Science.gov

Sample records for abc-type transport system

  1. Evidence that Bacterial ABC-Type Transporter Imports Free EDTA for Metabolism

    SciTech Connect

    Zhang, Hua; Herman, Jacob P.; Bolton, Harvey; Zhang, Zhicheng; Clark, Sue B.; Xun, Luying

    2007-11-01

    Ethylenediaminetetraacetic acid (EDTA), a common chelating agent, is becoming a major organic pollutant in the form of metal-EDTA complexes in surface waters, partly due to its recalcitrance to biodegradation. Even an EDTA-degrading bacterium BNC1 does not degrade stable metal-EDTA complexes. An ABC-type transporter was identified for possible uptake of EDTA because the transporter genes and EDTA monooxygenase gene were expressed in a single operon in BNC1. The ABC-type transporter had a periplasmic binding protein (EppA) that should confer the substrate specificity for the transporter; therefore, EppA was produced in Escherichia coli,purified, and characterized. EppA was shown to bind free EDTA with a dissociation constant as low as 25 nM by using isothermal titration calorimetry. When unstable metal-EDTA complexes, e.g. MgEDTA2-, were added to the EppA solution, binding was also observed. However, experimental data and theoretical analysis only supported EppA binding of free EDTA. When stable metal-EDTA complexes, e.g. CuEDTA2-, are titrated into the EppA solution, no binding was observed. Since EDTA monooxygenase in the cytoplasm uses some of the stable metal-EDTA complexes as substrates, we suggest that the lack of EppA binding and EDTA uptake are responsible for the failure of BNC1 cells to degrade the stable complexes.

  2. Lyme Disease-Causing Borrelia Species Encode Multiple Lipoproteins Homologous to Peptide-Binding Proteins of ABC-Type Transporters

    PubMed Central

    Kornacki, Jon A.; Oliver, Donald B.

    1998-01-01

    To identify cell envelope proteins of Borrelia burgdorferi, the causative agent of Lyme disease, we constructed a library of B. burgdorferi genes fused to the Escherichia coli phoA gene, which expresses enzymatically active alkaline phosphatase. One such gene, oppA-1, encodes a predicted polypeptide with significant similarities to various peptide-binding proteins of ABC-type transporters. Immediately downstream of oppA-1 are two genes, oppA-2 and oppA-3, whose predicted polypeptide products show strong similarities in their amino acid sequences to OppA-1, including a sequence that resembles the most highly conserved region in peptide-binding proteins. By labeling with [3H]palmitate, OppA-1, OppA-2, and OppA-3 were shown to be lipoproteins. DNA hybridization analysis showed that the oppA-1 oppA-2 oppA-3 region is located on the linear chromosome of B. burgdorferi, and the genes are conserved among different Borrelia species that cause Lyme disease (B. burgdorferi, B. garinii, and B. afzelli), suggesting that all three homologous genes are important to the maintenance of Lyme disease spirochetes in one or more of their hosts. PMID:9712756

  3. Crystal structure of the phosphate-binding protein (PBP-1) of an ABC-type phosphate transporter from Clostridium perfringens

    PubMed Central

    Gonzalez, Daniel; Richez, Magali; Bergonzi, Celine; Chabriere, Eric; Elias, Mikael

    2014-01-01

    Phosphate limitation is an important environmental stress that affects the metabolism of various organisms and, in particular, can trigger the virulence of numerous bacterial pathogens. Clostridium perfringens, a human pathogen, is one of the most common causes of enteritis necroticans, gas gangrene and food poisoning. Here, we focused on the high affinity phosphate-binding protein (PBP-1) of an ABC-type transporter, responsible for cellular phosphate uptake. We report the crystal structure (1.65 Å resolution) of the protein in complex with phosphate. Interestingly, PBP-1 does not form the short, low-barrier hydrogen bond with phosphate that is typical of previously characterized phosphate-binding proteins, but rather a canonical hydrogen bond. In its unique binding configuration, PBP-1 forms an unusually high number of hydrogen bonds (14) with the phosphate anion. Discrimination experiments reveal that PBP-1 is the least selective PBP characterised so far and is able to discriminate phosphate from its close competing anion, arsenate, by ~150-fold. PMID:25338617

  4. The ABC-Type Multidrug Resistance Transporter LmrCD Is Responsible for an Extrusion-Based Mechanism of Bile Acid Resistance in Lactococcus lactis▿

    PubMed Central

    Zaidi, Arsalan Haseeb; Bakkes, Patrick J.; Lubelski, Jacek; Agustiandari, Herfita; Kuipers, Oscar P.; Driessen, Arnold J. M.

    2008-01-01

    Upon prolonged exposure to cholate and other toxic compounds, Lactococcus lactis develops a multidrug resistance phenotype that has been attributed to an elevated expression of the heterodimeric ABC-type multidrug transporter LmrCD. To investigate the molecular basis of bile acid resistance in L. lactis and to evaluate the contribution of efflux-based mechanisms in this process, the drug-sensitive L. lactis NZ9000 ΔlmrCD strain was challenged with cholate. A resistant strain was obtained that, compared to the parental strain, showed (i) significantly improved resistance toward several bile acids but not to drugs, (ii) morphological changes, and (iii) an altered susceptibility to antimicrobial peptides. Transcriptome and transport analyses suggest that the acquired resistance is unrelated to elevated transport activity but, instead, results from a multitude of stress responses, changes to the cell envelope, and metabolic changes. In contrast, wild-type cells induce the expression of lmrCD upon exposure to cholate, whereupon the cholate is actively extruded from the cells. Together, these data suggest a central role for an efflux-based mechanism in bile acid resistance and implicate LmrCD as the main system responsible in L. lactis. PMID:18790870

  5. Functional Dependence between Septal Protein SepJ from Anabaena sp. Strain PCC 7120 and an Amino Acid ABC-Type Uptake Transporter

    PubMed Central

    Escudero, Leticia; Mariscal, Vicente

    2015-01-01

    ABSTRACT In the diazotrophic filaments of heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients, including some amino acids. In the model organism Anabaena sp. strain PCC 7120, the SepJ protein, composed of periplasmic and integral membrane (permease) sections, is located at the intercellular septa joining adjacent cells in the filament. The unicellular cyanobacterium Synechococcus elongatus strain PCC 7942 bears a gene, Synpcc7942_1024 (here designated dmeA), encoding a permease homologous to the SepJ permease domain. Synechococcus strains lacking dmeA or lacking dmeA and expressing Anabaena sepJ were constructed. The Synechococcus dmeA mutant showed a significant 22 to 32% decrease in the uptake of aspartate, glutamate, and glutamine, a phenotype that could be partially complemented by Anabaena sepJ. Synechococcus mutants of an ATP-binding-cassette (ABC)-type transporter for polar amino acids showed >98% decreased uptake of glutamate irrespective of the presence of dmeA or Anabaena sepJ in the same strain. Thus, Synechococcus DmeA or Anabaena SepJ is needed to observe full (or close to full) activity of the ABC transporter. An Anabaena sepJ deletion mutant was significantly impaired in glutamate and aspartate uptake, which also in this cyanobacterium requires the activity of an ABC-type transporter for polar amino acids. SepJ appears therefore to generally stimulate the activity of cyanobacterial ABC-type transporters for polar amino acids. Conversely, an Anabaena mutant of three ABC-type transporters for amino acids was impaired in the intercellular transfer of 5-carboxyfluorescein, a SepJ-related property. Our results unravel possible functional interactions in transport elements important for diazotrophic growth. IMPORTANCE Membrane transporters are essential for many aspects of cellular life, from uptake and export of substances in unicellular organisms to intercellular

  6. Ectoine-induced proteins in Sinorhizobium meliloti include an Ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism.

    PubMed

    Jebbar, Mohamed; Sohn-Bösser, Linda; Bremer, Erhard; Bernard, Théophile; Blanco, Carlos

    2005-02-01

    To understand the mechanisms of ectoine-induced osmoprotection in Sinorhizobium meliloti, a proteomic examination of S. meliloti cells grown in minimal medium supplemented with ectoine was undertaken. This revealed the induction of 10 proteins. The protein products of eight genes were identified by using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Five of these genes, with four other genes whose products were not detected on two-dimensional gels, belong to the same gene cluster, which is localized on the pSymB megaplasmid. Four of the nine genes encode the characteristic components of an ATP-binding cassette transporter that was named ehu, for ectoine/hydroxyectoine uptake. This transporter was encoded by four genes (ehuA, ehuB, ehuC, and ehuD) that formed an operon with another gene cluster that contains five genes, named eutABCDE for ectoine utilization. On the basis of sequence homologies, eutABCDE encode enzymes with putative and hypothetical functions in ectoine catabolism. Analysis of the properties of ehuA and eutA mutants suggests that S. meliloti possesses at least one additional ectoine catabolic pathway as well as a lower-affinity transport system for ectoine and hydroxyectoine. The expression of ehuB, as determined by measurements of UidA activity, was shown to be induced by ectoine and hydroxyectoine but not by glycine betaine or by high osmolality.

  7. Protective effect of a DNA vaccine containing an open reading frame with homology to an ABC-type transporter present in the genomic island 3 of Brucella abortus in BALB/c mice.

    PubMed

    Riquelme-Neira, Roberto; Retamal-Díaz, Angello; Acuña, Francisca; Riquelme, Pablo; Rivera, Alejandra; Sáez, Darwin; Oñate, Angel

    2013-08-12

    The immunogenicity of a DNA vaccine containing an open reading frame (ORF) of genomic island 3 (GI-3), specific for Brucella abortus and Brucella melitensis, has been examined. Intramuscular injection of plasmid DNA carrying the open reading frame with homology to an ABC-type transporter (pV278a) into BALB/c mice elicited both humoral and cellular immune responses. Mice injected with pV278a had a dominant immunoglobulin G2a (IgG2a) response. This DNA vaccine elicited a T-cell-proliferative response and induced significant levels of interferon gamma (INF-γ) upon restimulation with recombinant 278a protein. Upon stimulation with an appropriate recombinant protein or crude Brucella protein, the vaccine did not induce IL-4, suggesting a typical T-helper (TH1) response. Furthermore, the vaccine induced protection in BALB/c mice when challenged with the virulent strain Brucella abortus 2308. Taken together, these data suggest that DNA vaccination offers an improved delivery of the homologous of an ABC-type transporter antigen, and provides the first evidence of a protective effect of this antigen in the construction of vaccines against B. abortus.

  8. Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport

    PubMed Central

    Cockerell, Steven R.; Rutkovsky, Alex C.; Zayner, Josiah P.; Cooper, Rebecca E.; Porter, Lindsay R.; Pendergraft, Sam S.; Parker, Zach M.; McGinnis, Marcus W.

    2014-01-01

    The polyamines norspermidine and spermidine are among the environmental signals that regulate Vibrio cholerae biofilm formation. The effects of these polyamines are mediated by NspS, a member of the bacterial periplasmic solute binding protein superfamily. Almost all members of this superfamily characterized to date are components of ATP-binding cassette-type transporters involved in nutrient uptake. Consequently, in the current annotation of the V. cholerae genome, NspS has been assigned a function in transport. The objective of this study was to further characterize NspS and investigate its potential role in transport. Our results support a role for NspS in signal transduction in response to norspermidine and spermidine, but not their transport. In addition, we provide evidence that these polyamine signals are processed by c-di-GMP signalling networks in the cell. Furthermore, we present comparative genomics analyses which reveal the presence of NspS-like proteins in a variety of bacteria, suggesting that periplasmic ligand binding proteins may be widely utilized for sensory transduction. PMID:24530989

  9. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis.

    PubMed

    Brunetti, Patrizia; Zanella, Letizia; De Paolis, Angelo; Di Litta, Davide; Cecchetti, Valentina; Falasca, Giuseppina; Barbieri, Maurizio; Altamura, Maria Maddalena; Costantino, Paolo; Cardarelli, Maura

    2015-07-01

    The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC-Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC-Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2.

  10. Second-order nonlinear optical metamaterials: ABC-type nanolaminates

    SciTech Connect

    Alloatti, L. Kieninger, C.; Lauermann, M.; Köhnle, K.; Froelich, A.; Wegener, M.; Frenzel, T.; Freude, W.; Leuthold, J.; Koos, C.

    2015-09-21

    We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al{sub 2}O{sub 3}, B = TiO{sub 2}, and C = HfO{sub 2}. The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths.

  11. Transportation System Requirements Document

    SciTech Connect

    Not Available

    1993-09-01

    This Transportation System Requirements Document (Trans-SRD) describes the functions to be performed by and the technical requirements for the Transportation System to transport spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from Purchaser and Producer sites to a Civilian Radioactive Waste Management System (CRWMS) site, and between CRWMS sites. The purpose of this document is to define the system-level requirements for Transportation consistent with the CRWMS Requirement Document (CRD). These requirements include design and operations requirements to the extent they impact on the development of the physical segments of Transportation. The document also presents an overall description of Transportation, its functions, its segments, and the requirements allocated to the segments and the system-level interfaces with Transportation. The interface identification and description are published in the CRWMS Interface Specification.

  12. Characterization of Two Inducible Phosphate Transport Systems in Rhizobium tropici

    PubMed Central

    Botero, Lina M.; Al-Niemi, Thamir S.; McDermott, Timothy R.

    2000-01-01

    Rhizobium tropici forms nitrogen-fixing nodules on the roots of the common bean (Phaseolus vulgaris). Like other legume-Rhizobium symbioses, the bean-R. tropici association is sensitive to the availability of phosphate (Pi). To better understand phosphorus movement between the bacteroid and the host plant, Pi transport was characterized in R. tropici. We observed two Pi transport systems, a high-affinity system and a low-affinity system. To facilitate the study of these transport systems, a Tn5B22 transposon mutant lacking expression of the high-affinity transport system was isolated and used to characterize the low-affinity transport system in the absence of the high-affinity system. The Km and Vmax values for the low-affinity system were estimated to be 34 ± 3 μM Pi and 118 ± 8 nmol of Pi · min−1 · mg (dry weight) of cells−1, respectively, and the Km and Vmax values for the high-affinity system were 0.45 ± 0.01 μM Pi and 86 ± 5 nmol of Pi · min−1 · mg (dry weight) of cells−1, respectively. Both systems were inducible by Pi starvation and were also shock sensitive, which indicated that there was a periplasmic binding-protein component. Neither transport system appeared to be sensitive to the proton motive force dissipator carbonyl cyanide m-chlorophenylhydrazone, but Pi transport through both systems was eliminated by the ATPase inhibitor N,N′-dicyclohexylcarbodiimide; the Pi transport rate was correlated with the intracellular ATP concentration. Also, Pi movement through both systems appeared to be unidirectional, as no efflux or exchange was observed with either the wild-type strain or the mutant. These properties suggest that both Pi transport systems are ABC type systems. Analysis of the transposon insertion site revealed that the interrupted gene exhibited a high level of homology with kdpE, which in several bacteria encodes a cytoplasmic response regulator that governs responses to low potassium contents and/or changes in medium

  13. Payload transportation system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A standard size set of shuttle payload transportation equipment was defined that will substantially reduce the cost of payload transportation and accommodate a wide range of payloads with minimum impact on payload design. The system was designed to accommodate payload shipments between the level 4 payload integration sites and the launch site during the calendar years 1979-1982. In addition to defining transportation multi-use mission support equipment (T-MMSE) the mode of travel, prime movers, and ancillary equipment required in the transportation process were also considered. Consistent with the STS goals of low cost and the use of standardized interfaces, the transportation system was designed to commercial grade standards and uses the payload flight mounting interfaces for transportation. The technical, cost, and programmatic data required to permit selection of a baseline system of MMSE for intersite movement of shuttle payloads were developed.

  14. Space Transportation Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Stewart, Mark E.; Suresh, Ambady; Owen, A. Karl

    2001-01-01

    This report outlines the Space Transportation Propulsion Systems for the NPSS (Numerical Propulsion System Simulation) program. Topics include: 1) a review of Engine/Inlet Coupling Work; 2) Background/Organization of Space Transportation Initiative; 3) Synergy between High Performance Computing and Communications Program (HPCCP) and Advanced Space Transportation Program (ASTP); 4) Status of Space Transportation Effort, including planned deliverables for FY01-FY06, FY00 accomplishments (HPCCP Funded) and FY01 Major Milestones (HPCCP and ASTP); and 5) a review current technical efforts, including a review of the Rocket-Based Combined-Cycle (RBCC), Scope of Work, RBCC Concept Aerodynamic Analysis and RBCC Concept Multidisciplinary Analysis.

  15. Smart vehicular transportation systems

    SciTech Connect

    Little, C.Q.; Wilson, C.W.

    1997-05-01

    This work builds upon established Sandia intelligent systems technology to develop a unique approach for the integration of intelligent system control into the US Highway and urban transportation systems. The Sandia developed concept of the COPILOT controller integrates a human driver with computer control to increase human performance while reducing reliance on detailed driver attention. This research extends Sandia expertise in sensor based, real-time control of robotics systems to high speed transportation systems. Knowledge in the form of maps and performance characteristics of vehicles provides the automatic decision making intelligence needed to plan optimum routes, maintain safe driving speeds and distances, avoid collisions, and conserve fuel.

  16. Lattice dynamics, electronic structure, and optical properties of LiBeSb: A hexagonal ABC-type hyperferroelectrics

    NASA Astrophysics Data System (ADS)

    Dai, Jian-Qing; Zhu, Jian-Hui; Xu, Jie-Wang

    2016-07-01

    The recently discovered hexagonal ABC-type hyperferroelectrics, in which the polarization persists in the presence of the depolarization filed, exhibit a variety of intriguing and potentially useful properties [Garrity et al., Phys. Rev. Lett. 112, 127601 (2014)]. For the existing prototype of LiBeSb, we present detailed first-principles calculations concerning the lattice dynamics, electronic structure, and optical properties. An unstable longitudinal optic mode in the high-symmetry structure and a large polarization of 0.5 C/m2 in the polar phase are reported, including the remarkable dependence of Born effective charges on structural distortion. Using the HSE06 hybrid functional, we predict that LiBeSb has a small band-gap of 1.5 eV and shows dominant asymmetric covalent bonding character. Importantly, we find that there are remarkable absorptions in the whole visible spectrum. These features, combined with the enhanced carrier mobility, make LiBeSb as well as the whole family of hexagonal ABC-type hyperferroelectrics as promising candidates for ferroelectric photovoltaic materials with large bulk photovoltaic effect in the visible spectrum.

  17. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  18. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  19. Transportation Systems Evaluation

    NASA Technical Reports Server (NTRS)

    Fanning, M. L.; Michelson, R. A.

    1972-01-01

    A methodology for the analysis of transportation systems consisting of five major interacting elements is reported. The analysis begins with the causes of travel demand: geographic, economic, and demographic characteristics as well as attitudes toward travel. Through the analysis, the interaction of these factors with the physical and economic characteristics of the transportation system is determined. The result is an evaluation of the system from the point of view of both passenger and operator. The methodology is applicable to the intraurban transit systems as well as major airlines. Applications of the technique to analysis of a PRT system and a study of intraurban air travel are given. In the discussion several unique models or techniques are mentioned: i.e., passenger preference modeling, an integrated intraurban transit model, and a series of models to perform airline analysis.

  20. Transportation Anslysis Simulation System

    SciTech Connect

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at the level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not account

  1. A lunar transportation system

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Due to large amounts of oxygen required for space travel, a method of mining, transporting, and storing this oxygen in space would facilitate further space exploration. The following project deals specifically with the methods for transporting liquid oxygen from the lunar surface to the Lunar Orbit (LO) space station, and then to the Lower Earth Orbit (LEO) space station. Two vehicles were designed for operation between the LEO and LO space stations. The first of these vehicles is an aerobraked design vehicle. The Aerobrake Orbital Transfer Vehicle (OTV) is capable of transporting 5000 lbm of payload to LO while returning to LEO with 60,000 lbm of liquid oxygen, and thus meet mission requirements. The second vehicle can deliver 18,000 lbm of payload to LO and is capable of bringing 60,000 lbm of liquid oxygen back to LEO. A lunar landing vehicle was also designed for operation between LO and the established moon base. The use of an electromagnetic railgun as a method for launching the lunar lander was also investigated. The feasibility of the railgun is doubtful at this time. A system of spheres was also designed for proper storing and transporting of the liquid oxygen. The system assumes a safe means for transferring the liquid oxygen from tank to tank is operational. A sophisticated life support system was developed for both the OTV and the lunar lander. This system focuses on such factors as the vehicle environment, waste management, water requirements, food requirements, and oxygen requirements.

  2. Lunar transportation system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  3. Heat transport system

    DOEpatents

    Pierce, Bill L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acting as a pneumatic spring for the system.

  4. Transportation Systems Center

    SciTech Connect

    Greer, G.S.

    1992-07-01

    The Transportation Systems Center at Sandia Laboratory performs research, development, and implementation of technologies that enhance the safe movement of people, goods, and information. Our focus is on systems engineering. However, we realize that to understand the puzzle, you must also understand the pieces. This brochure describes some of the activities currently underway at the Center and presents the breadth and depth of our capabilities. Please contact the noted, individuals for more, information.

  5. Mars Equipment Transport System

    NASA Technical Reports Server (NTRS)

    Sorrells, Cindy; Geiger, Michelle; Ohanlon, Sean; Pieloch, Stuart; Brogan, Nick

    1993-01-01

    Mechanical Engineering Senior Design Project 1 (ME4182) is a part of the NASA/University Advanced Design Program. Under this program, NASA allocates money and resources to students to be used in design work for a specified topic. The current topic is the exploration and colonization of Mars. The specific area in which we are to work is the transportation of the modules in which astronauts will live while on Mars. NASA is concerned about the weight of the module transferring system, as the shipping cost to Mars is quite expensive. NASA has specified that the weight of the system is to be minimized in order to reduce the shipping costs.

  6. Space Transportation Systems Technologies

    NASA Technical Reports Server (NTRS)

    Laue, Jay H.

    2001-01-01

    This document is the final report by the Science Applications International Corporation (SAIC) on contracted support provided to the National Aeronautics and Space Administration (NASA) under Contract NAS8-99060, 'Space Transportation Systems Technologies'. This contract, initiated by NASA's Marshall Space Flight Center (MSFC) on February 8, 1999, was focused on space systems technologies that directly support NASA's space flight goals. It was awarded as a Cost-Plus-Incentive-Fee (CPIF) contract to SAIC, following a competitive procurement via NASA Research Announcement, NRA 8-21. This NRA was specifically focused on tasks related to Reusable Launch Vehicles (RLVs). Through Task Area 3 (TA-3), "Other Related Technology" of this NRA contract, SAIC extensively supported the Space Transportation Directorate of MSFC in effectively directing, integrating, and setting its mission, operations, and safety priorities for future RLV-focused space flight. Following an initially contracted Base Year (February 8, 1999 through September 30, 1999), two option years were added to the contract. These were Option Year 1 (October 1, 1999 through September 30, 2000) and Option Year 2 (October 1, 2000 through September 30, 2001). This report overviews SAIC's accomplishments for the Base Year, Option Year 1, and Option Year 2, and summarizes the support provided by SAIC to the Space Transportation Directorate, NASA/MSFC.

  7. Mars transportation system

    NASA Technical Reports Server (NTRS)

    Garrard, William; Vano, Andrew; Rutherford, Dave

    1992-01-01

    The University of Minnesota Advanced Space Design Program has developed a sample Mars exploration scenario. The purpose of the design project is to enhance NASA and university interaction, to provide fresh ideas to NASA, and to provide real world design problems to engineering students. The Mars Transportation System in this paper is designed to transport a crew of six astronauts to the Martian surface and return them to Low Earth Orbit (LEO) starting in the year 2016. The proposed vehicle features such advanced technologies as nuclear propulsion, nuclear power generation, and aerobraking. Three missions are planned. Orbital trajectories are of the conjunction class with an inbound Venus swingby providing a 60-day surface stay at Mars and an average total trip time of 520 days.

  8. Pneumatic Pellet-Transporting System

    NASA Technical Reports Server (NTRS)

    Wood, George; Pugsley, Robert A.

    1992-01-01

    Pneumatic system transports food pellets to confined animals. Flow of air into venturi assembly entrains round pellets, drawing them from reservoir into venturi for transport by airflow. Pneumatic pellet-transporting system includes venturi assembly, which creates flow of air that draws pellets into system.

  9. Integral habitat transport system

    NASA Technical Reports Server (NTRS)

    Elliott, Bill; Frazer, Scott; Higgs, Joey; Huff, Jason; Milam, Tigree

    1994-01-01

    In the 1993 Fall quarter, the ME 4182 design class was sponsored to study various scenarios that needed to be studied for Martian travel. The class was sponsored by NASA and there were several different design projects. The design that group three chose was an integral transport system for a Martian habitat. An integral transport system means the design had to be one that was attached to the habitat. There were several criteria that the design had to meet. Group three performed an in depth study of the Martian environment and looked at several different design ideas. The concept group three developed involved the use of kinematic linkages and the use of Martian gravity to move the habitat. The various design concepts, the criteria matrices and all other aspects that helped group three develop their design can be found in their 1993 ME 4182 design report. Now it is Winter quarter 1994 and group three is faced with another problem. The problem is building a working prototype of their Fall design. The limitations this quarter were the parts. The group had to make the prototype work with existing manufactured parts or make the parts themselves in a machine shop. The prototype was scaled down roughly about twelve times smaller than the original design. The following report describes the actions taken by group three to build a working model.

  10. Chaotic transport in dynamical systems

    NASA Astrophysics Data System (ADS)

    Wiggins, Stephen

    The subject of chaotic transport in dynamical systems is examined from the viewpoint of problems of phase space transport. The examples considered include uniform elliptical vortices in external linear time-dependent velocity fields; capture and passage through resonance in celestial mechanics; bubble dynamics in straining flows; and photodissociation of molecules. The discussion covers transport in two-dimensional maps; convective mixing and transport problems in fluid mechanics; transport in quasi-periodically forced systems; Markov models; and transport in k-degree-of-freedom Hamiltonian systems.

  11. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis

    SciTech Connect

    Gao, Jinlan; Li, Xiaolu; Feng, Yue; Zhang, Bo; Miao, Shiying; Wang, Linfang; Wang, Na

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We truncated the signal peptide of OppA{sub TTE0054} to make it express in Escherichia coli as a soluble protein. Black-Right-Pointing-Pointer Crystals of OppA{sub TTE0054} were grown by sitting-drop vapor diffusion method. Black-Right-Pointing-Pointer The crystal of OppA{sub TTE0054} diffracted to 2.25 A. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGE after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 A. The crystal belonged to space group C222{sub 1}, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 A, and {alpha} = {beta} = {gamma} = 90 Degree-Sign .

  12. Transportation System Concept of Operations

    SciTech Connect

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level

  13. Advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Disher, J. H.; Hethcoat, J. P.; Page, M. A.

    1981-01-01

    Projected growth in space transportation capabilities beyond the initial Space Shuttle is discussed in terms of earth-to-low-orbit launch vehicles as well as transportation beyond low orbit (orbit transfer vehicles). Growth versions of the Shuttle and heavy-lift derivatives of the Shuttle are shown conceptually. More advanced launch vehicle concepts are also shown, based on rocket propulsion or combinations of rocket and air-breathing propulsion. Orbit transfer vehicle concepts for personnel transport and for cargo transport are discussed, including chemical rocket as well as electric propulsion. Finally, target levels of capability and efficiencies for later time periods are discussed and compared with the prospective vehicle concepts mentioned earlier.

  14. Droplet transport system and methods

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul (Inventor)

    2010-01-01

    Embodiments of droplet transport systems and methods are disclosed for levitating and transporting single or encapsulated droplets using thermocapillary convection. One method embodiment, among others comprises providing a droplet of a first liquid; and applying thermocapillary convection to the droplet to levitate and move the droplet.

  15. Anion transporters and biological systems.

    PubMed

    Gale, Philip A; Pérez-Tomás, Ricardo; Quesada, Roberto

    2013-12-17

    In this Account, we discuss the development of new lipid bilayer anion transporters based on the structure of anionophoric natural products (the prodigiosins) and purely synthetic supramolecular systems. We have studied the interaction of these compounds with human cancer cell lines, and, in general, the most active anion transporter compounds possess the greatest anti-cancer properties. Initially, we describe the anion transport properties of synthetic molecules that are based on the structure of the family of natural products known as the prodiginines. Obatoclax, for example, is a prodiginine derivative with an indole ring that is currently in clinical trials for use as an anti-cancer drug. The anion transport properties of the compounds were correlated with their toxicity toward small cell human lung cancer GLC4 cells. We studied related compounds with enamine moieties, tambjamines, that serve as active transporters. These molecules and others in this series could depolarize acidic compartments within GLC4 cells and trigger apoptosis. In a study of the variation of lipophilicity of a series of these compounds, we observed that, as log P increases, the anion transport efficiency reaches a peak and then decreases. In addition, we discuss the anion transport properties of series of synthetic supramolecular anion receptor species. We synthesized trisureas and thioureas based on the tren backbone, and found that the thiourea compounds effectively transport anions. Fluorination of the pendant phenyl groups in this series of compounds greatly enhances the transport properties. Similar to our earlier results, the most active anion transporters reduced the viability of human cancer cell lines by depolarizing acidic compartments in GLC4 cells and triggering apoptosis. In an attempt to produce simpler transporters that obey Lipinski's Rule of Five, we synthesized simpler systems containing a single urea or thiourea group. Once again the thiourea systems, and in particular

  16. Heat transport system

    DOEpatents

    Harkness, Samuel D.

    1982-01-01

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  17. Heat transport system

    DOEpatents

    Harkness, S.D.

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  18. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  19. Tether Transportation System Study

    NASA Technical Reports Server (NTRS)

    Bangham, M. E.; Lorenzini, E.; Vestal, L.

    1998-01-01

    The projected traffic to geostationary earth orbit (GEO) is expected to increase over the next few decades. At the same time, the cost of delivering payloads from the Earth's surface to low earth orbit (LEO) is projected to decrease, thanks in part to the Reusable Launch Vehicle (RLV). A comparable reduction in the cost of delivering payloads from LEO to GEO is sought. The use of in-space tethers, eliminating the requirement for traditional chemical upper stages and thereby reducing the launch mass, has been identified as such an alternative. Spinning tethers are excellent kinetic energy storage devices for providing the large delta vee's required for LEO to GEO transfer. A single-stage system for transferring payloads from LEO to GEO was proposed some years ago. The study results presented here contain the first detailed analyses of this proposal, its extension to a two-stage system, and the likely implementation of the operational system.

  20. Intelligent Transport Systems in the Management of Road Transportation

    NASA Astrophysics Data System (ADS)

    Kalupová, Blanka; Hlavoň, Ivan

    2016-11-01

    Extension of European Union causes increase of free transfer of people and goods. At the same time they raised the problems associated with the transport, e.g. congestion and related accidents on roads, air traffic delays and more. To increase the efficiency and safety of transport, the European Commission supports the introduction of intelligent transport systems and services in all transport sectors. Implementation of intelligent transport systems and services in the road transport reduces accident frequency, increases the capacity of existing infrastructure and reduces congestions. Use of toll systems provides resources needed for the construction and operation of a new road network, improves public transport, cycling transport and walking transport, and also their multimodal integration with individual car transport.

  1. Earthquake damage to transportation systems

    USGS Publications Warehouse

    McCullough, Heather

    1994-01-01

    Earthquakes represent one of the most destructive natural hazards known to man. A large magnitude earthquake near a populated area can affect residents over thousands of square kilometers and cause billions of dollars in property damage. Such an event can kill or injure thousands of residents and disrupt the socioeconomic environment for months, sometimes years. A serious result of a large-magnitude earthquake is the disruption of transportation systems, which limits post-disaster emergency response. Movement of emergency vehicles, such as police cars, fire trucks and ambulances, is often severely restricted. Damage to transportation systems is categorized below by cause including: ground failure, faulting, vibration damage, and tsunamis.

  2. Surveillance systems for intermodal transportation

    NASA Astrophysics Data System (ADS)

    Jakovlev, Sergej; Voznak, Miroslav; Andziulis, Arunas

    2015-05-01

    Intermodal container monitoring is considered a major security issue in many major logistic companies and countries worldwide. Current representation of the problem, we face today, originated in 2002, right after the 9/11 attacks. Then, a new worldwide Container Security Initiative (CSI, 2002) was considered that shaped the perception of the transportation operations. Now more than 80 larger ports all over the world contribute to its further development and integration into everyday transportation operations and improve the regulations for the developing regions. Although, these new improvements allow us to feel safer and secure, constant management of transportation operations has become a very difficult problem for conventional data analysis methods and information systems. The paper deals with a proposal of a whole new concept for the improvement of the Containers Security Initiative (CSI) by virtually connecting safety, security processes and systems. A conceptual middleware approach with deployable intelligent agent modules is proposed to be used with possible scenarios and a testbed is used to test the solution. Middleware examples are visually programmed using National Instruments LabView software packages and Wireless sensor network hardware modules. An experimental software is used to evaluate he solution. This research is a contribution to the intermodal transportation and is intended to be used as a means or the development of intelligent transport systems.

  3. Analysis of the inhibition potential of zosuquidar derivatives on selected bacterial and fungal ABC transporters.

    PubMed

    Infed, Nacera; Smits, Sander H J; Dittrich, Torsten; Braun, Manfred; Driessen, Arnold J M; Hanekop, Nils; Schmitt, Lutz

    2013-03-01

    The increasing number of multidrug-resistant pathogenic microorganisms is a serious public health issue. Among the multitude of mechanisms that lead to multidrug resistance, the active extrusion of toxic compounds, mediated by MDR efflux pumps, plays an important role. In our study we analyzed the inhibitory capability of 26 synthesized zosuquidar derivatives on three ABC-type MDR efflux pumps, namely Saccharomyces cerevisiae Pdr5 as well as Lactococcus lactis LmrA and LmrCD. For Pdr5, five compounds could be identified that inhibited rhodamine 6G transport more efficiently than zosuquidar. One of these is a compound with a new catechol acetal structure that might represent a new lead compound. Furthermore, the determination of IC(50) values for rhodamine 6G transport of Pdr5 with representative compounds reveals values between 0.3 and 0.9 μM. Thus the identified compounds are among the most potent inhibitors known for Pdr5. For the ABC-type efflux pumps LmrA and LmrCD from L. lactis, seven and three compounds, which inhibit the transport activity more than the lead compound zosuquidar, were found. Interestingly, transport inhibition for LmrCD was very specific, with a drastic reduction by one compound while its diastereomers showed hardly an effect. Thus, the present study reveals new potent inhibitors for the ABC-type MDR efflux pumps studied with the inhibitors of Pdr5 and LmrCD being of particular interest as these proteins are well known model systems for their homologs in pathogenic fungi and Gram-positive bacteria.

  4. Optimal concentrations in transport systems.

    PubMed

    Jensen, Kaare H; Kim, Wonjung; Holbrook, N Michele; Bush, John W M

    2013-06-06

    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration copt in these systems. The model further suggests that the impedance at the optimum concentration μopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ0 as μopt 2(α)μ0, where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow.

  5. Lunar articulated remote transportation system

    NASA Technical Reports Server (NTRS)

    Beech, Geoffrey; Conley, Gerald; Diaz, Claudine; Dimella, Timothy; Dodson, Pete; Hykin, Jeff; Richards, Byron; Richardson, Kroy; Shetzer, Christie; Vandyke, Melissa

    1990-01-01

    A first generation lunar transportation vehicle was designed for use on the surface of the Moon between the years 2010 and 2020. Attention is focussed on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three cart, six-wheeled articulated vehicle. It's purpose will be for the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 kilometers). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the asronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include: a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat restraints, heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model was built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.

  6. Lunar articulated remote transportation system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The students of the Florida A&M/Florida State University College of Engineering continued their design from 1988 to 1989 on a first generation lunar transportation vehicle for use on the surface of the Moon between the years 2010 and 2020. Attention is focused on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three-cart, six-wheeled articulated vehicle. Its purpose will be the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 km). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the astronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat retraints; heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model has been built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.

  7. Integrated Intermodal Passenger Transportation System

    NASA Technical Reports Server (NTRS)

    Klock, Ryan; Owens, David; Schwartz, Henry; Plencner, Robert

    2012-01-01

    Modern transportation consists of many unique modes of travel. Each of these modes and their respective industries has evolved independently over time, forming a largely incoherent and inefficient overall transportation system. Travelers today are forced to spend unnecessary time and efforts planning a trip through varying modes of travel each with their own scheduling, pricing, and services; causing many travelers to simply rely on their relatively inefficient and expensive personal automobile. This paper presents a demonstration program system to not only collect and format many different sources of trip planning information, but also combine these independent modes of travel in order to form optimal routes and itineraries of travel. The results of this system show a mean decrease in inter-city travel time of 10 percent and a 25 percent reduction in carbon dioxide emissions over personal automobiles. Additionally, a 55 percent reduction in carbon dioxide emissions is observed for intra-city travel. A conclusion is that current resources are available, if somewhat hidden, to drastically improve point to point transportation in terms of time spent traveling, the cost of travel, and the ecological impact of a trip. Finally, future concepts are considered which could dramatically improve the interoperability and efficiency of the transportation infrastructure.

  8. The Space Taxi™ transportation system

    NASA Astrophysics Data System (ADS)

    Stanley, Douglas

    2000-01-01

    This paper summarizes the results of recent studies by Orbital to significantly reduce NASA's future launch costs and improve crew safety through the implementation of a low-risk, evolutionary space transportation architecture. These studies were performed as a part of NASA's Space Transportation Architecture Studies (STAS) and subsequent internally-funded efforts. A large number of vehicles and architecture approaches were examined and evaluated. Orbital's recommended architecture includes a small, multifunctional vehicle, referred to as a Space Taxi™, which would serve as: an emergency crew return vehicle for the International Space Station (ISS), a two-way human space transportation system, a small cargo delivery and return vehicle, and as a passenger module for a future Reusable Launch Vehicle (RLV). The Space Taxi™ would initially be launched on a heavy-lift Evolved Expendable Launch Vehicle (EELV), currently under development by U.S. industry and the U.S. Air Force. Together with a small cargo carrier located behind the Space Taxi™, this combination of vehicles would be used to meet future ISS servicing requirements. Later, a two-stage, commercially developed RLV would replace the EELV in launching the Space Taxi™ system at a significantly lower cost. .

  9. Vapor phase heat transport systems

    NASA Astrophysics Data System (ADS)

    Hedstrom, J. C.; Neeper, D. A.

    1985-09-01

    Progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating is described, which could also be applied to service water heating. The refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compared the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  10. Compact magnetic levitation transportation system

    SciTech Connect

    Suppes, G.J.

    1992-09-15

    This patent describes a magnetic levitation transportation system, it comprises: vehicle loading and unloading stations, at least one primary pair of laterally spaced rails comprises of magnetically interactive material extending between the vehicle loading and unloading stations, a vehicle of a size, a magnetic levitation means, energy conversion means for energizing the magnetic levitation means on the vehicle and for maintaining the speed and acceleration of the vehicle during travel, braking control means for creating a net braking force on the vehicle in a braking condition, and speed control means on the vehicle for accelerating and decelerating the vehicle.

  11. Urban Transportation Planning Short Course: Evaluation of Alternative Transportation Systems.

    ERIC Educational Resources Information Center

    Federal Highway Administration (DOT), Washington, DC.

    This urban transportation pamphlet delves into the roles of policy groups and technical staffs in evaluating alternative transportation plans, evaluation criteria, systems to evaluate, and evaluation procedures. The introduction admits the importance of subjective, but informed, judgment as an effective tool in weighing alternative transportation…

  12. Phase stable RF transport system

    DOEpatents

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  13. Sustainability Analysis of Innovative Transport System

    NASA Astrophysics Data System (ADS)

    Meiere, Ieva; Bazbauers, Gatis

    2011-01-01

    The focus of the research is to develop a new approach to transport solution based on the use of a conveyortype system and to compare the environmental impact of the new system with the existing ones. The new transport system consists of a conveyor driven by an electric motor, with a wind power plant supplying electricity, hydrogen storage and a fuel cell for matching the wind power production with the motor load. The research tasks included the evaluation of the consumption of fossil fuels and the associated environmental impact of existing transport system and a comparison with energy consumption and associated environmental impact of the new system. The energy balance of the conveyor transport system was modelled on an hourly basis by using the EnergyPLAN computer program [1] which allows to analyze a combination of intermittent renewable energy technologies, storage and transport systems. The results show that the existing transport system has greater impact on the environment than the proposed one.

