. We anticipate that this work provides a significant step in realization of graphene based optoelectronics.

  17. Graphene based flexible electrochromic devices.

    PubMed

    Polat, Emre O; Balcı, Osman; Kocabas, Coskun

    2014-01-01

    Graphene emerges as a viable material for optoelectronics because of its broad optical response and gate-tunable properties. For practical applications, however, single layer graphene has performance limits due to its small optical absorption defined by fundamental constants. Here, we demonstrated a new class of flexible electrochromic devices using multilayer graphene (MLG) which simultaneously offers all key requirements for practical applications; high-contrast optical modulation over a broad spectrum, good electrical conductivity and mechanical flexibility. Our method relies on electro-modulation of interband transition of MLG via intercalation of ions into the graphene layers. The electrical and optical characterizations reveal the key features of the intercalation process which yields broadband optical modulation up to 55 per cent in the visible and near-infrared. We illustrate the promises of the method by fabricating reflective/transmissive electrochromic devices and multi-pixel display devices. Simplicity of the device architecture and its compatibility with the roll-to-roll fabrication processes, would find wide range of applications including smart windows and display devices. We anticipate that this work provides a significant step in realization of graphene based optoelectronics. PMID:25270391

  18. Emerging frontiers of graphene in biomedicine.

    PubMed

    Byun, Jonghoe

    2015-02-01

    Graphene is a next-generation biomaterial with increasing biomedical applicability. As a new class of one-atom-thick nanosheets, it is a true two-dimensional honeycomb network nanomaterial that attracts interest in various scientific fields and is rapidly becoming the most widely studied carbon-based material. Since its discovery in 2004, its unique optical, mechanical, electronic, thermal, and magnetic properties are the basis of exploration of the potential applicability of graphene. Graphene materials, such as graphene oxide and its reduced form, are studied extensively in the biotechnology arena owing to their multivalent functionalization and efficient surface loading with various biomolecules. This review provides a brief summary of the recent progress in graphene and graphene oxide biological research together with current findings to spark novel applications in biomedicine. Graphene-based applications are progressively developing; hence, the opportunities and challenges of this rapidly growing field are discussed together with the versatility of these multifaceted materials.

  19. Graphene based enzymatic bioelectrodes and biofuel cells

    NASA Astrophysics Data System (ADS)

    Karimi, Anahita; Othman, Ali; Uzunoglu, Aytekin; Stanciu, Lia; Andreescu, Silvana

    2015-04-01

    The excellent electrical conductivity and ease of functionalization make graphene a promising material for use in enzymatic bioelectrodes and biofuel cells. Enzyme based biofuel cells have attracted substantial interest due to their potential to harvest energy from organic materials. This review provides an overview of the functional properties and applications of graphene in the construction of biofuel cells as alternative power sources. The review covers the current state-of-the-art research in graphene based nanomaterials (physicochemical properties and surface functionalities), the role of these parameters in enhancing electron transfer, the stability and activity of immobilized enzymes, and how enhanced power density can be achieved. Specific examples of enzyme immobilization methods, enzyme loading, stability and function on graphene, functionalized graphene and graphene based nanocomposite materials are discussed along with their advantages and limitations. Finally, a critical evaluation of the performance of graphene based enzymatic biofuel cells, the current status, challenges and future research needs are provided.

  20. Graphene-Based Optical Biosensors and Imaging

    SciTech Connect

    Tang, Zhiwen; He, Shijiang; Pei, Hao; Du, Dan; Fan, Chunhai; Lin, Yuehe

    2014-01-13

    This chapter focuses on the design, fabrication and application of graphene based optical nanobiosensors. The emerging graphene based optical nanobiosensors demonstrated the promising bioassay and biomedical applications thanking to the unique optical features of graphene. According to the different applications, the graphene can be tailored to form either fluorescent emitter or efficient fluorescence quencher. The exceptional electronic feature of graphene makes it a powerful platform for fabricating the SPR and SERS biosensors. Today the graphene based optical biosensors have been constructed to detect various targets including ions, small biomolecules, DNA/RNA and proteins. This chapter reviews the recent progress in graphene-based optical biosensors and discusses the opportunities and challenges in this field.

  1. Resonant orbitals in fluorinated epitaxial graphene.

    PubMed

    Gunasinghe, R N; Samarakoon, D K; Arampath, A B; Shashikala, H B M; Vilus, J; Hall, J H; Wang, X-Q

    2014-09-21

    Fluorinated epitaxial graphene has potential applications in organic electronics. We present the calculation results by means of first-principles density-functional-theory for various fluorination patterns. Our results indicate that semi-fluorinated graphene conformations follow the same energetic order as the corresponding hydrogenated graphene counterparts. The distinctive electronic properties between semi-hydrogenated graphene and semi-fluorinated graphene are attributed to the polar covalent C-F bond in contrast to the covalent C-H bond. The partial ionic character of the C-F bond results in the hyperconjugation of C-F σ-bonds with an sp(2) network of graphene. Resonant orbitals stabilize the stirrup conformation via the gauche effect. Resonant orbitals also lead to electron doping of the sp(2) network and enhanced excitonic effect. The implications of resonant-orbital-induced doping for the electronic and magnetic properties of fluorinated epitaxial graphene are discussed.

  2. Electromagnetic interference shielding effectiveness of monolayer graphene.

    PubMed

    Hong, Seul Ki; Kim, Ki Yeong; Kim, Taek Yong; Kim, Jong Hoon; Park, Seong Wook; Kim, Joung Ho; Cho, Byung Jin

    2012-11-16

    We report the first experimental results on the electromagnetic interference (EMI) shielding effectiveness (SE) of monolayer graphene. The monolayer CVD graphene has an average SE value of 2.27 dB, corresponding to ~40% shielding of incident waves. CVD graphene shows more than seven times (in terms of dB) greater SE than gold film. The dominant mechanism is absorption rather than reflection, and the portion of absorption decreases with an increase in the number of graphene layers. Our modeling work shows that plane-wave theory for metal shielding is also applicable to graphene. The model predicts that ideal monolayer graphene can shield as much as 97.8% of EMI. This suggests the feasibility of manufacturing an ultrathin, transparent, and flexible EMI shield by single or few-layer graphene. PMID:23085718

  3. Graphene based enzymatic bioelectrodes and biofuel cells.

    PubMed

    Karimi, Anahita; Othman, Ali; Uzunoglu, Aytekin; Stanciu, Lia; Andreescu, Silvana

    2015-04-28

    The excellent electrical conductivity and ease of functionalization make graphene a promising material for use in enzymatic bioelectrodes and biofuel cells. Enzyme based biofuel cells have attracted substantial interest due to their potential to harvest energy from organic materials. This review provides an overview of the functional properties and applications of graphene in the construction of biofuel cells as alternative power sources. The review covers the current state-of-the-art research in graphene based nanomaterials (physicochemical properties and surface functionalities), the role of these parameters in enhancing electron transfer, the stability and activity of immobilized enzymes, and how enhanced power density can be achieved. Specific examples of enzyme immobilization methods, enzyme loading, stability and function on graphene, functionalized graphene and graphene based nanocomposite materials are discussed along with their advantages and limitations. Finally, a critical evaluation of the performance of graphene based enzymatic biofuel cells, the current status, challenges and future research needs are provided. PMID:25832672

  4. Chemical vapor deposition of graphene single crystals.

    PubMed

    Yan, Zheng; Peng, Zhiwei; Tour, James M

    2014-04-15

    As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and

  5. Tunable beam steering enabled by graphene metamaterials.

    PubMed

    Orazbayev, B; Beruete, M; Khromova, I

    2016-04-18

    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.

  6. Self healing nature of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Debroy, Sanghamitra; Pavan Kumar Miriyala, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit

    2016-08-01

    The phenomenon of self healing of cracks in bilayer graphene sheet has been studied using molecular dynamics simulations. The bilayer graphene sheet was subjected to uniaxial tensile load resulting in initiation and propagation of cracks on exceeding the ultimate tensile strength. Subsequently, all forces acting on the sheet were removed and sheet was relaxed. The cracks formed in the graphene sheet healed without any external aid within 0.4 ps The phenomenon of self healing of the cracks in graphene sheet was found to be independent of the length of the crack, but occurred for critical crack opening distance less than 5 Å for AA stacked sheet and 13 Å for AB stacked bilayer graphene sheet. Self healing was observed for both AB (mixed stacking of armchair and zigzag graphene sheet) and AA (both sheets of similar orientation i.e. either armchair-armchair or zigzag-zigzag) stacking of bilayer graphene sheet.

  7. Nanoelectronic biosensors based on CVD grown graphene

    NASA Astrophysics Data System (ADS)

    Huang, Yinxi; Dong, Xiaochen; Shi, Yumeng; Li, Chang Ming; Li, Lain-Jong; Chen, Peng

    2010-08-01

    Graphene, a single-atom-thick and two-dimensional carbon material, has attracted great attention recently. Because of its unique electrical, physical, and optical properties, graphene has great potential to be a novel alternative to carbon nanotubes in biosensing. We demonstrate the use of large-sized CVD grown graphene films configured as field-effect transistors for real-time biomolecular sensing. Glucose or glutamate molecules were detected by the conductance change of the graphene transistor as the molecules are oxidized by the specific redox enzyme (glucose oxidase or glutamic dehydrogenase) functionalized onto the graphene film. This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors.Graphene, a single-atom-thick and two-dimensional carbon material, has attracted great attention recently. Because of its unique electrical, physical, and optical properties, graphene has great potential to be a novel alternative to carbon nanotubes in biosensing. We demonstrate the use of large-sized CVD grown graphene films configured as field-effect transistors for real-time biomolecular sensing. Glucose or glutamate molecules were detected by the conductance change of the graphene transistor as the molecules are oxidized by the specific redox enzyme (glucose oxidase or glutamic dehydrogenase) functionalized onto the graphene film. This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors. Electronic supplementary information (ESI) available: AFM images of graphene film before and after functionalization, transfer curves of graphene after every step, SEM image of CNT-net, and detection results using CNT-net devices. See DOI: 10.1039/c0nr00142b

  8. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. We demonstrate successful tunneling, charge, and spin transport with a fluorinated graphene tunnel barrier on a graphene channel. We show that while spin transport stops short of room temperature, spin polarization efficiency values are the highest of any graphene spin devices. We also demonstrate that hydrogenation of graphene can also be used to create a tunnel barrier. We begin with a four-layer stack of graphene and hydrogenate the top few layers to decouple them from the graphene transport channel beneath. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies. The measured spin polarization efficiencies for hydrogenated graphene are higher than most oxide tunnel barriers on graphene, but not as high as with fluorinated graphene tunnel barriers. However, here we show that spin transport persists up to room temperature. Our results for the hydrogenated graphene tunnel barriers are compared with fluorinated tunnel barriers and we discuss the

  9. Chemistry at the dirac point of graphene

    NASA Astrophysics Data System (ADS)

    Sarkar, Santanu

    Graphene holds great potential as an electronic material because of its excellent transport properties, which derive from its unique Fermi surface and ballistic conductance. It exhibits extremely high mobility [~250,000 cm*2/(V*s)]. Despite its extraordinary properties, the absence of a band-gap in graphene makes it unsuitable for its use as an active element in conventional field effect transistors (FETs). Another problem with pristine graphene is its lack of solution processability, which inhibits it applications in numerous fields such as printed electronics, transparent conductors, nano-biodevices, and thin film technologies involving fuel cells, capacitors and solar cells. My thesis is focused on addressing theses issue by application of covalent chemistry on graphene. We have applied the Kolbe electro-oxidation strategy to achieve an efficient quasi-reversible electrochemical grafting of the naphthylmethyl radicals to graphene. The method facilitates reversible bandgap engineering in graphene and preparation of electrochemically erasable organic dielectric films. We have discovered that the zero-band-gap electronic structure of graphene enables it to function as either the diene or the dienophile in the Diels-Alder (DA) reaction, and this versatile synthetic method offers a powerful strategy for the reversible modification of the electronic properties of graphene under very mild conditions. We show that the application of the Diels-Alder (DA) chemistry to graphene, which is capable of simultaneous formation of a pair of sp3-carbon centers (balanced divacancies) in graphene, can selectively produce DA-modified graphene FET devices with mobility between 1,000-6,000 cm2V-1s-1 (with a variable range hopping transport mechanism). Most of the covalent chemistry applied on graphene leads to the change in hybridization of graphene sp2 carbon to sp3 (destructive hybridization) and the FET devices based on such covalently modified graphene shows a drastic reduction of

  10. Transparent conductive graphene textile fibers.

    PubMed

    Neves, A I S; Bointon, T H; Melo, L V; Russo, S; de Schrijver, I; Craciun, M F; Alves, H

    2015-01-01

    Transparent and flexible electrodes are widely used on a variety of substrates such as plastics and glass. Yet, to date, transparent electrodes on a textile substrate have not been explored. The exceptional electrical, mechanical and optical properties of monolayer graphene make it highly attractive as a transparent electrode for applications in wearable electronics. Here, we report the transfer of monolayer graphene, grown by chemical vapor deposition on copper foil, to fibers commonly used by the textile industry. The graphene-coated fibers have a sheet resistance as low as ~1 kΩ per square, an equivalent value to the one obtained by the same transfer process onto a Si substrate, with a reduction of only 2.3 per cent in optical transparency while keeping high stability under mechanical stress. With this approach, we successfully achieved the first example of a textile electrode, flexible and truly embedded in a yarn. PMID:25952133

  11. Ion selectivity of graphene nanopores

    PubMed Central

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-01-01

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K+ cations over Cl− anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K+/Cl− selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size. PMID:27102837

  12. Ion selectivity of graphene nanopores.

    PubMed

    Rollings, Ryan C; Kuan, Aaron T; Golovchenko, Jene A

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K(+) cations over Cl(-) anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K(+)/Cl(-) selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.

  13. Graphene based multifunctional flame sensor.

    PubMed

    Ferry, Darim B; Pavan Kumar, R; Reddy, Siva K; Mukherjee, Anwesha; Misra, Abha

    2015-05-15

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes.

  14. Ion selectivity of graphene nanopores

    DOE PAGES

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K+ cations over Cl- anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations.more » Furthermore, the observed K+/Cl- selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.« less

  15. Molecule-hugging graphene nanopores

    PubMed Central

    Garaj, Slaven; Liu, Song; Golovchenko, Jene A.; Branton, Daniel

    2013-01-01

    It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation of DNA through these nanopores were experimentally explored and theoretically modeled. Our experiments show that these nanopores have unusually high sensitivity (0.65 nA/Å) to extremely small changes in the translocating molecule’s outer diameter. Such atomically short graphene nanopores can also resolve nanoscale-spaced molecular structures along the length of a polymer, but do so with greatest sensitivity only when the pore and molecule diameters are closely matched. Modeling confirms that our most closely matched pores have an inherent resolution of ≤0.6 nm along the length of the molecule. PMID:23836648

  16. Molecule-hugging graphene nanopores.

    PubMed

    Garaj, Slaven; Liu, Song; Golovchenko, Jene A; Branton, Daniel

    2013-07-23

    It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation of DNA through these nanopores were experimentally explored and theoretically modeled. Our experiments show that these nanopores have unusually high sensitivity (0.65 nA/Å) to extremely small changes in the translocating molecule's outer diameter. Such atomically short graphene nanopores can also resolve nanoscale-spaced molecular structures along the length of a polymer, but do so with greatest sensitivity only when the pore and molecule diameters are closely matched. Modeling confirms that our most closely matched pores have an inherent resolution of ≤ 0.6 nm along the length of the molecule. PMID:23836648

  17. Graphene based multifunctional flame sensor.

    PubMed

    Ferry, Darim B; Pavan Kumar, R; Reddy, Siva K; Mukherjee, Anwesha; Misra, Abha

    2015-05-15

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes. PMID:25900408

  18. Graphene based multifunctional flame sensor

    NASA Astrophysics Data System (ADS)

    Ferry, Darim B.; Pavan Kumar, R.; Reddy, Siva K.; Mukherjee, Anwesha; Misra, Abha

    2015-05-01

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes.

  19. Transparent conductive graphene textile fibers

    PubMed Central

    Neves, A. I. S.; Bointon, T. H.; Melo, L. V.; Russo, S.; de Schrijver, I.; Craciun, M. F.; Alves, H.

    2015-01-01

    Transparent and flexible electrodes are widely used on a variety of substrates such as plastics and glass. Yet, to date, transparent electrodes on a textile substrate have not been explored. The exceptional electrical, mechanical and optical properties of monolayer graphene make it highly attractive as a transparent electrode for applications in wearable electronics. Here, we report the transfer of monolayer graphene, grown by chemical vapor deposition on copper foil, to fibers commonly used by the textile industry. The graphene-coated fibers have a sheet resistance as low as ~1 kΩ per square, an equivalent value to the one obtained by the same transfer process onto a Si substrate, with a reduction of only 2.3 per cent in optical transparency while keeping high stability under mechanical stress. With this approach, we successfully achieved the first example of a textile electrode, flexible and truly embedded in a yarn. PMID:25952133

  20. Flexible transformation plasmonics using graphene.

    PubMed

    Lu, Wei Bing; Zhu, Wei; Xu, Hong Ju; Ni, Zhen Hua; Dong, Zheng Gao; Cui, Tie Jun

    2013-05-01

    The flexible control of surface plasmon polaritons (SPPs) is important and intriguing due to its wide application in novel plasmonic devices. Transformation optics (TO) offers the capability either to confine the SPP propagation on rigid curved/uneven surfaces, or to control the flow of SPPs on planar surfaces. However, TO has not permitted us to confine, manipulate, and control SPP waves on flexible curved surfaces. Here, we propose to confine and freely control flexible SPPs using TO and graphene. We show that SPP waves can be naturally confined and propagate on curved or uneven graphene surfaces with little bending and radiation losses, and the confined SPPs are further manipulated and controlled using TO. Flexible plasmonic devices are presented, including the bending waveguides, wave splitter, and Luneburg lens on curved surfaces. Together with the intrinsic flexibility, graphene can be served as a good platform for flexible transformation plasmonics. PMID:23669904

  1. Flexible transformation plasmonics using graphene.

    PubMed

    Lu, Wei Bing; Zhu, Wei; Xu, Hong Ju; Ni, Zhen Hua; Dong, Zheng Gao; Cui, Tie Jun

    2013-05-01

    The flexible control of surface plasmon polaritons (SPPs) is important and intriguing due to its wide application in novel plasmonic devices. Transformation optics (TO) offers the capability either to confine the SPP propagation on rigid curved/uneven surfaces, or to control the flow of SPPs on planar surfaces. However, TO has not permitted us to confine, manipulate, and control SPP waves on flexible curved surfaces. Here, we propose to confine and freely control flexible SPPs using TO and graphene. We show that SPP waves can be naturally confined and propagate on curved or uneven graphene surfaces with little bending and radiation losses, and the confined SPPs are further manipulated and controlled using TO. Flexible plasmonic devices are presented, including the bending waveguides, wave splitter, and Luneburg lens on curved surfaces. Together with the intrinsic flexibility, graphene can be served as a good platform for flexible transformation plasmonics.

  2. Ion selectivity of graphene nanopores.

    PubMed

    Rollings, Ryan C; Kuan, Aaron T; Golovchenko, Jene A

    2016-01-01

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K(+) cations over Cl(-) anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K(+)/Cl(-) selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size. PMID:27102837

  3. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests

    PubMed Central

    Efremova, Ludmila V.; Vasilchenko, Alexey S.; Rakov, Eduard G.; Deryabin, Dmitry G.

    2015-01-01

    The plate-like graphene shells (GS) produced by an original methane pyrolysis method and their derivatives graphene oxide (GO) and graphene oxide paper (GO-P) were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials' toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data showed GO expressed bioactivity in aqueous suspension, whereas GS suspensions and the GO-P surface were assessed as nontoxic materials. The mechanism of toxicity of GO was shown not to be associated with oxidative stress in the targeted soxS::lux and katG::lux reporter cells; also, GO did not lead to significant mechanical disruption of treated bacteria with the release of intracellular DNA contents into the environment. The well-coordinated time- and dose-dependent surface charge neutralization and transport and energetic disorders in the Escherichia coli cells suggest direct membrane interaction, internalization, and perturbation (i.e., “membrane stress”) as a clue to graphene oxide's mechanism of toxicity. PMID:26221608

  4. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests.

    PubMed

    Efremova, Ludmila V; Vasilchenko, Alexey S; Rakov, Eduard G; Deryabin, Dmitry G

    2015-01-01

    The plate-like graphene shells (GS) produced by an original methane pyrolysis method and their derivatives graphene oxide (GO) and graphene oxide paper (GO-P) were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials' toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data showed GO expressed bioactivity in aqueous suspension, whereas GS suspensions and the GO-P surface were assessed as nontoxic materials. The mechanism of toxicity of GO was shown not to be associated with oxidative stress in the targeted soxS::lux and katG::lux reporter cells; also, GO did not lead to significant mechanical disruption of treated bacteria with the release of intracellular DNA contents into the environment. The well-coordinated time- and dose-dependent surface charge neutralization and transport and energetic disorders in the Escherichia coli cells suggest direct membrane interaction, internalization, and perturbation (i.e., "membrane stress") as a clue to graphene oxide's mechanism of toxicity. PMID:26221608

  5. Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection.

    PubMed

    Li, Bing; Pan, Genhua; Avent, Neil D; Lowry, Roy B; Madgett, Tracey E; Waines, Paul L

    2015-10-15

    A novel printed graphene electrode modified with electrochemically reduced graphene oxide was developed for the detection of a specific oligonucleotide sequence. The graphene oxide was immobilized onto the surface of a graphene electrode via π-π bonds and electrochemical reduction of graphene oxide was achieved by cyclic voltammetry. A much higher redox current was observed from the reduced graphene oxide-graphene double-layer electrode, a 42% and 36.7% increase, respectively, in comparison with that of a bare printed graphene or reduced graphene oxide electrode. The good electron transfer activity is attributed to a combination of the large number of electroactive sites in reduced graphene oxide and the high conductivity nature of graphene. The probe ssDNA was further immobilized onto the surface of the reduced graphene oxide-graphene double-layer electrode via π-π bonds and then hybridized with its target cDNA. The change of peak current due to the hybridized dsDNA could be used for quantitative sensing of DNA concentration. It has been demonstrated that a linear range from 10(-7)M to 10(-12)M is achievable for the detection of human immunodeficiency virus 1 gene with a detection limit of 1.58 × 10(-13)M as determined by three times standard deviation of zero DNA concentration.

  6. Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes.

    PubMed

    Liu, Jinyun; Zheng, Qiye; Goodman, Matthew D; Zhu, Haoyue; Kim, Jinwoo; Krueger, Neil A; Ning, Hailong; Huang, Xingjiu; Liu, Jinhuai; Terrones, Mauricio; Braun, Paul V

    2016-09-01

    A deterministic graphene-sandwiched Li-ion battery electrode consisting of an integrated 3D mesostructure of electrochemically active materials and graphene is presented. As demonstrations, electrodes with active nanomaterials that coat (V2 O5 @graphene@V2 O5 cathode) or are coated by (graphene@Si@graphene anode) graphene are fabricated. These electrodes exhibit high capacities and ultralong cycle lives (the cathode can be cycled over 2000 times with minimal capacity fade). PMID:27383465

  7. Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes.

    PubMed

    Liu, Jinyun; Zheng, Qiye; Goodman, Matthew D; Zhu, Haoyue; Kim, Jinwoo; Krueger, Neil A; Ning, Hailong; Huang, Xingjiu; Liu, Jinhuai; Terrones, Mauricio; Braun, Paul V

    2016-09-01

    A deterministic graphene-sandwiched Li-ion battery electrode consisting of an integrated 3D mesostructure of electrochemically active materials and graphene is presented. As demonstrations, electrodes with active nanomaterials that coat (V2 O5 @graphene@V2 O5 cathode) or are coated by (graphene@Si@graphene anode) graphene are fabricated. These electrodes exhibit high capacities and ultralong cycle lives (the cathode can be cycled over 2000 times with minimal capacity fade).