  14. Classical transport in disordered systems

    NASA Astrophysics Data System (ADS)

    Papaioannou, Antonios

    This thesis reports on the manifestation of structural disorder on molecular transport and it consists of two parts. Part I discusses the relations between classical transport and the underlying structural complexity of the system. Both types of molecular diffusion, namely Gaussian and non- Gaussian are presented and the relevant time regimes are discussed. In addition the concept of structural universality is introduced and connected with the diffusion metrics. One of the most robust techniques for measuring molecular mean square displacements is magnetic resonance. This method requires encoding and subsequently reading out after an experimentally controlled time, a phase φ to the spins using magnetic field gradients. The main limitation for probing short diffusion lengths L(t) ˜ 1micro m with magnetic resonance is the requirement to encode and decode the phase φ in very short time intervals. Therefore, to probe such displacements a special probe was developed equipped with a gradient coil capable of delivering magnetic field gradients of approximately 90 G/cmA . The design of the probe is reported. Part I also includes a discussion of experiments of transport in two qualitatively different disordered phantoms and reports on a direct observation of universality in one-dimension. The results reveal the universal power law scaling of the diffusion coefficient at the long-time regime and illustrate the essence of structural universality by experimentally determining the structure correlation function of the phantoms. In addition, the scaling of the diffusive permeability of the phantoms with respect to the pore size is investigated. Additional work presented includes a detailed study of adsorption of methane gas in Vycor disordered glass. The techniques described in Part I of this thesis are widely used for measuring structural parameters of porous media, such as the surface-to-volume ratio or diffusive permeability. Part II of this thesis discusses the

  15. ABA and ABC type thermoplastic elastomer toughening of epoxy matrices and its effect on carbon fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Pitchiaya, Gomatheeshwar

    Epoxy-matrices have high modulus, strength, excellent creep resistance, but lacks ductility. One approach to improve the mechanical toughness is the addition of thermoplastic elastomers (TPEs). The TPEs investigated here are triblock copolymers of styrene-butadiene-methyl methacrylate (SBM) and methylmethacrylate-butylacrylate-methylmethacrylate (MAM) of the ABC and ABA type, respectively. The effect of concentration (1-12.5 wt %) of these TPEs on a diglycidyl ether of bisphenol-A (DGEBA) epoxy cured with metaphenylenediamine (mPDA), has been investigated. The TPE-DGEBA epoxies were characterized by TGA, DMA, SEM and impact. The flexural modulus, flexural strength and thermal resistance remained unaffected up to 5 wt% loading of TPEs, and exhibited less than 10% decrease at higher weight percent. T g was unaffected for all concentrations. Fracture toughness was improved 250% and up to 375% (when non- stoichiometric amount of curing agent was used) with TPE addition to epoxy/mPDA matrix. A SBM(1phr)EPON system was chosen to be the matrix of choice for a fiber reinforced composite system with a 4wt% aromatic epoxy sizing on a AS4 (UV-treated) carbon fiber. The 0° and 90° flexural modulus and strength of a SBM modified system was compared with the neat and their fracture surfaces were analyzed. A 89% increase in flexural strength was observed in a 90° flexural test for the modified system when compared with the neat. Novel sizing agents were also developed to enhance interfacial shear strength (IFSS) and the fiber-matrix adhesion and their birefringence pattern were analyzed.

  16. The security of mass transport ticketing systems

    NASA Astrophysics Data System (ADS)

    Sel, Marc; Seys, Stefaan; Verheul, Eric

    Mass transport ticketing systems in most developed countries are making a rapid transition from ‘traditional’ paper or carton-based ticketing systems towards a contactless ‘smart card‘ based approach. This article discusses the main IT security aspects of mass transport ticketing systems (metro, bus, etc).

  17. A National MagLev Transportation System

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    2003-01-01

    The case for a national high-speed magnetic-levitation (MagLev) transportation system is presented. Focus is on current issues facing the country, such as national security, the economy, transportation, technology, and the environment. NASA s research into MagLev technology for launch assist is also highlighted. Further, current socio-cultural norms regarding motor-vehicle-based transportation systems are questioned in light of the problems currently facing the U.S. The multidisciplinary benefits of a long-distance MagLev system support the idea that such a system would be an important element of a truly multimodal U.S. transportation infrastructure.

  18. Phenolsulfonphthalein transport by potential-sensitive urate transport system.

    PubMed

    Itagaki, Shirou; Shimamoto, Soji; Sugawara, Mitsuru; Kobayashi, Michiya; Miyazaki, Katsumi; Hirano, Takeshi; Iseki, Ken

    2005-08-22

    The purpose of this study was to elucidate the transporter-mediated secretion systems for phenolsulfonphthalein in brush-border membranes. In human and rat renal brush-border membranes, a potential-sensitive transport system has been shown to be involved in the efflux of organic anions. The uptake of phenolsulfonphthalein into rat renal brush-border membrane vesicles was stimulated by an inside-positive membrane potential. This potential-sensitive uptake of phenolsulfonphthalein was inhibited by probenecid, pyrazinoate and urate. p-Aminohippurate had no effect on the potential-sensitive uptake of phenolsulfonphthalein. Moreover, urate competitively inhibited the uptake of phenolsulfonphthalein. On the other hand, the uptake of phenolsulfonphthalein was slightly increased in the presence of an outward Cl- gradient. These results suggest that phenolsulfonphthalein has high affinity for the potential-sensitive urate transport system but has low affinity for an anion exchanger.

  19. STARS: The Space Transportation Architecture Risk System

    NASA Technical Reports Server (NTRS)

    Greenberg, Joel S.

    1997-01-01

    Because of the need to perform comparisons between transportation systems that are likely to have significantly different levels of risk, both because of differing degrees of freedom in achieving desired performance levels and their different states of development and utilization, an approach has been developed for performing early comparisons of transportation architectures explicitly taking into account quantitative measures of uncertainty and resulting risk. The approach considers the uncertainty associated with the achievement of technology goals, the effect that the achieved level of technology will have on transportation system performance and the relationship between transportation system performance/capability and the ability to accommodate variations in payload mass. The consequences of system performance are developed in terms of expected values and associated standard deviations of nonrecurring, recurring and the present value of transportation system life cycle cost. Typical results are presented to illustrate the application of the methodology.

  20. Systems Studies of DDT Transport

    ERIC Educational Resources Information Center

    Harrison, H. L.; And Others

    1970-01-01

    Major consequences of present and additional environmental quantities of DDT pesticide are predictable by mathematical models of transport, accumulation and concentration mechanisms in the Wisconsin regional ecosystem. High solubility and stability produce increased DDT concentrations at high organism trophic levels within world biosphere…

  1. Aerial Robotic System for Transportation and Logistics

    NASA Astrophysics Data System (ADS)

    Iwata, Kakuya; Hashimoto, Naohisa; Komoriya, Kiyoshi

    The status quo of a research on a novel aerial robotic system for transportation and logistics is presented. Under a new concept for an aerial robotic transportation system, three-Dimensional Transportation Robots (3DTR) were constructed with twin turbojet engines equipped by high performance noise reduction system and a flexibly jointed delta wing controlled by 2-axis actuators. This vehicle is also stable in the air due to its pendulum structure. The first flight was successfully conducted on November 22, 2005. Flight examination of 3DTR indicates its short take-off and landing (STOL) capability.

  2. Transportation Systems. Curriculum Guide for Technology Education.

    ERIC Educational Resources Information Center

    Chastain, Gary K.

    This curriculum guide for a 1-semester or 1-year course in transportation provides activities that show and explain many of the occupations, devices, and systems that are related to transportation on land, water, air, and space. The guide contains competencies (task lists), student competency records, and management sheets. Management sheets,…

  3. Structural interaction with transportation and handling systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Problems involved in the handling and transportation of finished space vehicles from the factory to the launch site are presented, in addition to recommendations for properly accounting for in space vehicle structural design, adverse interactions during transportation. Emphasis is given to the protection of vehicle structures against those environments and loads encountered during transportation (including temporary storage) which would exceed the levels that the vehicle can safely withstand. Current practices for verifying vehicle safety are appraised, and some of the capabilities and limitations of transportation and handling systems are summarized.

  4. Propulsion system for research VTOL transports

    NASA Technical Reports Server (NTRS)

    Gertsma, L. W.; Zigan, S.

    1973-01-01

    In anticipation of an eventual VTOL requirement for civil aviation, NASA has been conducting studies directed toward determining and developing the technology required for a commercial VTOL transport. In this paper, the commercial transport configurations are briefly reviewed; the propulsion system specifications and components developed by the engine study contractor are presented and described; and methods for using the lift-propulsion system for aircraft attitude control are discussed.

  5. Electromagnetic effects on transportation systems

    SciTech Connect

    Morris, M.E.; Dinallo, M.A.

    1996-05-01

    Electronic and electrical system protection design can be used to eliminate deleterious effects from lightning, electromagnetic interference, and electrostatic discharges. Evaluation of conventional lightning protection systems using advanced computational modeling in conjunction with rocket-triggered lightning tests suggests that currently used lightning protection system design rules are inadequate and that significant improvements in best practices used for electronic and electrical system protection designs are possible. A case study of lightning induced upset and failure of a railway signal and control system is sketched.

  6. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  7. The WIPP transportation system: Dedicated to safety

    SciTech Connect

    Ward, T.; McFadden, M.

    1993-12-01

    When developing a transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites, the Department of Energy (DOE) recognized and addressed many challenges. Shipments of waste to the Waste Isolation Pilot Plant (WIPP) were to cover a twenty-five year period and utilize routes covering over twelve thousand miles in twenty-three states. Enhancing public safety by maximizing the payload, thus reducing the number of shipments, was the primary objective. To preclude the requirement for overweight permits, the DOE started with a total shipment weight limit of 80,000 pounds and developed an integrated transportation system consisting of a Type ``B`` package to transport the material, a lightweight tractor and trailer, stringent driver requirements, and a shipment tracking system referred to as ``TRANSCOM``.

  8. Space transportation systems supporting a lunar base

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Woodcock, Gordon

    1990-01-01

    Results are presented on preliminary design studies conducted by NASA and its contractors to define the transportation vehicle for the support of a human return to the moon mission. Attention is given to the transportation needs and requirements, the design solutions to meet these requirements, the rationale for the selection of the designs, and the ground/orbital support facilities for placing these systems into routine earth-moon transportation service. The reference system includes a partially reusable lunar transfer vehicle that operates between the earth and lunar orbits and a fully reusable lunar excursion vehicle that operates between the lunar orbit and the lunar surface. The system can deliver 27 metric tons of cargo to the lunar surface in an automated flight mode, and can transport a crew of four and deliver 15 tons of cargo in a piloted mode.

  9. Expression systems for cloned xenobiotic transporters

    SciTech Connect

    Pritchard, John B.

    2005-05-01

    One challenge of modern biology is to be able to match genes and their encoded proteins with events at the molecular, cellular, tissue, and organism levels, and thus, provide a multi-level understanding of gene function and dysfunction. How well this can be done for xenobiotic transporters depends on a knowledge of the genes expressed in the tissue, the cellular locations of the gene products (do they function for uptake or efflux?), and our ability to match substrates with transporters using information obtained from cloned transporters functioning in heterologous expression systems. Clearly, making a rational choice of expression system to use for the characterization and study of cloned xenobiotic transporters is a critical part of study design. This choice requires well-defined goals, as well as an understanding of the strengths and weaknesses of candidate expression systems.

  10. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false University transportation systems. 37.25 Section 37.25 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems....

  11. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false University transportation systems. 37.25 Section 37.25 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems....

  12. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false University transportation systems. 37.25 Section 37.25 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems....

  13. TRANSIMS: Transportation analysis and simulation system

    SciTech Connect

    Smith, L.; Beckman, R.; Baggerly, K.

    1995-07-01

    This document summarizes the TRansportation ANalysis and SIMulation System (TRANSIMS) Project, the system`s major modules, and the project`s near-term plans. TRANSIMS will employ advanced computational and analytical techniques to create an integrated regional transportation systems analysis environment. The simulation environment will include a regional population of individual travelers and freight loads with travel activities and plans, whose individual interactions will be simulated on the transportation system, and whose environmental impact will be determined. We will develop an interim operational capability (IOC) for each major TRANSIMS module during the five-year program. When the IOC is ready, we will complete a specific case study to confirm the IOC features, applicability, and readiness.

  14. Design of a lunar transportation system

    NASA Technical Reports Server (NTRS)

    Sankaravelu, A.; Goddard, H.; Gold, R.; Greenwell, S.; Lander, J.; Nordell, B.; Stepp, K.; Styer, M.

    1989-01-01

    The development of a good transportation infrastructure is a major requirement for the establishment of a permanent lunar base. Transportation is characterized by the technology available in a specific time frame and the need to transport personnel and cargo between Earth and Moon, and between lunar bases. In our study, attention was first focused on developing a transportation system for the first generation lunar base. As a first step, a tracked-type multipurpose lunar transportation vehicle was considered as a possible mode of transportation and a detailed study was conducted on the various aspects of the vehicle. Since the vehicle is composed of many moving parts, exposing it to the environment of the Moon, where fine dust particles are prevalent, can cause problems associated with lubrication and friction. The vehicle also posed problems concerning weight and power. Hence, several modifications were made to the above design ideas conceptually, and a Lunar Articulated Remote Transportation System (Lunar ARTS) is proposed as a more effective alternative with the following objectives: (1) minimizing the transportation of construction material and fuel from Earth or maximizing the use of the lunar material; (2) use of novel materials and light-weight structures; (3) use of new manufacturing methods and technology such as magnetic levitation using superconducting materials; and (4) innovative concepts of effectively utilizing the exotic lunar conditions, i.e., high thermal gradients, lack of atmosphere, lower gravity, etc. To achieve the above objectives of designing transportation systems from concept to operation, the project was planned in three phases: (1) conceptual design; (2) detailed analysis and synthesis; and (3) construction, testing, evaluation, and operation. In this project, both phases 1 and 2 have been carried out and work on phase 3 is in progress. In this paper, the details of the Lunar ARTS are discussed and the future work on the vehicle are

  15. Not planning a sustainable transport system

    SciTech Connect

    Finnveden, Göran Åkerman, Jonas

    2014-04-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 2010–2021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: • Two cases are studied to analyse if current planning supports a sustainable transport system. • Results show that the plans are in conflict with several of the environmental quality objectives. • Long-term climate goals are not included in the planning processes. • Current practices do not contribute to a sustainable planning processes. • Methodology and process for environmental assessments must be further developed and discussed.

  16. Human Transportation System (HTS) study: Executive summary

    NASA Technical Reports Server (NTRS)

    Lance, N.; Geyer, M. S.; Gaunce, M. T.

    1993-01-01

    Work completed under the Human Transportation System Study is summarized. This study was conducted by the New Initiatives Office at JSC with the technical support of Boeing, General Dynamics, Lockheed, McDonnell-Douglas, Martin Marietta, and Rockwell. The study was designed to generate information on determining the appropriate path to follow for new system development to meet the Nation's space transportation needs. The study evaluates 18 transportation architecture options using a parametric set of mission requirements. These options include use of current systems as well as proposed systems to assess the impact of various considerations, such as the cost of alternate access, or the benefit of separating people and cargo. The architecture options are compared to each other with six measurable evaluation criteria or attributes. They are the following: funding profile, human safety, probability of mission success, architecture cost risk, launch schedule confidence, and environmental impact. Values for these attributes are presented for the architecture options, with pertinent conclusions and recommendations.

  17. Human Transportation System (HTS) study, volume 1

    NASA Technical Reports Server (NTRS)

    Lance, N.; Geyer, M. S.; Gaunce, M. T.

    1993-01-01

    Work completed under the Human Transportation System Study is summarized. This study was conducted by the New Initiatives Office at JSC with the technical support of Boeing, General Dynamics, Lockheed, McDonnell-Douglas, Martin Marietta, and Rockwell. The study was designed to generate information on determining the appropriate path to follow for new system development to meet the Nation's space transportation needs. The study evaluates 18 transportation architecture options using a parametric set of mission requirements. These options include use of current systems as well as proposed systems to assess the impact of various considerations, such as the cost of alternate access, or the benefit of separating people and cargo. The architecture options are compared to each other with six measurable evaluation criteria or attributes. They are the following: funding profile, human safety, probability of mission success, architecture cost risk, launch schedule confidence, and environmental impact. Values for these attributes are presented for the architecture options, with pertinent conclusions and recommendations.

  18. A laser-powered flight transportation system

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K. C.; Jones, W. S.

    1978-01-01

    Laser energy transmitted from a solar-power satellite via a set of relay satellites is used to power a cruising air transport; i.e., a laser-powered airplane. The result is a nearly fuelless pollution-free flight transportation system which is cost competitive with the fuel-conservative airplane of the future. The major components of this flight system include a laser-power satellite, relay satellites, laser-powered turbofans, and a conventional airframe. The relay satellites are orbiting optical systems which intercept the beam from a power satellite and refocus and redirect the beam to its next target.

  19. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  20. Molecular archeological studies of transmembrane transport systems

    NASA Astrophysics Data System (ADS)

    Saier, Milton H.; Wang, Bin; Sun, Eric I.; Matias, Madeleine; Yen, Ming Ren

    We here review studies concerned with the evolutionary pathways taken for the appearance of complex transport systems. The transmembrane protein constituents of these systems generally arose by (1) intragenic duplications, (2) gene fusions, and (3) the superimposition of enzymes onto carriers. In a few instances, we have documented examples of “reverse” or “retrograde” evolution where complex carriers have apparently lost parts of their polypeptide chains to give rise to simpler channels. Some functional superfamilies of transporters that are energized by adenosine triphosphate (ATP) or phosphoenolpyruvate (PEP) include several independently evolving permease families. The ubiquitous ATP-binding cassette (ABC) superfamily couples transport to ATP hydrolysis where the ATPases are superimposed on at least three distinct, independently evolving families of permeases. The prokaryotic sugar transporting phosphotransferase system (PTS) uses homologous PEP-dependent general energy-coupling phosphoryl transfer enzymes superimposed on at least three independently arising families of permeases to give rise to complex group translocators that modify their sugar substrates during transport, releasing cytoplasmic sugar phosphates. We suggest that simple carriers evolved independently of the energizing enzymes, and that chemical energization of transport resulted from the physical and functional coupling of the enzymes to the carriers.

  1. Alternative battery systems for transportation uses

    SciTech Connect

    Michael Thackeray

    2012-07-25

    Argonne Distinguished Fellow Michael Thackeray highlights the need for alternative battery systems for transportation uses. Such systems will not only need to be smaller, lighter and more energy dense, but also able to make electric vehicles more competitive with internal combustion engine vehicles.

  2. Alternative battery systems for transportation uses

    ScienceCinema

    Michael Thackeray

    2016-07-12

    Argonne Distinguished Fellow Michael Thackeray highlights the need for alternative battery systems for transportation uses. Such systems will not only need to be smaller, lighter and more energy dense, but also able to make electric vehicles more competitive with internal combustion engine vehicles.

  3. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  4. A Robust Scalable Transportation System Concept

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew; DeLaurentis, Daniel

    2006-01-01

    This report documents the 2005 Revolutionary System Concept for Aeronautics (RSCA) study entitled "A Robust, Scalable Transportation System Concept". The objective of the study was to generate, at a high-level of abstraction, characteristics of a new concept for the National Airspace System, or the new NAS, under which transportation goals such as increased throughput, delay reduction, and improved robustness could be realized. Since such an objective can be overwhelmingly complex if pursued at the lowest levels of detail, instead a System-of-Systems (SoS) approach was adopted to model alternative air transportation architectures at a high level. The SoS approach allows the consideration of not only the technical aspects of the NAS", but also incorporates policy, socio-economic, and alternative transportation system considerations into one architecture. While the representations of the individual systems are basic, the higher level approach allows for ways to optimize the SoS at the network level, determining the best topology (i.e. configuration of nodes and links). The final product (concept) is a set of rules of behavior and network structure that not only satisfies national transportation goals, but represents the high impact rules that accomplish those goals by getting the agents to "do the right thing" naturally. The novel combination of Agent Based Modeling and Network Theory provides the core analysis methodology in the System-of-Systems approach. Our method of approach is non-deterministic which means, fundamentally, it asks and answers different questions than deterministic models. The nondeterministic method is necessary primarily due to our marriage of human systems with technological ones in a partially unknown set of future worlds. Our goal is to understand and simulate how the SoS, human and technological components combined, evolve.

  5. Iontophoretic Transport Across a Multiple Membrane System

    PubMed Central

    MOLOKHIA, SARAH A.; ZHANG, YANHUI; HIGUCHI, WILLIAM I.; LI, S. KEVIN

    2008-01-01

    The objective of the present study was to investigate the iontophoretic transport behavior across multiple membranes of different barrier properties. Spectra/Por® (SP) and Ionac membranes were the synthetic membranes and sclera was the biomembrane in this model study. The barrier properties of SP membranes were determined individually in passive and iontophoresis transport experiments with tetraethylammonium ion (TEA), chloride ion (Cl), and mannitol as the model permeants. Passive and iontophoretic transport experiments were then conducted with an assembly of SP membranes. The contribution of electroosmosis to iontophoresis was assessed using the mannitol data. Model analysis was performed to study the contribution of diffusion and electromigration to electrotransport across the multiple membrane system. The effects of membrane barrier thickness upon ion-exchange membrane-enhanced iontophoresis were examined with Ionac, SP, and sclera. The present study shows that iontophoretic transport of TEA across the membrane system was related to the thicknesses and permeability coefficients of the membranes and the electromobilities of the permeant across the individual membranes in the assembly. Model analysis suggests significant contribution of diffusion within the membranes across the membrane system, and this mechanism is relatively independent of the current density applied across the system in iontophoresis dominant transport. PMID:17990310

  6. 77 FR 24559 - Marine Transportation System National Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... Maritime Administration Marine Transportation System National Advisory Council ACTION: National Advisory Council public meeting. SUMMARY: The Maritime Administration announces that the Marine Transportation... on the integration of marine highways into the national transportation system and the development...

  7. Amino acid transport by prosthecae of Asticcacaulis biprosthecum: evidence for a broad-range transport system.

    PubMed

    Tam, E; Pate, J L

    1985-10-01

    Prosthecae purified from cells of Asticcaulis biprosthecum possess active transport systems that transport all 20 amino acids tested. Using ascorbate-reduced phenazine methosulphate in the presence of oxygen, all 20 amino acids are accumulated against a concentration gradient by isolated prosthecae. Results of experiments testing the inhibition of transport of one amino acid by another, and of experiments testing the exchange of exogenous amino acids with those preloaded in prosthecae, along with characteristics of mutants defective in amino acid transport, suggest the presence in prosthecae of three amino acid transport systems. One, the general or G system, transports at least 18 of the 20 amino acids tested. Another system, referred to as the proline or P system, transports seven amino acids (including proline) that are also transported by the G system. The third system transports only glutamate and aspartate, and is referred to as the acidic amino acid transport system or A system.

  8. The Secure, Transportable, Autonomous Reactor System

    SciTech Connect

    Brown, N.W.; Hassberger, J.A.; Smith, C.; Carelli, M.; Greenspan, E.; Peddicord, K.L.; Stroh, K.; Wade, D.C.; Hill, R.N.

    1999-05-27

    The Secure, Transportable, Autonomous Reactor (STAR) system is a development architecture for implementing a small nuclear power system, specifically aimed at meeting the growing energy needs of much of the developing world. It simultaneously provides very high standards for safety, proliferation resistance, ease and economy of installation, operation, and ultimate disposition. The STAR system accomplishes these objectives through a combination of modular design, factory manufacture, long lifetime without refueling, autonomous control, and high reliability.

  9. Vapor-phase heat-transport system

    NASA Astrophysics Data System (ADS)

    Hedstrom, J. C.

    1983-11-01

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  10. Vapor-phase heat-transport system

    NASA Astrophysics Data System (ADS)

    Hedstrom, J. C.

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  11. A Mars/phobos Transportation System

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A transportation system will be necessary to support construction and operation of bases on Phobos and Mars beginning in the year 2020 or later. An approach to defining a network of vehicles and the types of vehicles which may be used in the system are presented. The network will provide a convenient, integrated means for transporting robotically constructed bases to Phobos and Mars. All the technology needed for the current plan is expected to be available for use at the projected date of cargo departure from the Earth system. The modular design of the transportation system provides easily implemented contingency plans, so that difficulties with any one vehicle will have a minimal effect on the progress of the total mission. The transportation network proposed consists of orbital vehicles and atmospheric entry vehicles. Initially, only orbital vehicles will participate in the robotic construction phase of the Phobos base. The Interplanetary Transfer Vehicle (ITV) will carry the base and construction equipment to Phobos where the Orbital Maneuvering Vehicles (OMV's) will participate in the initial construction of the base. When the Mars base is ready to be sent, one or more ITV's will be used to transport the atmospheric entry vehicles from Earth. These atmospheric vehicles are the One Way Landers (OWL's) and the Ascent/Descent Vehicles (ADV's). They will be used to carry the base components and/or construction equipment. The OMV's and the Orbital Transfer Vehicles (OTV's) will assist in carrying the atmospheric entry vehicles to low Martian orbit where the OWL's or ADV's will descent to the planet surface. The ADV's were proposed to accommodate expansion of the system. Additionally, a smaller version of the ADV class is capable of transporting personnel between Mars and Phobos.

  12. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    NASA Astrophysics Data System (ADS)

    Hunt, Randall J.; Johnson, William P.

    2016-12-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  13. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  14. Crew Transportation System Design Reference Missions

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  15. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  16. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  17. The Community Sediment Transport Modeling System

    DTIC Science & Technology

    2008-01-01

    addition to wave processes, the model includes the influence of flocculation, hindered settling, rheology, and turbulence -suppression by stratification...The extensive upwelling event occurred in March 2002 is better reproduced with evident appearance of submesoscale spiral eddies all over the inner...THE COMMUNITY SEDIMENT TRANSPORT MODELING SYSTEM W. Rockwell Geyer Woods Hole Oceanographic Institution MS 11, Woods Hole, MA 02543 phone

  18. PARTS: (Plasma Accelerated Reusable Transport System)

    NASA Astrophysics Data System (ADS)

    Aherne, Michael; Davis, Phil; England, Matt; Gustavsson, Jake; Pankow, Steve; Sampaio, Chere; Savella, Phil

    2002-01-01

    The Plasma Accelerated Reusable Transport System (PARTS) is an unmanned cargo shuttle intended to ferry large payloads to and from Martian orbit using a highly efficient VAriable Specific Impulse Magnetoplasma Rocket (VASIMR). The design of PARTS focuses on balancing cost and minimizing transit time for a chosen payload consisting of vehicles, satellites, and other components provided by interested parties.

  19. Heat transport system, method and material

    DOEpatents

    Musinski, Donald L.

    1987-01-01

    A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.

  20. Future space transportation systems analysis study. Phase 1 extension: Transportation systems reference data, volume 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Transportation mass requirements are developed for various mission and transportation modes based on vehicle systems sized to fit the exact needs of each mission. The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data are described.

  1. Space Transportation System (STS): Emergency support

    NASA Technical Reports Server (NTRS)

    Janoski, T.; Nicholson, L.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for emergency support of the Space Transportation System (STS) are summarized. Coverage would be provided by the DSN during emergencies that would prevent communications between the shuttle and the White Sands TDRSS receiving station. The DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  2. Disorder and Transport in Highly Correlated Systems

    DTIC Science & Technology

    1992-03-31

    Denr Dow. Vlease find included 1th100 copies of the Annu at [rport for my Grant NOOO 14- 1 j- 14󈧪, entitled " Disorder and Transport in I licility...of N ava1l Research for your support. 1Ian K. Sch~ilter Fnclosures Appr~I ~ir k~ll~ereleae;\\ t)Is~i I gm~U itedl ONR GRANT N00014-91J-1438 " Disorder ...001 i92-11805 ’ Introduction This grant was a new start dedicated to studies of disorder and transport in highly correlated electron systems, mostly

  3. A Course in Transport Phenomena in Multicomponent, Multiphase, Reacting Systems.

    ERIC Educational Resources Information Center

    Carbonell, R. G.; Whitaker, S.

    1978-01-01

    This course concentrates on a rigorous development of the multicomponent transport equations, boundary conditions at phase interfaces, and volume-averaged transport equations for multiphase reacting systems. (BB)

  4. The Palm Desert Renewable Hydrogen Transportation System

    SciTech Connect

    Lehman, P.

    1996-10-01

    The present paper describes, for purposes of the Department of Energy (DoE) Hydrogen Program Review, Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period January through June 1996. This period represents the first six months of the three year project. The estimated cost over three years is $3.9M, $1.859M of which is funded by the DoE ($600 k for fiscal year 1996). The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project will demonstrate the practical utility of hydrogen as a transportation fuel and proton exchange membrane (PEM) fuel cells as vehicle power plants. This transportation system will be developed in the City of Palm Desert in southern California and will include a fleet of 8 fuel cell powered vehicles, solar and wind powered hydrogen generating facilities, a consumer-ready refueling station, and a service infrastructure. The system holds the promise of a clean environment and an energy supply that is predictable, domestic, safe, and abundant. During, the first part of 1996 SERC has nearly completed building a fuel cell powered personal utility vehicle, which features an upgraded safety and computer system; they have designed and built a test bench that is able to mimic golf cart loads and test fuel cell system auxiliary components; they have begun the design of the solar hydrogen generating station; they have worked with Sandia National Laboratory on an advanced metal hydride storage system; they have increased the power density of the SERC fuel cell by as much as 50%; and they have reached out to the rest of the world with a new fact sheet, world wide web pages, a press release, video footage for a television program. and instruction within the community.

  5. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  6. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Transportation systems operated by public institutions of higher education are subject to the provisions of this... 49 Transportation 1 2010-10-01 2010-10-01 false University transportation systems. 37.25 Section... INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems....

  7. 360 degree vision system: opportunities in transportation

    NASA Astrophysics Data System (ADS)

    Thibault, Simon

    2007-09-01

    Panoramic technologies are experiencing new and exciting opportunities in the transportation industries. The advantages of panoramic imagers are numerous: increased areas coverage with fewer cameras, imaging of multiple target simultaneously, instantaneous full horizon detection, easier integration of various applications on the same imager and others. This paper reports our work on panomorph optics and potential usage in transportation applications. The novel panomorph lens is a new type of high resolution panoramic imager perfectly suitable for the transportation industries. The panomorph lens uses optimization techniques to improve the performance of a customized optical system for specific applications. By adding a custom angle to pixel relation at the optical design stage, the optical system provides an ideal image coverage which is designed to reduce and optimize the processing. The optics can be customized for the visible, near infra-red (NIR) or infra-red (IR) wavebands. The panomorph lens is designed to optimize the cost per pixel which is particularly important in the IR. We discuss the use of the 360 vision system which can enhance on board collision avoidance systems, intelligent cruise controls and parking assistance. 360 panoramic vision systems might enable safer highways and significant reduction in casualties.

  8. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  9. Small Aircraft Transportation System Concept and Technologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

    2005-01-01

    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

  10. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-10-01

    The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

  11. Human Transportation System (HTS) study, volume 2

    NASA Technical Reports Server (NTRS)

    Lance, N.; Geyer, M. S.; Gaunce, M. T.

    1993-01-01

    This report summarizes work completed under the Human Transportation System Study. This study was conducted by the New Initiatives Office at JSC with the technical support of Boeing, General Dynamics, Lockheed, McDonnell-Douglas, Martin Marietta, and Rockwell. The study was designed to generate information on determining the appropriate path to follow for new system development to meet the Nation's space transportation needs. The study evaluates 18 transportation architecture options using a parametric set of mission requirements. These options include use of current systems (e.g., Shuttle, Titan, etc. ) as well as proposed systems (e.g., PLS, Single-Stage-to-Orbit, etc.) to assess the impact of various considerations, such as the cost of alternate access, or the benefit of separating people and cargo. The architecture options are compared to each other with six measurable evaluation criteria or attributes. They are: funding profile, human safety, probability of mission success, architecture cost risk, launch schedule confidence, and environmental impact. Values for these attributes are presented for the architecture options, with pertinent conclusions and recommendations.

  12. Low energy beam transport system developments

    SciTech Connect

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  13. National Launch System Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Hoodless, Ralph M., Jr.; Monk, Jan C.; Cikanek, Harry A., III

    1991-01-01

    The present liquid-oxygen/liquid-hydrogen engine is described as meeting the specific requirements of the National Launch System (NLS) Program including cost-effectiveness and robustness. An overview of the NLS and its objectives is given which indicates that the program aims to develop a flexible launch system to meet security, civil, and commercial needs. The Space Transportation Main Engine (STME) provides core and boost propulsion for the 1.5-stage vehicle and core propulsion for the solid booster vehicle. The design incorporates step-throttling, order-of-magnitude reductions in welds, and configuration targets designed to optimize robustness. The STME is designed to provide adaptable and dependable propulsion while minimizing recurring costs and is designed to meet the needs of NLS and other typical space-transportation programs currently being planned.

  14. Controlled ecological life support system: Transportation analysis

    NASA Technical Reports Server (NTRS)

    Gustan, E.; Vinopal, T.

    1982-01-01

    This report discusses a study utilizing a systems analysis approach to determine which NASA missions would benefit from controlled ecological life support system (CELSS) technology. The study focuses on manned missions selected from NASA planning forecasts covering the next half century. Comparison of various life support scenarios for the selected missions and characteristics of projected transportation systems provided data for cost evaluations. This approach identified missions that derived benefits from a CELSS, showed the magnitude of the potential cost savings, and indicated which system or combination of systems would apply. This report outlines the analytical approach used in the evaluation, describes the missions and systems considered, and sets forth the benefits derived from CELSS when applicable.

  15. Heat transport system, method and material

    DOEpatents

    Musinski, D.L.

    1987-04-28

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  16. The Palm Desert renewable [hydrogen] transportation system

    SciTech Connect

    Chamberlin, C.E.; Lehman, P.

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  17. Cargo transportation by airships: A systems study

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Dalton, C.

    1976-01-01

    A systems engineering study of a lighter than air airship transportation system was conducted. The feasibility of the use of airships in hauling cargo was demonstrated. Social, legal, environmental and political factors were considered as well as the technical factors necessary to design an effective airship transportation system. In order to accomplish an effective airship transportation program two phases of implementation were recommended. Phase I would involve a fleet of rigid airships of 3.5 million cubic feet displacement capable of carrying 25 tons of cargo internal to the helium-filled gas bag. The Phase I fleet would demonstrate the economic and technical feasibility of modern-day airships while providing a training capability for the construction and operation of larger airships. The Phase II portion would be a fleet of rigid airships of 12 million cubic feet displacement capable of carrying a cargo of 100 tons a distance of 2,000 miles at a cruising speed of 60 mph. An economic analysis is given for a variety of missions for both Phase I and Phase II airships.

  18. Visualizing Mobility of Public Transportation System.

    PubMed

    Zeng, Wei; Fu, Chi-Wing; Arisona, Stefan Müller; Erath, Alexander; Qu, Huamin

    2014-12-01

    Public transportation systems (PTSs) play an important role in modern cities, providing shared/massive transportation services that are essential for the general public. However, due to their increasing complexity, designing effective methods to visualize and explore PTS is highly challenging. Most existing techniques employ network visualization methods and focus on showing the network topology across stops while ignoring various mobility-related factors such as riding time, transfer time, waiting time, and round-the-clock patterns. This work aims to visualize and explore passenger mobility in a PTS with a family of analytical tasks based on inputs from transportation researchers. After exploring different design alternatives, we come up with an integrated solution with three visualization modules: isochrone map view for geographical information, isotime flow map view for effective temporal information comparison and manipulation, and OD-pair journey view for detailed visual analysis of mobility factors along routes between specific origin-destination pairs. The isotime flow map linearizes a flow map into a parallel isoline representation, maximizing the visualization of mobility information along the horizontal time axis while presenting clear and smooth pathways from origin to destinations. Moreover, we devise several interactive visual query methods for users to easily explore the dynamics of PTS mobility over space and time. Lastly, we also construct a PTS mobility model from millions of real passenger trajectories, and evaluate our visualization techniques with assorted case studies with the transportation researchers.

  19. Miniature Heat Transport System for Nanosatellite Technology

    NASA Technical Reports Server (NTRS)

    Douglas, Donya M,

    1999-01-01

    The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an

  20. Corridor guided transport system utilizing permanent magnet levitation

    SciTech Connect

    Geraghty, J.J.; Poland, A.P.; Lombardi, J.A.

    1995-07-01

    The invention relates to a corridor guided transport system including a guided goods conveyance container utilizing permanent magnet levitation. The transport system of the invention eliminates the need for the wheel and track arrangement presently required by known and utilized conventional train systems and also required by some conventional magnetic levitation transport systems and, as a result, is safer to operate and maintain than either of these known transportation systems.

  1. Heavy particle transport in sputtering systems

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  2. An overview of European space transportation systems

    NASA Technical Reports Server (NTRS)

    Lo, R. E.

    1985-01-01

    With the completion of the launch rocket series Ariane 1 to 4, Europe will have reached the same capacity to transport commercial payloads as the USA has with the Space Shuttle and the kick stages which are presently operative. The near term development of these capacities would require Europe to develop a larger launch rocket, Araine 5. Further motivations for this rocket are access to manned spaceflight, the development of an European space station, and the demand for shuttle technology. Shuttle technology is the subject of research being done in France on the winged re-entry vehicle Hermes. Operation of the European space station Columbus will require development of an interorbital transport system to facilitate traffic between the various segments of the space station. All European space transportation systems will have to match their quality to that of the other countries involve in space flight. All areas of development are marked not only by possible cooperation but also by increased competition because of increasing commercialization of space flight.

  3. Hyperspectral range imaging for transportation systems evaluation

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. B.; Atwood, Don; Tolliver, Denver D.

    2016-04-01

    Transportation agencies expend significant resources to inspect critical infrastructure such as roadways, railways, and pipelines. Regular inspections identify important defects and generate data to forecast maintenance needs. However, cost and practical limitations prevent the scaling of current inspection methods beyond relatively small portions of the network. Consequently, existing approaches fail to discover many high-risk defect formations. Remote sensing techniques offer the potential for more rapid and extensive non-destructive evaluations of the multimodal transportation infrastructure. However, optical occlusions and limitations in the spatial resolution of typical airborne and space-borne platforms limit their applicability. This research proposes hyperspectral image classification to isolate transportation infrastructure targets for high-resolution photogrammetric analysis. A plenoptic swarm of unmanned aircraft systems will capture images with centimeter-scale spatial resolution, large swaths, and polarization diversity. The light field solution will incorporate structure-from-motion techniques to reconstruct three-dimensional details of the isolated targets from sequences of two-dimensional images. A comparative analysis of existing low-power wireless communications standards suggests an application dependent tradeoff in selecting the best-suited link to coordinate swarming operations. This study further produced a taxonomy of specific roadway and railway defects, distress symptoms, and other anomalies that the proposed plenoptic swarm sensing system would identify and characterize to estimate risk levels.

  4. National Space Transportation System (NSTS) technology needs

    NASA Technical Reports Server (NTRS)

    Winterhalter, David L.; Ulrich, Kimberly K.

    1990-01-01

    The National Space Transportation System (NSTS) is one of the Nation's most valuable resources, providing manned transportation to and from space in support of payloads and scientific research. The NSTS program is currently faced with the problem of hardware obsolescence, which could result in unacceptable schedule and cost impacts to the flight program. Obsolescence problems occur because certain components are no longer being manufactured or repair turnaround time is excessive. In order to achieve a long-term, reliable transportation system that can support manned access to space through 2010 and beyond, NASA must develop a strategic plan for a phased implementation of enhancements which will satisfy this long-term goal. The NSTS program has initiated the Assured Shuttle Availability (ASA) project with the following objectives: eliminate hardware obsolescence in critical areas, increase reliability and safety of the vehicle, decrease operational costs and turnaround time, and improve operational capability. The strategy for ASA will be to first meet the mandatory needs - keep the Shuttle flying. Non-mandatory changes that will improve operational capability and enhance performance will then be considered if funding is adequate. Upgrade packages should be developed to install within designated inspection periods, grouped in a systematic approach to reduce cost and schedule impacts, and allow the capability to provide a Block 2 Shuttle (Phase 3).

  5. Progress in photonic transport network systems

    NASA Astrophysics Data System (ADS)

    Sato, Ken-Ichi

    2002-07-01

    The network paradigm is changing rapidly spurred by the dramatic increase in IP traffic and recent progress in photonic network technologies. A key requirement, enhancing the performance of existing IP-based multimedia communication networks, can be most effectively achieved by introducing optical path technologies that exploit wavelength routing. Cost effective and reliable optical cross-connection is essential. Different optical switch technologies have been proposed and tested. Among them, the PLC (Planer Lightwave Circuit) switch has demonstrated excellent performance, particularly with regard to system reliability. Network control mechanisms based on the overlay and peer model models have been developed. The presentation will highlight some of the key system technologies. To develop very large scale and robust networks, effective traffic engineering capabilities are necessary. This will be achieved through optical path control. To develop future IP-centric networks, an operation mechanism based on distributed control is important. The degree to which the necessary transport and IP routing functions are integrated will determine system cost-effectiveness. The Photonic MPLS (Multi Protocol Label Switching) router, which integrates all the functions and provides seamless operation between IP and optical layers, has been proposed and developed. The technical feasibility of a recent prototype system has been proven. Finally, some of the cutting-edge photonic transport technologies that we have recently developed are demonstrated; these technologies will enable us to achieve another level of network performance enhancement in the future.

  6. Design of Large Momentum Acceptance Transport Systems

    SciTech Connect

    D.R. Douglas

    2005-05-01

    The use of energy recovery to enable high power linac operation often gives rise to an attendant challenge--the transport of high power beams subtending large phase space volumes. In particular applications--such as FEL driver accelerators--this manifests itself as a requirement for beam transport systems with large momentum acceptance. We will discuss the design, implementation, and operation of such systems. Though at times counterintuitive in behavior (perturbative descriptions may, for example, be misleading), large acceptance systems have been successfully utilized for generations as spectrometers and accelerator recirculators [1]. Such systems are in fact often readily designed using appropriate geometric descriptions of beam behavior; insight provided using such a perspective may in addition reveal inherent symmetries that simplify construction and improve operability. Our discussion will focus on two examples: the Bates-clone recirculator used in the Jefferson Lab 10 kW IR U pgrade FEL (which has an observed acceptance of 10% or more) and a compaction-managed mirror-bend achromat concept with an acceptance ranging from 50 to 150 MeV.

  7. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    SciTech Connect

    Carey, D.C.; Brown, K.L.; Rothacker, F.

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command.

  8. Energy transport in closed quantum systems.

    PubMed

    Levin, G A; Jones, W A; Walczak, K; Yerkes, K L

    2012-03-01

    We examine energy transport in an ensemble of closed quantum systems driven by stochastic perturbations. One can show that the probability and energy fluxes can be described in terms of quantum advection modes (QAMs) associated with the off-diagonal elements of the density matrix. These QAMs play the role of Landauer channels in a system with discrete energy spectrum and the eigenfunctions that cannot be described as plane waves. In order to determine the type of correlations that exist between the direction and magnitudes of each QAM and the average direction of energy and probability fluxes we have numerically solved the time-dependent Schrödinger equation describing a single particle trapped in a parabolic potential well which is perturbed by stochastic ripples. The ripples serve as a localized energy source and are offset to one side of the potential well. As the result a nonzero net energy flux flows from one part of the potential well to another across the symmetry center of the potential. We find that some modes exhibit positive correlation with the direction of the energy flow. Other modes, that carry a smaller energy per unit of the probability flux, anticorrelate with the energy flow and thus provide a backflow of the probability. The overall picture of energy transport that emerges from our results is very different from the conventional one based on a system with continuous energy spectrum.

  9. Energy transport in closed quantum systems

    NASA Astrophysics Data System (ADS)

    Levin, G. A.; Jones, W. A.; Walczak, K.; Yerkes, K. L.

    2012-03-01

    We examine energy transport in an ensemble of closed quantum systems driven by stochastic perturbations. One can show that the probability and energy fluxes can be described in terms of quantum advection modes (QAMs) associated with the off-diagonal elements of the density matrix. These QAMs play the role of Landauer channels in a system with discrete energy spectrum and the eigenfunctions that cannot be described as plane waves. In order to determine the type of correlations that exist between the direction and magnitudes of each QAM and the average direction of energy and probability fluxes we have numerically solved the time-dependent Schrödinger equation describing a single particle trapped in a parabolic potential well which is perturbed by stochastic ripples. The ripples serve as a localized energy source and are offset to one side of the potential well. As the result a nonzero net energy flux flows from one part of the potential well to another across the symmetry center of the potential. We find that some modes exhibit positive correlation with the direction of the energy flow. Other modes, that carry a smaller energy per unit of the probability flux, anticorrelate with the energy flow and thus provide a backflow of the probability. The overall picture of energy transport that emerges from our results is very different from the conventional one based on a system with continuous energy spectrum.

  10. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  11. Conceptual design of a Mars transportation system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  12. Space transportation system biomedical operations support study

    NASA Technical Reports Server (NTRS)

    White, S. C.

    1983-01-01

    The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.

  13. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1981-01-01

    This paper presents an overview of certain aspects of the evaluation of the fireworthiness of transport aircraft interiors. First, it addresses the key materials question concerning the effect of interior systems on the survival of passengers and crew in the case of an uncontrolled fire. Second, it examines some technical opportunities that are available today through the modification of aircraft interior subsystem components, modifications that may reasonably by expected to provide improvements in aircraft fire safety. Cost and risk benefits still remain to be determined.

  14. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  15. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras.

  16. A space transportation system operations model

    NASA Technical Reports Server (NTRS)

    Morris, W. Douglas; White, Nancy H.

    1987-01-01

    Presented is a description of a computer program which permits assessment of the operational support requirements of space transportation systems functioning in both a ground- and space-based environment. The scenario depicted provides for the delivery of payloads from Earth to a space station and beyond using upper stages based at the station. Model results are scenario dependent and rely on the input definitions of delivery requirements, task times, and available resources. Output is in terms of flight rate capabilities, resource requirements, and facility utilization. A general program description, program listing, input requirements, and sample output are included.

  17. A study of characteristics of intercity transportation systems. Phase 1: Definition of transportation comparison methodology

    NASA Technical Reports Server (NTRS)

    English, J. M.; Smith, J. L.; Lifson, M. W.

    1978-01-01

    The objectives of this study are: (1) to determine a unified methodological framework for the comparison of intercity passenger and freight transportation systems; (2) to review the attributes of existing and future transportation systems for the purpose of establishing measures of comparison. These objectives were made more specific to include: (1) development of a methodology for comparing long term transportation trends arising from implementation of various R&D programs; (2) definition of value functions and attribute weightings needed for further transportation goals.

  18. Thermal analysis of sludge transport system for Argon backfill and extended transport window

    SciTech Connect

    ROMANO, T.

    2003-10-02

    This calculation, which addresses the use of argon as the backfill gas and extended periods of transfer, provides the thermal and gas generation analyses for the Sludge Transportation System (STS) under Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) for onsite transportation of the STS between the K Basins and the interim storage location (Le., T Plant). The STS is comprised of a packaging and transportation system for the removal of radioactive sludge from the K Basins.

  19. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-12-01

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. Remediation of these sites requires extensive sampling to determine the extent of the contamination, to monitor clean-up and remediation progress, and for post-closure monitoring of facilities. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. Such systems would accelerate and thereby reduce the cost of clean-up and remediation efforts by (1) providing critical analytical data more rapidly, and (2) eliminating the handling, shipping and manpower associated with sample shipments. The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

  20. Risk management model in road transport systems

    NASA Astrophysics Data System (ADS)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2016-08-01

    The article presents the results of a study of road safety indicators that influence the development and operation of the transport system. Road safety is considered as a continuous process of risk management. Authors constructed a model that relates the social risks of a major road safety indicator - the level of motorization. The model gives a fairly accurate assessment of the level of social risk for any given level of motorization. Authors calculated the dependence of the level of socio-economic costs of accidents and injured people in them. The applicability of the concept of socio-economic damage is caused by the presence of a linear relationship between the natural and economic indicators damage from accidents. The optimization of social risk is reduced to finding the extremum of the objective function that characterizes the economic effect of the implementation of measures to improve safety. The calculations make it possible to maximize the net present value, depending on the costs of improving road safety, taking into account socio-economic damage caused by accidents. The proposed econometric models make it possible to quantify the efficiency of the transportation system, allow to simulate the change in road safety indicators.

  1. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-04-01

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. The goal of the Road Transportable Analytical Laboratory (RTAL) project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soils, ground water and surface waters. This document describes the requirements for such a laboratory.

  2. Innovative technology summary report: Transportable vitrification system

    SciTech Connect

    1998-09-01

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  3. A study of characteristics of intercity transportation systems. Phase 1: Definition of transportation comparison methodology

    NASA Technical Reports Server (NTRS)

    English, J. M.; Smith, J. L.; Lifson, M. W.

    1978-01-01

    Decision making in early transportation planning must be responsive to complex value systems representing various policies and objectives. The assessment of alternative transportation concepts during the early initial phases of the system life cycle, when supportive research and technology development activities are defined, requires estimates of transportation, environmental, and socio-economic impacts throughout the system life cycle, which is a period of some 40 or 50 years. A unified methodological framework for comparing intercity passenger and freight transportation systems is described and is extended to include the comparison of long term transportation trends arising from implementation of the various R & D programs. The attributes of existing and future transportation systems are reviewed in order to establish measures for comparison, define value functions, and attribute weightings needed for comparing alternative policy actions for furthering transportation goals. Comparison criteria definitions and an illustrative example are included.

  4. Sensor system for fuel transport vehicle

    DOEpatents

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  5. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  6. Transport systems research vehicle color display system operations manual

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.; Johnson, Larry E.

    1989-01-01

    A recent upgrade of the Transport Systems Research Vehicle operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has resulted in an all-glass panel in the research flight deck. Eight ARINC-D size CRT color displays make up the panel. A major goal of the display upgrade effort was ease of operation and maintenance of the hardware while maintaining versatility needed for flight research. Software is the key to this required versatility and will be the area demanding the most detailed technical design expertise. This document is is intended to serve as a single source of quick reference information needed for routine operation and system level maintenance. Detailed maintenance and modification of the display system will require specific design documentation and must be accomplished by individuals with specialized knowledge and experience.

  7. Future space transportation system architecture avionics requirements

    NASA Technical Reports Server (NTRS)

    Stone, Howard; Engelund, Walt

    1993-01-01

    NASA began a multi-center study in January 1993 to examine options for providing the most cost effective space transportation system in the future. The key advanced avionics requirements for these vehicle concepts are envisioned to provide significantly improved operational efficiency and effectiveness. It is very desirable to have adaptive guidance, navigation, and control approaches that will allow launch and return in almost any weather condition. The vehicles must be able to accommodate atmospheric density variations and winds without software changes. The flight operations must become much more autonomous in all flight regimes like an aircraft, and preflight checkout should make use of the onboard systems. When the vehicle returns to the launch site, subsystem health must be known and maintenance tasks scheduled accordingly. Ground testing of most subsystems must be eliminated. Also, the health monitoring system must be designed to enhance the ability to abort the mission significantly and save the crew and the vehicle. The displays and controls must be much less complex than current systems and must significantly reduce pilot work load. It is important to have low power, light weight displays and controls. Rendezvous and docking and all flight phases must have autopilot capability to reduce pilot work load for routine operations and in abort situations. The vehicles must have the demonstrated ability to return to the launch site. Abort from all mission phases can put additional demands on the communications system.

  8. Convective heat transport in geothermal systems

    SciTech Connect

    Lippmann, M.J.; Bodvarsson, G.S.

    1986-08-01

    Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

  9. 77 FR 26067 - Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Doc No: 2012-10586] DEPARTMENT OF TRANSPORTATION Intelligent Transportation Systems Program Advisory... Administration, U.S. Department of Transportation. ACTION: Notice. The Intelligent Transportation Systems (ITS... implementation of intelligent transportation systems. Through its sponsor, the ITS Joint Program......

  10. 77 FR 55266 - Marine Transportation System National Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... Maritime Administration Marine Transportation System National Advisory Council ACTION: National Advisory Council public meeting. SUMMARY: The Maritime Administration announces that the Marine Transportation... financing mechanisms and provide adequate ship capacity for marine highway services. DATES: The meeting...

  11. Simulation framework for intelligent transportation systems

    SciTech Connect

    Ewing, T.; Doss, E.; Hanebutte, U.; Tentner, A.

    1996-10-01

    A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System (ITS). The simulator is designed for running on parallel computers and distributed (networked) computer systems, but can run on standalone workstations for smaller simulations. The simulator currently models instrumented smart vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide two-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. Realistic modeling of variations of the posted driving speed are based on human factors studies that take into consideration weather, road conditions, driver personality and behavior, and vehicle type. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on parallel computers, such as ANL`s IBM SP-2, for large-scale problems. A novel feature of the approach is that vehicles are represented by autonomous computer processes which exchange messages with other processes. The vehicles have a behavior model which governs route selection and driving behavior, and can react to external traffic events much like real vehicles. With this approach, the simulation is scaleable to take advantage of emerging massively parallel processor (MPP) systems.

  12. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  13. Structure of the nucleotide-binding domain of a dipeptide ABC transporter reveals a novel iron-sulfur cluster-binding domain.

    PubMed

    Li, Xiaolu; Zhuo, Wei; Yu, Jie; Ge, Jingpeng; Gu, Jinke; Feng, Yue; Yang, Maojun; Wang, Linfang; Wang, Na

    2013-02-01

    Dipeptide permease (Dpp), which belongs to an ABC transport system, imports peptides consisting of two or three L-amino acids from the matrix to the cytoplasm in microbes. Previous studies have indicated that haem competes with dipeptides to bind DppA in vitro and in vivo and that the Dpp system can also translocate haem. Here, the crystal structure of DppD, the nucleotide-binding domain (NBD) of the ABC-type dipeptide/oligopeptide/nickel-transport system from Thermoanaerobacter tengcongensis, bound with ATP, Mg(2+) and a [4Fe-4S] iron-sulfur cluster is reported. The N-terminal domain of DppD shares a similar structural fold with the NBDs of other ABC transporters. Interestingly, the C-terminal domain of DppD contains a [4Fe-4S] cluster. The UV-visible absorbance spectrum of DppD was consistent with the presence of a [4Fe-4S] cluster. A search with DALI revealed that the [4Fe-4S] cluster-binding domain is a novel structural fold. Structural analysis and comparisons with other ABC transporters revealed that this iron-sulfur cluster may act as a mediator in substrate (dipeptide or haem) binding by electron transfer and may regulate the transport process in Dpp ABC transport systems. The crystal structure provides a basis for understanding the properties of ABC transporters and will be helpful in investigating the functions of NBDs in the regulation of ABC transporter activity.

  14. Status of the National Space Transportation System

    NASA Technical Reports Server (NTRS)

    Abrahamson, J. A.

    1984-01-01

    The National Space Transportation System is a national resources serving the government, Department of Defense and commercial needs of the USA and others. Four orbital flight tests were completed July 4, 1982, and the first Operational Flight (STS-5) which placed two commercial communications into orbit was conducted November 11, 1982. February 1983 marked the first flight of the newest orbiter, Challenger. Planned firsts in 1983 include: use of higher performance main engines and solid rocket boosters, around-the-clock crew operations, a night landing, extra-vehicular activity, a dedicated DOD mission, and the first flight of a woman crew member. By the end of 1983, five commercial payloads and two tracking and data relay satellites should be deployed and thirty-seven crew members should have made flights aboard the space shuttle.

  15. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1981-01-01

    The key materials question is addressed concerning the effect of interior systems on the survival of passengers and crew in the case of an uncontrolled transport aircraft fire. Technical opportunities are examined which are available through the modification of aircraft interior subsystem components, modifications that may reasonably be expected to provide improvements in aircraft fire safety. Subsystem components discussed are interior panels, seats, and windows. By virtue of their role in real fire situations and as indicated by the results of large scale simulation tests, these components appear to offer the most immediate and highest payoff possible by modifying interior materials of existing aircraft. These modifications have the potential of reducing the rate of fire growth, with a consequent reduction of heat, toxic gas, and smoke emission throughout the habitable interior of an aircraft, whatever the initial source of the fire.

  16. Fuel cell system for transportation applications

    DOEpatents

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  17. Fuel cell system for transportation applications

    DOEpatents

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  18. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  19. Transport in active systems crowded by obstacles

    NASA Astrophysics Data System (ADS)

    Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond

    2017-02-01

    The reactive and diffusive dynamics of a single chemically powered Janus motor in a crowded medium of moving but passive obstacles is investigated using molecular simulation. It is found that the reaction rate of the catalytic motor reaction decreases in a crowded medium as the volume fraction of obstacles increases as a result of a reduction in the Smoluchowski diffusion-controlled reaction rate coefficient that contributes to the overall reaction rate. A continuum model is constructed and analyzed to interpret the dependence of the steady-state reaction rate observed in simulations on the volume fraction of obstacles in the system. The steady-state concentration fields of reactant and product are shown to be sensitive to the local structure of obstacles around the Janus motor. It is demonstrated that the active motor exhibits enhanced diffusive motion at long times with a diffusion constant that decreases as the volume fraction of crowding species increases. In addition, the dynamical properties of a passive tracer particle in a system containing many active Janus motors is studied to investigate how an active environment influences the transport of non-active species. The diffusivity of a passive tracer particle in an active medium is found to be enhanced in systems with forward-moving Janus motors due to the cooperative dynamics of these motors.

  20. Argonne simulation framework for intelligent transportation systems

    SciTech Connect

    Ewing, T.; Doss, E.; Hanebutte, U.; Canfield, T.; Brown-VanHoozer, A.; Tentner, A.

    1996-04-01

    A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distributed (networked) computer systems; however, a version for a stand alone workstation is also available. The ITS simulator includes an Expert Driver Model (EDM) of instrumented ``smart`` vehicles with in-vehicle navigation units. The EDM is capable of performing optimal route planning and communicating with Traffic Management Centers (TMC). A dynamic road map data base is sued for optimum route planning, where the data is updated periodically to reflect any changes in road or weather conditions. The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces that includes human-factors studies to support safety and operational research. Realistic modeling of variations of the posted driving speed are based on human factor studies that take into consideration weather, road conditions, driver`s personality and behavior and vehicle type. The simulator has been developed on a distributed system of networked UNIX computers, but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of the developed simulator is that vehicles will be represented by autonomous computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. Vehicle processes interact with each other and with ITS components by exchanging messages. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  1. Systematic Development of Intelligent Systems for Public Road Transport.

    PubMed

    García, Carmelo R; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-07-16

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network.

  2. Systematic Development of Intelligent Systems for Public Road Transport

    PubMed Central

    García, Carmelo R.; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-01-01

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network. PMID:27438836

  3. Advanced space transportation systems, BARGOUZIN booster

    NASA Astrophysics Data System (ADS)

    Prampolini, Marco; Louaas, Eric; Prel, Yves; Kostromin, Sergey; Panichkin, Nickolay; Sumin, Yuriy; Osin, Mikhail; Iranzo-Greus, David; Rigault, Michel; Beaurain, André; Couteau, Jean-Noël

    2008-07-01

    In the framework of Advanced Space Transportation Systems Studies sponsored by CNES in 2006, a study called "BARGOUZIN" was performed by a joint team led by ASTRIUM ST and TSNIIMASH. Beyond these leaders, the team comprised MOLNIYA, DASSAULT AVIATION and SNECMA as subcontractors. The "BARGOUZIN" concept is a liquid fuelled fly-back booster (LFBB), mounted on the ARIANE 5 central core stage in place of the current solid rocket booster. The main originality of the concept lies in the fact that the "BARGOUZIN" features a cluster of VULCAIN II engines, similar to the one mounted on the central core stage of ARIANE 5. An astute permutation strategy, between the booster engines and central core engine is expected to lead to significant cost reductions. The following aspects were addressed during the preliminary system study: engine number per booster trade-off/abort scenario analysis, aerodynamic consolidation, engine reliability, ascent controllability, ground interfaces separation sequence analysis, programmatics. These topics will be briefly presented and synthesized in this paper, giving an overview of the credibility of the concept.

  4. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The 515-41B National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the sixth operational Shuttle flight and fourth flight of the OV-099 vehicle, Challenger. Since this flight was the first to land at Kennedy Space Center, the vehicle was towed directly to the OPF (Orbiter Processing Facility) where preparations for flight STS-41C, scheduled for early April 1984, began immediately. The significant problems that occurred during STS-41B are summarized and a problem tracking list that is a complete list of all problems that occurred during the flight is given. None of the problems will affect the STS 41C flight. The major objectives of flight STS-41B were to successfully deploy the Westar satellite and the Indonesian Communications Satellite-B2 (PALAPA-B2); to evaluate the MMU (Manned Maneuvering Unit) support for EVA (Extravehicular Activities); to exercise the MFR (Manipulator Foot Restraint); to demonstrate a closed loop rendezvous; and to operate the M.R (Monodisperse Latex Reactor), the ACES (Acoustic Containerless Experiment System) and the IEF (Isoelectric Focusing) in cabin experiments; and to obtain photographs with the Cinema 360 Cameras.

  5. NANONIS TRAMEA - A Quantum Transport Measurement System

    NASA Astrophysics Data System (ADS)

    Kampen, Thorsten; Thissen, Andreas; Schaff, Oliver; Pioda, Alessandro

    Nanonis Tramea is a quantum leap with respect to increased speed for transport measurements taking research onto a new level. Measurements which took several hours in the past can now be done in minutes without compromising signal quality. Tramea uses its fast, high-resolution, high-precision and ultra-low-noise outputs and inputs to generate and acquire up to 20000 data points per second on 24 channels in parallel. This is not only up to 1000 x faster than typical measurement systems but it is also time deterministic with highest precision. Here, the time separation between points is constant so that artefacts caused by unequal point spacings in non-deterministic measurement systems are avoided. The emphasis here is the real-time relation. Tramea comes with a built-in interface which allows for control of the instruments' basic functions from any programming environment. For users requiring more functionality and higher speeds a full-featured LabVIEW-based programming interface or scripting module are available as add-on modules. Due to the modularity and flexibility of the hardware and software architecture of Tramea upgrades with standardized add-on modules are possible. Non-standard requests can still be handled by the various programming options.

  6. Intelligent transportation infrastructure deployment analysis system

    SciTech Connect

    Rathi, A.K.; Harding, J.A.

    1997-02-01

    Much of the work on Intelligent Transportation Systems (ITS) to date has emphasized technologies, standards/protocols, architecture, user services, core infrastructure requirements, and various other technical and institutional issues. ITS implementations in the United States and elsewhere in the world have demonstrated benefits in the areas of safety, productivity, efficiency, and environmental impact. However, quantitative benefits and satisfactory cost estimates are not available or cannot be derived for many components of the ITS, whether deployed individually or in some integrated fashion. The limitations of existing analysis and evaluation capabilities coupled with the lack of strong empirical evidence presents a major knowledge and data gap for infrastructure investment decisions involving ITS alternatives. This paper describes the over-arching issues and requirements associated with the analysis capabilities required for a systematic, faithful, and rigorous evaluation of the impacts of deploying ITS in a metropolitan area. It then describes the conceptual framework of a modeling system that will provide a preliminary analysis capability to support ITS deployment analysis and evaluation.

  7. Education in Transportation Systems Planning: Highway Research Record No. 462.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Transportation Research Board.

    The papers contained in the issue of Highway Research Record focus on current and emerging patterns of education and training related to transportation systems planning. The five papers are: Transportation Centers and Other Mechanisms to Encourage Interdisciplinary Research and Training Efforts in Transportation (Frederick J. Wegmann and Edward A.…

  8. Integrated mass transportation system study/definition/implementation program definition

    NASA Technical Reports Server (NTRS)

    Ransone, R. K.; Deptula, D. A.; Yorke, G. G.

    1975-01-01

    Specific actions needed to plan and effect transportation system improvements are identified within the constraints of limited financial, energy and land use resources, and diverse community requirements. A specific program is described which would develop the necessary generalized methodology for devising improved transportation systems and evaluate them against specific criteria for intermodal and intramodal optimization. A consistent, generalized method is provided for study and evaluation of transportation system improvements.

  9. The SIMPSONS project: An integrated Mars transportation system

    NASA Technical Reports Server (NTRS)

    Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett

    1992-01-01

    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.

  10. Road transportable analytical laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1996-12-31

    Remediation of DOE contaminated areas requires extensive sampling and analysis. Reliable, road transportable, fully independent laboratory systems that could perform on-site a full range of analyses meeting high levels of quality assurance and control, would accelerate and thereby reduce the cost of cleanup and remediation efforts by (1) providing critical analytical data more rapidly, and (2) eliminating the handling, shipping, and manpower associated with sample shipments. Goals of RTAL are to meet the needs of DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. The system consists of a set of individual laboratory modules deployable independently or together, to meet specific site needs: radioanalytical lab, organic chemical analysis lab, inorganic chemical analysis lab, aquatic biomonitoring lab, field analytical lab, robotics base station, decontamination/sample screening module, and operations control center. Goal of this integrated system is a sample throughput of 20 samples/day, providing a full range of accurate analyses on each sample within 16 h (after sample preparation), compared with the 45- day turnaround time in commercial laboratories. A prototype RTAL consisting of 5 modules was built and demonstrated at Fernald(FEMP)`s OU-1 Waste Pits, during the 1st-3rd quarters of FY96 (including the `96 Blizzard). All performance and operational goals were met or exceeded: as many as 50 sample analyses/day were achieved, depending on the procedure, sample turnaround times were 50-67% less than FEMP`s best times, and RTAL costs were projected to be 30% less than FEMP costs for large volume analyses in fixed laboratories.

  11. A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters

    PubMed Central

    Saier, Milton H.

    2000-01-01

    A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional

  12. 49 CFR 37.33 - Airport transportation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... systems operated by public airport operators, which provide designated public transportation and connect... this part for fixed route or demand responsive systems, as applicable, operated by public entities. Public airports which operate fixed route transportation systems are subject to the requirements of...

  13. The Transport of Carbohydrates by a Bacterial Phosphotransferase System

    PubMed Central

    Roseman, Saul

    1969-01-01

    The components and properties of a phosphoenolpyruvate: glucose phosphotransferase system are reviewed, along with the evidence implicating this system in sugar transport across bacterial membranes. Some possible physiological implications of sugar transport mediated by the phosphotransferase system are also considered. PMID:19873641

  14. Concept of Integrated Information Systems of Rail Transport

    NASA Astrophysics Data System (ADS)

    Siergiejczyk, Mirosław; Gago, Stanisław

    This paper will present a need to create integrated information systems of the rail transport and their links with other means of public transportation. IT standards will be discussed that are expected to create the integrated information systems of the rail transport. Also the main tasks will be presented of centralized information systems, the concept of their architecture, business processes and their implementation as well as the proposed measures to secure data. A method shall be proposed to implement a system to inform participants of rail transport in Polish conditions.

  15. A Segway RMP-based robotic transport system

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Kogut, Greg; Barua, Ripan; Burmeister, Aaron; Pezeshkian, Narek; Powell, Darren; Farrington, Nathan; Wimmer, Matt; Cicchetto, Brett; Heng, Chana; Ramirez, Velia

    2004-12-01

    In the area of logistics, there currently is a capability gap between the one-ton Army robotic Multifunction Utility/Logistics and Equipment (MULE) vehicle and a soldier"s backpack. The Unmanned Systems Branch at Space and Naval Warfare Systems Center (SPAWAR Systems Center, or SSC), San Diego, with the assistance of a group of interns from nearby High Tech High School, has demonstrated enabling technologies for a solution that fills this gap. A small robotic transport system has been developed based on the Segway Robotic Mobility Platform (RMP). We have demonstrated teleoperated control of this robotic transport system, and conducted two demonstrations of autonomous behaviors. Both demonstrations involved a robotic transporter following a human leader. In the first demonstration, the transporter used a vision system running a continuously adaptive mean-shift filter to track and follow a human. In the second demonstration, the separation between leader and follower was significantly increased using Global Positioning System (GPS) information. The track of the human leader, with a GPS unit in his backpack, was sent wirelessly to the transporter, also equipped with a GPS unit. The robotic transporter traced the path of the human leader by following these GPS breadcrumbs. We have additionally demonstrated a robotic medical patient transport capability by using the Segway RMP to power a mock-up of the Life Support for Trauma and Transport (LSTAT) patient care platform, on a standard NATO litter carrier. This paper describes the development of our demonstration robotic transport system and the various experiments conducted.

  16. Topological transport in Dirac electronic systems: A concise review

    NASA Astrophysics Data System (ADS)

    Song, Hua-Ding; Sheng, Dian; Wang, An-Qi; Li, Jin-Guang; Yu, Da-Peng; Liao, Zhi-Min

    2017-03-01

    Various novel physical properties have emerged in Dirac electronic systems, especially the topological characters protected by symmetry. Current studies on these systems have been greatly promoted by the intuitive concepts of Berry phase and Berry curvature, which provide precise definitions of the topological orders. In this topical review, transport properties of topological insulator (Bi2Se3), topological Dirac semimetal (Cd3As2) and topological insulator-graphene heterojunction are presented and discussed. Perspectives about transport properties of two-dimensional topological nontrivial systems, including topological edge transport, topological valley transport and topological Weyl semimetals, are provided.

  17. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Luo, Y.; Heimerle, M.; Fischer, W.; Pikin, A.; Beebe, E.; Bruno, D.; Gassner, D.; Gu, X.; Gupta, R. C.; Hock, J.; Jain, A.; Lambiase, R.; Mapes, M.; Meng, W.; Montag, C.; Oerter, B.; Okamura, M.; Raparia, D.; Tan, Y.; Than, R.; Tuozzolo, J.; Zhang, W.

    2010-08-03

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP6 and IP8. Each electron lens has several sub-systems, including electron gun, electron collector, superconducting main solenoid (SM), diagnostics system and power supply system. In addition to these systems, beam transport system which can transport electron beam from electron gun side to collector side is also needed.

  18. Development of a Transportation System in Iran

    DTIC Science & Technology

    1979-06-01

    transport development was i greatly assisted by many navigable waterways, Iran possesses but a single navigable river, the Karun in the southwest. The...location. Being on the western slopes of the Zagros mountains, the Karun is situated in one of the less accessible regions of Iran. f Even from Shustar...land routes into the interior even the Karun river could only contribute to regional develop- ment. This dependence upon land transport has only begun

  19. Theory of Transport for Interacting Many-Body Systems

    DTIC Science & Technology

    1992-06-15

    A novel approach to quantum transport in coupled electron-phonon systems has been developed. Application to the polaron problem, two-level systems...This model has been successfully applied to ternary alloys, as well as amorphous semiconductor quantum wells. Quantum transport theory, dissipation, electronic density of states.

  20. Transport in small and/or random systems

    SciTech Connect

    Lax, M.

    1987-05-14

    This report discusses: transport in small systems; electron-phonon interactions in quantum wells; noise in small systems; laser propagation in the atmosphere; laser-aerosol interactions; transport properties of carriers in semiconductor quantum wells; light transmission in a particulate medium; and laser generation of shock waves in droplets. (LSP)

  1. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  2. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Astrophysics Data System (ADS)

    Duffy, James B.

    1993-12-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  3. Cryogenic Transport of High-Pressure-System Recharge Gas

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl

    2010-01-01

    A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near

  4. Transport processes in biological systems: Tumoral cells and human brain

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2014-01-01

    The entropy generation approach has been developed for the analysis of complex systems, with particular regards to biological systems, in order to evaluate their stationary states. The entropy generation is related to the transport processes related to exergy flows. Moreover, cancer can be described as an open complex dynamic and self-organizing system. Consequently, it is used as an example useful to evaluate the different thermo-chemical quantities of the transport processes in normal and in tumoral cells systems.

  5. A vitamin B12 transporter in Mycobacterium tuberculosis

    PubMed Central

    Gopinath, Krishnamoorthy; Venclovas, Česlovas; Ioerger, Thomas R.; Sacchettini, James C.; McKinney, John D.; Mizrahi, Valerie; Warner, Digby F.

    2013-01-01

    Vitamin B12-dependent enzymes function in core biochemical pathways in Mycobacterium tuberculosis, an obligate pathogen whose metabolism in vivo is poorly understood. Although M. tuberculosis can access vitamin B12 in vitro, it is uncertain whether the organism is able to scavenge B12 during host infection. This question is crucial to predictions of metabolic function, but its resolution is complicated by the absence in the M. tuberculosis genome of a direct homologue of BtuFCD, the only bacterial B12 transport system described to date. We applied genome-wide transposon mutagenesis to identify M. tuberculosis mutants defective in their ability to use exogenous B12. A small proportion of these mapped to Rv1314c, identifying the putative PduO-type ATP : co(I)rrinoid adenosyltransferase as essential for B12 assimilation. Most notably, however, insertions in Rv1819c dominated the mutant pool, revealing an unexpected function in B12 acquisition for an ATP-binding cassette (ABC)-type protein previously investigated as the mycobacterial BacA homologue. Moreover, targeted deletion of Rv1819c eliminated the ability of M. tuberculosis to transport B12 and related corrinoids in vitro. Our results establish an alternative to the canonical BtuCD-type system for B12 uptake in M. tuberculosis, and elucidate a role in B12 metabolism for an ABC protein implicated in chronic mycobacterial infection. PMID:23407640

  6. GPS and GPRS Based Telemonitoring System for Emergency Patient Transportation.

    PubMed

    Satyanarayana, K; Sarma, A D; Sravan, J; Malini, M; Venkateswarlu, G

    2013-01-01

    Telemonitoring during the golden hour of patient transportation helps to improve medical care. Presently there are different physiological data acquisition and transmission systems using cellular network and radio communication links. Location monitoring systems and video transmission systems are also commercially available. The emergency patient transportation systems uniquely require transmission of data pertaining to the patient, vehicle, time of the call, physiological signals (like ECG, blood pressure, a body temperature, and blood oxygen saturation), location information, a snap shot of the patient, and voice. These requirements are presently met by using separate communication systems for voice, physiological data, and location that result in a lot of inconvenience to the technicians, maintenance related issues, in addition to being expensive. This paper presents design, development, and implementation of such a telemonitoring system for emergency patient transportation employing ARM 9 processor module. This system is found to be very useful for the emergency patient transportation being undertaken by organizations like the Emergency Management Research Institute (EMRI).

  7. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect

    Adkins, H.E.; Bearden, T.E.

    1990-10-01

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

  8. Intelligent transportation systems and intermodal freight transportation. Final report, May-December 1992

    SciTech Connect

    Aylward, A.D.

    1996-12-01

    This paper describes the various advanced technologies already in use in the intermodal freight transportation industry and addresses the opportunity for improved communication between the public and private sector regarding technology applications to the freight transportation system that could enhance the capacity of the system as a whole. The current public interest in freight transportation policy creates an opportunity to develop a shared vision of the future needs of international intermodal freight transportation in the United States. The Federal government can impact this vision by taking action in the following areas: Provide Infrastructure Funding to Support Efficiency and Global Competitiveness; Support Regional and Corridor Efforts; Understand the Freight Sector and Develop a Shared Vision of Technology Benefits; Lead Transportation Technology Efforts of Federal Agencies; and Maintain Commitment to Open ITS Architecture.

  9. Control of machine functions or transport systems

    SciTech Connect

    Woodley, M.D.; Lee, M.J.; Jaeger, J.; King, A.S.

    1983-01-01

    A computer code, COMFORT, has been developed at SLAC for on-line calculation of the strengths of magnetic elements in an electron storage ring or transport beam line, subject to first order fitting constraints on the ring or beam line parameters. This code can also be used off-line as an interactive lattice or beam line design tool.

  10. A 10-Gbps optical WiMAX transport system.

    PubMed

    Lin, Ying-Pyng; Lu, Hai-Han; Wu, Po-Yi; Chen, Chia-Yi; Jhang, Tai-Wei; Ruan, Sheng-Siang; Wu, Kuan-Hung

    2014-02-10

    A 10-Gbps optical worldwide interoperability for microwave access (WiMAX) transport system employing vertical cavity surface emitting laser (VCSEL) and spatial light modulator (SLM) with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. With the assistance of equalizer and low noise amplifier (LNA) at the receiving site, good bit error rate (BER) performance, clear constellation map, and clear eye diagram are achieved in the proposed systems. An optical WiMAX transport system, transmitting 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 10 Gbps is successfully demonstrated. Such a 10-Gbps optical WiMAX transport system would be attractive for providing services including Internet and telecommunication services. Our proposed system is suitable for the free-space lightwave transport system in visible light communication (VLC) application.

  11. Conceptual Design of a Mars Surface Transportation System (MSTS)

    NASA Astrophysics Data System (ADS)

    Collins, Chad; Gomez, Alex; Muniz, Rick; Musson, Dave

    1999-01-01

    We have proposed a design for a Mars Surface Transportation System. The design will support multi-range and multi-purpose scientific/exploratory activities for extended periods. Several assumptions were made before developing a desiun: 1. This system is to be deployed early in a series of piloted landings on the planet surface. 2. A Mars surface base has already been established. 3. A transport system to and from Mars already exists. 4. The capacity to transport this proposed system exists within the current transport design. 5. Facilities exist at this base for the supply of fuel and other consumables. 6. Medical facilities are a component of the main base. 7. The surface conditions of Mars are known and are.accurate. It was decided that the transportation system design should support a crew of two for up to four weeks away from the primary base. In order to support multiple mission requirements, the system is modular and m multi-configurable, The main structural aspects of the design are: 1. An inflatable habitat module. 2. Independently powered and remotely controllable wheel trucks to allow multiple configurations and ease of system assembly. 3. Parabolic space trusses for hi-h structural stability with low overall system mass. In addition to these design aspects, new and existing concepts for control systems, power, radiation protection, and crew safety have been incorporated into the transportation system design.

  12. Natural hazard impacts on transport systems: analyzing the data base of transport accidents in Russia

    NASA Astrophysics Data System (ADS)

    Petrova, Elena

    2015-04-01

    We consider a transport accident as any accident that occurs during transportation of people and goods. It comprises of accidents involving air, road, rail, water, and pipeline transport. With over 1.2 million people killed each year, road accidents are one of the world's leading causes of death; another 20-50 million people are injured each year on the world's roads while walking, cycling, or driving. Transport accidents of other types including air, rail, and water transport accidents are not as numerous as road crashes, but the relative risk of each accident is much higher because of the higher number of people killed and injured per accident. Pipeline ruptures cause large damages to the environment. That is why safety and security are of primary concern for any transport system. The transport system of the Russian Federation (RF) is one of the most extensive in the world. It includes 1,283,000 km of public roads, more than 600,000 km of airlines, more than 200,000 km of gas, oil, and product pipelines, 115,000 km of inland waterways, and 87,000 km of railways. The transport system, especially the transport infrastructure of the country is exposed to impacts of various natural hazards and weather extremes such as heavy rains, snowfalls, snowdrifts, floods, earthquakes, volcanic eruptions, landslides, snow avalanches, debris flows, rock falls, fog or icing roads, and other natural factors that additionally trigger many accidents. In June 2014, the Ministry of Transport of the RF has compiled a new version of the Transport Strategy of the RF up to 2030. Among of the key pillars of the Strategy are to increase the safety of the transport system and to reduce negative environmental impacts. Using the data base of technological accidents that was created by the author, the study investigates temporal variations and regional differences of the transport accidents' risk within the Russian federal regions and a contribution of natural factors to occurrences of different

  13. Nucleocytoplasmic transport of ribosomes in a eukaryotic system: Is there a facilitated transport process

    SciTech Connect

    Khanna-Gupta, A.; Ware, V.C. )

    1989-03-01

    The authors have examined the kinetics of the process by which ribosomes are exported from the nucleus to the cytoplasm using Xenopus laevis oocytes microinjected into the germinal vesicle with radiolabeled ribosomes or ribosomal subunits from X. laevis, Tetrahymena thermophila, or Escherichia coli. Microinjected eukaryotic mature ribosomes are redistributed into the oocyte cytoplasm by an apparent carrier-mediated transport process that exhibits saturation kinetics as increasing amounts of ribosomes are injected. T. thermophila ribosomes are competent to traverse the Xenopus nuclear envelope, suggesting that the basic mechanism underlying ribosome transport is evolutionarily conserved. Microinjected E. coli ribosomes are not transported in this system, indicating that prokaryotic ribosomes lack the signals required for transport. Surprisingly, coinjected small (40S) and large (60S) subunits from T. thermophila are transported significantly faster than individual subunits. These observations support a facilitated transport model for the translocation of ribosomal subunits as separate units across the nuclear envelope whereby the transport rate of 60S or 40S subunits is enhanced by the presence of the partner subunit. Although the basic features of the transport mechanism have been preserved through evolution, other aspects of the process may be mediated through species-specific interactions. They hypothesize that a species-specific nuclear 40S-60S subunit association may expedite the transport of individual subunits across the nuclear envelope.

  14. Human behavior research and the design of sustainable transport systems

    NASA Astrophysics Data System (ADS)

    Schauer, James J.

    2011-09-01

    Transport currently represents approximately 19% of the global energy demand and accounts for about 23% of the global carbon dioxide emissions (IEA 2009). As the demand for mobility is expected to continue to increase in the coming decades, the stabilization of atmospheric carbon dioxide levels will require the evolution of transport, along with power generation, building design and manufacturing. The continued development of these sectors will need to include changes in energy sources, energy delivery, materials, infrastructure and human behavior. Pathways to reducing carbon from the transport sector have unique challenges and opportunities that are inherent to the human choices and behavioral patterns that mold the transportation systems and the associated energy needs. Technology, government investment, and regulatory policies have a significant impact on the formulation of transportation infrastructure; however, the role of human behavior and public acceptance on the efficiency and effectiveness of transport systems should not be underestimated. Although developed, rapidly developing, and underdeveloped nations face different challenges in the establishment of transport infrastructure that can meet transport needs while achieving sustainable carbon dioxide emissions, the constraints that establish the domain of possibilities are closely related for all nations. These constraints include capital investment, fuel supplies, power systems, and human behavior. Throughout the world, there are considerable efforts directed at advancing and optimizing the financing of sustainable infrastructures, the production of low carbon fuels, and the production of advanced power systems, but the foundational work on methods to understand human preferences and behavior within the context of transport and the valuation of reductions in carbon dioxide emissions is greatly lagging behind. These methods and the associated understanding of human behavior and the willingness to pay for

  15. Neutron-transport equation in a general curvelinear coordinate system

    SciTech Connect

    Takahashi, H

    1981-01-01

    Different from a fission reactor, a fusion reactor has complex geometry, such as toroidal geometry. Neutron transport equation for the toroidal coordinate system has been derived by using coordinate transformation from the cartesian coordinate. These methods require rather tedious calculations. Presented here is a simple method to formulate the neutron transport equation in the general curvelinear coordinate system. The equations for parabolic cylinder and toroidal coordinate systems are derived as an example.

  16. Electrical Power Systems for NASA's Space Transportation Program

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  17. Nuclear reactor heat transport system component low friction support system

    DOEpatents

    Wade, Elman E.

    1980-01-01

    A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.

  18. Heating and Cooling System Design for a Modern Transportable Container

    SciTech Connect

    Berger, Jason E.

    2015-06-01

    Sandia National Laboratories (SNL) has been tasked with the design of a modern transportable container (MTC) for use in high reliability transportation environments. The container is required to transport cargo capable of generating its own heat and operate under the United States’ climatic extremes. In response to these requirements, active heating and cooling is necessary to maintain a controlled environment inside the container. The following thesis project documents the design of an active heating, active cooling, and combined active heating and cooling system (now referred to as active heating and cooling systems) through computational thermal analyses, scoping of commercial system options, and mechanical integration with the container’s structure.

  19. Ins and outs of glucose transport systems in eubacteria.

    PubMed

    Jahreis, Knut; Pimentel-Schmitt, Elisângela F; Brückner, Reinhold; Titgemeyer, Fritz

    2008-11-01

    Glucose is the classical carbon source that is used to investigate the transport, metabolism, and regulation of nutrients in bacteria. Many physiological phenomena like nutrient limitation, stress responses, production of antibiotics, and differentiation are inextricably linked to nutrition. Over the years glucose transport systems have been characterized at the molecular level in more than 20 bacterial species. This review aims to provide an overview of glucose uptake systems found in the eubacterial kingdom. In addition, it will highlight the diverse and sophisticated regulatory features of glucose transport systems.

  20. A low earth orbit skyhook tether transportation system

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A.

    1988-01-01

    This paper discusses the design concept of a structure, called the Skyhook Tether Transportation System (STTS) which may be used to transport mass to higher or lower orbits or to capture objects from higher or lower orbits. An analysis is presented for the possibility of the STTS to perform the function of transporting masses suborbitally, capturing the objects, and then releasing them to a higher orbit, the GEO, the moon, or for an escape. It is shown that, although the possibility of such a system is limited by the tether strength, even a modest system can yield considerable benefits in propellant savings if it is used in combination with chemical propulsion.