  8. THz detection in graphene nanotransistors

    NASA Astrophysics Data System (ADS)

    Tredicucci, Alessandro; Vitiello, Miriam S.; Polini, Marco; Pellegrini, Vittorio

    2014-03-01

    Nanotransistors offer great prospect for the development of innovative THz detectors based on the non-linearity of transport characteristics. Semiconductor nanowires are appealing for their one-dimensional nature and intrinsically low capacitance of the devices, while graphene, with its record-high room-temperature mobility, has the potential to exploit plasma wave resonances in the transistor channel to achieve high-responsivity and tuneable detection. First graphene detectors have been recently demonstrated in both monolayer and bilayer field effect devices performances already suitable for first imaging application. Here will discuss the physics and technology of these devices, their operation, as well as first examples of imaging applications.

  9. Quantum Interference in Graphene Nanoconstrictions.

    PubMed

    Gehring, Pascal; Sadeghi, Hatef; Sangtarash, Sara; Lau, Chit Siong; Liu, Junjie; Ardavan, Arzhang; Warner, Jamie H; Lambert, Colin J; Briggs, G Andrew D; Mol, Jan A

    2016-07-13

    We report quantum interference effects in the electrical conductance of chemical vapor deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multimode Fabry-Pérot interferences can be attributed to reflections at potential steps inside the channel. Sharp antiresonance features with a Fano line shape are observed. Theoretical modeling reveals that these Fano resonances are due to localized states inside the constriction, which couple to the delocalized states that also give rise to the Fabry-Pérot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions.

  10. Self healing of defected graphene

    SciTech Connect

    Chen, Jianhui; Shi, Tuwan; Cai, Tuocheng; Wu, Xiaosong; Yu, Dapeng; Xu, Tao; Sun, Litao

    2013-03-11

    For electronics applications, defects in graphene are usually undesirable because of their ability to scatter charge carriers, thereby reduce the carrier mobility. It would be extremely useful if the damage can be repaired. In this work, we employ Raman spectroscopy, X-ray photoemission spectroscopy, transmission electron microscopy, and electrical measurements to study defects in graphene introduced by argon plasma bombardment. We have found that majority of these defects can be cured by a simple thermal annealing process. The self-healing is attributed to recombination of mobile carbon adatoms with vacancies. With increasing level of plasma induced damage, the self-healing becomes less effective.

  11. Detection of hydrogen using graphene

    SciTech Connect

    Ehemann, R. C.; Krstic, Predrag S; Dadras, J.; Kent, P.; Jakowski, J

    2012-01-01

    Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV. Results for reflection, transmision, and adsorption probabilities, as well as effects of a sinle adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism. We compare these results with those, distinctly different, obtained by the classical molecular dynamics.

  12. Localized vibrations of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Kivshar, Yu. S.

    2016-08-01

    Vibrational modes of graphene nanoribbons are studied. It is demonstrated that in an unstretched graphene nanoribbon, localized vibrations (in the form of breathers) can occur only at the edges. The largest number of localized edge oscillations is expected for the nanoribbons with the armchair structure. Stretching of a nanoribbon can lead to the appearance of new types of strongly localized oscillations. When a nanoribbon is stretched, in its oscillatory spectrum a frequency gap appears in which the frequencies of the localized modes are located. An armchair nanoribbon can support localized modes only at its edges, while a highly stretched zigzag nanoribbon can support them both at the edges and inside the nanoribbon.

  13. Keeping argon under a graphene lid-Argon intercalation between graphene and nickel(111)

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Gotterbarm, Karin; Amende, Max; Bauer, Udo; Gleichweit, Christoph; Höfert, Oliver; Steinrück, Hans-Peter; Papp, Christian

    2016-01-01

    We report on the intercalation of graphene grown on a Ni(111) crystal with argon. Argon is implanted in the Ni(111) crystal by ion bombardment before graphene growth, and diffuses to the surface during the growth of graphene at elevated temperatures. Graphene acts as an atomically thin barrier and keeps the argon underneath. We investigated this system with high resolution X-ray photoelectron spectroscopy. From our experiments we determined the mean quantities of argon under graphene. From our analysis, a simple model to determine the pressure under the graphene layer is presented. In our measurements, we find an increased thermal stability of the intercalated graphene as compared to non-intercalated graphene on Ni(111).

  14. Molecular dynamics simulation of temperature profile in partially hydrogenated graphene and graphene with grain boundary.

    PubMed

    Lotfi, Erfan; Neek-Amal, M; Elahi, M

    2015-11-01

    Temperature profile in graphene, graphene with grain boundary and vacancy defects and hydrogenated graphene with different percentage of H-atoms are determined using molecular dynamics simulation. We also obtained the temperature profile in a graphene nanoribbon containing two types of grain boundaries with different misorientation angles, θ=21.8° and θ=32.2°. We found that a temperature gap appears in the temperature profile of a graphene nanoribbon with a grain boundary at the middle. Moreover, we found that the temperature profile in the partially hydrogenated graphene varies with the percentage of hydrogens, i.e. the C:H ratio. Our results show that a grain boundary line in the graphene sheet can change the thermal transport through the system which might be useful for controlling thermal flow in nanostructured graphene.

  15. Synthesis and characterizations of graphene oxide and reduced graphene oxide nanosheets

    SciTech Connect

    Venkanna, M. Chakraborty, Amit K.

    2014-04-24

    Interest in graphene on its excellent mechanical, electrical, thermal and optical properties, it’s very high specific surface area, and our ability to influence these properties through chemical functionalization. Chemical reduction of graphene oxide is one of the main routes of preparation for large quantities of graphenes. Hydrazine hydrate used as reducing agent to prepare for the reduced graphene oxide (RGO). There are a number of methods for generating graphene and chemically modified graphene from natural graphite flakes, graphite derivative (such as graphite oxide) and graphite interaction compounds (i.e. expandable graphite). Here we review the use of colloidal suspensions of reduced graphene oxide (RGO) with large scalable, and is adaptable to a wide variety of applications. The graphene oxide (GO) and the reduced material (RGO) were characterized by XRD, UV-Vis spectroscopy, Thermo-gravimetric analysis (TGA), Raman spectroscopy and Field emission Scanning electron microscopy (FESEM) etc.

  16. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites.

    PubMed

    Kim, Youbin; Lee, Jinsup; Yeom, Min Sun; Shin, Jae Won; Kim, Hyungjun; Cui, Yi; Kysar, Jeffrey W; Hone, James; Jung, Yousung; Jeon, Seokwoo; Han, Seung Min

    2013-01-01

    Graphene is a single-atomic-layer material with excellent mechanical properties and has the potential to enhance the strength of composites. Its two-dimensional geometry, high intrinsic strength and modulus can effectively constrain dislocation motion, resulting in the significant strengthening of metals. Here we demonstrate a new material design in the form of a nanolayered composite consisting of alternating layers of metal (copper or nickel) and monolayer graphene that has ultra-high strengths of 1.5 and 4.0 GPa for copper-graphene with 70-nm repeat layer spacing and nickel-graphene with 100-nm repeat layer spacing, respectively. The ultra-high strengths of these metal-graphene nanolayered structures indicate the effectiveness of graphene in blocking dislocation propagation across the metal-graphene interface. Ex situ and in situ transmission electron microscopy compression tests and molecular dynamics simulations confirm a build-up of dislocations at the graphene interface. PMID:23820590

  17. Nitrogen-doped Graphene and Its Electrochemical Applications

    SciTech Connect

    Shao, Yuyan; Zhang, Sheng; Engelhard, Mark H.; Li, Guosheng; Shao, Guocheng; Wang, Yong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-06-04

    Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity toward oxygen reduction and H2O2 reduction than graphene, and much higher durability and selectivity than the widely-used expensive Pt. The excellent electrochemical performance of N-graphene is attributed to nitrogen functional groups and the specific properties of graphene. This indicates that N-graphene is promising for applications in electrochemical energy devices (fuel cells, metal-air batteries) and biosensors.

  18. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  19. Electrochromic Graphene Molecules

    DOE PAGES

    Ji, Zhiqiang; Doorn, Stephen K.; Sykora, Milan

    2015-03-13

    Polyclic aromatic hydrocarbons, also called Graphene Molecules (GMs), with chemical composition C132H36(COOH)2 were synthesized in-situ on the surface of transparent nanocrystaline indium tin oxide (nc-ITO) electrodes. Their electronic structure was studied electrochemically and spectro-electrochemically. Variations in the potential applied onto the nc-ITO/GM electrodes induce only small changes in the observed current but they produce dramatic changes in the absorption of the GMs, which are associated with their oxidation and reduction. Analysis of the absorption changes using modified Nernst equation is used to determine standard potentials associated with the individual charge transfer processes. For the GMs prepared here these were foundmore » to be E1,ox 0 = 0.77± 0.01 V and E2,ox 0 = 1.24 ± 0.02 V vs. NHE for the first and second oxidation and E1,red 0 = -1.50 ± 0.04 V for the first reduction. The charge transfer processes are found to be non-ideal. The non-ideality factors associated with the oxidation and reduction processes suggest presence of strong interactions between the GM redox centers. Under the conditions of potential cycling GMs show rapid (seconds) color change with high contrast and stability. An electrochromic application is demonstrated wherein the GMs are used as the optically active component.« less

  20. Engineering holographic graphene

    SciTech Connect

    Semenoff, Gordon W.

    2012-09-24

    We present a top-down string theory holographic model of strongly interacting relativistic 2 + 1-dimensional fermions, paying careful attention to the discrete symmetries of parity and time reversal invariance. Our construction is based on probe D7-branes in AdS{sub 5} Multiplication-Sign S{sup 5}, stabilized by internal fluxes. We find three solutions, a parity and time reversal invariant conformal field theory which can be viewed as a particular deformation of Coulomb interacting graphene, a parity and time reversal violating but gapless field theory and a system with a parity and time reversal violating charge gap. We show that the Chern-Simons-like electric response function, which is generated perturbatively at one-loop order by parity violating fermions and which is protected by a no-renormalization theorem at orders beyond one loop, indeed appears with the correctly quantized coefficient in the charge gapped theory. In the gapless parity violating solution, the Chern-Simons response function obtains quantum corrections which we compute in the holographic theory.

  1. Graphene synthesis and characterization on copper

    NASA Astrophysics Data System (ADS)

    Mohsin, Ali

    Graphene, two dimensional sheet of carbon atoms has recently gained attention as some of its properties are promising for electronics applications e.g. higher mobility that translates to higher operating frequency for devices geared towards radio frequency applications. Excellent optical transmittance combined with its semi metallic behavior makes it an important material for transparent contacts in solar cells. To bring graphene to the production level, synthesis methods are needed for its growth on wafer scale. It has been shown that chemical vapor deposition (CVD) is one of the techniques that can potentially synthesize wafer scale graphene. Recently copper has gained popularity as an important substrate material for graphene growth due to its lower carbon solubility, which allows better control over number of graphene layers. Here we report optimization of graphene growth on copper foils with our home made atmospheric pressure chemical vapor deposition (APCVD) setup. Graphene growth on copper under APCVD was non self-limiting similar to other reports. It was found that apart from growth parameters surface texture plays a very important role in graphene growth. In fact, few layer and bilayer graphene were obtained on the regions where copper surface was not uniform, confirmed by Raman spectroscopy. To improve copper surface texture thin layer of copper film was evaporated by electron beam evaporation before the graphene growth process. After this modification, monolayer graphene was obtained on areas as large as 300 microm x 300 microm confirmed by Raman area maps. Graphene transfer procedure was also optimized so that graphene on metal surface could be transferred to insulating substrate.