  1. Systems evaluation of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Bruce, R. W.; Webb, H. M.

    1972-01-01

    Methods were studied for improving air transportation to low-density population regions in the U.S. through the application of new aeronautical technology. The low-density air service concepts are developed for selected regions, and critical technologies that presently limit the effective application of low-density air transportation systems are identified.

  2. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this part governing private entities not primarily engaged in the business of transporting people. (b) Transportation systems operated by public institutions of higher education are subject to the provisions of this part governing public entities. If a public institution of higher education operates a fixed...

  3. Host-microbe interactions via membrane transport systems.

    PubMed

    Konishi, Hiroaki; Fujiya, Mikihiro; Kohgo, Yutaka

    2015-04-01

    Living organisms take in essential molecules and get rid of wastes effectively through the selective transport of materials. Especially in the digestive tract, advanced transport systems are indispensable for the absorption of nutrients and elimination of waste products. These transport pathways control physiological functions by modulating the ionic environment inside and outside the cells. Moreover, recent studies have shown the importance of the expression of trafficking-related molecules and the population of gut microbiota. We found that the molecules secreted from microorganisms are imported into the cells via transporters or endocytosis and that they activate cell survival pathways of intestinal epithelial cells. These findings indicate that the interactions between the gut microbiota and host cells are mediated, at least partly, by the membrane transport systems. In addition, it is well known that the breakdown of transport systems induces various diseases. This review highlights the significance of the transport systems as the pathogenic molecules and therapeutic targets in gastrointestinal disorders. For example, abnormal expression of the genes encoding membrane transport-related molecules is frequently involved in digestive diseases, such as colorectal cancer and inflammatory bowel disease. We herein review the significance of these molecules as pathogenic and therapeutic targets for digestive diseases.

  4. Principles of Design of Fluid Transport Systems in Zoology

    NASA Astrophysics Data System (ADS)

    Labarbera, Michael

    1990-08-01

    Fluid transport systems mediate the transfer of materials both within an organism and between an organism and its environment. The architecture of fluid transport systems is determined by the small distances over which transfer processes are effective and by hydrodynamic and energetic constraints. All fluid transport systems within organisms exhibit one of two geometries, a simple tube interrupted by a planar transfer region or a branched network of vessels linking widely distributed transfer regions; each is determined by different morphogenetic processes. By exploiting the signal inherent in local shear stress on the vessel walls, animals have repeatedly evolved a complex branching hierarchy of vessels approximating a globally optimal system that minimizes the costs of the construction and maintenance of the fluid transport system.

  5. Transport and Dynamics in Toroidal Fusion Systems

    SciTech Connect

    Sovinec, Carl

    2016-09-07

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where

  6. Economic analysis of new space transportation systems: Executive summary

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An economic analysis of alternative space transportation systems is presented. Results indicate that the expendable systems represent modest investments, but the recurring costs of operation would remain high. The space shuttle and tug system requires a substantial investment, but would substantially reduce the recurring costs of operation. Economic benefits and costs of the different systems are also analyzed. Findings are summarized.

  7. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    SciTech Connect

    Bagaria, A.; Swaminathan, S.; Kumaran, D.; Burley, S. K.

    2011-04-01

    The ATP-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and non-transport related processes such as translation of RNA and DNA repair. Typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP) and Ribose binding protein (RBP). Each of these proteins consists of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations have been reported and so for MBP. The closed/active form of the protein interacts with the integral membrane component of the system in both transport and chemotaxis. Herein, we report 1.9{angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound to

  8. The WIPP transportation system -- ``Safer than any other``

    SciTech Connect

    Ward, T.R.; Spooner, R.

    1991-12-31

    The Department of Energy (DOE) has developed an integrated transportation system to transport transuranic (TRU) waste from ten widely dispersed generator sites to the Waste Isolation Pilot Plant (WIPP). The system consists of a Type B container, a specially designed trailer, a lightweight tractor, the DOE TRANSCOM satellite-based vehicle tracking system, and uniquely qualified and highly trained drivers. The DOE has demonstrated that this system is ready to transport the TRU waste to the WIPP site efficiently and safely. Since the system was put in place in November 1988, it has been repeatedly upgraded and enhanced to incorporate additional safety measures. In June of 1989, the National Academy of Sciences (NAS) reviewed the transportation system and concluded that ``the system proposed for transportation of TRU waste to WIPP is safer than that employed for any other hazardous material in the United States today and will reduce risk to very low levels`` (emphasis added). The NAS conclusion was made before the DOE implemented the Enhanced Driver Training Course for carrier drivers. The challenge facing the DOE was to examine the transportation system objectively and determine what additional improvements could be made to further enhance safety.

  9. Preconceptual ABC design definition and system configuration layout

    SciTech Connect

    Barthold, W.

    1995-03-01

    This document is the conceptual design document for the follow-on to the Molten Salt Breeder Reactor, known as the ABC type reactor. It addresses blanket design options, containment options, off-gas systems, drainage systems, and components/layouts of the primary, secondary, and tertiary systems, and it contains a number of diagrams for the configuration of the major systems.

  10. US Department of Energy Automated Transportation Management System

    SciTech Connect

    Portsmouth, J.H.

    1994-01-01

    The U.S. Department of Energy (DOE) Transportation Management Division (TMD) is responsible for managing its various programs via a diverse combination of Government-Owned/Contractor-Operated facilities. TMD is seeking to update it automation capabilities in capturing and processing DOE transportation information. TMD`s Transportation Information Network (TIN) is an attempt to bring together transportation management, shipment tracking, research activities and software products in various stages of development. The TMD`s Automated Transportation Management System (ATMS) proposes to assist the DOE and its contractors in performing their daily transportation management activities and to assist the DOE Environmental Management Division in its waste management responsibilities throughout the DOE complex. The ATMS system will center about the storage, handling and documentation involved in the environmental clean-up of DOE sites. Waste shipments will be moved to approved Treatment, Storage and Disposal (TSD) facilities and/or nuclear material repositories. An additional investment in shipping samples to analytical laboratories also involves packaging and documentation according to all applicable U.S. Department of Transportation (DOT) or International Air Transport Association (IATA) regulations. The most immediate goal of effectively managing DOE transportation management functions during the 1990`s is an increase in automation capabilities of the DOE and its contractors. Subject-matter experts from various DOE site locations will be brought together to develop and refine these capabilities through the maximum use of computer applications. A major part of this effort will be the identification of the most economical modes of transportation and enhanced management reporting capabilities for transportation analysis. The ATMS system will also provide for increased strategic and shipment analysis during the 1990`s and beyond in support of the DOE environmental mission.

  11. 20-Gbps optical LiFi transport system.

    PubMed

    Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng

    2015-07-15

    A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment.

  12. World Energy Projection System Plus Model Documentation: Transportation Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  13. Transportation System After Next & Comments on AvSTAR Planning

    NASA Technical Reports Server (NTRS)

    Pearce, Robert

    2001-01-01

    The purpose of this presentation is to define and identify: the role of transportation in supporting future US needs, trends, system after next, supporting research and education, priority investments, and barriers.

  14. Toward a leaner and greener transportation system

    SciTech Connect

    Ross, M.

    1993-04-01

    Transportation is responsible for 25% of CO{sub 2} emissions in the U.S. and is largely responsible for excessive ozone or carbon monoxide in several metropolitan areas. In turns out that emissions from new cars are much higher in use than laboratory tests and standards would appear to suggest. Transportation is also responsible for the lion`s share of U.S. petroleum consumption; and, although growth in the use of petroleum has been constrained by improvements in fuel economy, it is set to start again as the benefits of the CAFE standards are fully exploited, and travel continues to increase. In the short term, more efficient petroleum-fueled vehicles, based, e.g., on lean burn engines, sophisticated transmission management, idle off, efficient accessories and more light materials, would help. In the medium term, natural gas vehicles might provide a lower-emissions alternative with good performance and costs, and, if vehicle efficiency is high, good range. In the long term, fuel cells appear very attractive, and might profit from experience with a gaseous fuel. There are of course other interesting possibilities. R & D challenges will be discussed. One need is support for fundamental research at universities. Policies to encourage adoption of such technologies will also be addressed, including the issue of excessive reliance on regulations that are based on vehicle tests. To improve the environmental performance of such a pervasive activity as transportation a multifaceted package of policies is needed including correcting policies on the books that encourage automotive travel.

  15. Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes.

    PubMed

    Vajrala, Neeraja; Sayavedra-Soto, Luis A; Bottomley, Peter J; Arp, Daniel J

    2010-11-01

    Nitrosomonas europaea has a single three-gene operon (nitABC) encoding an iron ABC transporter system (NitABC). Phylogenetic analysis clustered the subunit NitB with Fe(3+)-ABC transporter permease components from other organisms. The N. europaea strain deficient in nitB (nitB::kan) grew well in either Fe-replete or Fe-limited media and in Fe-limited medium containing the catecholate-type siderophore, enterobactin or the citrate-based dihydroxamate-type siderophore, aerobactin. However, the nitB::kan mutant strain was unable to grow in Fe-limited media containing either the hydroxamate-type siderophores, ferrioxamine and ferrichrome or the mixed-chelating type siderophore, pyoverdine. Exposure of N. europaea cells to a ferrichrome analog coupled to the fluorescent moiety naphthalic diimide (Fhu-NI) led to increase in fluorescence in the wild type but not in nitB::kan mutant cells. Spheroplasts prepared from N. europaea wild type exposed to Fhu-NI analog retained the fluorescence, while spheroplasts of the nitB::kan mutant were not fluorescent. NitABC transports intact Fe(3+)-ferrichrome complex into the cytoplasm and is an atypical ABC type iron transporter for Fe(3+) bound to ferrioxamine, ferrichrome or pyoverdine siderophores into the cytoplasm. The mechanisms to transport iron in either the Fe(3+) or Fe(2+) forms or Fe(3+) associated with enterobactin or aerobactin siderophores into the cell across the cytoplasmic membrane are as yet undetermined.

  16. Performance issues in solar thermal energy transport systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, P. W.

    1986-07-01

    Pacific Northwest Laboratory, sponsored by the US Department of Energy through Sandia National Laboratories, is performing an assessment of three solar thermal electricity generating concepts; central receivers, dishes, and troughs. Concepts are being studied over a range of system sizes 0.5 MWe to 100 MWe with solar multiples from 1.0 to 2.8. Central receiver systems using molten salt, sodium, and water-steam working fluids are studied. The dish system selected for study uses a kinematic Stirling engine at the focal point, and the trough system is based on Accurex designed collectors heating a heat transfer oil. Of the three concepts studied, the central receiver and trough systems utilize thermal transport systems. A thermal transport system is the piping and fluid required to transfer thermal energy between receiver, and storage and between storage and steam generator. The literature contains many transport system designs, most of which are optimized with regard to cost and performance. We used the parameters specified from the optimizations to design our systems and scale the designs over the 0.5 MWe to 100 MWe size range. From these designs, thermal losses and pump sizes are derived then combined in a system model to obtain total annual averaged efficiency as a function of plant field size. We found that central receiver transport efficiency improves with field size whereas trough transport efficiency degrades with field size. We found that overnight cooldown accounts for roughly 50% of the total thermal losses for all transport systems. Trough performance is substantially degraded because the receiver tubes are not drained which allows a large overnight heat loss. Trough transport performance was found to be sensitive to fluid velocity.

  17. Nonlinear Dynamics and Quantum Transport in Small Systems

    DTIC Science & Technology

    2012-02-22

    microelectromechanical (MEM) and nanoelectromechanical (NEM) sys- tems; • Electronic transport in graphene systems. 2 Accomplishments and New Findings 2.1 Nonlinear...generators. All these were collaborative works with Dr. David Dietz from AFRL at Kirtland AFB. 2.2 Electronic transport in graphene systems There is...tremendous interest in graphene recently due to its potential applications in nano-scale electronic devices and circuits. It is possible that future

  18. Participatory Classification in a System for Assessing Multimodal Transportation Patterns

    DTIC Science & Technology

    2015-02-17

    Participatory Classification in a System for Assessing Multimodal Transportation Patterns Kalyanaraman Shankari Mogeng Yin Randy H. Katz David E...Participatory Classification in a System for Assessing Multimodal Transportation Patterns 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...share, for use by urban planners. With this prototype, we collected 7439 labelled sections from 44 unpaid volunteers over a total period of 3 months

  19. Future Air Transportation System Breakout Series Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This presentation discusses: AvSTAR Future System Effort Critically important; Investment in the future; Need to follow a systems engineering process; and Efforts need to be worked in worldwide context

  20. Decomposing the meridional heat transport in the climate system

    NASA Astrophysics Data System (ADS)

    Yang, Haijun; Li, Qing; Wang, Kun; Sun, Yu; Sun, Daoxun

    2015-05-01

    The meridional heat transport (MHT) in the climate system is investigated using a state-of-the-art coupled climate model (CESM1.0). This work decomposes the MHT and studies their physics in detail. The meridional ocean heat transport (OHT) can be decomposed into the contributions from the Euler mean circulation, bolus circulation, sub-mesoscale circulation and dissipation. The Euler mean heat transport dominates the total OHT in most latitudes, except that in the Southern Ocean (40-50°S) where the OHT is determined by the eddy-induced circulation and dissipation. In the Indo-Pacific the OHT is fulfilled by the wind-driven circulation, which dominates the total global OHT in the tropics. In the Atlantic the OHT is carried by both the wind-driven circulation and the thermohaline circulation, and the latter dominates the total OHT in the mid-high latitudes. The meridional atmosphere heat transport consists of the dry static energy (DSE) and latent energy (LE) transport. In the tropics the LE transport is equatorward and compensates partially the poleward DSE transport. In the extratropics, the LE and DSE are poleward and reinforce one another, both of which are dominated by the eddy components. The LE transport can be considered as the "joint air-sea mode" since the ocean controls the moisture supply. It can be also precisely obtained from the evaporation minus precipitation over the ocean and thus this work quantifies the individual ocean basin contributions to the LE transport.

  1. Glycobiology of ion transport in the nervous system.

    PubMed

    Nowycky, Martha C; Wu, Gusheng; Ledeen, Robert W

    2014-01-01

    The nervous system is richly endowed with large transmembrane proteins that mediate ion transport, including gated ion channels as well as energy-consuming pumps and transporters. Transport proteins undergo N-linked glycosylation which can affect expression, location, stability, and function. The N-linked glycans of ion channels are large, contributing between 5 and 50 % of their molecular weight. Many contain a high density of negatively charged sialic acid residues which modulate voltage-dependent gating of ion channels. Changes in the size and chemical composition of glycans are responsible for developmental and cell-specific variability in the biophysical and functional properties of many ion channels. Glycolipids, principally gangliosides, exert considerable influence on some forms of ion transport, either through direct association with ion transport proteins or indirectly through association with proteins that activate transport through appropriate signaling. Examples of both pumps and ion channels have been revealed which depend on ganglioside regulation. While some of these processes are localized in the plasma membrane, ganglioside-regulated ion transport can also occur at various loci within the cell including the nucleus. This chapter will describe ion channel and ion pump structures with a focus on the functional effects of glycosylation on ion channel availability and function, and effects of alterations in glycosylation on nervous system function. It will also summarize highlights of the research on glycolipid/ganglioside-mediated regulation of ion transport.

  2. Workshop on technology issues of superconducting Maglev transportation systems

    SciTech Connect

    Wegrzyn, J.E. ); Shaw, D.T. )

    1991-09-27

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration.

  3. Security plan for the Automated Transportation Management System

    SciTech Connect

    Not Available

    1994-04-01

    The Automated Transportation Management System (ATMS) is an unclassified non-sensitive system consisting of hardware and software designed to facilitate the shipment of goods for the US Department of Energy (DOE). The system is secured against waste, fraud, abuse, misuse, and programming errors through a series of security measures that are discussed in detail in this document.

  4. A Multilayer perspective for the analysis of urban transportation systems

    NASA Astrophysics Data System (ADS)

    Aleta, Alberto; Meloni, Sandro; Moreno, Yamir

    2017-03-01

    Public urban mobility systems are composed by several transportation modes connected together. Most studies in urban mobility and planning often ignore the multi-layer nature of transportation systems considering only aggregated versions of this complex scenario. In this work we present a model for the representation of the transportation system of an entire city as a multiplex network. Using two different perspectives, one in which each line is a layer and one in which lines of the same transportation mode are grouped together, we study the interconnected structure of 9 different cities in Europe raging from small towns to mega-cities like London and Berlin highlighting their vulnerabilities and possible improvements. Finally, for the city of Zaragoza in Spain, we also consider data about service schedule and waiting times, which allow us to create a simple yet realistic model for urban mobility able to reproduce real-world facts and to test for network improvements.

  5. A Multilayer perspective for the analysis of urban transportation systems

    PubMed Central

    Aleta, Alberto; Meloni, Sandro; Moreno, Yamir

    2017-01-01

    Public urban mobility systems are composed by several transportation modes connected together. Most studies in urban mobility and planning often ignore the multi-layer nature of transportation systems considering only aggregated versions of this complex scenario. In this work we present a model for the representation of the transportation system of an entire city as a multiplex network. Using two different perspectives, one in which each line is a layer and one in which lines of the same transportation mode are grouped together, we study the interconnected structure of 9 different cities in Europe raging from small towns to mega-cities like London and Berlin highlighting their vulnerabilities and possible improvements. Finally, for the city of Zaragoza in Spain, we also consider data about service schedule and waiting times, which allow us to create a simple yet realistic model for urban mobility able to reproduce real-world facts and to test for network improvements. PMID:28295015

  6. A Multilayer perspective for the analysis of urban transportation systems.

    PubMed

    Aleta, Alberto; Meloni, Sandro; Moreno, Yamir

    2017-03-15

    Public urban mobility systems are composed by several transportation modes connected together. Most studies in urban mobility and planning often ignore the multi-layer nature of transportation systems considering only aggregated versions of this complex scenario. In this work we present a model for the representation of the transportation system of an entire city as a multiplex network. Using two different perspectives, one in which each line is a layer and one in which lines of the same transportation mode are grouped together, we study the interconnected structure of 9 different cities in Europe raging from small towns to mega-cities like London and Berlin highlighting their vulnerabilities and possible improvements. Finally, for the city of Zaragoza in Spain, we also consider data about service schedule and waiting times, which allow us to create a simple yet realistic model for urban mobility able to reproduce real-world facts and to test for network improvements.

  7. Arrow 227: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    Bontempi, Michael; Bose, Dave; Brophy, Georgeann; Cashin, Timothy; Kanarios, Michael; Ryan, Steve; Peterson, Timothy

    1992-01-01

    The Arrow 227 is a student-designed commercial transport for use in a overnight package delivery network. The major goal of the concept was to provide the delivery service with the greatest potential return on investment. The design objectives of the Arrow 227 were based on three parameters; production cost, payload weight, and aerodynamic efficiency. Low production cost helps to reduce initial investment. Increased payload weight allows for a decrease in flight cycles and, therefore, less fuel consumption than an aircraft carrying less payload weight and requiring more flight cycles. In addition, fewer flight cycles will allow a fleet to last longer. Finally, increased aerodynamic efficiency in the form of high L/D will decrease fuel consumption.

  8. WIPP waste acceptance criteria and transportation system

    SciTech Connect

    Wu, C.F.; Ward, T.R.; Gregory, P.C.

    1991-12-31

    The Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, USA, is a US Department of Energy (DOE) facility designed as a permanent repository for transuranic wastes in the center of a 2,000-foot-thick salt bed situated 2,150 feet underground. Construction of the facility started in 1975, under a congressional act of site selection. In 1979, demonstration of safe disposal at the WIPP was authorized by Public Law 96-164. The operational philosophy and practice at the facility are: (1) start clean -- stay clean, (2) meet or exceed regulatory requirements, and (3) control radiation exposure levels to as low as reasonably achievable (ALARA). Strict safety measures must be taken in the areas of waste preparation, transportation, and facility operation.

  9. Fabrication of catalyzed ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  10. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    SciTech Connect

    A Bagaria; D Kumaran; S Burley; S Swaminathan

    2011-12-31

    The APT-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and nontransport related processes such as translation of RNA and DNA repair. typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport, and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP), and Ribose binding protein (RBP). Each of these proteins consits of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations hafve been reported and so for MBP. The closed/active form of the protein interacts with the ingral membrane component of the system in both transport and chemotaxis. Herein, they report 1.9 {angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound

  11. Passive vapor transport solar heating systems

    SciTech Connect

    Hedstrom, J.C.; Neeper, D.A.

    1985-01-01

    In the systems under consideration, refrigerant is evaporated in a solar collector and condensed in thermal storage for space or water heating located within the building at a level below that of the collector. Condensed liquid is lifted to an accumulator above the collector by the vapor pressure generated in the collector. Tests of two systems are described, and it is concluded that one of these systems offers distinct advantages.

  12. Organelle-localized potassium transport systems in plants.

    PubMed

    Hamamoto, Shin; Uozumi, Nobuyuki

    2014-05-15

    Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins.

  13. 78 FR 64048 - Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting AGENCY: ITS Joint Program...: Notice. The Intelligent Transportation Systems (ITS) Program Advisory Committee (ITSPAC) will hold a... transportation systems. Through its sponsor, the ITS Joint Program Office (JPO), the ITSPAC makes...

  14. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Program cost estimates document

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).

  15. A Configurable, Object-Oriented, Transportation System Software Framework

    SciTech Connect

    KELLY,SUZANNE M.; MYRE,JOHN W.; PRICE,MARK H.; RUSSELL,ERIC D.; SCOTT,DAN W.

    2000-08-01

    The Transportation Surety Center, 6300, has been conducting continuing research into and development of information systems for the Configurable Transportation Security and Information Management System (CTSS) project, an Object-Oriented Framework approach that uses Component-Based Software Development to facilitate rapid deployment of new systems while improving software cost containment, development reliability, compatibility, and extensibility. The direction has been to develop a Fleet Management System (FMS) framework using object-oriented technology. The goal for the current development is to provide a software and hardware environment that will demonstrate and support object-oriented development commonly in the FMS Central Command Center and Vehicle domains.

  16. Gathering Information from Transport Systems for Processing in Supply Chains

    NASA Astrophysics Data System (ADS)

    Kodym, Oldřich; Unucka, Jakub

    2016-12-01

    Paper deals with complex system for processing information from means of transport acting as parts of train (rail or road). It focuses on automated information gathering using AutoID technology, information transmission via Internet of Things networks and information usage in information systems of logistic firms for support of selected processes on MES and ERP levels. Different kinds of gathered information from whole transport chain are discussed. Compliance with existing standards is mentioned. Security of information in full life cycle is integral part of presented system. Design of fully equipped system based on synthesized functional nodes is presented.

  17. Pulse thermal energy transport/storage system

    DOEpatents

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  18. Manifold Coal-Slurry Transport System

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Estus, J. M.; Lavin, M. L.

    1986-01-01

    Feeding several slurry pipes into main pipeline reduces congestion in coal mines. System based on manifold concept: feeder pipelines from each working entry joined to main pipeline that carries coal slurry out of panel and onto surface. Manifold concept makes coal-slurry haulage much simpler than existing slurry systems.

  19. Secondary ion collection and transport system for ion microprobe

    DOEpatents

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  20. The competitive advantage of a dual-transporter system.

    PubMed

    Levy, Sagi; Kafri, Moshe; Carmi, Miri; Barkai, Naama

    2011-12-09

    Cells use transporters of different affinities to regulate nutrient influx. When nutrients are depleted, low-affinity transporters are replaced by high-affinity ones. High-affinity transporters are helpful when concentrations of nutrients are low, but the advantage of reducing their abundance when nutrients are abundant is less clear. When we eliminated such reduced production of the Saccharomyces cerevisiae high-affinity transporters for phosphate and zinc, the elapsed time from the initiation of the starvation program until the lack of nutrients limited growth was shortened, and recovery from starvation was delayed. The latter phenotype was rescued by constitutive activation of the starvation program. Dual-transporter systems appear to prolong preparation for starvation and to facilitate subsequent recovery, which may optimize sensing of nutrient depletion by integrating internal and external information about nutrient availability.

  1. Transport Information System using Query Centric Cyber Physical Systems (QCPS)

    NASA Astrophysics Data System (ADS)

    Mundra, Ankit; Rathee, Geetanjali; Chawla, Meenu; Soni, Ashutosh

    2014-01-01

    To incorporate the computation and communication with the physical world, next generation architecture i.e. CPS is viewed as a new technology. To improve the better interaction with the physical world or to perk up the electricity delivery usage, various CPS based approaches have been introduced. Recently several GPS equipped smart phones and sensor based frameworks have been proposed which provide various services i.e. environment estimation, road safety improvement but encounter certain limitations like elevated energy consumption and high computation cost. To meet the high reliability and safety requirements, this paper introduces a novel approach based on QCPS model which provides several users services (discussed in this paper). Further, this paper proposed a Transport Information System (TIS), which provide the communication with lower cost overhead by arranging the similar sensors in the form of grids. Each grid has a coordinator which interacts with cloud to process the user query. In order to evaluate the performance of proposed approach we have implemented a test bed of 16 wireless sensor nodes and have shown the performance in terms of computation and communication cost.

  2. Safety of high speed ground transportation systems: Safety of advanced braking concepts for high speed ground transportation systems. Final report

    SciTech Connect

    Wagner, D.P.; Ahlbeck, D.R.; Luedeke, J.F.; Cook, S.D.; Dielman, M.A.

    1995-09-01

    The objective of this study is to develop qualitative and quantitative information on the various braking strategies used in high-speed ground transportation systems in support of the Federal Railroad Administration (FRA). The approach employed in this study is composed of two steps: first, build a technical understanding of the various braking strategies, and second, perform a safety analysis for each system. The systems considered in this study include seven operating high-speed rail transportation systems and three existing magnetic levitation systems. The principal technique used in the system safety analysis is Failure Modes and Effects Analysis (FMEA), an inductive approach to identifying system failure modes that depends on a thorough understanding of the system design and operation. Key elements derived from the system safety analysis are the fault-tolerant and fail-safe characteristics of the braking systems. The report concludes with recommended guidance on the structure of potential future regulations governing high-speed rail braking systems.

  3. Optical beam transport system at FEL-SUT

    NASA Astrophysics Data System (ADS)

    Nomaru, K.; Kawai, M.; Yokoyama, M.; Oda, F.; Nakayama, A.; Koike, H.; Kuroda, H.

    2000-05-01

    Kawasaki Heavy Industries Ltd. has installed an FEL beam transport system at the IR FEL Research Center of the Science University of Tokyo (FEL-SUT). This system transports the FEL output beam from the FEL machine room to the optical diagnostic room through a vacuum tube. The in-vacuum multi-mirror synchronized system operated from the FEL control room enables the operator to control the multiple mirrors simultaneously on or off axis of the FEL beam and to distribute the FEL output to one of the laboratories. The essential component of the transport system is the passive control optics that is composed of an elliptical and parabolic mirror couple. Once the control optics is aligned, a parallel FEL beam with a good pointing stability is obtained without any active operation to tune the optical system for different wavelengths.

  4. Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB.

    PubMed

    Tikhonova, Elena B; Devroy, Vishakha K; Lau, Sze Yi; Zgurskaya, Helen I

    2007-02-01

    Periplasmic membrane fusion proteins (MFPs) are essential components of the type I protein secretion systems and drug efflux pumps in Gram-negative bacteria. Previous studies suggested that MFPs connect the inner and outer membrane components of the transport systems and by this means co-ordinate the transfer of substrates across the two membranes. In this study, we purified and reconstituted the macrolide transporter MacAB from Escherichia coli. Here, MacA is a periplasmic MFP and MacB is an ABC-type transporter. Similar to other MFP-dependent transporters from E. coli, the in vivo function of MacAB requires the outer membrane channel TolC. The purified MacB displayed a basal ATPase activity in detergent micelles. This activity conformed to Michaelis-Menten kinetics but was unresponsive to substrates or accessory proteins. Upon reconstitution into proteoliposomes, the ATPase activity of MacB was strictly dependent on MacA. The catalytic efficiency of MacAB ATPase was more than 45-fold higher than the activity of MacB alone. Both the N- and C-terminal regions of MacA were essential for this activity. MacA stimulated MacB ATPase only in phospholipid bilayers and did not need the presence of macrolides. Our results suggest that MacA is a functional subunit of the MacB transporter.

  5. Modular transportable superconducting magnetic energy systems

    NASA Technical Reports Server (NTRS)

    Lieurance, Dennis; Kimball, Foster; Rix, Craig

    1995-01-01

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  6. Modular transportable superconducting magnetic Energy Systems

    SciTech Connect

    Lieurance, D.; Kimball, F.; Rix, C.

    1994-12-31

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  7. Circuit theory of transport in ferromagnet - normal metal systems

    NASA Astrophysics Data System (ADS)

    Brataas, Arne

    2001-03-01

    Electrons have spin as well as charge. At low-temperatures the spin relaxation time can be much longer than other time scales. Non-equilibrium spins may therefore affect the transport properties of small ferromagnet-normal metal systems. Unlike the scalar charge, the spin has a direction. The electron transport properties can be manipulated by the magnetization direction of the ferromagnets. We will demonstrate how the transport through hybrid ferromagnet-normal metal devices can be understood in terms of a circuit theory in the spirit of the conventional analysis of conventional electronic circuits. This spin-circuit theory is based on elements like spin-resistance and spin-capacitance and simplifies the understanding of transport through complicated ferromagnet-normal metal systems.

  8. The Small Aircraft Transportation System Project: An Update

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.

    2006-01-01

    To all peoples in all parts of the world throughout history, the ability to move about easily is a fundamental element of freedom. The American people have charged NASA to increase their freedom and that of their children knowing that their quality of life will improve as our nation s transportation systems improve. In pursuit of this safe, reliable, and affordable personalized air transportation option, in 2000 NASA established the Small Aircraft Transportation System (SATS) Project. As the name suggests personalized air transportation would be built on smaller aircraft than those used by the airlines. Of course, smaller aircraft can operate from smaller airports and 96% of the American population is within thirty miles of a high-quality, underutilized community airport as are the vast majority of their customers, family members, and favorite vacation destinations.

  9. Transportation functions of the Civilian Radioactive Waste Management System

    SciTech Connect

    Shappert, L.B.; Attaway, C.R.; Pope, R.B. ); Best, R.E.; Danese, F.L. ); Dixon, L.D. , Martinez, GA ); Jones, R.H. , Los Gatos, CA ); Klimas, M.J. ); Peterson, R.W

    1992-03-01

    Within the framework of Public Law 97.425 and provisions specified in the Code of Federal Regulations, Title 10 Part 961, the US Department of Energy has the responsibility to accept and transport spent fuel and high-level waste from various organizations which have entered into a contract with the federal government in a manner that protects the health and safety of the public and workers. In implementing these requirements, the Office of Civilian Radioactive Waste Management (OCRWM) has, among other things, supported the identification of functions that must be performed by a transportation system (TS) that will accept the waste for transport to a federal facility for storage and/or disposal. This document, through the application of system engineering principles, identifies the functions that must be performed to transport waste under this law.

  10. Multirate Transport of Natural Tracers in a Fractured System

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Malama, B.; Heath, J. E.; Gardner, P.; Robinson, D. G.

    2013-12-01

    Flow and transport in fractured systems is important in both groundwater applications and low-permeability hydrocarbon systems. We apply the multirate solute transport model to the flow of single-phase natural tracers in low-permeability hydrocarbon source rocks. We explore the effects of fracture and domain geometry, reservoir boundary conditions, and initial conditions of both the flow and transport problems using analytical and semi-analytical solutions. The flow and transport solutions will be combined to optimize reservoir characterization using a Bayesian framework. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Preliminary Transportation, Aging and Disposal Canister System Performance Specification

    SciTech Connect

    C.A Kouts

    2006-11-22

    This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section 1.2. The TAD canister, in conjunction with specialized overpacks will accomplish a number of functions in the management and disposal of spent nuclear fuel. Some of these functions will be accomplished at purchaser sites where commercial spent nuclear fuel (CSNF) is stored, and some will be performed within the Office of Civilian Radioactive Waste Management (OCRWM) transportation and disposal system. This document contains only those requirements unique to applications within Department of Energy's (DOE's) system. DOE recognizes that TAD canisters may have to perform similar functions at purchaser sites. Requirements to meet reactor functions, such as on-site dry storage, handling, and loading for transportation, are expected to be similar to commercially available canister-based systems. This document is intended to be referenced in the license application for the Monitored Geologic Repository (MGR). As such, the requirements cited herein are needed for TAD system use in OCRWM's disposal system. This document contains specifications for the TAD canister, transportation overpack and aging overpack. The remaining components and equipment that are unique to the OCRWM system or for similar purchaser applications will be supplied by others.

  12. Study of aircraft in intraurban transportation systems, volume 3

    NASA Technical Reports Server (NTRS)

    Stout, E. G.; Kesling, P. H.; Matteson, D. E.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.

    1971-01-01

    An investigation of three aircraft concepts, deflected slipstream STOL, helicopter VTOL, and fixed wing STOL, is presented. An attempt was made to determine the best concept for the intraurban transportation system. Desirability of the concept was based on ease of maintenance, development timing, reliability, operating costs, and the noise produced. Indications are that the deflected slipstream STOL is best suited for intraurban transportation. Tables and graphs are included.

  13. Safety analysis report for packaging (onsite) sample pig transport system

    SciTech Connect

    MCCOY, J.C.

    1999-03-16

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

  14. Growth and dispersal with inertia: hyperbolic reaction-transport systems.

    PubMed

    Méndez, Vicenç; Campos, Daniel; Horsthemke, Werner

    2014-10-01

    We investigate the behavior of five hyperbolic reaction-diffusion equations most commonly employed to describe systems of interacting organisms or reacting particles where dispersal displays inertia. We first discuss the macroscopic or mesoscopic foundation, or lack thereof, of these reaction-transport equations. This is followed by an analysis of the temporal evolution of spatially uniform states. In particular, we determine the uniform steady states of the reaction-transport systems and their stability properties. We then address the spatiotemporal behavior of pure death processes. We end with a unified treatment of the front speed for hyperbolic reaction-diffusion equations with Kolmogorov-Petrosvskii-Piskunov kinetics. In particular, we obtain an exact expression for the front speed of a general class of reaction correlated random walk systems. Our results establish that three out of the five hyperbolic reaction-transport equations provide physically acceptable models of biological and chemical systems.

  15. [The diseases of circulatory system in employees of railway transport].

    PubMed

    Molodtsov, R N; Shemetova, G N

    2013-01-01

    The article presents the epidemiologic and medical social aspects of diseases of circulatory system in employees of railway transport in 2000-2010 exemplified by Privolzhskiy railroad. The established tendencies in prevalence of pathology of cardio-vascular system in railroad workers makes the issues of practical implementation of priority of prevention in the organization of medical care to this group of patients to come to foreground. The main directions for complex prevention of diseases of circulatory system in employees of railway transport are presented.

  16. Designing a beam transport system for RHIC's electron lens

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We designed two electron lenses to apply head-on beam-beam compensation for RHIC; they will be installed near IP10. The electron-beam transport system is an important subsystem of the entire electron-lens system. Electrons are transported from the electron gun to the main solenoid and further to the collector. The system must allow for changes of the electron beam size inside the superconducting magnet, and for changes of the electron position by 5 mm in the horizontal- and vertical-planes.

  17. A transportation system for routine visits to Mars

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.

    1988-01-01

    A conceptual transportation system designed for routing visits to Mars is described. The system is planned to provide routine support for a base population of roughly 20 people on Mars. The system utilizes in situ resource production to support Mars missions and generates artificial gravity while delivering additional consumables. The system uses cycling space stations for support. Possible lunar resource capabilities, taxi vehicles, and technology and human issues are examined.

  18. Transportation of radioactive materials: the legislative and regulatory information system

    SciTech Connect

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico.

  19. The plasma membrane transport systems and adaptation to salinity.

    PubMed

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.

  20. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  1. Space Transportation Systems Life Cycle Cost Assessment and Control

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; Rhodes, Russell E.; Zapata, Edgar; Levack, Daniel J. H.; Donahue, Benjaamin B.; Knuth, William

    2008-01-01

    Civil and military applications of space transportation have been pursued for just over 50 years and there has been, and still is, a need for safe, dependable, affordable, and sustainable space transportation systems. Fully expendable and partially reusable space transportation systems have been developed and put in operation that have not adequately achieved this need. Access to space is technically achievable, but presently very expensive and will remain so until there is a breakthrough in the way we do business. Since 1991 the national Space Propulsion Synergy Team (SPST) has reviewed and assessed the lessons learned from the major U.S. space programs of the past decades focusing on what has been learned from the assessment and control of Life Cycle Cost (LCC) from these systems. This paper presents the results of a selected number of studies and analyses that have been conducted by the SPST addressing the need, as well as the solutions, for improvement in LCC. The major emphasis of the SPST processes is on developing the space transportation system requirements first (up front). These requirements must include both the usual system flight performance requirements and also the system functional requirements, including the infrastructure on Earth's surface, in-space and on the Moon and Mars surfaces to determine LCC. This paper describes the development of specific innovative engineering and management approaches and processes. This includes a focus on flight hardware maturity for reliability, ground operations approaches, and business processes between contractor and government organizations. A major change in program/project cost control is being proposed by the SPST to achieve a sustainable space transportation system LCC - controlling cost as a program metric in addition to the existing practice of controlling performance and weight. Without a firm requirement and methodically structured cost control, it is unlikely that an affordable and sustainable space

  2. Methionine uptake in Corynebacterium glutamicum by MetQNI and by MetPS, a novel methionine and alanine importer of the NSS neurotransmitter transporter family.

    PubMed

    Trötschel, Christian; Follmann, Martin; Nettekoven, Jeannine A; Mohrbach, Tobias; Forrest, Lucy R; Burkovski, Andreas; Marin, Kay; Krämer, Reinhard

    2008-12-02

    The soil bacterium Corynebacterium glutamicum is a model organism in amino acid biotechnology. Here we present the identification of two different L-methionine uptake systems including the first characterization of a bacterial secondary methionine carrier. The primary carrier MetQNI is a high affinity ABC-type transporter specific for l-methionine. Its expression is under the control of the transcription factor McbR, the global regulator of sulfur metabolism in C. glutamicum. Besides MetQNI, a novel secondary methionine uptake system of the NSS (neurotransmitter:sodium symporter) family was identified and named MetP. The MetP system is characterized by a lower affinity for methionine and uses Na(+) ions for energetic coupling. It is also the main alanine transporter in C. glutamicum and is expressed constitutively. These observations are consistent with models of methionine, alanine, and leucine bound to MetP, derived from the X-ray crystal structure of the LeuT transporter from Aquifex aeolicus. Complementation studies show that MetP consists of two components, a large subunit with 12 predicted transmembrane segments and, surprisingly, an additional subunit with one predicted transmembrane segment only. Thus, this new member of the NSS transporter family adds a novel feature to this class of carriers, namely, the functional dependence on an additional small subunit.

  3. Engineering intracellular active transport systems as in vivo biomolecular tools.

    SciTech Connect

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications. Further

  4. Prion Transport to Secondary Lymphoreticular System Tissues

    DTIC Science & Technology

    2007-06-01

    Desbruslais, M., Luthert, P.J., & Collinge, J. (2001). Tissue Distribution of protease resistant prion protein in variant Creutzfeldt - Jakob disease ...examine the disease development of a prion strain (DY TME) that does not replicate in the spleen of hamsters. This system will provide details into the...gender specific responses to intraperitoneal DY TME inoculation. 15. SUBJECT TERMS Prion diseases , macrophage, complement 16. SECURITY

  5. Transport Device Driver's Assistance Vision Systems

    NASA Astrophysics Data System (ADS)

    Szpytko, Janusz; Gbyl, Michał

    2011-03-01

    The purpose of this paper is to review solutions whose task is to actively correct decision-making processes of the vehicle's driver on the basis of information obtained from the surroundings and the presentation of a tool that makes it possible to react to the changes of the psychophysical condition of the driver. The system is implemented by the Matlab application environment on the basis on the image activated by a webcam.

  6. GPS and GPRS Based Telemonitoring System for Emergency Patient Transportation

    PubMed Central

    Satyanarayana, K.; Sarma, A. D.; Sravan, J.; Malini, M.; Venkateswarlu, G.

    2013-01-01

    Telemonitoring during the golden hour of patient transportation helps to improve medical care. Presently there are different physiological data acquisition and transmission systems using cellular network and radio communication links. Location monitoring systems and video transmission systems are also commercially available. The emergency patient transportation systems uniquely require transmission of data pertaining to the patient, vehicle, time of the call, physiological signals (like ECG, blood pressure, a body temperature, and blood oxygen saturation), location information, a snap shot of the patient, and voice. These requirements are presently met by using separate communication systems for voice, physiological data, and location that result in a lot of inconvenience to the technicians, maintenance related issues, in addition to being expensive. This paper presents design, development, and implementation of such a telemonitoring system for emergency patient transportation employing ARM 9 processor module. This system is found to be very useful for the emergency patient transportation being undertaken by organizations like the Emergency Management Research Institute (EMRI). PMID:27019844

  7. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOEpatents

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  8. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1990-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells. 10 figs., 2 tabs.

  9. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1991-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  10. Solving transportation problems; Automated monitoring system provides valuable information

    SciTech Connect

    Dillavou, J. )

    1989-07-01

    Montana-Dakota Utilities Co. is a public utility with electric and natural gas distribution systems. Its natural gas distribution operation serves more than 175,000 customers in a 168,000-sq-mile service area. Serving such a large geographical area with the required daily nomination and usage reporting conditions of the transportation contracts posed many potential problems from an operation point of view. MDU solved these problems by implementing a fully automated system. The Metretek data collection system is described in this paper. It provides MDU with the volume information required to balance and bill the transportation accounts as well as monitor end-use transportation customer requirements on a timely basis.