  2. Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices

    PubMed Central

    2015-01-01

    Structural defects strongly impact the electrical transport properties of graphene nanostructures. In this Perspective, we give a brief overview of different types of defects in graphene and their effect on transport properties. We discuss recent experimental progress on graphene self-repair of defects, with a focus on in situ transmission electron microscopy studies. Finally, we present the outlook for graphene self-repair and in situ experiments. PMID:25864552

  3. Graphene electroanalysis: inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene.

    PubMed

    Brownson, Dale A C; Lacombe, Alexandre C; Kampouris, Dimitrios K; Banks, Craig E

    2012-01-21

    We explore the use of surfactant free graphene towards the electroanalytical sensing of cadmium(II) ions via anodic stripping voltammetry. In line with literature methodologies, we modify an electrode substrate which exhibits relatively fast electron transfer with commercially available graphene which is free from surfactants. Surprisingly, we find that graphene reduces the analytical performance and hence inhibits the electrochemical detection of cadmium(II) ions, with calibration plots in model aqueous solutions revealing no advantages of employing graphene in this analytical context.

  4. Graphene Films: Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition (Adv. Mater. 29/2016).

    PubMed

    Li, Xuesong; Colombo, Luigi; Ruoff, Rodney S

    2016-08-01

    Synthesis of graphene films on copper foils is discussed by X. Li, L. Colombo, and R. S. Ruoff on page 6247. Graphene can grow on metal substrates by chemical vapor deposition of hydrocarbons. Hydrocarbons crack on a metal surface, nucleate, grow, and finally merge to form a continuous graphene film. Copper is one of the best candidates for graphene growth due to the advantages of good control over the graphene thickness, the growth of high-quality graphene, and the ease for graphene transfer, and has been widely used for production of large-area graphene films in both academia and industry. PMID:27478085

  5. Raman Radiation Patterns of Graphene

    PubMed Central

    2015-01-01

    We report the angular distribution of the G and 2D Raman scattering from graphene on glass by detecting back focal plane patterns. The G Raman emission can be described by a superposition of two incoherent orthogonal point dipoles oriented in the graphene plane. Due to double resonant Raman scattering, the 2D emission can be represented by the sum of either three incoherent dipoles oriented 120° with respect to each other, or two orthogonal incoherent ones with a 3:1 weight ratio. Parameter-free calculations of the G and 2D intensities are in excellent agreement with the experimental radiation patterns. We show that the 2D polarization ratio and the 2D/G intensity ratio depend on the numerical aperture of the microscope objective. This is due to the depolarization of the emission and excitation light when graphene is on a dielectric substrate, as well as to tight focusing. The polarization contrast decreases substantially for increasing collection angle, due to polarization mixing caused by the air-dielectric interface. This also influences the intensity ratio I(2D)/I(G), a crucial quantity for estimating the doping in graphene. Our results are thus important for the quantitative analysis of the Raman intensities in confocal microscopy. In addition, they are relevant for understanding the influence of signal enhancing plasmonic antenna structures, which typically modify the sample’s radiation pattern. PMID:26651030

  6. Transport properties of rippled graphene.

    PubMed

    Zwierzycki, Maciej

    2014-04-01

    The exceptionally high mobility of carriers in graphene is one of its defining characteristics, especially in view of potential applications. Therefore it is of both practical and fundamental importance to understand the mechanisms responsible for limiting the values of the mobility. The aim of the paper is to study theoretically one such mechanism, i.e. scattering on ripples. The transport properties of rippled graphene are studied using the single-band tight-binding model. Both the bond-length variation, corresponding to the vector potential in the effective mass picture, and the fluctuating scalar potential are included in the formalism. The samples are modeled as self-similar surfaces characterized by the roughness exponent, with values ranging from those typical for graphene on SiO2 to those seen for suspended samples. The range of calculated resistivities and mobilities overlaps with those from experiments. The results presented in this paper support the notion of rippling as one of the important factors limiting the mobility of carriers in graphene.

  7. Majorana Zero Modes in Graphene

    NASA Astrophysics Data System (ADS)

    San-Jose, Pablo; Lado, Jose L.; Aguado, Ramón; Guinea, Francisco; Fernández-Rossier, Joaquín

    A clear demonstration of topological superconductivity (TS) and Majorana zero modes remains one of the major pending goal in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here we demonstrate an alternative approach for the creation of TS in graphene/superconductor junctions without the need of spin-orbit coupling. Our prediction stems from the helicity of graphene's zero Landau level edge states in the presence of interactions, and on the possibility, experimentally demonstrated, to tune their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction, and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.

  8. New electromagnetic mode in graphene.

    PubMed

    Mikhailov, S A; Ziegler, K

    2007-07-01

    A new, weakly damped, transverse electromagnetic mode is predicted in graphene. The mode frequency omega lies in the window 1.667<[see text]omega/micro < 2, where micro is the chemical potential, and can be tuned from radio waves to the infrared by changing the density of charge carriers through a gate voltage. PMID:17678180

  9. Functionalization of graphene using deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Hayyan, Maan; Abo-Hamad, Ali; AlSaadi, Mohammed AbdulHakim; Hashim, Mohd Ali

    2015-08-01

    Deep eutectic solvents (DESs) have received attention in various applications because of their distinctive properties. In this work, DESs were used as functionalizing agents for graphene due to their potential to introduce new functional groups and cause other surface modifications. Eighteen different types of ammonium- and phosphonium-salt-based DESs were prepared and characterized by FTIR. The graphene was characterized by FTIR, STA, Raman spectroscopy, XRD, SEM, and TEM. Additional experiments were performed to study the dispersion behavior of the functionalized graphene in different solvents. The DESs exhibited both reduction and functionalization effects on DES-treated graphene. Dispersion stability was investigated and then characterized by UV-vis spectroscopy and zeta potential. DES-modified graphene can be used in many applications, such as drug delivery, wastewater treatment, catalysts, composite materials, nanofluids, and biosensors. To the best of our knowledge, this is the first investigation on the use of DESs for graphene functionalization.

  10. Analytical expressions for electrostatics of graphene structures

    NASA Astrophysics Data System (ADS)

    Georgantzinos, S. K.; Giannopoulos, G. I.; Fatsis, A.; Vlachakis, N. V.

    2016-10-01

    This study focuses on electrostatics of various graphene structures as graphene monolayer, graphene nanoribbons, as well as multi-layer graphene or graphene flakes. An atomistic moment method based on classical electrostatics is utilized in order to evaluate the charge distribution in each nanostructure. Assuming a freestanding graphene structure in an infinite or in a semi-infinite space limited by a grounded infinite plane, the effect of the length, width, number of layers and position of the nanostructure on its electrostatic charge distributions and total charge and capacitance is examined through a parametric analysis. The results of the present show good agreement with corresponding available data in the literature, obtained from different theoretical approaches. Performing nonlinear regression analysis on the numerical results, where it is possible, simple analytical expressions are proposed for the total charge and charge distribution prediction based on structure geometry.

  11. Fracture Characteristics of Monolayer CVD-Graphene

    PubMed Central

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-01-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized. PMID:24657996

  12. Strain engineering of graphene: a review

    NASA Astrophysics Data System (ADS)

    Si, Chen; Sun, Zhimei; Liu, Feng

    2016-02-01

    Graphene has intrigued the science community by many unique properties not found in conventional materials. In particular, it is the strongest two-dimensional material ever measured, being able to sustain reversible tensile elastic strain larger than 20%, which yields an interesting possibility to tune the properties of graphene by strain and thus opens a new field called ``straintronics''. In this article, the current progress in the strain engineering of graphene is reviewed. We first summarize the strain effects on the electronic structure and Raman spectra of graphene. We then highlight the electron-phonon coupling greatly enhanced by the biaxial strain and the strong pseudomagnetic field induced by the non-uniform strain with specific distribution. Finally, the potential application of strain-engineering in the self-assembly of foreign atoms on the graphene surface is also discussed. Given the short history of graphene straintronics research, the current progress has been notable, and many further advances in this field are expected.

  13. Hybrid Quantum Optomechanics with Graphene Nanoresonators

    NASA Astrophysics Data System (ADS)

    Shaffer, Airlia; Bhat, Ajay K.; Patil, Yogesh Sharad; Bhave, Sunil; Vengalattore, Mukund

    2015-05-01

    We report on the realization of a hybrid quantum system consisting of a graphene nanoresonator coupled to an ultracold spin ensemble. This work is motivated by the large quantum nonlinearities inherent to graphene resonators, as well as the strong atom-resonator coupling due to their commensurate mass ratio. We fabricate micromechanical suspended graphene membrane resonators and study their properties, both through spectroscopic and interferometric imaging. With dark field images, we relate the nonlinear intermode coupling in graphene to the quality factors of the modes. This work provides a foundation for the studies of entanglement between a macroscopic graphene membrane and an auxiliary quantum system of ultracold atoms. Additionally, such graphene resonators can be used for force, position, and mass sensing in the quantum limit. This work is supported by the DARPA QuASAR program through a grant from the ARO and an NSF INSPIRE award.

  14. Highly dispersible disk-like graphene nanoflakes

    NASA Astrophysics Data System (ADS)

    Georgakilas, Vasilios; Vrettos, Katerina; Katomeri, Katerina; Kouloumpis, Antonios; Dimos, Konstantinos; Gournis, Dimitris; Zboril, Radek

    2015-09-01

    We present the preparation of disk-like graphene nanoflakes, highly dispersible in dimethylformamide (DMF), with uniform size and thickness. The preparation procedure includes an overnight mild sonication of natural graphite in DMF, followed by a purification step using ultra-centrifugation. The mean diameter of the as produced well defined round shaped graphene nanoflakes is about 100 nm and they consisted of less than twenty graphenic layers.We present the preparation of disk-like graphene nanoflakes, highly dispersible in dimethylformamide (DMF), with uniform size and thickness. The preparation procedure includes an overnight mild sonication of natural graphite in DMF, followed by a purification step using ultra-centrifugation. The mean diameter of the as produced well defined round shaped graphene nanoflakes is about 100 nm and they consisted of less than twenty graphenic layers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04422g

  15. ZnO nanolasers on graphene films

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Park, Jun Beom; Park, Jong-woo; Hyun, Jerome K.; Yoon, Hosang; Oh, Hongseok; Yoon, Jiyoung

    2016-06-01

    We grew and characterized zinc oxide (ZnO) nanolasers on graphene films. By using graphene as a growth medium, we were able to prepare position-controlled and vertically aligned ZnO nanotube lasers. The ZnO nanolasers grown on graphene films showed good optical characteristics, evidenced by a low lasing threshold. Furthermore, the nanolaser/graphene system was easily lifted off the original substrate and transferred onto foreign substrates. The lasing performance was observed to be significantly enhanced by depositing a layer of silver on the back of the graphene film during this transfer process, which was quantitatively investigated using finite-difference time-domain simulations. Due to the wide selection of substrates enabled by the use of graphene films, our results suggest promising strategies for preparing practical nanolasers with improved performance.

  16. Graphene-Templated Supported Lipid Bilayer Nanochannels.

    PubMed

    Li, Wan; Chung, Jean K; Lee, Young Kwang; Groves, Jay T

    2016-08-10

    The use of patterned substrates to impose geometrical restriction on the lateral mobility of molecules in supported lipid membranes has found widespread utility in studies of cell membranes. Here, we template-pattern supported lipid membranes with nanopatterned graphene. We utilize focused ion beam milling to pattern graphene on its growth substrate, then transfer the patterned graphene to fresh glass substrates for subsequent supported membrane formation. We observe that graphene functions as an excellent lateral diffusion barrier for supported lipid bilayers. Additionally, the observed diffusion dynamics of lipids in nanoscale graphene channels reveal extremely low boundary effects, a common problem with other materials. We suggest this is attributable to the ultimate thinness of graphene. PMID:27362914

  17. Magnetic moments in graphene with vacancies.

    PubMed

    Chen, Jing-Jing; Wu, Han-Chun; Yu, Da-Peng; Liao, Zhi-Min

    2014-08-01

    Vacancies can induce local magnetic moments in graphene, paving the way to make magnetic functional graphene. Due to the interaction between magnetic moments and conduction carriers, the magnetotransport properties of graphene can be modulated. Here, the effects of vacancy induced magnetic moments on the electrical properties of graphene are studied via magnetotransport measurements and spin-polarized density functional theory calculations. We show by quantum Hall measurements that a sharp resonant Vπ state is introduced in the midgap region of graphene with vacancies, resulting in the local magnetic moment. The coupling between the localized Vπ state and the itinerant carrier is tuned by varying the carrier concentration, temperature, magnetic field, and vacancy density, which results in a transition between hopping transport and the Kondo effect and a transition between giant negative magnetoresistance (MR) and positive MR. This modulated magnetotransport is valuable for graphene based spintronic devices.