  11. Feasibility study for a transportation operations system cask maintenance facility

    SciTech Connect

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  12. Computer vision in roadway transportation systems: a survey

    NASA Astrophysics Data System (ADS)

    Loce, Robert P.; Bernal, Edgar A.; Wu, Wencheng; Bala, Raja

    2013-10-01

    There is a worldwide effort to apply 21st century intelligence to evolving our transportation networks. The goals of smart transportation networks are quite noble and manifold, including safety, efficiency, law enforcement, energy conservation, and emission reduction. Computer vision is playing a key role in this transportation evolution. Video imaging scientists are providing intelligent sensing and processing technologies for a wide variety of applications and services. There are many interesting technical challenges including imaging under a variety of environmental and illumination conditions, data overload, recognition and tracking of objects at high speed, distributed network sensing and processing, energy sources, as well as legal concerns. This paper presents a survey of computer vision techniques related to three key problems in the transportation domain: safety, efficiency, and security and law enforcement. A broad review of the literature is complemented by detailed treatment of a few selected algorithms and systems that the authors believe represent the state-of-the-art.

  13. Development of an analysis capability for the National Transportation System

    SciTech Connect

    Anson, D.; Nelson, R.

    1997-10-24

    The purpose of this report is to examine the Department of Transportation`s (DOT) National Transportation System (NTS) initiative, to document what has been learned, and to outline a National Transportation Network Analysis Capability (NTNAC) based on a ``TRANSIMS-like`` approach. This study was conducted over a two month period at the end of FY1997. The scope of the effort was carefully defined to accommodate the short time horizon and to provide focus to a very large analytical problem. The objectives were to: (1) define the NTS and the NTS problem; (2) identify problem characteristics; (3) describe an analytical solution based on the TRANSIMS approach; (4) identify data requirements and availability; (5) develop criteria for a scenario to be used in a prototype demonstration; and (6) select a scenario for the prototype demonstration.

  14. Code System to Calculate Tornado-Induced Flow Material Transport.

    SciTech Connect

    ANDRAE, R. W.

    1999-11-18

    Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form a complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.

  15. Space Transportation System/Spacelab accommodations

    NASA Technical Reports Server (NTRS)

    De Sanctis, C. E.

    1978-01-01

    A description is provided of the capabilities offered by the Spacelab design for doing research in space. The Spacelab flight vehicle consists of two basic elements including the habitable pressurized compartments and the unpressurized equipment mounting platforms. Spacelab services to payloads are considered, taking into account payload mass, electrical power and energy, heat rejection for Spacelab and payload, aspects of Spacelab data handling, and the extended flight capability. Attention is also given to the Spacelab structure, crew station and habitability, the electrical power distribution subsystem, the command and data management subsystem, the experiment computer operating system, the environmental control subsystem, the experiment vent assembly, the common payload support equipment, the instrument pointing subsystem, and details concerning the utilization of Spacelab.

  16. Simulation of a Production Facility with an Automated Transport System

    SciTech Connect

    ABRAMCZYK, GLENN

    2004-04-07

    A model was needed to assess material throughput and validate the conceptual design of a production facility, including equipment lists and layout. The initial desire was to use a commercially available discrete event simulation package. However, the available software was found to be too limited in capability. Database interface software was used to develop autonomous intelligent manufacturing workstations and material transporters. The initial Extend model used to assess material throughput and develop equipment lists for the preconceptual design effort was upgraded with software add-ons from Simulation Dynamics, Inc. (SDI). Use of the SDI database interface allowed the upgraded model to include: 1. a material mass balance at any level of detail required by the user, and 2. a transport system model that includes all transport system movements, time delays, and transfers between systems. This model will assist in evaluating transport system capacity, sensitive time delays in the system, and optimal operating strategies. An additional benefit of using the SDI database interface is dramatically improved run time performance. This allows significantly more runs to be completed to provide better statistics for overall plant performance. The model has all system and process parameters entered into sub-component accessible tables. All information for the manufactured items and process data is automatically generated and written to the database. The standard software is used for the movement of manufactured items between workstations, and for sequence and timing functions. Use of the database permits almost unlimited process control and data collection with an insignificant effect on run time.

  17. Optical free-space wavelength-division-multiplexing transport system.

    PubMed

    Lin, Chun-Yu; Lin, Ying-Pyng; Lu, Hai-Han; Chen, Chia-Yi; Jhang, Tai-Wei; Chen, Min-Chou

    2014-01-15

    An optical free-space wavelength-division-multiplexing (WDM) transport system employing vertical cavity surface emitting lasers and spatial light modulators with 16-quadrature amplitude modulation orthogonal frequency-division multiplexing modulating signals over a 17.5 m free-space link is proposed and demonstrated. With the help of a low-noise amplifier and data comparator, good bit error rate performance is obtained for each optical channel. Such an optical free-space WDM transport system would be attractive for providing services including data and telecommunication services.

  18. Advanced Transport Operating System (ATOPS) control display unit software description

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  19. Directly modulated cable television transport systems using negative dispersion fiber

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Han; Liaw, Je-Wei; Lee, Yi-Shiuan; Tsai, Wan-Lin; Ji, Yu-Jie

    2005-03-01

    A directly modulated AM-VSB cable-television transport system using negative dispersion fiber (NDF) as the transmission medium is proposed and successfully demonstrated. Good performances of carrier-to-noise radio, composite second order, and composite triple beat were obtained over a 70-km NDF transport without optical amplification. The directly modulated laser has a positive chirp, while NDF has a negative dispersion property in the transmission fiber. This negative dispersion property compensates for the laser chirp and results in a system with better transmission performance.

  20. Transportation and operations aspects of space energy systems

    NASA Astrophysics Data System (ADS)

    Woodcock, Gordon R.

    1989-07-01

    A brief comparative analysis was made for three concepts of supplying large-scale electrical energy to Earth from space. The concepts were: (1) mining helium-3 on the Moon and returning it to Earth; (2) constructing solar power satellites in geosynchronous orbit from lunar materials (the energy is beamed by microwave to receivers on Earth); and (3) constructing power collection and beaming systems on the Moon itself and transmitting the energy to Earth by microwave. This analysis concerned mainly space transportation and operations, but each of the systems is briefly characterized to provide a basis for space transportation and operations analysis.

  1. Recent developments in the Los Alamos radiation transport code system

    SciTech Connect

    Forster, R.A.; Parsons, K.

    1997-06-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results.

  2. Transportation and operations aspects of space energy systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1989-01-01

    A brief comparative analysis was made for three concepts of supplying large-scale electrical energy to Earth from space. The concepts were: (1) mining helium-3 on the Moon and returning it to Earth; (2) constructing solar power satellites in geosynchronous orbit from lunar materials (the energy is beamed by microwave to receivers on Earth); and (3) constructing power collection and beaming systems on the Moon itself and transmitting the energy to Earth by microwave. This analysis concerned mainly space transportation and operations, but each of the systems is briefly characterized to provide a basis for space transportation and operations analysis.

  3. 49 CFR 37.27 - Transportation for elementary and secondary education systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Transportation for elementary and secondary education systems. 37.27 Section 37.27 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.27 Transportation...

  4. 49 CFR 37.27 - Transportation for elementary and secondary education systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Transportation for elementary and secondary education systems. 37.27 Section 37.27 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.27 Transportation...

  5. 49 CFR 37.27 - Transportation for elementary and secondary education systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Transportation for elementary and secondary education systems. 37.27 Section 37.27 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.27 Transportation...

  6. 49 CFR 37.27 - Transportation for elementary and secondary education systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Transportation for elementary and secondary education systems. 37.27 Section 37.27 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.27 Transportation...

  7. Thaw flow control for liquid heat transport systems

    DOEpatents

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  8. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  9. Survival of vaginal microorganisms in three commercially available transport systems.

    PubMed

    DeMarco, Allison L; Rabe, Lorna K; Austin, Michele N; Stoner, Kevin A; Avolia, Hilary A; Meyn, Leslie A; Hillier, Sharon L

    2017-02-24

    Transport systems are used to collect and maintain the viability of microorganisms. Two Amies media based transport systems, BD CultureSwab™ MaxV(+) Amies Medium without Charcoal (MaxV(+)) and Fisherfinest(®) with Amies gel Transport Medium without charcoal (Fisherfinest(®)) were compared to a Cary-Blair media based transport system, Starswab(®) Anaerobic Transport System (Starswab(®)), for their capacity to maintain the viability of 17 clinical microorganisms commonly isolated from the vagina (Lactobacillus crispatus, L. jensenii, L. iners, group B streptococci, Candida albicans, Escherichia coli, Enterococcus faecalis, Atopobium vaginae, Peptoniphilus harei, Mycoplasma hominis, Gardnerella vaginalis, Dialister microaerophilus, Mobiluncus curtisii, Prevotella amnii, P. timonensis, P. bivia, and Porphyromonas uenonis). Single swabs containing mixtures of up to five different species were inoculated in triplicate and held at 4 °C and room temperature for 24, 48, 72, and 96 h (h). At each time point, swabs were eluted into a sterile salt solution, serially diluted, inoculated onto selected media, and incubated. Each colony type was quantified and identified. A change in sample stability was reported as a ≥1 log increase or decrease in microorganism density from baseline. Overall, the viability of fastidious anaerobes was maintained better at 4 °C than room temperature. At 4 °C all three transport systems maintained the viability and prevented replication of C. albicans, E. faecalis, GBS, and E. coli. Microorganisms having a ≥1 log decrease in less than 24 h at 4 °C included A. vaginae, G. vaginalis, and P. uenonis in Starswab(®), L. iners, A. vaginae, and P. amnii in MaxV(+), and A. vaginae, G. vaginalis, P. bivia, and P. amnii in Fisherfinest(®). At 48 h at 4 °C, a ≥1 log decrease in concentration density was observed for P. harei and P. amnii in Starswab(®), G. vaginalis, P. bivia and P. uenonis in MaxV(+), and L

  10. The ABC transporter HrtAB confers resistance to hemin toxicity and is regulated in a hemin-dependent manner by the ChrAS two-component system in Corynebacterium diphtheriae.

    PubMed

    Bibb, Lori A; Schmitt, Michael P

    2010-09-01

    Corynebacterium diphtheriae, the causative agent of the severe respiratory disease diphtheria, utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. Because of the toxicity of high levels of hemin and iron, these compounds are often tightly regulated in bacterial systems. In this report, we identify and characterize the C. diphtheriae hrtAB genes, which encode a putative ABC type transporter involved in conferring resistance to the toxic effects of hemin. Deletion of the hrtAB genes in C. diphtheriae produced increased sensitivity to hemin, which was complemented by a plasmid harboring the cloned hrtAB locus. The HrtAB system was not involved in the uptake and use of hemin as an iron source. The hrtAB genes are located on the C. diphtheriae genome upstream from the chrSA operon, which encodes a previously characterized two-component signal transduction system that regulates gene expression in a heme-dependent manner. The hrtB promoter is activated by the ChrAS system in the presence of hemin or hemoglobin, and mutations in the chrSA genes abolish heme-activated expression from the hrtB promoter. It was also observed that transcription from the hrtB promoter is reduced in a dtxR deletion mutant, suggesting that DtxR is required for optimal expression of hrtAB. Previous studies proposed that the ChrS sensor kinase may be responsive to an environmental signal, such as hemin. We show that specific point mutations in the ChrS N-terminal transmembrane domain result in a reduced ability to activate the hrtB promoter in the presence of a heme source, suggesting that this putative sensor region is essential for the detection of a signal produced in response to hemin exposure. This study shows that the HrtAB system is required for protection from hemin toxicity and that expression of the hrtAB genes is regulated by the ChrAS two-component system. This study demonstrates a direct correlation between the detection of heme or a heme

  11. Viability of a Reusable In-Space Transportation System

    NASA Technical Reports Server (NTRS)

    Jefferies, Sharon A.; McCleskey, Carey M.; Nufer, Brian M.; Lepsch, Roger A.; Merrill, Raymond G.; North, David D.; Martin, John G.; Komar, David R.

    2015-01-01

    The National Aeronautics and Space Administration (NASA) is currently developing options for an Evolvable Mars Campaign (EMC) that expands human presence from Low Earth Orbit (LEO) into the solar system and to the surface of Mars. The Hybrid in-space transportation architecture is one option being investigated within the EMC. The architecture enables return of the entire in-space propulsion stage and habitat to cis-lunar space after a round trip to Mars. This concept of operations opens the door for a fully reusable Mars transportation system from cis-lunar space to a Mars parking orbit and back. This paper explores the reuse of in-space transportation systems, with a focus on the propulsion systems. It begins by examining why reusability should be pursued and defines reusability in space-flight context. A range of functions and enablers associated with preparing a system for reuse are identified and a vision for reusability is proposed that can be advanced and implemented as new capabilities are developed. Following this, past reusable spacecraft and servicing capabilities, as well as those currently in development are discussed. Using the Hybrid transportation architecture as an example, an assessment of the degree of reusability that can be incorporated into the architecture with current capabilities is provided and areas for development are identified that will enable greater levels of reuse in the future. Implications and implementation challenges specific to the architecture are also presented.

  12. Satellite Power Systems (SPS) space transportation cost analysis and evaluation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A picture of Space Power Systems space transportation costs at the present time is given with respect to accuracy as stated, reasonableness of the methods used, assumptions made, and uncertainty associated with the estimates. The approach used consists of examining space transportation costs from several perspectives to perform a variety of sensitivity analyses or reviews and examine the findings in terms of internal consistency and external comparison with analogous systems. These approaches are summarized as a theoretical and historical review including a review of stated and unstated assumptions used to derive the costs, and a performance or technical review. These reviews cover the overall transportation program as well as the individual vehicles proposed. The review of overall cost assumptions is the principal means used for estimating the cost uncertainty derived. The cost estimates used as the best current estimate are included.

  13. The manned transportation system study - Defining human pathways into space

    NASA Technical Reports Server (NTRS)

    Lance, Nick; Geyer, Mark S.; Gaunce, Michael T.; Anson, H. W.; Bienhoff, D. G.; Carey, D. A.; Emmett, B. R.; Mccandless, B.; Wetzel, E. D.

    1992-01-01

    Substantiating data developed by a NASA-industry team (NIT) for subsequent NASA decisions on the 'right' set of manned transportation elements needed for human access to space are discussed. Attention is given to the framework for detailed definition of these manned transportation elements. Identifying and defining architecture evaluation criteria, i.e., attributes, specified the amount and type of data needed for each concept under consideration. Several architectures, each beginning with today's transportation systems, were defined using representative systems to explore future options and address specific questions currently being debated. The present solutions emphasize affordability, safety, routineness, and reliability. Key issues associated with current business practices were challenged and the impact associated with these practices quantified.

  14. Calibrating and Measuring Bedload Transport Using a Magnetic Detection System

    NASA Astrophysics Data System (ADS)

    Rempel, J.; Hassan, M. A.

    2004-12-01

    One of the problems in bedload transport research is that no measurement technique has been commonly accepted as superior, and there are no standard protocols. There is a need for continuous bedload measurement to adequately resolve patterns in temporal and spatial variability, especially at high transport rates. Magnetic detection systems are a promising method as they can sense the movement of natural stones, and provide high frequency data in both time and space. A number of magnetic systems have been deployed in the field, but they have not been adequately calibrated. This has limited the analysis to counting the number of pulses, and not allowed confident estimations of the true amount of sediment transport, sediment texture or particle velocities. We developed a series of lab and flume experiments to calibrate the BMD system used by Tunnicliffe et al (2000). Experiments were run with both artificial and natural stones to isolate the effects of particle size, velocity and magnetic content (susceptibility and moment) on the shape of the recorded signal. A large number of experiments were conducted to cover wide range of flow conditions, particle sizes, and particle velocities. The results show that the system is sensitive enough to detect particles down to at least 8mm. Using artificial stones we were able to relate the signal amplitude, width and area to particle size, velocity and magnetic content. These results suggest that the magnetic system can be used to estimate transport rates in natural streams. Work is continuing with natural stones both in the laboratory and the field to further develop of the system. Tunnicliffe, J., Gottesfeld, A.S., and Mohamed, M. 2000. High-resolution measurement of bedload transport, Hydrological Processes, 14, 2631-2643.

  15. Results of field tests of a transportable calorimeter assay system

    SciTech Connect

    Rakel, D.A.; Lemming, J.F.; Rodenburg, W.W.; Duff, M.F.; Jarvis, J.Y.

    1981-01-01

    A transportable calorimetric assay system, developed for use by US Department of Energy inspectors, is described. The results of field tests at three DOE sites are presented. The samples measured in these tests represent a variety of forms (ash, oxide, metal buttons), isotopic composition, and total plutonium content.

  16. The San Francisco Joint Institutional Transportation Systems Management Program.

    ERIC Educational Resources Information Center

    Fink, Ira; LaPointe, Robert

    1981-01-01

    Transportation systems management (TSM) programs are discussed, particularly the 1977 program of the University of California, San Francisco, which led to traffic reduction and improved vehicle flow. The city's implementation plan for a similar TSM program for 14 educational institutions and hospitals is described. (MLW)

  17. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2010-10-01

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP10. Electron beam transport system is one of important subsystem, which is used to transport electron beam from electron gun side to collector side. This system should be able to change beam size inside superconducting magnet and control beam position with 5 mm in horizontal and vertical plane. Some other design considerations for this beam transport system are also reported in this paper. The head-on beam-beam effect is one of important nonlinear source in storage ring and linear colliders, which have limited the luminosity improvement of many colliders, such as SppS, Tevatron and RHIC. In order to enhance the performance of colliders, beam-beam effects can be compensated with direct space charge compensation, indirect space charge compensation or betatron phase cancellation scheme. Like other colliders, indirect space charge compensation scheme (Electron Lens) was also proposed for Relativistic Heavy Ion Collider (RHIC) beam-beam compensation at Brookhaven National Laboratory. The two similar electron lenses are located in IR10 between the DX magnets. One RHIC electron lens consists of one DC electron gun, one superconducting magnet, one electron collector and beam transport system.

  18. A model for radionuclide transport in the Cooling Water System

    SciTech Connect

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA.

  19. Road Transportable Analytical Laboratory (RTAL) system: Volume I. Final report

    SciTech Connect

    Finger, S.M.; De Avila, J.C.; Keith, V.F.

    1996-08-01

    This report describes a portable laboratory system for the analysis of soils, ground water, and surface waters for the detection and quantification of hazardous materials, organics, and radioactive contaminants. The goal of the Road Transportable Analytical Laboratory (RTAL) is a sample throughput of 20 samples per day, providing a full range of analysis on each sample within 16 hours of preparation with high accuracy.

  20. Intelligent transportation systems strategic plan: Phase 1 report

    SciTech Connect

    1998-05-01

    This interim report on an Intelligent Transportation Systems (ITS) Strategic Plan has been developed as documentation of the process of offering a vision for ITS and recommending an outline for organizational structure, infrastructure, and long-term planning for ITS in Kentucky. This plan provides an overview of the broad scope of ITS and relationships between various Intelligent Vehicle Highway Systems (IVHS) functional areas and ITS user service areas. Three of the functional areas of ITS have been addressed in this interim report with sections devoted to mission, vision, goals, and potential technology applications. Within each of the three areas, recommendations have been made for applications and technologies for deployment. A more formalized business plan for ITS will be developed to recommend specific projects for implementation. Those three functional areas are: (1) Advanced Rural Transportation Systems (ARTS), (2) Advanced Traveler Information Systems (ATIS), and (3) Commercial Vehicle Operations (CVO).

  1. Advanced Transport Operating System (ATOPS) utility library software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Slominski, Christopher J.; Dickson, Richard W.; Wolverton, David A.

    1993-01-01

    The individual software processes used in the flight computers on-board the Advanced Transport Operating System (ATOPS) aircraft have many common functional elements. A library of commonly used software modules was created for general uses among the processes. The library includes modules for mathematical computations, data formatting, system database interfacing, and condition handling. The modules available in the library and their associated calling requirements are described.

  2. Boundary conditions on faster-than-light transportation systems

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Knowles, H. B.

    1993-01-01

    In order to be consistent with current physical theories, any proposal of a faster-than light (FTL) transportation system must satisfy several critical conditions. It must predict the mass, space, and time dimensional changes predicted by relativity physics when velocity falls below the speed of light. It must also not violate causality, and remain consistent with quantum physics in the limit of microscopic systems. It is also essential that the proposal conserve energy.

  3. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect

    King, D.A.

    1994-11-10

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  4. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    NASA Astrophysics Data System (ADS)

    King, D. A.

    1994-11-01

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  5. Information feedback strategy for beltways in intelligent transportation systems

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ting; Li, Jian-Qing; Chen, Bo-Kui; Huang, Xin; Wang, Zhen

    2016-03-01

    As an important part of the Intelligent Transportation System (ITS), the information feedback strategy has drawn more and more scholars' attention. A variety of feedback strategies are proposed to improve the traffic efficiency. These strategies are based on simple route scenarios, but most route scenarios are always complex in reality. In this letter, based on a complex beltway scenario, we propose a new traffic information feedback strategy called Beltway Feedback Strategy (BFS). The simulation results show that the BFS can effectively improve the transportation ability of beltways.

  6. Transport properties of the Fermi hard-sphere system

    SciTech Connect

    Mecca, Angela; Lovato, Alessandro; Benhar, Omar; Polls, Artur

    2016-03-01

    The transport properties of neutron star matter play an important role in many astrophysical processes. We report the results of a calculation of the shear viscosity and thermal conductivity coefficients of the hard-sphere fermion system of degeneracy ν = 2, that can be regarded as a model of pure neutron matter. Our approach is based on the effective interaction obtained from the formalism of correlated basis functions and the cluster expansion technique. The resulting transport coefficients show a strong sensitivity to the quasiparticle effective mass, reflecting the effect of second-order contributions to the self-energy that are not taken into account in nuclear matter studies available in the literature.

  7. Packaging and transportation system for K-Basin spent fuel

    SciTech Connect

    Kee, A.T.

    1998-03-03

    This paper describes the cask/transportation system that was designed, procured and delivered to the Hanford K-Basin site at Richland, Washington. The performance requirements and design of the various components -- cask, trailer with cask tie-down system, and the cask operation equipment for the load-out pit -- will be discussed. The presentation will include the details of the factory acceptance testing and its results. The performance requirements for the cask/transportation system was dictated by the constraints imposed by the large number of high priority shipments and the spent fuel pool environment, and the complex interface requirements with other equipment and facility designs. The results of the testing form the basis for the conclusion that the system satisfies the site performance requirements. The cask/transportation system design was driven by the existing facility constraints and the limitations imposed by the large number of shipments over a short two-year period. This system may be useful information for other DOE facilities that may be or will be in a similar situation.

  8. Data Compression Techniques for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Bradley, William G.

    1998-01-01

    Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.

  9. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    SciTech Connect

    McCoy, J.C.; Becker, D.L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

  10. Development of a 21st Century Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Holmes, Bruce J.; Hansen, Frederick

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring the next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  11. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    NASA Astrophysics Data System (ADS)

    McCoy, John C.; Becker, David L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration's Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined.

  12. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  13. Isotope effects on particle transport in the Compact Helical System

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Okamura, S.; Minami, T.; Ida, K.; Mikkelsen, D. R.; Osakabe, M.; Yoshimura, Y.; Isobe, M.; Morita, S.; Matsuoka, K.

    2016-05-01

    The hydrogen isotope effects of particle transport were studied in the hydrogen and deuterium dominant plasmas of the Compact Helical System (CHS). Longer decay time of electron density after the turning-off of the gas puffing was observed in the deuterium dominant plasma suggesting that the recycling was higher and/or the particle confinement was better in the deuterium dominant plasma. Density modulation experiments showed the quantitative difference of the particle transport coefficients. Density was scanned from 0.8  ×  1019 m-3 to 4  ×  1019 m-3 under the same magnetic field and almost the same heating power. In the low density regime (line averaged density  <  2.5  ×  1019 m-3), the lower particle diffusivity and the larger inwardly directed core convection velocity was observed in the deuterium dominant plasma, while in the high density regime (line averaged density  >2.5  ×  1019 m-3) no clear difference was observed. This result indicates that the isotope effects of particle transport exist only in the low density regime. Comparison with neoclassical transport coefficients showed that the difference of particle transport is likely to be due to the difference of turbulence driven anomalous transport. Linear character of the ion scale turbulence was studied. The smaller linear growth rate qualitatively agreed with the reduced particle transport in the deuterium dominant plasma of the low density regime.

  14. Satellite Power Systems (SPS) space transportation cost analysis and evaluation

    SciTech Connect

    1980-11-01

    The objective of this study is to provide a clear picture of SPS space transportation costs at the present time with respect to their accuracy as stated, the reasonableness of the methods used, the assumptions made, and the uncertainty associated with the estimates. The approach used consists of examining space transportation costs from several perspectives - to perform a variety of sensitivity analyses or reviews and examine the findings in terms of internal consistency and external comparison with analogous systems. These approaches are summarized as a theoretical and historical review including a review of stated and unstated assumptions used to derive the costs, and a performance or technical review. These reviews cover the overall transportation program as well as the individual vehicles proposed. The review of overall cost assumptions is the principal means used for estimating the cost uncertainty derived. The cost estimates used as the best current estimate are included.

  15. Transport coefficients for dense hard-disk systems.

    PubMed

    García-Rojo, Ramón; Luding, Stefan; Brey, J Javier

    2006-12-01

    A study of the transport coefficients of a system of elastic hard disks based on the use of Helfand-Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are examined with averaging techniques especially appropriate for event-driven molecular dynamics algorithms with periodic boundary conditions. The density and size dependence of the results are analyzed, and comparison with the predictions from Enskog's theory is carried out. In particular, the behavior of the transport coefficients in the vicinity of the fluid-solid transition is investigated and a striking power law divergence of the viscosity with density is obtained in this region, while all other examined transport coefficients show a drop in that density range in relation to the Enskog's prediction. Finally, the deviations are related to shear band instabilities and the concept of dilatancy.

  16. Verification of ARES transport code system with TAKEDA benchmarks

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Zhang, Bin; Zhang, Penghe; Chen, Mengteng; Zhao, Jingchang; Zhang, Shun; Chen, Yixue

    2015-10-01

    Neutron transport modeling and simulation are central to many areas of nuclear technology, including reactor core analysis, radiation shielding and radiation detection. In this paper the series of TAKEDA benchmarks are modeled to verify the critical calculation capability of ARES, a discrete ordinates neutral particle transport code system. SALOME platform is coupled with ARES to provide geometry modeling and mesh generation function. The Koch-Baker-Alcouffe parallel sweep algorithm is applied to accelerate the traditional transport calculation process. The results show that the eigenvalues calculated by ARES are in excellent agreement with the reference values presented in NEACRP-L-330, with a difference less than 30 pcm except for the first case of model 3. Additionally, ARES provides accurate fluxes distribution compared to reference values, with a deviation less than 2% for region-averaged fluxes in all cases. All of these confirms the feasibility of ARES-SALOME coupling and demonstrate that ARES has a good performance in critical calculation.

  17. Survey of computer vision in roadway transportation systems

    NASA Astrophysics Data System (ADS)

    Manikoth, Natesh; Loce, Robert; Bernal, Edgar; Wu, Wencheng

    2012-01-01

    There is a world-wide effort to apply 21st century intelligence to evolving our transportation networks. The goals of smart transportation networks are quite noble and manifold, including safety, efficiency, law enforcement, energy conservation, and emission reduction. Computer vision is playing a key role in this transportation evolution. Video imaging scientists are providing intelligent sensing and processing technologies for a wide variety of applications and services. There are many interesting technical challenges including imaging under a variety of environmental and illumination conditions, data overload, recognition and tracking of objects at high speed, distributed network sensing and processing, energy sources, as well as legal concerns. This conference presentation and publication is brief introduction to the field, and will be followed by an in-depth journal paper that provides more details on the imaging systems and algorithms.

  18. Synthetic polyion-counterion transport systems in polymersomes and gels.

    PubMed

    Montenegro, Javier; Braun, Jörg; Fischer-Onaca, Ozana; Meier, Wolfgang; Matile, Stefan

    2011-10-07

    Transport across the membranes of polymersomes remains difficult in part due to the great thickness of the polymer bilayers. Here, we report that dynamic polyion-counterion transport systems are active in fluorogenic polymersomes composed of poly(dimethylsiloxane)-b-poly(2-methyloxazoline) (PDMS-PMOXA). These results suggest that counterion-activated calf-thymus DNA can act as cation carrier that moves not only across lipid bilayer and bulk chloroform membranes but also across the "plastic" membranes of polymersomes. Compared to egg yolk phosophatidylcholine (EYPC) lipsosomes, activities and activator scope in PDMS-PMOXA polymersomes are clearly reduced. Embedded in agar gel matrices, fluorogenic PDMS-PMOXA polymersomes respond reliably to polyion-counterion transporters, with high contrast, high stability and preserved selectivity. Compared to standard EYPC liposomes, it cannot be said that PDMS-PMOXA polymersomes are better. However, they are different, and this difference could be interesting for the development of sensing devices.

  19. Activation of ion transport systems during cell volume regulation

    SciTech Connect

    Eveloff, J.L.; Warnock, D.G.

    1987-01-01

    This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically driven water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K/sup +/ and Cl/sup -/ conductances, a K-Cl cotransport system, or parallel K/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchangers. The biochemical mechanisms involved in the activation of transport systems are largely unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP, and Ca/sup 2 +/ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that transverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchange systems.

  20. 76 FR 6841 - ITS Joint Program Office; Intelligent Transportation Systems Program Advisory Committee; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... TRANSPORTATION ITS Joint Program Office; Intelligent Transportation Systems Program Advisory Committee; Notice of... (FACA) (Pub. L. 72-363; 5 U.S.C. app. 2), a meeting of the Intelligent Transportation Systems (ITS... study, development, and implementation of intelligent transportation systems. Through its sponsor,...

  1. Nonlinear closure relations theory for transport processes in nonequilibrium systems.

    PubMed

    Sonnino, Giorgio

    2009-05-01

    A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ("Onsager") transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.

  2. Structure of a Type-1 Secretion System ABC Transporter.

    PubMed

    Morgan, Jacob L W; Acheson, Justin F; Zimmer, Jochen

    2017-03-07

    Type-1 secretion systems (T1SSs) represent a widespread mode of protein secretion across the cell envelope in Gram-negative bacteria. The T1SS is composed of an inner-membrane ABC transporter, a periplasmic membrane-fusion protein, and an outer-membrane porin. These three components assemble into a complex spanning both membranes and providing a conduit for the translocation of unfolded polypeptides. We show that ATP hydrolysis and assembly of the entire T1SS complex is necessary for protein secretion. Furthermore, we present a 3.15-Å crystal structure of AaPrtD, the ABC transporter found in the Aquifex aeolicus T1SS. The structure suggests a substrate entry window just above the transporter's nucleotide binding domains. In addition, highly kinked transmembrane helices, which frame a narrow channel not observed in canonical peptide transporters, are likely involved in substrate translocation. Overall, the AaPrtD structure supports a polypeptide transport mechanism distinct from alternating access.

  3. Screening study on high temperature energy transport systems

    SciTech Connect

    Graves, R.L.

    1980-10-01

    The purpose of the study described in this document is to identify the options for transporting thermal energy over long distances. The study deals specifically and exclusively with high temperature (> 400/sup 0/C(752/sup 0/F)) energy for industrial use. Energy transport is seen as a potential solution to: high unit cost of small coal and nuclear steam generators, and opposition to siting of coal or nuclear plants near populated areas. The study is of a preliminary nature but covers many options including steam, molten salts, organics, and chemical heat pipes. The development status and potential problems of these and other energy transport methods are discussed. Energy transport concepts are compared on a fundamental level based on physical properties and also are subjected to an economic study. The economic study indicated that the chemical heat pipe, under a specific set of circumstances, appeared to be the least expensive for distances greater than about 32 km (20 miles). However, if the temperature of the energy was lowered, the heat transfer salt (sodium nitrate/nitrite) system would apparently be a better economic choice for less than about 80 km (50 miles). None of the options studied appear to be more attractive than small coal-fired boilers when the transport distance is over about 64 km (40 miles). Several recommendations are made for refining the analysis.

  4. Enhancements to the Branched Lagrangian Transport Modeling System

    USGS Publications Warehouse

    Jobson, Harvey E.

    1997-01-01

    The Branched Lagrangian Transport Model (BLTM) has received wide use within the U.S. Geological Survey over the past 10 years. This report documents the enhancements and modifications that have been made to this modeling system since it was first introduced. The programs in the modeling system are arranged into five levels?programs to generate time-series of meteorological data (EQULTMP, SOLAR), programs to process time-series data (INTRP, MRG), programs to build input files for transport model (BBLTM, BQUAL2E), the model with defined reaction kinetics (BLTM, QUAL2E), and post processor plotting programs (CTPLT, CXPLT). An example application is presented to illustrate how the modeling system can be used to simulate 10 water-quality constituents in the Chattahoochee River below Atlanta, Georgia.

  5. Transport signatures in topological systems coupled to ac fields

    NASA Astrophysics Data System (ADS)

    Ruocco, Leonard; Gómez-León, Álvaro

    2017-02-01

    We study the transport properties of a topological system coupled to an ac electric field by means of Floquet-Keldysh formalism. We consider a semi-infinite chain of dimers coupled to a semi-infinite metallic lead and obtain the density of states and current when the system is out of equilibrium. Our formalism is nonperturbative and allows us to explore, in the thermodynamic limit, a wide range of regimes for the ac field, arbitrary values of the coupling strength to the metallic contact and corrections to the wide-band limit (WBL). We find that hybridization with the contact can change the dimerization phase, and that the current dependence on the field amplitude can be used to discriminate between them. We also show the appearance of side bands and nonequilibrium zero-energy modes, characteristic of the Floquet systems. Our results directly apply to the stability of nonequilibrium topological phases, when transport measurements are used for their detection.

  6. Isolation systems for electronic black-box transportation to orbit

    NASA Astrophysics Data System (ADS)

    Jedrich, Nicholas M.; Pendleton, Scott C.

    1998-06-01

    Servicing the Hubble Space Telescope (HST) requires the safe transportation of electronic Orbital Replacement Units (ORUs) on the Space Transportation System (STS) to replace or enhance the capability of existing units. The delicate design of these electronic ORUs makes it imperative to provide isolation from the STS launch random vibration, while maintaining fundamental modes above the transient load environment. Two methods were developed and used exclusively, on Servicing Mission 2 (SM2), to isolate the ORUs from the environmental launch loads imposed by the STS. The first load isolation system utilizes a refined open/closed cell foam design to provide the required damping and corner frequency, while the second method uses an innovative Viscoelastic Material (VEM) design. This paper addresses both systems as initially designed including finite element (FE) model analysis of the VEM system. Vibration testing of prototype systems and modifications to the design resulting from test will be discussed. The final design as flown on HST SM2 with recommendations for future applications of these technologies in transporting electronic black boxes to orbit will conclude the paper.

  7. An Overview of Liquid Fluoride Salt Heat Transport Systems

    SciTech Connect

    Holcomb, David Eugene; Cetiner, Sacit M

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years, and

  8. 78 FR 43273 - Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... TRANSPORTATION Research and Innovative Technology Administration Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting AGENCY: ITS Joint Program Office, Research and Innovative Technology... of Transportation, Research and Innovative Technology Administration, ITS Joint Program...

  9. 75 FR 77955 - Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... TRANSPORTATION Research and Innovative Technology Administration Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting AGENCY: Research and Innovative Technology Administration, U.S... submitted by U.S. Mail to: U.S. Department of Transportation, Research and Innovative...

  10. California air transportation study: A transportation system for the California Corridor of the year 2010

    NASA Technical Reports Server (NTRS)

    1989-01-01

    To define and solve the problems of transportation in the California Corrider in the year 2010, the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined future corridor transportation needs and developed a system to meet the requirements. A market study, which included interpreting travel demand and gauging the future of regional and national air travel in and out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off studies of several proposed transporation systems were conducted to determine which components would form the final proposed system. Preliminary design and further analysis were performed for each resulting component. The proposed system consists of three vehicles and a special hub or mode mixer, the Corridor Access Port (CAP). The vehicles are: (1) an electric powered aircraft to serve secondary airports and the CAP; (2) a high speed magnetic levitation train running through the CAP and the high population density areas of the corridor; and (3) a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intrametropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets the travel demands in the corridor, and interfaces with interstate and international travel.

  11. A Study of Transport Airplane Crash-Resistant Fuel Systems

    NASA Technical Reports Server (NTRS)

    Jones, Lisa (Technical Monitor); Robertson, S. H.; Johnson, N. B.; Hall, D. S.; Rimson, I. J.

    2002-01-01

    This report presents the results of a study, funded by the Federal Aviation Administration (FAA), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S. Army, which ultimately led to the current state of the art in CRFS technology. It describes the basic research, testing, field investigations and production efforts which have led to the highly successful military CRFS, which has saved many lives and reduced costs of accidents. Current CRFS technology used in transport category airplanes is defined and compared to the available state-of-the-art technology. The report provides information to the FAA and other government organizations which can help them plan their efforts to improve the state of crash fire protection in the transport airplane fleet. The report provides guidance to designers looking for information about CRFS design problems, analysis tools to use for product improvement, and a summary of current and proposed regulations for transport category airplane fuel systems.

  12. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study; Volume 1 - Executive Summary.

    DTIC Science & Technology

    2007-11-02

    and is a Space Transportation System Booster Engine (STBE) contractor. Honeywell is responsible for STS flight control analysis under contract to...Honeywell, Inc. - Avionics System Design & Analysis - Flight Control Analysis Pioneer Systems, Inc. - Recovery System Design & Analysis Remtech, Inc...Fuel ALS Options 3-13 1) High specific strength aluminum lithium, Weldalite™ 049; 2) Electromechanical Thrust Vector Control (TVC) actuator systems

  13. [Viability of facultative anaerobic bacteria in commercial transport systems].

    PubMed

    Gruber, I M; Dmitrieva, M N; Gavrilova, N A; Zhigunova, O V; Nisilevich, V F

    2001-01-01

    The possibilities of the transport systems manufactured by Copan (Italy) and Deltalab (Spain) were studied on 15 microbial strains: representatives of the family Enterobacteriaceae (enterobacterial swabs with Cary-Blair medium) and the genus Streptococcus, as well as the species Neisseria meningitidis, Haemophilus influenzae (universal swabs with charcoal-enriched Amies medium). Microorganisms were shown to retain their viability (in colony-forming units, %) for 48 hours in the systems of both firms. H. influenzae exhibited greater viability in the system manufactured by Copan than in that manufactured by Deltalab (respectively, 62% and 28% in 24 hours, 19% and 6% in 48 hours).

  14. Adaptive fuzzy-neural-network control for maglev transportation system.

    PubMed

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  15. Transportation of drug-gold nanocomposites by actinomyosin motor system

    NASA Astrophysics Data System (ADS)

    Kaur, Harsimran; Chaudhary, Archana; Kaur, Inderpreet; Singh, Kashmir; Bharadwaj, Lalit M.

    2011-06-01

    Nanotechnology is playing an important role in drug delivery to overcome limitations of conventional drug delivery systems in terms of solubility, in vivo stability, pharmacokinetics, and bio-distribution. The controlled transportation of drug into the cell and within the cell is a major challenge to be addressed. Cellular molecular motors have been exploited for their cargo carrying capacity for various applications including engineering and health care. Combination of nanotechnology and biomolecular motors can address some of the challenges in drug delivery. In the present study, transportation of drug nanocomposites has been demonstrated. Nanocomposites of 6-mercaptopurine and levodopa drugs (cancer and Parkinson's disease, respectively) were prepared with gold nanoparticles (GNPs) by covalent attachment and these nanocomposites were attached to actin filaments. These nanocomposites were in-turn transported by actin filaments on myosin tracks. Characterization of drug nanocomposites formation was done by UV-Vis spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy. GNP composites of 6-mercaptopurine and levodopa were formed by sulfide and amide bond formation, respectively. Average velocity of actin filament attached to nanocomposites was found to be 3.17 and 3.89 μm/s for levodopa and 6-mercaptopurine, respectively, as compared to actin filaments with velocity of 4.0-6.0 μm/s. Three concepts have been proposed for the study of drug transportation into the cell based on polycationic complex formation, interaction of actin with cellular myosin and Biomolecular Adaptor for Retrograde Transport (BART) technology. The aspects of this study heads toward the development of an approach to utilize molecular motors for nanoscale transportation endogenously.

  16. From microsystems technology to the Saenger II space transportation system

    NASA Astrophysics Data System (ADS)

    Vogels, Hanns Arnt

    The role of space projects as drivers and catalysts of technology advances is discussed and illustrated from the perspective of the West German aerospace industry, summarizing a talk presented at the 1986 meeting of the German aerospace society DGLR. The history of space-transportation-system (STS) technology since the 1950s is traced, emphasizing the needs for greater payload weights and lower costs, and the design concept of Saenger II, a proposed two-stage ESA STS employing a hypersonic jet transport aircraft as its first stage, is outlined. It is argued that experience gained in developing the rocket-launched Hermes STS will be applicable to the second stage of Saenger II. Recent developments in microsystems (combining microelectronics, micromechanics, and microoptics), advanced materials (fiber-reinforced plastics, metals, and ceramics), and energy technology (hydrogen-based systems and solar cells) are surveyed, and their applicability to STSs is considered.

  17. Non-Rocket Earth-Moon Transport System

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2002-01-01

    This paper proposes a new method and transportation system to travel to the Moon. This transportation system uses a mechanical energy transfer and requires only minimal energy so that it provides a 'Free Trip' into space. The method uses the rotary and kinetic energy of the Moon. This paper presents the theory and results of computations for the project provided Free Trips (without rockets and spend a big energy) to the Moon for six thousand people annually. The project uses artificial materials like nanotubes and whiskers that have a ratio of tensile strength to density equal 4 million meters. In the future, nanotubes will be produced that can reach a specific stress up 100 millions meter and will significantly improve the parameters of suggested project. The author is prepared to discuss the problems with serious organizations that want to research and develop these innovations.