  18. Graphene radio frequency receiver integrated circuit.

    PubMed

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  19. Controlling Terahertz Waves using Graphene Supercapacitors

    NASA Astrophysics Data System (ADS)

    Kakenov, Nurbek; Balci, Osman; Polat, Emre O.; Altan, Hakan; Kocabas, Coskun

    2015-03-01

    Ability to control density of high mobility charge carriers on graphene provides a unique platform to control electromagnetic waves in a broad spectrum. In this work, we demonstrate a terahertz intensity modulator using a graphene supercapacitor which consists of two large area graphene electrodes and electrolyte medium. This simple device structure enables us to modulate THz waves in a broad spectrum without any metallic gate electrodes. The mutual electrolyte gating between the graphene electrodes provides a very efficient electrostatic doping with Fermi energies of 1 eV. We show that, the graphene supercapacitor yield more than 50% modulation between 0.1 to 1.4 THz with operation voltages less than 3V. The low insertion losses, the simplicity of the device structure and polarization independent device performance are the key attributes of graphene supercapacitors for THz applications.

  20. Caustic graphene plasmons with Kelvin angle

    NASA Astrophysics Data System (ADS)

    Shi, Xihang; Lin, Xiao; Gao, Fei; Xu, Hongyi; Yang, Zhaoju; Zhang, Baile

    2015-08-01

    A century-long argument made by Lord Kelvin that all swimming objects have an effective Mach number of 3, corresponding to a Kelvin angle of 19.5° for ship waves, has been challenged recently with the conclusion that the Kelvin angle should gradually transit to the Mach angle as the ship's velocity increases. Here we show that a similar phenomenon can happen for graphene plasmons. By analyzing the caustic wave pattern of graphene plasmons stimulated by a swift charged particle moving uniformly above graphene, we show that at low velocities of the charged particle, the caustics of graphene plasmons form the Kelvin angle. At large velocities of the particle, the caustics disappear and the effective semiangle of the wave pattern approaches the Mach angle. Our study introduces caustic wave theory to the field of graphene plasmonics, and reveals a physical picture of graphene plasmon excitation during electron energy-loss spectroscopy measurements.

  1. Graphene Mechanics: Current Status and Perspectives.

    PubMed

    Galiotis, Costas; Frank, Otakar; Koukaras, Emmanuel N; Sfyris, Dimitris

    2015-01-01

    The mechanical properties of 2D materials such as monolayer graphene are of extreme importance for several potential applications. We summarize the experimental and theoretical results to date on mechanical loading of freely suspended or fully supported graphene. We assess the obtained axial properties of the material in tension and compression and comment on the methods used for deriving the various reported values. We also report on past and current efforts to define the elastic constants of graphene in a 3D representation. Current areas of research that are concerned with the effect of production method and/or the presence of defects upon the mechanical integrity of graphene are also covered. Finally, we examine extensively the work related to the effect of graphene deformation upon its electronic properties and the possibility of employing strained graphene in future electronic applications. PMID:25898069

  2. Enhanced photoresponse in monolayer hydrogenated graphene photodetector.

    PubMed

    Gowda, Prarthana; Mohapatra, Dipti R; Misra, Abha

    2014-10-01

    We report the photoresponse of a hydrogenated graphene (H-graphene)-based infrared (IR) photodetector that is 4 times higher than that of pristine graphene. An enhanced photoresponse in H-graphene is attributed to the longer photoinduced carrier lifetime and hence a higher internal quantum efficiency of the device. Moreover, a variation in the angle of incidence of IR radiation demonstrated a nonlinear photoresponse of the detector, which can be attributed to the photon drag effect. However, a linear dependence of the photoresponse is revealed with different incident powers for a given angle of IR incidence. This study presents H-graphene as a tunable photodetector for advanced photoelectronic devices with higher responsivity. In addition, in situ tunability of the graphene bandgap enables achieving a cost-effective technique for developing photodetectors without involving any external treatments.

  3. Graphene: the ultimately thin sputtering shield

    NASA Astrophysics Data System (ADS)

    Herbig, Charlotte; Michely, Thomas

    2016-06-01

    Scanning tunneling microscopy methods are applied to investigate the potential of monolayer graphene as a sputtering shield for the underlying metal substrate. To visualize the effect, a bare and a graphene protected Ir(111) surface are irradiated with 500 eV Xe+, as well as 200 eV Xe+ and Ar+ ions, all at 1000 K. By quantitatively evaluating the sputtered material from the surface vacancy island area, we find a drastic decrease in metal sputtering for the graphene protected surface. It is demonstrated that efficient sputter protection relies on self-repair of the ion damage in graphene, which takes place efficiently in the temperature range of chemical vapor deposition growth. Based on the generality of the underlying principles of ion damage, graphene self-repair, and graphene growth, we speculate that efficient sputter protection is possible for a broad range of metals and alloys.

  4. Rebar Graphene from Functionalized Boron Nitride Nanotubes

    PubMed Central

    2015-01-01

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties. PMID:25486451

  5. B2C graphene, nanotubes, and nanoribbons.

    PubMed

    Wu, Xiaojun; Pei, Yong; Zeng, Xiao Cheng

    2009-04-01

    We report a first-principles prediction of a new two-dimensional inorganic material, namely, the B(2)C graphene in which the boron and carbon atoms are packed into a mosaic of hexagons and rhombuses. In the B(2)C graphene, each carbon atom is bonded with four boron atoms, forming a planar-tetracoordinate carbon (ptC) moiety, a notion first conceived by Hoffmann et al. The B(2)C graphene is possibly a metal with a small overlap in the energy of conduction and valence bands. Like the carbon graphene and nanotubes, a B(2)C graphene sheet can be rolled into various forms of B(2)C nanotubes as well. Depending on the roll-up vector, the B(2)C nanotubes may become either a metal or a semiconductor. All B(2)C graphene nanoribbons are predicted to be uniformly metallic, regardless of their width and edge structure.

  6. Multiple roles of graphene in heterogeneous catalysis.

    PubMed

    Fan, Xiaobin; Zhang, Guoliang; Zhang, Fengbao

    2015-05-21

    Scientific interest in graphene as a catalyst and as a catalyst support in heterogeneous catalytic reactions has grown dramatically over the past several years. The present critical review summarizes the multiple roles of graphene in heterogeneous catalysis and highlights the influence of defects, heteroatom-containing functionalities, and graphene's two-dimensional structure on catalytic performance. We first discuss the role and advantages of graphene as a catalyst support, with emphasis on its interactions with the catalytic phases and the influence of mass transfer processes. We then clarify the origin of the intrinsic catalytic activity of graphene in heterogeneous catalytic reactions. Finally we suggest challenges and potential practical applications for graphene in industrial processes. PMID:25777748

  7. Three-dimensional, flexible graphene bioelectronics.

    PubMed

    Chun, SungGyu; Choi, Jonghyun; Ashraf, Ali; Nam, SungWoo

    2014-01-01

    We report 3-dimensional (3D) graphene-based biosensors fabricated via 3D transfer of monolithic graphene-graphite structures. This mechanically flexible all-carbon structure is a prospective candidate for intimate 3D interfacing with biological systems. Monolithic graphene-graphite structures were synthesized using low pressure chemical vapor deposition (LPCVD) process relying on the heterostructured metal catalyst layers. Nonplanar substrates and wet-transfer method were used with a thin Au film as a transfer layer to achieve the 3D graphene structure. Instead of the typical wet-etching method, vapor-phase etching was performed to minimize the delamination of the graphene while removing the transfer layer. We believe that the monolithic graphene-graphite synthesis combined with the conformal 3D transfer will pave the way for the 3D conformal sensing capability as well as the intracellular recording of living cells in the future. PMID:25571182

  8. Chemistry at the Edge of Graphene.

    PubMed

    Bellunato, Amedeo; Arjmandi Tash, Hadi; Cesa, Yanina; Schneider, Grégory F

    2016-03-16

    The selective functionalization of graphene edges is driven by the chemical reactivity of its carbon atoms. The chemical reactivity of an edge, as an interruption of the honeycomb lattice of graphene, differs from the relative inertness of the basal plane. In fact, the unsaturation of the pz orbitals and the break of the π conjugation on an edge increase the energy of the electrons at the edge sites, leading to specific chemical reactivity and electronic properties. Given the relevance of the chemistry at the edges in many aspects of graphene, the present Review investigates the processes and mechanisms that drive the chemical functionalization of graphene at the edges. Emphasis is given to the selective chemical functionalization of graphene edges from theoretical and experimental perspectives, with a particular focus on the characterization tools available to investigate the chemistry of graphene at the edge.

  9. Magnetic moments in graphene with vacancies

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Jing; Wu, Han-Chun; Yu, Da-Peng; Liao, Zhi-Min

    2014-07-01

    Vacancies can induce local magnetic moments in graphene, paving the way to make magnetic functional graphene. Due to the interaction between magnetic moments and conduction carriers, the magnetotransport properties of graphene can be modulated. Here, the effects of vacancy induced magnetic moments on the electrical properties of graphene are studied via magnetotransport measurements and spin-polarized density functional theory calculations. We show by quantum Hall measurements that a sharp resonant Vπ state is introduced in the midgap region of graphene with vacancies, resulting in the local magnetic moment. The coupling between the localized Vπ state and the itinerant carrier is tuned by varying the carrier concentration, temperature, magnetic field, and vacancy density, which results in a transition between hopping transport and the Kondo effect and a transition between giant negative magnetoresistance (MR) and positive MR. This modulated magnetotransport is valuable for graphene based spintronic devices.

  10. Rebar graphene from functionalized boron nitride nanotubes.

    PubMed

    Li, Yilun; Peng, Zhiwei; Larios, Eduardo; Wang, Gunuk; Lin, Jian; Yan, Zheng; Ruiz-Zepeda, Francisco; José-Yacamán, Miguel; Tour, James M

    2015-01-27

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties. PMID:25486451

  11. Temperature-induced sign change of the magnetic interlayer coupling in Ni/Ni{sub 25}Mn{sub 75}/Ni trilayers on Cu{sub 3}Au(001)

    SciTech Connect

    Shokr, Y. A.; Zhang, B.; Sandig, O.; Kuch, W.; Erkovan, M.; Wu, C.-B.

    2015-05-07

    We investigated the magnetic interlayer coupling between two ferromagnetic (FM) Ni layers through an antiferromagnetic (AFM) Ni{sub 25}Mn{sub 75} layer and the influence of this coupling on the exchange bias phenomenon. The interlayer coupling energy of an epitaxial trilayer of 14 atomic monolayers (ML) Ni/45 ML Ni{sub 25}Mn{sub 75}/16 ML Ni on Cu{sub 3}Au(001) was extracted from minor-loop magnetization measurements using in-situ magneto-optical Kerr effect. The interlayer coupling changes from ferromagnetic to antiferromagnetic when the temperature is increased above 300 K. This sign change is interpreted as the result of the competition between an antiparallel Ruderman-Kittel-Kasuya-Yosida (RKKY)-type interlayer coupling, which dominates at high temperature, and a stronger direct exchange coupling across the AFM layer, which is present only below the Néel temperature of the AFM layer.

  12. Examining the role of hydrogen in the electrical performance of in situ fabricated metal-insulator-metal trilayers using an atomic layer deposited Al{sub 2}O{sub 3} dielectric

    SciTech Connect

    Kozen, Alexander C.; Schroeder, Marshall A.; Osborn, Kevin D.; Lobb, C. J.; Rubloff, Gary W.