  18. Study of aircraft in intraurban transportation systems, volume 1

    NASA Technical Reports Server (NTRS)

    Stout, E. G.; Kesling, P. H.; Matteson, H. C.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.

    1971-01-01

    An analysis of an effective short range, high density computer transportation system for intraurban systems is presented. The seven county Detroit, Michigan, metropolitan area, was chosen as the scenario for the analysis. The study consisted of an analysis and forecast of the Detroit market through 1985, a parametric analysis of appropriate short haul aircraft concepts and associated ground systems, and a preliminary overall economic analysis of a simplified total system designed to evaluate the candidate vehicles and select the most promising VTOL and STOL aircraft. Data are also included on the impact of advanced technology on the system, the sensitivity of mission performance to changes in aircraft characteristics and system operations, and identification of key problem areas that may be improved by additional research. The approach, logic, and computer models used are adaptable to other intraurban or interurban areas.

  19. Mission modeling for the Manned Transportation System study

    NASA Astrophysics Data System (ADS)

    Gaunce, Michael T.; Emmet, Brian R.

    1992-03-01

    To determine the requirements and potential options for the next Manned Transportation System, a 'needs' analysis was performed. The analysis identified the number, mass, type, and destination of manned and unmanned payloads to space. The needs model is based on the NASA Mixed Fleet Manifest and a version of the FY90 Civil Needs Data Base with Space Station Restructure modifications and a 'strawman' DOD mission model.

  20. Environmental considerations of a fuel-flexible transportation system

    SciTech Connect

    Saricks, C.L.

    1988-01-01

    The United States Department of Energy Office of Policy, Planning, and Analysis in conjuction with the Office of Environmental Analysis is conducting a multi-faceted, multi-organization study of the prospects for and costs of implementing a fuel-flexible (multifuel) domestic transportation system by the year 2000. The analysis has three components: (1) forecasting the supply of candidate alternative fuels (chiefly methanol, compressed natural gas, and electricity) by about year 2000, and of propulsion systems to use them; (2) projecting vehicular sales, fuel distributing and dispensing, and vehicular service infrastructures needed to support a ''best case'' penetration of each of these fuels individually or in combination into the national automobile, light and medium truck, and bus populations; and (3) considering changes in the environmental effects of transportation activity that could result from the fleet penetrations implicit in these cases. This paper presents the currently-proposed objectives and scope of the last of these three areas of analysis, and reviews environmental issues already identified as potential concerns for a period of transition to non-petroleum fuel dominance or at least of significant displacement of petroleum use in domestic transportation. These issues include performance and durability of vehicular emission control systems, formaldehyde transients of alcohol fuels, use of catalysts with heavy-duty vehicles, synergistic effects of gasoline/alcohol blends, safety of gas compressor systems, reduction of emissions of oxides of nitrogen, control of environmental release pathways for methane and toxic gases or solids, and institutional and legal constraints in some locations on the use of non-petroleum fuels in transportation. 20 refs., 1 fig.

  1. Heavy-flavour transport: from large to small systems

    NASA Astrophysics Data System (ADS)

    Beraudo, A.; De Pace, A.; Monteno, M.; Nardi, M.; Prino, F.

    2016-12-01

    Predictions for heavy-flavour production in relativistic heavy-ion experiments provided by the POWLANG transport setup, including now also an in-medium hadronization model, are displayed, After showing some representative findings for the Au-Au and Pb-Pb cases, a special focus will be devoted to the results obtained in the small systems formed in proton(deuteron)-nucleus collisions, where recent experimental data suggest the possible formation of a medium featuring a collective behaviour.

  2. Transport Theoretical Studies of Some Microscopic and Macroscopic Systems

    NASA Astrophysics Data System (ADS)

    Astwood, Alden Matthew

    This dissertation is a report on theoretical transport studies of two systems of vastly different sizes. The first topic is electronic motion in quantum wires. In recent years, it has become possible to fabricate wires that are so small that quantum effects become important. The conduction properties of these wires are quite different than those of macroscopic wires. In this dissertation, we seek to understand scattering effects in quantum wires in a simple way. Some of the existing formalisms for studying transport in quantum wires are reviewed, and one such formalism is applied to calculate conductance in some simple systems. The second topic concerns animals which move in groups, such as flocking birds or schooling fish. Exact analytic calculations of the transport properties of such systems are very difficult because a flock is a system that is far from equilibrium and consists of many interacting particles. We introduce two simplified models of flocking which are amenable to analytic study. The first model consists of a set of overdamped Brownian particles that interact via spring forces. The exact solution for the probability distribution is calculated, and equations of motion for continuous coarse-grained quantities, such as the density, are obtained from the full solution. The second model consists of particles which move in one dimension at constant speed, but which change their directions at random. The flipping rates are constructed in such a way that particles tend to align their directions with each other. The model is solved exactly for one and two particles, the first two moments are obtained, and equations of motion for continuous coarse-grained quantities are written. The model cannot be solved exactly for many particles, but the first and second moments are calculated. Finally, two additional topics are briefly discussed. The first is transport in disordered lattices, and the second is a static magnetic model of flocking.

  3. Transportation Routing Analysis Geographic Information System (TRAGIS) User's Manual

    SciTech Connect

    Johnson, PE

    2003-09-18

    The Transportation Routing Analysis Geographic Information System (TRAGIS) model is used to calculate highway, rail, or waterway routes within the United States. TRAGIS is a client-server application with the user interface and map data files residing on the user's personal computer and the routing engine and network data files on a network server. The user's manual provides documentation on installation and the use of the many features of the model.

  4. Space shuttle transportation system techniques for user/use development

    NASA Technical Reports Server (NTRS)

    Gripshover, P. J.

    1974-01-01

    The problem of obtaining new uses for the Shuttle Transportation System (STS) was treated in the same way marketing problems are handled by industrial organizations. Techniques used by industry to obtain new ideas and customers were evaluated and analyzed for their relevance to the STS. Marketing barrier-data were used to develop strategy which called for a middleman organization to assist NASA in achieving its objectives. The importance of prompt initiation of the recommended strategy was established.

  5. Protonic transport through solitons in hydrogen-bonded systems

    NASA Astrophysics Data System (ADS)

    Kavitha, L.; Jayanthi, S.; Muniyappan, A.; Gopi, D.

    2011-09-01

    We offer an alternative route for investigating soliton solutions in hydrogen-bonded (HB) chains. We invoke the modified extended tangent hyperbolic function method coupled with symbolic computation to solve the governing equation of motion for proton dynamics. We investigate the dynamics of proton transfer in HB chains through bell-shaped soliton excitations, which trigger the bio-energy transport in most biological systems. This solitonic mechanism of proton transfer could play functional roles in muscular contraction, enzymatic activity and oxidative phosphorylation.

  6. Scaling of flow and transport behavior in heterogeneous groundwater systems

    NASA Astrophysics Data System (ADS)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on

  7. Understanding Ammonium Transport in Bioelectrochemical Systems towards its Recovery.

    PubMed

    Liu, Ying; Qin, Mohan; Luo, Shuai; He, Zhen; Qiao, Rui

    2016-03-03

    We report an integrated experimental and simulation study of ammonia recovery using microbial electrolysis cells (MECs). The transport of various species during the batch-mode operation of an MEC was examined experimentally and the results were used to validate the mathematical model for such an operation. It was found that, while the generated electrical current through the system tends to acidify (or basify) the anolyte (or catholyte), their effects are buffered by a cascade of chemical groups such as the NH3/NH4(+) group, leading to relatively stable pH values in both anolyte and catholyte. The transport of NH4(+) ions accounts for ~90% of the total current, thus quantitatively confirming that the NH4(+) ions serve as effective proton shuttles during MEC operations. Analysis further indicated that, because of the Donnan equilibrium at cation exchange membrane-anolyte/catholyte interfaces, the Na(+) ion in the anolyte actually facilitates the transport of NH4(+) ions during the early stage of a batch cycle and they compete with the NH4(+) ions weakly at later time. These insights, along with a new and simple method for predicting the strength of ammonia diffusion from the catholyte toward the anolyte, will help effective design and operation of bioeletrochemical system-based ammonia recovery systems.

  8. Understanding Ammonium Transport in Bioelectrochemical Systems towards its Recovery

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Qin, Mohan; Luo, Shuai; He, Zhen; Qiao, Rui

    2016-03-01

    We report an integrated experimental and simulation study of ammonia recovery using microbial electrolysis cells (MECs). The transport of various species during the batch-mode operation of an MEC was examined experimentally and the results were used to validate the mathematical model for such an operation. It was found that, while the generated electrical current through the system tends to acidify (or basify) the anolyte (or catholyte), their effects are buffered by a cascade of chemical groups such as the NH3/NH4+ group, leading to relatively stable pH values in both anolyte and catholyte. The transport of NH4+ ions accounts for ~90% of the total current, thus quantitatively confirming that the NH4+ ions serve as effective proton shuttles during MEC operations. Analysis further indicated that, because of the Donnan equilibrium at cation exchange membrane-anolyte/catholyte interfaces, the Na+ ion in the anolyte actually facilitates the transport of NH4+ ions during the early stage of a batch cycle and they compete with the NH4+ ions weakly at later time. These insights, along with a new and simple method for predicting the strength of ammonia diffusion from the catholyte toward the anolyte, will help effective design and operation of bioeletrochemical system-based ammonia recovery systems.

  9. R&D ERL: Photocathode Deposition and Transport System

    SciTech Connect

    Pate, D.; Ben-Zvi, I.; Rao, T.; Burrill, R.; Todd, R.; Smedley, J.; Holmes, D.

    2010-01-01

    The purpose of the photocathode deposition and transport system is to (1) produce a robust, high yield multialkali photocathode and (2) have a method of transporting the multialkali photocathode for insertion into a super conducting RF electron gun. This process is only successful if a sufficient quantum efficiency lifetime of the cathode, which is inserted in the SRF electron gun, is maintained. One important element in producing a multialkali photocathode is the strict vacuum requirements of 10{sup -11} torr to assure success in the production of longlived photocathodes that will not have their QE or lifetime depleted due to residual gas poisoning in a poor vacuum. A cutaway view of our third generation deposition system is shown in figure 1. There are certain design criteria and principles required. One must be able to install, remove, rejuvenate and replace a cathode without exposing the source or cathode to atmosphere. The system must allow one to deposit Cs, K, and Sb on a cathode tip surface at pressures in the 10{sup -10} to 10{sup -9} torr range. The cathode needs to be heated to as high as 850 C for cleaning and maintained at 130 C to 150 C during deposition. There should also be the capability for in-situ QE measurements. In addition the preparation of dispenser photocathodes must be accounted for, thus requiring an ion source for cathode cleaning. Finally the transport cart must be mobile and be able to negotiate the ERL facility labyrinth.

  10. Reconstruction of transport system in delayed coking unit

    SciTech Connect

    Pokhodenko, N.T.; Guseinov, A.M.; Kerimov, R.A.; Kuznetsov, V.A.

    1982-11-01

    Describes the reconstruction of the processing and transport system of a delayed coking unit (DLC) in a petroleum refinery which produces electrode coke and coke breeze. Explains that the yield of electrode coke depends to a great degree on the operation of the transport system, which, according to design, includes flight conveyors for transportation and distribution of the coke among the storage sections, classifier screens installed on the conveyors, and a toothed-roll crusher to break up the coke. Presents a flow chart of the reconstructed system. Concludes that with the reconstructed unit, it has been possible to increase the operational reliability of the unit, to extend the running time between maintenance shutdowns to 6 months, to reduce the operating costs, and to increase the coke output by 12.2%; the yield of electrode coke was increased from 49.6% to 56.5%, and the yield of coke breeze was reduced from 50.4% to 43.5%. Notes that the annual economic advantage from carrying out the reconstruction was 362,000 rubles.

  11. Understanding Ammonium Transport in Bioelectrochemical Systems towards its Recovery

    PubMed Central

    Liu, Ying; Qin, Mohan; Luo, Shuai; He, Zhen; Qiao, Rui

    2016-01-01

    We report an integrated experimental and simulation study of ammonia recovery using microbial electrolysis cells (MECs). The transport of various species during the batch-mode operation of an MEC was examined experimentally and the results were used to validate the mathematical model for such an operation. It was found that, while the generated electrical current through the system tends to acidify (or basify) the anolyte (or catholyte), their effects are buffered by a cascade of chemical groups such as the NH3/NH4+ group, leading to relatively stable pH values in both anolyte and catholyte. The transport of NH4+ ions accounts for ~90% of the total current, thus quantitatively confirming that the NH4+ ions serve as effective proton shuttles during MEC operations. Analysis further indicated that, because of the Donnan equilibrium at cation exchange membrane-anolyte/catholyte interfaces, the Na+ ion in the anolyte actually facilitates the transport of NH4+ ions during the early stage of a batch cycle and they compete with the NH4+ ions weakly at later time. These insights, along with a new and simple method for predicting the strength of ammonia diffusion from the catholyte toward the anolyte, will help effective design and operation of bioeletrochemical system-based ammonia recovery systems. PMID:26935791

  12. A smart system for surveillance of animal welfare during transport.

    PubMed

    Gebresenbet, G; Wikner, I; Van de Water, G; Freson, L; Geers, R

    2003-12-01

    New welfare regulations will impose surveillance systems so that information on the quality of transport conditions is available. Moreover a route description is useful for optimisation of transport logistics, but also in relation to estimating of sanitary risk and food safety, including traceability of individual animals. Therefore a transport surveillance system has been developed which is integrating the following information: individual identification of animals, (un)loading place and time, air quality (temperature, relative humidity, emissions), vibration and behaviour of the animals. These data are collected by telemetry and GPS, and are transmitted to a dispatch centre by GSM. Hence, information is available on-line and on disk, so that the driver can be informed and corrected at the spot. Dynamic route optimization of cattle collection from farms and logistical activities of abattoirs are considered in relation to animal welfare. Another instrumentation package that comprises sensors of heart rate and vibration on the animal has been integrated. These sensors can be mounted on animals and the data is transferred to a database through a wireless network. Comprehensive field measurement has been made to evaluate the system and found that the package performs well. Hence, advice will be generated for vehicle manufacturers, hauliers, farmers, slaughterhouses and retailers.

  13. Advanced Engineering Environments for Space Transportation System Development

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  14. JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS

    SciTech Connect

    Zhang Xi; Shia Runlie; Yung, Yuk L.

    2013-04-20

    We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.

  15. A cislunar transportation system fuelled by lunar resources

    NASA Astrophysics Data System (ADS)

    Sowers, G. F.

    2016-11-01

    A transportation system for a self sustaining economy in cislunar space is discussed. The system is based on liquid oxygen (LO2), liquid hydrogen (LH2) propulsion whose fuels are derived from ice mined at the polar regions of the Moon. The elements of the transportation system consist of the Advanced Cryogenic Evolved Stage (ACES) and the XEUS lander, both being developed by United Launch Alliance (ULA). The main propulsion elements and structures are common between ACES and XEUS. Both stages are fully reusable with refueling of their LO2/LH2 propellants. Utilization of lunar sourced propellants has the potential to dramatically lower the cost of transportation within the cislunar environs. These lower costs dramatically lower the barriers to entry of a number of promising cislunar based activities including space solar power. One early application of the architecture is providing lunar sourced propellant to refuel ACES for traditional spacecraft deployment missions. The business case for this application provides an economic framework for a potential lunar water mining operation.

  16. The importance of transport parameter cross correlations in natural systems radioactive transport models

    SciTech Connect

    Reimus, Paul W

    2011-01-03

    Transport parameter cross correlations are rarely considered in models used to predict radionuclide transport in natural systems. In this paper, it is shown that parameter cross correlations could have a significant impact on radionuclide transport predictions in saturated media. In fractured rock, the positive correlation between fracture apertures and groundwater residence times is shown to result in significantly less retardation due to matrix diffusion than is predicted without the correlation. The suppression of matrix diffusion is further amplified by a tendency toward larger apertures, smaller matrix diffusion coefficients, and less sorption capacity in rocks of lower matrix porosity. In a hypothetical example, strong cross correlations between these parameters result in a decrease in predicted radionuclide travel times of an order of magnitude or more relative to travel times calculated with uncorrelated parameters. In porous media, expected correlations between permeability, porosity, and sorption capacity also result in shorter predicted travel times than when the parameters are assumed to be uncorrelated. Individual parameter standard deviations can also have a significant influence on predicted radionuclide travel times, particularly when cross correlations are considered.

  17. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    SciTech Connect

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  18. Future space transportation systems systems analysis study, phase 1 technical report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The requirements of projected space programs (1985-1995) for transportation vehicles more advanced than the space shuttle are discussed. Several future program options are described and their transportation needs are analyzed. Alternative systems approaches to meeting these needs are presented.

  19. Study on the scale of wet-ash transportation system

    SciTech Connect

    Chen Yafei; Gao Xiang; Fang Mengxiang; Luo Zhongyang; Shi Zhenglun; Chen Guanyi; Ye Chunzhen; Ni Mingjiang; Cen Kefa

    1997-12-31

    In this paper, the scale phenomenon of a wet-ash transportation system against SFDS-coal ash rich in CaO is studied. The mechanism of scale, the static state dissolution attribute of Ca{sup 2+} and scale dynamic state simulation are investigated. In the research of scale dynamic state simulation experiment, the following factors are analyzed separately: ash type, tube material, flow rate of ash-water, recovery rate of transportation water, retention period of ash-water in ash tanker, operating period in tube and scale along the tube with distance. Results show that the content of basic oxide, especially the content of soluble basic oxide in ash has a decisive effect on scale. Compared with metal tubes, a rubberish tube can reduce scale deposition efficiently. Improving flow rate of ash-water, recovery rate of transportation water and retention period of ash water in ash tanker can reduce scale, too. During ash-water flows in the ash transportation tube, initial scaling rate is lower at first, but it will improve as time goes on until it reaches a constant. Scale along the tube is different in time, scale rate is very high at the entrance but exponential decays along the tube.

  20. Excess Surface Area in Bioelectrochemical Systems Causes ion Transport Limitations

    SciTech Connect

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of þ273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steadystate current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.

  1. Excess surface area in bioelectrochemical systems causes ion transport limitations

    PubMed Central

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2014-01-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: 1) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions, 2) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and 3) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential at the electrode surface. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant. PMID:25421463

  2. Excess surface area in bioelectrochemical systems causes ion transport limitations.

    PubMed

    Harrington, Timothy D; Babauta, Jerome T; Davenport, Emily K; Renslow, Ryan S; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.

  3. Dual system of intestinal thiamine transport in humans

    SciTech Connect

    Hoyumpa, A.M. Jr.; Strickland, R.; Sheehan, J.J.; Yarborough, G.; Nichols, S.

    1982-05-01

    The transport of thiamine across the intestine has been characterized in rats but has not been adequately studied in humans. To determine the kinetics of thiamine intestinal transport directly in humans, mucosal tissues were obtained during routine endoscopy from normal-appearing sites at the second portion of the duodenum. With 3H-dextran as the marker of adherent volume, the uptake of 14C-thiamine hydrochloride by the excised mucosa was measured in vitro. By this method thiamine uptake was linear with tissue weight and with incubation time up to 5 min. Results showed that at low thiamine concentrations (0.2 to 2.0 microM), uptake was saturable whereas at high concentrations (5 to 50 microM), uptake was linear with thiamine concentrations. Pyrithiamine, anoxia, N-ethylmaleimide, and replacement of sodium chloride by mannitol reduced the uptake of 0.5 microM thiamine by 42%, 37%, 32% and 35%, respectively (p less than 0.05) but had no effect on the uptake of 20 microM thiamine. These data suggest that, as in the rat, the intestinal transport of thiamine in humans proceeds by a coexistent dual system. At physiologic concentrations, thiamine is transported primarily by an energy-requiring, sodium-dependent active process, whereas at higher pharmacologic concentrations thiamine uptake is predominantly a passive process.

  4. Packaging design criteria for the K east basin sludge transportation system

    SciTech Connect

    Tomaszewski, T.A., Westinghouse Hanford

    1996-07-11

    This packaging design criteria (PDC) establishes the onsite transportation safety criteria for a reusable packaging and transport system to transport K East Basin sludge and water.This PDC provides the basis for the development of a safety analysis report for packaging; establishes the packaging contents and safety class of the package; and provides design criteria for the package, packaging, and transport systems.

  5. Status of spent-fuel transportation system development

    SciTech Connect

    Chapman, R.L.; Hall, I.K.

    1988-01-01

    The purpose of the Cask Systems Development Program (CSDP) is to develop a variety of cask systems that can safely and economically be used to move commercial spent fuel and high-level waste from the generator to the federal repository or monitored retrievable storage facility. There are four initiatives to the CSDP, but only the first, from reactor casks, has been activated. This paper is limited to a discussion of the status of that initiative. Schedule objectives for the CSDP include development of spent-fuel cask systems by 1995 to support the Office of Civilian Radioactive Waste Management shipments of spent fuel from utilities beginning in the late 1990s. The US Department of Energy (DOE)-Idaho, with the support of EG G Idaho, Inc., Sandia National Laboratories, and selected cask development contractors, has been assigned the responsibility for developing a family of cask systems that are suitable for the task. Initially, four categories of spent-fuel casks were to be developed. They are legal-weight truck (LWT) casks, overweight truck (OWT) casks, rail/barge (R/B) casks, and dual purpose (DP) (storage/transport) casks. For a variety of reasons, OWT and DP cask development activities have been deferred. Program goals include developing a family of casks that will permit minimizing total system life cycle costs, ensure safety to the general public and to occupational workers, and attain public confidence in the transportation system.

  6. Environmental transport and fate of PCBs in stream systems

    SciTech Connect

    Robison, W.; Birge, W.; Price, D.

    1995-12-31

    Transport and distribution of PCBs were studied in three Kentucky stream systems varying in size from second to fifth order. Point source releases of PCBs in each system have resulted in issuance of fish consumption advisories by state agencies. Water, sediment, floodplain soil and fish-tissues were analyzed for PCBs. Several species were analyzed, including longear sunfish, green sunfish, stonerollers and banded sculpins, which represent different trophic levels and feeding habits. Relatively rapid disappearance of PCBs was noted in green sunfish and may provide a better indication of the current PCB bioavailability in each system. In one stream system, PCBs were detected in water, sediments and floodplain soils sixty-five miles from the known source. Although contaminated groundwater may contribute substantial PCB loading to streams near sources, sequential resuspension of PCB-contaminated sediment is considered to be the main long-range transport mechanism. Contaminant data were incorporated into a GIS system to evaluate potential distribution in the floodplains. Relationships between various tissue concentrations are being examined. These results indicate the potential for persistence, continued sublethal effects and ecological risk of PCBs in lotic systems.

  7. Microwave transport system for the MTX (Microwave Tokamak Experiment)

    SciTech Connect

    Felker, B.; Ferguson, S.W.

    1989-09-27

    This paper presents the design and construction, as well as the initial operation, of the Microwave Transmission System. The system consists of containment vessels, mirror boxes, mirrors, an alignment system, two turbo-molecular pump vacuum stations, and microwave source. Fifty-ns-length pulses of 6-MeV electrons pass through a free electron laser (FEL) wiggler. A 300 W extended interaction oscillator (EIO) of 140 GHz frequency supplies the seed signal for amplification in the wiggler. The electron beam is dumped and the microwave beam is transmitted quasi-optically 90 ft by six aluminum mirrors through an evacuated tube. Three of the mirrors are elliptical paraboloids and the others are flat. A seventh mirror is rotated into the microwave beam to divert it into a load tank. The transport vacuum vessel is 20-in.-diameter stainless steel tube with bellows and mirror boxes at each mirror. Two vacuum systems at each end of the transport tube allow a base pressure of 10{sup {minus}7} Torr to be attained by 7000 L/s of turbo-molecular pumping. Also at each mirror, at the MTX vessel, and at the two ends of the wiggler waveguide are HeNe laser detectors used for vacuum alignment. Descriptions of the major components, their requirements and system requirements will be presented, and the initial operation of the system and its performance will be described. 7 figs., 2 tabs.

  8. LCLS XTOD Tunnel Vacuum Transport System (XVTS) Final Design Report

    SciTech Connect

    Shen, S

    2006-10-16

    The design of the X-Ray Vacuum Transport System (XVTS) for the Linac Coherent Light Source (LCLS) X-ray Transport, Optics and Diagnostics (XTOD) system has been analyzed and configured by the Lawrence Livermore National Laboratory's New Technologies Engineering Division (NTED) as requested by the SLAC/LCLS program. A preliminary design review was held on 11/14/05 [1][2]. This FDR (Final Design Report) presents system configuration, detailed analyses and selection of the mechanical and electrical components for the XTOD tunnel section, as well as the response to all issues raised in the review committee report. Also included are the plans for procurement, mechanical integration, schedule and the cost estimates. It should be noticed that, after the XVTS PDR, LCLS management has decided to lower the number of beamlines from three to one, and shorten the tunnel length from 212 m to 184 m. [3][4] The final design of XVTS system is completed. The major subjects presented in this report are: (1) Design of the complete system. (2) System analysis results. (3) ES&H issues and plan. (4) Project cost estimates and schedule.

  9. Design, operation, and evaluation of the transportable vitrification system

    SciTech Connect

    Zamecnik, J.R.; Young, S.R.; Hansen, E.K.; Whitehouse, J.C.

    1997-02-20

    The Transportable Vitrification System (TVS) is a transportable melter system designed to demonstrate the treatment of low-level and mixed hazardous and radioactive wastes such as wastewater treatment sludges, contaminated soils and incinerator ash. The TVS is a large-scale, fully integrated vitrification system consisting of melter feed preparation, melter, offgas, service, and control modules. The TVS was tested with surrogate waste at the Clemson University Environmental Systems Engineering Department`s (ESED) DOE/Industry Center for Vitrification Research prior to being shipped to the DOE Oak Ridge Reservation (ORR) K-25 site for treatment of mixed waste. This testing, along with additional testing at ORR, proved that the TVS would be able to successfully treat mixed waste. These surrogate tests consistently produced glass that met the EPA Toxicity Characteristic Leaching Procedure (TCLP). Performance of the system resulted in acceptable emissions of regulated metals from the offgas system. The TVS is scheduled to begin mixed waste operations at ORR in June 1997.

  10. Space Transportation System Availability Relationships to Life Cycle Cost

    NASA Technical Reports Server (NTRS)

    Rhodes, Russel E.; Donahue, Benjamin B.; Chen, Timothy T.

    2009-01-01

    Future space transportation architectures and designs must be affordable. Consequently, their Life Cycle Cost (LCC) must be controlled. For the LCC to be controlled, it is necessary to identify all the requirements and elements of the architecture at the beginning of the concept phase. Controlling LCC requires the establishment of the major operational cost drivers. Two of these major cost drivers are reliability and maintainability, in other words, the system's availability (responsiveness). Potential reasons that may drive the inherent availability requirement are the need to control the number of unique parts and the spare parts required to support the transportation system's operation. For more typical space transportation systems used to place satellites in space, the productivity of the system will drive the launch cost. This system productivity is the resultant output of the system availability. Availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. Since many operational factors cannot be projected early in the definition phase, the focus will be on inherent availability which is equal to the mean time between a failure (MTBF) divided by the MTBF plus the mean time to repair (MTTR) the system. The MTBF is a function of reliability or the expected frequency of failures. When the system experiences failures the result is added operational flow time, parts consumption, and increased labor with an impact to responsiveness resulting in increased LCC. The other function of availability is the MTTR, or maintainability. In other words, how accessible is the failed hardware that requires replacement and what operational functions are required before and after change-out to make the system operable. This paper will describe how the MTTR can be equated to additional labor, additional operational flow time, and additional structural access capability, all of which drive up the LCC. A methodology will be presented that

  11. Modeling Mercury Fate and Transport in Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Massoudieh, Arash; Žagar, Dušan; Green, Peter G.; Cabrera-Toledo, Carlos; Horvat, Milena; Ginn, Timothy R.; Barkouki, Tammer; Weathers, Tess; Bombardelli, Fabian A.

    Mercury in the aquatic environment is a neurotoxin with several known adverse effects on the natural ecosystem and the human health. Mathematical modeling is a cost-effective way for assessing the risk associated with mercury to aquatic organisms and for developing management plans for the reduction of mercury exposure in such systems. However, the analysis of mercury fate and transport in the aquatic environment requires multiple disciplines of science ranging from sediment transport and hydraulics, to geochemistry and microbiology. Also, it involves the knowledge of some less understood processes such as the microbial and diagenetic processes affecting the chemical speciation of mercury and various mechanisms involved in the mass-exchange of mercury species between the benthic sediments and the overlying water. Due to these complexities, there are many challenges involved in developing an integrated mercury fate and transport model in aquatic systems. This paper identifies the various processes that are potentially important in mercury fate and transport as well as the knowns and unknowns about these processes. Also, an integrated multi-component reactive transport modeling approach is suggested to capture several of those processes. This integrated modeling framework includes the coupled advective-dispersive transport of mercury species in the water body, both in dissolved phase and as associated to mobile suspended sediments. The flux of mercury in the benthic sediments as a result of diffusive mass exchange, bio-dispersion, and hyporheic flow, and the flow generated due to consolidation of newly deposited sediments is also addressed. The model considers in addition the deposition and resuspension of sediments and their effect on the mass exchange of mercury species between the top water and the benthic sediments. As for the biogeochemical processes, the effect of redox stratification and activities of sulfate and iron-reducing bacteria on the methylation of

  12. SBIR Advanced Technologies in Aviation and Air Transportation System 2016

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Kaszeta, Richard W.; Gold, Calman; Corke, Thomas C.; McGowan, Ryan; Matlis, Eric; Eichenlaub, Jesse; Davis, Joshua T.; Shah, Parthiv N.

    2017-01-01

    This report is intended to provide a broad knowledge of various topics associated with NASA's Aeronautics Research Mission Directorate (ARMD), with particular interest on the NASA SBIR contracts awarded from 2011-2012 executed by small companies. The content of this report focuses on the high-quality, cutting-edge research that will lead to revolutionary concepts, technologies, and capabilities that enable radical change to both the airspace system and the aircraft that fly within it, facilitating a safer, more environmentally friendly, and more efficient air transportation system.

  13. Small Aircraft Transportation System Higher Volume Operations Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Jones, Kenneth M.; Adams, Catherine A.

    2006-01-01

    This document defines the Small Aircraft Transportation System (SATS) Higher Volume Operations concept. The general philosophy underlying this concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. This document also provides details for a number of off-nominal and emergency procedures which address situations that could be expected to occur in a future SCA. The details for this operational concept along with a description of candidate aircraft systems to support this concept are provided.

  14. Advanced Launch System (ALS) Space Transportation Expert System Study

    DTIC Science & Technology

    1991-03-01

    CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC DOCUMENT. DISCLAIMER NOTICE THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY...System Assessment Methodology 2- 11 2.3.1.1 Methodology Overview 2- 11 2.3.1.2 Approach 2- 11 2.3.1.3 Defmitions of Attributes 2- 12 2.3.2 Assessment...how the use of knowledge-based systems can help increase autonomy. A design approach to this degree of autonomy will be demonstrated in Phase 2 (ADP

  15. Approach to an Affordable and Productive Space Transportation System

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Robinson, John W.

    2012-01-01

    This paper describes an approach for creating space transportation architectures that are affordable, productive, and sustainable. The architectural scope includes both flight and ground system elements, and focuses on their compatibility to achieve a technical solution that is operationally productive, and also affordable throughout its life cycle. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper follows up previous work by using a structured process to derive examples of conceptual architectures that integrate a number of advanced concepts and technologies. The examples are not intended to provide a near-term alternative architecture to displace current near-term design and development activity. Rather, the examples demonstrate an approach that promotes early investments in advanced system concept studies and trades (flight and ground), as well as in advanced technologies with the goal of enabling highly affordable, productive flight and ground space transportation systems.

  16. Reserve a seat! Intelligent transportation reservation system for tourists

    SciTech Connect

    Truett, L.F.; Tonn, B.; Conley, T.

    1998-07-01

    Providing safe, predictable, and efficient transportation for tourists to and from various venues presents a major challenge. Special-event transportation is notoriously unreliable and usually congested at peak times. The rural nature of certain tourist locations (e.g., the Grand Canyon) further complicates the problem. The proposed Intelligent Transportation Reservation System will have three components, each of which performs different functions. On-vehicle component: this component has three purposes: (1) to keep a running count of the passengers on the bus in order to determine how many additional passengers can be accommodated based on the total capacity of the vehicle; (2) through use of Global Positioning Satellite (GPS) technology, to be able to determine the location of the bus at all times; (3) to transmit information to a central data facility. Together these three features provide location, available-space, and condition information to controllers at a central data facility and to prospective riders of the bus. Kiosk component: located at every loading/unloading point, the purpose is to allow passengers-to-be to determine when the next bus (or buses) will arrive and the availability of seating. Individuals can make a reservation for the next bus with sufficient seating and will know when that bus will arrive at the kiosk. Information component: located within hotels and at venue sites, this component will provide information on the buses in the system (e.g. route and current capacity), and loading/unloading locations throughout the network at any point in time.

  17. Modeling transport kinetics in clinoptilolite-phosphate rock systems

    NASA Technical Reports Server (NTRS)

    Allen, E. R.; Ming, D. W.; Hossner, L. R.; Henninger, D. L.

    1995-01-01

    Nutrient release in clinoptilolite-phosphate rock (Cp-PR) systems occurs through dissolution and cation-exchange reactions. Investigating the kinetics of these reactions expands our understanding of nutrient release processes. Research was conducted to model transport kinetics of nutrient release in Cp-PR systems. The objectives were to identify empirical models that best describe NH4, K, and P release and define diffusion-controlling processes. Materials included a Texas clinoptilolite (Cp) and North Carolina phosphate rock (PR). A continuous-flow thin-disk technique was used. Models evaluated included zero order, first order, second order, parabolic diffusion, simplified Elovich, Elovich, and power function. The power-function, Elovich, and parabolic-diffusion models adequately described NH4, K, and P release. The power-function model was preferred because of its simplicity. Models indicated nutrient release was diffusion controlled. Primary transport processes controlling nutrient release for the time span observed were probably the result of a combination of several interacting transport mechanisms.

  18. Ligncellulosic feedstock supply systems with intermodal and overseas transportation

    SciTech Connect

    Ric Hoefnagels; Kara Cafferty; Erin Searcy; Jacob J. Jacobson; Martin Junginger; Thijs Cornelissen; Andre Faaij

    2014-12-01

    With growing demand for biomass from industrial uses and international trade, the logistic operations required to economically move the biomass from the field or forest to the end users have become increasingly complex. In addition to economics, understanding energy and GHG emissions is required to design cost effective, sustainable logistic process operations; in order to improve international supply chains it is also important to understate their interdependencies and related uncertainties. This article presents an approach to assess lignocellulosic feedstock supply systems at the operational level. For this purpose, the Biomass Logistic Model (BLM) has been linked with the Geographic Information Systems based Biomass Intermodal Transportation model (BIT-UU) and extended with inter-continental transport routes. Case studies of herbaceous and woody biomass, produced in the U.S. Midwest and U.S. Southeast, respectively, and shipped to Europe for conversion to Fischer-Tropsch (FT) diesel are included to demonstrate how intermodal transportation and, in particular, overseas shipping integrates with the bioenergy supply chains. For the cases demonstrated, biomass can be supplied at 99 € Mg-1 to 117 € Mg-1 (dry) and converted to FT-diesel at 19 € GJ-1 to 24 € GJ-1 depending on the feedstock type and location, intermediate (chips or pellets) and size of the FT-diesel production plant. With the flexibility to change the design of supply chains as well as input variables, many alternative supply chain cases can be assessed.

  19. Solar power satellite. System definition study. Part 1, volume 4: SPS transportation system requirements. [spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The best estimates of space transportation requirements for cargo launch vehicles, personnel launch carriers, high thrust orbit transfer, and electric orbit transfer systems are discussed, along with the rationale for each.

  20. Feed gas contaminant control in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Minford, Eric; Waldron, William Emil

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  1. Hopping transport in hostile reaction-diffusion systems.

    PubMed

    Missel, Andrew R; Dahmen, Karin A

    2009-02-01

    We investigate transport in a disordered reaction-diffusion model consisting of particles which are allowed to diffuse, compete with one another (2A-->A) , give birth in small areas called "oases" (A-->2A) , and die in the "desert" outside the oases (A-->0) . This model has previously been used to study bacterial populations in the laboratory and is related to a model of plankton populations in the oceans. We first consider the nature of transport between two oases: In the limit of high growth rate, this is effectively a first passage process, and we are able to determine the first passage time probability density function in the limit of large oasis separation. This result is then used along with the theory of hopping conduction in doped semiconductors to estimate the time taken by a population to cross a large system.

  2. ALARA assessment of spent fuel and nuclear waste transportation systems

    SciTech Connect

    Sutherland, S. H.

    1980-01-01

    The effects of ALARA (as low as reasonably achievable) on transportation system costs were evaluated for LWR spent fuel, high-level commercial and defense wastes, and remotely handled TRU waste. Three dose rate specifications were used: 10 mrem/h at 2m, 5 mrem/h, and 2 mrem/h. The evaluation was done for wastes and LWR spent fuel 1, 3, 5, and 10 years old. Gamma shield materials were depleted uranium, lead, and steel; the neutron shield material was water. Results for a 7-element PWR cask show that uranium shielding is the lightest, and that the increased weight of the low dose rate casks results in 1 to 2 million dollars increase in lifetime transportation costs. 6 figures, 3 tables. (DLC)

  3. Hopping transport in systems of finite thickness or length

    NASA Astrophysics Data System (ADS)

    Rodin, A. S.; Fogler, M. M.

    2011-09-01

    Variable-range hopping transport along short one-dimensional wires and across the shortest dimension of thin three-dimensional films and narrow two-dimensional ribbons is studied theoretically. Geometric and transport characteristics of the hopping resistor network are shown to depend on temperature T and the dimensionality of the system. In two and three dimensions, the usual Mott law applies at high T where the correlation length of the network is smaller than the sample thickness. As T decreases, the network breaks into sparse filamentary paths while the Mott law changes to a different T dependence, which is derived using the percolation theory methods. In one dimension, deviations from the Mott law are known to exist at all temperatures because of rare fluctuations. The evolution of such fluctuations from highly resistive “breaks” at high T to highly conducting “shorts” at low T is elucidated.

  4. Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system.

    PubMed

    Szczepanowski, Rafael; Krahn, Irene; Linke, Burkhard; Goesmann, Alexander; Pühler, Alfred; Schlüter, Andreas

    2004-11-01

    Ten different antibiotic resistance plasmids conferring high-level erythromycin resistance were isolated from an activated sludge bacterial community of a wastewater treatment plant by applying a transformation-based approach. One of these plasmids, designated pRSB101, mediates resistance to tetracycline, erythromycin, roxythromycin, sulfonamides, cephalosporins, spectinomycin, streptomycin, trimethoprim, nalidixic acid and low concentrations of norfloxacin. Plasmid pRSB101 was completely sequenced and annotated. Its size is 47 829 bp. Conserved synteny exists between the pRSB101 replication/partition (rep/par) module and the pXAC33-replicon from the phytopathogen Xanthomonas axonopodis pv. citri. The second pRSB101 backbone module encodes a three-Mob-protein type mobilization (mob) system with homology to that of IncQ-like plasmids. Plasmid pRSB101 is mobilizable with the help of the IncP-1alpha plasmid RP4 providing transfer functions in trans. A 20 kb resistance region on pRSB101 is located within an integron-containing Tn402-like transposon. The variable region of the class 1 integron carries the genes dhfr1 for a dihydrofolate reductase, aadA2 for a spectinomycin/streptomycin adenylyltransferase and bla(TLA-2) for a so far unknown Ambler class A extended spectrum beta-lactamase. The integron-specific 3'-segment (qacEDelta1-sul1-orf5Delta) is connected to a macrolide resistance operon consisting of the genes mph(A) (macrolide 2'-phosphotransferase I), mrx (hydrophobic protein of unknown function) and mphR(A) (regulatory protein). Finally, a putative mobile element with the tetracycline resistance genes tetA (tetracycline efflux pump) and tetR was identified upstream of the Tn402-specific transposase gene tniA. The second 'genetic load' region on pRSB101 harbours four distinct mobile genetic elements, another integron belonging to a new class and footprints of two more transposable elements. A tripartite multidrug (MDR) transporter consisting of an ATP

  5. Theory of activated transport in bilayer quantum Hall systems.

    PubMed

    Roostaei, B; Mullen, K J; Fertig, H A; Simon, S H

    2008-07-25

    We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.

  6. Parametric study of transport aircraft systems cost and weight

    NASA Technical Reports Server (NTRS)

    Beltramo, M. N.; Trapp, D. L.; Kimoto, B. W.; Marsh, D. P.

    1977-01-01

    The results of a NASA study to develop production cost estimating relationships (CERs) and weight estimating relationships (WERs) for commercial and military transport aircraft at the system level are presented. The systems considered correspond to the standard weight groups defined in Military Standard 1374 and are listed. These systems make up a complete aircraft exclusive of engines. The CER for each system (or CERs in several cases) utilize weight as the key parameter. Weights may be determined from detailed weight statements, if available, or by using the WERs developed, which are based on technical and performance characteristics generally available during preliminary design. The CERs that were developed provide a very useful tool for making preliminary estimates of the production cost of an aircraft. Likewise, the WERs provide a very useful tool for making preliminary estimates of the weight of aircraft based on conceptual design information.

  7. The design and development of a mobile transporter system for the Space Station Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Carroll, Thomas W.

    1987-01-01

    The analyses, selection process, and conceptual design of potential candidate Mobile Transporter (MT) systems to move the Space Station Remote Manipulator System (SSRMS) about the exposed faces of the Space Station truss structure are described. The actual requirements for a manipulator system on the space station are discussed, including potential tasks to be performed. The SSRMS operating environment and control methods are analyzed with potential design solutions highlighted. Three general categories of transporter systems are identified and analyzed. Several design solution have emerged that will satisfy these requirements. Their relative merits are discussed, and unique variations in each system are rated for functionality.

  8. Integrated system for coal-methanol liquefaction and slurry pipeline transportation. Final report. [In slurry transport

    SciTech Connect

    Banks, W.F.; Davidson, J.K.; Horton, J.H.; Summers, C.W.

    1980-03-31

    The engineering economics of an integrated coal-to-methanol conversion system and coal-in-methanol transportation system are examined, under the circumstances of the western coalfields, i.e., long distances from major markets and scarcity of water in the vicinity of the mines. The transportation economics are attractive, indicating tariffs of approximately 40 cents per million Btu per thousand miles for the coal-methanol pipeline vs 60 cents via coal-water pipelines and upwards of a dollar via rail. Energy consumption is also less in the coal-methanol pipeline than in the coal-water pipeline, and about equal to rail. It is also concluded that, by a proper marriage of the synthetic fuel (methanolization) plant to the slurrification plant, most, and in some cases all, of the water required by the synthetic fuel process can be supplied by the natural moisture of the coal itself. Thus, the only technology which presently exists and by which synthetic fuel from western coal can displace petroleum in the automotive fuel market is the integrated methanol conversion and tranportation system. The key element is the ability of the methanol slurry pipeline to accept and to deliver dry (1 to 5% moisture) coal, allowing the natural coal moisture to be used as synthesis feedstock in satisfaction of the large water requirement of any synthetic fuel plant. By virtue of these unique properties, this integrated system is seen as the only means in the foreseeable future whereby western coal can be converted to synthetic fuel and moved to distant markets.

  9. Nonlinear hopping transport in ring systems and open channels.

    PubMed

    Einax, Mario; Körner, Martin; Maass, Philipp; Nitzan, Abraham

    2010-01-21

    We study the nonlinear hopping transport in one-dimensional rings and open channels. Analytical results are derived for the stationary current response to a constant bias without assuming any specific coupling of the rates to the external fields. It is shown that anomalous large effective jump lengths, as observed in recent experiments by taking the ratio of the third-order nonlinear and the linear conductivity, can occur already in ordered systems. Rectification effects due to site energy disorder in ring systems are expected to become irrelevant for large system sizes. In open channels, in contrast, rectification effects occur already for disorder in the jump barriers and do not vanish in the thermodynamic limit. Numerical solutions for a sinusoidal bias show that the ring system provides a good description for the transport behavior in the open channel for intermediate and high frequencies. For low frequencies temporal variations in the mean particle number have to be taken into account in the open channel, which cannot be captured in the more simple ring model.

  10. 77 FR 57640 - Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting AGENCY: ITS Joint Program...: Notice. The Intelligent Transportation Systems (ITS) Program Advisory Committee (ITS PAC) will hold a... all matters relating to the study, development, and implementation of intelligent...

  11. Chloride transport in layered soil systems with hydraulic trap effect.

    PubMed

    Badv, K; Mahooti, A A

    2005-08-01

    The natural and engineered hydraulic trap systems in sanitary-engineered solid waste landfills were investigated using three layer one dimensional laboratory models. The models consisted of a top reservoir containing a sodium chloride source solution, a compacted upper silt layer as a primary liner, a coarse sand layer as a secondary leachate collection system or a hydraulic control layer, a compacted lower silt layer as a secondary liner, and a bottom water reservoir as a groundwater aquifer. In the first test, the natural hydraulic trap system (upward flow through the lower silt layer) was modeled. In this case, the contaminant transport mechanisms through the upper silt layer were downward advection and diffusion, and through the lower silt layer, diffusion was downward and advection was upward. The results showed that the implementation of the natural hydraulic control system could effectively reduce chloride transport to the bottom reservoir. In the second test, the natural and engineering hydraulic trap systems were simulated (upward flow from the bottom reservoir to the upper reservoir). In the third test, the engineered hydraulic trap system (downward flow through the upper silt layer and upward flow through the lower silt layer) was modeled. The results showed that the natural and engineered hydraulic trap systems have an important effect in reducing chloride migration toward the underlying aquifer. In all experiments the chloride concentrations in the silt and coarse sand layers and top and bottom reservoirs were measured and the observed concentrations were compared with concentrations calculated by a theoretical model. A good agreement was obtained between the observed and theoretical data confirming the acceptable accuracy of the experimental methodologies, observations, and the theoretical model.

  12. Economic Analysis of a Postulated space Tourism Transportation System

    NASA Astrophysics Data System (ADS)

    Hill, Allan S.

    2002-01-01

    Design concepts and associated costs were defined for a family of launch vehicles supporting a space tourism endeavor requiring the weekly transport of space tourists to and from an Earth- orbiting facility. The stated business goal for the Space Tourist Transportation System (STTS) element of the proposed commercial space venture was to transport and return ~50 passengers a week to LEO at a cost of roughly 50 K per seat commencing in 2005. This paper summarizes the economic analyses conducted within a broader Systems Engineering study of the postulated concept. Parametric costs were derived using TransCostSystems' (TCS) Cost Engineering Handbook, version 7. Costs were developed as a function of critical system characteristics and selected business scenarios. Various economic strategies directed toward achieving a cost of ~50 K per seat were identified and examined. The study indicated that with a `nominal' business scenario, the initial cost for developing and producing a fully reusable, 2-stage STTS element for a baseline of 46-passengers was about 15.5 B assuming a plausible `commercialization factor' of 0.333. The associated per-seat ticket cost was ~890 K, more than an order of magnitude higher than desired. If the system is enlarged to 104 passengers for better efficiency, the STTS initial cost for the nominal business scenario is increased to about 19.8 B and the per-seat ticket cost is reduced to ~530 K. It was concluded that achieving the desired ticket cost of 50 K per seat is not feasible unless the size of the STTS, and therefore of the entire system, is substantially increased. However, for the specified operational characteristics, it was shown that a system capacity of thousands of passengers per week is required. This implies an extremely high total system development cost, which is not very realistic as a commercial venture, especially in the proposed time frame. These results suggested that ambitious commercial space ventures may have to rely on

  13. Overview of Particle and Heavy Ion Transport Code System PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  14. 75 FR 63892 - Marine Transportation System National Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... perspective to the Secretary of Transportation via the Maritime Administrator. DATES: Completed application... national freight policy from a marine transportation Perspective, and; such other matters, related to...

  15. The California corridor transportation system: A design summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A design group was assembled to find and research criteria relevent to the design of a California Corridor Transportation System. The efforts of this group included defining the problem, conducting a market analysis, formulation of a demand model, identification and evaluation of design drivers, and the systematic development of a solution. The problems of the current system were analyzed and used to determine design drivers, which were divided into the broad categories of cost, convenience, feasibility, environment, safety, and social impact. The relative importance of individual problems was addressed, resulting in a hierarchy of design drivers. Where possible, methods of evaluating the relative merit of proposed systems with respect to each driver were developed. Short takeoff vertical landing aircraft concepts are also discussed for supersonic fighters.

  16. An artificial neural network controller for intelligent transportation systems applications

    SciTech Connect

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  17. Universal bursty behavior in the air transportation system

    NASA Astrophysics Data System (ADS)

    Ito, Hidetaka; Nishinari, Katsuhiro

    2015-12-01

    Social activities display bursty behavior characterized by heavy-tailed interevent time distributions. We examine the bursty behavior of airplanes' arrivals in hub airports. The analysis indicates that the air transportation system universally follows a power-law interarrival time distribution with an exponent α =2.5 and an exponential cutoff. Moreover, we investigate the mechanism of this bursty behavior by introducing a simple model to describe it. In addition, we compare the extent of the hub-and-spoke structure and the burstiness of various airline networks in the system. Remarkably, the results suggest that the hub-and-spoke network of the system and the carriers' strategy to facilitate transit are the origins of this universality.

  18. Method for Controlling Space Transportation System Life Cycle Costs

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.; Bartine, David E.

    2006-01-01

    A structured, disciplined methodology is required to control major cost-influencing metrics of space transportation systems during design and continuing through the test and operations phases. This paper proposes controlling key space system design metrics that specifically influence life cycle costs. These are inclusive of flight and ground operations, test, and manufacturing and infrastructure. The proposed technique builds on today's configuration and mass properties control techniques and takes on all the characteristics of a classical control system. While the paper does not lay out a complete math model, key elements of the proposed methodology are explored and explained with both historical and contemporary examples. Finally, the paper encourages modular design approaches and technology investments compatible with the proposed method.

  19. Fano interference governs wave transport in disordered systems

    PubMed Central

    Poddubny, Alexander N.; Rybin, Mikhail V.; Limonov, Mikhail F.; Kivshar, Yuri S.

    2012-01-01

    Light localization in disordered systems and Bragg scattering in regular periodic structures are considered traditionally as two entirely opposite phenomena: disorder leads to degradation of coherent Bragg scattering whereas Anderson localization is suppressed by periodicity. Here we reveal a non-trivial link between these two phenomena, through the Fano interference between Bragg scattering and disorder-induced scattering, that triggers both localization and de-localization in random systems. We find unexpected transmission enhancement and spectrum inversion when the Bragg stop-bands are transformed into the Bragg pass-bands solely owing to disorder. Fano resonances are always associated with coherent scattering in regular systems, but our discovery of disorder-induced Fano resonances may provide novel insights into many features of the transport phenomena of photons, phonons, and electrons. Owning to ergodicity, the Fano resonance is a fingerprint feature for any realization of the structure with a certain degree of disorder. PMID:22735442

  20. Energy Transport in Quantum Systems with Discrete Spectrum

    NASA Astrophysics Data System (ADS)

    Levin, George; Jones, Wesley; Walczak, Kamil; Yerkes, Kirk

    2012-02-01

    Energy transport in quantum system driven by stochastic perturbations is examined. One of the goals of this study is to determine how the Landauer channels can be defined in a system with discrete energy spectrum. A model describes a particle trapped in a confining potential and subjected to a stochastic perturbation localized off-center of the potential well. The perturbation pumps energy into the system which results in non-zero average energy flux between different regions of the confining potential. The energy flux can be defined in terms of quantum advection modes, where each mode is associated with an off-diagonal element of the density matrix and carries a finite, quantized amount of energy per unit of the probability flux. Statistical correlations between different modes and the net energy flux will be discussed.

  1. 21 CFR 876.5880 - Isolated kidney perfusion and transport system and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Isolated kidney perfusion and transport system and....5880 Isolated kidney perfusion and transport system and accessories. (a) Identification. An isolated kidney perfusion and transport system and accessories is a device that is used to support a donated or...

  2. 21 CFR 876.5880 - Isolated kidney perfusion and transport system and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Isolated kidney perfusion and transport system and....5880 Isolated kidney perfusion and transport system and accessories. (a) Identification. An isolated kidney perfusion and transport system and accessories is a device that is used to support a donated or...

  3. 21 CFR 876.5880 - Isolated kidney perfusion and transport system and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Isolated kidney perfusion and transport system and....5880 Isolated kidney perfusion and transport system and accessories. (a) Identification. An isolated kidney perfusion and transport system and accesssories is a device that is used to support a donated or...

  4. 21 CFR 876.5880 - Isolated kidney perfusion and transport system and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Isolated kidney perfusion and transport system and....5880 Isolated kidney perfusion and transport system and accessories. (a) Identification. An isolated kidney perfusion and transport system and accesssories is a device that is used to support a donated or...

  5. 21 CFR 876.5880 - Isolated kidney perfusion and transport system and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Isolated kidney perfusion and transport system and....5880 Isolated kidney perfusion and transport system and accessories. (a) Identification. An isolated kidney perfusion and transport system and accesssories is a device that is used to support a donated or...

  6. 48 CFR 47.301-3 - Using the Defense Transportation System (DTS).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Using the Defense Transportation System (DTS). 47.301-3 Section 47.301-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.301-3 Using the...

  7. 48 CFR 47.301-3 - Using the Defense Transportation System (DTS).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Using the Defense Transportation System (DTS). 47.301-3 Section 47.301-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.301-3 Using the...

  8. Army Transportation Systems in a Twenty-First Century Joint Operational Environment

    DTIC Science & Technology

    2013-03-01

    Wheeled Vehicles Classification : Unclassified Five components of the U.S. Army Transportation Systems collectively meet...Army Transportation Systems in a Twenty-First Century Joint Operational Environment by Lieutenant Colonel Mark D. Stimer...Transportation Systems in a Twenty-First Century Joint Operational Environment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  9. 48 CFR 47.301-3 - Using the Defense Transportation System (DTS).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation System (DTS). 47.301-3 Section 47.301-3 Federal Acquisition Regulations System FEDERAL ACQUISITION... Transportation System (DTS). (a) All military and civilian agencies shipping, or arranging for the acquisition... of shipments moving in the DTS. DoD 4500.9-R, Defense Transportation Regulation Part II has...

  10. 24 CFR 3280.904 - Specific requirements for designing the transportation system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the transportation system. 3280.904 Section 3280.904 Housing and Urban Development Regulations... SAFETY STANDARDS Transportation § 3280.904 Specific requirements for designing the transportation system. (a) General. The entire system (frame, drawbar and coupling mechanism, running gear assembly,...

  11. 77 FR 20872 - Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting AGENCY: ITS Joint Program...: Notice. The Intelligent Transportation Systems (ITS) Program Advisory Committee (ITS PAC) will hold a... of intelligent transportation systems. Through its sponsor, the ITS Joint Program Office, the ITS...

  12. 75 FR 13643 - ITS Joint Program Office; Intelligent Transportation Systems Program Advisory Committee; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... ITS Joint Program Office; Intelligent Transportation Systems Program Advisory Committee; Notice of... (FACA) (Pub. L. 72-363; 5 U.S.C. app. 2), a meeting of the Intelligent Transportation Systems (ITS... implementation of intelligent transportation systems. Through its sponsor, the ITS Joint Program Office...

  13. Personnel transportation systems between Earth and Mars: Project Camelot

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Based on previous design studies the 1986-87 design team developed a personnel transportation system between Earth and Mars in support of an established manned Mars base. The vehicle designed, an interplanetary space station, will make use of specialized trajectories known as 'circulating orbits'. These trajectories have the property of periodically repeating encounters with Earth and Mars. They have been studied in the past, but have attracted renewed interest since the National Commission on Space has proposed the idea of placing large interplanetary space stations in such orbits. During planetary flybys, small, austere, taxi vehicles from the planet surface will rendezvous with the station and transfer the personnel to it. Here the space travelers will have roomier, more elaborate living quarters for the long journey. This method of manned travel is visualized to be more economical for supporting a manned Mars surface operation than others thus far conceived. The Aerospace System Design class produced a conceptual design of a circulating orbit transportation system. The design included the station configuration, other usual subsystems treated to the necessary degree e.g., propulsion, power, attitude and thermal control, and communications. Special attention was given the gravity environment and the human needs for the long trip. An operational scenario was developed which included the initial construction and establishment in orbit as well as provisions for maintenance of replenishment of consumables.

  14. Fault tolerant computer control for a Maglev transportation system

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Nagle, Gail A.; Anagnostopoulos, George

    1994-01-01

    Magnetically levitated (Maglev) vehicles operating on dedicated guideways at speeds of 500 km/hr are an emerging transportation alternative to short-haul air and high-speed rail. They have the potential to offer a service significantly more dependable than air and with less operating cost than both air and high-speed rail. Maglev transportation derives these benefits by using magnetic forces to suspend a vehicle 8 to 200 mm above the guideway. Magnetic forces are also used for propulsion and guidance. The combination of high speed, short headways, stringent ride quality requirements, and a distributed offboard propulsion system necessitates high levels of automation for the Maglev control and operation. Very high levels of safety and availability will be required for the Maglev control system. This paper describes the mission scenario, functional requirements, and dependability and performance requirements of the Maglev command, control, and communications system. A distributed hierarchical architecture consisting of vehicle on-board computers, wayside zone computers, a central computer facility, and communication links between these entities was synthesized to meet the functional and dependability requirements on the maglev. Two variations of the basic architecture are described: the Smart Vehicle Architecture (SVA) and the Zone Control Architecture (ZCA). Preliminary dependability modeling results are also presented.

  15. Reaction -Diffusion Systems in Intracellular Molecular Transport and Control

    PubMed Central

    Soh, Siowling; Byrska, Marta; Kandere-Grzybowska, Kristiana

    2013-01-01

    Chemical reactions make cells work only if the participating chemicals are delivered to desired locations in a timely and precise fashion. While most research to date has focused on the so-called active-transport mechanisms, “passive” diffusion is often equally rapid and is always energetically less costly. Capitalizing on these advantages, cells have developed sophisticated reaction-diffusion (RD) systems that control a wide range of cellular functions – from chemotaxis and cell division, through signaling cascades and oscillations, to cell motility. Despite their apparent diversity, these systems share many common features and are “wired” according to “generic” motifs involving non-linear kinetics, autocatalysis, and feedback loops. Understanding the operation of these complex (bio)chemical systems requires the analysis of pertinent transport-kinetic equations or, at least on a qualitative level, of the characteristic times describing constituent sub-processes. Therefore, in reviewing the manifestations of cellular RD, we also attempt to familiarize the reader with the basic theory of these processes. PMID:20518023

  16. Modelling contaminant transport for pumping wells in riverbank filtration systems.

    PubMed

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-01-01

    Analytical study of the influence of both the pumping well discharge rate and pumping time on contaminant transport and attenuation is significant for hydrological and environmental science applications. This article provides an analytical solution for investigating the influence of both pumping time and travelling time together for one-dimensional contaminant transport in riverbank filtration systems by using the Green's function approach. The basic aim of the model is to understand how the pumping time and pumping rate, which control the travelling time, can affect the contaminant concentration in riverbank filtration systems. Results of analytical solutions are compared with the results obtained using a MODFLOW numerical model. Graphically, it is found that both analytical and numerical solutions have almost the same behaviour. Additionally, the graphs indicate that any increase in the pumping rate or simulation pumping time should increase the contamination in groundwater. The results from the proposed analytical model are well matched with the data collected from a riverbank filtration site in France. After this validation, the model is then applied to the first pilot project of a riverbank filtration system conducted in Malaysia. Sensitivity analysis results highlight the importance of degradation rates of contaminants on groundwater quality, for which higher utilization rates lead to the faster consumption of pollutants.

  17. Transport in unsaturated flow systems using centrifuge techniques

    SciTech Connect

    Conca, J.

    1992-08-01

    This report is a compilation of results from investigations on unsaturated flow and diffusion using the Unsaturated Flow Apparatus (UFA) in combination with other techniques at the Washington State University Tri-Cities Earth and Environmental Sciences Laboratory. These results bear directly on the goals of the Radionuclide Adsorption Workshop concerning experimental determination of unsaturated transport properties as stated in the First Report to the US congress and the US Department of Energy from the Nuclear Waste Technical Review Board. Transport parameters (diffusion coefficients, D({theta}), hydraulic conductivities, K({theta}), and retardation factors, R{sub f}) have been experimentally determined in unsaturated gravel, soil, bentonite and whole rock over a wide range of water contents in order to construct relationships of water content to each parameter for use in modeling of flow and transport in the near-field, far-field, and backfill environments. Once the water content was fixed at the target value and the system had achieved hydraulic steady-state, transport parameters were determined from associated methods, e.g., (1) the electrical conductivity of the sample was measured using a 1 kHz conductivity bridge and the diffusion coefficient calculated from the electrical conductivity using the Nernst-Einstein equation; (2) hydraulic conductivity was determined from the driving force and flux density; (3) the effluent was monitored/collected/analyzed for chemical interactions and retardation effects. These parameters have been investigated on different samples over the past two years since construction of the UFA. Project goals and specific milestones have resulted in diffusion coefficients of unsaturated gravel and soil being the most extensively studied parameter, but the UFA was originally designed to determine retardation factors and transient chemical interactions in unsaturated tuff. 35 refs., 20 figs.

  18. Approach to an Affordable and Sustainable Space Transportation System

    NASA Technical Reports Server (NTRS)

    McCleskey, Caey M.; Rhodes, R. E.; Robinson, J. W.; Henderson, E. M.

    2012-01-01

    This paper describes an approach and a general procedure for creating space transportation architectural concepts that are at once affordable and sustainable. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on a functional system breakdown structure for an architecture and definition of high-payoff design techniques with a technology integration strategy. This paper follows up by using a structured process that derives architectural solutions focused on achieving life cycle affordability and sustainability. Further, the paper includes an example concept that integrates key design techniques discussed in previous papers. !

  19. Small Aircraft Transportation System, Higher Volume Operations Concept: Normal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Jones, Kenneth M.; Consiglio, Maria C.; Williams, Daniel M.; Adams, Catherine A.

    2004-01-01

    This document defines the Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) concept for normal conditions. In this concept, a block of airspace would be established around designated non-towered, non-radar airports during periods of poor weather. Within this new airspace, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Using onboard equipment and procedures, they would then approach and land at the airport. Departures would be handled in a similar fashion. The details for this operational concept are provided in this document.

  20. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    SciTech Connect

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  1. Space Transportation System Availability Requirements and Its Influencing Attributes Relationships

    NASA Technical Reports Server (NTRS)

    Rhodes, Russell E.; Adams, Timothy C.; McCleskey, Carey M.

    2008-01-01

    It is important that engineering and management accept the need for an availability requirement that is derived with its influencing attributes. It is the intent of this paper to provide the visibility of relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability. Also important to provide bounds of the variables providing engineering the insight required to control the system's engineering solution, e.g., these influencing attributes become design requirements also. These variables will drive the need to provide integration of similar discipline functions or technology selection to allow control of the total parts count. The relationship of selecting a reliability requirement will place a constraint on parts count to achieve a given availability requirement or if allowed to increase the parts count will drive the system reliability requirement higher. They also provide the understanding for the relationship of mean repair time (or mean down time) to maintainability, e.g., accessibility for repair, and both the mean time between failure, e.g., reliability of hardware and availability. The concerns and importance of achieving a strong availability requirement is driven by the need for affordability, the choice of using the two launch solution for the single space application, or the need to control the spare parts count needed to support the long stay in either orbit or on the surface of the moon. Understanding the requirements before starting the architectural design concept will avoid considerable time and money required to iterate the design to meet the redesign and assessment process required to achieve the results required of the customer's space transportation system. In fact the impact to the schedule to being able to deliver the system that meets the customer's needs, goals, and objectives may cause the customer to compromise his desired operational goal and objectives resulting in considerable

  2. Space Transportation System Availability Requirement and Its Influencing Attributes Relationships

    NASA Technical Reports Server (NTRS)

    Rhodes, Russell E.; Adams, Timothy C.; McCleskey, Carey M.

    2008-01-01

    It is important that engineering and management accept the need for an availability requirement that is derived with its influencing attributes. It is the intent of this paper to provide the visibility of relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability. Also important to provide bounds of the variables providing engineering the insight required to control the system's engineering solution, e.g., these influencing attributes become design requirements also. These variables will drive the need to provide integration of similar discipline functions or technology selection to allow control of the total parts count. The relationship of selecting a reliability requirement will place a constraint on parts count to achieve a given availability requirement or if allowed to increase the parts count will drive the system reliability requirement higher. They also provide the understanding for the relationship of mean repair time (or mean down time) to maintainability, e.g., accessibility for repair, and both the mean time between failure, e.g., reliability of hardware and availability. The concerns and importance of achieving a strong availability requirement is driven by the need for affordability, the choice of using the two launch solution for the single space application, or the need to control the spare parts count needed to support the long stay in either orbit or on the surface of the moon. Understanding the requirements before starting the architectural design concept will avoid considerable time and money required to iterate the design to meet the redesign and assessment process required to achieve the results required of the customer's space transportation system. In fact the impact to the schedule to being able to deliver the system that meets the customer's needs, goals, and objectives may cause the customer to compromise his desired operational goal and objectives resulting in considerable

  3. Conception of "4 Goals and 3 Levels" in Risk Management in Road Transport Systems

    NASA Astrophysics Data System (ADS)

    Szymanek, Andrzej

    2010-01-01

    "Four goals and three levels" conception of risk management in transport comes out from triple interpretation the notion of system and from process approach to transport system interpretation. The title of the lecture suggests hierarchical risk management, but it is not so obvious and that is why is better saying about risk management at three levels of transport system: 1. level of system structure elements; 2. level of processes which realize system purposes; 3. level of system "attitude". In presented conception risk is a "multidimensional" constructor and relates all negative effects of transport (NET-s). It is, among the others, about risks: life loss (safety aspect), natural environment degradation, transport congestion arising.

  4. Identification and characterization of an iron ABC transporter operon in Gluconacetobacter diazotrophicus Pal 5.

    PubMed

    Urzúa, Lucia Soto; Vázquez-Candanedo, Ada P; Sánchez-Espíndola, Adriana; Ramírez, Carlos Ávila; Baca, Beatriz E

    2013-06-01

    Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane. We have cloned and sequenced the genes coding for the components of the iron ABC-type acquisition system of G. diazotrophicus. Sequence analysis revealed three ORFs, (feuA, feuB, and feuC) organized as an operon and encoding polypeptides of 346 (38 kDa), 342 (34.2 kDa), and 240 (26 kDa) amino acids, respectively. The deduced translation products of the feu operon showed similarity with a periplasmic solute-binding protein (FeuA), permease (FeuB), and ATPase (FeuC) involved in Fe transport. The role of FeuB in the survival of G. diazotrophicus under iron depletion was evaluated by comparing the ability of wild-type and FeuB-Km(R) -mutant strains in a medium without iron supplementation and in a medium containing 2, 2'-dipyridyl (DP). Growth of the mutant was affected in the medium containing DP. The operon was expressed at higher levels in cells depleted for iron than in those that contained the metal. A decrease in nitrogenase activity was observed with the FeuB-Km(R) -mutant strain that with the wild-type under iron deficiency conditions, suggesting that the Feu operon play role in Fe nutrition of G. diazotrophicus.

  5. Space Transportation System Availability Requirements and Its Influencing Attributes Relationships

    NASA Technical Reports Server (NTRS)

    Rhodes, Russel E.; Adams, TImothy C.

    2008-01-01

    It is essential that management and engineering understand the need for an availability requirement for the customer's space transportation system as it enables the meeting of his needs, goal, and objectives. There are three types of availability, e.g., operational availability, achieved availability, or inherent availability. The basic definition of availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. The major difference is the inclusiveness of the functions within the mean downtime and the mean uptime. This paper will address tIe inherent availability which only addresses the mean downtime as that mean time to repair or the time to determine the failed article, remove it, install a replacement article and verify the functionality of the repaired system. The definitions of operational availability include the replacement hardware supply or maintenance delays and other non-design factors in the mean downtime. Also with inherent availability the mean uptime will only consider the mean time between failures (other availability definitions consider this as mean time between maintenance - preventive and corrective maintenance) that requires the repair of the system to be functional. It is also essential that management and engineering understand all influencing attributes relationships to each other and to the resultant inherent availability requirement. This visibility will provide the decision makers with the understanding necessary to place constraints on the design definition for the major drivers that will determine the inherent availability, safety, reliability, maintainability, and the life cycle cost of the fielded system provided the customer. This inherent availability requirement may be driven by the need to use a multiple launch approach to placing humans on the moon or the desire to control the number of spare parts required to support long stays in either orbit or on the surface of the moon or mars. It is

  6. A state-of-the-art review of transportation systems evaluation techniques relevant to air transportation, volume 1. [urban planning and urban transportation using decision theory

    NASA Technical Reports Server (NTRS)

    Haefner, L. E.

    1975-01-01

    Mathematical and philosophical approaches are presented for evaluation and implementation of ground and air transportation systems. Basic decision processes are examined that are used for cost analyses and planning (i.e, statistical decision theory, linear and dynamic programming, optimization, game theory). The effects on the environment and the community that a transportation system may have are discussed and modelled. Algorithmic structures are examined and selected bibliographic annotations are included. Transportation dynamic models were developed. Citizen participation in transportation projects (i.e, in Maryland and Massachusetts) is discussed. The relevance of the modelling and evaluation approaches to air transportation (i.e, airport planning) is examined in a case study in St. Louis, Missouri.

  7. Aircraft System Analysis of Technology Benefits to Civil Transport Rotorcraft

    NASA Technical Reports Server (NTRS)

    Wilkerson, Joseph B.; Smith, Roger L.

    2008-01-01

    An aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was

  8. Biomembranes. Part M. Transport in bacteria, mitochondria, and chloroplasts: General approaches and transport systems

    SciTech Connect

    Fleischer, S.; Fleischer, B.

    1986-01-01

    This book contains three sections, each consisting of several papers. Some of the paper titles are: Voltammetric Measurement of Quinones; Use of lac Gene Fusions to Study Transport Proteins; Methods for Mutagenesis of the Bacterioopsin Gene; Transport in Mycoplasmas; Alanine Carrier from Thermophilic Bacteria; and Measurement of Citrate Transport in Tumor Mitochondria.

  9. The organic anion transporter (OAT) family: a systems biology perspective.

    PubMed

    Nigam, Sanjay K; Bush, Kevin T; Martovetsky, Gleb; Ahn, Sun-Young; Liu, Henry C; Richard, Erin; Bhatnagar, Vibha; Wu, Wei

    2015-01-01

    The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the "Remote Sensing and Signaling Hypothesis," which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling.

  10. [Is pneumatic sample transport system also a carrier for microorganisms?].

    PubMed

    Alpat, Saygin Nayman; Ozgüneş, Ilhan; Aybey, Aşkin Derya; Ertem, Osman Turgut; Akşit, Filiz

    2009-07-01

    The purpose of this study was to evaluate the possible infection and contamination risk of the pneumatic system used in our hospital and to establish essential infection control measures. The study was conducted in a quaternary health care center with 1.000 bed capacity. A total of 614 specimens were taken 2 times weekly from the pneumatic transport system and its carriers at 22 wards, 5 intensive care units, 3 laboratories, 2 blood taking units, and pharmacy. Samples were also obtained from the fingertips of 33 subjects using the system, before and after contact with the carriers. A questionnaire that consisted of 8 questions was applied to 224 subjects who worked in those units, evaluating the degree of compliance to the obligations for the cleaning of the pneumatic system and carriers and their approach in case of visible pollution at the system. Bacterial growth was observed in 15.2% (45/296) of samples in the 1st week and 7.6% (18/238) of the samples in the 2nd week, making a total of 11.8% (63/534) bacterial growth. No growth was detected from the areas where the carriers were placed. Of these 69.8% were coagulase negative staphylococci, 11.1% diphteroids, 7.9% Acinetobacter Iwoffii, 4.8% Staphylococcus aureus, 4.8% Bacillus spp. and 1.6% Enterococcus durans. Acinetobacter baumannii and Aspergillus were detected at two fingertip samples taken before the contact with carriers, while again A. baumannii and Enterobacter cloacae were detected at the samples following contact. Moreover, 31.3% of the subjects noted that they cleaned the carriers only if any visible contamination was present. In addition, 14.3% reported that they have encountered broken or spilled up material in the system for more than 5 times, 10.3% reported that they followed the instructions in case of presence of infected material inside the carriers, 23.7% reported that they always washed their hands after any contact with the carriers, 9.8% noted that they always used gloves during contact

  11. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations.

    PubMed

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-06-15

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use.

  12. Dynamic simulation of multicomponent reaction transport in water distribution systems.

    PubMed

    Munavalli, G R; Mohan Kumar, M S M S

    2004-04-01

    Given the presence of nutrients, regrowth of bacteria within a distribution system is possible. The bacterial growth phenomena, which can be studied by developing a multicomponent (substrate, biomass and disinfectant) reaction transport model, is governed by its relationship with the substrate (organic carbon) and disinfectant (chlorine). The multicomponent reaction transport model developed in the present study utilizes the simplified expressions for the basic processes (in bulk flow and at pipe wall) such as bacterial growth and decay, attachment to and detachment from the surface, substrate utilization and disinfectant action involved in the model. The usefulness of the model is further enhanced by the incorporation of an expression for bulk reaction parameter relating it with the organic carbon. The model is validated and applied to study the sensitive behavior of the components using a hypothetical network. The developed model is able to simulate the biodegradable organic carbon threshold in accordance with the values reported in the literature. The spread of contaminant intruded into the system at any location can also be simulated by the model. The multicomponent model developed is useful for water supply authorities in identifying the locations with high substrate concentrations, bacterial growth and lower chlorine residuals.

  13. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    PubMed Central

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-01-01

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use. PMID:26083232

  14. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    SciTech Connect

    Ferrell, P.C.

    1996-04-18

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  15. Utility of Space Transportation System to Space Communication Community

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1975-01-01

    A potentially cost effective technique was investigated of launching operational satellites into synchronous orbit using the space transportation system (STS). This technique uses an unguided spinning solid rocket motor as the means for boosting a satellite from a low altitude shuttle parking orbit into a synchronous transfer orbit. The spacecraft is then injected into a geosynchronous orbit by an apogee kick motor fired at transfer orbit apogee. The approach is essentially that used on all Delta and Atlas-Centaur launches of synchronous satellites with the shuttle orbiter performing the function of the first two stages of the Delta three stage launch vehicle and the perigee kick motor performing the function of the Delta third state. It is concluded that the STS can be useful to the space communication community as well as to other geostationary satellite system users if the recommended actions are implemented.

  16. A new era of space transportation. [Space Shuttle system utilization

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.

    1976-01-01

    It is pointed out that founded on the experiences of Apollo, Skylab, and the Apollo/Soyuz mission an era is entered which will be characterized by a displacement of the interface between the experimenter and his experiment from the control center on the ground to the laboratory in orbit. A new world has been opened by going into space. Economic applications are related to the achievement of an enormous efficiency in world communications at a much lower cost. However, programs of space exploration and usage are under severe economic constraints. A primary tool to lower the cost of programs is to be the Space Transportation System using the Space Shuttle. It is emphasized that the Shuttle system is an international enterprise. Attention is also given to the results of the Viking missions, the Landsat satellites, and applications of space technology for science and commerce.

  17. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  18. A parametric analysis of transport aircraft system weights and costs

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1974-01-01

    In determining unit and operating costs for advanced aircraft, it has been found that by having first-order weight and performance approximations for the aircraft systems and structural components, a step increase in cost prediction accuracy results. This paper presents first-order approximation equations for these systems and components. These equations were developed from data for most current jet transports, and they have been ordered to use a minimum number of performance parameters such as aircraft style, number of passengers, empty and gross weight, cargo load, and operating range. A NASA Ames Research Center aircraft cost program has been used to compare calculated and actual weights for the same aircraft. Good aircraft cost correlation is shown to exist between calculated first-order and actual aircraft weight data.

  19. [Sodium ion transportation system and its possible mechanisms in bacteria].

    PubMed

    Yang, Li-Fu; Zhao, Bai-Suo; Yang, Su-Sheng

    2007-12-01

    Sodium ion with high concentration is toxic to living cells, and microorganisms adapt to the environment containing high concentration of salt by the strategies of salt-in-cytoplasm and compatible solutes. The Na+ extrusion system plays important roles in maintaining cytoplasmic Na+ homeostasis and pH level in microbial cells. Two possible mechanisms of Na+ circulation across the cytoplasmic membrane have been proposed, namely primary Na+ pump and secondary Na+/H+ antiporter. Primary sodium pumps coupled the extrusion of Na+ to respiration, and the activity of which was insensitive to uncoupler CCCP ( carbonyl-cyanide m-chlorophenylhydrazone). There were two types of secondary Na+/H+ antiporters-encoding genes designated single gene and multiple subunits, respectively. The types of transportation systems for Na+, possible mechanisms of Na+ extrusion, and projects for further study in bacteria are reviewed.

  20. Ion mixing, hydration, and transport in aqueous ionic systems

    SciTech Connect

    Tse, Ying-Lung Steve; Voth, Gregory A.; Witten, Thomas A.

    2015-05-14

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  1. Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems.

    PubMed

    Chan, Cheong Xin; Zäuner, Simone; Wheeler, Glen; Grossman, Arthur R; Prochnik, Simon E; Blouin, Nicolas A; Zhuang, Yunyun; Benning, Christoph; Berg, Gry Mine; Yarish, Charles; Eriksen, Renée L; Klein, Anita S; Lin, Senjie; Levine, Ira; Brawley, Susan H; Bhattacharya, Debashish

    2012-04-01

    Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters.

  2. Reforming the road freight transportation system using systems thinking: An investigation of Coronial inquests in Australia.

    PubMed

    Newnam, Sharon; Goode, Natassia; Salmon, Paul; Stevenson, Mark

    2017-04-01

    Road freight transport is considered to be one of the most dangerous industries in Australia, accounting for over 30% of all work fatalities. Whilst system reform (i.e., change to policy and practice) is needed, it is not clear what this reform should be, or what approaches should be used to drive it. This article argues that road freight transportation reform should be underpinned by a systems thinking approach. Efforts to understand crash causation should be focused beyond the driver and identify contributing factors at other levels with the road freight system. Accordingly, we present the findings from a study that examined whether Australian Coronial investigations into road freight crashes reflect support appropriate system reform. Content analysis was used to identify the contributing factors and interrelations implicated in the road freight crashes described in publicly available Australian Coroner's inquest reports from the last 10 years (2004-2014; n=21). The results found evidence to suggest that the Coronial inquests provide some understanding of the complex system of factors influencing road freight transportation crashes in Australia. However, there was a lack of evidence to suggest an understanding of system-based reform based on the identification of reductionist-focused recommendations. It is concluded that researchers and practitioners (ie., government and industry) need to work together to develop prevention efforts focused on system reforms. Systems thinking based data collection and analysis frameworks are urgently required to help develop this understanding in road freight transportation.

  3. Robustness and control of a magnetically levitated transportation system

    NASA Astrophysics Data System (ADS)

    Oleszczuk, Grzegorz

    2006-04-01

    Electromagnetic suspension of Magnetic Levitation Vehicles (Maglev) has been studied for many years as an alternative to wheel-on rail transportation systems. In this work, design and implementation of control systems for a Maglev laboratory experiment and a Maglev vehicle under development at Old Dominion University are described. Both plants are modeled and simulated with consideration of issues associated with system non-linearity, structural flexibility and electromagnetic force modeling. Discussion concerning different control strategies, namely centralized and decentralized approaches are compared and contrasted in this work. Different types of electromagnetic non-linearities are considered and described to establish a convenient method for modeling such a system. It is shown how a Finite Element structural model can be incorporated into the system to obtain transfer function notation. Influence of the dynamic interaction between the Maglev track and the Maglev vehicle is discussed and supported by both analytical results and theoretical examples. Finally, several control laws designed to obtain stable and robust levitation are explored in detail.

  4. Transportation systems evaluation methodology development and applications, phase 3

    NASA Technical Reports Server (NTRS)

    Kuhlthau, A. R.; Jacobson, I. D.; Richards, L. C.

    1981-01-01

    Transportation systems or proposed changes in current systems are evaluated. Four principal evaluation criteria are incorporated in the process, operating performance characteristics as viewed by potential users, decisions based on the perceived impacts of the system, estimating what is required to reduce the system to practice; and predicting the ability of the concept to attract financial support. A series of matrix multiplications in which the various matrices represent evaluations in a logical sequence of the various discrete steps in a management decision process is used. One or more alternatives are compared with the current situation, and the result provides a numerical rating which determines the desirability of each alternative relative to the norm and to each other. The steps in the decision process are isolated so that contributions of each to the final result are readily analyzed. The ability to protect against bias on the part of the evaluators, and the fact that system parameters which are basically qualitative in nature can be easily included are advantageous.

  5. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Borowski, Stanley K.; Mcilwain, Melvin C.; Pellaccio, Dennis G.

    1992-01-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration.

  6. Advanced Transport Operating System (ATOPS) color displays software description microprocessor system

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  7. Future space transportation systems analysis study. Phase 1 extension: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Potential future space programs are analyzed beyond the scope of the current shuttle traffic model to determine their transportation needs and alternative ways of evolving future space transportation systems from the baseline space transportation system (space shuttle and upper stage). Objectives of the entire study are summarized along with results to date.

  8. 25 CFR 170.806 - What is an IRR Transportation Facilities Maintenance Management System?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Transportation Facilities Maintenance Management System? An IRR Transportation Facilities Maintenance Management... 25 Indians 1 2013-04-01 2013-04-01 false What is an IRR Transportation Facilities Maintenance Management System? 170.806 Section 170.806 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR...

  9. 25 CFR 170.806 - What is an IRR Transportation Facilities Maintenance Management System?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Transportation Facilities Maintenance Management System? An IRR Transportation Facilities Maintenance Management... 25 Indians 1 2012-04-01 2011-04-01 true What is an IRR Transportation Facilities Maintenance Management System? 170.806 Section 170.806 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR...

  10. 77 FR 69899 - Public Conference on Geographic Information Systems (GIS) in Transportation Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... SAFETY BOARD Public Conference on Geographic Information Systems (GIS) in Transportation Safety The National Transportation Safety Board will hold a public conference on the use of the Geographic Information Systems (GIS) in transportation safety on December 4-5, 2012. GIS is a rapidly expanding group...