    2013-04-29

    Defects in electronic devices can lead to poor performance and device failure. We used deuterium doping to investigate the source of hydrogen defects in Atomic Layer Deposited (ALD) Al{sub 2}O{sub 3} films and in situ fabrication techniques to produce ultraclean metal-insulator-metal trilayers. We compare leakage current and defect density of ALD Al{sub 2}O{sub 3} dielectrics deposited using different oxidation conditions. The plasma O{sub 2} ALD process has lowest number of entrained defects and exhibits a leakage current 10{sup 4} times lower than the thermal ALD process. Deuterium doping during the ALD process shows that the majority of the hydrogen defects contained in the ALD films are due to entrained water.

  13. How Bilayer Graphene Got a Bandgap

    SciTech Connect

    Feng Wang

    2009-06-02

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  14. Ultralight and highly compressible graphene aerogels.

    PubMed

    Hu, Han; Zhao, Zongbin; Wan, Wubo; Gogotsi, Yury; Qiu, Jieshan

    2013-04-18

    Chemically converted graphene aerogels with ultralight density and high compressibility are prepared by diamine-mediated functionalization and assembly, followed by microwave irradiation. The resulting graphene aerogels with density as low as 3 mg cm(-3) show excellent resilience and can completely recover after more than 90% compression. The ultralight graphene aerogels possessing high elasticity are promising as compliant and energy-absorbing materials. PMID:23418081

  15. Q&A: Maestros of graphene

    NASA Astrophysics Data System (ADS)

    Peplow, Mark

    2015-06-01

    Composer Sara Lowes has teamed up with materials scientist Cinzia Casiraghi at the University of Manchester, UK. The result, Lowes' six-part Graphene Suite, premieres next week at the Graphene Week 2015 conference in Manchester, part of the European Union's decade-long, €1-billion (US$1.1-billion) Graphene Flagship research programme. Lowes and Casiraghi talk crotchets, carbon chemistry and the commonalities between women in science and women in music.

  16. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  17. How Bilayer Graphene Got a Bandgap

    ScienceCinema

    Wang, Feng

    2016-07-12

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  18. Graphene-based liquid crystal device.

    PubMed

    Blake, Peter; Brimicombe, Paul D; Nair, Rahul R; Booth, Tim J; Jiang, Da; Schedin, Fred; Ponomarenko, Leonid A; Morozov, Sergey V; Gleeson, Helen F; Hill, Ernie W; Geim, Andre K; Novoselov, Kostya S

    2008-06-01

    Graphene is only one atom thick, optically transparent, chemically inert, and an excellent conductor. These properties seem to make this material an excellent candidate for applications in various photonic devices that require conducting but transparent thin films. In this letter, we demonstrate liquid crystal devices with electrodes made of graphene that show excellent performance with a high contrast ratio. We also discuss the advantages of graphene compared to conventionally used metal oxides in terms of low resistivity, high transparency and chemical stability.

  19. Recent advances in functional graphene biosensors

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazuhiko; Maehashi, Kenzo; Ohno, Yasuhide; Inoue, Koichi

    2014-03-01

    First selective bio-molecule sensing was achieved using a graphene field-effect transistor. For selective sensing, the surface of the graphene was modified by a receptor, such as an immunoglobulin E aptamer, and a fragment antibody, to take into account the height of the receptor and the Debye length. For higher sensitivity, it was found that the concentration of the receptor on the graphene surface was important and should be optimized.

  20. Quasi-bound states in strained graphene

    NASA Astrophysics Data System (ADS)

    Bahamon, Dario; Qi, Zenan; Park, Harold; Pareira, Vitor; Campbell, David

    In this work, we explore the possibility of manipulating electronic states in graphene nanostructures by mechanical means. Specifically, we use molecular dynamics and tight-binding models to access the electronic and transport properties of strained graphene nanobubbles and graphene kirigami. We establish that low energy electrons can be confined in the arms of the kirigami and within the nanobubbles; under different load conditions the coupling between confined states and continuous states is modified creating different conductance line-shapes.

  1. Graphene oxide reduction by microwave heating

    NASA Astrophysics Data System (ADS)

    Longo, Angela; Carotenuto, Gianfranco

    2016-05-01

    The possibility to prepare thermal reduced graphene oxide (Tr-GO) colloidal suspensions by microwave heating of graphene oxide (GO) suspensions in N-methyl-2-pyrrolidone (NMP) has been investigated. According to transmission electron microscopy (TEM) and absorption and emission spectroscopy characterization, such a type of thermal reduction does not lead to graphene quantum dots formation because only mono-functional oxygen-containing groups are removed.

  2. Highly dispersible disk-like graphene nanoflakes.

    PubMed

    Georgakilas, Vasilios; Vrettos, Katerina; Katomeri, Katerina; Kouloumpis, Antonios; Dimos, Konstantinos; Gournis, Dimitris; Zboril, Radek

    2015-10-01

    We present the preparation of disk-like graphene nanoflakes, highly dispersible in dimethylformamide (DMF), with uniform size and thickness. The preparation procedure includes an overnight mild sonication of natural graphite in DMF, followed by a purification step using ultra-centrifugation. The mean diameter of the as produced well defined round shaped graphene nanoflakes is about 100 nm and they consisted of less than twenty graphenic layers.

  3. Electrostatic force assisted deposition of graphene

    DOEpatents

    Liang, Xiaogan

    2011-11-15

    An embodiment of a method of depositing graphene includes bringing a stamp into contact with a substrate over a contact area. The stamp has at least a few layers of the graphene covering the contact area. An electric field is developed over the contact area. The stamp is removed from the vicinity of the substrate which leaves at least a layer of the graphene substantially covering the contact area.

  4. Graphene on plasmonic metamaterials for infrared detection

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Shimatani, Masaaki; Matsumoto, Kazuhiko

    2016-05-01

    Graphene consists of a single layer of carbon atoms with a two-dimensional hexagonal lattice structure. Recently, it has been the subject of increasing interest due to its excellent optoelectronic properties and interesting physics. Graphene is considered to be a promising material for use in optoelectronic devices due to its fast response and broadband capabilities. However, graphene absorbs only 2.3% of incident white light, which limits the performance of photodetectors based on it. One promising approach to enhance the optical absorption of graphene is the use of plasmonic resonance. The field of plasmonics has been receiving considerable attention from the viewpoint of both fundamental physics and practical applications, and graphene plasmonics has become one of the most interesting topics in optoelectronics. In the present study, we investigated the optical properties of graphene on a plasmonic metamaterial absorber (PMA). The PMA was based on a metal-insulator-metal structure, in which surface plasmon resonance was induced. The graphene was synthesized by chemical vapor deposition and transferred onto the PMA, and the reflectance of the PMA in the infrared (IR) region, with and without graphene, was compared. The presence of the graphene layer was found to lead to significantly enhanced absorption only at the main plasmon resonance wavelength. The localized plasmonic resonance induced by the PMA enhanced the absorption of graphene, which was attributed to the enhancement of the total absorption of the PMA with graphene. The results obtained in the present study are expected to lead to improvements in the performance of graphene-based IR detectors.

  5. How Bilayer Graphene Got a Bandgap

    ScienceCinema

    Feng Wang

    2010-01-08

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  6. Electrochromic Graphene Molecules

    SciTech Connect

    Ji, Zhiqiang; Doorn, Stephen K.; Sykora, Milan

    2015-03-13

    Polyclic aromatic hydrocarbons, also called Graphene Molecules (GMs), with chemical composition C132H36(COOH)2 were synthesized in-situ on the surface of transparent nanocrystaline indium tin oxide (nc-ITO) electrodes. Their electronic structure was studied electrochemically and spectro-electrochemically. Variations in the potential applied onto the nc-ITO/GM electrodes induce only small changes in the observed current but they produce dramatic changes in the absorption of the GMs, which are associated with their oxidation and reduction. Analysis of the absorption changes using modified Nernst equation is used to determine standard potentials associated with the individual charge transfer processes. For the GMs prepared here these were found to be E1,ox 0 = 0.77± 0.01 V and E2,ox 0 = 1.24 ± 0.02 V vs. NHE for the first and second oxidation and E1,red 0 = -1.50 ± 0.04 V for the first reduction. The charge transfer processes are found to be non-ideal. The non-ideality factors associated with the oxidation and reduction processes suggest presence of strong interactions between the GM redox centers. Under the conditions of potential cycling GMs show rapid (seconds) color change with high contrast and stability. An electrochromic application is demonstrated wherein the GMs are used as the optically active component.

  7. Counting graphene layers with very slow electrons

    SciTech Connect

    Frank, Ludĕk; Mikmeková, Eliška; Müllerová, Ilona; Lejeune, Michaël

    2015-01-05

    The study aimed at collection of data regarding the transmissivity of freestanding graphene for electrons across their full energy scale down to the lowest energies. Here, we show that the electron transmissivity of graphene drops with the decreasing energy of the electrons and remains below 10% for energies below 30 eV, and that the slow electron transmissivity value is suitable for reliable determination of the number of graphene layers. Moreover, electrons incident below 50 eV release adsorbed hydrocarbon molecules and effectively clean graphene in contrast to faster electrons that decompose these molecules and create carbonaceous contamination.

  8. Superconductivity in Ca-doped graphene laminates.

    PubMed

    Chapman, J; Su, Y; Howard, C A; Kundys, D; Grigorenko, A N; Guinea, F; Geim, A K; Grigorieva, I V; Nair, R R

    2016-03-16

    Despite graphene's long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc's strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  9. Enhanced nanoscale friction on fluorinated graphene.

    PubMed

    Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon; Kim, Yong-Hyun; Park, Jeong Young

    2012-12-12

    Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene. PMID:22720882

  10. Preparation and characterization of solar exfoliated graphene

    NASA Astrophysics Data System (ADS)

    M, Sreejesh; K, Udaya Bhat; S, Nagaraja H.

    2014-10-01

    Hummer's method was used for the chemical synthesis of graphite oxide from graphite flakes. Simultaneous exfoliation and reduction of graphite oxide to Graphene was achieved through focused solar light irradiation using a convex lens. The morphological characteristics were studied using SEM and TEM. Layered morphology of Graphene was observed through TEM. Raman spectra and FTIR were used for the structural characterization of Graphene. EDAX analysis showed the drop in oxygen content during exfoliation. The method offered a faster, easier and environmental friendly method to produce Graphene for potential applications.

  11. Extraordinary Absorption of Decorated Undoped Graphene

    NASA Astrophysics Data System (ADS)

    Stauber, T.; Gómez-Santos, G.; de Abajo, F. Javier García

    2014-02-01

    We theoretically study absorption by an undoped graphene layer decorated with arrays of small particles. We discuss periodic and random arrays within a common formalism, which predicts a maximum absorption of 50% for suspended graphene in both cases. The limits of weak and strong scatterers are investigated, and an unusual dependence on particle-graphene separation is found and explained in terms of the effective number of contributing evanescent diffraction orders of the array. Our results can be important to boost absorption by single-layer graphene due to its simple setup with potential applications to light harvesting and photodetection based on energy (Förster) rather than charge transfer.

  12. Plasmon modes in graphene: status and prospect.

    PubMed

    Politano, Antonio; Chiarello, Gennaro

    2014-10-01

    Plasmons in graphene have unusual properties and offer promising prospects for plasmonic applications covering a wide frequency range, ranging from terahertz up to the visible. Plasmon modes have been recently studied in both free-standing and supported graphene. Here, we review plasmons in graphene with particular emphasis on plasmonic excitations in epitaxial graphene and on the influence of the underlying substrate on the screening processes. Although the theoretical comprehension of plasmons in supported graphene is still incomplete, several experimental results provide clues regarding the nature of plasmonic excitations in graphene on metals and semiconductors. Plasmon in graphene can be tuned by chemical doping and gating potentials. We show through selected examples that the adsorbates can be used to tune the plasmon frequency, while the intercalation of chemical species allows the decoupling of the graphene sheet from the substrate to recover the plasmon dispersion of pristine graphene. Finally, we also report intriguing effects due to many-body interaction, such as the excitations generated by electron-electron coupling (magnetoplasmons) and the composite modes arising from the coupling of plasmons with phonons and with charge carriers. PMID:25130215

  13. Quasiparticle excitations of adsorbates on doped graphene

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Wickenburg, Sebastian; Wong, Dillon; Karrasch, Christoph; Wang, Yang; Lu, Jiong; Omrani, Arash A.; Brar, Victor; Tsai, Hsin-Zon; Wu, Qiong; Corsetti, Fabiano; Mostofi, Arash; Kawakami, Roland K.; Moore, Joel; Zettl, Alex; Louie, Steven G.; Crommie, Mike

    Adsorbed atoms and molecules can modify the electronic structure of graphene, but in turn it is also possible to control the properties of adsorbates via the graphene substrate. In my talk, I will discuss the electronic structure of F4-TCNQ molecules on doped graphene and present a first-principles based theory of quasiparticle excitations that captures the interplay of doping-dependent image charge interactions between substrate and adsorbate and electron-electron interaction effects on the molecule. The resulting doping-dependent quasiparticle energies will be compared to experimental scanning tunnelling spectra. Finally, I will also discuss the effects of charged adsorbates on the electronic structure of doped graphene.

  14. Reinforcement of graphene in natural rubber nanocomposite

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Kamal, M. M.; Rusop, M.

    2016-07-01

    In the present work, we report the use of graphene as multi-functional nanofiller for natural rubber (NR). Dispersion of reduced graphene into natural rubber (NR) was found to enhance the mechanical and electrical properties of NR. Through a facile approach rubber molecules are successfully grafted onto the surface of graphene. Stable graphene suspension with NR afforded a weblike morphology consisting of platelet networks between the rubber particles, while internal mixer processing broke down this structure, yielding a homogeneous and improved dispersion. The resulting graphene can be dispersed in NR via dry mixing. It is found that graphene is prominent in improving the mechanical properties of NR at low filler loading. The percolation point of graphene in the nanocomposites takes place at a content of less than 0.1 wt%. With incorporation of as low as 0.1 wt% of graphene, an increase in the tensile strength and improvement in the tensile modulus achieved. The improvement in the mechanical properties of NR nanocomposites at such low filler loading is attributed to the strong interfacial interaction and the molecular-level dispersion of graphene in the NR matrix. .

  15. Stable path to ferromagnetic hydrogenated graphene growth

    NASA Astrophysics Data System (ADS)

    Hemmatiyan, Shayan; Polini, Marco; Abanov, Artem; MacDonald, Allan H.; Sinova, Jairo

    2014-07-01

    In this paper, we propose a practical way to stabilize half-hydrogenated graphene (graphone). We show that the dipole moments induced by a hexagonal-boron nitride (h-BN) substrate on graphene stabilize the hydrogen atoms on one sublattice of the graphene layer and suppress the migration of the adsorbed hydrogen atoms. Based upon first principle spin polarized density of states calculations, we show that the graphone obtained in different graphene/h-BN heterostructures exhibits a half metallic state. We propose to use this exotic material for spin valve systems and other spintronics devices.

  16. Temperature effect on plasmons in bilayer graphene

    SciTech Connect

    Patel, Digish K. Sharma, A. C.; Ashraf, S. S. Z.; Ambavale, S. K.

    2015-06-24

    We have theoretically investigated the plasmon dispersion and damping rate of doped bilayer graphene (BLG) at finite temperatures within the random phase approximation. Our computed results on plasmon dispersion show that plasmon frequency enhances with increasing temperatures in contrast to single layer graphene where it is suppressed. This can be attributed to the fact that the dynamic response of the electron gas or screening in bilayer graphene is different from that of single layer graphene. Further the temperature effect on damping rate is also discussed.

  17. Programmed synthesis of freestanding graphene nanomembrane arrays.

    PubMed

    Waduge, Pradeep; Larkin, Joseph; Upmanyu, Moneesh; Kar, Swastik; Wanunu, Meni

    2015-02-01

    Freestanding graphene membranes are unique materials. The combination of atomically thin dimensions, remarkable mechanical robustness, and chemical stability make porous and non-porous graphene membranes attractive for water purification and various sensing applications. Nanopores in graphene and other 2D materials have been identified as promising devices for next-generation DNA sequencing based on readout of either transverse DNA base-gated current or through-pore ion current. While several ground breaking studies of graphene-based nanopores for DNA analysis have been reported, all methods to date require a physical transfer of the graphene from its source of production onto an aperture support. The transfer process is slow and often leads to tears in the graphene that render many devices useless for nanopore measurements. In this work, we report a novel scalable approach for site-directed fabrication of pinhole-free graphene nanomembranes. Our approach yields high quality few-layer graphene nanomembranes produced in less than a day using a few steps that do not involve transfer. We highlight the functionality of these graphene devices by measuring DNA translocation through electron-beam fabricated nanopores in such membranes.

  18. Graphene-based nanomaterials and their electrochemistry.

    PubMed

    Pumera, Martin

    2010-11-01

    Graphene-based nanomaterials are in the forefront of chemical research. This tutorial review provides an introduction to their electrochemistry, its fundamentals and applications. Selected examples of applications in energy storage and sensing are presented. The synthetic methods for preparing graphenes as well as their materials chemistry are thoroughly discussed, as they have a profound influence on the electronic and electrochemical behavior of graphene-related nanomaterials. Inherent electrochemistry and spectroelectrochemistry of graphene nanomaterials is discussed thoroughly. Important application in sensing and energy storage areas are highlighted.

  19. Current applications of graphene oxide in nanomedicine

    PubMed Central

    Wu, Si-Ying; An, Seong Soo A; Hulme, John

    2015-01-01

    Graphene has attracted the attention of the entire scientific community due to its unique mechanical and electrochemical, electronic, biomaterial, and chemical properties. The water-soluble derivative of graphene, graphene oxide, is highly prized and continues to be intensely investigated by scientists around the world. This review seeks to provide an overview of the currents applications of graphene oxide in nanomedicine, focusing on delivery systems, tissue engineering, cancer therapies, imaging, and cytotoxicity, together with a short discussion on the difficulties and the trends for future research regarding this amazing material. PMID:26345988

  20. Wafer-scale graphene integrated circuit.

    PubMed

    Lin, Yu-Ming; Valdes-Garcia, Alberto; Han, Shu-Jen; Farmer, Damon B; Meric, Inanc; Sun, Yanning; Wu, Yanqing; Dimitrakopoulos, Christos; Grill, Alfred; Avouris, Phaedon; Jenkins, Keith A

    2011-06-10

    A wafer-scale graphene circuit was demonstrated in which all circuit components, including graphene field-effect transistor and inductors, were monolithically integrated on a single silicon carbide wafer. The integrated circuit operates as a broadband radio-frequency mixer at frequencies up to 10 gigahertz. These graphene circuits exhibit outstanding thermal stability with little reduction in performance (less than 1 decibel) between 300 and 400 kelvin. These results open up possibilities of achieving practical graphene technology with more complex functionality and performance.

  1. Plasmon modes in graphene: status and prospect.

    PubMed

    Politano, Antonio; Chiarello, Gennaro

    2014-10-01

    Plasmons in graphene have unusual properties and offer promising prospects for plasmonic applications covering a wide frequency range, ranging from terahertz up to the visible. Plasmon modes have been recently studied in both free-standing and supported graphene. Here, we review plasmons in graphene with particular emphasis on plasmonic excitations in epitaxial graphene and on the influence of the underlying substrate on the screening processes. Although the theoretical comprehension of plasmons in supported graphene is still incomplete, several experimental results provide clues regarding the nature of plasmonic excitations in graphene on metals and semiconductors. Plasmon in graphene can be tuned by chemical doping and gating potentials. We show through selected examples that the adsorbates can be used to tune the plasmon frequency, while the intercalation of chemical species allows the decoupling of the graphene sheet from the substrate to recover the plasmon dispersion of pristine graphene. Finally, we also report intriguing effects due to many-body interaction, such as the excitations generated by electron-electron coupling (magnetoplasmons) and the composite modes arising from the coupling of plasmons with phonons and with charge carriers.

  2. Graphene single crystals: size and morphology engineering.

    PubMed

    Geng, Dechao; Wang, Huaping; Yu, Gui

    2015-05-13

    Recently developed chemical vapor deposition (CVD) is considered as an effective way to large-area and high-quality graphene preparation due to its ultra-low cost, high controllability, and high scalability. However, CVD-grown graphene film is polycrystalline, and composed of numerous grains separated by grain boundaries, which are detrimental to graphene-based electronics. Intensive investigations have been inspired on the controlled growth of graphene single crystals with the absence of intrinsic defects. As the two most concerned parameters, the size and morphology serve critical roles in affecting properties and understanding the growth mechanism of graphene crystals. Therefore, a precise tuning of the size and morphology will be of great significance in scale-up graphene production and wide applications. Here, recent advances in the synthesis of graphene single crystals on both metals and dielectric substrates by the CVD method are discussed. The review mainly covers the size and morphology engineering of graphene single crystals. Furthermore, recent progress in the growth mechanism and device applications of graphene single crystals are presented. Finally, the opportunities and challenges are discussed.

  3. Biomimetic graphene films and their properties.

    PubMed

    Zhang, Yong-Lai; Chen, Qi-Dai; Jin, Zhi; Kim, Eunkyoung; Sun, Hong-Bo

    2012-08-21

    Biomimetic fabrication has long been considered a short cut to the rational design and production of artificial materials or devices that possess fascinating properties, just like natural creatures. Considering the fact that graphene exhibits a lot of exceptional properties in a wide range of scientific fields, biomimetic fabrication of graphene multiscale structures, denoted as biomimetic graphene, is of great interest in both fundamental research and industrial applications. Especially, the combination of graphene with biomimetic structures would realize structural and functional integrity, and thus bring a new opportunity of developing novel graphene-based devices with remarkable performance. In this feature article, we highlight the recent advances in biomimetic graphene films and their structure-defined properties. Functionalized graphene films with multiscale structures inspired from a wide range of biomaterials including rose petals, butterfly wings, nacre and honeycomb have been collected and presented. Moreover, both current challenges and future perspectives of biomimetic graphene are discussed. Although research of the so-called "biomimetic graphene" is still at an early stage, it might become a "hot topic" in the near future. PMID:22767301

  4. Controlled synthesis of single-crystalline graphene

    SciTech Connect

    Xueshen, Wang Jinjin, Li Qing, Zhong; Yuan, Zhong; Mengke, Zhao; Yonggang, Liu

    2014-03-15

    This paper reports the controlled synthesis of single-crystalline graphene on the back side of copper foil using CH{sub 4} as the precursor. The influence of growth time and the pressure ratio of CH{sub 4}/H{sub 2} on the structure of graphene are examined. An optimized polymer-assisted method is used to transfer the synthesized graphene onto a SiO{sub 2}/Si substrate. Scanning electron microscopy and Raman spectroscopy are used to characterize the graphene.

  5. Preparation and characterization of solar exfoliated graphene

    SciTech Connect

    M, Sreejesh S, Nagaraja H.; K, Udaya Bhat

    2014-10-15

    Hummer's method was used for the chemical synthesis of graphite oxide from graphite flakes. Simultaneous exfoliation and reduction of graphite oxide to Graphene was achieved through focused solar light irradiation using a convex lens. The morphological characteristics were studied using SEM and TEM. Layered morphology of Graphene was observed through TEM. Raman spectra and FTIR were used for the structural characterization of Graphene. EDAX analysis showed the drop in oxygen content during exfoliation. The method offered a faster, easier and environmental friendly method to produce Graphene for potential applications.

  6. Benchmarking the penetration-resistance efficiency of multilayer graphene sheets due to spacing the graphene layers

    NASA Astrophysics Data System (ADS)

    Sadeghzadeh, S.