  11. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were <1 mg/L; suggesting that >99% disappeared (primarily nitrified) in the vadose zone (<1.05-m soil profile depth). In the vadose zone of advanced system, heterotrophic and autrotrophic denitrification reduced nitrate-N concentrations to <0.12 mg/L, compared with >20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the

  12. Flexibility of CCS Power Plants and Transport Systems

    NASA Astrophysics Data System (ADS)

    Nimtz, Michael; Krautz, Hans-Joachim

    2013-04-01

    Growing shares of renewable energy in the German power grid urge fossil fuelled power plants to reduce load or to shut down completely with increasing frequency and amplitude. Shut down, load changes and the following restart or ramp-up often have to be carried out as fast as possible. To realize such fast transitions is already complicated and expensive for conventional power plants - if further measures for CO2 reduction are applied, the task is even harder. Capture equipment and transport systems will add further process steps as well as additional masses of fluids and construction material. This will result in a change of time constants and a generally slower system reaction on changes in parameters like load, temperature and pressure in the power plant components and capture units. On the other hand there is only limited time to earn money by selling electricity - if there is a chance to sell more electricity in a short term, efficiencies should be as high as possible. Any capture unit that would reduce the efficiency causes economic conflicts. Therefore measures are analysed to offset the power generation from the capture process in time or to reduce the capture load temporarily. The poster will present a case study for different CCS power plant configurations and load scenarios representing typical grid load from renewable energies. Approaches to balance the load and/or the CO2 output of these power plants will be presented. These approaches comprise: bypassing of flue gas, intermediate storage of heat and/or fluids. Amounts of additional steam, electrical energy and other process fluids (e.g. scrubbing fluids like MEA) and size of auxiliary equipment will be shown .Finally, effects on the transport system (e.g. cooling down of CO2 in the pipeline and changes in mass and volume flow) will be presented and discussed.

  13. Coarse mesh transport theory model for heterogeneous systems

    NASA Astrophysics Data System (ADS)

    Ilas, Danut

    To improve fuel utilization, recent reactor cores have become substantially more heterogeneous. In these cores, use of variable fuel enrichments and strong absorbers lead to high neutron flux gradients, which may limit the accuracy (validity) of diffusion theory based methods. In fact, the diffusion equation itself may become a poor approximation of the Boltzmann equation, the exact equation that describes the neutron flux. Therefore, numerical methods to solve the transport equation efficiently over a large heterogeneous region (such as a reactor core) are very desirable in case where the diffusion approximation breaks down. Presently, the only methods capable of computing the power (flux) distributions very accurately throughout a large system such as a nuclear reactor core are the Monte-Carlo or the fine-mesh transport theory methods. Both these methods suffer from the long computational time which makes them useless for routine core calculations. Starting from a variational principle that admits trial functions that can be discontinuous at coarse mesh (assembly) interfaces, we propose a method to solve the transport equation on a spatial grid made up of meshes as large as the size of a fuel assembly. The variational principle is derived for the most general case, but further methods are developed for one-dimensional geometry with the angular variable treated by discrete ordinates. The method uses the finite element approach for the space variable with basis functions precomputed for each element to obtain an algebraic linear system of equations. The eigenvalue of this system is the multiplication constant and the eigenvector represents the incoming angular fluxes for each coarse mesh. The latter allows the reconstruction of the fine mesh solution (angular flux) throughout the domain of interest when used with the basis functions (surface Green's function) for each coarse mesh. The method requires no homogenization procedure that can be a serious source of

  14. Analysis of Small Aircraft as a Transportation System

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    An analysis was conducted to examine the market viability of small aircraft as a transportation mode in competition with automobile and scheduled commercial air travel by estimating the pool of users that would potentially switch to on-demand air travel due to cost/time savings. The basis for the analysis model was the Integrated Air Transportation System Evaluation Tool (IATSET) which was developed under contract to NASA by the Logistics Management Institute. IATSET is a macroeconomic model that predicts at a National level the mode choice between automobile, scheduled air, and on-demand air travel based on the value of a travelers time and monetary cost of the trip. A number of modifications are detailed to the original IATSET to better model the changing small aircraft environment. The potential trip market was modeled for the Eclipse 500 operated as a corporate jet and as an air taxi for the business travel market. The Cirrus 20R and a $80K single engine piston aircraft (based on automobile manufacturing technology) are evaluated in the pleasure and personal business travel market.

  15. Modeling interfacial area transport in multi-fluid systems

    SciTech Connect

    Yarbro, Stephen Lee

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  16. Time-Dependent, Parallel Neutral Particle Transport Code System.

    SciTech Connect

    BAKER, RANDAL S.

    2009-09-10

    Version 00 PARTISN (PARallel, TIme-Dependent SN) is the evolutionary successor to CCC-547/DANTSYS. The PARTISN code package is a modular computer program package designed to solve the time-independent or dependent multigroup discrete ordinates form of the Boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, the Solver Module, and the Edit Module, respectively. PARTISN is the evolutionary successor to the DANTSYSTM code system package. The Input and Edit Modules in PARTISN are very similar to those in DANTSYS. However, unlike DANTSYS, the Solver Module in PARTISN contains one, two, and three-dimensional solvers in a single module. In addition to the diamond-differencing method, the Solver Module also has Adaptive Weighted Diamond-Differencing (AWDD), Linear Discontinuous (LD), and Exponential Discontinuous (ED) spatial differencing methods. The spatial mesh may consist of either a standard orthogonal mesh or a block adaptive orthogonal mesh. The Solver Module may be run in parallel for two and three dimensional problems. One can now run 1-D problems in parallel using Energy Domain Decomposition (triggered by Block 5 input keyword npeg>0). EDD can also be used in 2-D/3-D with or without our standard Spatial Domain Decomposition. Both the static (fixed source or eigenvalue) and time-dependent forms of the transport equation are solved in forward or adjoint mode. In addition, PARTISN now has a probabilistic mode for Probability of Initiation (static) and Probability of Survival (dynamic) calculations. Vacuum, reflective, periodic, white, or inhomogeneous boundary conditions are solved. General anisotropic scattering and inhomogeneous sources are permitted. PARTISN solves the transport equation on orthogonal (single level or block-structured AMR) grids in 1-D (slab, two

  17. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    NASA Technical Reports Server (NTRS)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  18. Space Transportation System Liftoff Debris Mitigation Process Overview

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  19. Non-rocket Earth-Moon transportation system

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    Author suggests and researches one of his methods of flights to outer Space, described in book "Non Rocket Flights in Space", which is prepared and offered for publication. In given report the method and facilities named "Bolonkin Transport System" (BTS) for delivering of payload and people to Moon and back is presented. BTS can be used also for free trip to outer Space up at altitude 60,000 km and more. BTS can be applying as a trust system for atmospheric supersonic aircrafts, and as a free energy source. This method uses, in general, the rotary and kinetic energy of the Moon. The manuscript contains the theory and results of computation of special Project. This project uses three cables (main and two for driving of loads) from artificial material: fiber, whiskers, nanotubes, with the specific tensile strength (ratio the tensile stress to density) k=/=4*10^7 or more. The nanotubes with same and better parameters are received in scientific laboratories. Theoretical limit of nanotubes SWNT is about k=100*10^7. The upper end of the cable is connected to the Moon. The lower end of the cable is connected to an aircraft (or buoy), which flies (i.e. glides or slides) in Earth atmosphere along the planet's surface. The aircraft (and Moon) has devices, which allows the length of cables to be changed. The device would consists of a spool, motor, brake, transmission, and controller. The facility could have devices for delivering people and payloads t o the Moon and back using the suggested Transport System. The delivery devices include: containers, cables, motors, brakes, and controllers. If the aircraft is small and the cable is strong the motion of the Moon can be used to move the airplane. For example (see enclosed project), if the airplane weighs 15 tons and has an aerodynamic ratio (the lift force to the drag force) equal 5, a thrust of 3000 kg would be enough for the aircraft to fly for infinity without requiring any fuel. The aircraft could use a small turbine engine

  20. Advanced Transport Operating System (ATOPS) color displays software description: MicroVAX system

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Display MicroVAX computer used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery of February 27, 1991, known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global references section includes subroutines, functions, and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  1. Biotin transport in the rat central nervous system.

    PubMed

    Lo, W; Kadlecek, T; Packman, S

    1991-12-01

    Previous studies in the biotin-deficient rat have shown that brain biotin concentrations and the activity of biotin-dependent carboxylases are relatively preserved in the face of biotin starvation and systemic biotin deficiency. These data suggested the existence of a concentration mechanism for biotin in brain, and the present studies were undertaken to further characterize brain biotin transport. We presently show that rat cerebrospinal fluid biotin concentrations are 2.5 times higher than serum concentrations, consistent with the existence of a concentrative mechanism for biotin. Further, we demonstrate uptake of 3H-biotin into rat brain from blood at physiologic biotin concentrations, using single pass clearance measurements of a brain uptake index. The calculated brain uptake indices for biotin, and the inhibition kinetics, are consistent with the possible existence of a low affinity mediated uptake mechanism. The results have implications for the pathophysiology of human biotin-responsive multiple carboxylase deficiency.

  2. Energy and magnetization transport in nonequilibrium macrospin systems

    NASA Astrophysics Data System (ADS)

    Borlenghi, Simone; Iubini, Stefano; Lepri, Stefano; Chico, Jonathan; Bergqvist, Lars; Delin, Anna; Fransson, Jonas

    2015-07-01

    We investigate numerically the magnetization dynamics of an array of nanodisks interacting through the magnetodipolar coupling. In the presence of a temperature gradient, the chain reaches a nonequilibrium steady state where energy and magnetization currents propagate. This effect can be described as the flow of energy and particle currents in an off-equilibrium discrete nonlinear Schrödinger (DNLS) equation. This model makes transparent the transport properties of the system and allows for a precise definition of temperature and chemical potential for a precessing spin. The present study proposes a setup for the spin-Seebeck effect, and shows that its qualitative features can be captured by a general oscillator-chain model.

  3. Technology requirements for advanced earth-orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    Areas of advanced technology that are either critical or offer significant benefits to the development of future Earth-orbit transportation systems were identified. Technology assessment was based on the application of these technologies to fully reusable, single-stage-to-orbit (SSTO) vehicle concepts with horizontal landing capability. Study guidelines included mission requirements similar to space shuttle, an operational capability begining in 1995, and main propulsion to be advanced hydrogen-fueled rocket engines. Also evaluated was the technical and economic feasibility of this class of SSTO concepts and the comparative features of three operational take-off modes, which were vertical boost, horizontal sled launch, and horizontal take-off with subsequent inflight fueling. Projections of both normal and accelerated technology growth were made. Figures of merit were derived to provide relative rankings of technology areas. The influence of selected accelerated areas on vehicle design and program costs was analyzed by developing near-optimum point designs.

  4. Evaluation of swab transport systems against a published standard

    PubMed Central

    Human, R P; Jones, G A

    2004-01-01

    Background: Before the publication of the M40-A standard by the United States National Committee for Clinical Laboratory Standards (NCCLS), no quality control data for swab transport systems (STSs) had been available. Aims: To compare three commercially available STSs against the published standard to ascertain bacterial survival after a set holding time. Method: Charcoal and non-charcoal containing swabs were inoculated with standard volumes and numbers of a range of bacteria commonly isolated from clinical material. Bacterial counts were taken at time zero, six, 24, and 48 hours, with the results being compared against the NCCLS standard. Results: The standard clearly differentiated between the three STSs tested, with one product being superior to the other two products in providing better survival. Conclusion: The standard now provides manufacturers and users of STSs with meaningful data to provide, purchase, and compare an STS for routine clinical use. PMID:15220372

  5. On transport in quantum Hall systems with constrictions

    NASA Astrophysics Data System (ADS)

    Lal, S.

    2007-10-01

    We study edge transport in a simple model of a constricted quantum Hall system with a lowered local filling factor. The current backscattered from the constriction is explained from a matching of the properties of the edge-current excitations in the constriction (ν2) and bulk (ν1) regions. We develop a hydrodynamic theory for bosonic edge modes inspired by this model, finding that a competition between two tunneling process, related by a quasiparticle-quasihole symmetry, determines the fate of the low-bias transmission conductance. A novel generalisation of the Kane-Fisher quantum impurity model is found, describing transitions from a weak-coupling theory at partial transmission to strong-coupling theories for perfect transmission and reflection as well as a new symmetry dictated fixed point. These results provide satisfactory explanations for recent experimental results at filling factors of 1/3 and 1.

  6. Distribution of dilemma zone after intelligent transportation system established

    NASA Astrophysics Data System (ADS)

    Deng, Yuanchang; Yang, Huiqin; Wu, Linying

    2017-03-01

    Dilemma zone refers to an area where vehicles can neither clear the intersection during the yellow interval nor stop safely before the stop line. The purpose of this paper is to analyzing the distribution of two types of dilemma zone after intelligent transportation system (ITS) established at Outer Ring Roads signalized intersections in Guangzhou Higher Education Mega Center. To collect field data a drone aircraft was used. When calculating the type II dilemma zone's distribution, we considered the information of drivers' aggressiveness, which was classified by driving speed and type I dilemma zone as well. We also compared the two types dilemma zone's distribution before and after ITS established and analyzed the changes, which was brought by ITS.

  7. Proton Solvation and Transport in Aqueous and Biomolecular Systems

    PubMed Central

    Swanson, Jessica M. J.; Maupin, C. Mark; Chen, Hanning; Petersen, Matt K.; Xu, Jiancong; Wu, Yujie; Voth, Gregory A.

    2008-01-01

    The excess proton in aqueous media plays a pivotal role in many fundamental chemical (e.g., acid-base chemistry) and biological (e.g., bioenergetics and enzyme catalysis) processes. Understanding the hydrated proton is, therefore, crucial for chemistry, biology, and materials sciences. Although well studied for over 200 years, excess proton solvation and transport remains to this day mysterious, surprising, and perhaps even misunderstood. In this feature article various efforts to address this problem through computer modeling and simulation will be described. Applications of computer simulations to a number of important and interesting systems will be presented, highlighting the roles of charge delocalization and Grotthuss shuttling, a phenomenon unique in many ways to the excess proton in water. PMID:17429993

  8. Thermal blanket insulation for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Pusch, Richard H.

    1985-01-01

    The feasibility of weaving Nextel ceramic and Nicalon silicon carbide yarns into integrally woven, three dimensional fluted core fabrics was demonstrated. Parallel face fabrics joined with woven fabric ribs to form triangular cross section flutes between the faces were woven into three single and one double layer configuration. High warp yarn density in the double layer configuration caused considerable yarn breakage during weaving. The flutes of all four fabrics were filled with mandrels made from Q-Fiber Felt and FRCI-20-12 to form candidate insulation panels for advanced Space Transportation Systems. Procedures for preparing and inserting the mandrels were developed. Recommendations are made on investigating alternate methods for filling the flutes with insulation, and for improving the weaving of these types of fabrics.

  9. A Comparison of Transportation Systems for Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Thomas, Brent; Vaughan, Diane; Drake, Bret; Griffin, Brand; Woodcock, Gordon

    2004-01-01

    There are many ways to send humans to Mars. Credible technical reports can be traced to the 1950's. More recently, NASA has funded major studies that depict a broad variety of trajectories, technologies, stay times, and costs. Much of this data is still valid with direct application to today's exploration planning. This paper presents results comparing these studies with particular emphasis on the in-space transportation aspects of the mission. Specifically, comparisons are made on propulsion systems used for getting the crew and mission equipment from Earth orbit to Mars orbit, descending and ascending from the surface, and returning to Earth orbit. Areas of comparison for each of these phases include crew size, mission mass, propellant mass, delta v, specific impulse, transit time, surface stay time, aero-braking, and others. Data is analyzed to demonstrate either strong trends toward particular technologies or diverging solutions.

  10. Space power systems technology enablement study. [for the space transportation system

    NASA Technical Reports Server (NTRS)

    Smith, L. D.; Stearns, J. W.

    1978-01-01

    The power system technologies which enable or enhance future space missions requiring a few kilowatts or less and using the space shuttle were assessed. The advances in space power systems necessary for supporting the capabilities of the space transportation system were systematically determined and benefit/cost/risk analyses were used to identify high payoff technologies and technological priorities. The missions that are enhanced by each development are discussed.

  11. Microscopic theory on charge transports of a correlated multiorbital system

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    2016-07-01

    Current vertex correction (CVC), the backflowlike correction to the current, comes from conservation laws, and the CVC due to electron correlation contains information about many-body effects. However, it has been little understood how the CVC due to electron correlation affects the charge transports of a correlated multiorbital system. To improve this situation, I studied the in-plane resistivity ρa b and the Hall coefficient in the weak-field limit RH, in addition to the magnetic properties and the electronic structure, for a t2 g-orbital Hubbard model on a square lattice in a paramagnetic state away from or near an antiferromagnetic (AF) quantum-critical point (QCP) in the fluctuation-exchange (FLEX) approximation with the CVCs arising from the self-energy (Σ ), the Maki-Thompson (MT) irreducible four-point vertex function, and the main terms of the Aslamasov-Larkin (AL) one. Then, I found three main results about the CVCs. First, the main terms of the AL CVC do not qualitatively change the results obtained in the FLEX approximation with the Σ CVC and the MT CVC. Second, ρa b and RH near the AF QCP have a high-temperature region, governed mainly by the Σ CVC, and a low-temperature region, governed mainly by the Σ CVC and the MT CVC. Third, in case away from the AF QCP, the MT CVC leads to a considerable effect on only RH at low temperatures, although RH at high temperatures and ρa b at all temperatures considered are sufficiently described by including only the Σ CVC. Those findings reveal several aspects of many-body effects on the charge transports of a correlated multiorbital system. I also achieved the qualitative agreement with several experiments of Sr2RuO4 or Sr2Ru0.975Ti0.025O4 . Moreover, I showed several better points of this theory than other theories.

  12. Momentum and spin transport properties of spin polarized Fermi systems

    NASA Astrophysics Data System (ADS)

    Wei, Lijuan

    We carried out experiments on a spin polarized 3He- 4He mixture with 3He concentration x 3 = 6.26 x 10-4, and on pure 3He liquid. Spin polarization affects the transport properties of these Fermi systems. The effect on momentum transport was studied by using a vibrating-wire viscometer to measure viscosity of the 3He-4He mixture over the temperature range 6.09 mK--100 mK in 7.96 T and 1.00 T magnetic fields. A large viscosity increase was observed upon application of the 7.96 T magnetic field for temperature T < TF(TF = 19.5 mK is the Fermi temperature). The observed viscosity is in very good agreement with theoretical calculations for a dilute Fermi gas by Jeon and Mullin [1988, 1989] and Mullin and Jeon [1992]. The polarization effect on spin transport was investigated by measuring the transverse diffusion coefficient D ⊥ in pure 3He liquid at saturated vapor pressure and at 15.85 bar over the temperature range 4.5 mK--159 mK in a 7.96 T magnetic field. We used a pulsed NMR spin echo technique in a field gradient of 16.0 G/cm to do the measurements and fits to the Leggett equations [1970] to obtain D⊥. For T < 20 mK, we found D⊥ is less than measured in earlier experiments at lower magnetic fields. D⊥ does not increase with decreasing temperature as 1/T2, but appears to approach a constant as T → 0 while it is expected that the longitudinal spin diffusion coefficient D∥ ∝ 1/ T2. This is called spin diffusion anisotropy and it was observed for the first time in our 3He liquid experiments. The anisotropy temperature we determined for 3He liquid was Ta = 16.4 +/- 2.2 mK at saturated vapor pressure and in a 7.96 T magnetic field. The transverse spin diffusion in 3 He results agree qualitatively with theories proposed by Meyerovich and Musaeflan [1992, 1994]. They also agree qualitatively with theories proposed by Golosov and Ruckenstein [1995, 1998] by extrapolation of the dilute theory to a strongly interacting system.

  13. Acoustic leak-detection system for railroad transportation security

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.

    2007-04-01

    Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.

  14. Design of a lunar transportation system, volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Spring 1990 Introduction to Design class was asked to conceptually design second generation lunar vehicles and equipment as a semester design project. A brief summary of four of the final projects, is presented. The designs were to facilitate the transportation of personnel and materials. The eight topics to choose from included flying vehicles, ground based vehicles, robotic arms, and life support systems. A lunar flying vehicle that uses clean propellants for propulsion is examined. A design that will not contribute to the considerable amount of caustic pollution already present in the sparse lunar atmosphere is addressed by way of ballistic flight techniques. A second generation redesign of the current Extra Vehicular Activity (EVA) suit to increase operating time, safety, and efficiency is also addressed. A separate life support system is also designed to be permanently attached to the lunar rover. The two systems would interact through the use of an umbilical cord connection. A ground based vehicle which will travel for greater distances than a 37.5 kilometer radius from a base on the lunar surface was designed. The vehicle is pressurized due to the fact that existing lunar rovers are limited by the EVA suits currently in use. A robotic arm for use at lunar bases or on roving vehicles on the lunar surface was designed. The arm was originally designed as a specimen gathering device, but it can be used for a wide range of tasks through the use of various attachments.

  15. A Small Aircraft Transportation System (SATS) Demand Model

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Kostiuk, Peter; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Small Aircraft Transportation System (SATS) demand modeling is a tool that will be useful for decision-makers to analyze SATS demands in both airport and airspace. We constructed a series of models following the general top-down, modular principles in systems engineering. There are three principal models, SATS Airport Demand Model (SATS-ADM), SATS Flight Demand Model (SATS-FDM), and LMINET-SATS. SATS-ADM models SATS operations, by aircraft type, from the forecasts in fleet, configuration and performance, utilization, and traffic mixture. Given the SATS airport operations such as the ones generated by SATS-ADM, SATS-FDM constructs the SATS origin and destination (O&D) traffic flow based on the solution of the gravity model, from which it then generates SATS flights using the Monte Carlo simulation based on the departure time-of-day profile. LMINET-SATS, an extension of LMINET, models SATS demands at airspace and airport by all aircraft operations in US The models use parameters to provide the user with flexibility and ease of use to generate SATS demand for different scenarios. Several case studies are included to illustrate the use of the models, which are useful to identify the need for a new air traffic management system to cope with SATS.

  16. Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport.

    PubMed

    Lee, Chee Kong; Moix, Jeremy; Cao, Jianshu

    2015-04-28

    Quantum transport in disordered systems is studied using a polaron-based master equation. The polaron approach is capable of bridging the results from the coherent band-like transport regime governed by the Redfield equation to incoherent hopping transport in the classical regime. A non-monotonic dependence of the diffusion coefficient is observed both as a function of temperature and system-phonon coupling strength. In the band-like transport regime, the diffusion coefficient is shown to be linearly proportional to the system-phonon coupling strength and vanishes at zero coupling due to Anderson localization. In the opposite classical hopping regime, we correctly recover the dynamics described by the Fermi's Golden Rule and establish that the scaling of the diffusion coefficient depends on the phonon bath relaxation time. In both the hopping and band-like transport regimes, it is demonstrated that at low temperature, the zero-point fluctuations of the bath lead to non-zero transport rates and hence a finite diffusion constant. Application to rubrene and other organic semiconductor materials shows a good agreement with experimental mobility data.

  17. Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport

    SciTech Connect

    Lee, Chee Kong; Moix, Jeremy; Cao, Jianshu

    2015-04-28

    Quantum transport in disordered systems is studied using a polaron-based master equation. The polaron approach is capable of bridging the results from the coherent band-like transport regime governed by the Redfield equation to incoherent hopping transport in the classical regime. A non-monotonic dependence of the diffusion coefficient is observed both as a function of temperature and system-phonon coupling strength. In the band-like transport regime, the diffusion coefficient is shown to be linearly proportional to the system-phonon coupling strength and vanishes at zero coupling due to Anderson localization. In the opposite classical hopping regime, we correctly recover the dynamics described by the Fermi’s Golden Rule and establish that the scaling of the diffusion coefficient depends on the phonon bath relaxation time. In both the hopping and band-like transport regimes, it is demonstrated that at low temperature, the zero-point fluctuations of the bath lead to non-zero transport rates and hence a finite diffusion constant. Application to rubrene and other organic semiconductor materials shows a good agreement with experimental mobility data.

  18. Electrical Transport in Thin Film Systems for Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Huang, Bingyuan

    Many energy conversion technologies rely on the function and properties of thin films. In many cases, the fundamental physics underlying the structure-property-performance interrelationship is not completely understood. So it is not possible to fully exploit the true capabilities of these systems. Therefore, investigating and understanding such interrelationships in different systems is of both scientific and technological importance. In this dissertation, both conjugated polymer systems for photovoltaic application and strained silicon system for thermoelectric application are investigated in order to develop a clearer understanding of the effect of film thickness and microstructural features on electrical transport. Morphological features such as domain size, phase purity are investigated in the polymers in order to understand the effects on charge mobility, recombination and further on device performance. With regard to silicon, the effects of lattice strain on electrical conductivity and thermopower are studied. The out-of-plane hole mobility was investigated in regioregular P3HT thin films. It was shown that the hole mobilities monotonically increased an order of magnitude when film thickness increased from 80 nm to 700 nm. Based on X-ray diffraction, spectroscopic ellipsometry and simulations, this thickness-dependent mobility is associated with substrate induced anisotropies of the P3HT film structure. The role of microstructural features on the performance characteristics of the archetypal P3HT:PCBM (1:1) bulk heterojunction solar cell was investigated. It is demonstrated that small domain sizes and correspondingly large interfacial areas accommodated a high initial carrier density. However in these materials, non-geminate recombination of carriers could be significant, leading to low open circuit voltages and low fill factors. The purity of the domains also influenced the charge carrier mobilities and non-germinate recombination. One important finding from

  19. Conceptual analysis of a lunar base transportation system

    NASA Technical Reports Server (NTRS)

    Hoy, Trevor D.; Johnson, Lloyd B., III; Persons, Mark B.; Wright, Robert L.

    1992-01-01

    Important to the planning for a lunar base is the development of transportation requirements for the establishment and maintenance of that base. This was accomplished as part of a lunar base systems assessment study conducted by the NASA Langley Research Center in conjunction with the NASA Johnson Space Center. Lunar base parameters are presented using a baseline lunar facility concept and timeline of developmental phases. Masses for habitation and scientific modules, power systems, life support systems, and thermal control systems were generated, assuming space station technology as a starting point. The masses were manifested by grouping various systems into cargo missions and interspersing manned flights consistent with construction and base maintenance timelines. A computer program that sizes the orbital transfer vehicles (OTV's), lunar landers, lunar ascenders, and the manned capsules was developed. This program consists of an interative technique to solve the rocket equation successively for each velocity correction (delta V) in a mission. The delta V values reflect integrated trajectory values and include gravity losses. As the program computed fuel masses, it matched structural masses from General Dynamics' modular space-based OTV design. Variables in the study included the operation mode (i.e., expendable vs. reusable and single-stage vs. two-stage OTV's), cryogenic specific impulse, reflecting different levels of engine technology, and aerobraking vs. all-propulsive return to Earth orbit. The use of lunar-derived oxygen was also examined for its general impact. For each combination of factors, the low-Earth orbit (LEO) stack masses and Earth-to-orbit (ETO) lift requirements are summarized by individual mission and totaled for the developmental phase. In addition to these discrete data, trends in the variation of study parameters are presented.

  20. Conceptual analysis of a lunar base transportation system

    NASA Astrophysics Data System (ADS)

    Hoy, Trevor D.; Johnson, Lloyd B., III; Persons, Mark B.; Wright, Robert L.

    1992-09-01

    Important to the planning for a lunar base is the development of transportation requirements for the establishment and maintenance of that base. This was accomplished as part of a lunar base systems assessment study conducted by the NASA Langley Research Center in conjunction with the NASA Johnson Space Center. Lunar base parameters are presented using a baseline lunar facility concept and timeline of developmental phases. Masses for habitation and scientific modules, power systems, life support systems, and thermal control systems were generated, assuming space station technology as a starting point. The masses were manifested by grouping various systems into cargo missions and interspersing manned flights consistent with construction and base maintenance timelines. A computer program that sizes the orbital transfer vehicles (OTV's), lunar landers, lunar ascenders, and the manned capsules was developed. This program consists of an interative technique to solve the rocket equation successively for each velocity correction (delta V) in a mission. The delta V values reflect integrated trajectory values and include gravity losses. As the program computed fuel masses, it matched structural masses from General Dynamics' modular space-based OTV design. Variables in the study included the operation mode (i.e., expendable vs. reusable and single-stage vs. two-stage OTV's), cryogenic specific impulse, reflecting different levels of engine technology, and aerobraking vs. all-propulsive return to Earth orbit. The use of lunar-derived oxygen was also examined for its general impact. For each combination of factors, the low-Earth orbit (LEO) stack masses and Earth-to-orbit (ETO) lift requirements are summarized by individual mission and totaled for the developmental phase. In addition to these discrete data, trends in the variation of study parameters are presented.

  1. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    SciTech Connect

    Satoh, J.A.

    1994-11-09

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3.

  2. Functional requirements for the Automated Transportation Management System: TTP number: RL 439002

    SciTech Connect

    Portsmouth, J.H.

    1992-12-31

    This requirements analysis, documents Department of Energy (DOE) transportation management procedures for the purpose of providing a clear and mutual understanding between users and designers of the proposed Automated Transportation Management System (ATMS). It is imperative that one understand precisely how DOE currently performs traffic management tasks; only then can an integrated system be proposed that successfully satisfies the major requirements of transportation managers and other system users. Accordingly, this report describes the current workings of DOE transportation organizations and then proposes a new system which represents a synthesis of procedures (both current and desired) which forms the basis for further systems development activities.

  3. Miniature Heat Transport System for Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)

    2002-01-01

    Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes

  4. Design of high-capacity fiber-optic transport systems

    NASA Astrophysics Data System (ADS)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium

  5. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    SciTech Connect

    Brown, G. S.; Cashwell, J. W.; Apple, M. L.

    1991-01-01

    Shipments of radioactive material (RAM) constitute but a small fraction of the total hazardous materials shipped in the United States each year. Public perception, however, of the potential consequences of a release from a transportation package containing RAM has resulted in significant regulation of transport operations, both to ensure the integrity of a package in accident conditions and to place operational constraints on the shipper. Much of this attention has focused on shipments of spent nuclear fuel and high level wastes which, although comprising a very small number of total shipments, constitute a majority of the total curies transported on an annual basis. This report discusses the shipment of these highly radioactive materials.

  6. Fabrication and electronic transport studies of single nanocrystal systems

    SciTech Connect

    Klein, David Louis

    1997-05-01

    Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.

  7. Economic Metrics for Commercial Reusable Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.; Hamaker, Joseph (Technical Monitor)

    2000-01-01

    baseline. Still, economic metrics for technology development in these Programs and projects remain fairly straightforward, being based on reductions in acquisition and operating costs of the Systems. One of the most challenging requirements that NASA levies on its Programs is to plan for the commercialization of the developed technology. Some NASA Programs are created for the express purpose of developing technology for a particular industrial sector, such as aviation or space transportation, in financial partnership with that sector. With industrial investment, another set of goals, constraints and expectations are levied on the technology program. Economic benefit metrics then expand beyond cost and cost savings to include the marketability, profit, and investment return requirements of the private sector. Commercial investment criteria include low risk, potential for high return, and strategic alignment with existing product lines. These corporate criteria derive from top-level strategic plans and investment goals, which rank high among the most proprietary types of information in any business. As a result, top-level economic goals and objectives that industry partners bring to cooperative programs cannot usually be brought into technical processes, such as systems engineering, that are worked collaboratively between Industry and Government. In spite of these handicaps, the top-level economic goals and objectives of a joint technology program can be crafted in such a way that they accurately reflect the fiscal benefits from both Industry and Government perspectives. Valid economic metrics can then be designed that can track progress toward these goals and objectives, while maintaining the confidentiality necessary for the competitive process.

  8. Space Transportation System Technology Symposium. Volume 4; Propulsion

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The prospect of undertaking a reusable launch vehicle development led the NASA Office of Manned Space Flight (OMSF) to request the Office of Advanced Research and Technology (OART) to organize and direct a program to develop the technology that would aid in selecting the best system alternatives and that would support the ultimate development of an earth-to-orbit shuttle. Such a Space Transportation System Technology Program has been initiated. OART, OMSF, and NASA Flight and Research Centers with the considerable inputs of Department of Defense personnel have generated the program through the efforts of several Technology Working Groups and a Technology Steering Group. Funding and management of the recommended efforts is being accomplished through the normal OAR T and OMSF line management channels. The work is being done in government laboratories and under contract with industry and universities. Foreign nations have been invited to participate in this work as well. Substantial funding, from both OART and OMSF, was applied during the second half of fiscal year 1970. The Space Transportation System Technology Symposium held at the NASA Lewis Research Center, Cleveland, Ohio, July 15-17, 1970, was the first public report on that program. The Symposium goals were to consider the technology problems, their status, and the prospective program outlook for the benefit of the industry, government, university, and foreign participants considered to be contributors to the program. In addition, it offered an opportunity to identify the responsible individuals already engaged in the program. The Symposium sessions were intended to confront each presenter with his technical peers as listeners, and this, I believe, was substantially accomplished. Because of the high interest in the material presented, and also because the people who could edit the output are already deeply involved in other important tasks, we have elected to publish the material essentially as it was

  9. Upscaling of Thermal Transport Properties in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Hao, Y.; Chiaramonte, L.

    2010-12-01

    : Engineered Geothermal Systems (EGS) have garnered significant attention as a possible source of geographically disperse, carbon-free energy without the environmental impact of many other renewable energy sources. However, a significant barrier to the adoption of EGS is the uncertainty in whether a specific site is amenable to engineering and how fluid injection rates can affect, either through stimulation of the fracture network or through deleterious channeling of the thermal fluid, the heat extraction rate possible in a specific reservoir. Because of the uncertainties involved in determining the exact fracture network topology extant in any particular reservoir, it is desirable to have a stochastic description (distribution) of the possible heat extraction rates that could be achieved. This work provides both an approach and application of the approach for simulating several synthetic fracture networks. The approach uses a coupled geomechanics and discrete fracture network (DFN) solver coupled uni-directionally with a reservoir scale, hydro-thermal transport code, the Non-isothermal Unsaturated-Saturated Flow and Transport simulation code (NUFT), to capture the coupled hydro-thermo-mechanical behavior of these synthetic networks. Particular attention is paid to the upscaling approach used to determine effective permeability and thermal transfer coefficients that are used in the dual porosity/permeability (DKM) model employed in NUFT. This upscaling is based on a multi-scale treatment of the domain, starting with the upscaling of permeability from explicitly represented fractures in the DFN model, which considers the fracture-scale effects of fluid injection, to a finely resolved, unstructured mesh representation of the subdomain. Effective properties of this subdomain are then determined for a variety of sub-sampled discrete fracture network topologies. The result catalog of spatially correlated thermal and fluid properties are then used to populate the

  10. Space Transportation System Technology Symposium. Volume 7; Biotechnology

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The prospect of undertaking a reusable launch vehicle development led the NASA Office of Manned Space Flight (OMSF) to request the Office of Advanced Research and Technology (OART) to organize and direct a program to develop the technology that would aid in selecting the best system alternatives and that would support the ultimate development of an earth-to-orbit shuttle. Such a Space Transportation System Technology Program has been initiated. OART, OMSF, and NASA Flight and Research Centers with the considerable inputs of Department of Defense personnel have generated the program through the efforts of several Technology Working Groups and a Technology Steering Group. Funding and management of the recommended efforts is being accomplished through the normal OART and OMSF line management channels. The work is being done in government laboratories and under contract with industry and universities. Foreign nations have been invited to participate in this work as well. Substantial funding, from both OART and OMSF, was applied during the second half of fiscal year 1970. The Space Transportation System Technology Symposium held at the NASA Lewis Research Center, Cleveland, Ohio, July 15-17, 1970, was the first public report on that program. The Symposium goals were to consider the technology problems, their status, and the prospective program outlook for the benefit of the industry, government, university, and foreign participants considered to be contributors to the program. In addition, it offered an opportunity to identify the responsible individuals already engaged in the program. The Symposium sessions were intended to confront each presenter with his technical peers as listeners, and this, I believe, was substantially accomplished. Because of the high interest in the material presented, and also because the people who could edit the output are already deeply involved in other important tasks, we have elected to publish the material essentially as it was presented

  11. Stereospecific transport of Tyr-MIF-1 across the blood-brain barrier by peptide transport system-1

    SciTech Connect

    Banks, W.A.; Kastin, A.J.; Michals, E.A.; Barrera, C.M. )

    1990-10-01

    Previous studies have suggested that peptide transport system-1 (PTS-1), the saturable system that transports Tyr-MIF-1, the enkephalins, and related peptides out of the central nervous system (CNS), exhibits stereospecificity. In the present studies, we showed that {sup 125}I-L-Tyr-MIF-1, but not {sup 131}I-D-Tyr-MIF-1, was cleared from the CNS more rapidly than could be accounted for by nonspecific mechanisms. Such clearance was inhibited by a 1.0 nmol dose of L-Tyr-MIF-1, but not by D-Tyr-MIF-1. Neither L- nor D-Tyr-MIF-1 altered the much lower clearance of I-D-Tyr-MIF-1 from the brain. Radioactivity recovered from the vascular space after the injection of {sup 125}I-Tyr-MIF-1 into the lateral ventricle of the brain eluted by HPLC primarily as intact peptide, demonstrating that most of the Tyr-MIF-1 was not degraded during transport. By contrast, the nonsaturable unidirectional influx of Tyr-MIF-1 into the CNS did not distinguish between the isomers. These studies confirm and extend the observations that Tyr-MIF-1 is transported out of the CNS by a saturable, stereospecific transport system as an intact peptide while the influx into the CNS is by a nonsaturable mechanism that does not distinguish between the isomers.

  12. Effects of two transport systems on lamb welfare and meat quality.

    PubMed

    Miranda-de la Lama, G C; Salazar-Sotelo, M I; Pérez-Linares, C; Figueroa-Saavedra, F; Villarroel, M; Sañudo, C; Maria, G A

    2012-12-01

    The aim of this study was to analyse the effect of a direct transport system (DTS) versus transport with a logistic stopover system (TLS) on lamb welfare and meat quality at two seasons. A total of 96 lambs were sampled in a 2×2×2 factorial design, testing two transport systems and two seasons (summer and winter), with two replicates in each season. Significant interactions (P≤0.05) between transport system and season in both welfare and meat quality were found. In general, lambs subjected to direct transport and logistic stopover during winter had a more intense stress response and poorer meat quality than lambs transported during summer. However, direct transport during the cold season seemed to be the most stressful, compared to the rest of the groups, which was reflected in significantly higher levels of cortisol, lactate, glucose, ratio of N/L, higher pH24 and darker and tougher meat.

  13. Carbonless Transportation and Energy Storage in Future Energy Systems

    SciTech Connect

    Lamont, A.D.; Berry, G.D.

    2001-01-17

    By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

  14. Linear dynamic system approach to groundwater solute transport equation

    SciTech Connect

    Cho, W.C.

    1984-01-01

    Groundwater pollution in the United States has been recognized in the 1980's to be extensive both in degree and geographic distribution. It has been recognized that in many cases groundwater pollution is essentially irreversible from the engineering or economic viewpoint. Under the best circumstance the problem is complicated by insufficient amounts of field data which is costly to obtain. In general, the governing partial differential equation of solute transport is spatially discretized either using finite difference or finite element scheme. The time derivative is also approximated by finite difference. In this study, only the spatial discretization is performed using finite element method and the time derivative is retained in continuous form. The advantage is that special features of finite element are maintained but most important of all is that the equation can be rearranged to be in a standard form of linear dynamic system. Two problems were studied in detail: one is the determination of the locatio of groundwater pollution source(s). The problem is equivalent to identifying an input to the dynamic system and is solved by using the sensitivity theorem. The other one is the prediction of pollutant concentration at a given time at a given location. The eigenvalue technique was employed to solve this problem and the detailed procedures of the computation were delineated.

  15. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    NASA Technical Reports Server (NTRS)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  16. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    NASA Technical Reports Server (NTRS)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  17. 25 CFR 170.806 - What is an IRR Transportation Facilities Maintenance Management System?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What is an IRR Transportation Facilities Maintenance... AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.806 What is an IRR Transportation Facilities Maintenance Management System? An IRR Transportation Facilities Maintenance...

  18. 25 CFR 170.806 - What is an IRR Transportation Facilities Maintenance Management System?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What is an IRR Transportation Facilities Maintenance... AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.806 What is an IRR Transportation Facilities Maintenance Management System? An IRR Transportation Facilities Maintenance...

  19. Interhospital Transport System for Critically Ill Patients: Mobile Extracorporeal Membrane Oxygenation without a Ventilator

    PubMed Central

    Yeo, Hye Ju; Cho, Woo Hyun; Park, Jong Myung; Kim, Dohyung

    2017-01-01

    Background Extracorporeal membrane oxygenation (ECMO) has been successfully used as a method for the interhospital transportation of critically ill patients. In South Korea, a well-established ECMO interhospital transport system is lacking due to limited resources. We developed a simplified ECMO transport system without mechanical ventilation for use by public emergency medical services. Methods Eighteen patients utilized our ECMO transport system from December 2011 to September 2015. We retrospectively analyzed the indications for ECMO, the patient status during transport, and the patient outcomes. Results All transport was conducted on the ground by ambulance. The distances covered ranged from 26 to 408 km (mean, 65.9±88.1 km) and the average transport time was 56.1±57.3 minutes (range, 30 to 280 minutes). All patients were transported without adverse events. After transport, 4 patients (22.2%) underwent lung transplantation because of interstitial lung disease. Eight patients who had severe acute respiratory distress syndrome showed recovery of heart and lung function after ECMO therapy. A total of 13 patients (70.6%) were successfully taken off ECMO, and 11 patients (61.1%) survived. Conclusion Our ECMO transport system without mechanical ventilation can be considered a safe and useful method for interhospital transport and could be a good alternative option for ECMO transport in Korean hospitals with limited resources. PMID:28180097

  20. Transportation Lines on the Great Lakes System; Transportation Series 3; 1980.

    DTIC Science & Technology

    1982-05-01

    AD-A121 620 TRANSPORTATION LINE ON THE MEAT. LAMBS SYSTlEM f/l TRANSPORTATION’IES 3; 108(U) CORPS OF EHEERgeS FORT SELVOIR VA WATER RESORCES SUPPORT...different hem Controllti Office) IS. SECURITY CLASS. (of tis report) Water Resources Support Center Data Collection Management Division Unclassified...from: National Technical Information Service (NTIS) 5285 Port Royal Road Springfield, Va. 22161 19. KEY WORDS (Cstinue an revere. de It necesar7 amd