    2016-07-01

    In this paper, the penetration-resistance efficiency of single-layer and multilayer graphene sheets has been investigated by means of the multiscale approach. The employed multiscale approach has been implemented by establishing a direct correlation between the finite element method and the molecular dynamics approach and validated by comparing its results with those of the existing experimental works. Since by using numerous techniques, a new class of graphene sheets can be fabricated in which the graphene layers are spaced farther apart (more than the usual distance between layers), this paper has concentrated on the optimal spacing between graphene layers with the goal of improving the impact properties of graphene sheets as important candidates for novel impact-resistant panels. For this purpose, the relative protection (protection with respect to weight) values of graphene sheets were obtained, and it was observed that the relative protection of a single-layer graphene sheet is about 3.64 times that of a 20-layer graphene sheet. This study also showed that a spaced multilayer graphene sheet, with its inter-layer distance being 20 times the usual spacing between ordinary graphene layers, has an impact resistance which is about 20 % higher than that of an ordinary 20-layer graphene sheet. The findings of this paper can be appropriately used in the design and fabrication of future-generation impact-resistant protective panels.

  7. Half-metallic Dirac cone in zigzag graphene nanoribbons on graphene

    NASA Astrophysics Data System (ADS)

    Chen, M. X.; Weinert, M.

    2016-07-01

    The Dirac electrons of graphene, an intrinsic zero gap semiconductor, uniquely carry spin and pseudospin that give rise to many fascinating electronic and transport properties. While isolated zigzag graphene nanoribbons are antiferromagnetic semiconductors, we show by means of first-principles and tight-binding calculations that zigzag graphene nanoribbons supported on graphene are half metallic as a result of spin- and pseudospin-symmetry breaking. In particular, half-metallic Dirac cones are formed at K (K') near the Fermi level. The present results demonstrate that the unique combination of spin and pseudospin in zigzag graphene nanoribbons may be used to manipulate the electronic properties of graphene, and may have practical implications for potential graphene-based nanoelectronic applications.

  8. Polymer-free graphene transfer for enhanced reliability of graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Park, Hamin; Park, Ick-Joon; Yool Jung, Dae; Lee, Khang June; Yang, Sang Yoon; Choi, Sung-Yool

    2016-06-01

    We propose a polymer-free graphene transfer technique for chemical vapor deposition-grown graphene to ensure the intrinsic electrical properties of graphene for reliable transistor applications. The use of a metal catalyst as a supporting layer avoids contamination from the polymer material and graphene films become free of polymer residue after the transfer process. Atomic force microscopy and Raman spectroscopy indicate that the polymer-free transferred graphene shows closer properties to intrinsic graphene properties. The reliability of graphene field-effect transistors (GFETs) was investigated through the analysis of the negative gate bias-stress-induced instability. This work reveals the effect of polymer residues on the reliability of GFETs, and that the developed new polymer-free transfer method enhances the reliability.

  9. Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice

    SciTech Connect

    Wang, Yu

    2014-10-28

    We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.

  10. Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry.

    PubMed

    Chen, Xiao-mei; Wu, Geng-huang; Jiang, Ya-qi; Wang, Yi-ru; Chen, Xi

    2011-11-21

    Similar to its popular older cousins of fullerene and carbon nanotubes (CNTs), the latest form of nanocarbon, graphene, is inspiring intensive research efforts in its own right. As an atomically thin layer of sp(2)-hybridized carbon, graphene possesses spectacular electronic, optical, magnetic, thermal and mechanical properties, which make it an exciting material in a variety of important applications. In this review, we present the current advances in the field of graphene electroanalytical chemistry, including the modern methods of graphene production, and graphene functionalization. Electrochemical (bio) sensing developments using graphene and graphene-based materials are summarized in more detail, and we also speculate on their future and discuss potential progress for their applications in electroanalytical chemistry.

  11. Photochemical transformation of graphene oxide in sunlight (journal)

    EPA Science Inventory

    Graphene oxide (GO) is a graphene derivative that is more easily manufactured in large scale and used to synthesize reduced graphene oxide (rGO) with properties analogous to graphene. In this study, we investigate the photochemical fate of GO under sunlight conditions. The resu...

  12. Technical graphene (reduced graphene oxide) and its natural analog (shungite)

    NASA Astrophysics Data System (ADS)

    Sheka, E. F.; Golubev, E. A.

    2016-07-01

    The wide structure and chemical-composition spectrum of the main technological material of molecular graphenics—reduced graphene oxide (RGO)—is explained from a quantum-chemical standpoint. The proposed concept is used to consider the results of experimental investigations of a natural analog of RGO, namely, shungite carbon, by high-resolution electron microscopy and nanopoint energy dispersive spectral analysis. The results obtained are used to propose an atomic-microscopic model for the structure of shungite carbon.

  13. Plasmon switching effect based on graphene nanoribbon pair arrays

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Wu, Lingxi; Liu, Qiong; Zhou, Renlong; Xie, Suxia; Chen, Jiangjiamin; Wu, Mengxiong; Zeng, Lisan

    2016-10-01

    We theoretically demonstrate the existence of plasmon switching effect in graphene nanostructure. By using finite-difference time-domain (FDTD) method, the plasmon resonance modes are studied in graphene nanoribbon pair arrays with the change of Fermi level, graphene width, and carrier mobility. It is found that the Fermi level and graphene width play an important role in changing the distribution of electric energy on different graphene nanoribbons, resulting in a significant plasmon switching effect. Moreover, we study the characteristic of resonance mode of one graphene ribbon by using glass rod with different shape. The effect of kerr material sandwiched between graphene nanoribbon pair is also considered.

  14. Atomic resolution of nitrogen-doped graphene on Cu foils.

    PubMed

    Wang, Chundong; Schouteden, Koen; Wu, Qi-Hui; Li, Zhe; Jiang, Jianjun; Van Haesendonck, Chris

    2016-09-01

    Atomic-level substitutional doping can significantly tune the electronic properties of graphene. Using low-temperature scanning tunneling microscopy and spectroscopy, the atomic-scale crystalline structure of graphene grown on polycrystalline Cu, the distribution of nitrogen dopants and their effect on the electronic properties of graphene were investigated. Both the graphene sheet growth and nitrogen doping were performed using microwave plasma-enhanced chemical vapor deposition. The results indicated that the nitrogen dopants preferentially sit at the grain boundaries of the graphene sheets and confirmed that plasma treatment is a potential method to incorporate foreign atoms into the graphene lattice to tailor the graphene's electronic properties. PMID:27479275

  15. Casein mediated green synthesis and decoration of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Tammina, Sai Kumar; Kiran Kumar, H. A.

    This research is mainly focusing on one-step biosynthesis of graphene from graphene oxide and its stabilization using naturally occurring milk protein, casein. The synthesis of casein reduced graphene oxide (CRGO) was completed within 7 h under reflux at 90 °C with the formation of few layered fine graphene nanosheets. UV-Vis, XRD, XPS analysis data revealed the reduction process of the graphene oxide. Results of FT-IR, HPLC and TEM analysis have shown that the ensuing material consists of graphene decorated with casein molecules. Aspartic acid and glutamic acid residue present in casein molecules are responsible for the reduction of graphene oxide.

  16. Oxygen reduction by lithiated graphene and graphene-based materials.

    PubMed

    Kataev, Elmar Yu; Itkis, Daniil M; Fedorov, Alexander V; Senkovsky, Boris V; Usachov, Dmitry Yu; Verbitskiy, Nikolay I; Grüneis, Alexander; Barinov, Alexei; Tsukanova, Daria Yu; Volykhov, Andrey A; Mironovich, Kirill V; Krivchenko, Victor A; Rybin, Maksim G; Obraztsova, Elena D; Laubschat, Clemens; Vyalikh, Denis V; Yashina, Lada V

    2015-01-27

    Oxygen reduction reaction (ORR) plays a key role in lithium-air batteries (LABs) that attract great attention thanks to their high theoretical specific energy several times exceeding that of lithium-ion batteries. Because of their high surface area, high electric conductivity, and low specific weight, various carbons are often materials of choice for applications as the LAB cathode. Unfortunately, the possibility of practical application of such batteries is still under question as the sustainable operation of LABs with carbon cathodes is not demonstrated yet and the cyclability is quite poor, which is usually associated with oxygen reduced species side reactions. However, the mechanisms of carbon reactivity toward these species are still unclear. Here, we report a direct in situ X-ray photoelectron spectroscopy study of oxygen reduction by lithiated graphene and graphene-based materials. Although lithium peroxide (Li2O2) and lithium oxide (Li2O) reactions with carbon are thermodynamically favorable, neither of them was found to react even at elevated temperatures. As lithium superoxide is not stable at room temperature, potassium superoxide (KO2) prepared in situ was used instead to test the reactivity of graphene with superoxide species. In contrast to Li2O2 and Li2O, KO2 was demonstrated to be strongly reactive.

  17. Layer-by-layer assembly of vertically conducting graphene devices.

    PubMed

    Chen, Jing-Jing; Meng, Jie; Zhou, Yang-Bo; Wu, Han-Chun; Bie, Ya-Qing; Liao, Zhi-Min; Yu, Da-Peng

    2013-01-01

    Graphene has various potential applications owing to its unique electronic, optical, mechanical and chemical properties, which are primarily based on its two-dimensional nature. Graphene-based vertical devices can extend the investigations and potential applications range to three dimensions, while interfacial properties are crucial for the function and performance of such graphene vertical devices. Here we report a general method to construct graphene vertical devices with controllable functions via choosing different interfaces between graphene and other materials. Two types of vertically conducting devices are demonstrated: graphene stacks sandwiched between two Au micro-strips, and between two Co layers. The Au|graphene|Au junctions exhibit large magnetoresistance with ratios up to 400% at room temperature, which have potential applications in magnetic field sensors. The Co|graphene|Co junctions display a robust spin valve effect at room temperature. The layer-by-layer assembly of graphene offers a new route for graphene vertical structures. PMID:23715280

  18. Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries.

    PubMed

    Li, Lei; Raji, Abdul-Rahman O; Tour, James M

    2013-11-20

    A facile and cost-effective approach for the fabrication of a hierarchical nanocomposite material of graphene-wrapped MnO2 -graphene nanoribbons (GMG) is developed. The resulting composite has a high specific capacity and an excellent cycling stability owing to the synergistic combination of the electrically conductive graphene, graphene nanoribbons, and MnO2 .

  19. Metal-doped graphene layers composed with boron nitride-graphene as an insulator: a nano-capacitor.

    PubMed

    Monajjemi, Majid

    2014-11-01

    A model of a nanoscale dielectric capacitor composed of a few dopants has been investigated in this study. This capacitor includes metallic graphene layers which are separated by an insulating medium containing a few h-BN layers. It has been observed that the elements from group IIIA of the periodic table are more suitable as dopants for hetero-structures of the {metallic graphene/hBN/metallic graphene} capacitors compared to those from groups IA or IIA. In this study, we have specifically focused on the dielectric properties of different graphene/h-BN/graphene including their hetero-structure counterparts, i.e., Boron-graphene/h-BN/Boron-graphene, Al-graphene/h-BN/Al-graphene, Mg-graphene/h-BN/Mg-graphene, and Be-graphene/h-BN/Be-graphene stacks for monolayer form of dielectrics. Moreover, we studied the multi dielectric properties of different (h-BN)n/graphene hetero-structures of Boron-graphene/(h-BN)n/Boron-graphene. PMID:25359456

  20. Graphene Nanopres for DNA Fingerprinting

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq; Balatsky, Alexander V.; Haraldsen, J. T.; Schuller, Ivan K.; di Ventra, M.; Wikfeldt, K. T.

    2013-03-01

    The recent progress in nanopore experiments with transverse current is important for the development of fast, accurate and cheap finger-printing techniques for single nucleotide. Despite its enormous potential for the next generation DNA sequencing technology, the presence of large noise in the temporal spectrum of transverse current remains a big challenge for getting highly accurate interpretation of data. In this paper we present our abinitio calculations, and propose graphene based device for DNA fingerprinting. We calculate transmission current through graphene for each DNA base (A,C,G,T). As shown in our work, a proper time-series analysis of a signal provides a higher quality information in identifying single bio-molecule is translocating through the nanopores. This work is supported by LANL, Nordita, US DOE, AFOSR, and NIH.